REFINED VERSION OF HASSE'S SATZ 45 ON CLASS NUMBER PARITY

By
Humio Ichimura

Abstract

For an imaginary abelian field K, Hasse [3, Satz 45] obtained a criterion for the relative class number to be odd in terms of the narrow class number of the maximal real subfield K^{+}and the prime numbers which ramify in K, by using the analytic class number formula. In [4], we gave a refined version ($=$ " Δ-decomposed version") of Satz 45 by an algebraic method. In this paper, we give one more algebraic proof of the refined version.

1. Introduction

For a number field N, let h_{N} denote the class number of N. When N is an imaginary abelian field with the maximal real subfield N^{+}, we write $h_{N}^{+}=h_{N^{+}}$ and put $h_{N}^{-}=h_{N} / h_{N}^{+}$. Further, let \tilde{h}_{N}^{+}be the class number of N^{+}in the narrow sense. Let k / \mathbf{Q} be an imaginary abelian extension of 2-power degree, and F / \mathbf{Q} a real abelian extension with $2 \nless[F: \mathbf{Q}]$, and put $K=F k$. In [3, Satz 45], Hasse proved the following theorem.

THEOREM 1. Under the above setting, assume further that the extension K / \mathbf{Q} is cyclic. Then h_{K}^{-}is odd if and only if (i) \tilde{h}_{K}^{+}is odd, (ii) exactly one prime number ramifies in k / \mathbf{Q}, say p, and (iii) the prime number p does not split in F / \mathbf{Q}.

When $F=\mathbf{Q}$, we immediately obtain the following corollary from Satz 45 and Washington [11, Theorem 10.4(b)].

Corollary 1. For an imaginary cyclic extension k / \mathbf{Q} of 2-power degree, h_{k}^{-} is odd if and only if exactly one prime number ramifies in k.

[^0]In what follows, we do not assume that K / \mathbf{Q} is cyclic. Using class field theory, we can easily show that the ratios h_{K}^{-} / h_{k}^{-}and $\tilde{h}_{K}^{+} / \tilde{h}_{k}^{+}$are integers. In view of the above results, one is naturally interested in the parity of h_{K}^{-} / h_{k}^{-}, which is the subject of this note.

Hasse proved Theorem 1 heavily using the analytic class number formula. Recently, Conner and Hurrelbrink [2, Theorem 13.8] gave a purely algebraic proof of Theorem 1 using (i) their exact hexagon involving the cohomology groups $H^{i}\left(K / K^{+}, M\right)$ with $i=0,1$ where M is the group of units or the ideal class group of K and (ii) some fundamental properties of local norm residue symbols. In [4, Corollary 2], sharpening the method in [2], we obtained the following refined version of Theorem 1 .

Let $\Delta=\operatorname{Gal}(F / \mathbf{Q})=\operatorname{Gal}(K / k)$. For a number field N, we denote by A_{N} and $A_{N, \infty}$ the 2-parts of the ideal class group and the narrow class group of N, respectively. We put $A=A_{K}, A^{+}=A_{K^{+}}$and $A_{\infty}^{+}=A_{K^{+}, \infty}$ for brevity. We define the minus class group $A^{-}=A_{K}^{-}$to be the kernel of the norm map $A \rightarrow A^{+}$. We regard the above groups as modules over the group ring $\mathbf{Z}_{2}[\Delta]$. Let φ be a nontrivial $\overline{\mathbf{Q}}_{2}$-valued character of Δ, which we often regard as a primitive Dirichlet character. Here, \mathbf{Z}_{2} denotes the ring of 2-adic integers and $\overline{\mathbf{Q}}_{2}$ a fixed algebraic closure of the 2-adic rationals \mathbf{Q}_{2}. For a $\mathbf{Z}_{2}[\Delta]$-module $X, X(\varphi)$ denotes the φ-component of X. (See $\S 2$, for the definition of the φ-component.) Let S be the set of prime numbers p such that a prime divisor of k^{+}over p ramifies in k.

Theorem 2. Under the above setting, we have $A^{-}(\varphi)=\{0\}$ if and only if (i) $A_{\infty}^{+}(\varphi)=\{0\}$ and (ii) $\varphi(p) \neq 1$ for any prime number $p \in S$.

Corollary 2. The ratio h_{K}^{-} / h_{k}^{-}is odd if and only if (i) the ratio $\tilde{h}_{K}^{+} / \tilde{h}_{k}^{+}$is odd and (ii) no prime number p in S splits in F.

The main purpose of this paper is to give one more algebraic proof of Theorem 2 using a classical reflection argument. Further, we apply Theorem 2 to show that the 2-part of the class group of the cyclotomic \mathbf{Z}_{2}-extension over a certain imaginary abelian field is trivial (Theorem 3). We show Theorem 2 in $\S 4$ after some preliminaries in $\S 2$ and 3 . In $\S 5$, we show Theorem 3 .

Remark. In some cases, there are two different proofs for an assertion on the 2-part of the ideal class group. For instance, a theorem of Armitage
and Fröhlich [1] was generalized by Taylor [10] and Oriat [9] in two different ways. Taylor used some properties of norm residue symbols, while Oriat used a reflection argument. Recently, we gave in [5, Theorem 2] an alternative proof of [10, Assertion (*)] using a reflection argument. This paper gives another instance of two different proofs.

2. Kummer Duality

Let Δ be a finite abelian group whose order is odd. Let φ be a $\overline{\mathbf{Q}}_{2}$-valued character of Δ of order $d=d_{\varphi}$. Denote by e_{φ} the idempotent of the group ring $\mathbf{Z}_{2}[\Delta]$ corresponding to φ :

$$
e_{\varphi}=\frac{1}{|\Delta|} \sum_{\delta \in \Delta} \operatorname{Tr}\left(\varphi\left(\delta^{-1}\right)\right) \delta .
$$

Here, Tr is the trace map from $\mathbf{Q}_{2}\left(\zeta_{d}\right)$ to $\mathbf{Q}_{2}, \zeta_{d}$ being a primitive d th root of unity. For a module X over $\mathbf{Z}_{2}[\Delta]$, we denote by $X(\varphi)$ the φ-component $X^{e_{\varphi}}$ (or $e_{\varphi} X$). Let $\mathcal{O}_{\varphi}=\mathbf{Z}_{2}[\varphi]$ be the subring of $\overline{\mathbf{Q}}_{2}$ generated by the values of φ over \mathbf{Z}_{2}. Then the φ-component $X(\varphi)$ is naturally regarded as an \mathcal{O}_{φ}-module. We choose a complete set $\Gamma=\Gamma_{\Delta}$ of representatives of the \mathbf{Q}_{2}-conjugacy classes of the $\overline{\mathbf{Q}}_{2}$-valued characters of Δ. Then we have a canonical decomposition

$$
X=\bigoplus_{\varphi} X(\varphi)
$$

where φ runs over the characters in Γ.
Let T / N be an abelian extension over a number field N with $2 \nmid[T: N]$, and let $\Delta=\operatorname{Gal}(T / N)$. Let L / T be a pro-2 abelian extension which is Galois over N. Let $G=\operatorname{Gal}(L / T)$. Then we can naturally regard G as a module over $\mathbf{Z}_{2}[\Delta]$. For a character $\varphi \in \Gamma=\Gamma_{\Delta}$, we denote by $L(\varphi)$ the intermediate field of L / T corresponding to $\oplus_{\psi}^{\prime} G(\psi)$ by Galois theory where ψ runs over the characters in Γ with $\psi \neq \varphi$. Then we have a natural isomorphism $\operatorname{Gal}(L(\varphi) / T) \cong G(\varphi)$ of $\mathbf{Z}_{2}[\Delta]$-modules.

Now, assume that the extension L / T is of exponent 2 . Let V be the subgroup of $T^{\times} /\left(T^{\times}\right)^{2}$ such that $L=T\left(v^{1 / 2} \mid[v] \in V\right)$. Here, for a multiplicative abelian group X and an element $x \in X,[x]$ denotes the class in X / X^{2} containing x. We can naturally regard V as a module over $\mathbf{Z}_{2}[\Delta]$. The Kummer pairing

$$
V \times G \rightarrow \mu_{2}=\{ \pm 1\} ; \quad([v], g) \mapsto\langle v, g\rangle=\left(v^{1 / 2}\right)^{g-1}
$$

is nondegenerate and satisfies a relation $\left\langle v^{\delta}, g^{\delta}\right\rangle=\langle v, g\rangle$ for $[v] \in V, g \in G$ and $\delta \in \Delta$. Because of this relation, the pairing induces a nondegenerate subpairing

$$
V\left(\varphi^{-1}\right) \times G(\varphi) \rightarrow \mu_{2} .
$$

Thus, we obtain the following lemma, which we repeatedly use in this paper.
Lemma 1. Under the above setting, the Galois group $\operatorname{Gal}(L(\varphi) / T)$ is canonically isomorphic to $G(\varphi)$ as $\mathbf{Z}_{2}[\Delta]$-modules, and

$$
L(\varphi)=T\left(v^{1 / 2} \mid[v] \in V\left(\varphi^{-1}\right)\right) .
$$

3. Lemmas

We use the same notation as in Theorem 2. In particular, φ is a nontrivial $\overline{\mathbf{Q}}_{2}$-valued character of $\Delta=\operatorname{Gal}(F / \mathbf{Q})=\operatorname{Gal}(K / k)$. For a number field N, \mathcal{O}_{N} denotes the ring of integers of N. Let $E=E_{K^{+}}=\mathcal{O}_{K^{+}}^{\times}$be the group of units of K^{+}. We put $P^{+}=\operatorname{Gal}\left(k^{+} / \mathbf{Q}\right)$ so that $\operatorname{Gal}\left(K^{+} / \mathbf{Q}\right)=P^{+} \times \Delta$. We put

$$
\mathfrak{X}=\left(K^{+}\right)^{\times} /\left(\left(K^{+}\right)^{\times}\right)^{2}
$$

for brevity.

Lemma 2. Under the above setting, if $A_{\infty}^{+}(\varphi)$ is trivial, then both of $A^{+}(\varphi)$ and $A^{+}\left(\varphi^{-1}\right)$ are trivial.

Proof. Let $K_{>0}^{+}$be the subgroup of $\left(K^{+}\right)^{\times}$consisting of totally positive elements. Let $E_{+}=E \cap K_{>0}^{+}$, and E_{0} be the subgroup of E consisting of units ε satisfying the congruence $\varepsilon \equiv u^{2} \bmod 4$ for some $u \in K^{+}$. We have a natural exact sequence

$$
\begin{equation*}
\{0\} \rightarrow\left(K^{+}\right)^{\times} / E K_{>0}^{+} \rightarrow A_{\infty}^{+} \rightarrow A^{+} \rightarrow\{0\} \tag{1}
\end{equation*}
$$

compatible with the action of Δ. We see that $\left(\left(K^{+}\right)^{\times} / E K_{>0}^{+}\right)(\varphi)$ is trivial if and only if $\left(E_{+} / E^{2}\right)(\varphi)$ is trivial. This is because (i) the Galois module $\left(K^{+}\right)^{\times} / K_{>0}^{+}$ is isomorphic to $\mathbf{F}_{2}\left[P^{+} \times \Delta\right]$ via the sign map, and (ii) the \mathcal{O}_{F}-module $\left(E / E^{2}\right)(\varphi)$ is isomorphic to $\left(\mathcal{O}_{\varphi} / 2 \mathcal{O}_{\varphi}\right)^{\oplus r}$ with $r=\left|P^{+}\right|$by a theorem of Minkowski on units of a Galois extension (cf. Narkiewicz [8, Theorem 3.26a]). Here, \mathbf{F}_{2} is a finite field of 2 elements. Since $A_{\infty}^{+}(\varphi)$ is trivial, it follows from (1) that $A^{+}(\varphi)=\{0\}$ and $\left(\left(K^{+}\right)^{\times} / E K_{>0}^{+}\right)(\varphi)=\{0\}$. From the latter, it follows that

$$
\begin{equation*}
\left(E_{+} / E^{2}\right)(\varphi)=\{0\} . \tag{2}
\end{equation*}
$$

Let H be the class field of K^{+}corresponding to the class group A^{+} / A^{+2}, and V the subgroup of \mathfrak{X} such that $H=K^{+}\left(v^{1 / 2} \mid[v] \in V\right)$. We see that

$$
\begin{align*}
\left(E\left(\left(K^{+}\right)^{\times}\right)^{2} /\left(\left(K^{+}\right)^{\times}\right)^{2}\right) \cap V & =\left(E_{+} \cap E_{0}\right)\left(\left(K^{+}\right)^{\times}\right)^{2} /\left(\left(K^{+}\right)^{\times}\right)^{2} \\
& =\left(E_{+} \cap E_{0}\right) / E^{2} \tag{3}
\end{align*}
$$

by using Exercise 9.3 of Washington [11]. For each $[v]$ in V, we have $v \vartheta_{K^{+}}=\mathfrak{A ^ { 2 }}$ for some ideal \mathfrak{A} of K^{+}. By mapping $[v]$ to the ideal class [$\left.\mathfrak{M}\right]$, we obtain from (3) the following Kummer sequence

$$
\{0\} \rightarrow\left(E_{+} \cap E_{0}\right) / E^{2} \rightarrow V \rightarrow A^{+},
$$

which is compatible with the action of Δ. Assume that $A^{+}\left(\varphi^{-1}\right)$ is nontrivial. Then it follows from Lemma 1 that $V(\varphi)$ is nontrivial. However, as $A^{+}(\varphi)$ is trivial, we see from the above Kummer sequence that $\left(\left(E_{+} \cap E_{0}\right) / E^{2}\right)(\varphi)$ is nontrivial, and hence $\left(E_{+} / E^{2}\right)(\varphi)$ is nontrivial. This contradicts (2).

In [4, Lemma 2], we showed the following assertion by effectively using the nontriviality of φ.

Lemma 3. Under the above setting, the natural map $A^{+}(\varphi) \rightarrow A(\varphi)$ is injective.

We define subgroups \bar{A}^{+}and \bar{A} of A^{+}and A, respectively, by

$$
\bar{A}^{+}=\bigoplus_{\varphi}^{\prime} A^{+}(\varphi) \quad \text { and } \quad \bar{A}=\bigoplus_{\varphi}^{\prime} A(\varphi)
$$

where φ runs over the nontrivial characters in $\Gamma=\Gamma_{\Delta}$. By Lemma 3, we can regard \bar{A}^{+}as a subgroup of \bar{A}. Then we put

$$
A^{*}=\bar{A} / \bar{A}^{+},
$$

which we naturally regard as a $\mathbf{Z}_{2}[\Delta]$-module. Let φ_{0} be the trivial character of Δ. Though the structures of the two minus class groups $A^{-} / A^{-}\left(\varphi_{0}\right)$ and A^{*} are slightly different in general, we can easily show that $\left|A^{-}(\varphi)\right|=\left|A^{*}(\varphi)\right|$. In particular, $A^{-}(\varphi)$ is trivial if and only if $A^{*}(\varphi)$ is trivial. Let $M / K, M^{-} / K$ and M_{∞}^{+} / K^{+}be the class fields corresponding to the class groups A, A^{*} and A_{∞}^{+}, respectively. Regarding the Galois groups $\operatorname{Gal}(M / K), \operatorname{Gal}\left(M^{-} / K\right)$ and
$\operatorname{Gal}\left(M_{\infty}^{+} / K^{+}\right)$as modules over $\Delta=\operatorname{Gal}(K / k)=\operatorname{Gal}\left(K^{+} / k^{+}\right)$, we define the intermediate fields $M(\varphi), M^{-}(\varphi)$ and $M_{\infty}^{+}(\varphi)$ as in Section 2 for each nontrivial character $\varphi \in \Gamma$. In other words, $M(\varphi) / K, M^{-}(\varphi) / K$ and $M_{\infty}^{+}(\varphi) / K^{+}$are the class fields corresponding to $A(\varphi), A^{*}(\varphi)$ and $A_{\infty}^{+}(\varphi)$, respectively.

Lemma 4. If $A^{-}(\varphi)$ is trivial, then $A_{\infty}^{+}(\varphi)$ is trivial.
Proof. First, we show that $A^{+}(\varphi)=\{0\}$ using an argument in [7]. Because of Lemma 3 and the definition of A^{-}, we see that $A^{-}(\varphi)$ is the subgroup of $A(\varphi)$ consisting of classes c with $c^{J}=c^{-1}$. Here, J denotes the complex conjugation. Let B^{+}be the elements c of $A^{+}(\varphi)(\subseteq A(\varphi))$ with $c^{2}=1$. For each $c \in B^{+}$, we have $c^{J}=c=c^{-1}$. It follows that $B^{+} \subseteq A^{-}(\varphi)$. As $A^{-}(\varphi)=\{0\}$, this implies that $A^{+}(\varphi)=\{0\}$. It follows that $A(\varphi)=\{0\}$ and hence $M(\varphi)=K$. Now assume that $A_{\infty}^{+}(\varphi)$ is nontrivial. Then there exists a quadratic subextension N_{0} / K^{+} of $M_{\infty}^{+}(\varphi) / K^{+}$. We see that $N_{0} \cap K=K^{+}$because φ is nontrivial. Therefore, it follows that $N_{0} K / K$ is an unramified quadratic extension contained in $M(\varphi)$, which is a contradiction.

4. Proof of Theorem 2

We use the same notation as in the previous sections. Replacing F with the abelian field corresponding to $\operatorname{ker} \varphi$, we may as well assume that the Galois group $\Delta=\operatorname{Gal}(F / \mathbf{Q})$ is cyclic, and $\varphi: \Delta \rightarrow \overline{\mathbf{Q}}_{2}^{\times}$is injective. Further, we put

$$
\psi=\varphi^{-1}
$$

for simplicity. Let h_{0} (resp. h_{1}) be the 2-part (resp. odd part) of the class number h_{K} of K, and h_{0}^{\prime} the least common multiple of h_{0} and 2 . We choose an element $\tilde{e}_{\varphi} \in \mathbf{Z}[\Delta]$ so that $\tilde{e}_{\varphi} \equiv e_{\varphi} \bmod h_{0}^{\prime}$ and the coefficients of \tilde{e}_{φ} are multiple of h_{1}. We choose $\tilde{e}_{\psi} \in \mathbf{Z}[\Delta]$ in a similar way. We fix an element $d \in\left(k^{+}\right)^{\times}$such that

$$
k=k^{+}\left(d^{1 / 2}\right)
$$

Proof of the "only if"-part. Assume that $A^{-}(\varphi)=\{0\}$. By Lemma 4, we already know that $A_{\infty}^{+}(\varphi)=\{0\}$. Hence, it suffices to show that $\varphi(p) \neq 1$ for any prime number p in S. Assume that $\varphi(p)=1$ for some $p \in S$. Let \wp be a prime ideal of k^{+}over p. As φ is injective, the assumption $\varphi(p)=1$ implies that \wp splits completely in K^{+}. We choose a prime ideal \mathfrak{P} of K^{+}over \wp. As $A_{\infty}^{+}(\varphi)=\{0\}$, it follows from Lemma 2 that $A^{+}(\varphi)=\{0\}$. Hence, we have $\mathfrak{P}^{\tilde{e}_{\varphi}}=\pi \theta_{K^{+}}$for some
element π in K^{+}. The ideal $\mathfrak{P}^{\hat{e}_{\varphi}^{2}}$ is not a square of an ideal of K^{+}because $\tilde{e}_{\varphi}^{2} \equiv e_{\varphi} \not \equiv 0 \bmod 2$ and \wp splits completely in K^{+}. In particular, $\pi^{\tilde{e}_{\varphi}}$ is not a square in $\left(K^{+}\right)^{\times}$. Let

$$
N_{\psi}=K^{+}\left(\left(\pi^{\tilde{e}_{\varphi}}\right)^{1 / 2}\right) .
$$

From the above, N_{ψ} / K^{+}is a quadratic extension. As φ is nontrivial, we see that $N_{\psi} \cap K=K^{+}$.

Let $\tilde{\mathfrak{P}}$ be the prime ideal of K over \mathfrak{P}. As $p \in S$, we have $\mathfrak{P}=\tilde{\mathfrak{P}}^{2}$. We have $A(\varphi)=\{0\}$ since $A^{-}(\varphi)$ and $A^{+}(\varphi)$ are both trivial. Hence, $\tilde{\mathfrak{P}}^{\tilde{e}_{\varphi}}=x \mathcal{O}_{K}$ for some $x \in K^{\times}$. It follows that $\pi=\varepsilon x^{2}$ for some unit ε of K. Thus, we see that

$$
N_{\psi} K=K\left(\left(\pi^{\tilde{e}_{\varphi}}\right)^{1 / 2}\right)=K\left(\left(\varepsilon^{\tilde{e}_{\varphi}}\right)^{1 / 2}\right)
$$

and that this is a $(2,2)$-extension over K^{+}. Let $J \in \operatorname{Gal}\left(K / K^{+}\right)$be the complex conjugation. Then, as $N_{\psi} K / K^{+}$is a Galois extension, we see that $\left(\varepsilon^{\tilde{e}_{\varphi}}\right)^{J}=\varepsilon^{\tilde{e}_{\varphi}} \eta^{2}$ for some unit η of K. Hence, we can extend the automorphism J to that of $N_{\psi} K$ by

$$
\tilde{J}:\left(\varepsilon^{\tilde{e}_{\varphi}}\right)^{1 / 2} \mapsto\left(\varepsilon^{\tilde{\varepsilon}_{\varphi}}\right)^{1 / 2} \eta .
$$

Since $N_{\psi} K / K^{+}$is a $(2,2)$-extension, \tilde{J}^{2} is the trivial automorphism and hence we obtain $\eta \eta^{J}=1$. It follows that $\left(\varepsilon^{\tilde{e}_{\varphi}} \eta\right)^{J}=\varepsilon^{\tilde{e}_{\varphi}} \eta$, and hence $\xi=\varepsilon^{\tilde{e}_{\varphi}} \eta \in\left(K^{+}\right)^{\times}$. We see that η is a root of unity in K by the relation $\eta \eta^{J}=1$ and a theorem ([11, Theorem 4.12]) on units of a CM field. Hence, $K\left(\left(\eta^{\tilde{e}_{\varphi}}\right)^{1 / 2}\right) / \mathbf{Q}$ is an abelian extension. However, since φ is nontrivial, we observe using Lemma 1 that this extension would be non-abelian if the class $\left[\eta^{\tilde{e}_{\varphi}}\right]$ in $K^{\times} /\left(K^{\times}\right)^{2}$ were nontrivial. Therefore, it follows that the class $\left[\eta^{\tilde{e}_{\varphi}}\right]$ is trivial and hence

$$
N_{\psi} K=K\left(\left(\varepsilon^{\tilde{e}_{\varphi}^{2}}\right)^{1 / 2}\right)=K\left(\left(\xi^{\tilde{e}_{\varphi}}\right)^{1 / 2}\right)
$$

Then we obtain $\pi^{\tilde{e}_{\varphi}}=\xi^{\tilde{e}_{\varphi}} y^{2}$ or $(d \xi)^{\tilde{e}_{\varphi}} y^{2}$ for some $y \in\left(K^{+}\right)^{\times}$. As φ is nontrivial and $d \in\left(k^{+}\right)^{\times}$, we see that $d^{\tilde{e}_{p}}$ is a square in $\left(k^{+}\right)^{\times}$. Hence, $\mathfrak{P}^{\tilde{e}_{\varphi}^{2}}=\pi^{\tilde{e}_{\varphi}} \mathcal{O}_{K^{+}}$is a square of a principal ideal of K^{+}. This is a contradiction.

To prove the "if"-part, we need to show two more lemmas.
Lemma 5. Let Δ_{0} be a nontrivial subgroup of Δ, and let $\kappa=\kappa_{\Delta / \Delta_{0}}$ be the restriction map $\mathbf{Z}_{2}[\Delta] \rightarrow \mathbf{Z}_{2}\left[\Delta / \Delta_{0}\right]$. Then we have $\kappa\left(e_{\varphi}\right)=0$.

Proof. We have $\sum_{\delta \in \Delta_{0}} \varphi(\delta)=0$ since Δ_{0} is nontrivial and φ is injective. The assertion follows from this.

Lemma 6. Let \mathfrak{P} be a prime ideal of K^{+}, and $\wp=\mathfrak{P} \cap k^{+}$and $p=\wp \cap \mathbf{Q}$. If $\varphi(p) \neq 1$ and $A^{+}(\varphi)=\{0\}$, then $\mathfrak{P}^{\hat{e}_{\varphi}^{2}}=x^{2} \mathcal{O}_{K^{+}}$for some $x \in\left(K^{+}\right)^{\times}$.

Proof. Let F_{0} be the decomposition field of p at F / \mathbf{Q}, and $\Delta_{0}=$ $\operatorname{Gal}\left(F / F_{0}\right)$. As $\varphi(p) \neq 1, \Delta_{0}$ is a nontrivial subgroup of Δ. We put $K_{0}^{+}=F_{0} k^{+}$ and $\mathfrak{P}_{0}=\mathfrak{P} \cap K_{0}^{+}$. Since \mathfrak{P}_{0} remains prime in K^{+}, we see that $\mathfrak{P}^{\tilde{e}_{\varphi}}=\mathfrak{P}_{0}^{k\left(\tilde{e}_{\varphi}\right)} \mathcal{O}_{K^{+}}$ where $\kappa=\kappa_{\Delta / \Delta_{0}}$ is the restriction map in Lemma 5. By Lemma 5, we have $\kappa\left(\tilde{e}_{\varphi}\right) \equiv 0 \bmod 2$, and hence $\mathfrak{P}^{\tilde{e}_{\varphi}}=\mathfrak{A}^{2}$ for some ideal \mathfrak{H} of K^{+}. It follows that $\mathfrak{P}^{\tilde{e}_{\varphi}^{2}}=\left(\mathfrak{H}^{\tilde{e}_{\varphi}}\right)^{2}$. As $A^{+}(\varphi)=\{0\}, \mathfrak{A}^{\tilde{e}_{\varphi}}$ is principal, and hence the assertion follows.

Proof of the "IF"-part. Assume that (i) $A_{\infty}^{+}(\varphi)=\{0\}$ and that (ii) $\varphi(p) \neq 1$ for any prime number $p \in S$. Then we have

$$
A^{+}(\psi)=\{0\}
$$

by Lemma 2. To show the assertion, assume to the contrary that $A^{-}(\varphi)$ is nontrivial. Then the extension $M^{-}(\varphi) / K$ is nontrivial. Let v be an arbitrary infinite prime divisor of K^{+}. By using an argument in Iwasawa [6] (or in pp. 186-187 of [11]), we see that there exists a quadratic extension $N_{0}=$ $K^{+}\left(w^{1 / 2}\right) / K^{+}$with $w \in K^{+}$which is unramified at v and satisfies $N_{0} K \subseteq M^{-}(\varphi)$. In particular, $N_{0} \cap K=K^{+}$. Let $v=w^{\tilde{e}_{\|}}$and $N=K^{+}\left(v^{1 / 2}\right)$. Then we see that $N K=N_{0} K \subseteq M^{-}(\varphi)$ from Lemma 1 and that $N K / K^{+}$is a $(2,2)$-extension. Since the extension N / K^{+}is unramified outside S and ∞, we can write

$$
v \boldsymbol{\theta}_{K^{+}}=\prod_{\mathfrak{F}} \mathfrak{P}^{a_{\mathfrak{F}}} \mathfrak{A}^{2}
$$

for some ideal \mathfrak{H} of K^{+}. Here, \mathfrak{P} runs over the prime ideals of K^{+}with $\mathfrak{P} \cap \mathbf{Q} \in S$, and $a_{\mathfrak{F}}=0$ or 1 . As $[v] \in \mathfrak{X}(\psi)$, we may as well replace the Kummer generator v with $v^{e_{\psi}^{2}}$. Then, since $A^{+}(\psi)=\{0\}$ and $\psi(p) \neq 1$ for any $p \in S$, it follows from Lemma 6 that $v \theta_{K^{+}}=x^{2} \boldsymbol{\theta}_{K^{+}}$for some $x \in\left(K^{+}\right)^{\times}$. Therefore, we have

$$
N=K^{+}\left(\varepsilon^{1 / 2}\right)=K^{+}\left(\left(\varepsilon^{\tilde{e}_{\psi}}\right)^{1 / 2}\right)
$$

for some unit ε of K^{+}with $[\varepsilon] \in\left(E / E^{2}\right)(\psi)$. It follows that N / K^{+}is unramified outside ∞ and $S \cap\{2\}$. Therefore, when $2 \notin S$ or N / K^{+}is unramified at 2 , N / K^{+}is unramified outside ∞, and hence $N \subseteq M_{\infty}^{+}(\varphi)$. Thus, we see that $A_{\infty}^{+}(\varphi)$ is nontrivial, which is a contradiction.

Assume that $2 \in S$ and that there is a prime ideal \mathfrak{P} of K^{+}over 2 which ramifies in N. Since $k=k^{+}\left(d^{1 / 2}\right)$, the quadratic subfields of the $(2,2)$-extension $N K / K^{+}$are K, N and

$$
N^{\prime}=K^{+}\left((d \varepsilon)^{1 / 2}\right)=K^{+}\left(\left(d \varepsilon^{\tilde{e}_{\|}}\right)^{1 / 2}\right)
$$

Since $N K / K$ is unramified at \mathfrak{P}, and K / K^{+}and N / K^{+}are ramified at \mathfrak{P}, the third extension N^{\prime} / K^{+}is unramified at \mathfrak{P}. Therefore, $\operatorname{ord}_{\mathfrak{F}}(d)$ is even. This means that $\operatorname{ord}_{\wp}(d)$ is even as $\left[K^{+}: k^{+}\right]$is odd, where $\wp=\mathfrak{P} \cap k^{+}$. Then, replacing d with $d y^{2}$ for some $y \in\left(k^{+}\right)^{\times}$, we may as well assume that $(d, \mathfrak{P})=1$. Since N^{\prime} / K^{+}is unramified at \mathfrak{P}, we have $d \varepsilon^{\tilde{e}_{\psi}} \equiv u^{2} \bmod \mathfrak{P}^{2 e}$ for some $u \in K^{+}$by Exercise 9.3 of [11]. Here, e is the ramification index of \mathfrak{P} over \mathbf{Q}. Let Δ_{0} be the decomposition group of the prime 2 at F / \mathbf{Q}. Let $\psi_{0}=\psi_{\mid \Delta_{0}}$ and define $e_{\psi_{0}}$ and $\tilde{e}_{\psi_{0}}$ similarly to e_{ψ} and \tilde{e}_{ψ}. Since \mathfrak{P} is stable under the action of Δ_{0}, we have

$$
\left(d \varepsilon^{\tilde{e}_{\psi}}\right)^{\tilde{e}_{\mu_{0}}} \equiv v^{2} \bmod \mathfrak{P}^{2 e}
$$

for some $v \in\left(K^{+}\right)^{\times}$. As $\psi(2) \neq 1, \Delta_{0}$ is nontrivial and hence $d^{\tilde{e}_{\psi_{0}}}$ is a square in k^{+}. Further, we have $\tilde{e}_{\psi} \tilde{e}_{\psi_{0}} \equiv \tilde{e}_{\psi} \bmod 2$ as $e_{\psi} e_{\psi_{0}}=e_{\psi}$. Therefore, we see that $\varepsilon^{\tilde{e}_{\|}} \equiv w^{2} \bmod \mathfrak{P}^{2 e}$ for some $w \in\left(K^{+}\right)^{\times}$. This implies that N / K^{+}is unramified at \mathfrak{P}, a contradiction.

5. Cyclotomic \mathbf{Z}_{2}-extension

Let F, Δ and φ be as in the previous sections. For an integer $n \geq 0$, let $k_{n}=\mathbf{Q}\left(\zeta_{2^{n+2}}\right), K_{n}=F k_{n}, F_{n}=K_{n}^{+}$and $\mathbf{B}_{n}=k_{n}^{+}$. As in the previous sections, we identify Δ with $\operatorname{Gal}\left(K_{n} / k_{n}\right)$ and $\operatorname{Gal}\left(F_{n} / \mathbf{B}_{n}\right)$. We write $\varphi \sim \varphi^{-1}$ when φ and φ^{-1} are conjugate over \mathbf{Q}_{2}. It is well known that the class groups $A_{\mathbf{B}_{n}, \infty}$ and $A_{k_{n}}^{-}$are trivial for all $n \geq 0$. We generalize this fact as follows.

Theorem 3. Under the above setting, assume that

$$
(\mathrm{C} 1) \varphi \sim \varphi^{-1}, \quad(\mathrm{C} 2) \varphi(2) \neq 1, \quad(\mathrm{C} 3) A_{F}(\varphi)=\{0\}
$$

Then the class groups $A_{F_{n}, \infty}(\varphi)$ and $A_{K_{n}}^{-}(\varphi)$ are trivial for all $n \geq 0$.
Proof. We write $A_{n, \infty}=A_{F_{n}, \infty}$ for brevity. By virtue of Theorem 2 (and the assumption (C2)), the triviality of $A_{K_{n}}^{-}(\varphi)$ follows from that of $A_{n, \infty}(\varphi)$. The assumption (C1) implies that

$$
\begin{equation*}
X(\varphi)=X\left(\varphi^{-1}\right) \tag{4}
\end{equation*}
$$

for a $\mathbf{Z}_{2}[\Delta]$-module X. Further, it follows from the assumptions (C1) and (C3) that $A_{0, \infty}(\varphi)=\{0\}$ by [9 , Théorème 2]. To show Theorem 3, assume to the contrary that $A_{n, \infty}(\varphi) \neq\{0\}$ for some $n \geq 1$. Let $M_{n, \infty}(\varphi) / F_{n}$ be the class field corresponding to $\left(A_{n, \infty} / A_{n, \infty}^{2}\right)(\varphi)$. The cyclic extension F_{n} / F is of degree 2^{n} and unramified outside 2 . Hence, using an argument in [6], we see that there exists a quadratic extension $N^{\prime}=F\left(w^{1 / 2}\right) / F$ unramified at some prime ideal of F over 2 with $N^{\prime} F_{n} \subseteq M_{n, \infty}(\varphi)$. In particular, we have $N^{\prime} \cap F_{n}=F$. Put $v=w^{\tilde{e}_{\varphi}}$, and $N=F\left(v^{1 / 2}\right)$. Then, we see from Lemma 1 and (4) that $N F_{n}=N^{\prime} F_{n} \subseteq M_{n, \infty}(\varphi)$ and $N \cap F_{n}=F$. Clearly, N / F is unramified outside 2∞. Using Lemma 6 and (C2), (C3), we can show that $N=F\left(\varepsilon^{1 / 2}\right)$ for some unit ε of F with $[\varepsilon] \in$ $\left(E / E^{2}\right)(\varphi)$ by an argument similar to that in the proof of the "if part" of Theorem 2. Here, $E=\mathcal{O}_{F}^{\times}$.

We already know that the narrow class group $A_{0, \infty}(\varphi)$ is trivial. Hence, the quadratic extension N / F is ramified at some prime ideal \mathfrak{P} of F over 2 . We define an integer π_{j} of F_{j} inductively by $\pi_{0}=2$ and $\pi_{j}=2+\sqrt{\pi_{j-1}}$ for $j \geq 1$. Then π_{j} is a local parameter of each prime ideal of F_{j} over 2 and $F_{j+1}=F_{j}\left(\pi_{j}^{1 / 2}\right)$. Since $N F_{n} / F_{n}$ is unramified at 2 , there exists some j with $0 \leq j \leq n-1$ such that $N F_{j} / F_{j}$ is ramified and $N F_{j+1} / F_{j+1}$ is unramified at the primes ideals over \mathfrak{P}. This implies that the intermediate extension $\left.F_{j}\left(\varepsilon \pi_{j}\right)^{1 / 2}\right) / F_{j}$ of the $(2,2)$-extension $N F_{j+1} / F_{j}$ is unramified at the primes ideals over \mathfrak{P}. However, this is impossible because ε is a unit and π_{j} is a local parameter of the prime ideals of F_{j} over 2.

References

[1] Armitage, J. V. and Fröhlich, A., Classnumbers and unit signature, Mathematika 14 (1967), 94-98.
[2] Conner, P. E. and Hurrelbrink, J., Class Number Parity, World Scientific, Singapore, 1988.
[3] Hasse, H., Über die Klassenzahl abelscher Zahlkörper (Reprint of the first edition), Springer, Berlin, 1985.
[4] Ichimura, H., Class number parity of a quadratic twist of a cyclotomic field of prime power conductor, Osaka J. Math. 50 (2013), 563-572.
[5] Ichimura, H., On a duality of Gras between totally positive and primary cyclotomic units, to appear in Math. J. Okayama Univ.
[6] Iwasawa, K., A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[7] Iwasawa, K., A note on ideal class groups, Nagoya Math. J. 27 (1966), 239-247.
[8] Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers (3rd. ed.), Springer, Berlin, 2004.
[9] Oriat, B., Relation entre les 2-groupe des classes d'idéaux au sens ordinaire et restreint de certains corps nombres, Bull. Soc. Math. France 104 (1976), 301-307.
[10] Taylor, M. J., Galois module structure of classgroups and units, Mathematika 22 (1975), 156-160.
[11] Washington, L. C., Introduction to Cyclotomic Fields (2nd. ed.), Springer, New York, 1997.
Faculty of Science, Ibaraki University
Bunkyo 2-1-1, Mito, 310-8512, Japan
E-mail: hichimur@mx.ibaraki.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11R18; Secondary 11R29.
 Key words and phrases: Class number parity, abelian field, reflection argument. Received January 14, 2014.

