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Abstract 

 

  In this thesis, we proposed two discrete artificial bee colony algorithms to solve graph 
coloring problems.  

  Graph coloring problem (GCP) is a famous combinatorial optimization problem. It is 
defined as coloring an undirect graph such that no adjacent nodes share the same color. 
Because GCP can be used to model many real-world problems, it has been studied by many 
researchers over a hundred year. However, even though the definition is simple, GCP is a NP-
complete problem and has some aspects that are surprisingly difficult to solve. 

  Traditionally, there are two main strategies to solve GCP: heuristic and meta-heuristic 
methods. The typical heuristic method is DSatur, which colors each node according to 
saturation degree. In meta-heuristic family, many ideas based on local search are proposed to 
improve candidate locally in order to find better solutions. Such methods include simulated 
annealing, Tabu search, and iterated local search. On the other hand, global search meta-
heuristic is usually population-based and tries to find better solutions in the whole search space. 
Famous global search meta-heuristic methods include genetic algorithm, evolution strategy 
and swarm intelligence. 

  Swarm intelligence (SI) is a population-based global search meta-heuristic. It is inspired 
from the biological systems that deals with nature. Typically, an SI system consists of several 
agents and a series of simple moving rules. Controlled by these rules, agents interact with each 
other and with the environment. Artificial bee colony (ABC) is one of SI algorithms. It is 
constructed by three main phases: (1) employed bee phase, which explores the whole search 
space; (2) onlooker bee phase, which exploits locally; and (3) scout bee phase, which is used 
to avoid being trapped in a local-optimal solution. ABC is proved to be an efficient and robust 
algorithm and is now widely used to solve optimization problems in continuous domain. 

  In this research, we try to apply ABC to solve GCPs. The difficulty of this work is adapting 
original ABC from continuous domain to discrete domain. First, we proposed S-ABC. Using 
hamming distance, S-ABC measures the distance between two candidates by similarity and 
updates a candidate by its similar neighbor. Compared with HDPSO on Minton random graphs, 
S-ABC obtains higher success rate and lower evaluation times. However, S-ABC does not use 
the graph information such as graph size, constraints, and the current fitness during its search 
process. To improve the performance, we then proposed adaptive ABC (A-ABC), which 
updates a candidate according to the above graph information. Experiments on three classes 
of random graphs show that A-ABC is efficient and robust and outperforms its competitors S-
ABC, HDPSO, and D-FA. We also studied the scout bee phase and report that the scout bee 
phase is not required in solving GCPs.
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Chapter 1 Introduction 

 

1.1 Background of Research 

 
Recently, swarm intelligence (SI) is widely used to solve optimization problems. Swarm 

intelligence was first introduced by Gerardo Beni and Jing Wang in 1989 [Beni 93]. It is a 
variety of meta-heuristics and is inspired from the biological systems such as the behavior of 
birds, ants, or fish for foraging and defending. Typically, a swarm intelligence system consists 
of several agents and a series of moving rules. Controlled by these rules, the agents interact 
with each other and with the environment. Based on this discipline, many swarm intelligence 
algorithms, for example, particle swarm optimization (PSO) [Kennedy 95], artificial bee colony 
(ABC) [Karaboga 07], cuckoo search (CS) [Yang 09], and firefly algorithm (FA) [Yang 09], 
have been developed and successfully applied to solve optimization problems in continuous 
domain.  

 
For example, PSO is applied to electronic engineering [Peksen 14, Yang 14], automatic 

control [Kolomvatsos 14, Nedic 14], and communication [Yousefi 12, Minasian 13]; ABC is 
used to train neural network [Shah 11, Yeh 12], discover rule and data [Hsieh 11, Karaboga 11], 
and process image [Ma 11, Cuevas 12]; CS shows superior performance when solving spring 
design and welded beam design problems [Gandomi 13, Yang 13]; and FA obtains good 
performance in areas of the engineering design [Azad 11] and antenna design [Basu 11]. 

 
Even though most swarm intelligence algorithms are designed to solve continuous 

optimization problems, some of them have been extended to the areas of discrete optimization 
problems such as time-tabling problems [Irene 09, Tassopoulos 12, Kanoh 13], travelling-
salesman problems [Kanoh 12, Kanoh 14], and flow-shop problems [Pan 11, Sayadi 10]. 

 
In this work, we focus on solving graph coloring problems (GCPs). GCP was first introduced 

by Frances Guthrie in 1800s [Lewis 16] and is a famous combinatorial optimization problem 
in the field of graph theory. It is defined as coloring an undirected graph such that no adjacent 
nodes share the same color. GCP can be used to model many real-world problems such as team 
building exercise, constructing timetables, scheduling taxis, and compiler register allocation. 
Because of its simple definition and practicability, GCP has been studied carefully over one 
century. However, even though the definition is easy to state, the difficulty of GCP is affected 
by many factors such as the size of graph, the number of edges, and the topology of graph. 

 
Heuristics and meta-heuristics are two main strategies to solve GCP. The simplest heuristic 

method may be greedy algorithm [Dunstan 75]. Greedy algorithm first sorts the nodes randomly 
and then takes nodes successively according to the order and tries to assign the first feasible 
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color to each node. Greedy algorithm cannot guarantee to find the optimum. However, it has 
been shown that greedy algorithm can produce an optimal solution if given a correct order of 
nodes. As an improvement of greedy algorithm, DSatur [Brelaz 79] has been proposed to find 
the best order of coloring nodes. DSatur is similar to greedy algorithm but uses different ways 
to decide the node to be colored. With greedy algorithm, the order is decided before coloring, 
on the other hand, DSatur heuristically select the node to be colored next according to the 
saturation degree (i.e. the number of different colors assigned to the adjacent nodes) of the 
nodes. 

 
In the meta-heuristic’s family, single solution and population-based searches are two main 

ideas. Single solution approaches modify and improve a single candidate solution. The typical 
single solution meta-heuristics used to solve GCPs include simulated annealing [Chams 87] and 
iterated local search [Caramia 08]. On the other hand, global search meta-heuristics are usually 
population-based. Such methods include evolutionary algorithm [Eiben 98, Galinier 99], 
genetic algorithm [Davis 91, Dorne 98, Fleurent 96], and swarm intelligence. 

 
The difficulty of applying swarm intelligence algorithms to solve GCPs is how to convert 

the continuous search space to the discrete search space. In general, there are three methods to 
do so:  

 
(1) Using sigmoid function. By using sigmoid function, Binary PSO (BPSO) [Kennedy 97] 

is first developed to solve binary optimization. In BPSO, sigmoid function maps a real number 
from 0.0 to 1.0 on binary number 1 or 0. Experiments on five benchmark problems show that 
BPSO is flexible and robust, but it is easy to be trapped in the local optimal. This idea is then 
used by Modified PSO (MPSO) [Cui 08], Modified Turbulent PSO (MTPSO) [Hsu 11] and 
Improved CS (ICS) [Zhou 13] to solve 4-colorable GCPs. In these two algorithms, sigmoid 
function separates the real space into four partitions that identify four colors. Experiments show 
that they obtain good results on small graphs. 

 
(2) Hybridizing with local search. This is a nature idea to improve the performance. By 

hybridizing with DSatur, Hybrid ABC (HABC) [Fister 12] and Memetic FA (MFA) [Fister 12] 
obtain high performance on GCP. In these two methods, ABC and FA are used to tune weights 
in continuous domain and each weight represents priority of the corresponding node. Then, 
DSatur colors nodes one by one according to the weights: the larger the weight is, the earlier 
the node should be colored. Experiments on three kinds of random graphs show that they match 
the competitive results of the best graph coloring algorithms such as Tabucol [Hertz 87] and 
Hybrid Evolutionary Algorithm [Galinier 99]. 

 
(3) Introducing discrete distance. Even though (1) and (2) obtain good results, swarm 

intelligence algorithms still work in continuous domain but use other tools (such as sigmoid 
function or DSatur) to map the real values on the target discrete domain. By introducing discrete 
distance, swarm intelligence algorithms can work in discrete domain directly. For example, 
HDPSO [Aoki 15] uses hamming distance to calculate the difference between two candidates 
and outperforms TPPSO [Kanoh 13] and GA on three colorable random graphs. Hamming 
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distance is a good tool to compare two candidates but is not appropriate to describe the distance 
a single candidate should be moved. To solve this problem, discrete cuckoo search (DCS) 
[Aranha 2017] uses discrete levy flight distribution to determine the number of nodes whose 
color should be changed and obtains good performance on 3-colorable random graphs. 

 
There are some problems in above proposed methods. Using sigmoid function is simple but 

the related works are not efficient. All experiments are performed on small graphs with the 
number of nodes is less than 100. When testing them on larger graphs, the performance turns 
to worse. On the other hand, hybridizing with local search such as DSatur obtains high 
performance but these algorithms are designed for solving GCPs only and hard to be applied to 
other problems because of lack of flexibility. Finally, HDPSO and DCS are tested on 3-
colorable Minton random graph only so the generality cannot be shown. 

 

1.2 Purpose of Research 

 
There are very few studies on solving GCPs using ABC. So, the purposes of our research are 

designing simple and high performance discrete artificial bee colony algorithms without 
hybridizing with local search and testing them on various classes of random graphs to show the 
generality. 
   
  We first introduce similarity to discretize original ABC. Using HDPSO as a baseline, we 
show that SABC is an efficient method to solve 3-colorable GCP by performing experiments 
on Minton random graphs. 
 
  Next, we propose adaptive ABC (A-ABC) and show its performance. In A-ABC, graph 
information (such as the number of nodes and edges, the fitness of current candidate) is 
considered. According to the information, A-ABC can adjust the number of replaced nodes 
automatically during the evolution. To show the performance and generality of A-ABC, we 
compare it with other four algorithms on three kinds of random graphs with various topology. 
The results show that adaptive ABC is a fast, robust, and general algorithm to solving GCPs. 
 

1.3 Structure of Thesis 

 
  There are five chapters in this thesis, and they are organized as follows. Chapter 1 is 
introduction and chapter 5 is conclusions. Chapter 2 gives abstract of research theme. We first 
introduce the original ABC, PSO, FA, and CS, then we define the graph coloring problems and 
finally, we describe some related works. In chapter 3, S-ABC and D-FA are proposed and tested 
on Minton random graphs by comparing with HDPSO. In chapter 4, A-ABC is proposed and 
compared with other five algorithms on three classes of random graphs to show its performance 
and generality. We also study scout bee phase can report that scout bee phase is not required in 
solving GCPs. 
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Chapter 2 Overview of Research Area 
 

2.1 Swarm Intelligence Algorithms 

 

2.1.1 Basic Framework of Swarm Intelligence 

  Swarm intelligence is a population-based system that consists of some agents and a series of 
rules that define how to move these agents. In the context of optimization problems, agents are 
usually candidate solutions and the rules try to fine better solutions in the search space by 
updating these candidates. Assuming we have an objective function  
 

 y = 𝑓(𝐱) (2.1) 
 
where 𝐱 ∈ 𝛺  (𝛺 ⊂ ℛ௡ ) and y ∈ ℛ . Assuming we want to find the maximum of 𝑓(𝐱) , the 
framework of swarm intelligence is given in Figure 1.  
 

Swarm intelligence usually begins with randomly generating N candidates 𝐱ଵ, 𝐱ଶ, … , 𝐱ே in 
set 𝛺 and each candidate is a vector with n elements because 𝛺 is the proper subset of ℛ௡. 
The N candidates compose a swarm and N is the swarm size. Then, users should define the 
strategy of updating candidate: 𝑢(𝐱). After that, an iterator is used to improve the swarm and 
tries to find better candidates. Each iteration is known as a generation. For one generation, the 
N candidates are updated one by one. When a candidate 𝐱௜ is updated, it is first saved in a  
 

Randomly initialize 𝑁 candidates 𝐱ଵ, 𝐱ଶ, … , 𝐱ே in set 𝛺 

Define update rules: 𝐱௡௘௪ = 𝑢(𝐱) 

while (termination condition is not met) 

for i = 1 to 𝑁 

        𝐯௜ = 𝐱௜ 

        𝐯௜
௡௘௪ = 𝑢(𝐯௜) 

        if (𝑓(𝐯௜
௡௘௪) > 𝑓(𝐱௜)) 

            replace 𝐱௜ by 𝐯௜
௡௘௪ 

        end if 

    end for 

end while 

Fig. 2.1. Framework of swarm intelligence 
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temporary variable 𝐯௜ and then, by invoking the update rule 𝑢(𝐯௜), a new candidate 𝐯௜

௡௘௪ is 
generated. Next, because we want to find the maximum of 𝑓(𝐱), we evaluate 𝐯௜

௡௘௪ and check 
whether 𝑓(𝐯௜

௡௘௪) is larger than 𝑓(𝐱௜). If so, that means a better candidate has been found, we 
remove 𝐱௜ from the swarm and replace it by 𝐯௜

௡௘௪, otherwise 𝐱௜ is kept without change. The 
iterator stops when termination condition is met. Common termination conditions are: (1) an 
optimum is found; (2) the maximum generation is met; or (3) the maximum evaluation times 
of objective function is met. 
 
  Obviously, the updating rule exerts a strong influence on the performance of swarm 
intelligence. By defining various updating rules, researchers have developed many swarm 
intelligence algorithms. 
 

2.1.2 Artificial Bee Colony 

Artificial bee colony (ABC) is a swarm intelligence algorithm that was proposed by 
Karaboga in 2007 [Karaboga 07]. It is an efficient and robust algorithm and has been applied 
to solve many continuous optimization problems [Karaboga 14].  
 

Using the same objective function (2.1) in 2.1.1, the updating rules of original ABC is 
described as follows. When a candidate 𝐱௜ will be updated, it is first saved to a temporary 
variable 𝐯௜ as usual. Then, another candidate 𝐱௝ in the swarm is selected randomly and 𝐯௜ is 
updated by equation (2.2): 
 

 𝑣௜௟ = 𝑣௜௟ + 𝜙 × (𝑣௜௟ − 𝑥௝௟) (2.2) 
 
where 𝑖, 𝑗 ∈ {1, 2, … , 𝑁} ∧ 𝑖 ≠ 𝑗 , 𝑙 ∈ {1, 2, … , 𝑛} , and 𝜙  is a uniformly distributed random 

number in [−1, 1]. Note that 𝑣௜௟ and 𝑥௝௟ are 𝑙௧௛ elements of 𝐯௜ and 𝐱௝ respectively and 𝑙 

is selected randomly. Equation (2.2) states that a new candidate 𝐯௜
௡௘௪ is generated by adding 

a small turbulent to a random element of 𝐯௜. For convenience, we organize this process as a 
function  𝑎𝑏𝑐_𝑢𝑝𝑎𝑡𝑒(𝐱௜) in Figure 2.2. 
 

Interestingly, original ABC separates updating scheme into three phases: employed bee phase,  
 

abc_update(𝐱௜) 
    𝐯௜ = 𝐱௜ 
    randomly select a candidate 𝐱௝ (𝑖 ≠ 𝑗) in the swarm 
    randomly select an element 𝑙 and 𝜙 
    update 𝐯௜  using equation 2.2 
    return 𝐯௜ 

Fig. 2.2 Updating rule of original ABC 
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onlooker bee phase, and scout bee phase. They are given in Figure 2.3. 
 
  From Figure 2.3, we can see that (1) in employed bee phase, ABC searches the neighborhood 
of candidates one by one and tries to improve the swarm. Note that each candidate is updated 
only once; (2) onlooker bee phase is similar to employed bee phase but choose candidates that 
will be updated by roulette selection. In the context of finding maximum of objective function, 
this means that the larger 𝑓(𝐱)  is, the higher probability candidate 𝐱  is selected. For 
convenience, we call the value of objective function (i.e. 𝑓(𝐱)) the fitness of 𝐱. Using roulette 
selection, the candidates with high fitness may be selected and be updated more than one time 
but the ones with low fitness may never be selected; (3) if a candidate cannot be improved 
further in a predetermined number of generations, which known as limit, scout bee phase 
replace it by a randomly generated new candidate. 
 
  In short summary, employed bee phase explores the whole search space while onlooker bee 
phase exploits the places with high fitness. To avoid being trapped in a local optimum, scout 
bee phase removes candidates that cannot be improve further in limit generations. Note that 
limit is the only parameter in original ABC, this makes original ABC simple to fine-tune. 
 

Employed bee phase(swarm) 
    for i = 1 to N 
        𝐯௜

௡௘௪ = 𝑎𝑏𝑐_𝑢𝑝𝑑𝑎𝑡𝑒(𝐱௜) 
        if (𝑓(𝐯௜

௡௘௪) > 𝑓(𝐱௜)) 
            replace 𝐱௜ by 𝐯௜

௡௘௪ 
        end if 
    end for 
 
Onlooker bee phase(swarm) 
    for i = 1 to N 
        using roulette selection to select a target candidate 𝐱 
        𝐯௡௘௪ = 𝑎𝑏𝑐_𝑢𝑝𝑑𝑎𝑡𝑒(𝐱) 
        if (𝑓(𝐯௡௘௪) > 𝑓(𝐱)) 
            replace 𝐱 by 𝐯௡௘௪ 
        end if 
    end for 
 
Scout bee phase(swarm) 
    given a predetermined cycle limit 
    for i = 1 to N 
        if 𝐱௜ is not improved in limit generations 
            replace 𝐱௜ by a random generated new candidate 𝐯௜  
        end if  
    end for 

Fig. 2.3 Employed bee phase, onlooker bee phase, and scout bee phase 



 

9 

 

Randomly initialize a swarm with N candidates 
Give the value of hyper-parameter limit 
 
while (termination condition is not met) 
    employed bee phase (swarm) 
    onlooker bee phase (swarm) 
    scout bee phase (swarm) 
end while 

Fig. 2.4 Framework of original ABC 

   
Combing the three phases together, the framework of original ABC is given in Figure 2.4. 

 

2.1.3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is one of the most famous swarm intelligence algorithms. 
It is well studied and has been widely applied in many research fields [Zhang 15].  
 
  In original PSO, each candidate 𝐱௜ is assigned a velocity vector 𝐯௜, which has the identical 
dimension with 𝐱௜ . In the context of the objective function (2.1), 𝐱௜  and 𝐯௜  are both n-
dimensional vector. For the 𝑡௧௛  generation, a candidate 𝐱௜

௧  is updated according to three 
factors: (1) its velocity 𝐯௜

௧, (2) the best previous candidate (i.e. the previous 𝐱௜ that obtains the 
highest fitness) 𝒑𝒃𝒆𝒔𝒕௜, and (3) the best previous candidate in the swarm 𝒈𝒃𝒆𝒔𝒕. The next 
candidate 𝐱௜

௧ାଵ is determined by the following equations. 
 

 𝐯௜
௧ାଵ = 𝑤଴𝐯௜

௧ + 𝑐ଵ𝑟ଵ(𝒑𝒃𝒆𝒔𝒕௜ − 𝐱௜
௧) + 𝑐ଶ𝑟ଶ(𝒈𝒃𝒆𝒔𝒕 − 𝐱௜

௧) (2.3) 
 

 𝐱௜
௧ାଵ = 𝐱௜

௧ + 𝐯௜
௧ାଵ (2.4) 

 
where 𝑤଴ , 𝑐ଵ , and 𝑐ଶ  are parameters predetermined by users, 𝑟ଵ  and 𝑟ଶ  are uniformly 
distributed random number in [0, 1].  
 

There are three parts in equation (2.3): the first part 𝑤଴𝐯௜
௧ is known as inertia and represents 

the scaled velocity. It gives the necessary momentum of candidates to move in the search space. 
The second part 𝑐ଵ𝑟ଵ(𝒑𝒃𝒆𝒔𝒕௜ − 𝐱௜

௧)  forces the candidates to move toward their own best 
position so far. Finally, the third part 𝑐ଶ𝑟ଶ(𝒈𝒃𝒆𝒔𝒕 − 𝐱௜

௧) guides all candidates to search in the 
direction of the global best. When a new velocity is obtained, it is added to the current candidate 
and a new candidate is generated by equation (2.4). With this update process, the framework of 
PSO is summarized in Figure 2.5. 
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Randomly initialize a swarm with N candidates 
Give the values of hyper-parameters 𝑤଴, 𝑐ଵ, and 𝑐ଶ 
 
for i = 1 to N 
    randomly initialize velocity vector 𝐯௜

଴ 
end for 
 
for i = 1 to N 
    𝒑𝒃𝒆𝒔𝒕௜ = 𝐱௜

଴ 
end for  
𝒈𝒃𝒆𝒔𝒕 = Argmax (𝑓(𝐱ଵ

଴), 𝑓(𝐱ଶ
଴), … , 𝑓(𝐱ே

଴ )) 
 
t = 0 
while (termination condition is not met) 
    for i = 1 to N 
        calculate the new velocity vector 𝐯௜

௧ାଵ by equation (2.3) 
        calculate the new particle 𝐱௜

௧ାଵ by equation (2.4) 
 
        if (𝑓(𝐱௜

௧ାଵ) > 𝑓(𝒑𝒃𝒆𝒔𝒕௜)) 
            𝒑𝒃𝒆𝒔𝒕௜ = 𝐱௜

௧ାଵ 
 
            if (𝑓(𝒑𝒃𝒆𝒔𝒕௜) > 𝑓(𝒈𝒃𝒆𝒔𝒕)) 
                𝒈𝒃𝒆𝒔𝒕 = 𝒑𝒃𝒆𝒔𝒕௜ 
            end if 
        end if 
    end for 
 
    t = t + 1 
end while 

Fig. 2.5 Framework of original PSO 

 

2.1.4 Firefly Algorithm 

Firefly algorithm (FA) is inspired by the flashing patterns of fireflies. In the original FA, a 
candidate 𝐱௜ is also known as a ‘firefly’ and any two fireflies 𝐱௜ and 𝐱௝ attract each other 
according to their ‘brightness’. When solving optimization problems, the ‘brightness’ of 𝐱௜ is 
an alias of the fitness of 𝐱௜. 

 
A firefly’s attractiveness is proportional to its intensity seen by other fireflies but is inversely 

proportional to the distance between two fireflies. Let 𝛽଴ be the attractiveness at the source, 
γ  be a fixed light absorption coefficient, and r be the distance between two fireflies, the 
attractiveness is defined as: 
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 𝛽(𝑟) = 𝛽଴𝑒ିఊ௥మ
 (2.5) 

 
  When a firefly 𝐱௜

௧ for the 𝑡௧௛ generation is updated, it is attracted by another brighter firefly 

𝐱௝
௧ (i.e. the fitness of 𝐱௝

௧ is higher than that of 𝐱௜
௧). The updating rule is given below: 

 

 𝐱௜
௧ାଵ = 𝐱௜

௧ + 𝛽଴𝑒ିఊ௥೔ೕ
మ

൫𝐱௜
௧ − 𝐱௝

௧൯ + 𝛼𝜖௧ (2.6) 

 

where 𝑟௜௝ is the distance between 𝐱௜
௧ and 𝐱௝

௧, 𝛼 is a user determined scale factor, 𝜖௧ is a 

random vector drawn from Gaussian or uniform distribution. Equation (2.6) states that the new 
firefly 𝐱௜

௧ାଵ is determined by the attractiveness define in equation (2.5) and a small turbulent 
vector. 
 
  It should be noted that FA uses a ‘double-loop’ structure to update the whole swarm. The 
framework of original FA is given in Figure 2.6. Because of its ‘double-loop’ structure, the time 
complexity of FA is 𝑂(𝑁ଶMaxGen)  at the extreme case, where N is the swarm size and 
MaxGen is the maximum generations [Yange 13]. This disadvantage makes FA spend more 
evaluation times than PSO and ABC to find a solution. 
 

Initialize the swarm randomly 
Give the values of hyper-parameters 𝛽଴, 𝛾, and 𝛼 
 
while (termination condition is not met) 
    for i = 1 to N: 
        for j = 1 to N: 
            if (𝑓(𝐱௜) < 𝑓(𝐱௝)) 
                Update 𝐱௜ using equation (2.6) 
                (i.e. moving 𝐱௜ to another candidate with higher fitness) 
            end if 
        end for 
     end for 
 
     sort candidates and find the current best 
end while 

Fig. 2.6 Framework of original FA 
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2.1.5 Cuckoo Search Algorithm 

Cuckoo search (CS) algorithm is also a swarm intelligence algorithm. A noticeable feature 
of CS is that it models the flight and feeding behavior of cuckoo using Levy distribution [Brown 
07]. A Levy Flight (LF) is a random walk that uses Levy distribution. Figure 2.7 shows that 
compared with the standard random walk, LF makes some ‘long jumps’ among many small 
steps. This feature of FL is very useful and effective in global numerical optimization [Ali 15]. 

 
After initializing a swarm with N candidates, original CS updates a candidate 𝐱௜  by two 

operators: LF operator and parasitism operator. In LF operator, a new candidate 𝐱௜
௡௘௪  is 

generated using equation (2.7): 
 

 𝐱௜
௡௘௪ = 𝐱௜ + 𝛼 × 𝐿𝑒𝑣𝑦(𝛽) (2.7) 

 
where 𝛼 > 0  is the step size that depends on the given problem and 𝛽 ∈ (1, 3]  is the 
parameter of Levy distribution. Equation (2.7) implies that 𝐱௜ is tuned by small steps most of 
the time but occasionally ‘jumps’ to another far place. In parasitism operator, with probability 
𝑝௔, some ‘bad’ candidates (i.e. the candidates with low fitness) are replaced by some ‘better’ 
candidates generated randomly. The framework of original CS is given in Figure 2.8. 
 

    

Fig..2.7 Levy Flight (left) and standard random walk (right) 
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Initialize a swarm with N candidates 
Give the values of hyper-parameters 𝛼, 𝛽, and 𝑝௔ 
 
while (termination condition is not met) 
    [LF operator] 
    for i = 1 to N 
        𝐱௜

௡௘௪ = 𝐱௜ + 𝛼 × 𝐿𝑒𝑣𝑦(𝛽)  
        if (𝑓(𝐱௜

௡௘௪) > 𝑓(𝐱௜)) 
            replace 𝐱௜ by 𝐱௜

௡௘௪ 
        end if 
    end for 
 
    [parasitism operator] 
    for i = 1 to N 
        if (random number <  𝑝௔) 
            generate a new candidate 𝐱௜

௡௘௪ randomly 
            if (𝑓(𝐱௜

௡௘௪) > 𝑓(𝐱௜)) 
                replace 𝐱௜ by 𝐱௜

௡௘௪ 
            end if 
        end if 
    end for 
end while 

Fig. 2.8 Framework of original CS 

             

2.1.6 Short Summary 

  We have introduced four swarm intelligence algorithms and we list their basic information 
in Table 2.1 as a short summary. From Table 2.1, we find that ABC has the smallest number of 
control parameters. 
 

Table 2.1 Short summary of ABC, PSO, FA, and CS 

Algorithms Author Parameters 

ABC [Karaboga, 07] limit 

PSO [Kennedy 95] 𝑤଴, 𝑐ଵ, 𝑐ଶ 

FA [Yang 09] γ, 𝛽଴, α 

CS [Yang 09] α, 𝛽, 𝑝௔ 
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2.2 Graph Coloring Problems 

 

2.2.1 Definition of Graph Coloring Problems 

 Graph coloring problem (GCP) is a famous combinatorial optimization problem in the field 
of graph theory. Here we define GCP more formally. 
 

  Definition. Let G = (V, E) be an undirect graph with a set of n nodes V and a set of m edges 
E. Given such a graph and k colors, GCP asks whether this graph can be colored such that no 
nodes that connected by an edge share the same color. 

 
  For convenience, we call the number of nodes (i.e. n) graph size and two nodes connected 
by an edge adjacent nodes. The purpose of solving GCP is to color a graph G with k colors and 
the adjacent nodes should be given different colors. Commonly, the m edges are known as m 
constraints. If G can be colored by exactly k colors, we call G a k-colorable graph and the 
corresponding problem k-GCP. For example, if G can be colored by three colors, G is a 3-
colorable graph and the problem is 3-GCP. 
 
  GCP is an NP-complete problem and is considered intractable because (1) its solution space 
grows exponentially in relation to the graph size and (2) there is no known polynomial bounded 
algorithm for solving it [Cook 71]. This means that an algorithm for locating a solution to GCP 
must resort to searching a significant portion of the solution space. In this work, we focus on 
solving GCP by discrete ABC. 
 
  As mentioned in 2.1.1, to solve such an optimization problem, we should first convert the 
problem to an objective function. We define the objective function for GCP as follows. Let the 
n nodes be labeled by natural number 1, 2, …, n successively and the color set be 𝐶 =

{1, 2, … , 𝑘}. Note that instead of using real colors such as red, blue, or green, we use integers to 
represent the colors. A candidate solution 𝐱 is a color vector with n elements and each element 
is from the color set 𝐶 , or more formally, 𝐱 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡|∀𝑥௜ ∈ 𝐶, 𝑖 ∈ {1, 2, … , 𝑛}} . For 
example, 𝑥ଶ = 3 implies that the second node is assigned a color 3. The total conflict of 𝐱 is: 
 

 𝑐𝑜𝑛(𝐱) =
1

2
෍ ෍ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑖, 𝑗)

௡

௝ୀଵ

௡

௜ୀଵ

 (2.8) 

 
where 
 

 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑖, 𝑗) = ൜
1, 𝑖, 𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑛𝑜𝑑𝑒𝑠 𝑎𝑛𝑑 ℎ𝑎𝑣𝑒 𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑜𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.9) 

 
Then, using equation (2.8), we define the objective function in equation (2.10): 
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 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱) = 1.0 −
𝑐𝑜𝑛(𝐱)

𝑚
 (2.10) 

 
Obviously, a candidate 𝐱 is a solution if and only if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱) = 1.0 because there are no 
adjacent nodes assigned the same color and 𝑐𝑜𝑛(𝐱) = 0.  
 

2.2.2 Topology of Graph 

There are many graph topologies, some of which have already been solved. Here, we 
concisely introduce complete graph, bipartite graph, cycle graph, wheel graph, and planar graph. 
 
  A complete graph with n nodes, which is denoted by 𝐾௡, is a graph whose any pair of nodes 
are connected by an edge, or in other words, any two nodes are adjacent nodes. Thus, a complete 

graph must have 𝑚 =
௡(௡ିଵ)

ଶ
  edges. Obviously, because all nodes in complete graph are 

adjacent, the colors used to solve GCP on a complete graph must be n, i.e., all nodes should be 
assigned to their own individual color. An example of complete graph is given in Figure 2.9 (a). 
 
  A bipartite graph, which is denoted by 𝐺 = (𝑉ଵ, 𝑉ଶ, 𝐸) , is a graph whose n nodes are 
separated into two sets 𝑉ଵ and 𝑉ଶ and edges are only added between nodes that belong to 
different sets. This means that there is no edge between any two nodes in the same set. Thus, 
obviously, only two colors are needed to solve GCP on a bipartite graph. An example of bipartite 
graph is given in Figure 2.9 (b). 
 
  A cycle graph, which is denoted by 𝐶௡ where 𝑛 ≥ 3, is a graph whose nodes are connected 
one by one like a ‘circle’. Or more precisely, a cycle graph has an edge set 𝐸 =

{{𝑣ଵ, 𝑣ଶ}, {𝑣ଶ, 𝑣ଷ}, … , {𝑣௡ିଵ, 𝑣௡}, {𝑣௡, 𝑣ଵ}}. The number of colors used to solve GCP on a cycle 
graph is dependent on graph size n: two colors are needed when n is even while three colors are 
needed when n is odd. An example of cycle graph is given in Figure 2.9 (c). 
 
  A wheel graph with n nodes, which is denoted by 𝑊௡, is a graph derived from a cycle graph. 
To construct a wheel graph, we use the first n - 1 nodes to generate a cycle graph 𝐶௡ିଵ and 
then, add edges between the last node (i.e. the 𝑛௧௛ node) and other n – 1 nodes. That is adding 
edges {{𝑣ଵ, 𝑣௡}, {𝑣ଶ, 𝑣௡}, … , {𝑣௡ିଵ, 𝑣௡}}. Considering a cycle graph, we immediately know that 
three colors are needed to color a wheel graph when n is odd while four colors are needed when 
n is even. An example of wheel graph is given in Figure 2.9 (d). 
 
  Both cycle graph and wheel graph are cases of planar graph. A planar graph is a graph that 
can be drawn on a plane without any edges crossing. A famous conclusion on planar graph is 
Four Color Theorem [Appel 77, Appel 77], which states that a planar graph can be feasibly 
colored by four or fewer colors. Four Color Theorem is the first major theorem that is proved 
by using a computer and has been gained wide acceptance. One should remember that the 
converse theorem of Four Color Theorem does not hold. This means that even though a planar 
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(a) Complete graph (b) Bipartite graph 

  
(c) Cycle graph (d) Wheel graph 

Fig. 2.9 Four graph topologies 

 
graph can be colored by four or fewer colors, a 4-colorable graph may not be a planar graph. 
 
  In this work, we test our algorithms on some more challenging k-colorable random graphs. 
A k-colorable random graph with n nodes is generated by first partitioning n nodes into k groups 
and then adding edges between nodes in different groups until some conditions are met. The 
topology of a k-colorable random graph is determined by the methods of partitioning nodes and 
adding edges. We focus on four classes of k-colorable random graphs: Minton random graph, 
arbitrary-random graph, equi-partite graph, and flat graph. Minton random graph is designed 
by S. Minton [Minton 92] and arbitrary-random graph, equi-partite graph, and flat graph are 
also known as Culberson random graphs that designed by J. Culberson [Culberson 96] 
 
 Minton random graph 

Given a constraint density 𝑑 =
௠

௡
  where n and m are the numbers of nodes and edges 

respectively, a k-colorable Minton random graph with n nodes is generated as follows: 
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① Calculate the number of edges by 𝑚 = 𝑛 × 𝑑; 
② Divide n nodes equally to k groups; 
③ Add edges between nodes in different groups until the number of edges is m. 
 
 Arbitrary-random graph 
  Given an edge probability p, a k-colorable arbitrary-random graph with n nodes is generated 
as follows: 
 
① Separate n nodes into k groups randomly, the numbers of nodes in various groups may not 

be equal; 
② Add edges between nodes in different groups with edge probability p; 
③ Accept the generated graph if it is a connected graph (i.e. a graph without 0 degree node). 
 
 Equi-partite graph 
  Given an edge probability p, a k-colorable equi-partite graph with n nodes is generated as 
follows: 
 
① Separate n nodes into k groups equally; 
② Add edges between nodes in different groups with edge probability p; 
③ Accept the generated graph if it is a connected graph. 
 
 Flat graph 
  Given an edge probability p, a k-colorable flat graph with n nodes is generated as follows: 
 
① Separate n nodes into k groups equally; 
② Add edges between nodes in different groups with edge probability p; 
③ Accept the generated graph if it is a connected graph and the degrees of groups are equal. 
 
  The differences of these graphs are as follows. Minton graph is determined by constraint 
density d and the number of edges m is fixed when d and n are given. Note that Minton random 
graph may not be connected graph. On the other hand, Culberson random graphs are generated 
according to edge probability p, which means the number of edges may not be equal between 
two instances even n and p are identical. In Culberson random graphs, the number of nodes of 
arbitrary random graph in various groups may not be equal because the nodes are divided 
randomly. On the contrary, equi-partite graphs and flat graphs keep the number of nodes in 
various groups as equal as possible. Flat graphs further keep the degrees of groups equal, in 
other words, the number of edges between any two groups is equal. Finally, Culberson random 
graphs are connected graphs. 
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2.2.3 Phase Transition 

Interestingly, most k-GCPs are very easy to solve [Minton 90, Turner 88]. Thus, we should 
look for hard problem instances that pose challenges for candidate algorithms. Not only GCPs, 
all NP-complete problems have an order parameter, and the hard problems arise in a certain 
range of such parameter. The range of order parameter is known as a phase transition 
[Cheesman 91]. 

 
Phase transition can be found by experiment or some formula. [Cheesman 91] studied the 

phase transition of k-GCPs by experiments and [Hogg 94] derives some formula to calculate 
the phase transition. We introduce Hogg’s formula in the context of k-GCPs concisely as 
follows. 

 
Given a graph with n nodes and k colors, an average connectivity, i.e., the average number 

of edges connected with a node, is defined as γ. Then, the number of edges m in the graph is: 
 

 𝑚 =
1

2
𝛾𝑛 (2.11) 

 
Obviously, the constraint density d, which defined in 2.2.2, is: 
 

 𝑑 =
𝑚

𝑛
=

1

2
𝛾 (2.12) 

 
Hogg defines 𝛽 as a critical parameter used to find the hardest instances: 
 

 𝛽 =
1

2
𝛾𝑘 = 𝑑 × 𝑘 (2.13) 

 
The purpose of Hogg’s research is to find a critical value of 𝛽  that generates the hardest 
problems. The basic idea to find such 𝛽 is to calculate the average cost to find all solutions of 
k-GCP 〈𝐶〉 and the average number of solutions 〈𝑁௦௢௟௡〉, then, the cost to find the first solution 
or to failure can be approximately calculated as: 
 

 〈𝐶௔௣〉 ≈
〈𝐶〉

max (1, 〈𝑁௦௢௟௡〉)
 (2.14) 

 
Based on this idea, Hogg reports that the critical value of 𝛽, which generates the hardest k-
GCPs, is: 
 

 𝛽௖௥௜௧ = −
ln (𝑘)

ln (1 − 𝑘ିଶ)
 (2.15) 

 
Using equation (2.15), one can easily calculate the phase transition on constraint density d and 
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edge probability p (see 2.2.2). 
 
  Another interesting and subtle thing that should be noted is that the theory value of phase 
transition is a little different from the experiment value. [Williams 92] reports this phenomenon. 
We summarize the theory and experiment values of phase transitions given in [Williams 92] 
and [Cheesman 91] on 3-GCPs, 4-GCPs, and 5-GCPs in Table 2.2. 
 
  Table 2.2 shows that the experiment value of phase transition is smaller than theory value of 
phase transition. From the experiments performed later, we will find that the experiment value 
is more accurate than the theory value. For example, the 3-colorable Minton random graphs at 
d = 2.5 (experiment value) are harder than the ones at d = 3.1 (theory value). 
 
  The difficulty of a random graph does not only depend on phase transition, but also on its 
topology. Culberson [Culberson 96] finds that (1) the most difficult problems occur when the 
number of nodes in various node groups is equal, and (2) the larger the variation of degree 
between two node groups, the easier an algorithm finds a solution. Thus, he reports that the flat 
graphs are much harder than arbitrary-random graphs and equi-partite graphs, even all of them 
have same graph size n and edge probability p. 
 

2.2.4 Short Summary 

  We have introduced several graph topologies, some of which are easy to solve. In this work, 
we select Minton random graph and Culberson random graph (include arbitrary-random graph, 
equi-partite graph, and flat graph) because they are more challenging. 
   
  There are two factors that affect the difficulty of a random graph: phase transition and 
topology. Phase transition is a range of a specific parameter (such as constraint density d and 
edge probability p) that generates hard problems, and topology is the method used to construct 
a graph. When graphs are constructed by the same process, for example, all graphs are flat 
graphs with 90 nodes, the phase transition dominates the difficulty of these graphs.  
 

Table 2.2 The theory and experiment values of phase transitions on 3-GCP, 4-GCP, and 5-GCP 

k T/E 𝛽௖௥௜௧ 𝛾௖௥௜௧ d p 

3 
Theory value 9.3 6.2 3.1 8/n ~ 9/n 

Experiment value 7.5 5.0 2.5 7/n ~ 8/n 

4 
Theory value 21.5 10.7 5.4 13/n ~ 14/n 

Experiment value 18.4 9.2 4.6 12/n ~ 13/n 

5 
Theory value 39.4 15.8 7.9 19/n ~ 20/n 

Experiment value 35.5 14.2 7.1 17/n ~ 18/n 
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On the other hand, when generating random graphs with identical graph size and phase 
transition, it is the topology that affects the difficulty of generated graphs. 
 

Studies also show that the theory value and the experiment value of phase transition are not 
identical but have a small gap.  
 
 

2.3 Related Works 

 

2.3.1 DSatur [Brelaz 79] 

As mentioned in 1.1, DSatur is a classical heuristic algorithm that is specially designed for 
solving GCPs. DSatur is an improved version of greedy algorithm. Unlike greedy algorithm, in 
which the order of coloring nodes is determined before coloring process, DSatur colors each 
node dynamically during the process. DSatur algorithm is given in Figure 2.10. 

 
DSatur chooses the node that will be colored next according to saturation degree of nodes. 

The saturation degree of a node is the number of different colors assigned to its adjacent nodes. 
At the first iteration, the saturation degree of all nodes is 0, thus DSatur colors the node that has 
the largest degree. Then, the saturation degree of all adjacent nodes of the colored node will be 

 

Let X = {1, 2, … , 𝑛} and S = {} 
when (X is not ∅) 
    if (S is ∅) 
        i = the node with largest degree 
    else  
        i = the node with largest saturation degree 
    end if 
 
    if (there is feasible color to color node i) 
        node i is assigned to the feasible color 
    else 
        generate a new color 
        assign node i the new color 
    end if 
 
    S = S ∪ 𝑖 
    remove i from X 
    update the saturation degree of all nodes in X 
end while 

Fig. 2.10 Framework of DSatur algorithm 
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updated. In the following iterations, DSatur selects the node that has the largest saturation 
degree and assigns it a feasible color. This process stops when all nodes have been colored.  

 
Note that if there is no feasible color that can be assigned to a selected node, DSatur generates 

a new color and assign it to the selected node. Thus, DSatur always colors a graph without 
conflict but the solution may not be optimal. For example, even a random graph is 3-colorable, 
DSatur may color it with 4 or more colors. 
 

2.3.2 Hybrid ABC [Fister 12] 

Many original heuristic algorithms like DSatur can only color graphs of up to 100 nodes, 
thus some improvements are developed for solving large GCPs. Local search and hybrid 
algorithm are two main methods. For example, Tabucol [Hertz 87] and hybrid evolutionary 
algorithm (HEA) [Galinier 99] are representative local search algorithm and hybrid algorithm 
respectively. 

 
In Fister’s work, DSatur is hybridized with ABC to solve 3-GCPs. Here, ABC is used to tune 

real number weights for nodes: the larger the weight is, the higher priority the node will be 
selected by DSatur. There are three features in Hybrid ABC algorithm: 

 
(1) Scout bee phase is replaced by random walk with direction exploitation (RWDE) [Rao 

09] local search heuristic. If a candidate 𝐱௜ cannot be improved for limit generations, instead 
of replacing it by a new randomly generated candidate, 𝐱௜ is replaced by a new candidate that 
is generated by: 

 
 𝐱௜

௡௘௪ = 𝐱௜ + 𝜆 × 𝑈௜ (2.16) 
 

where 𝜆 is a predetermined scalar number and 𝑈௜ is a unit random vector for 𝐱௜. 
 
  (2) DSatur selects node to be colored by weights tuned with ABC. Unlike original DSatur, 
which decide the node to be colored by saturation degree, in hybrid ABC, DSatur selects the 
node with highest weight. 
 
  (3) DSatur does not generate new colors. In original DSatur, if there is no feasible color for 
a selected node, a new color is generated and assigned to the node. However, in hybrid ABC, 
DSatur is used to evaluate the candidates generated by ABC, thus, if a node cannot be colored 
because of conflict, the node is labeled ‘uncolored’. DSatur evaluates a candidate by the number 
of uncolored nodes. Obviously, if the number of uncolored nodes is 0, a solution is found. 
 
  The framework of hybrid ABC is given in Figure 2.11. 
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Initialize N candidates X = {𝐱ଵ, 𝐱ଶ, … , 𝐱ே} randomly 
Let V = {𝑣ଵ = 0, 𝑣ଶ = 0, … , 𝑣ே = 0 } 
Where 𝑣௜  is the number of uncolored nodes for 𝐱௜ 
Give the values of hyper-parameters 𝜆 and limit 
 
while (termination condition is not met) 
    
    [DSatur phase] 
    for i = 1 to N 
       evaluate 𝐱௜ by DSatur 
       update 𝑣௜  
    end 
 

[ABC phase] 
employed bee phase (X, V) 
onlooker bee phase (X, V) 
for i = 1 to N 
    if 𝐱௜ cannot be improved in limit generations 
         update 𝐱௜ by equation (2.16) 
    end if 
end for 

 
end while 

Fig. 2.11 Framework of hybrid ABC 

 

2.3.3 HDPSO [Aoki 15] 

HDPSO is a non-hybrid discrete PSO algorithm to solve 3-colorable Minton random graphs. 
At the beginning, HDPSO, like original PSO, randomly initializes a swarm with N candidates. 
However, a candidate is not a real value vector drawn from some distribution, but a color vector 
defined in 2.2.1, i.e., a candidate 𝐱௜ = (𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௡), where 1 ≤ 𝑖 ≤ 𝑁 and n is graph size. 
The value of each element in 𝐱௜ can only be drawn from discrete color domain C = {1, 2, 3}. 
The advantage of defining swarm in a discrete domain is that a candidate can be evaluated by 
objective function (2.10) directly. 

 
The next task is to define the update rules for HDPSO. Because all candidates are in discrete 

domain, the update rule (equation (2.3) and (2.4)) used by original PSO cannot be applied 
directly. HDPSO separate equation (2.3) to three parts and uses transition probability to update 
a candidate 𝐱௜ for the 𝑡௧௛ generation. 

 
First, the distance between two candidates is described by hamming distance 𝐻(𝐱௜, 𝐱௝) , 
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which is the number of different elements between 𝐱௜ and 𝐱௝: 
 

 𝑑൫𝐱௜, 𝐱௝൯ = 1 −
𝐻(𝐱௜, 𝐱௝)

𝑛
 (2.17) 

 
Then the velocity of a candidate for the 𝑡௧௛ generation is defined as: 
 

 𝐯௜
௧ = 𝑑(𝐱௜

௧, 𝐱௜
௧ିଵ) (2.18) 

 
Next, the three terms of equation (2.3) are mapped on discrete domain: 
 

 𝑤଴𝐯௜
௧ → 𝑉௥௔௡ௗ = 𝑤଴𝐯௜

௧ (2.19) 
 

 𝑐ଵ𝑟ଵ(𝒑𝒃𝒆𝒔𝒕௜ − 𝐱௜
௧) → 𝑉௣௕௘௦௧ = 𝑐ଵ𝑟ଵ𝑑(𝒑𝒃𝒆𝒔𝒕௜, 𝐱௜

௧) (2.20) 
 

 𝑐ଶ𝑟ଶ(𝒈𝒃𝒆𝒔𝒕 − 𝐱௜
௧) → 𝑉௚௕௘௦௧ = 𝑐ଶ𝑟ଶ𝑑(𝒈𝒃𝒆𝒔𝒕, 𝐱௜

௧) (2.21) 

 
Finally, the transition probabilities are: 
 

 𝑉 = 𝑉௥௔௡ௗ + 𝑉௣௕௘௦௧ + 𝑉௚௕௘௦௧ (2.22) 
 

 𝑃௥௔௡ௗ =
𝑉௥௔௡ௗ

𝑉
 (2.23) 

 

 𝑃௣௕௘௦௧ =
𝑉௣௕௘௦௧

𝑉
 (2.24) 

 

 𝑃௚௕௘௦௧ =
𝑉௚௕௘௦௧

𝑉
 (2.25) 

 
Using transition probabilities, HDPSO updates elements in a candidate one by one. The 
framework of HDPSO is given in Figure 2.11. 
 
    [Aoki 15] compares HDPSO with TPPSO [Kanoh 13] and GA on 3-colorable Minton 
random graphs with graph size 90, 120, and 150. Experiments show that HDPSO outperforms 
its competitors on small graph size (n = 90). Its performance gets worse when graph size 
increases. 
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Randomly initialize N candidates from discrete domain C = {1, 2, 3} 
Give the values of hyper-parameters 𝑤଴, 𝑐ଵ, and 𝑐ଶ 
Evaluate all candidates by equation (2.10) 
Record 𝒈𝒃𝒆𝒔𝒕 
 
while (termination condition is not met) 
     
    for i = 1 to N 
        calculate 𝑃௥௔௡ௗ, 𝑃௣௕௘௦௧, and 𝑃௚௕௘௦௧ for 𝐱௜ 
 
        for j = 1 to n 
            generate a random number 𝑟 ∈ (0, 1) 
             
            if (𝑟 ≤ 𝑃௥௔௡ௗ)  
                𝑥௜௝ = a random color from {1, 2, 3} 
            else if (𝑃௥௔௡ௗ < 𝑟 ≤ 𝑃௥௔௡ௗ + 𝑃௣௕௘௦௧) 
                𝑥௜௝ = 𝑝𝑏𝑒𝑠𝑡௜௝ 
            else 
                𝑥௜௝ = 𝑔𝑏𝑒𝑠𝑡௝ 
            end if 
        end for 
 
        evaluate new 𝐱௜ by equation (2.10) 
        update 𝒑𝒃𝒆𝒔𝒕௜ 
    end for 
 
    update 𝒈𝒃𝒆𝒔𝒕 
 
end while 

Fig. 2.11 Framework of HDPSO 

 

2.3.4 Discrete Cuckoo Search [Aranha 17] 

  Discrete Cuckoo Search (DCS) is also a non-hybrid algorithm that defines its swarm in 
discrete domain directly and extends the update rules of original CS to adapt the context of 
solving 3-GCPs. 
 
  Even though HDPSO has defined the discrete distance between two candidates by hamming 
distance, it is not appropriate to apply this idea in DCS because a candidate in CS is updated by 
Levy Flight (LF, see 2.1.5) without communicating with others. 
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  To solve this problem, DCS modifies a candidate 𝐱௜ by randomly selecting M elements of 
𝐱௜ and changing them to other colors. M is determined by discrete LF: 
 

 𝑀 = ⌊𝛼 × 𝐿𝑒𝑣𝑦(𝛽)⌋ + 1 (2.26) 
 
Then, the two operators of original CS, LF operator and parasitism operator, are discretized by 
equation (2.26). The framework of DCS is given in Figure 2.12. 
 

Initialize N candidates in discrete domain C = {1, 2, 3} 
Give the values of hyper-parameters 𝛼, 𝛽, and 𝑝௔ 
 
while (termination condition is not met) 
 
    [LF operator] 
    for i = 1 to N 
        calculate M by equation (2.26)  

randomly select M elements of 𝐱௜ 
        generate 𝐱௜

௡௘௪ by randomly changing the colors of the M elements 
 
        if (𝑓(𝐱௜

௡௘௪) ≥ 𝑓(𝐱௜)) 
            replace 𝐱௜ with 𝐱௜

௡௘௪ 
        end if  
    end for 
 
    [Parasitism operator] 
    for i = 1 to N 
        generate a random number 𝑟 ∈ (0, 1) 
        if (𝑟 < 𝑝௔) 
            calculate M by equation (2.26)  

randomly select M elements of 𝐱௜ 
            generate 𝐱௜

௡௘௪ by randomly changing the colors of the M elements 
            replace 𝐱௜ with 𝐱௜

௡௘௪ without evaluation 
        end if 
    end for 
 
end while 

Fig. 2.12 Framework of DCS 
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  The parasitism operator needs more explanations. 
 
  (1) In parasitism operator of original CS, 𝐱௜ is not replaced by 𝐱௜

௡௘௪ unless the fitness of 
𝐱௜

௡௘௪ is better. However, in DCS, the old candidate 𝐱௜ is always replaced by 𝐱௜
௡௘௪ without 

evaluation. The author explains that always accepting the new candidate in parasitism improves 
the exploration power of the algorithm and avoids wasting evaluations. On the other hand, 𝑝௔ 
is set to be a very small value so that parasitism operator is not called frequently. 
 
  (2) In [Aranha 17], M can be calculated by three methods: (a) using equation (2.26); (b) 
drawn randomly from a uniformly distribution; and (c) a fixed integer determined by some 
preliminary experiments. The author reports that method (a) obtains the best performance. Thus, 
for simplicity, M is determined by equation (2.26) in Figure 2.12. 
 
  Experiments are performed on 3-colorable Minton random graphs with graph size from 90 
to 180. Results show that DCS is a powerful algorithm to solve 3-GCPs on Minton random 
graphs and its performance does not decay when graph size increases. The author states that 
determining M by equation (2.26) gives self-adaptation to some extent because it avoids the 
cost of finding the optimal M by some preliminary experiments. 
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Chapter 3 Similarity Artificial Bee Colony and Firefly 

Algorithm 
 
  In this chapter, we propose similarity artificial bee colony (S-ABC) algorithm to solve 3-
GCPs. We first introduce similarity to discretize original ABC. Then with the same idea, we 
discretize original FA and propose D-FA algorithm as a comparison algorithm. Finally, using 
HDPSO as baseline, we compare S-ABC, D-FA, and HDPSO on 3-colorable Minton random 
graphs with various graph size to show the performance of S-ABC. 
 
 

3.1 Encoding Scheme 

 
Before giving the detail of the proposed methods, we define an encoding scheme for a swarm 

formally. This encoding scheme will be used throughout the rest of this thesis. 
 
A swarm consists of N candidates, and in the context of k-GCPs, each candidate is a color 

vector that represents a candidate solution. Formally, given a graph with n nodes, we define 
color set C, swarm S, and a candidate 𝐱௜ as follows: 

 
 𝐶 = {1, 2, … , 𝑘} (3.1) 

 
 𝑆 = {𝐱ଵ, 𝐱ଶ, … , 𝐱ே} (3.2) 

 
 𝐱௜ = {𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௡|∀𝑥௜௝ ∈ 𝐶 ∧ 𝑗 ∈ {1, 2, … , 𝑛}} (3.3) 

 
  Color set C includes k labels that denote k colors. For convenience, we use label 1, 2, …, k 
instead of using actual colors such as red, green, and blue (equation (3.1)). Swarm S is 
composed by N candidates, each of which is a color vector (equation (3.2)). A candidate 𝐱௜ has 
n elements, each element can only be assigned a label from C and represents the ‘color’ assigned 
to the corresponding node (equation (3.3)). 
 
  At the beginning of a swarm intelligence algorithm, a swarm is initialized randomly. For 
example, let N = 4, k = 3, and n = 6, an example of a feasible initialized swarm is given in 
Figure 3.1. 
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𝐶 = {1, 2, 3} 
 

𝑆 = {𝐱ଵ, 𝐱ଶ, 𝐱ଷ, 𝐱ସ} 
 

𝐱ଵ = {1, 2, 1, 3, 3, 2} 
 

𝐱ଶ = {3, 1, 3, 1, 3, 2} 
 

𝐱ଷ = {1, 2, 1, 3, 3, 2} 
 

𝐱ସ = {1, 3, 2, 1, 2, 2} 

Fig. 3.1 An example of a randomly initialized swarm 

 
  As mentioned above, a candidate 𝐱௜ is also known as a candidate solution. During a swarm 
intelligence algorithm, 𝐱௜  is updated by predefined rules and evaluated by an objective 
function. Because we focus on k-GCPs, the objective function is defined as equation (2.10) in 
(2.2.1). For the convenience, we rewrite it below: 
 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱) = 1.0 −
𝑐𝑜𝑛(𝐱)

𝑚
 (3.4) 

 
where 𝑐𝑜𝑛(𝐱) is the total conflict of candidate 𝐱 (see equation (2.8) in (2.2.1)) and m is the 
number of edges. Equation (3.4) calculates the fitness of a candidate 𝐱. The purpose of any 
swarm intelligence algorithm in this work is to find a candidate 𝐱 with 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱) = 1.0, 
which means no adjacent nodes share the same color, i.e. 𝑐𝑜𝑛(𝐱) = 0. 
 
 

3.2 S-ABC 

 

3.2.1 Similarity 

  In HDPSO, the distance between two candidates are defined by hamming distance. We use 
this idea to construct similarity of two candidates 𝐱௜ and 𝐱௝: 
 

 𝑠൫𝐱௜, 𝐱௝൯ = 1 −
𝐻(𝐱௜, 𝐱௝)

𝑛
 (3.5) 

 

where 𝑠൫𝐱௜, 𝐱௝൯ is the similarity of 𝐱௜ and 𝐱௝, and n is the graph size.  

  Similarity describes the similar degree of 𝐱௜ and 𝐱௝, and we use it to discretize the original 
ABC. 
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3.2.2 Update Rules of S-ABC 

  In original ABC, employed bee phase and onlooker bee phase generates a new candidate 
𝐱௜

௡௘௪ from 𝐱௜ by randomly selecting a neighbor candidate 𝐱௝ and then invoking equation 
(2.2). In the proposed method, instead of choosing a neighbor candidate randomly, we select a 
neighbor candidate that is similar to 𝐱௜. Similarity defined in (3.2.1) is used to measure how 
similar two candidates are. 
 
  Once a neighbor candidate 𝐱௝ is determined, we update 𝐱௜ by randomly choose t elements 
of 𝐱௝  and replace the corresponding elements of 𝐱௜  by them. If t = 1, this update rule is 
identical to the original one, which generates a new candidate by adding a small turbulent on 
just one element of 𝐱௜. The update process of S-ABC is given in Figure 3.2. 
 
 

Give a candidate 𝐱௜ to be updated 
 
Update-candidate (𝐱௜) 
 

[Step 1. Select a neighbor by similarity] 
 
randomly select a candidate 𝐱௝ 

calculate 𝑠൫𝐱௜, 𝐱௝൯ by equation (3.5) 

generate a uniformly distributed random number 𝑟 ∈ (0, 1) 

if (𝑟 < 𝑠൫𝐱௜, 𝐱௝൯) 

        accept 𝐱௝ as a neighbor candidate 
end if 

 
[Step 2. Update 𝐱𝒊] 
 

    randomly select t elements from 𝐱௝ 
    replace the corresponding elements of 𝐱௜ by them 
 
    return 𝐱௜

௡௘௪ 
 
end process 

Fig. 3.2 The update rule of S-ABC 
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3.2.3 Framework of S-ABC 

The update rule defined in 3.2.2 is now applied in employed bee phase and onlooker bee 
phase. As original ABC does, employed bee phase of S-ABC updates every candidate once 
while onlooker bee phase uses roulette selection to exploit the candidates with high fitness. 
Employed bee phase and onlooker bee phase are given in Figure 3.3. 

 
The scout bee phase of S-ABC is identical to that of original ABC: if a candidate cannot be 

improved for limit generations, it is abandoned and is replaced by a randomly generated new 
candidate. The framework of S-ABC is given in Figure 3.4. 

 

Given a swarm S 
employed bee phase (S) 
    for i = 1 to N 
        𝐱௜

௡௘௪ = Update-candidate (𝐱௜) 
         
        if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱௜

௡௘௪) ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱௜)) 
            replace 𝐱௜ with 𝐱௜

௡௘௪ 
        end if 
    end for 
 
onlooker bee phase (S) 
    for i = 1 to N 
        choose 𝐱 by roulette selection 
        𝐱௡௘௪ = Update-candidate (𝐱) 
 
        if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱௡௘௪) ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱)) 
            replace 𝐱 with 𝐱௡௘௪ 
        end if 
    end for 

Fig. 3.3 Employed bee phase and onlooker bee phase of S-ABC 

 

Initialize a swarm S 
Set parameters t and limit 
 
while (termination condition is not met) 
    employed bee phase (S) 
    onlooker bee phase (S) 
    scout bee phase (S) 
end while 

Fig. 3.4 Framework of S-ABC 
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3.2.4 Short Summary 

  In this section, we proposed a non-hybrid swarm intelligence algorithm S-ABC. By defining 
similarity between two candidates, S-ABC discretizes original ABC directly.  
 
  There are two main difference between S-ABC and original ABC: (1) when updating a 
candidate 𝐱௜, S-ABC only selects a neighbor candidate 𝐱௝ that is similar to 𝐱௜; (2) unlike the 
original ABC, S-ABC randomly selects t elements of 𝐱௜  and replaces them by the 
corresponding elements of 𝐱௝ . Here 𝑡 ≥ 1 . This means that one or more elements will be 
changed. 
 
  Finally, there are two parameters in S-ABC: t and limit, the former affects the update of a 
candidate and the latter removes candidates that cannot be improved. 

 
 

3.3 Discrete Firefly Algorithm 

 
For the sake of comparison, we apply similarity defined in S-ABC to discretize original 

firefly algorithm (FA) and propose a discrete firefly algorithm (D-FA). 
 
As 2.1.4 shows, original FA updates a candidate 𝐱௜ by equation (2.6), which has two main 

terms: (1) 𝛽଴𝑒ିఊ௥೔ೕ
మ

൫𝐱௜
௧ − 𝐱௝

௧൯ and (2) 𝛼𝜖௧. The former moves 𝐱௜ to a better candidate 𝐱௝ and 

the latter adds some turbulent to 𝐱௜. Recall that HDPSO separates the original update rule into 
three parts, we can also discretize (1) and (2) respectively. For the convenience, we call the first 
term ‘𝛽-step’ and the second term ‘𝛼-step’. 

 

3.3.1 Discretize 𝛽-step with Similarity 

  In D-FA, we use similarity 𝑠൫𝐱௜, 𝐱௝൯ defined in 3.2.1 to measure the difference between two 

candidates. The attractiveness between 𝐱௜ and 𝐱௝ can be calculated as: 
 

 𝛽൫𝐱௜, 𝐱௝൯ = 𝛽଴𝑒ିఊ௦൫𝐱೔,𝐱ೕ൯
మ

 (3.6) 

 
where 𝛽଴ is the attractiveness at the source and γ is the light absorption coefficient. 
 

Then, for each element of 𝐱௜ , a uniformly distributed random number 𝑟 ∈ (0, 1)  is 

generated and compared with 𝛽൫𝐱௜, 𝐱௝൯. If 𝑟 ≤ 𝛽൫𝐱௜, 𝐱௝൯, the element of 𝐱௜ is replaced by the 

corresponding element of 𝐱௝. This process is given in Figure 3.5. 
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3.3.2 Discretize 𝛼-step 

  In original 𝛼-step, a small random turbulent is added to some elements of 𝐱௜. Similarly, we 
randomly change 𝛼 elements of 𝐱௜ to other colors. This process is given in Figure 3.6. 
 

3.3.3 Framework of D-FA 

  Now, we establish the framework of D-FA. It is similar to the original one. For each 
generation, a candidate with low fitness moves toward other candidates with higher fitness by 
invoking 𝛽 -step and 𝛼 -step successively. Once all candidates have been updated, they are 
sorted according to the fitness in descending order and the current best candidate is saved. The 
framework of D-FA is given in Figure 3.7. 

 
 

𝜷-step (𝐱௜, 𝐱௝) 
    calculate s(𝐱௜, 𝐱௝) by equation (3.5) 

    calculate 𝛽൫𝐱௜, 𝐱௝൯ by equation (3.6) 

    for q = 1 to n 
        generate a uniform random number 𝑟 ∈ (0, 1) 

        if 𝑟 ≤ 𝛽൫𝐱௜, 𝐱௝൯ 

            replace 𝑥௜௤ with 𝑥௝௤  
        end if  
    end for 

Fig. 3.5 𝜷-step in D-FA 

 
 

𝜶-step (𝐱௜) 
    randomly select 𝛼 elements of 𝐱௜ 
    replace them with other colors 

Fig. 3.6 𝜶-step in D-FA 
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Initialize a swarm S randomly 
Set parameters 𝛽଴, γ, and 𝛼 
 
while (termination condition is not met) 
     
    for i = 1 to N 
        for j = 1 to N 
            if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱௜) ≤ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱௝)) 
                𝜷-step (𝐱௜ , 𝐱௝) 
                𝜶-step (𝐱௜) 
            end if 
        end for 
    end for 
 
    sort S in descending order and record the current best 
 
end while 

Fig. 3.7 Framework of D-FA 

 
 

3.4 Experiments 

 

3.4.1 Experiment Design 

We design some experiments to investigate the performance of S-ABC and D-FA. Using 
HDPSO as a baseline, we test S-ABC, D-FA, and HDPSO on 3-colorable Minton random 
graphs with various graph size. The experiment steps are given as follows. 

 
 Step 1. Generate Minton random graphs 

Let k = 3, we first generate 3-colorable Minton random graphs with various graph size n 
and constraint density d using the steps given in (2.2.2). For each n and d, 50 instances are 
generated.  

 
As described in (2.2.3), the difficulty of random graphs with same topology is determined 

by phase transition of the order parameter. For Minton random graphs, the order parameter 
is the constraint density d, and according to Table 2.2, the hardest problems occur when d = 
2.5. The details of generated graphs are given in Table 3.1. 

 
 
 

 



 

34 

 

Table 3.1 The details of generated Minton random graphs 

n d 
Phase 

transition 
The number of graph instances 

for each d 

90 
1.5, 2.0, 2.5, 3.0, 
3.5, 4.0, 5.0, 6.0 

2.5 50 120 

150 

 
 Step 2. Parameter dependence 

Before comparison, we should first find the optimal values of hyper-parameters for each 
algorithm. The details are given in next section. 
 
 Step 3. Comparison study 

After the optimal hyper-parameters have been found, S-ABC, D-FA, and HDPSO are 
compared on Minton random graphs with various n and d.  
 
  Two measures are used to evaluate the performance of a given algorithm: success rate (SR) 
and average evaluation times on success trials (AES). SR is the percentage of graph instances 
in which a solution is found. AES represents the average number of evaluation times of 
objective function (i.e. equation (3.4)) in successful graph instances.  
 

For example, we test S-ABC on Minton random graphs with n = 90 and d = 2.5. Let the total 
number of graph instances we test on be 𝑁் and the number of success instances be 𝑁ௌ. SR 
is defined in equation (3.7): 
 

 𝑆𝑅 =
𝑁ௌ

𝑁்
 (3.7) 

 
and AES is defined in equation (3.8): 
 

 𝐴𝐸𝑆 =
∑ 𝑒௜

ேೄ
௜ୀଵ

𝑁ௌ
 (3.8) 

 
where 𝑒௜ is the evaluation times of objective function of the 𝑖௧௛ success instance. 
 
  Note that in some literature, time complexity such as CPU time in seconds is also used to 
evaluate algorithms. However, such measures are hardware-dependent, and they are often 
affected by the spec of computers. Thus, in this work, we adopt SR and AES, which are 
hardware independent measure, to evaluate our algorithms. 
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3.4.2 Parameter Dependence 

(1) S-ABC 
  There are two hyper-parameters in S-ABC: t and limit. To find their optimal values, we first 
fix limit to 100 and try different values of t on 30 graphs with n = 90 and d = 2.5. The value that 
obtains the highest SR is adopted to the optimum of t. Then, we fix t to its optimal value and 
try different values of limit on the same graph instances to find the optimum of limit. The 
experiment settings are given in Table 3.2. and the results are given in Figure 3.8. According to 
the results, we accept t = 2 and limit = 80 as their optimal values.  
   
(2) D-FA 
  We optimize the hyper-parameters 𝛽଴, γ, and 𝛼 with the same method. The experiment 
settings are given in Table 3.3 and the results are shown in Figure 3.9. We accept 𝛽଴ = 1.0, 
γ = 0.2, and 𝛼 = 2 as their optimal values. Note that if there are several values of objective 
parameter that obtain same SR, the one that consumes the smallest AES is adopted as the 
optimum. For example, in Figure 3.9(a), γ = 0.2, γ = 0.3, and γ = 0.7 obtain the same SR 
0.97. We adopt γ = 0.2 as the optimal γ because it consumes the smallest AES (𝐴𝐸𝑆ஓୀ଴.ଶ =

2.39 × 10଻) while 𝐴𝐸𝑆ஓୀ଴.ଷ = 3.20 × 10଻ and 𝐴𝐸𝑆ஓୀ଴.଻ = 7.12 × 10଻ respectively. 
 

Table 3.2 Experiment settings to find the optimal parameters of S-ABC 

Experiment limit t 
Swarm 
size (N) 

Max 
generation 

Graph settings 

Find 
optimal t 

100 1 ~ 5 

200 10000 

n = 90 

d = 2.5 

30 instances 

Find 
optimal 

limit 
10 ~ 120 Optimal t 

 

Table 3.3 Experiment setting to find the optimal parameters of D-FA 

Experiment 𝛽଴ γ 𝛼 
Swarm 
size (N) 

Max 
generation 

Graph 
settings 

Find 
optimal γ 

1.0 0.1~1.3 3 

200 10000 

n = 90 

d = 2.5 

30 instances 

Find 
optimal 𝛽଴ 

0.1~1.2 
Optimal 

γ 3 

Find 
optimal 𝛼 

Optimal 
𝛽଴ 

Optimal 
γ 1~5 
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(a) Relationship between t and SR 
 

 

(b) Relationship between limit and SR 

Fig. 3.8 Parameter optimization of S-ABC 
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(a) Relationship between γ and SR 

 

 

(b) Relationship between 𝛽଴ and SR 
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(c) Relationship between α and SR 

Fig. 3.9 Parameter optimization of D-FA 

 

3.4.3 Comparison Study 

  Using the optimal hyper-parameters, the proposed algorithms are compared with HDPSO on 
3-colorable Minton random graphs with various n and d. The experiment settings are listed in 
Table 3.4, and the values of 𝑤଴, 𝑐ଵ, and 𝑐ଶ of HDPSO are taken from [Aoki 15] directly. For 
the sake of fairness, we set the swarm size 200 and maximum generations 10000 for all three 
algorithms. Candidate algorithms are tested on 50 graph instances for each d. The results are 
shown from Figure 3.10 to Figure 3.12. 
 

Table 3.4 Experiment settings for comparison study 

 S-ABC D-FA HDPSO 

Swarm size 200 200 200 

Max 
generations 

10000 10000 10000 

Parameters 
t = 2 

limit = 80 

𝛽଴ = 1.0, γ = 0.2, 

α = 2 

𝑤଴ = 0.05 𝑐ଵ = 7.0 

𝑐ଶ = 0.03 
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(a) SR on various d (n = 90) 

 

 
(a) AES on various d (n = 90) 

Fig. 3.10 SR and AES on various d (n = 90) 
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(a) SR on various d (n = 120) 

 

 
(a) AES on various d (n = 120) 

Fig. 3.11 SR and AES on various d (n = 120) 
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(a) SR on various d (n = 150) 

 

 
(a) AES on various d (n = 150) 

Fig. 3.12 SR and AES on various d (n = 150) 
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 Discussion 

 
  [S-ABC] 
 
  From Figure 3.10 (a), 3.11 (a) and 3.12 (a), we can see that SR of S-ABC is much higher 
than its competitor HDPSO when constraint density d is in the range of phase transition, i.e. 
when d = 2.5. With the graph size increasing, S-ABC retains relatively high SR while SR of 
HDPSO becomes poor. 
 
  On the other hand, as Figure 3.10(b), 3.11(b), and 3.12(b) show, AES of S-ABC is lower than 
HDPSO dramatically in most cases, which demonstrates S-ABC can find a solution in a 
relatively small evaluation time. 
 
  Taking into account of SR and AES both, we can say that S-ABC is effective and outperforms 
HDPSO. 
 
  [D-FA] 
 
  At the first glance, SR of D-FA on all graphs, especially when d = 2.5, is much higher than 
SABC and HDPSO (see Figure 3.10(a), 3.11(a), and 3.12(a)). However, it is not because D-FA 
is an efficient algorithm but because D-FA has a ‘double-loop’ structure so that it evaluates 
objective function much more times than its competitors in one generation.  
 

By checking Figure 3.10(b), 3.11(b), and 3.12(b), one may find that even though D-FA 
performs much better than the other two on the aspect of SR when d = 2.5, its AES is much 
higher than S-ABC and HDPSO. This means that DFA consumes more evaluation times to find 
a solution than the other two methods. 

 
We infer that if the termination condition is not ‘maximum generation’ but ‘maximum 

evaluation times of objective function’, D-FA may not be so efficient. This can be proved in 
next Chapter. 

 
[Phase transition] 
 
A very interesting thing we can find from the experiments is that the experiment value of 

phase transition is ‘more accurate’ than the theory value for 3-colorable Minton random graphs. 
For example, the theory value of d that generates the hardest problem is 3.1 while the 
experiment value is 2.5 according to Table 2.2. From our experiments, we can see that the 
graphs generated by d = 2.5 is much harder than those generated by d = 3. 
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3.5 Summary 

In this chapter, by defining similarity to describe the distance between two candidates, we 
proposed S-ABC and D-FA to solve 3-GCPs on 3-colorable Minton random graphs. Using 
HDPSO as a baseline, we compared the three algorithms on Minton random graphs with various 
graph size n and constraint density d. Considering SR and AES both, we found that S-ABC is 
an efficient algorithm because of its high SR and low AES. 
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Chapter 4 Adaptive Artificial Bee Colony Algorithm 
 
  In Chapter 3, we proposed an efficient algorithm S-ABC to solve 3-GCPs. However, S-ABC 
updates a candidate by a predetermined parameter t, which does not change during the evolution 
no matter how good or bad a candidate is. In this chapter, we propose a discrete adaptive 
artificial bee colony (A-ABC) algorithm that can adjust t automatically according to the graph 
size and the fitness of a candidate. We also study the scout bee phase and report that scout bee 
phase is not required in solving discrete optimization problems. 
 
 

4.1 Proposed Method 

 

4.1.1 Update Rule of A-ABC 

  We use the encoding scheme defined in section 3.1 to establish our algorithm. A-ABC 
updates a candidate by modeling equation (2.2). When a candidate 𝐱௜ is selected, A-ABC first 
saves it to a temporary candidate 𝐯௜ and then randomly selects a neighbor 𝐱௝. Unlike S-ABC, 
which accepts a candidate to be a neighbor 𝐱௝  only if 𝐱௝  is similar to 𝐱௜ , in A-ABC, any 
candidate in the swarm has the equal chance to be selected, which is exactly what the original 
ABC does. 
 
  Once a candidate 𝐱௝  is determined, t elements in 𝐯௜  are replaced by the corresponding 
elements of 𝐱௝ . Let T = {𝑙ଵ, 𝑙ଶ, . . , 𝑙௧}  be the index set of the selected elements. The 
replacement process is defined by equation (4.1)  
 

 𝑣௜௟ = ൜
𝑥௝௟ , 𝑣௜௟ ≠ 𝑥௝௟

𝑟, 𝑣௜௟ = 𝑥௝௟
 (4.1) 

 
where 𝑙 ∈ T.  
 
  Equation (4.1) states that the replacement arises only if the values (or more accurate, the 
colors) of the two elements are different. If the corresponding elements have the same color, 
the change is meaningless. In this case, 𝑣௜௟ is replaced by a random color r from the color set 
C and 𝑣௜௟ ≠ 𝑟. 
 
  Then, 𝐯௜ will be evaluated by the objective function. If its fitness is better than 𝐱௜, 𝐱௜ will 
be replaced by 𝐯௜. 
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4.1.2 Introducing Adaptive Function 

  Obviously, the parameter t affects the performance of A-ABC significantly. It can be 
optimized by some preliminary experiments and keeps static during the searching process. 
However, using a fixed t does not consider the current environment (or state) such as the fitness 
of candidates, the graph size, and so on).  
 
  To solve the problem, we define an adaptive function to determine t: 
 

 𝑡(𝐱௜) = ቒ𝑛 (
௖௢௡(𝐱೔)

௠
)௨ቓ  (4.2) 

 
where ⌈𝑥⌉ is the least upper bound of x (for example, ⌈3.2⌉ = 4) and u is a positive integer 
scaling factor. 
 
  Equation (4.2) states that the value of t is proportional to the total conflict of a candidate 𝐱௜. 
This is feasible because we update a candidate with high conflict by using large t so that it 
searches widely while using small t for the candidates with low conflict by tuning them locally. 
 

4.1.3 Employed Bee Phase and Onlooker Bee Phase. 

  Employed bee phase and onlooker bee phase use equation (4.1) to improve candidates. Like 
original ABC does, employed bee phase tries to improve all candidates while onlooker bee 
phase exploits the candidates having high fitness. The former can be regarded as global search 
and the latter is local search respectively. The employed bee phase and the onlooker bee phase 
are shown in Figure 4.1. 
 

4.1.4 Scout bee phase 

  In original scout bee phase, a candidate 𝐱௜  is replaced by a randomly generated new 
candidate if 𝐱௜ cannot be improved further in limit trials of evaluating the objective function. 
The limit in A-ABC is defined by equation (4.3). 
 

 𝑙𝑖𝑚𝑖𝑡 = 𝑐
𝑀𝑎𝑥𝐸𝑣𝑎𝑙

2𝑁
 (4.3) 

 
where MaxEval is the maximum evaluation times of objective function, N is the swarm size, 

and 
ெ௔௫ா௩௔௟

ଶே
  is the maximum generation because the objective function is calculated 2𝑁 

times for one generation. Parameter c is a real value factor used to control the value of limit. As 
original ABC, there is only one scout bee in S-ABC. Thus, only one candidate may be 
abandoned for each generation. 
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Given a swarm S with N candidates. 
 
[Employed bee phase] 
 
Employed bee phase (S) 
    for i = 1 to N 
        determine t for 𝐱௜ using equation (4.2) 
        update 𝐱௜ using equation (4.1) and get 𝐯௜  
        calculate the fitness of the new 𝐯௜  
        if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐯௜) ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱௜)) 
            replace 𝐱௜ by 𝐯௜  
        end if 
    end for 
 
[Onlooker bee phase] 
 
Onlooker bee phase (S) 
    for i = 1 to N 
        choose 𝐱 from S by roulette selection 
        determine t for 𝐱 using equation (4.1) and get 𝐯 
        calculate the fitness of 𝐯 
        if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐯) ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐱)) 
            replace 𝐱 by 𝐯 
        end if 
    end for 

Fig. 4.1 Frameworks of employed bee phase and onlooker bee phase 

 
 

4.1.5 Framework of A-ABC 

  The framework of A-ABC is similar to original ABC. Combining the three phases defined 
above, the framework of A-ABC is given in Figure 4.2. Note that the scout bee phase is optional. 
We will study scout bee phase in next section. 
 
 
 
 
 
 
 
 
 



 

47 

 

Initialize randomly a swarm S with N candidates 
Set parameters u and c 
 
while (termination condition is not met) 
    Employed bee phase (S) 
    Onlooker bee phase (S) 
 
    if (scout bee phase is used) 
        Scout bee phase (S, c) 
    end if 
end while 

Fig. 4.2 Framework of A-ABC 

 
 

4.2 Experiments 

 
 

4.2.1 Experiment Design  

  In this section, we design several experiments to show the effect, robustness, and generality 
of A-ABC. We first compare A-ABC with various u and with fixed t to show the effect of 
adaptive function (4.2). Then we study the performance of scout bee phase in A-ABC and show 
that the scout bee phase is not required when solving GCPs. Next, we test five algorithms: A-
ABC, S-ABC, D-FA, HDPSO, and DCS using large evaluation times. Let the five algorithms 
evolve sufficiently, we study the convergence region of each algorithm and show that A-ABC 
is a fast and efficient algorithm. After that, we compare the five algorithms on 3-colorable 
Culberson random graphs with various graph size n and edge probability p to show the 
robustness of A-ABC. Finally, to show the generality of A-ABC, we compare the five 
algorithms on 4-colorable and 5-colorable Culberson random graphs.  
 
  We test algorithms on three classes of Culberson random graphs (i.e. arbitrary-random graph, 
equi-partite graph, and flat graph). As discussed in 2.2.3, flat graph is much harder than the 
other two when given the same graph size n and edge probability p.  
 
  We compare the performance of algorithms on three measures: (1) success rate (SR), (2) 
average evaluation times of objective function to find a solution (AES), and (3) the standard 
deviation of evaluation times of objective function to find a solution (SD). SR and AES have 
been defined in section 3.4.1 (see equation (3.7) and (3.8)). SD is defined as: 
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 𝑆𝐷 = ඨ
1

𝑁ௌ − 1
෍ (𝑒௜ − 𝐴𝐸𝑆)ଶ

ேೄ

௜ୀଵ
 (4.4) 

 
where 𝑁ௌ  is the number of success instances and 𝑒௜  is the evaluation times of objective 
function of the 𝑖௧௛ success instance. 
 
  We list the scheme for performing the experiments in Table 4.1. 
 

4.2.2 Effect of Adaptive Function 

  In 4.1.2, adaptive function (4.2) is defined to calculate the value of t, which represents the 
number of replaced nodes. Given a random graph with n nodes and m edges, 𝑐𝑜𝑛(𝐱௜) can be 
determined by equation (2.8) directly. Thus, the value of t is affected by the integer scaling 
factor u. By adjusting u, t can adapt to graphs with various sizes and to candidates with different 
fitness. 
 
  To show the effect of the adaptive function, two algorithms are compared on 3-colorable 
Culberson random graphs: (1) A-ABC with various u, and (2) ABC with fixed t. The only 
difference is that the former uses adaptive function to tune t, but the latter uses fixed t during 
the evolution.  
 
 

Table 4.1 The scheme of experiments 

No Experiment GCPs Purpose 

1 
Compare various u 

and t 

3-colorable 
Culberson random 

graphs 

Show the effect of adaptive    
function 

2 
Effect of scout bee 

phase 
Show that the scout bee phase 

is not required 

3 
Compare the evoluti

on scheme 
Show the convergence region of

 A-ABC 

4 Large comparison 
Show the effect and robustness 

of A-ABC 

5 Study the generality 
4-colorable and 5-
colorable Culberso
n random graphs 

Show the generality of A-ABC 
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  We test the two algorithms on 3-colorable Culberson random graphs with n = 120 and p = 

0.058. As discussed in Table 2.2, the most difficult 3-colorable graphs are generated when 
଻

௡
≤

𝑝 ≤
଼

௡
. For a graph with n = 120, p = 0.058 generates the hard graph instances.  

 
The experiment settings are given in Table 4.2. The swarm size is 200 and max evaluation 

times of objective function, defined as MaxEval, is 1,200,000. Parameters u and t are from 1 to 
5. Scout bee phase is not used in this experiment and will be studied in the next section. The 
results are list from Table 4.3 to 4.5. 
 

Table 4.2 The experiment settings of testing the effect of adaptive function 

 Using adaptive function Using fixed t 

N 200 200 

Parameters u = 1 to 5 t = 1 to 5 

MaxEval 1,200,000 1,200,000 

Graphs 

3-colorable Culberson random graphs 

(Arbitrary random graph, equi-partite graph, and flat graph) 

n = 120 and p = 0.058 

Number of 
graph instances 

30 

Others Scout bee phase is not used 
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Table 4.3 Various u and t on 3-colorable arbitrary random graphs 

 SR AES (× 10ହ) SD (× 10ହ) 

Using adaptive 
function 

u = 1 0.07 7.93 3.28 

u = 2 0.70 4.78 3.13 

u = 3 0.57 6.38 3.00 

u = 4 0.67 5.46 2.67 

u = 5 0.50 4.83 2.55 

Using fixed t 

t = 1 0.60 4.98 2.91 

t = 2 0.50 4.25 2.61 

t = 3 0.27 7.07 3.54 

t = 4 0.03 7.86 ---- 

t = 5 0.00 ---- ---- 

 
 

Table 4.4 Various u and t on 3-colorable equi-partite graphs 

 SR AES (× 10ହ) SD (× 10ହ) 

Using adaptive 
function 

u = 1 0.00 ---- ---- 

u = 2 0.67 4.67 2.96 

u = 3 0.63 6.51 3.03 

u = 4 0.60 5.59 2.87 

u = 5 0.53 4.99 1.79 

Using fixed t 

t = 1 0.60 6.18 3.43 

t = 2 0.63 6.74 3.50 

t = 3 0.23 5.83 2.77 

t = 4 0.03 10.93 ---- 

t = 5 0.00 ---- ---- 
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Table 4.5 Various u and t on 3-colorable flat graphs 

 SR AES (× 10ହ) SD (× 10ହ) 

Using adaptive 
function 

u = 1 0.00 ---- ---- 

u = 2 0.26 4.78 2.21 

u = 3 0.23 7.11 2.45 

u = 4 0.26 5.88 2.94 

u = 5 0.10 4.03 4.71 

Using fixed t 

t = 1 0.23 6.63 1.99 

t = 2 0.10 4.57 2.79 

t = 3 0.03 6.71 ---- 

t = 4 0.00 ---- ---- 

t = 5 0.00 ---- ---- 

 
 
 Discussion 
 

A well designed adaptive function should set t large for candidates with low fitness and, on 
the contrary, small for those with high fitness. From Table 4.3 to 4.5, we find that in most cases, 
SR of using adaptive function with u = 2, 3, or 4 is much higher than that of using fixed t. On 
the other hand, SRs of A-ABC are very poor when u = 1, i.e. the adaptive function is linear. 
This is because linear function gives large t even if a candidate has high fitness. We also find 
that if u > 4, most values of t given by adaptive function are 1 or 2, thus the SRs get worse and 
approach to SRs of using fixed t = 1 or t = 2. The experiment shows that A-ABC with quadratic 
adaptive function, i.e., u = 2 obtains the highest SR. 

 
In summary, by adopting adaptive function, SR is improved remarkably because the value of 

t is tuned according to the candidates’ fitness during the evolution. For a candidate that has low 
fitness, large t is used so that it searches globally while for a candidate with high fitness, small 
t is adopted so that it searches locally.  
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4.2.3 Performance of Scout Bee Phase 

  As described above, scout bee phase removes a candidate that cannot be improved in limit 
trials and replaces it with a new generated candidate. In A-ABC, as equation (4.3) shows, limit 
is controlled by swarm size N and a scaling factor c. By setting different values of c and N, we 
design some experiments to study the effect of scout bee phase in A-ABC. 
 
  To make our discussion clear, besides SR, AES, and SD, we introduce other two measures, 
AAS and AAF, in our experiments. AAS and AAF represent Average number of candidates 
Abandoned by scout bee phase in Successful graph instances and in Failed graph instances 
respectively. More formally, AAS and AAF are defined as follows: 
 

 𝐴𝐴𝑆 =
∑ 𝐵𝑆௜

ேೄ
௜ୀଵ

𝑁ௌ
 (4.5) 

 

 𝐴𝐴𝐹 =
∑ 𝐵𝐹௜

ேಷ
௜ୀଵ

𝑁ி
 (4.6) 

 
where 𝑁ௌ and 𝑁ி are the numbers of successful and failed graph instances respectively, 𝐵𝑆௜ 
and 𝐵𝐹௜  are the numbers of abandoned candidates of the 𝑖௧௛  successful and failed graph 
instances. 
 
  Because limit is dependent on two parameters c and N, we design two experiments to test the 
performance of scout bee phase by using various c and N. First, we try various c and observe 
SR, AAS, and AAF. The experiment settings are given in Table 4.6. 
 

Table 4.6 The experiment settings of testing the effect of scout bee phase on various c 

N 200 

c 0.3 ~ 20.0 

u 2 

MaxEval 1,200,000 

Graphs 

3-colorable Culberson random graphs 

(Arbitrary random graph, equi-partite graph, and flat graph) 

n = 120 and p = 0.058 

The number of graph 
instances 

30 
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The results on three classes of Culberson random graphs are shown from Table 4.7 to 4.9. 

 

Table 4.7 The effect of scout bee phase with various c on arbitrary-random graphs 

c SR AES (× 10ହ) SD (× 10ହ) AAS AAF 

0.3 0.20 5.93 2.18 108 296 

0.5 0.53 4.59 2.85 42 205 

1.0 0.37 7.38 3.10 30 71 

2.0 0.50 5.75 3.44 9 19 

3.0 0.60 5.81 2.50 6 10 

5.0 0.57 5.89 2.90 3 6 

10.0 0.60 5.49 2.88 1 3 

20.0 0.63 5.63 2.92 1 1 

No scout 0.70 4.78 3.13 0 0 

 
 

Table 4.8 The effect of scout bee phase with various c on equi-partite graphs 

c SR AES (× 10ହ) SD (× 10ହ) AAS AAF 

0.3 0.23 6.50 3.68 136 298 

0.5 0.27 5.92 2.11 50 207 

1.0 0.27 4.29 2.30 14 68 

2.0 0.53 6.06 3.73 9 18 

3.0 0.60 4.57 2.80 5 11 

5.0 0.60 5.21 3.07 3 6 

10.0 0.60 5.56 2.03 2 3 

20.0 0.67 4.18 2.74 0 1 

No scout 0.67 4.67 2.96 0 0 
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Table 4.9 The effect of scout bee phase with various c on flat graphs 

c SR AES (× 10ହ) SD (× 10ହ) AAS AAF 

0.3 0.23 7.57 3.25 159 298 

0.5 0.10 6.94 2.43 69 209 

1.0 0.30 7.53 2.03 26 70 

2.0 0.23 4.70 2.97 8 17 

3.0 0.33 5.04 1.88 6 10 

5.0 0.17 5.22 2.01 3 6 

10.0 0.17 7.36 3.35 2 3 

20.0 0.20 4.60 1.40 0 1 

No scout 0.27 4.78 2.21 0 0 

 
 
 Discussion 
 
  The number of candidates and fitness values of discrete optimization problems is quite 
different from that of continuous optimization problems. In continuous domain, the number of 
candidates is infinite. Correspondingly, there are infinite fitness values and frequently, a small 
fluctuation of a candidate may lead to a large modification of its fitness value. Thus, in the 
context of swarm intelligence, it is reasonable to claim that a candidate is trapped in the local 
optimum if its fitness value cannot be improved for several generations.  
 

On the other hand, in discrete domain, fitness values are restricted to some finite values. As 
a result, many candidates may share the same fitness value. For example, given a random graph 
with 120 nodes and 266 edges, there are only 267 possible fitness values. In onlooker bee phase, 
roulette selection is used to select the candidates with high fitness, thus if c is small (i.e. limit 
is small), the selected candidates are often removed by scout bee phase and this leads to a 
sudden decline of the global best fitness value. This is the reason that in most cases, small c 
gives poor SR but large AAS and AAF in Table 4.7 to 4.9. 

 
We can clearly observe this phenomenon by drawing the evolution Figures. Here, we plot the 

average fitness curves of successful arbitrary random graph instances to evaluation times for 
various c. Figure 4.3 shows that (1) small c results in fitness value fluctuating violently because 
the candidates with high fitness values are frequently removed from the swarm (Figure 4.3 (a)); 
(2) large c obtains relatively stable improvement of fitness value, but the scout bee phase is 
rarely used (Figure 4.3 (b)). 
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(a) The average fitness curves of successful graph instances with small c. 
 

 

(b) The average fitness curves of successful graph instances with large c. 

Fig. 4.3 The average fitness curves of successful arbitrary random graph instances with various c. 
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  As mentioned above, limit is controlled by c and N. Thus, we use different N and various c 
to study the influence of N on scout bee phase. The experiment settings are given in Table 4.10 
and the results are shown in Table 4.11 and 4.12. 
 

Table 4.10 The experiment settings of testing the effect of scout bee phase on various N and c 

N 100 and 300 

c 0.3 ~ 20.0 

u 2 

MaxEval 1,200,000 

Graphs 
3-colorable equi-partite random graphs 

n = 120 and p = 0.058 

The number of graph 
instances 

30 

 
 

Table 4.11 The effect of scout bee phase with various c on equi-partite graphs (N = 100) 

c SR AES (× 10ହ) SD (× 10ହ) AAS AAF 

0.3 0.43 5.05 3.76 68 204 

0.5 0.37 5.24 3.33 39 128 

1.0 0.57 6.39 3.05 18 63 

2.0 0.63 4.54 2.77 4 14 

3.0 0.67 4.13 2.63 2 8 

5.0 0.57 4.62 2.60 2 4 

10.0 0.53 4.98 3.25 1 2 

20.0 0.73 4.26 2.47 0 0 

No scout 0.53 4.15 2.18 0 0 
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Table 4.12 The effect of scout bee phase with various c on equi-partite graphs (N = 300) 

c SR AES (× 10ହ) SD (× 10ହ) AAS AAF 

0.3 0.27 6.37 2.84 165 383 

0.5 0.33 5.62 2.72 66 249 

1.0 0.40 5.85 4.16 28 74 

2.0 0.47 6.19 3.92 14 25 

3.0 0.43 6.76 3.16 10 15 

5.0 0.50 6.94 3.27 6 9 

10.0 0.43 5.89 3.30 2 4 

20.0 0.5 7.01 2.84 1 2 

No scout 0.73 7.68 2.65 0 0 

 
 
 Discussion 
 
  From Table 4.11 and 4.12, we observe that no matter N is mall or large, the small c gives 
poor SR but large AAS and AAF while the large c gives high SR but small AAS and AAF. This 
is identical to the phenomenon shown in Table 4.7, 4.8, and 4.9. We find that it is not N but c 
that has the crucial influence on SR because SRs get worse if scout bee phase in invoked 
frequently. 
 
  In summary, scout bee phase plays a major role in avoiding the local optimum in continuous 
optimization problems but is not so efficient when solving discrete optimization problems 
because the fitness values are limited in a small range. Thus, we suggest either replacing scout 
bee phase with other methods or, as this work does, simply removing it from A-ABC. 
 

4.2.4 Convergence Region of A-ABC 

  In above two experiments, we use a relatively small value of MaxEval, and it seems that A-
ABC can find a solution quickly in such small evaluation times. It would be interesting to 
compare the performance of A-ABC with other algorithms when a large value of MaxEval is 
given so that all candidate algorithms can evolve sufficiently. In this experiment, we compare 
five algorithms: A-ABC, Discrete Cuckoo Search (DCS), S-ABC, HDPSO, and D-FA. The 
experiment settings are given in Table 4.13. Note that we set MaxEval to 10,000,000, which is 
a large value and the five candidate algorithms can evolve sufficiently. 
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Table 4.13 The experiment settings of testing the convergence region 

A-ABC N = 200, u = 2, scout bee phase is not used 

DCS N = 10, 𝛼 = 1.0, 𝛽 = 1.5, 𝑝௔ = 0.0001 

S-ABC N = 200, t = 2, limit = 80 

HDPSO N = 10, 𝑤଴ = 0.05, 𝑐ଵ = 7.0, 𝑐ଶ = 0.03 

D-FA N = 200, 𝛼 = 2, 𝛽଴ = 1.0, 𝛾 = 0.2 

MaxEval 10,000,000 

Graph 

3-colorable Culberson random graphs 

(Arbitrary random graph, equi-partite graph, and flat graph) 

n = 120 and p = 0.058 

The number of graph 
instances 

30 

 
 
  As mentioned in section 2.3.4, [Aranha 17] gives three different methods to calculate M and 
proposes four discrete cuckoo search algorithms by using various combinations of the three 
methods. In this experiment, we accept the one obtaining the highest SR as the candidate 
algorithm. The framework of the best DCS is give in Figure 2.12. 
 
  The results are given in Table 4.14, 4.15, and 4.16. For convenience, the results are ranked 
in descending order of SR. 
 

Table 4.14 Comparison with five algorithms on arbitrary random graphs 

Algorithm SR AES (× 10ହ) SD (× 10ହ) 

DCS 1.00 16.11 18.70 

A-ABC 0.80 11.35 12.60 

S-ABC 0.73 18.46 11.69 

HDPSO 0.47 27.02 29.44 

D-FA 0.20 60.08 20.60 
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Table 4.15 Comparison with five algorithms on equi-partite graphs 

Algorithm SR AES (× 10ହ) SD (× 10ହ) 

DCS 1.00 11.08 9.27 

A-ABC 0.90 13.69 15.36 

S-ABC 0.80 26.98 19.55 

HDPSO 0.40 21.11 22.80 

D-FA 0.37 53.94 25.12 

 
 

Table 4.16 Comparison with five algorithms on flat graphs 

Algorithm SR AES (× 10ହ) SD (× 10ହ) 

DCS 0.77 28.24 25.61 

A-ABC 0.50 23.67 22.49 

S-ABC 0.40 50.30 26.61 

HDPSO 0.20 16.39 13.77 

D-FA 0.07 51.77 0.17 

 
 
 Discussion 
 
  Table 4.14, 4.15, and 4.16 show that DCS obtain the highest SR in all candidate algorithms 
and A-ABC is the second-best one. Compared with S-ABC, HDPSO, and D-FA, A-ABC 
obtains better SR and lower AES and SD on most cases of graphs.  
 

To make our discussion more persuasive, we perform 𝜒ଶ proportion test to show that the 
five algorithms have significant difference on SR. The steps of performing 𝜒ଶ proportion test 
on SR in Table 4.14 (i.e. arbitrary random graphs) are given as follows. 

 
Target: to show whether the proportion of success times to failed times is equal or not. 
 
Step 1. Target parameters and hypothesis. 
Let 𝑝஽஼ௌ , 𝑝஺ି஺஻஼ , 𝑝ௌି஺஻஼ , 𝑝ு஽௉ௌை , and 𝑝஽ி஺  be proportion of success times to failed 

times of each algorithm. For example, in Table 4.14, in which the experiment is performed on 
30 instances of arbitrary random graphs,  
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 𝑝஺ି஺஻஼ =
30 × 0.8

30 × (1 − 0.8)
= 4 (4.7) 

 
Based on this definition, null hypothesis ℋ଴ and alternative hypothesis ℋ௔ are: 
ℋ଴: 𝑝஽஼ௌ, 𝑝஺ି஺஻஼, 𝑝ௌି஺஻஼, 𝑝ு஽௉ௌை, and 𝑝஽ி஺ are equal; 
ℋ௔: 𝑝஽஼ௌ, 𝑝஺ି஺஻ , 𝑝ௌି஺஻஼, 𝑝ு஽௉ௌை, and 𝑝஽ி஺ are not equal. 
 
  Step 2. Observed values and expectation values of success times and failed times. 
  Observed values and expectation values of success times and failed times can be easily 
calculated from Table 4.14. They are summarized in Contingency Table 4.17. 
 
  Step 3. Degree of freedom and test statistic. 
  Because we use 𝜒ଶ proportion test, we must determine the degree of freedom (df) of 𝜒ଶ 
distribution. Obviously, df = 4. 
 
  The test statistic 𝜒∗

ଶ can be calculated as follows: 
 

 𝜒∗
ଶ = ෍

(𝑂௜
ௌ − 𝐸ௌ)ଶ

𝐸ௌ

ହ

௜ୀଵ

+ ෍
(𝑂௝

ி − 𝐸ி)ଶ

𝐸ி

ହ

௝ୀଵ

= 50.46 (4.8) 

 
where 𝐸ௌ  = 19.02 and 𝐸ி  = 10.8 are expectation values of success and failed times 

respectively, 𝑂௜
ௌ  and 𝑂௝

ி  are observed success and failed times for the 𝑖௧௛  and the 𝑗௧௛ 

algorithms. For example, the observed success and failed times of A-ABC are 24 and 6, so 𝑂ଶ
ௌ 

= 24 and 𝑂ଶ
ி = 6. 

   

Table 4.18 Contingency table of success and failed times on arbitrary random graph 

Algorithms Success Times 
(Observed/Expectation) 

Failed Times 
(Observed/Expectation) 

Total 

DCS 30 (19.02) 0 (10.8) 30 

A-ABC 24 (19.02) 6 (10.8) 30 

S-ABC 22 (19.02) 8 (10.8) 30 

HDPSO 14 (19.02) 16 (10.8) 30 

D-FA 6 (19.02) 24 (10.8) 30 

Total 96 54 150 
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  Step 4. Calculate the p-Value. 
  Using one tail 𝜒ଶ distribution, p-Value is given as follows: 
 

 𝑝 = 𝑃(𝜒ଶ > 𝜒∗
ଶ|𝑑𝑓 = 4) = 2.89 × 10ିଵ଴ (4.9) 

 
  Step 5. Conclusion.  
  When level of significance 𝛼 = 0.05, p-Value given in step 4 is obviously smaller than 𝛼. 
Thus, we reject null hypothesis ℋ଴ and state that the proportion of success times to failed 
times of the five algorithms is significant different. 
 
  By plotting the accumulative SR, we can observe the convergence region of each algorithm. 
To do this, we separate MaxEval, which is 10,000,000 in this experiment, into 20 regions by an 
interval 500,000. Figure 4.4(a), (b), and (c) are corresponding to Table 4.14, 4.15, and 4.16 
respectively, and show the accumulative SR on three classes of random graphs. 
 
 

 

(a) The accumulative SR on arbitrary random graphs 
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(b) The accumulative SR on equi-partite graphs 
 

 

(c) The accumulative SR on flat graphs 

Fig. 4.4 The accumulative SR of each algorithm on three classes of random graphs 
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From Figure 4.4, we find that: (1) DCS obtains the highest performance among the five 

algorithms. When solving arbitrary random graphs and equi-partite graphs, DCS obtains 100% 
SR and finds most solutions in a small evaluation times (less than 4,000,000). (2) A-ABC is the 
second-best algorithm. In contrast to S-ABC, HDPSO, and D-FA, A-ABC obtains higher SR 
and convergence speed. By tuning t with adaptive function during evolution, A-ABC can find 
more solutions in a small evaluation times. For example, SRs of A-ABC, S-ABC, HDPSO, and 
DFA are 0.70, 0.40, 0.27, and 0.03 respectively when Evaluation Times = 2,000,000 in Figure 
4.4 (b). This shows A-ABC can find more solutions than other algorithms even if given a strict 
search condition, such as a small MaxEval.  

 
In summary, A-ABC is the second-best algorithm in this experiment. Not only it obtains high 

SR but also consumes small evaluation times. By studying the convergence region, we also 
observe that A-ABC can find more solutions if given a small MaxEval. 

 

4.2.5 Large Comparison Study 

  In above experiment, we compared five algorithms on 3-colorable Culberson random graphs 
with n = 120 and p = 0.058. To show the robustness of A-ABC, in this section, we design some 
experiments that compare the candidate algorithms on graphs with various n and p. The graph 
settings and algorithm settings are given in Table 4.19 and Table 4.20 respectively. 
 
  In this section, the candidate algorithms are tested on three graph sizes: 100, 150, and 200. 
For each graph size, various graph instances are generated by using different edge probability 
p. Edge probability p, which is the order parameter, begins at 𝑝௦௧௔௥௧ , increases by a small 
interval ∆𝑝, and ends with 𝑝௘௡ௗ. Using this setting, 15 different values of p are generated, and 
they can cover the experiment and theory phase transitions, which are written as Experiment 
PT and Theory PT respectively in Table 4.19. As mentioned in section 2.2.3, the most difficult 
graph instances arise when p is in the range of phase transition. However, there is a small gap 
between Experiment PT and Theory PT. By testing the candidate algorithms on various p, not 
only we can study the robustness of algorithms, but we can also observe which phase transition, 
Experiment PT or Theory PT, is harder than the other one. 
 

Table 4.19 The 3-colorable graph settings 

n 𝑝௦௧௔௥௧ 𝑝௘௡ௗ ∆𝑝 Experiment PT Theory PT 

100 0.050 0.115 0.005 0.070, 0.075, 0.080 0.080, 0.085, 0.090 

150 0.031 0.070 0.003 0.046, 0.049, 0.052 0.055, 0.058, 0.061 

200 0.025 0.064 0.003 0.034, 0.037, 0.040 0.040, 0.043, 0.046 
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Table 4.20 Algorithms settings for large comparison study 

A-ABC N = 200, u = 2, scout bee phase is not used 

DCS N = 10, 𝛼 = 1.0, 𝛽 = 1.5, 𝑝௔ = 0.0001 

S-ABC N = 200, t = 2, limit = 80 

HDPSO N = 10, 𝑤଴ = 0.05, 𝑐ଵ = 7.0, 𝑐ଶ = 0.03 

D-FA N = 200, 𝛼 = 2, 𝛽଴ = 1.0, 𝛾 = 0.2 

MaxEval 

1,000,000 when n = 100 

7,000,000 when n = 150 

10,000,000 when n = 200 

Graph 

3-colorable Culberson random graphs 

(Arbitrary random graph, equi-partite graph, and flat graph) 

with various n and p 

The number of graph 
instances 

50 

 
 
  The candidate algorithms are compared on 3-colorable Culberson random graphs with 
various n and p given in Table 4.19. For each pair of n and p, the candidate algorithms are tested 
on 50 graph instances. MaxEval is various according to graph size. The bigger the graph size 
is, the larger MaxEval is. The results are given in Figure 4.5, 4.6, and 4.7. 
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(a) SR of arbitrary random graphs (n = 100) 

 

 

(b) SR of equi-partite graphs (n = 100) 
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(c) SR of flat graphs (n = 100) 
 

 
(d) AES of arbitrary random graphs (n = 100) 
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(e) AES of equi-partite graphs (n = 100) 
 

 
(f) AES of flat graphs (n = 100) 

Fig. 4.5 Comparison study on random graphs with n = 100 
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(a) SR of arbitrary random graphs (n = 150) 
 

 

(b) SR of equi-partite graphs (n = 150) 
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(c) SR of flat graphs (n = 150) 
 

 
(d) AES of arbitrary random graphs (n = 150) 
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(e) AES of equi-partite graphs 
 

 

(f) AES of flat graphs 

Fig. 4.6 Comparison study on random graphs with n = 150 
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(a) SR of arbitrary random graphs (n = 200) 

 

 
(b) SR of equi-partite graphs (n = 200) 
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(c) SR of flat graphs (n = 200) 
 

 
(d) AES of arbitrary random graphs (n = 200) 
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(e) AES of equi-partite graphs (n = 200) 
 

 
(f) AES of flat graphs (n = 200) 

Fig. 4.7 Comparison study on random graphs with n = 200 
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 Discussion 
 
  Figure 4.5, 4.6, and 4.7 are grouped by graph instances with various n and each Figure is 
divided into 6 diagrams according to SR and AES. Note that if SR is 0, the corresponding AES 
is set to MaxEval. For example, DFA cannot find any solution in all 50 flat graph instances with 
n = 100 and p = 0.075, thus SR = 0 (Figure 4.5 (c)). In this case, the related AES in Figure 4.5 
(f) is set to 1,000,000. 
 
  First, from these results, A-ABC outperforms S-ABC, HDPSO, and DFA but inferior to DCS 
on SR in most cases, especially in the range of phase transition. A-ABC is also a fast algorithm, 
its AES is similar to DCS and is obviously smaller than S-ABC, HDPSO, and DFA. For 
example, AES of A-ABC is half as much as that of S-ABC in the range of phase transition in 
nearly all experiments. 
 
  Next, the performance of DFA is very poor. This does not oppose the results given in section 
3.4.3. Because of the double loop structure of DFA, extremely large AES is the cost of obtaining 
high SR. Thus, it is difficult for DFA to find a solution in a limited MaxEval. 
 
  Finally, by checking SR in Experiment PT and Theory PT, the graph instances in Experiment 
PT is much harder than those in Theory PT. We also find that SR on flat graph instances is 
commonly lower than that on instances of arbitrary random graph and equi-partite graph. The 
results in our experiments are consistent with those mentioned in section 2.2.3: Experiment PT 
is a little different from Theory PT and the difficulty of a random graph is affected not only by 
edge probability p, but also by its topology. 
 
  In summary, A-ABC is not only efficient but also very robust. By adjusting t by adaptive 
function during the evolution, it adapts more effectively to random graphs with various sizes 
and topology than S-ABC, HDPSO, and DFA, which use static parameters. 
 

4.2.6 Generality of A-ABC 

  The above experiments are all performed on 3-colorable Culberson random graphs. However, 
many practical applications, which can be modelled on graph coloring problems, may not be 
limited to 3-colorable problems. Thus, in this section, we study the generality of A-ABC by 
comparing it with other algorithms on k-colorable graphs, where k > 3. The graph settings are 
given in Table 4.21. 
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Table 4.21 The 4-colorable and 5-colorable graph settings 

Type n 𝑝௦௧௔௥௧ 𝑝௘௡ௗ ∆𝑝 Experiment PT Theory PT 

4-colorable 120 0.030 0.210 0.020 0.090, 0.110 0.130 

5-colorable 150 0.080 0.170 0.010 0.110, 0.120 0.130,0.140 

 
   
  There are two classes of graphs in the test suite: 4-colorable Culberson random graphs with 
n = 120 and 5-colorable Culberson random graphs with n = 150. The corresponding Experiment 
PT and Theory PT can be calculated from Table 2.2.  
 

As we did in section 4.2.5, for each pair of n and p, the candidate algorithms (i.e. A-ABC, 
DCS, S-ABC, HDPSO, and D-FA) are tested on 50 graph instances. The parameter settings of 
each algorithm are identical to those in Table 4.20. The values of MaxEval are set to 3,000,000 
and 7,000,000 for n = 120 and n = 150 respectively. The results are shown in Figure 4.8 and 
4.9. 
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(a) SR of 4-colorable arbitrary random graphs (n = 120) 
 

 

(b) SR of 4-colorable equi-partite graphs (n = 120) 
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(c) SR of 4-colorable flat graphs (n = 120) 
 

 
(d) AES of 4-colorable arbitrary random graphs (n = 120) 
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(e) AES of 4-colorable equi-partite graphs (n = 120) 
 

 

(f) AES of 4-colorable flat graphs (n = 120) 

Fig. 4.8 Generality study on 4-colorable random graphs with n = 120 
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(a) SR of 5-colorable arbitrary random graphs (n = 150) 
 

 
(b) SR of 5-colorable equi-partite graphs (n = 150) 
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(c) SR of 5-colorable flat graphs (n = 150) 
 

 
(d) AES of 5-colorable arbitrary random graphs (n = 150) 
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(e) AES of 5-colorable equi-partite graphs (n = 150) 
 

 
(f) AES of 5-colorable flat graphs (n = 150) 

Fig. 4.9 Generality study on 5-colorable random graphs with n = 150 
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 Discussion 

 
From Figure 4.8 and 4.9, we see that A-ABC outperforms the other four candidate algorithms 

on SR and AES in most case. In section 4.2.5, DCS is the best algorithm that obtains the highest 
SR and the lowest AES in most cases when solving 3-colorable random graphs. However, when 
solving 4-colorable and 5-colorable random graphs, DCS’s performance gets worse on graph 
instances that are both in and out the range of phase transition. For example, when solving 4-
colorable flat graphs, SR of A-ABC is obviously higher than that of DCS in the range of phase 
transition (Figure 4.8(c)) while AES of A-ABC is only half as much as that of DCS when p > 
0.11 (Figure 4.8(f)). It shows that even though both A-ABC and DCS are adaptive algorithms, 
A-ABC is more general and is applicable to vast topologies of random graphs. 

 
We also observe that SR of S-ABC is lower than that of HDPSO both in and out the range of 

phase transition when solving 4-colorable and 5-colorable random graphs, which is just the 
opposite of the results in section 4.2.5. This shows that S-ABC, which uses the fixed parameters 
t and limit optimized on 3-colorable random graphs, can obtain good results on 3-colorable 
random graphs but is not applicable to more general problems. 

 
The performance of D-FA is not improved and is still the worst in all five candidate 

algorithms. The double loop design consumes too much evaluation in one loop so that it is very 
difficult for D-FA to find a solution in a limited MaxEval.  

 
Finally, as we have seen before, graph instances in Experiment PT are harder than those in 

Theory PT. This is a common phenomenon in 3-colorable, 4-colorable and 5-colorable random 
graphs. 
 
 

4.3 Summary 

 
  In this chapter, we proposed a discrete adaptive ABC (A-ABC) algorithm and studied its 
performance from many aspects. We first compared A-ABC with ABC using fixed t to show 
the effect of adaptive function. Then, by using various N and c, we studied scout bee phase 
carefully and found that scout bee phase is not necessary when solving discrete optimization 
problems such as GCPs. After that, by observing the convergence regions of A-ABC and other 
four competitors, we found that A-ABC is a fast and efficient algorithm that can find a solution 
in a limited MaxEval. Finally, we compared the five candidate algorithms on 3-colorable, 4-
colorable, and 5-colorable Culberson random graphs with various graph size n and edge 
probability p. The results showed that A-ABC is a robust and general algorithm, which can 
solve GCPs with various sizes and topologies. 
 
  We also studied the experiment values and theory values of phase transition and found that 
experiment values are smaller than theory values. 
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Chapter 5 Conclusions 
 

5.1 Conclusions of Research   

 
  In this work, we proposed two discrete ABC algorithms, S-ABC and A-ABC, and used them 
to solve GCPs. From the experiments, we draw the following conclusions. 
 

5.1.1 Conclusions of Chapter 3 “Similarity Artificial Bee Colony Algorithm” 

In this chapter, we compared S-ABC, D-FA, and HDPSO on 3-colorable Minton random 
graphs with various graph size n and constraint density d. The conclusions of this chapter are 
as follows: 

 
 By introducing Similarity, S-ABC obtains higher SR and lower AES than HDPSO. This 

shows that S-ABC is more effective than HDPSO when solving larger graph instances. 
 D-FA obtains the highest SR in the three candidate algorithms, but it consumes much more 

evaluation times than the other two. 
 Phase transition’s experiment values are smaller than its theory values in the context of 3-

colorable Minton random graphs. 
 

5.1.2 Conclusions of Chapter 4 “Adaptive Artificial Bee Colony Algorithm” 

   
  In this chapter, we studied A-ABC from many aspects on three classes of Culberson random 
graphs (arbitrary-random graphs, equi-partite graphs, and flat graphs). The conclusions of this 
chapter are as follows: 
 
 SR is improved when using adaptive function instead of using predetermined fixed t during 

the evolution. 
 Scout bee phase is not necessary when solving discrete optimization problems. 
 A-ABC is a faster and efficient algorithm and can find more solutions than S-ABC, HDPSO, 

and D-FA if given a relatively small MaxEval. 
 A-ABC is the second best algorithm when solving 3-colorable Culberson random graphs 

with various graph size n and edge probability p. This shows that A-ABC is robust. 
 A-ABC obtains the best results when solving 4-colorable and 5-colorable Culberson 

random graphs. This shows that A-ABC is a general algorithm that can be applied to a vast 
graphs with various topologies. 

 Phase transition’s experiment values are smaller than its theory values in the context of 
Culberson random graphs. 
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5.1.3 Engineering Significance of Research 

 We extended Similarity introduced in HDPSO to ABC and developed S-ABC, which 
outperforms HDPSO on SR and AES both. 

 We introduced adaptive function to ABC and developed A-ABC, which is a fast, robust, 
and general algorithm when solving GCPs. 

 We found that scout bee phase is not necessary when solving discrete optimization 
problems. 

 
 

5.2 Future Work 

 
  The future work is as follows: 
 
 Applying the ideas of Similarity and adaptive function to other swarm intelligence 

algorithms. 
 We removed scout bee phase from ABC in this work. We want to replace it with other local 

search methods to improve the performance. 
 Comparing the proposed methods with other non-swarm intelligence algorithms. 
 Try to solve discrete optimization problems such as time-tabling problems and flow-shop 

problems. 
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