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Abstract
We apply novel inner-iteration preconditioned Krylov subspace methods to the
interior-point algorithm for linear programming (LP). Inner-iteration precondition-
ers recently proposed by Morikuni and Hayami enable us to overcome the severe
ill-conditioning of linear equations solved in the final phase of interior-point itera-
tions. The Krylov subspace methods do not suffer from rank-deficiency and therefore
no preprocessing is necessary even if rows of the constraint matrix are not linearly
independent. By means of these methods, a new interior-point recurrence is proposed
in order to omit one matrix-vector product at each step. Extensive numerical experi-
ments are conducted over diverse instances of 140 LP problems including the Netlib,
QAPLIB,Mittelmann andAtomizer Basis Pursuit collections. The largest problem has
434,580 unknowns. It turns out that our implementation is more robust than the stan-
dard public domain solvers SeDuMi (Self-Dual Minimization), SDPT3 (Semidefinite
Programming Toh-Todd-Tütüncü) and the LSMR iterative solver in PDCO (Primal-
Dual Barrier Method for Convex Objectives) without increasing CPU time. The
proposed interior-point method based on iterative solvers succeeds in solving a fairly
large number of LP instances from benchmark libraries under the standard stopping
criteria. The work also presents a fairly extensive benchmark test for several renowned
solvers including direct and iterative solvers.
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1 Introduction

Consider the linear programming (LP) problem in the standard primal-dual formula-
tion

min
x

cTx subject to Ax = b, x ≥ 0, (1a)

max
y,s

bT y subject to AT y + s = c, s ≥ 0, (1b)

where A ∈ R
m×n , m ≤ n, and we assume the existence of an optimal solution. In

this paper, we describe an implementation of the interior-point method for LP based
on iterative solvers. The main computational task in one iteration of the interior-point
method is the solution of a system of linear equations to compute the search direction.

For this task, direct solvers are usually used. But some solvers also employ iterative
solvers. Iterative solvers are advantageous when the systems are large and sparse, or
evenwhen they are large and dense but the product of the coefficientmatrix and a vector
can be approximated cheaply, as in [11,65]. The difficulty with iterative solvers is that
the linear system becomes notoriously ill-conditioned towards the end of interior-point
iterations. One approach is to precondition the mathematically equivalent indefinite
augmented system [as in Eq. (5)] as in HOPDM (Higher Order Primal-Dual Method)
[29] and also [2,3,6,7,12,26,27,33,58,61]. The other approach is to precondition the
equivalent normal equations [as in Eq. (6)] [9,14,28,40,42,44,45,48,60,70].

In this paper, we treat the normal equations and apply novel inner-iteration pre-
conditioned Krylov subspace methods to them. The inner-iteration preconditioners
recently proposed by Morikuni and Hayami [54,55] enable us to deal with the severe
ill-conditioning of the normal equations. Furthermore, the proposed Krylov subspace
methods do not suffer from singularity and therefore no preprocessing is necessary
even if A is rank-deficient.

The main contribution of the present paper is that we actually show that the use
of the inner-iteration preconditioner enables the efficient interior-point solution of
wide-ranging LP problems. We further proposed combining the row-scaling scheme
with the inner-outer iteration methods, where the row norm appears in the successive
overrelaxation (SOR) inner-iterations, to improve the condition of the system at each
interior-point step. The linear systems are solved with a gradually tightened stopping
tolerance. We proposed a new recurrence in order to omit one matrix-vector product
at each interior-point step. These techniques reduce the CPU time.

Extensive numerical experiments were conducted over diverse instances of 127
LP problems taken from the standard benchmark libraries Netlib, QAPLIB, and
Mittelmann collections. The largest problem has 434,580 unknowns. The proposed
interior-point method is entirely based on iterative solvers and yet succeeds in solv-
ing a fairly large number of standard LP instances from the benchmark libraries with
standard stopping criteria. We could not find any other analogous result where this
level of LP instances were solved just relying on iterative solvers.

We compared our interior-point LP solvers based on AB-GMRES (right-precondi-
tioned generalized minimal residual method) [37,55], CGNE, and MRNE (precondi-
tioned CG and MINRES applied to the normal equations of the second kind) [13,55]
with the following well-known interior-point LP solvers:
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Implementation of interior-point methods for LP based on… 145

1. SeDuMi (Self-Dual Minimization) [66], (public-domain, direct solver),
2. SDPT3 (Semidefinite Programming Toh-Todd-Tütüncü) [68,69], (public-domain,

direct solver),
3. PDCO (Primal-Dual Barrier Method for Convex Objectives) [65],

(a) PDCO-Direct (public-domain, direct solver),
(b) PDCO-LSMR (public-domain, LSMR iterative solver),

4. MOSEK [57] (commercial, direct solver).

SeDuMi and SDPT3 are solvers for conic linear programming including semidefi-
nite programming (SDP) and second-order cone programming (SOCP). PDCO is for
LP and convex quadratic programming (QP) and has options to solve the system of
linear equations with Krylov subspace iterative method LSMR in addition to the direct
method. MOSEK is considered as one of the state-of-the-art solvers for LP.

As summarized in Table 1, our implementation was able to solve most instances,
which is clearly superior to SeDuMi, SDPT3, PDCO-Direct, and PDCO-LSMR with
comparable computation time, though it is still slower than MOSEK.

We also tested our solvers on different problems which arise in basis pursuit [11]
where the coefficient matrix is much denser than the aforementioned standard bench-
mark problems.

We emphasize that there are many interesting topics to be further worked out based
on this paper. There is still room for improvement regarding the iterative solvers as
well as using more sophisticated methods for the interior-point iterations.

In the following, we introduce the interior-point method and review the iterative
solvers previously used. We employ an infeasible primal-dual predictor-corrector
interior-point method, one of the methods that evolved from the original primal-
dual interior-point method [41,49,67,71] incorporating several innovative ideas, e.g.,
[45,73].

An optimal solution x, y, s to problem (1) must satisfy the Karush-Kuhn-Tucker
(KKT) conditions

AT y + s = c, (2a)

Ax = b, (2b)

XSe = 0, (2c)

x ≥ 0, s ≥ 0, (2d)

where X := diag(x1, x2, . . . , xn), S := diag(s1, s2, . . . , sn), and e := [1, 1, . . . , 1]T.
The complementarity condition (2c) implies that at an optimal solution, one of the
elements xi or si must be zero for i = 1, 2, . . . , n.

The following system is obtained by relaxing (2c) to XSe = μe with μ > 0:

XSe = μe, Ax = b, AT y + s = c, x ≥ 0, s ≥ 0. (3)

The interior-point method solves the problem (1) by generating solutions to (3), with
μ decreasing towards zero, so that (2) is satisfied within some tolerance level at the
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solution point. The search direction at each infeasible interior-point step is obtained
by solving the Newton equations

⎡
⎣
0 AT I
A 0 0
S 0 X

⎤
⎦

⎡
⎣

Δx
Δ y
Δs

⎤
⎦ =

⎡
⎣
rd
rp
rc

⎤
⎦ , (4)

where rd := c−AT y−s ∈ R
n is the residual of the dual problem, rp := b−Ax ∈ R

m

is the residual of the primal problem, rc := −XSe+ σμe , μ := xTs/n is the duality
measure, and σ ∈ [0, 1) is the centering parameter, which is dynamically chosen to
govern the progress of the interior-point method. Once the kth iterate (x(k), y(k), s(k))
is given and (4) is solved, we define the next iterate as (x(k+1), y(k+1), s(k+1)) :=
(x(k), y(k), s(k)) + α(Δx,Δ y,Δs), where α ∈ (0, 1] is a step length to ensure the
positivity of x and s, and then reduce μ to σμ before solving (4) again.

At each iteration, the solution of (4) dominates the total CPU time. The choice of
linear solvers depends on the way of arranging the matrix of (4). Aside from solving
the (m+2n)× (m+2n) system (4), one can solve its reduced equivalent form of size
(m + n) × (m + n)

[
A 0
S −X AT

] [
Δx
Δ y

]
=

[
rp

rc − X rd

]
, (5)

or a more condensed equivalent form of size m × m

AXS−1ATΔ y = rp − AS−1(rc − X rd), (6)

both of which are obtained by performing block Gaussian eliminations on (4). We are
concerned in this paper with solving the third equivalent form (6).

It is known that the matrix of (6) is semidefinite when any of the following cases
is encountered. First, when A is rank-deficient, system (6) is singular. There exist
presolving techniques that address this problem, see, e.g., [4,31]. However, they do
not guarantee to detect all dependent rows in A. Second, in late interior-point iterations,
the diagonal matrix XS−1 has very tiny and very large diagonal values as a result of
convergence. Thus, the matrix may become positive semidefinite. In particular, the
situation becomes severe when primal degeneracy occurs at an optimal solution. One
can refer to [34,74] for more detailed explanations.

Thus,when directmethods such asCholesky decomposition are applied to (6), some
diagonal pivots encountered during decomposition can be zero or negative, causing
the algorithm to break down. Many direct methods adopt a strategy of replacing the
problematic pivot with a very large number. See, e.g., [74] for the Cholesky-Infinity
factorization, which is specially designed to solve (6) when it is positive semidefi-
nite but not definite. Numerical experience [1,5,17,25,43,44,72] indicates that direct
methods provide sufficiently accurate solutions for interior-point methods to converge
regardless of the ill-conditioning of the matrix. However, as the LP problems become
larger, the significant fill-ins in decompositions make direct methods prohibitively
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expensive. It is stated in [32] that the fill-ins are observed even for very sparse matri-
ces. Moreover, the matrix can be dense, as in QP in support vector machine training
[24] or linear programming in basis pursuit [11], and evenwhen A is sparse, AXS−1AT

can be dense or have a pattern of nonzero elements that renders the system difficult for
direct methods. The expensive solution of the KKT systems is a usual disadvantage
of second-order methods including interior-point methods.

These drawbacks of direct methods and the progress in preconditioning techniques
motivate researchers to develop stable iterative methods for solving (6) or alternatively
(5). The major problem is that as the interior-point iterations proceed, the condition
number of the term XS−1 increases, making the system of linear equations intractable.
One way to deal with this is to employ suitable preconditioners. Since our main focus
is on solving (6), we explain preconditioners for (6) in detail in the following. We
mention [2,3,6,7,12,26,27,58,61] as literature related to preconditioners for (5).

For the iterative solution of (6), the conjugate gradient (CG) method [38] has
been applied with diagonal scaling preconditioners [9,42,60] or incomplete Cholesky
preconditioners [12,40,45,48]. LSQRwith a preconditionerwas used in [28].Amatrix-
freemethod of usingCG for least squares (CGLS) preconditioned by a partial Cholesky
decomposition was proposed in [33]. In [14], a preconditioner based on Greville’s
method [15] for generalizedminimal residual (GMRES)methodwas applied. Suitable
preconditioners were also introduced for particular fields such as the minimum-cost
network flow problem in [39,50,51,62]. One may refer to [18] for a review on the
application of numerical linear algebra algorithms to the solutions of KKT systems in
the optimization context.

In this paper, we propose to solve (6) using Krylov subspace methods precondi-
tioned by stationary inner-iterations recently proposed for least squares problems in
[37,54,55]. In Sect. 2, we briefly describe the framework of Mehrotra’s predictor-
corrector interior-point algorithm we implemented and the normal equations arising
from this algorithm. In Sect. 3, we specify the application of our method to the normal
equations. In Sect. 4, we present numerical results comparing our method with a mod-
ified sparse Cholesky method, three direct solvers in CVX, a major public package
for specifying and solving convex programs [35,36], and direct and iterative solvers in
PDCO [65]. The testing problems include the typical LP problems from the Netlib,
Qaplib and Mittelmann collections in [20] and basis pursuit problems from the
package Atomizer [10]. In Sect. 5, we conclude the paper.

Throughout, we use bold lower case letters for column vectors.We denote quantities
related to the kth interior-point iteration by using a superscript with round brackets,
e.g., x(k), the kth iteration of Krylov subspace methods by using a subscript without
brackets, e.g., xk , and the kth inner iteration by using a superscript with angle brackets,
e.g., x〈k〉. R(A) denotes the range space of a matrix A. κ(A) denotes the condition
number κ(A) = σ1(A)/σr (A), whereσ1(A) andσr (A) denote themaximumandmini-
mumnonzero singular values of A, respectively.Kk(A, b) = span{b, Ab, . . . , Ak−1b}
denotes the Krylov subspace of order k.
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2 Interior-point algorithm and the normal equations

We implement an infeasible version of Mehrotra’s predictor-corrector method [46],
which has been established as a standard in this area [43,44,47,71]. Note that our
method can be applied to other interior-point methods (see, e.g., [71] for more interior-
point methods) whose directions are computed via the normal equations (6).

2.1 Mehrotra’s predictor-corrector algorithm

In this method, the centering parameter σ is determined by dividing each step into two
stages.

In the first stage, we solve for the affine direction (Δxaf ,Δ yaf ,Δsaf)

⎡
⎣
0 AT I
A 0 0
S 0 X

⎤
⎦

⎡
⎣

Δxaf
Δ yaf
Δsaf

⎤
⎦ =

⎡
⎣

rd
rp

−XSe

⎤
⎦ , (7)

and measure its progress in reducing μ. If the affine direction makes large enough
progress without violating the nonnegative boundary (2d), then σ is assigned a small
value. Otherwise, σ is assigned a larger value to steer the iterate to be more centered
in the strictly positive region.

In the second stage, we solve for the corrector direction (Δxcc,Δ ycc,Δscc)

⎡
⎣
0 AT I
A 0 0
S 0 X

⎤
⎦

⎡
⎣

Δxcc
Δ ycc
Δscc

⎤
⎦ =

⎡
⎣

0
0

−ΔXafΔSaf e + σμaf e

⎤
⎦ , (8)

where ΔXaf = diag(Δxaf), ΔSaf = diag(Δsaf) and σ is determined according to
the solution in the first stage. Finally, we update the current iterate along the linear
combination of the two directions.

In our implementation of the interior-point method, we adopt Mehrotra’s predictor-
corrector algorithm as follows.

In line 5 in Algorithm 1, the step lengths αp, αd are computed by

αp = min

(
1, η min

i :Δxi<0

(
− xi

Δxi

))
, αd = min

(
1, η min

i :Δsi<0

(
− si

Δsi

))
, (9)

where (Δx,Δs) = (Δxaf ,Δsaf), η ∈ [0.9, 1).
In line 9, the quantity μaf is computed by

μaf = (x(k) + αpΔxaf)T(s(k) + αdΔsaf)/n.

In the same line, the parameterσ is chosen asσ = min (0.208, (μaf/μ
(k))2) in the early

phase of the interior-point iterations. The value 0.208 and the range [0.9, 1) for η are
adopted by the LIPSOL package [74]. In the late phase of the interior-point iterations,
σ is chosen as approximately 10 times the error measure Γ (k) which is defined as:
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Algorithm 1Mehrotra’s predictor-corrector algorithm.

1: Given (x(0), y(0), s(0)) with (x(0), s(0)) > 0.
2: for k = 0, 1, 2, . . . until convergence, do

3: μ(k) := x(k)Ts(k)/n {the predictor stage}
4: Solve (7) for the affine direction (Δxaf , Δ yaf , Δsaf ).
5: Compute αp, αd.
6: if min (αp, αd) ≥ 1 then

7: σ := 0,
(
Δx(k), Δ y(k), Δs(k)

)
:= (

Δxaf ,Δ yaf , Δsaf
)

8: else
9: Set μaf and σ := a small value, e.g., 0.208. {the corrector stage}
10: Solve (8) for the corrector direction (Δxcc, Δ ycc, Δscc).

11:
(
Δx(k), Δ y(k), Δs(k)

)
:= (Δxaf , Δ yaf ,Δsaf ) + (Δxcc, Δ ycc,Δscc)

12: end if
13: Compute α̂p, α̂d.

14: x(k+1) := x(k) + α̂pΔx(k),
(
y(k+1), s(k+1)

)
:=

(
y(k), s(k)

)
+ α̂d

(
Δ y(k), Δs(k)

)

15: end for

Γ (k) := max

{
μ(k),

‖b − Ax(k)‖2
max {‖b‖2, 1} ,

‖c− s(k) − AT y(k)‖2
max {‖c‖2, 1}

}
. (10)

Here the distinction between early and late phases is when Γ (k) is more or less than
10−3.

In line 13, we first compute trial step lengths αp, αd using equations (9) with
(Δx,Δs) = (Δx(k), Δs(k)). Then, we gradually reduce αp, αd to find the largest
step lengths that can ensure the centrality of the updated iterates, i.e., to find the
maximum α̂p, α̂d that satisfy

min
i

(xi + α̂pΔxi )(si + α̂dΔsi ) ≥ φ(x + α̂pΔx)T(s + α̂dΔs)/n,

where φ is typically chosen as 10−5.

2.2 The normal equations in the interior-point algorithm

We consider modifying Algorithm 1 so that it is not necessary to update y(k). Since
we assume the existence of an optimal solution to problem (1), we have b ∈ R(A).
Let D := S−1/2X1/2 and A := AD. Problem (6) with Δw = ATΔ y (the normal
equations of the second kind) is equivalent to

min ‖Δw‖2 subject to AΔw = f , (11)

where f := rp − AS−1(rc − X rd).
In the predictor stage, the problem (7) is equivalent to first solving (11) for Δwaf

with Δw = Δwaf , f = f af := b + AS−1X rd, and then updating the remaining
unknowns by
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Δsaf = rd − D−1Δwaf , (12a)

Δxaf = −D2Δsaf − x. (12b)

In the corrector stage, the problem (8) is equivalent to first solving (11) for Δwcc
with Δw = Δwcc, f = f cc := AS−1ΔXafΔSaf e − σμAS−1e, and then updating
the remaining unknowns by

Δscc = −D−1Δwcc, (13a)

Δxcc = −D2Δscc − S−1ΔXafΔsaf + σμS−1e. (13b)

By solving (11) for Δw instead of solving (6) for Δ y, we can compute Δsaf , Δxaf ,
Δscc, and Δxcc and can save 1MV in (12a) and another in (13a) if a predictor step
is performed per interior-point iteration. Here, MV denotes the computational cost
required for one matrix-vector multiplication.

Remark 1 For solving an interior-point step from the condensed step equation (6)
using a suited Krylov subspace method, updating (x,w, s) rather than (x, y, s) can
save 1MV each interior-point iteration.

Note that in the predictor and corrector stages, problem (11) has the same matrix but
different right-hand sides. We introduce methods for solving it in the next section.

3 Application of inner-iteration preconditioned Krylov subspace
methods

In lines 4 and 10 of Algorithm 1, the linear system (11) needs to be solved, with its
matrix becoming increasingly ill-conditioned as the interior-point iterations proceed.
In this section, we focus on applying inner-iteration preconditioned Krylov subspace
methods to (11) because they are advantageous in dealing with ill-conditioned sparse
matrices. The methods to be discussed are the preconditioned CG and MINRES
methods [38,59] applied to the normal equations of the second kind ((P)CGNE and
(P)MRNE, respectively) [13,55], and the right-preconditioned generalized minimal
residual method (AB-GMRES) [37,55].

Consider solving linear system Ax = b, where A ∈ Rn×n . First, the conjugate
gradient (CG) method [38] is an iterative method for such problems when A is a
symmetric and positive (semi)definite matrix and b ∈ R(A). CG starts with an initial
approximate solution x0 ∈ R

n and determines the kth iterate xk ∈ R
n by minimizing

‖xk − x∗‖2A over the space x0 + Kk(A, r0), where r0 = b − Ax0, x∗ is a solution of
Ax = b, and ‖xk − x∗‖2A := (xk − x∗)TA(xk − x∗).

MINRES [59] is another iterative method for solving such problems but only
requires A to be symmetric. MINRES with x0 determines the kth iterate xk by mini-
mizing ‖b − Ax‖2 over the same space as CG.

Third, the generalized minimal residual (GMRES) method [64] only requires A to
be square. GMRES with x0 determines the kth iterate xk by minimizing ‖b − Ax‖2
over x0 + Kk(A, r0).
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3.1 Application of inner-iteration preconditioned CGNE andMRNEmethods

We first introduce CGNE and MRNE. Let A = AAT, x = Δ yaf , b = f af , and
Δwaf = ATΔ yaf for the predictor stage, and similarly, let A = AAT, x = Δ ycc,
b = f cc, and Δwcc = ATΔ ycc for the corrector stage. CG and MINRES applied
to systems Ax = b are CGNE and MRNE, respectively. With these settings, let
the initial solution Δw0 ∈ R(AT) in both stages, and denote the initial residual by
g0 := f −AΔw0. CGNE andMRNE can solve (11) without formingAAT explicitly.

Concretely, CGNE gives the kth iterate Δwk such that ‖Δwk − Δw∗‖2 =
minΔw∈Δw0+Kk (ATA,ATg0)

‖Δw−Δw∗‖2, whereΔw∗ is theminimum-norm solution

of AΔw = f for Δw0 ∈ R(AT) and f ∈ R(A). MRNE gives the kth iterate Δwk

such that ‖ f − AΔwk‖2 = minΔw∈Δw0+Kk (ATA,ATg0)
‖ f − AΔw‖2.

We use inner-iteration preconditioning for CGNE and MRNE methods. The fol-
lowing is a brief summary of the part of [55] where the inner-outer iteration method
is analyzed. We give the expressions for the inner-iteration preconditioning and pre-
conditioned matrices to state the conditions under which the former is SPD. Let M
be a symmetric nonsingular splitting matrix of AAT such that AAT = M − N .
Denote the inner-iteration matrix by H = M−1N . The inner-iteration precondi-
tioning and preconditioned matrices are C 〈	〉 = ∑	−1

i=0 HiM−1 and AATC 〈	〉 =
M

∑	−1
i=0 (I − H)HiM−1 = M(I − H 	)M−1, respectively. If C 〈	〉 is nonsingular,

thenAATC 〈	〉u = f , z = C 〈	〉u is equivalent toAATz = f for all f ∈ R(A). For 	

odd, C 〈	〉 is symmetric and positive definite (SPD) if and only if the inner-iteration M
is SPD; for 	 even, C 〈	〉 is SPD if and only if M + N is SPD [52,53, Theorem 2.8]. We
give Algorithms 2, 3 for CGNE and MRNE preconditioned by inner iterations [55,
Algorithms E.3, E.4].

Algorithm 2 CGNE method preconditioned by inner iterations.
1: Let Δw0 be the initial approximate solution, and g0 := f − AΔw0.
2: Apply 	 steps of a stationary iterative method to AAT z = g0, u = AT z to obtain z0 := C〈	〉g0 and

u0 := AT z0.
3: q0 := u0, γ0 := (g0, z0)
4: for k = 0, 1, 2, . . . until convergence, do
5: αk := γk/(qk , qk ), Δwk+1 := Δwk + αqk , gk+1 := gk − αkAqk
6: Apply 	 steps of a stationary iterative method to AAT z = gk+1 to obtain zk+1 := C〈	〉gk+1 and

uk+1 := AT zk+1.
7: γk+1 := (gk+1, zk+1), βk := γk+1/γk , qk+1 := uk+1 + βkqk
8: end for

3.2 Application of inner-iteration preconditioned AB-GMRESmethod

Next, we introduce AB-GMRES. GMRES can solve a square linear system trans-
formed from the rectangular system AΔwaf = f af in the predictor stage and
AΔwcc = f cc in the corrector stage by using a rectangular right-preconditioning
matrix that does not necessarily have to be AT. Let B ∈ R

n×m be a preconditioning
matrix for A. Then, AB-GMRES corresponds to GMRES [64] applied to
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Algorithm 3MRNE method preconditioned by inner iterations.
1: Let Δw0 be the initial approximate solution, and g0 := f − AΔw0.
2: Apply 	 steps of a stationary iterative method to AATu = g0, q = ATu to obtain q0 := ATC〈	〉g0.
3: p0 := q0, γ0 := ‖q0‖22
4: for k = 1, 2, . . . until convergence, do
5: tk := A pk
6: Apply 	 steps of a stationary iterative method toAATu = tk , v = ATu to obtain vk := ATC〈	〉 tk .
7: αk := γk/(vk , pk ), Δwk := Δwk + αk pk , gk+1 := gk − αk tk , qk+1 := qk − αkvk

8: γk := ‖qk+1‖22, βk := γk+1/γk , pk+1 := qk + βk pk
9: end for

ABz = f , Δw = Bz,

which is equivalent to the minimum-norm solution to the problem (11), for all f ∈
R(A) if R(B) = R(AT) [55, Theorem 5.2], where Δw = Δwaf or Δwcc, f = f af
or f cc, respectively. AB-GMRES gives the kth iterate Δwk = Bzk such that zk =
argminz∈z0+Kk (AB,g0) ‖ f −ABz‖2, where z0 is the initial iterate and g0 = f −ABz0.

Specifically, we apply AB-GMRES preconditioned by inner iterations [54,55] to
(11). This method was shown to outperform previous methods on ill-conditioned and
rank-deficient problems. We give expressions for the inner-iteration preconditioning
and preconditionedmatrices. LetM be a nonsingular splittingmatrix such thatAAT =
M−N .Denote the inner-iterationmatrix by H = M−1N .WithC 〈	〉 = ∑	−1

i=0 HiM−1,
the inner-iteration preconditioning andpreconditionedmatrices areB〈	〉 = ATC 〈	〉 and
AB〈	〉 = ∑	−1

i=0 (I − H)Hi = M(I − H 	)M−1, respectively. If the inner-iteration
matrix H is semiconvergent, i.e., limi→∞ Hi exists, then AB-GMRES preconditioned
by the inner-iterations determines the minimum-norm solution ofAΔw = f without
breakdown for all f ∈ R(A) and for allΔw0 ∈ R(AT) [55, Theorem 5.5]. The inner-
iteration preconditioning matrix B〈	〉 works on A in AB-GMRES as in Algorithm 4
[55, Algorithm 5.1].

Algorithm 4 AB-GMRES method preconditioned by inner iterations.
1: Let Δw0 ∈ R

n be the initial approximate solution, and g0 := f − AΔw0.
2: β := ‖g0‖2, v1 := r0/β
3: for k = 1, 2, . . . until convergence, do
4: Apply 	 steps of a stationary iterative method toAAT p = vk , z = AT p to obtain zk := B〈	〉vk .
5: uk := Azk
6: for i = 1, 2, . . . , k, do
7: hi,k := (uk , vi ), uk := uk − hi,kvi
8: end for
9: hk+1,k := ‖uk‖2, vk+1 := uk/hk+1,k
10: end for
11: pk := argmin p∈Rk ‖βe1 − H̄k p‖2, qk = [v1, v2, . . . , vk ] pk
12: Apply 	 steps of a stationary iterative method toAAT p = qk , z = AT p to obtain z′ := B〈	〉qk .
13: Δwk := Δw0 + z′

Here, v1, v2, . . . , vk are orthonormal, e1 is the first column of the identity matrix,
and H̄k = {hi, j } ∈ R

(k+1)×k .
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Note that the left-preconditioned generalized minimal residual method (BA-
GMRES) [37,54,55] can be applied to solve the corrector stage problem, which can
be written as the normal equations of the first kind

AATΔ ycc = A(SX)−1/2 (ΔXafΔSaf e − σμe) ,

or equivalently

min
Δ ycc

‖ATΔ ycc − (SX)−1/2 (ΔXafΔSaf e − σμe) ‖2. (14)

In fact, this formulation was adopted in [32] and solved by the CGLS method precon-
ditioned by partial Cholesky decomposition that works in m-dimen-sional space. The
BA-GMRES also works in m-dimensional space.

The advantage of the inner-iteration preconditioning methods is that we can avoid
explicitly computing and storing the preconditioningmatrices forA in (11).Wepresent
efficient algorithms for specific inner iterations in the next section.

3.3 SSOR inner iterations for preconditioning the CGNE andMRNEmethods

The inner-iteration preconditioned CGNE and MRNE methods require a symmetric
preconditioning matrix. This is achieved by the SSOR inner-iteration preconditioning,
which works on the normal equations of the second kindAATz = g, u = ATz, and its
preconditioningmatrixC 〈	〉 is SPD for 	 odd forω ∈ (0, 2) [52,53, Theorem 2.8]. This
method exploits a symmetric splitting matrix by the forward updates, i = 1, 2, . . . ,m
in lines 3–6 in Algorithm 6 and the reverse updates, i = m,m − 1, . . . , 1, and can be
efficiently implemented as the NE-SSOR method [63], [55, Algorithm D.8]. See [8]
where SSOR preconditioning for CGNE with 	 = 1 is proposed. Let αT

i be the i th
row vector of A. Algorithm 5 shows the NE-SSOR method.

Algorithm 5 NE-SSOR method.
1: Let z〈0〉 = 0 and u〈0〉 = 0.
2: for k = 1, 2, . . . , 	, do
3: for i = 1, 2, . . . ,m, do

4: d
〈k− 1

2 〉
i := ω[gi − (αi , u〈k−1〉)]/‖αi‖22

5: z
〈k− 1

2 〉
i := z〈k−1〉

i + d
〈k− 1

2 〉
i , u〈k−1〉 := u〈k−1〉 + d

〈k− 1
2 〉

i αi
6: end for
7: for i = m,m − 1, . . . , 1, do
8: d〈k〉

i := ω[gi − (αi , u〈k−1〉)]/‖αi‖22
9: z〈k〉i := z

〈k− 1
2 〉

i + d〈k〉
i , u〈k−1〉 := u〈k−1〉 + d〈k〉

i αi
10: end for
11: u〈k〉 := u 〈k−1〉
12: end for
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When Algorithm 5 is applied to lines 2 and 6 of Algorithm 2 and lines 2 and 6 of
Algorithm 3, the normal equations of the second kind are solved approximately.

3.4 SOR inner iterations for preconditioning the AB-GMRESmethod

Next, we introduce the SOR method applied to the normal equations of the second
kind AAT p = g, z = AT p with g = vk or qk as used in Algorithm 4. If the
relaxation parameter ω satisfies ω ∈ (0, 2), then the iteration matrix H of this method
is semiconvergent, i.e., limi→∞ Hi exists [21]. An efficient algorithm for this method
is called NE-SOR and is given as follows [63], [55, Algorithm D.7].

Algorithm 6 NE-SOR method.
1: Let z〈0〉 = 0.
2: for k = 1, 2, . . . , 	, do
3: for i = 1, 2, . . . ,m, do
4: d〈k〉

i := ω[gi − (αi , z〈k−1〉)]/‖αi‖22, z〈k−1〉 := z〈k−1〉 + d〈k〉
i αi

5: end for
6: z〈k〉 := z〈k−1〉
7: end for

WhenAlgorithm 6 is applied to lines 4 and 12 of Algorithm 4, the normal equations
of the second kind are solved approximately.

Since the rows of A are required in the NE-(S)SOR iterations, it would be more
efficient if A is stored row-wise.

3.5 Row-scaling ofA

LetD be a diagonal matrix whose diagonal elements are positive. Then, problem (11)
is equivalent to

min ‖Δw‖2 subject to D−1AΔw = D−1 f . (15)

Denote Â := D−1A and f̂ := D−1 f . Then, the scaled problem (15) is

min ‖Δw‖2 subject to ÂΔw = f̂ . (16)

If B̂ ∈ R
n×m satisfies R(B̂) = R(ÂT), then (16) is equivalent to

ÂB̂ ẑ = f̂ , Δw = B̂ ẑ (17)

for all f̂ ∈ R(Â). The methods discussed earlier can be applied to (17). In the NE-
(S)SOR inner iterations, one has to compute ‖α̂i‖2, the norm of the i th row of Â.
However, this can be omitted if the i th diagonal element of D is chosen as the norm
of the i th row of A, that is, D(i, i) := ‖αi‖2, i = 1, . . . ,m. With this choice, the
matrix Â has unit row norm ‖α̂i‖2 = 1, i = 1, . . . ,m. Hence, we do not have to
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compute the norms ‖α̂i‖2 inside the NE-(S)SOR inner iterations if we compute the
norms ‖αi‖2 for the construction of the scaling matrix D. The row-scaling scheme
does not incur extra CPU time. We observe in the numerical results that this scheme
improves the convergence of the Krylov subspace methods.

CGNE and MRNE preconditioned by inner iterations applied to a scaled lin-
ear system D−1AΔw = D−1 f are equivalent to CG and MINRES applied to
D−1AATC 〈	〉Dv = f , Δw = ATC 〈	〉Dv, respectively, and hence determine the
minimum-norm solution of AΔw = f for all f ∈ R(A) and for all Δw0 ∈ R

n

if C	 is SPD. Now we give conditions under which AB-GMRES preconditioned by
inner iterations applied to a scaled linear system D−1AΔw = D−1 f determines the
minimum-norm solution of the unscaled one AΔw = f .

Lemma 1 IfR(B) = R(AT) andD ∈ R
m×m is nonsingular, then AB-GMRES applied

to D−1AΔw = D−1 f determines the solution of min ‖Δw‖2, subject to AΔw = f
without breakdown for all f ∈ R(A) and for all Δw0 ∈ R

n if and only if N (B) ∩
R(D−1A) = {0}.

Proof Since R(B) = R(AT) gives R(D−1AB) = R(D−1AAT) = R(D−1A),
the equality minu∈Rm ‖D−1( f − ABu)‖2 = minΔw∈Rn ‖D−1( f − AΔw)‖2 holds
for all f ∈ R

m [37, Theorem 3.1]. AB-GMRES applied to D−1AΔw = D−1 f
determines the kth iterate Δwk by minimizing ‖D( f − AΔw)‖2 over the space
Δw0+Kk(D−1AB,D−1g0), and thus determines the solution of min ‖Δw‖2, subject
to D−1AΔw = D−1 f without breakdown for all f ∈ R(A) and for all Δw0 ∈ R

n

if and only if N (D−1AB) ∩ R(D−1AB) = {0} [55, Theorem 5.2], which reduces
to R(D−1A) ∩ N (B) = {0} from N (D−1AB) = R(BTATD−T)⊥ = R(BTAT)⊥ =
R(BTB)⊥ = R(BT)⊥ = N (B). ��

Theorem 1 IfD ∈ R
m×m is nonsingular and the inner-iteration matrix is semiconver-

gent, then AB-GMRES preconditioned by the inner iterations applied to D−1AΔw =
D−1 f determines the solution of min ‖Δw‖2, subject to AΔw = f without break-
down for all f ∈ R(A) and for all Δw0 ∈ R

n.

Proof From Lemma 1, it is sufficient to show thatR(B) = R(AT) andN (D−1AB)∩
R(D−1AB) = {0}. SinceD−1MD−T = D−1(AAT−N )D−T is the splitting matrix of
D−1AATD−T for the inner iterations, the inner-iteration matrix is DTHD−T. Hence,
the inner-iteration preconditioning matrix B = ATC 〈	〉D satisfies R(B) = R(AT)

[55, Lemma 4.5]. On the other hand, D−1AB = D−1M(I − H 	)(D−1M)−1 satisfies
N (D−1AB) ∩ R(D−1AB) = {0} [55, Lemmas 4.3, 4.4]. ��

4 Numerical experiments

In this section, we compare the performance of the interior-point method based on
the iterative solvers with the standard interior-point programs. We also developed an
efficient direct solver coded in C to compare with the iterative solvers. For the sake of
completeness, we briefly describe our direct solver first.
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4.1 Direct solver for the normal equations

To deal with the rank-deficiency, we used a strategy that is similar to the Cholesky-
Infinity modification scheme introduced in the LIPSOL solver [74]. However, instead
of penalizing the elements that are close to zero, we removed them and solved the
reduced system. We implemented this modification by an LDLT decomposition. We
used the Matlab built-in function chol to detect whether the matrix is symmetric
positive definite. We used the ldlchol from CSparse package version 3.1.0 [19]
when thematrixwas symmetric positive definite, andwe turned to theMatlab built-in
solver ldl for the semidefinite cases which uses MA57 [23].

We explain the implementation by an example where AAT ∈ R
3×3. For matrix

AAT, LDLT decomposition gives

AAT = LGLT =
⎡
⎣

1 0 0
l21 1 0
l31 l32 1

⎤
⎦

⎡
⎣
g1 0 0
0 g2 0
0 0 g3

⎤
⎦

⎡
⎣
1 l21 l31
0 1 l32
0 0 1

⎤
⎦ .

Correspondingly, we partition Δ y = [Δy1,Δy2,Δy3]T and f = [ f1, f2, f3]T.
Assuming that the diagonal element g2 is close to zero, we let L̃ := [ 1 0

l31 1

]
,

G̃ := [ g1 0
0 g3

]
, f̃ = [ f1, f3]T, Δ̃ y = [Δy1,Δy3]T, and solve

L̃ G̃1/2
(
(L̃ G̃1/2)TΔ̃ y

)
= f̃ ,

using forward and backward substitutions. The solution is then given by Δ y =
[Δy1, 0,Δy3]T.

4.2 Implementation specifications

In this section, we describe our numerical experiments.
The initial solution for the interior-pointmethodwas set using themethod described

in LIPSOL solver [74]. The initial solution for the Krylov subspace iterations and the
inner iterations was set to zero.

We set the maximum number of the interior-point iterations as 99 and the stopping
criterion regarding the error measure as

Γ (k) ≤ εout = 10−8, (18)

where Γ (k) is defined by (10).
For the iterative solver for the linear system (11), we set the maximum number of

iterations for CGNE, MRNE and AB-GMRES asm, and relaxed it to 40,000 for some
difficult problems for CGNE and MRNE. We set the stopping criterion for the scaled
residual as

‖ f̂ − ÂΔw(k)‖2 ≤ εin‖ f̂ ‖2,
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where εin is initially 10−6 and is kept in the range [10−14, 10−4] during the process.
We adjusted εin according to the progress of the interior-point iterations. We truncated
the iterative solving prematurely in the early interior-point iterations, and pursued a
more precise direction as the LP solution was approached. The progress was measured
by the error measure Γ (k). Concretely, we adjusted εin as

ε
(k)
in =

{
ε
(k−1)
in × 0.75 i f log10 Γ (k) ∈ (−3, 1],

ε
(k−1)
in × 0.375 i f log10 Γ (k) ∈ (−∞,−3].

For steps where iterative solvers failed to converge within the maximum number of
iterations, we adopted the iterative solution with the minimum residual norm and
slightly increased the value of εin by multiplying by 1.5 which would be used in the
next interior-point step.

Note that preliminary experiments were conducted with the tolerance being fixed
for all the problems.However, further experiments showed that adjusting the parameter
εin with the progress towards an optimal solution worked better. This is also another
advantage of using iterative solvers rather than direct solvers.

We adopt the implementation of AB-GMRES preconditioned by NE-SOR inner-
iterations [56]with the additional row-scaling scheme (Sect. 3.5).No restartswere used
for the AB-GMRES method. The non-breakdown conditions discussed in Sects. 3.1,
3.2 are satisfied.

For the direct solver, the tolerance for dropping pivot elements close to zero was
10−16 for most of the problems; for some problems this tolerance has to be increased
to 10−6 to overcome breakdown.

The experiment was conducted on a MacBook Pro with a 2.6 GHz Intel Core i5
processor with 8 GB of random-access memory, OSXEl Capitan version 10.11.2. The
interior-pointmethodwas coded inMatlabR2014b and the iterative solvers including
AB-GMRES (NE-SOR), CGNE (NE-SSOR), and MRNE (NE-SSOR), were coded
in C and compiled asMatlab Executable (MEX) files accelerated with Basic Linear
Algebra Subprograms (BLAS).

We compared our implementation with PDCO version 2013 [65] and three solvers
available in CVX [35,36]: SDPT3 version 4.0 [68,69], SeDuMi version 1.34 [68] and
MOSEK version 7.1.0.12 [57], with the default interior-point stopping criterion (18).
Note that SDPT3, SeDuMi, and PDCO are non-commercial public domain solvers,
whereas MOSEK is a commercial solver known as one of the state-of-the-art solvers.
PDCO provides several choices for the solvers for the interior-point steps, among
which we chose the direct (Cholesky) method and the LSMRmethod. AlthoughMIN-
RES solver is another iterative solver available in PDCO, its homepage [65] suggests
that LSMR performs better in general. Thus, we tested with LSMR. For PDCO param-
eters, we chose to suppress scaling for the original problem. The other solvers were
implementedwith theCVXMatlab interface, andwe recorded theCPU time reported
in the screen output of each solver. However, it usually took a longer time for the CVX
to finish the whole process. The larger the problem was, the more apparent this extra
CPU time became. For example, for problem ken_ 18, the screen output of SeDuMi
was 765.3 s while the total processing time was 7615.2 s.
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Table 1 Overall performance of
the solvers on 127 testing
problems

Status Solved Failed Expensive

AB-GMRES (NE-SOR) 123 2 2

CGNE (NE-SSOR) 124 3 0

MRNE (NE-SSOR) 125 2 0

Modified Cholesky 117 10 0

SDPT3 76 46 5

SeDuMi 104 23 0

MOSEK 127 0 0

PDCO (Direct) 110 17 0

PDCO (LSMR) 88 35 4

We tested on two classes of LP problems: 127 typical problems from the benchmark
libraries and 13 problems arising from basis pursuit. The results are described in
Sects. 4.3 and 4.4, respectively.

4.3 Typical LP problems: sparse and ill-conditioned problems

We tested 127 typical LP problems from the Netlib, Qaplib and Mittelmann col-
lections in [20]. Most of the problems have sparse and full-rank constraint matrix A
(except problems bore3d and cycle). For the problems with l ≤ x ≤ u, l �=
0, u �= ∞, we transform them using the approach in LIPSOL [74].

The overall summary of numerical experiments on the 127 typical problems is
given in Table 1. The counts in column “Failed” include the case where a problem
was solved at a relaxed tolerance (phrased as “inaccurately solved” in CVX). Column
“Expensive” refers to the case where the interior-point iterations took more than a
time limit of 20 hours.

MOSEK was most stable in the sense that it solved all 127 problems, and MRNE
(NE-SSOR) came next with only two failures with the Netlib problems greanbea
and greanbeb. CGNE (NE-SSOR) method solved almost all the problems that
MRNE (NE-SSOR) solved, except for the largest Qaplib problem, which was solved
to a slightly larger tolerance level of 10−7. AB-GMRES (NE-SOR) was also very
stable and solved the problems accurately enough. However, it took longer than 20
hours for two problems that have 105,127 and 16,675 equations, respectively, although
it succeeded in solving larger problems such as pds-80. The other solvers were less
stable. The modified Cholesky solver and PDCO (Direct) solved 92% and 87% of
the problems, respectively, although they were faster than the other solvers for the
problems that they could successfully solve. PDCO (LSMR) solved 69% problems
and was slower than the proposed solvers. The reason could be that it does not use
preconditioners. SDPT3 solved 60% and SeDuMi 82% of the problems. Here we
should mention that SeDuMi and SDPT3 are designed for LP, SDP, and SOCP, while
our code is (currently) tuned solely for LP.

Note that MOSEK solver uses a multi-corrector interior-point method [30] while
our implementation is a single corrector (i.e., predictor-corrector) method. This led
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(d) All the problems.

Fig. 1 Dolan–Moré profiles comparing the CPU time costs for the proposed solvers, public domain and
commercial solvers

to different numbers of interior-point iterations as shown in the tables. Thus, there is
still room for improvement in the efficiency of our solver based on iterative solvers
if a more elaborately tuned interior-point framework such as the one in MOSEK is
adopted.

In order to show the trends of performance, we use the Dolan–Moré performance
profiles [22] in Figs. 1 and 2,withπ(τ) := P(log2 rps ≤ τ) the proportion of problems
for which log2-scaled performance ratio is at most τ , where rps := tps/t∗p , tps is the
CPU time for solver s to solve problem p, and t∗p is the minimal CPU time for problem
p. Figure 1 includes the commercial solver MOSEK while Fig. 2 does not. Note that
the generation of Fig. 2 is not by simply removing the curve of MOSEK from Fig. 1,
but rather removing the profile of MOSEK from the comparison dataset and thus
changing the minimum CPU time cost for each problem. The comparison indicates
that the iterative solvers, although slower than the commercial solverMOSEK in some
cases, were often able to solve the problems to the designated accuracy.

In Tables 2, 3, and 4, we give the following information:

1. the name of the problem and the size (m, n) of the constraint matrix,
2. the number of interior-point iterations required for convergence,
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Fig. 2 Dolan–Moré profiles comparing the CPU time costs for the proposed solvers and public domain
solvers

3. CPU time for the entire computation in seconds. For the cases shorter than 3000s,
CPU time is taken as an average over 10measurements. In each row, we indicate in
boldface and italic the fastest and second fastest solvers in CPU time, respectively.

Besides the statistics, we also use the following notation:

†inaccurately solved, i.e., the value of εout was relaxed to a larger level. In the col-
umn “Iter”, we provide extra information †a at the stopping point: for our solvers,
a = �log10 Γ (k)�, where �·� is the floor function; for CVX solvers, a = �log10 μ�
as provided in the CVX output; PDCO solvers do not provide this information,
thus they are not given;
f the interior-point iterations diverged;
t the iterations took longer than 20 hours.

Note that all zero rows and columns of the constraint matrix A were removed
beforehand. The problems marked with # are with rank-deficient A even after this
preprocessing. For these problems we put rank(A) in brackets after m, which is com-
puted using the Matlab function sprank.

In order to give an idea of the typical differences between methods, we present the
interior-point convergence curves for problem ken_ 13. The problem has a constraint
matrix A ∈ R

28,632×42,659 with full row rank and 97, 246 nonzero elements.
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Different aspects of the performance of the four solvers are displayed in Fig. 3. The
red dotted line with diamond markers represents the quantity related to AB-GMRES
(NE-SOR), the blue with downward-pointing triangle CGNE (NE-SSOR), the yellow
with asterisk MRNE (NE-SSOR), and the dark green with plus sign the modified
Cholesky solver. Note that for this problem ken_ 13, the modified Cholesky solver
became numerically inaccurate at the last step and it broke down if the default dropping
tolerance was used. Thus, we increased it to 10−6.

Figure 3a shows κ(AAT) in log10 scale. It verifies the claim that the least squares
problem becomes increasingly ill-conditioned at the final steps in the interior-point
process: κ(AAT) started from around 1020 and increased to 1080 at the last 3–5 steps.
Figure 3b shows the convergence curve of the duality measure μ in log10 scale. The
μ drops below the tolerance and the stopping criterion is satisfied. Although it is not
shown in the figure, we found that the interior-point method with modified Cholesky
with the default value of the dropping tolerance 10−16 stagnated for μ � 10−4.
Comparing with Fig. 3a, it is observed that the solvers started to behave differently as
κ(AAT) increased sharply.

Figure 3c, d show the relative residual norm ‖ f af − AATΔ yaf‖2/‖ f af‖2 in the
predictor stage and ‖ f cc − AATΔ ycc‖2/‖ f cc‖2 in the corrector stage, respectively.
The quantities are in log10 scale. The relative residual norm for modified Cholesky
tended to increase with the interior-point iterations and sharply increased in the final
phase when it lost accuracy in solving the normal equations for the steps. We observed
similar trends for other test problems and, in theworst cases, the inaccuracy in the solu-
tions prevented interior-point convergence. Among the iterative solvers, AB-GMRES
(NE-SOR) and MRNE (NE-SSOR) were the most stable in keeping the accuracy of
solutions to the normal equations; CGNE (NE-SSOR) performed similarly but lost
numerical accuracy at the last few interior-point steps.

Figure 3e, f show the CPU time and number of iterations of the Krylov methods
for each interior-point step, respectively. It was observed that the CPU time of the
modified Cholesky solver was more evenly distributed in the whole process while that
of the iterative solvers tended to be less in the beginning and ending phases. At the
final stage, AB-GMRES (NE-SOR) required the fewest number of iterations but cost
much more CPU time than the other two iterative solvers. This can be explained as
follows: AB-GMRES (NE-SOR) requires increasingly more CPU time and memory
with the number of iterations because it has to store the orthonormal vectors in the
modified Gram-Schmidt process as well as the Hessenberg matrix. In contrast, CGNE
(NE-SSOR) andMRNE (NE-SSOR) based methods require constant memory. CGNE
(NE-SSOR) took more iterations and CPU time than MRNE (NE-SSOR). Other than
A and the preconditioner, the memory required for k iterations of AB-GMRES is
O(k2 + km + n) and that for CGNE and MRNE iterations isO(m + n) [37,55]. This
explains why AB-GMRES (NE-SOR), although requiring fewer iterations, usually
takes longer to obtain the solution at each interior-point step. We also did experiments
on restarting AB-GMRES for a few problems. However, the performance was not
competitive compared to the non-restarted version.

On the other hand, themotivation for using AB-GMRES (NE-SOR) is that GMRES
is more robust for ill-conditioned problems than the symmetric solvers CG and MIN-
RES. This is becauseGMRESuses amodifiedGram-Schmidt process to orthogonalize
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(a) Condition number κ(AAT).
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(b) Duality measure μ.
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(c) Relative residuals for predictor stage.
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(d) Relative residuals for corrector stage.
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(e) CPU time for each interior-point step.
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Fig. 3 Numerical results for problem ken_13

the vectors explicitly; CG and MINRES rely on short recurrences, where orthogonal-
ity of vectors may be lost due to rounding error. Moreover, GMRES allows using
non-symmetric preconditioning while the symmetric solvers require symmetric pre-
conditioning. For example, using SOR preconditioner is cheaper than SSOR for one
iteration because the latter goes forwards and backwards. SOR requires 2MV + 3m
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operations per inner iteration, while SSOR requires 4MV + 6m. In this sense, the
GMRES method has more freedom for choosing preconditioners.

From Fig. 3, we may draw a few conclusions. For most problems, the direct solver
gave the most efficient result in terms of CPU time. However, for some problems, the
direct solver tended to lose accuracy as interior-point iterations proceeded and, in the
worst cases, this would inhibit convergence. For problems where the direct method
broke down, the proposed inner-iteration preconditioned Krylov subspace methods
worked until convergence. With the iterative solvers, it is acceptable to solve (7) and
(8) to a moderate level of accuracy in the early phase of the interior-point iterations,
and then increase the level of accuracy in the late phase.

4.4 Basis pursuit problems

Most of the problems tested in the last section have a sparse constraint matrix A.
The average nonzero density is 2.55%, 0.62%, and 0.45% for the problems in
Netlib, Qaplib, and Mittelmann, respectively. However, the matrix can be large
and dense for problems such as QP in support vector machine training and lin-
ear programming in basis pursuit [11]. The package Atomizer [10] gives such
matrices.

In this section, we enrich the experiment by adding problems arising from basis
pursuit [11]. We reproduced the 	1-norm optimization problems from the package
Atomizer [10], and reformulated them in the standard form of linear programming.
The connection betweenbasis pursuit andLPcanbe found therein. The problems tested
in this section have constraint matrices with average nonzero density 48.33% and are
usually very well-conditioned, with condition number in the range of (1, 18.54]. The
results are shown in Table 5.

The notations have the samemeaning as explained in the previous section. Although
PDCO’s direct solver may be fast for the problems in Table 5, if the problems are
given without explicit constraint matrices, one has to use the iterative solver (e.g.,
LSMR) version. The result shows that only AB-GMRES (NE-SOR) and MOSEK
succeeded in solving all the problems. Among these two methods, AB-GMRES
(NE-SOR) was faster than MOSEK for the problems bpfig22, bpfig23, bpfig31, and
bpfig51.

5 Conclusions

We proposed a new way of preconditioning the normal equations of the second
kind arising within interior-point methods for LP problems (11). The resulting
interior-point solver is composed of three nested iteration schemes. The outer-
most layer is the predictor-corrector interior-point method; the middle layer is the
Krylov subspace method for least squares problems, where we may use AB-GMRES,
CGNE or MRNE; on top of that, we use a row-scaling scheme that does not
incur extra CPU time but helps improving the condition of the system at each
interior-point step; the inner-most layer, serving as a preconditioner for the middle
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layer, is the stationary inner iterations. Among the three layers, only the outer-most
one runs towards the required accuracy and the other two are terminated prema-
turely. The linear systems are solved with a gradually tightened stopping tolerance.
We also proposed a new recurrence regarding Δw in place of Δ y to omit one
matrix-vector product at each interior-point step. We showed that the use of inner-
iteration preconditioners in combination with these techniques enables the efficient
interior-point solution of wide-ranging LP problems. We also presented a fairly
extensive benchmark test for several renowned solvers including direct and iterative
solvers.

The advantage of our method is that it does not break down, even when the matri-
ces become ill-conditioned or (nearly) singular. The method is competitive for large
and sparse problems and may also be well-suited to problems in which matrices are
too large and dense for direct approaches to work. Extensive numerical experiments
showed that our method outperforms the open-source solvers SDPT3, SeDuMi, and
PDCO regarding stability and efficiency.

There are several aspects of our method that could be improved. The current imple-
mentation of the interior-point method does not use a preprocessing step except for
eliminating empty rows and columns. Its efficiency may be improved by adopting
some existing preprocessing procedure such as presolve to detect and remove lin-
ear dependencies of rows and columns in the constraint matrix. Also, the proposed
method could be used in conjunction with more advanced interior-point frame-
works such as the multi-corrector interior-point method. In terms of the linear solver,
future work is to try reorthogonalization for CG and MINRES and the Householder
orthogonalization for GMRES. It is also important to develop preconditioners that
only require the action of the operator on a vector, as in huge basis pursuit prob-
lems.

It would also be worthwhile to extend our method to problems such as convex QP
and SDP.
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