REFINED VERSION OF HASSE'S SATZ 45 ON CLASS NUMBER PARITY

By

Humio ICHIMURA

Abstract. For an imaginary abelian field *K*, Hasse [3, Satz 45] obtained a criterion for the relative class number to be odd in terms of the narrow class number of the maximal real subfield K^+ and the prime numbers which ramify in *K*, by using the analytic class number formula. In [4], we gave a refined version (= " Δ -decomposed version") of Satz 45 by an algebraic method. In this paper, we give one more algebraic proof of the refined version.

1. Introduction

For a number field N, let h_N denote the class number of N. When N is an imaginary abelian field with the maximal real subfield N^+ , we write $h_N^+ = h_{N^+}$ and put $h_N^- = h_N/h_N^+$. Further, let \tilde{h}_N^+ be the class number of N^+ in the narrow sense. Let k/\mathbf{Q} be an imaginary abelian extension of 2-power degree, and F/\mathbf{Q} a real abelian extension with $2 \not\prec [F : \mathbf{Q}]$, and put K = Fk. In [3, Satz 45], Hasse proved the following theorem.

THEOREM 1. Under the above setting, assume further that the extension K/\mathbf{Q} is cyclic. Then h_K^- is odd if and only if (i) \tilde{h}_K^+ is odd, (ii) exactly one prime number ramifies in k/\mathbf{Q} , say p, and (iii) the prime number p does not split in F/\mathbf{Q} .

When $F = \mathbf{Q}$, we immediately obtain the following corollary from Satz 45 and Washington [11, Theorem 10.4(b)].

COROLLARY 1. For an imaginary cyclic extension k/\mathbf{Q} of 2-power degree, h_k^- is odd if and only if exactly one prime number ramifies in k.

²⁰¹⁰ Mathematics Subject Classification: Primary 11R18; Secondary 11R29.

Key words and phrases: Class number parity, abelian field, reflection argument. Received January 14, 2014.

Humio ICHIMURA

In what follows, we do not assume that K/\mathbf{Q} is cyclic. Using class field theory, we can easily show that the ratios h_K^-/h_k^- and $\tilde{h}_K^+/\tilde{h}_k^+$ are integers. In view of the above results, one is naturally interested in the parity of h_K^-/h_k^- , which is the subject of this note.

Hasse proved Theorem 1 heavily using the analytic class number formula. Recently, Conner and Hurrelbrink [2, Theorem 13.8] gave a purely algebraic proof of Theorem 1 using (i) their exact hexagon involving the cohomology groups $H^i(K/K^+, M)$ with i = 0, 1 where M is the group of units or the ideal class group of K and (ii) some fundamental properties of local norm residue symbols. In [4, Corollary 2], sharpening the method in [2], we obtained the following refined version of Theorem 1.

Let $\Delta = \operatorname{Gal}(F/\mathbf{Q}) = \operatorname{Gal}(K/k)$. For a number field N, we denote by A_N and $A_{N,\infty}$ the 2-parts of the ideal class group and the narrow class group of N, respectively. We put $A = A_K$, $A^+ = A_{K^+}$ and $A_{\infty}^+ = A_{K^+,\infty}$ for brevity. We define the minus class group $A^- = A_K^-$ to be the kernel of the norm map $A \to A^+$. We regard the above groups as modules over the group ring $\mathbf{Z}_2[\Delta]$. Let φ be a *nontrivial* $\overline{\mathbf{Q}}_2$ -valued character of Δ , which we often regard as a primitive Dirichlet character. Here, \mathbf{Z}_2 denotes the ring of 2-adic integers and $\overline{\mathbf{Q}}_2$ a fixed algebraic closure of the 2-adic rationals \mathbf{Q}_2 . For a $\mathbf{Z}_2[\Delta]$ -module $X, X(\varphi)$ denotes the φ -component of X. (See §2, for the definition of the φ -component.) Let S be the set of prime numbers p such that a prime divisor of k^+ over pramifies in k.

THEOREM 2. Under the above setting, we have $A^{-}(\varphi) = \{0\}$ if and only if (i) $A^{+}_{\infty}(\varphi) = \{0\}$ and (ii) $\varphi(p) \neq 1$ for any prime number $p \in S$.

COROLLARY 2. The ratio h_K^-/h_k^- is odd if and only if (i) the ratio \dot{h}_K^+/\dot{h}_k^+ is odd and (ii) no prime number p in S splits in F.

The main purpose of this paper is to give one more algebraic proof of Theorem 2 using a classical reflection argument. Further, we apply Theorem 2 to show that the 2-part of the class group of the cyclotomic \mathbb{Z}_2 -extension over a certain imaginary abelian field is trivial (Theorem 3). We show Theorem 2 in §4 after some preliminaries in §2 and 3. In §5, we show Theorem 3.

REMARK. In some cases, there are two different proofs for an assertion on the 2-part of the ideal class group. For instance, a theorem of Armitage and Fröhlich [1] was generalized by Taylor [10] and Oriat [9] in two different ways. Taylor used some properties of norm residue symbols, while Oriat used a reflection argument. Recently, we gave in [5, Theorem 2] an alternative proof of [10, Assertion (*)] using a reflection argument. This paper gives another instance of two different proofs.

2. Kummer Duality

Let Δ be a finite abelian group whose order is odd. Let φ be a $\overline{\mathbf{Q}}_2$ -valued character of Δ of order $d = d_{\varphi}$. Denote by e_{φ} the idempotent of the group ring $\mathbf{Z}_2[\Delta]$ corresponding to φ :

$$e_{\varphi} = \frac{1}{|\Delta|} \sum_{\delta \in \Delta} \operatorname{Tr}(\varphi(\delta^{-1})) \delta.$$

Here, Tr is the trace map from $\mathbf{Q}_2(\zeta_d)$ to \mathbf{Q}_2 , ζ_d being a primitive *d*th root of unity. For a module X over $\mathbf{Z}_2[\Delta]$, we denote by $X(\varphi)$ the φ -component $X^{e_{\varphi}}$ (or $e_{\varphi}X$). Let $\mathcal{O}_{\varphi} = \mathbf{Z}_2[\varphi]$ be the subring of $\overline{\mathbf{Q}}_2$ generated by the values of φ over \mathbf{Z}_2 . Then the φ -component $X(\varphi)$ is naturally regarded as an \mathcal{O}_{φ} -module. We choose a complete set $\Gamma = \Gamma_{\Delta}$ of representatives of the \mathbf{Q}_2 -conjugacy classes of the $\overline{\mathbf{Q}}_2$ -valued characters of Δ . Then we have a canonical decomposition

$$X=\bigoplus_{\varphi}\,X(\varphi)$$

where φ runs over the characters in Γ .

Let T/N be an abelian extension over a number field N with $2 \not\prec [T : N]$, and let $\Delta = \operatorname{Gal}(T/N)$. Let L/T be a pro-2 abelian extension which is Galois over N. Let $G = \operatorname{Gal}(L/T)$. Then we can naturally regard G as a module over $\mathbb{Z}_2[\Delta]$. For a character $\varphi \in \Gamma = \Gamma_{\Delta}$, we denote by $L(\varphi)$ the intermediate field of L/Tcorresponding to $\bigoplus_{\psi}' G(\psi)$ by Galois theory where ψ runs over the characters in Γ with $\psi \neq \varphi$. Then we have a natural isomorphism $\operatorname{Gal}(L(\varphi)/T) \cong G(\varphi)$ of $\mathbb{Z}_2[\Delta]$ -modules.

Now, assume that the extension L/T is of exponent 2. Let V be the subgroup of $T^{\times}/(T^{\times})^2$ such that $L = T(v^{1/2} | [v] \in V)$. Here, for a multiplicative abelian group X and an element $x \in X$, [x] denotes the class in X/X^2 containing x. We can naturally regard V as a module over $\mathbb{Z}_2[\Delta]$. The Kummer pairing

$$V imes G o \mu_2 = \{\pm 1\}; \quad ([v], g) \mapsto \langle v, g \rangle = (v^{1/2})^{g-1}$$

is nondegenerate and satisfies a relation $\langle v^{\delta}, g^{\delta} \rangle = \langle v, g \rangle$ for $[v] \in V$, $g \in G$ and $\delta \in \Delta$. Because of this relation, the pairing induces a nondegenerate subpairing

$$V(\varphi^{-1}) \times G(\varphi) \to \mu_2$$

Thus, we obtain the following lemma, which we repeatedly use in this paper.

LEMMA 1. Under the above setting, the Galois group $\operatorname{Gal}(L(\varphi)/T)$ is canonically isomorphic to $G(\varphi)$ as $\mathbb{Z}_2[\Delta]$ -modules, and

$$L(\varphi) = T(v^{1/2} | [v] \in V(\varphi^{-1})).$$

3. Lemmas

We use the same notation as in Theorem 2. In particular, φ is a *nontrivial* $\overline{\mathbf{Q}}_2$ -valued character of $\Delta = \operatorname{Gal}(F/\mathbf{Q}) = \operatorname{Gal}(K/k)$. For a number field N, \mathcal{O}_N denotes the ring of integers of N. Let $E = E_{K^+} = \mathcal{O}_{K^+}^{\times}$ be the group of units of K^+ . We put $P^+ = \operatorname{Gal}(k^+/\mathbf{Q})$ so that $\operatorname{Gal}(K^+/\mathbf{Q}) = P^+ \times \Delta$. We put

$$\mathfrak{X} = (K^+)^{\times} / ((K^+)^{\times})^2$$

for brevity.

LEMMA 2. Under the above setting, if $A^+_{\infty}(\varphi)$ is trivial, then both of $A^+(\varphi)$ and $A^+(\varphi^{-1})$ are trivial.

PROOF. Let $K_{>0}^+$ be the subgroup of $(K^+)^{\times}$ consisting of totally positive elements. Let $E_+ = E \cap K_{>0}^+$, and E_0 be the subgroup of E consisting of units ε satisfying the congruence $\varepsilon \equiv u^2 \mod 4$ for some $u \in K^+$. We have a natural exact sequence

$$\{0\} \to (K^+)^{\times} / EK^+_{>0} \to A^+_{\infty} \to A^+ \to \{0\}$$
(1)

compatible with the action of Δ . We see that $((K^+)^{\times}/EK_{>0}^+)(\varphi)$ is trivial if and only if $(E_+/E^2)(\varphi)$ is trivial. This is because (i) the Galois module $(K^+)^{\times}/K_{>0}^+$ is isomorphic to $\mathbf{F}_2[P^+ \times \Delta]$ via the sign map, and (ii) the \mathcal{O}_F -module $(E/E^2)(\varphi)$ is isomorphic to $(\mathcal{O}_{\varphi}/2\mathcal{O}_{\varphi})^{\oplus r}$ with $r = |P^+|$ by a theorem of Minkowski on units of a Galois extension (cf. Narkiewicz [8, Theorem 3.26a]). Here, \mathbf{F}_2 is a finite field of 2 elements. Since $A_{\infty}^+(\varphi)$ is trivial, it follows from (1) that $A^+(\varphi) = \{0\}$ and $((K^+)^{\times}/EK_{>0}^+)(\varphi) = \{0\}$. From the latter, it follows that

$$(E_{+}/E^{2})(\varphi) = \{0\}.$$
 (2)

193

Let *H* be the class field of K^+ corresponding to the class group A^+/A^{+2} , and *V* the subgroup of \mathfrak{X} such that $H = K^+(v^{1/2} | [v] \in V)$. We see that

$$(E((K^{+})^{\times})^{2}/((K^{+})^{\times})^{2}) \cap V = (E_{+} \cap E_{0})((K^{+})^{\times})^{2}/((K^{+})^{\times})^{2}$$
$$= (E_{+} \cap E_{0})/E^{2}$$
(3)

by using Exercise 9.3 of Washington [11]. For each [v] in V, we have $v\mathcal{O}_{K^+} = \mathfrak{A}^2$ for some ideal \mathfrak{A} of K^+ . By mapping [v] to the ideal class $[\mathfrak{A}]$, we obtain from (3) the following Kummer sequence

$$\{0\} \to (E_+ \cap E_0)/E^2 \to V \to A^+,$$

which is compatible with the action of Δ . Assume that $A^+(\varphi^{-1})$ is nontrivial. Then it follows from Lemma 1 that $V(\varphi)$ is nontrivial. However, as $A^+(\varphi)$ is trivial, we see from the above Kummer sequence that $((E_+ \cap E_0)/E^2)(\varphi)$ is non-trivial, and hence $(E_+/E^2)(\varphi)$ is nontrivial. This contradicts (2).

In [4, Lemma 2], we showed the following assertion by effectively using the *nontriviality* of φ .

LEMMA 3. Under the above setting, the natural map $A^+(\varphi) \rightarrow A(\varphi)$ is injective.

We define subgroups \overline{A}^+ and \overline{A} of A^+ and A, respectively, by

$$ar{A}^+ = igoplus_{arphi}{}' A^+(arphi) \quad ext{and} \quad ar{A} = igoplus_{arphi}{}' A(arphi)$$

where φ runs over the nontrivial characters in $\Gamma = \Gamma_{\Delta}$. By Lemma 3, we can regard \overline{A}^+ as a subgroup of \overline{A} . Then we put

$$A^* = \bar{A}/\bar{A}^+,$$

which we naturally regard as a $\mathbb{Z}_2[\Delta]$ -module. Let φ_0 be the trivial character of Δ . Though the structures of the two minus class groups $A^-/A^-(\varphi_0)$ and A^* are slightly different in general, we can easily show that $|A^-(\varphi)| = |A^*(\varphi)|$. In particular, $A^-(\varphi)$ is trivial if and only if $A^*(\varphi)$ is trivial. Let M/K, M^-/K and M^+_{∞}/K^+ be the class fields corresponding to the class groups A, A^* and A^+_{∞} , respectively. Regarding the Galois groups $\operatorname{Gal}(M/K)$, $\operatorname{Gal}(M^-/K)$ and

Humio ICHIMURA

 $\operatorname{Gal}(M_{\infty}^+/K^+)$ as modules over $\Delta = \operatorname{Gal}(K/k) = \operatorname{Gal}(K^+/k^+)$, we define the intermediate fields $M(\varphi)$, $M^-(\varphi)$ and $M_{\infty}^+(\varphi)$ as in Section 2 for each nontrivial character $\varphi \in \Gamma$. In other words, $M(\varphi)/K$, $M^-(\varphi)/K$ and $M_{\infty}^+(\varphi)/K^+$ are the class fields corresponding to $A(\varphi)$, $A^*(\varphi)$ and $A_{\infty}^+(\varphi)$, respectively.

LEMMA 4. If $A^{-}(\varphi)$ is trivial, then $A^{+}_{\infty}(\varphi)$ is trivial.

PROOF. First, we show that $A^+(\varphi) = \{0\}$ using an argument in [7]. Because of Lemma 3 and the definition of A^- , we see that $A^-(\varphi)$ is the subgroup of $A(\varphi)$ consisting of classes c with $c^J = c^{-1}$. Here, J denotes the complex conjugation. Let B^+ be the elements c of $A^+(\varphi) (\subseteq A(\varphi))$ with $c^2 = 1$. For each $c \in B^+$, we have $c^J = c = c^{-1}$. It follows that $B^+ \subseteq A^-(\varphi)$. As $A^-(\varphi) = \{0\}$, this implies that $A^+(\varphi) = \{0\}$. It follows that $A(\varphi) = \{0\}$ and hence $M(\varphi) = K$. Now assume that $A^+_{\infty}(\varphi)$ is nontrivial. Then there exists a quadratic subextension N_0/K^+ of $M^+_{\infty}(\varphi)/K^+$. We see that $N_0 \cap K = K^+$ because φ is nontrivial. Therefore, it follows that N_0K/K is an unramified quadratic extension contained in $M(\varphi)$, which is a contradiction.

4. Proof of Theorem 2

We use the same notation as in the previous sections. Replacing F with the abelian field corresponding to ker φ , we may as well assume that the Galois group $\Delta = \text{Gal}(F/\mathbf{Q})$ is cyclic, and $\varphi : \Delta \to \overline{\mathbf{Q}}_2^{\times}$ is *injective*. Further, we put

$$\psi = \varphi^{-1}$$

for simplicity. Let h_0 (resp. h_1) be the 2-part (resp. odd part) of the class number h_K of K, and h'_0 the least common multiple of h_0 and 2. We choose an element $\tilde{e}_{\varphi} \in \mathbb{Z}[\Delta]$ so that $\tilde{e}_{\varphi} \equiv e_{\varphi} \mod h'_0$ and the coefficients of \tilde{e}_{φ} are multiple of h_1 . We choose $\tilde{e}_{\psi} \in \mathbb{Z}[\Delta]$ in a similar way. We fix an element $d \in (k^+)^{\times}$ such that

$$k = k^+ (d^{1/2}).$$

PROOF OF THE "ONLY IF"-PART. Assume that $A^-(\varphi) = \{0\}$. By Lemma 4, we already know that $A^+_{\infty}(\varphi) = \{0\}$. Hence, it suffices to show that $\varphi(p) \neq 1$ for any prime number p in S. Assume that $\varphi(p) = 1$ for some $p \in S$. Let φ be a prime ideal of k^+ over p. As φ is injective, the assumption $\varphi(p) = 1$ implies that φ splits completely in K^+ . We choose a prime ideal \mathfrak{P} of K^+ over φ . As $A^+_{\infty}(\varphi) = \{0\}$, it follows from Lemma 2 that $A^+(\varphi) = \{0\}$. Hence, we have $\mathfrak{P}^{\tilde{e}_{\varphi}} = \pi \mathcal{O}_{K^+}$ for some

element π in K^+ . The ideal $\mathfrak{P}^{\bar{e}_{\varphi}^2}$ is not a square of an ideal of K^+ because $\tilde{e}_{\varphi}^2 \equiv e_{\varphi} \neq 0 \mod 2$ and \wp splits completely in K^+ . In particular, $\pi^{\bar{e}_{\varphi}}$ is not a square in $(K^+)^{\times}$. Let

$$N_{\psi} = K^+((\pi^{\tilde{e}_{\varphi}})^{1/2}).$$

From the above, N_{ψ}/K^+ is a quadratic extension. As φ is nontrivial, we see that $N_{\psi} \cap K = K^+$.

Let $\tilde{\mathfrak{P}}$ be the prime ideal of K over \mathfrak{P} . As $p \in S$, we have $\mathfrak{P} = \tilde{\mathfrak{P}}^2$. We have $A(\varphi) = \{0\}$ since $A^-(\varphi)$ and $A^+(\varphi)$ are both trivial. Hence, $\tilde{\mathfrak{P}}^{\tilde{e}_{\varphi}} = x \mathcal{O}_K$ for some $x \in K^{\times}$. It follows that $\pi = \varepsilon x^2$ for some unit ε of K. Thus, we see that

$$N_{\psi}K = K((\pi^{\tilde{e}_{\varphi}})^{1/2}) = K((\varepsilon^{\tilde{e}_{\varphi}})^{1/2})$$

and that this is a (2,2)-extension over K^+ . Let $J \in \text{Gal}(K/K^+)$ be the complex conjugation. Then, as $N_{\psi}K/K^+$ is a Galois extension, we see that $(\varepsilon^{\tilde{e}_{\varphi}})^J = \varepsilon^{\tilde{e}_{\varphi}}\eta^2$ for some unit η of K. Hence, we can extend the automorphism J to that of $N_{\psi}K$ by

$$\tilde{J}: (\varepsilon^{\tilde{e}_{\varphi}})^{1/2} \mapsto (\varepsilon^{\tilde{e}_{\varphi}})^{1/2} \eta.$$

Since $N_{\psi}K/K^+$ is a (2,2)-extension, \tilde{J}^2 is the trivial automorphism and hence we obtain $\eta\eta^J = 1$. It follows that $(\varepsilon^{\tilde{e}_{\varphi}}\eta)^J = \varepsilon^{\tilde{e}_{\varphi}}\eta$, and hence $\xi = \varepsilon^{\tilde{e}_{\varphi}}\eta \in (K^+)^{\times}$. We see that η is a root of unity in K by the relation $\eta\eta^J = 1$ and a theorem ([11, Theorem 4.12]) on units of a CM field. Hence, $K((\eta^{\tilde{e}_{\varphi}})^{1/2})/\mathbf{Q}$ is an abelian extension. However, since φ is nontrivial, we observe using Lemma 1 that this extension would be non-abelian if the class $[\eta^{\tilde{e}_{\varphi}}]$ in $K^{\times}/(K^{\times})^2$ were nontrivial. Therefore, it follows that the class $[\eta^{\tilde{e}_{\varphi}}]$ is trivial and hence

$$N_{\psi}K = K((\varepsilon^{\tilde{e}_{\varphi}^2})^{1/2}) = K((\zeta^{\tilde{e}_{\varphi}})^{1/2}).$$

Then we obtain $\pi^{\tilde{e}_{\varphi}} = \xi^{\tilde{e}_{\varphi}} y^2$ or $(d\xi)^{\tilde{e}_{\varphi}} y^2$ for some $y \in (K^+)^{\times}$. As φ is nontrivial and $d \in (k^+)^{\times}$, we see that $d^{\tilde{e}_{\varphi}}$ is a square in $(k^+)^{\times}$. Hence, $\mathfrak{P}^{\tilde{e}_{\varphi}^2} = \pi^{\tilde{e}_{\varphi}} \mathcal{O}_{K^+}$ is a square of a principal ideal of K^+ . This is a contradiction.

To prove the "if"-part, we need to show two more lemmas.

LEMMA 5. Let Δ_0 be a nontrivial subgroup of Δ , and let $\kappa = \kappa_{\Delta/\Delta_0}$ be the restriction map $\mathbf{Z}_2[\Delta] \to \mathbf{Z}_2[\Delta/\Delta_0]$. Then we have $\kappa(e_{\varphi}) = 0$.

PROOF. We have $\sum_{\delta \in \Delta_0} \varphi(\delta) = 0$ since Δ_0 is nontrivial and φ is injective. The assertion follows from this.

Humio ICHIMURA

LEMMA 6. Let \mathfrak{P} be a prime ideal of K^+ , and $\wp = \mathfrak{P} \cap k^+$ and $p = \wp \cap \mathbf{Q}$. If $\varphi(p) \neq 1$ and $A^+(\varphi) = \{0\}$, then $\mathfrak{P}^{\tilde{e}^2_{\varphi}} = x^2 \mathcal{O}_{K^+}$ for some $x \in (K^+)^{\times}$.

PROOF. Let F_0 be the decomposition field of p at F/\mathbf{Q} , and $\Delta_0 = \operatorname{Gal}(F/F_0)$. As $\varphi(p) \neq 1$, Δ_0 is a nontrivial subgroup of Δ . We put $K_0^+ = F_0 k^+$ and $\mathfrak{P}_0 = \mathfrak{P} \cap K_0^+$. Since \mathfrak{P}_0 remains prime in K^+ , we see that $\mathfrak{P}^{\tilde{e}_{\varphi}} = \mathfrak{P}_0^{\kappa(\tilde{e}_{\varphi})} \mathcal{O}_{K^+}$ where $\kappa = \kappa_{\Delta/\Delta_0}$ is the restriction map in Lemma 5. By Lemma 5, we have $\kappa(\tilde{e}_{\varphi}) \equiv 0 \mod 2$, and hence $\mathfrak{P}^{\tilde{e}_{\varphi}} = \mathfrak{A}^2$ for some ideal \mathfrak{A} of K^+ . It follows that $\mathfrak{P}^{\tilde{e}_{\varphi}^2} = (\mathfrak{A}^{\tilde{e}_{\varphi}})^2$. As $A^+(\varphi) = \{0\}$, $\mathfrak{A}^{\tilde{e}_{\varphi}}$ is principal, and hence the assertion follows.

PROOF OF THE "IF"-PART. Assume that (i) $A_{\infty}^+(\varphi) = \{0\}$ and that (ii) $\varphi(p) \neq 1$ for any prime number $p \in S$. Then we have

$$A^+(\psi) = \{0\}$$

by Lemma 2. To show the assertion, assume to the contrary that $A^-(\varphi)$ is nontrivial. Then the extension $M^-(\varphi)/K$ is nontrivial. Let v be an arbitrary infinite prime divisor of K^+ . By using an argument in Iwasawa [6] (or in pp. 186–187 of [11]), we see that there exists a quadratic extension $N_0 =$ $K^+(w^{1/2})/K^+$ with $w \in K^+$ which is unramified at v and satisfies $N_0K \subseteq M^-(\varphi)$. In particular, $N_0 \cap K = K^+$. Let $v = w^{\bar{e}_{\psi}}$ and $N = K^+(v^{1/2})$. Then we see that $NK = N_0K \subseteq M^-(\varphi)$ from Lemma 1 and that NK/K^+ is a (2,2)-extension. Since the extension N/K^+ is unramified outside S and ∞ , we can write

$$v\mathcal{O}_{K^+} = \prod_{\mathfrak{P}} \mathfrak{P}^{a_{\mathfrak{P}}} \mathfrak{A}^2$$

for some ideal \mathfrak{A} of K^+ . Here, \mathfrak{P} runs over the prime ideals of K^+ with $\mathfrak{P} \cap \mathbf{Q} \in S$, and $a_{\mathfrak{P}} = 0$ or 1. As $[v] \in \mathfrak{X}(\psi)$, we may as well replace the Kummer generator v with $v^{\tilde{e}_{\psi}^2}$. Then, since $A^+(\psi) = \{0\}$ and $\psi(p) \neq 1$ for any $p \in S$, it follows from Lemma 6 that $v\mathcal{O}_{K^+} = x^2\mathcal{O}_{K^+}$ for some $x \in (K^+)^{\times}$. Therefore, we have

$$N = K^{+}(\varepsilon^{1/2}) = K^{+}((\varepsilon^{\tilde{e}_{\psi}})^{1/2})$$

for some unit ε of K^+ with $[\varepsilon] \in (E/E^2)(\psi)$. It follows that N/K^+ is unramified outside ∞ and $S \cap \{2\}$. Therefore, when $2 \notin S$ or N/K^+ is unramified at 2, N/K^+ is unramified outside ∞ , and hence $N \subseteq M^+_{\infty}(\varphi)$. Thus, we see that $A^+_{\infty}(\varphi)$ is nontrivial, which is a contradiction.

196

Assume that $2 \in S$ and that there is a prime ideal \mathfrak{P} of K^+ over 2 which ramifies in N. Since $k = k^+(d^{1/2})$, the quadratic subfields of the (2,2)-extension NK/K^+ are K, N and

$$N' = K^+((d\varepsilon)^{1/2}) = K^+((d\varepsilon^{\tilde{e}_{\psi}})^{1/2}).$$

Since NK/K is unramified at \mathfrak{P} , and K/K^+ and N/K^+ are ramified at \mathfrak{P} , the third extension N'/K^+ is unramified at \mathfrak{P} . Therefore, $\operatorname{ord}_{\mathfrak{P}}(d)$ is even. This means that $\operatorname{ord}_{\wp}(d)$ is even as $[K^+:k^+]$ is odd, where $\wp = \mathfrak{P} \cap k^+$. Then, replacing d with dy^2 for some $y \in (k^+)^{\times}$, we may as well assume that $(d, \mathfrak{P}) = 1$. Since N'/K^+ is unramified at \mathfrak{P} , we have $de^{\tilde{e}_{\psi}} \equiv u^2 \mod \mathfrak{P}^{2e}$ for some $u \in K^+$ by Exercise 9.3 of [11]. Here, e is the ramification index of \mathfrak{P} over \mathbf{Q} . Let Δ_0 be the decomposition group of the prime 2 at F/\mathbf{Q} . Let $\psi_0 = \psi_{|\Delta_0}$ and define e_{ψ_0} and \tilde{e}_{ψ_0} similarly to e_{ψ} and \tilde{e}_{ψ} . Since \mathfrak{P} is stable under the action of Δ_0 , we have

$$(d\varepsilon^{\tilde{e}_{\psi}})^{\tilde{e}_{\psi_0}} \equiv v^2 \mod \mathfrak{P}^{2e}$$

for some $v \in (K^+)^{\times}$. As $\psi(2) \neq 1$, Δ_0 is nontrivial and hence $d^{\tilde{e}_{\psi_0}}$ is a square in k^+ . Further, we have $\tilde{e}_{\psi}\tilde{e}_{\psi_0} \equiv \tilde{e}_{\psi} \mod 2$ as $e_{\psi}e_{\psi_0} = e_{\psi}$. Therefore, we see that $\varepsilon^{\tilde{e}_{\psi}} \equiv w^2 \mod \mathfrak{P}^{2e}$ for some $w \in (K^+)^{\times}$. This implies that N/K^+ is unramified at \mathfrak{P} , a contradiction.

5. Cyclotomic Z₂-extension

Let F, Δ and φ be as in the previous sections. For an integer $n \ge 0$, let $k_n = \mathbf{Q}(\zeta_{2^{n+2}}), K_n = Fk_n, F_n = K_n^+$ and $\mathbf{B}_n = k_n^+$. As in the previous sections, we identify Δ with $\operatorname{Gal}(K_n/k_n)$ and $\operatorname{Gal}(F_n/\mathbf{B}_n)$. We write $\varphi \sim \varphi^{-1}$ when φ and φ^{-1} are conjugate over \mathbf{Q}_2 . It is well known that the class groups $A_{\mathbf{B}_n,\infty}$ and $A_{k_n}^-$ are trivial for all $n \ge 0$. We generalize this fact as follows.

THEOREM 3. Under the above setting, assume that

(C1)
$$\varphi \sim \varphi^{-1}$$
, (C2) $\varphi(2) \neq 1$, (C3) $A_F(\varphi) = \{0\}$.

Then the class groups $A_{F_n,\infty}(\varphi)$ and $A_{K_n}^-(\varphi)$ are trivial for all $n \ge 0$.

PROOF. We write $A_{n,\infty} = A_{F_n,\infty}$ for brevity. By virtue of Theorem 2 (and the assumption (C2)), the triviality of $A_{K_n}^-(\varphi)$ follows from that of $A_{n,\infty}(\varphi)$. The assumption (C1) implies that

$$X(\varphi) = X(\varphi^{-1}) \tag{4}$$

Humio Ichimura

for a $\mathbb{Z}_2[\Delta]$ -module X. Further, it follows from the assumptions (C1) and (C3) that $A_{0,\infty}(\varphi) = \{0\}$ by [9, Théorème 2]. To show Theorem 3, assume to the contrary that $A_{n,\infty}(\varphi) \neq \{0\}$ for some $n \ge 1$. Let $M_{n,\infty}(\varphi)/F_n$ be the class field corresponding to $(A_{n,\infty}/A_{n,\infty}^2)(\varphi)$. The cyclic extension F_n/F is of degree 2^n and unramified outside 2. Hence, using an argument in [6], we see that there exists a quadratic extension $N' = F(w^{1/2})/F$ unramified at some prime ideal of F over 2 with $N'F_n \subseteq M_{n,\infty}(\varphi)$. In particular, we have $N' \cap F_n = F$. Put $v = w^{\overline{e}_{\varphi}}$, and $N = F(v^{1/2})$. Then, we see from Lemma 1 and (4) that $NF_n = N'F_n \subseteq M_{n,\infty}(\varphi)$ and $N \cap F_n = F$. Clearly, N/F is unramified outside 2∞ . Using Lemma 6 and (C2), (C3), we can show that $N = F(\varepsilon^{1/2})$ for some unit ε of F with $[\varepsilon] \in$ $(E/E^2)(\varphi)$ by an argument similar to that in the proof of the "if part" of Theorem 2. Here, $E = \mathcal{O}_F^{\times}$.

We already know that the narrow class group $A_{0,\infty}(\varphi)$ is trivial. Hence, the quadratic extension N/F is ramified at some prime ideal \mathfrak{P} of F over 2. We define an integer π_j of F_j inductively by $\pi_0 = 2$ and $\pi_j = 2 + \sqrt{\pi_{j-1}}$ for $j \ge 1$. Then π_j is a local parameter of each prime ideal of F_j over 2 and $F_{j+1} = F_j(\pi_j^{1/2})$. Since NF_n/F_n is unramified at 2, there exists some j with $0 \le j \le n-1$ such that NF_j/F_j is ramified and NF_{j+1}/F_{j+1} is unramified at the primes ideals over \mathfrak{P} . This implies that the intermediate extension $F_j((\varepsilon \pi_j)^{1/2})/F_j$ of the (2, 2)-extension NF_{j+1}/F_j is unramified at the primes ideals over \mathfrak{P} . However, this is impossible because ε is a unit and π_j is a local parameter of the prime ideals of F_j over 2.

References

- [1] Armitage, J. V. and Fröhlich, A., Classnumbers and unit signature, Mathematika 14 (1967), 94–98.
- [2] Conner, P. E. and Hurrelbrink, J., Class Number Parity, World Scientific, Singapore, 1988.
- [3] Hasse, H., Über die Klassenzahl abelscher Zahlkörper (Reprint of the first edition), Springer, Berlin, 1985.
- [4] Ichimura, H., Class number parity of a quadratic twist of a cyclotomic field of prime power conductor, Osaka J. Math. 50 (2013), 563–572.
- [5] Ichimura, H., On a duality of Gras between totally positive and primary cyclotomic units, to appear in Math. J. Okayama Univ.
- [6] Iwasawa, K., A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
- [7] Iwasawa, K., A note on ideal class groups, Nagoya Math. J. 27 (1966), 239-247.
- [8] Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers (3rd. ed.), Springer, Berlin, 2004.
- [9] Oriat, B., Relation entre les 2-groupe des classes d'idéaux au sens ordinaire et restreint de certains corps nombres, Bull. Soc. Math. France 104 (1976), 301–307.
- [10] Taylor, M. J., Galois module structure of classgroups and units, Mathematika 22 (1975), 156–160.

[11] Washington, L. C., Introduction to Cyclotomic Fields (2nd. ed.), Springer, New York, 1997.

Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, 310-8512, Japan E-mail: hichimur@mx.ibaraki.ac.jp