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Abstract 
 

Lake Malawi, with an area of 29,252 km2, is the 3rd largest lake in Africa and the 9th largest in 

the world if the Aral Sea is excluded. The lake serves as an important water resource, providing 

economic, recreational and domestic uses for riparian countries. Lake Malawi has the largest number 

of indigenous fish species in the world, and thus conservation of the biodiversity in the lake is 

important. However, given the steady population growth of the riparian countries, and land use 

conversion from forests to agriculture in the watershed of the lake, water quality in Lake Malawi has 

been deteriorating. Therefore, routine monitoring of water quality is essential. However, financial 

and institutional constraints in Africa make for poor availability of in situ water quality data in most 

African lakes. In addition, in situ monitoring of a large lake such as Lake Malawi has spatial 

constraints, which makes it difficult to represent the characteristics of water quality across the entire 

lake. Therefore, the remote sensing technique should be considered as an effective method for 

providing water quality information on African lakes, especially for monitoring a big lake such as 

Lake Malawi. Secchi Disk Depth (SD) and chlorophyll-a (Chl-a) concentration are two main water 

quality parameters, which can be retrieved from remote sensing data.  

In this study, Chapter 1 is about the general introduction including the explanation of the 

significance of the study and the existing methods for water quality parameter studies which can be 

used in Lake Malawi, followed by a review about previous studies on estimating water quality in 

Lake Malawi.         

In Chapter 2, the performance of the two semi-analytical algorithms Doron11 and Lee15 were 

first compared, which can estimate SD from satellite data, in Lake Malawi. The results showed that 

even though the SD estimations from the two algorithms were highly correlated (with R2 larger than 

0.96) using the Medium Resolution Imaging Spectrometer (MERIS), the Lee15 algorithm 

outperformed the Doron11 in Lake Malawi with high estimation accuracy (RMSE = 1.17 m, MAPE 
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= 18.7%). It was then evaluated the water transparency in Lake Malawi using the SD values 

estimated from nine years of MERIS data (2003-2011) and one year of Ocean and Land Colour 

Instrument (OLCI) data 2017 with the Lee15 algorithm. Results showed that Lake Malawi 

maintained four water transparency levels throughout the study period (i.e., level 1: SD > 12 m; level 

2: SD between 6-12 m; level 3: SD between 3-6 m; level 4: SD between 1.5-3 m). Level 1 and 2 

water areas tended to shift or trade places depending on year or season. In contrast, level 3 and 4 

water areas were relatively stable and constantly distributed along the southwestern and southern 

lakeshores. In general, Lake Malawi is dominated by waters with SD values larger than 6 m (more 

than 95% lake area). The transparency level was characterized by a gradient increase from the 

lakeshore to the pelagic zone.  

In Chapter 3, first Chl-a from MERIS and OLCI data was estimated by using NASA’s OC4E 

algorithm. And then Carlson’s trophic state index (TSI) was modified to Lake Malawi by combining 

OC4E derived-Chl-a and Lee15 derived-SD to estimate the trophic levels of Lake Malawi. The 

results from the modified TSI show that Lake Malawi is still in the oligotrophic state, with a mean 

TSI value of 31 for both TSI derived from SD and from Chl-a throughout the study period. However, 

mesotrophic (with TSI values between 43-45), eutrophic (with TSI values between 56-59), and 

hypereutrophic (with TSI values between 76-87) waters were also found along the lake shore. 

Deviations between the TSI (Chl-a) and TSI (SD) demonstrated that light attenuation in Lake 

Malawi was dominated by algae especially in oligotrophic and mesotrophic waters TSI (Chl-a) ≈ 

TSI (SD). In contrast, the light attenuation in the eutrophic and hypereutrophic waters was mainly 

dominated by non-algae particles with TSI (Chl-a) < TSI (SD).  

Finally, in Chapter 4 the general conclusions are made, and the limitations of the study are 

pointed out with indications of future studies. 

 



vi 

 

List of Tables 

 

Table 1. Available studies over Lake Malawi, Lake Tanganyika, and Lake Victoria. .......................... 7 

 

Table 2. Physical characteristics of Lake Malawi. ............................................................................. 11 

 

Table 3. Band characteristics of MERIS and OLCI Sensor data. ....................................................... 18 

 

Table 4. Temporal availability of MERIS images used in this study from January to December. ..... 20 

 

Table 5. Stations and number of in situ SD measurements used for validation, including minimum 

and maximum values. ......................................................................................................................... 28 

 

Table 6. Steps of the quasi-analytical algorithm version 6. ................................................................ 34 

 

Table 7. Transparency level definition according to thresholds of SD values in OECD (1982). ....... 36 

 

Table 8. Summary of pixel-based comparison of yearly estimated SD values using Doron11 

algorithm and those using Lee15 algorithm in Lake Malawi during the study period. ...................... 43 

 

Table 9. Summary of pixel-based comparison of monthly estimated SD values using Doron11 

algorithm and those using Lee15 algorithm in Lake Malawi during the study period. ...................... 49 

 

Table 10. The yearly percentage for each water transparency level shown in (Fig. 17). ................... 57 

 

Table 11. The monthly percentage for each water transparency level shown in (Fig. 18). ................ 58 

 

Table 12. Yearly coefficients for the modified TSI in Lake Malawi. ................................................. 77 

 

Table 13. Monthly coefficients for the modified TSI in Lake Malawi ............................................... 77 

 

Table 14. Carlson’s TSI and corresponding water quality parameters boundaries (Carlson, 1977). . 78 

 

Table 15. The yearly percentage for each TSI (SD) level. ................................................................. 78 

 

Table 16. The yearly percentage for each TSI (Chl-a) level. .............................................................. 79 

 



vii 

 

Table 17. The monthly percentage for each TSI (SD) level. .............................................................. 80 

 

Table 18. The monthly percentage for each TSI (Chl-a) level. .......................................................... 81 

 

Table 19. Trophic state boundaries for SD (m) and Chl-a (mg/m3) found in this study. .................... 95 

 

Table 20. Conditions associated with deviations between trophic state, modified from Carlson 

(1991). ................................................................................................................................................. 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Figures  
 

Figure 1. Location of Lake Malawi and its watershed; the lake includes 13 main inflows and only 1 

outflow, (a) Geographical location of Lake Malawi (b) Lake Malawi basin including its adjacent 

countries namely Malawi, Mozambique, and Tanzania. ..................................................................... 12 

 

Figure 2. Monthly average temperature and rainfall in Malawi (1991-2015). .................................. 12 

 

Figure 3. Yearly average air temperature and rainfall in Malawi from 2003 to 2011. ....................... 13 

 

Figure 4. Elevation data in the basin showing low elevation along the shore contrasting with the 

high land in other areas. ...................................................................................................................... 14 

 

Figure 5. Land Use/Cover in Lake Malawi basin for 2003 and 2017. ............................................... 15 

 

Figure 6. Temporal availability of OLCI dataset used in this study from January to December in 

2017. .................................................................................................................................................... 19 

 

Figure 7. Left panel: Illustration of Sun glint as seen from the TOA, which is described by a direct 

transmittance. Right panel: Illustration of water-leaving radiance as seen from the TOA, which is 

described by a diffuse transmittance []. ............................................................................................... 21 

 

Figure 8. Sampling locations in the southeast arm of Lake Malawi. KGC represents the center of the 

fish cage farm, CN1-CN4 represents four sampling stations in the North of KGC, and CS1-CS4 

represents four sampling stations in the South of KGC, and the red circle is the sampling location for 

the data used in 2017. .......................................................................................................................... 24 

 

Figure 9. Sampling locations for the 2017 validation data in Metangula, the red dots represent each 

location where sampling was carried out from North to South. ......................................................... 25 

 

Figure 10. Sampling location, (A) the vision of the lake high from the road (B) vehicle being 

washed in the lake, small boats and people bathing, washing clothes and dishes in the lake, (C) the 

staff of the institute and the boat owners, (D) one of the boat owners trying to remove the anchor 

from the depths of the lake. ................................................................................................................. 26 

 

Figure 11. Sampling location, (A) departure to the sampling sites, (B) and (C) sampling in the first 

station. ................................................................................................................................................. 27 



ix 

 

Figure 12. Distribution maps of the results from the two algorithms showing the yearly average data. 

Left: Doron11 and right: Lee15. ......................................................................................................... 40 

 

Figure 13. Pixel-based comparison of yearly estimated SD values using Doron11 algorithm and 

those using Lee15 algorithm in Lake Malawi. .................................................................................... 42 

 

Figure 14. Distribution maps of the results from the two algorithms for the monthly average data 

during the 2003-2011 study period. Left: Doron11 and right: Lee15. ................................................ 46 

 

Figure 15. Pixel-based comparison of monthly estimated SD values using Doron11 algorithm and 

those using Lee15 algorithm in Lake Malawi. .................................................................................... 48 

 

Figure 16. Comparison of in situ measured SD and estimated SD values from MERIS data. (a) using 

Lee15 algorithm for all available in situ SD measurements; (b) using Doron11 algorithm for all 

available in situ SD measurements; (c) using Lee15 algorithm for pairs at the same day; (d) using 

Doron11 algorithm for pairs at the same day; (e) using Lee15 algorithm for matchups within 3 h; (f) 

using Doron11 algorithm for matchups within 3 h, and (g) using OLCI for Lee15 on the same day as 

the sampling data; (h) using OLCI for Doron11. ................................................................................ 52 

 

Figure 17. Yearly water transparency level maps in Lake Malawi. These maps were generated from 

yearly SD distribution maps (obtained from MERIS/OLCI data using Lee15 algorithm) based on 

OECD (1982) classification system. ................................................................................................... 55 

 

Figure 18. Monthly water transparency level maps in Lake Malawi. These maps were generated 

from monthly SD distribution maps (obtained from MERIS data using Lee15 algorithm) based on 

(OECD, 1982) classification system. .................................................................................................. 57 

 

Figure 19. Yearly averaged SD from (2003-2017) (a), (b) (2003-2011), (c) (2003-2017 subtracted 

overestimation) in Lake Malawi (red solid line); the black dashed (---) line represents the trend line.

 ............................................................................................................................................................. 60 

 

Figure 20. Temporal variability of SD during the study period, showing the lowest SD value in July 

and two negative peaks, in February and April. .................................................................................. 61 

 

Figure 21. Yearly Chl-a spatial distribution for the entire lake. ......................................................... 67 

 

Figure 22. Monthly Chl-a spatial distribution for Lake Malawi from OC4E. ................................... 69 

 



x 

 

Figure 23. Regression analysis between ln Chl-a (mg/m3) and ln SD (m) from 2003-2011 and 2017.

 ............................................................................................................................................................. 71 

 

Figure 24. Regression analysis between ln Chl-a (mg/m3) and ln SD (m) from January to December.

 ............................................................................................................................................................. 74 

 

Figure 25. Comparison of the yearly spatiotemporal distribution of the TSI. Left: TSI (SD) and 

right: TSI (Chl-a)................................................................................................................................. 84 

 

Figure 26. Comparison of the monthly spatiotemporal distribution of the TSI. Left: TSI (SD) and 

right: TSI (Chl-a)................................................................................................................................. 87 

 

Figure 27. Average temporal variability of TSI in Lake Malawi showing almost no deviation. ....... 88 

 

Figure 28. Temporal variability of the individual TSI level (a) oligotrophic, (b) mesotrophic, (c) 

eutrophic and (d) hypereutrophic. ....................................................................................................... 90 

 

Figure 29. Monthly variability of TSI in Lake Malawi (a) monthly average TSI (Chl-a and SD), (b) 

monthly average TSI (Chl-a and SD) oligotrophic, (c) monthly average TSI (Chl-a and SD) 

mesotrophic, (d) monthly average TSI (Chl-a and SD) eutrophic and (e) monthly average TSI (Chl-a 

and SD) hypereutrophic. ..................................................................................................................... 93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

List of Abbreviations  
 

AMD   =  Absolute Mean Difference 

AOP   =  Apparent Optical Property 

ASTER  =  Advanced Spaceborne Thermal Emission and Reflection Radiometer 

CDOM  =  Colored Dissolved Organic Matter 

Chl-a   =  Chlorophyll-a 

CI   =  Color Index 

CMODIS  =  Chinese Moderate Resolution Imaging Spectrometer 

C2R   =  Case-2 Regional  

CZCS   =  Coastal Zone Color Scanner 

ESA   =  European Space Agency 

FR  =  Full Resolution 

GDEM  = Global Digital Elevation Model 

IOCCG  =  International Ocean Colour Coordinating Group 

IOP   =  Inherent Optical Property 

MAPE  =  Mean Absolute Percent Error 

MERIS  =  Medium Resolution Imaging Spectrometer 

METI  = Ministry of Economy, Trade, and Industry of Japan 

MODIS  =  Moderate Resolution Imaging Spectroradiometer 

NASA  =  National Aeronautics and Space Administration 

OC4  =  Ocean Chlorophyll Four-band 

OECD   =  Organization for Economic Cooperation and Development  

OLCI   =  Ocean and Land Color Instrument 

QAA   =  Quasi-Analytical Algorithm  



xii 

 

RMD  =  Relative Mean Difference 

RMSE   =  Root Mean Square Error 

RR  =  Reduced Resolution  

SD   =  Secchi Disk Depth 

SeaWiFS  =  Sea-viewing Wide Field-of-view Sensor 

SNAP  =  Sentinel Application Platform  

TOA   =  Top of Atmosphere 

TP   =  Total Phosphorus  

TSI   =  Trophic State Index 

TSM   =  Total Suspended Matter 

   



1 

 

Chapter 1 General Introduction  
 

1.1. Significance of water quality studies in Lake Malawi 

 

Lake Malawi, with an area of 29,252 km2, is the 3rd largest lake in Africa and the 9th largest in 

the world if the Aral Sea is excluded (Lehner and Döll, 2004). The lake serves as an important 

water resource, providing economic, recreational and domestic uses for riparian countries 

(Bootsma and Hecky, 1993). In addition, the lake has the largest number of indigenous fish 

species in the world, and thus conservation of the biodiversity in the lake is important (Snoeks, 

2000). However, given the steady population growth in the riparian countries, and land use 

conversion from forests to agriculture in the watershed, water quality in Lake Malawi has been 

deteriorating (Hecky et al., 2003; Chavula et al., 2009). Therefore, routine monitoring of water 

quality is essential. Worldwide, with the population increase, there is more and more pressure on 

the few available freshwater resources, resulting in poor management systems, pollution, 

excessive water withdrawal and other significant environmental problems (Haddeland et al., 

2014). However, the process of water quality monitoring involves several aspects, from financial, 

institutional, technical and meteorological which are directly or indirectly linked to the existing 

water quality monitoring techniques. 

 

1.2. Review on methods for water quality studies 

 

Generally, two main techniques are used for monitoring water quality: (1) field survey by a 

boat; and (2) application of remote sensing data. Nevertheless, if field survey by boat is used as 

the main technique for regular monitoring, financial and institutional constraints in Africa make 

for poor availability of in situ water quality data in most African lakes (Ballatore et al., 2014). In 
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addition, in situ monitoring of a large lake such as Lake Malawi has spatial limitations, which 

makes it difficult to represent the characteristics of water quality across the entire lake. Therefore, 

the remote sensing technique should be considered as an effective method for providing water 

quality information on African lakes, especially for monitoring a big lake such as Lake Malawi 

(Dube et al., 2015; Ballatore et al., 2014). Remote sensing can be used as a complementary part 

of the field survey by boat as it offers synoptic, repetitive, consistent, cost-effective and 

comprehensive spatiotemporal views (Dube et al., 2015; Ballatore et al., 2014), especially in big 

lakes like Lake Malawi where the budget for field survey becomes a big obstacle for the adjacent 

developing countries.  

Notwithstanding its spatial limitation, field survey by boat does have its merits. It can 

enable the measurement and evaluation of several parameters, and their vertical profile at several 

depths. On the contrary, it can be time-consuming, needs a lot of effort and work, and it is 

expensive in general. A major disadvantage of a field survey by boat is that it is time and space 

specific, considering that the water quality can change both spatially and temporally (Kiefer et 

al., 2015). Remote sensing shows more merits than demerits when compared to field survey by 

boat, for water quality studies in big lakes. But this does not mean that the field survey by boat 

should be replaced, discarded or put in the second plan. Although the importance of in situ 

measurement (field survey by boat) is recognized and emphasized, it is equally important to 

explore the potentiality of remote sensing as an effective method for monitoring water quality 

and its spatiotemporal changes (Kiefer et al., 2015; Chen et al., 2004). But remote sensing on its 

own cannot estimate and validate the same results, thus the need for the complementary part of a 

field survey by boat for ground truthing. It has been confirmed that the lack of in situ water 

measurements to validate remotely sensed water quality estimates is a major challenge in 

Sub-Saharan Africa (Ballatore et al., 2014).  

There are two requirements for monitoring water quality by the remote sensing technique. 

First, a satellite sensor with ocean bands is desired. These include, for example, the Sea-viewing 
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Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer 

(MODIS) from the National Aeronautics and Space Administration (NASA), and the MEdium 

Resolution Imaging Spectrometer (MERIS) from the European Space Agency (ESA), refer to the 

International Ocean-Colour Coordinating Group (IOCCG). Compared to sensors for land 

applications, the ocean color sensors can provide remote sensing reflectance (Rrs) data with 

better temporal and spectral resolution, as well as higher radiative sensitivity, all of which are 

necessary for monitoring water quality (Mouw et al., 2015).  

Second, an algorithm is needed for estimating water quality parameters from the Rrs. The 

algorithm can be either empirical or semi-analytical. Although empirical algorithms are easy to 

implement, in situ data for recalibration is always necessary, which limits their applicability to 

different lakes, especially those without available in situ data. In contrast, semi-analytical 

algorithms are based on a radiative transfer theory (or bio-optical model) with several secondary 

important empirical relationships under some assumptions, and thus do not require recalibration 

(Lee et al., 2002, 2015). In cases where there is a lack of enough in situ data such as in Lake 

Malawi, the application of a semi-analytical algorithm is the most practical and viable method 

for estimating water quality parameters.   

Just the remote sensing data and the semi-analytical algorithm are not enough for water 

quality monitoring, the water quality parameter to be estimated needs to be defined as well, but 

unfortunately, only a certain number of water quality parameters can be estimated from remote 

sensing. The main water quality parameters that can be estimated from remote sensing data using 

the semi-analytical algorithms are Chlorophyll-a (Chl-a, Gitelson et al., 2008; Gilerson et al., 

2010; Yang et al., 2011), Total Suspended Matter (TSM; Nechad et al., 2010), Colored Dissolved 

Organic Matter (CDOM, Yang et al., 2011), and Secchi Disk Depth (SD, Doron et al., 2011; Lee 

et al., 2015). As the SD estimation is based on an underwater visibility theory, and the SD value 

itself is an apparent optical property (AOP) of a water body just like Rrs, the relationship between 

SD and Rrs values can be considered more robust than those between other water quality 
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parameters and Rrs values. In addition, the SD value is easy to measure and like Chl-a, can be 

understood by the general public. Thus, SD has been widely used as an indicator for evaluating 

water quality (transparency or clarity) since the 1860s (Secchi, 1864) as well as one of the 

important parameters like Chl-a for calculating trophic state index (TSI), using Carlson’s model 

(Carlson, 1977). 

The currently standardized method to determine the water clarity has its history back to the 

nineteenth century and was coined after Pietro Angelo Secchi, published in 1865 (Wernand, 

2010). This method is based on lowering a 30 centimeters black and white disk in a water body 

until it can no longer be seen. 

There are two main semi-analytical algorithms for estimating SD values from remote 

sensing data. The first developed by Doron et al. (2011) is based on a classic underwater 

visibility theory that has been used for over 60 years (Duntley, 1952; hereafter referred to as 

‘Doron11’). The second semi-analytical algorithm was developed by Lee et al. (2015), based on 

a new underwater visibility theory proposed by the same authors in the same study (hereafter, 

‘Lee15’). Although Lee et al. (2015) pointed out some shortcomings in the classic theory, and 

later Lee et al. (2018) compared directly the relationship of Doron11 and Lee15 using a 

simulated dataset, and the results showed a coefficient of determination equal to 0.89 between 

the two estimates. However, the two algorithms have not been applied in practice to the same 

water body and compared to a common in situ measured SD values. Therefore, it was considered 

that there was not yet enough evidence to show which algorithm should be selected and applied 

in Lake Malawi for monitoring programs and government planning. 

Several studies have explored the application of satellite data for retrieving SD in lakes 

(Alikas and Kratzer, 2017; Lee et al., 2015, 2016; Kratzer et al., 2008). MERIS has a good 

spatiotemporal, radiometric and spectral resolution (Matthews et al., 2010; Fukushima et al., 

2016; Kiefer et al., 2015) for water quality monitoring including SD. The inclusion of satellite 

remote sensing products for monitoring water quality would substantially increase the 
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description of spatial, seasonal and long-term changes (Alikas and Kratzer, 2017). 

As mentioned earlier, satellite data can also be used to estimate Chl-a concentration and 

provides spatial distribution. Hu et al. (2012) proposed an algorithm to estimate surface Chl-a 

concentration in global water for Chl-a ≤ 0.25 mg/m3. The algorithm was based on a color index 

(CI), defined as the difference between Rrs in the green and a reference formed linearly between 

Rrs in the blue and red. O’Reilly et al. (1998) proposed an Ocean Chlorophyll Four-band (OC4 - 

443, 490, 510, 555 nm) maximum ratio formulation algorithm, for Chl-a range between 0.019 

and 32.79 mg/m3. Although several Chl-a concentration algorithms have been developed, 

(Gitelson et al., 2011; Yang et al., 2011) within the OC4 series the OC4E (E denotes the code for 

MERIS sensor) NASA’s MERIS standard Chl-a retrieval algorithm  

(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/) was applied to Lake Malawi. 

Moreover, the results from both SD and Chl-a were further used for the estimation of the 

TSI which is an index that allows the identification of problems and pressure that a water body 

ecosystem faces (Cunha et al., 2013) and helps in the preparation for corrective actions. In Lake 

Malawi in particular, an objective and descriptive evaluation of its TSI is necessary.  

Regardless of the existence of several classification models (Nawrocka and Kobos, 2011) 

no model is standardized to be applied in specific water bodies. Carlson (1977) developed a 

numerical and multiparameter TSI based on Chl-a, SD and Total Phosphorus (TP) which can 

independently estimate algal biomass. One of the biggest advantages of this index resides in the 

correlation of these parameters which allows the comparison of the different trophic levels from 

different lakes (Carlson, 1977) but Chl-a derived TSI is recommended for TSI evaluation. This 

versatile characteristic allows its application, combined or independently and helps in cases 

where only one water quality parameter is available. Consequently, the Carlson’s TSI model was 

modified and applied to Lake Malawi as suggested by previous studies (Cunha et al., 2013; Salas 

and Martino, 1991; Cheng and Lei, 2001) and the deviations of the TSI were evaluated to assess 

the effects of different components in light attenuation in the water column.   

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
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1.3. Previous Studies on Estimating Water Quality in Lake 

Malawi 

 

Only a small number of studies are available on water quality in Lake Malawi in general, 

and the existing ones focus on other aspects than water quality (Thompson et al., 1996; Schulthei 

et al., 2011; Weyl et al., 2010). Some studies have focused on the lake’s water quality (Bootsma 

et al., 2003; Macuiane et al., 2016). However, none of these has experienced the application of 

remote sensing data for water quality estimation in Lake Malawi. The existing two extensive 

reviews about the application of remote sensing to African and Sub-Saharan African lakes 

showed that only a small number of studies related to remote sensing of water quality in African 

lakes are available (Ballatore et al., 2014; Dube et al., 2015) and none of them investigated SD 

spatiotemporal variability nor the TSI. Regardless of the few studies on water quality by using 

remote sensing, two studies for water quality monitoring have been conducted in Lake Malawi 

(Chavula et al., 2009; Odermatt et al., 2018) using remote sensing. The first study used 

AQUA/MODIS and TERRA/MODIS and in situ data to create an empirical algorithm to 

estimate Chl-a. The result showed a moderate relationship between in situ Chl-a concentration 

and values obtained from satellite imagery. They concluded that the results had potential 

application in monitoring the trophic state of Lake Malawi. The second study, using MERIS data 

from (2002-2012) produced a database of several water quality parameters from 340 lakes 

worldwide including Lake Malawi, and the final result was several monthly, yearly and 9-year 

average water quality parameters (Chl-a, total suspended matter, turbidity, colored dissolved 

organic matter, lake surface water temperature, cyanobacteria and floating vegetation maps), and 

the matchups were obtained from 24 lakes and reservoirs in a wide range (Odermatt et al., 2018). 

In addition, a literature review was carried out on November 4th 2018 to investigate the 

number of studies done over Lake Malawi waters aiming at monitoring water quality. Table 1 
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shows a summary of the number of studies carried out in Lake Malawi, Lake Tanganyika, and 

Lake Victoria. The search was done based on the Web of Science Core Collection (1900-present) 

provided by Thomson Reuters. However, only a certain number of combinations is presented in 

Table 1. The number in parenthesis represents the search result for each combination of 

keywords.  

  

Table 1. Available studies over Lake Malawi, Lake Tanganyika, and Lake Victoria.  

Available Studies 

Lake Malawi  Lake Tanganyika Lake Victoria 

Word combination 

Lake Malawi (1,478) Lake Tanganyika (1,621) Lake Victoria (3,481) 

Lake Malawi Reviews (70) Lake Tanganyika Reviews (66) Lake Victoria Reviews (168) 

Lake Malawi Water Quality 

(28) 

Lake Tanganyika Water Quality 

(41) 

Lake Victoria Water Quality 

(197) 

Lake Malawi Transparency 

(3) 

Lake Tanganyika Transparency 

(12) 

Lake Victoria Transparency 

(28) 

Lake Malawi Secchi Disk 

Depth (0) 

Lake Tanganyika Secchi Disk 

Depth (0) 

Lake Victoria Secchi Disk 

Depth (2) 

Lake Malawi SDD (0) Lake Tanganyika SDD (0) Lake Victoria SDD (1) 

Lake Malawi Remote Sensing 

(11) 

Lake Tanganyika Remote 

Sensing (14) 

Lake Victoria Remote 

Sensing (53) 

Lake Malawi Clarity (1) Lake Tanganyika Clarity (3) Lake Victoria Clarity (6) 

 

Despite the numbers presented above, in Lake Malawi for example, only 3 studies were directly 

related to Lake Malawi remote sensing, and 1 for Lake Malawi transparency. The list of the 

search results does not really reflect the number of studies directly linked to the input word 

combination. It can be misleading if there is no deeper evaluation of the content listed in the 

search results.     

 

 



8 

 

From the information above and the two previous reviews, it was confirmed that Lake 

Malawi lacks applicability of remotely sensed data over its waters for water quality monitoring 

(SD and TSI). Previous studies have documented scientific research about Lake Malawi focusing 

on several topics including fisheries (Bootsma et al., 2003; Otu et al., 2011; Hamblin et al., 2003; 

Thompson et al., 1996; Munthali, 1997; Schulthei et al., 2011; McCullough et al., 2007; Weyl et 

al., 2010; Guildford and Hecky, 2000). However, all the above-mentioned studies are based on 

the field survey. Thus, three conclusions were drawn:  

 

(i) There are very few studies applying remote sensing to estimate water quality from 

African lakes. 

(ii) Only two studies have applied remote sensing to estimate water quality from Lake 

Malawi. 

(iii) No study is available for estimating SD and TSI using Remote Sensing in Lake Malawi. 

 

In consideration of the above, and the fact that few studies have comprehensively evaluated 

water quality in Lake Malawi (Chavula et al., 2009; Odermatt et al., 2018) using remote sensing 

the research objectives of the present study were defined.    

 

 

 

 

 

 

 

 



9 

 

1.4. Research objectives of this study 

 

 

(1) To comprehensively compare the performance of the two semi-analytical algorithms 

(Doron11 and Lee15) in Lake Malawi;  

 

(2) To obtain an overall evaluation of water transparency in Lake Malawi from MERIS and 

OLCI data;  

 

(3) To estimate and assess the trophic state of Lake Malawi from MERIS and OLCI data. 
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Chapter 2 An overall evaluation of water 

transparency in Lake Malawi from 

MERIS and OLCI Data 
 

2.1. Study Area: Lake Malawi/Niassa/Nyasa 

 

Lake Malawi (09o 30’-14o 40’ S, 33o 50’ - 33o 36’ E) is the southernmost lake in the Great 

Rift Valley, surrounded by Malawi, Mozambique, and Tanzania (Fig. 1). While the lake is also 

known as Niassa in Mozambique and Nyasa in Tanzania, internationally and scientifically it is 

known as Lake Malawi. It is about 560-km long and has a maximum width of about 75-87 km, 

an average depth of 292 m, and a maximum depth of 706 m. There are three seasons in the area 

surrounding the lake, determined by rainfall and temperature. They are the cool dry season 

(May-August), hot dry season (September-October), and warm wet season (November-April), 

with 95% of precipitation falling during the latter period (Fig. 2, Weyl et al., 2010). The majority 

of the lake’s catchment is in Malawi, where the population has doubled in the past 25 years, with 

a 2.8% yearly increase over the last 10 years for a current total population of about 19 million. 

Most of the population relies directly on subsistence agriculture and fish for food, and the high 

population density is resulting in the expansion of subsistence agriculture to marginal land, 

including wetlands and steep hill slopes (Bootsma and Jorgensen, 2004). About 7% of the 

catchment area is within Mozambique, while approximately 25% lies within Tanzania; the 

remainder is in Malawi. Most of the rain falls along the lake’s shore, which is dominated by flat 

land contrary to other regions of the basin. All three adjacent countries are developing, and 

subsistence agriculture is still vital to most of the population. 

Figure 1 below shows the geographical location of the lake in Africa (a) and its basin 

including the neighboring countries (b). All three adjacent countries are developing, and 
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subsistence agriculture is still a core to most of the population. Rainfall and temperature 

generally have the same pattern. The data from Figure 2 was obtained from the World Bank 

Climate Portal on country historical [1 ] data referent to the monthly average rainfall and 

temperature for Malawi from 1991-2015. 

Table 2 shows the basic physical characteristics of Lake Malawi, including its main inflow 

complemented by the data from Figure 1b. The lake has one outflow, the Shire River at its most 

south part (Fig. 1b).   

 

Table 2. Physical characteristics of Lake Malawi.  

 

Basic Characteristics Value 

Area 

Depth 

Length 

Width 

Shoreline length 

Major inflow rivers 

Outflow river 

29,600 km2 – 30,800 km2 

Max 704 – 785 m, average 290 – 426 m 

Max 505/ 603 km 

Max 87 km; average 50 – 60 km 

1500 km 

13 

1 

Residence time 

Secchi depth (m) 

140 years 

12 - 20 m 

Source: modified from Weyl et al. (2010) 

                                                   
1 http://sdwebx.worldbank.org/climateportal/ 
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Source: modified from Hecky et al. ( 2003). 

Figure 1. Location of Lake Malawi and its watershed; the lake includes 13 main inflows and only 

1 outflow, (a) Geographical location of Lake Malawi (b) Lake Malawi basin including its 

adjacent countries namely Malawi, Mozambique, and Tanzania.  

 

Figure 2. Monthly average temperature and rainfall in Malawi (1991-2015).  
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There are three seasons in Lake Malawi basin: the cool dry season (May-August), hot dry season 

(September-October), and warm wet season (November-April) in Lake Malawi basin. These two 

sets of data (rainfall and temperature) demonstrate the same temporal pattern.  

Figure 3 shows the rainfall and temperature variation for the yearly data. The maximum 

rainfall during the study period was found in 2004 and minimum in 2005, but from 2006 to 2009 

the precipitation stabilized, and there is no clear or sudden change in rainfall except for 2004 and 

2005. However, it is important to remind that most of this rain falls in the first season 

(November-April), thus resulting in the destruction of infrastructures and probably an increase in 

runoff from the watershed to the lake, due to the lake’s topographical characteristics as it is 

shown later in (Fig. 4).   

  

 

Figure 3. Yearly average air temperature and rainfall in Malawi from 2003 to 2011.  

 

The topographical location of the lake and its surrounding are to be considered. Because 

Lake Malawi is in a valley, it is natural that most of the runoff from the watershed goes directly 

to the lake after a period of intense rainfall. From Figure 4, it is visible that the lake is 
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surrounded by highland in the northern, western and eastern region. The western region has a 

higher elevation than the eastern region. However, the region along the shore has lower elevation 

when compared to other regions. The combination of rivers, precipitation, air temperature, 

elevation, and land use/cover can provide important information about the aspects related to 

water quality in Lake Malawi. Lake Malawi is enclosed by most of the biggest cities in Malawi 

including the capital city Lilongwe represented by the red dot on the map from Figure 4.  

    Land use/cover maps from 2003 and 2017 show that there was a change during this period 

(Fig. 5). Most of these changes can be identified in places where there is agglomeration of 

people, such as the southwest part of the lake. The changes are from savanna to mixed forest, 

crop, and grasslands to crop. These changes in the basin are linked to anthropogenic activities.  

     

 

Source: ASTER GDEM a product of METI and NASA. 

Figure 4. Elevation data in the basin showing low elevation along the shore contrasting with the 

high land in other areas.  
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Source: NASA Land Data Products_L3_Global 500m (University of Maryland). 

Figure 5. Land Use/Cover in Lake Malawi basin for 2003 and 2017.  

 

2.2. Datasets  

 

The ocean color sensors have a long history that can be traced back to the period between 

1978-1986 when the Coastal Zone Color Scanner (CZCS) sensor was launched and terminated 

its mission. Due to its limitations, this sensor was later replaced by several other ocean color 

sensors such as the Chinese Moderate Resolution Imaging Spectrometer (CMODIS), onboard the 

‘Shenzhou-3’ spaceship, followed by the Global Imager (GLI), MERIS, SeaWiFS and more 

recently OLCI. IOCCG [ 2 ] provides more detailed information for several missions and 

instruments.  

 

 

                                                   
2 http://ioccg.org/resources/missions-instruments/historical-ocean-colour-sensors/ 

 

http://ioccg.org/resources/missions-instruments/historical-ocean-colour-sensors/
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2.2.1. Satellite data collection and pre-processing: 

Envisat/MERIS and Sentinel-3/OLCI Data  

 

MERIS was launched by the ESA onboard its polar-orbiting Envisat Earth Observation Satellite. 

It was primarily dedicated to Ocean Color Observations and has in the past broadened its scope 

of objectives to atmospheric and land surface related studies. It has a high spectral and 

radiometric resolution and a dual spatial resolution, Full Resolution (FR) data at 300 m 

on-ground resolution at a sub-satellite point which is mainly required in coastal zones and over 

land. Reduced Resolution (RR) data at 1200 m on-ground resolution at a sub-satellite point 

which is intended for large-scale studies. Oceanographic and atmospheric investigations require 

global Earth coverage within three days. The global mission of MERIS has a major contribution 

to scientific projects which seek to understand the role of the oceans and ocean productivity in 

the climate system through observations of watercolor and is furthering the ability to forecast 

change through models. Secondary, objectives of the MERIS mission is directed to the 

understanding of atmospheric parameters associated with clouds, water vapor and aerosols in 

addition to land surface parameters, vegetation processes. MERIS was designed to acquire 15 

spectral bands in the 390-1040 nanometer range of the electromagnetic spectrum. The instrument 

had the capability to change its band position width and gain throughout its lifetime. In 

accordance with the mission goals and priorities of this instrument, Table 3 shows the 15 spectral 

bands from MERIS and other additional 6 bands from which encompasses the OLCI [3].  

The OLCI is an optical instrument used to provide data continuity for ENVISAT's MERIS. 

OLCI is a push-broom imaging spectrometer that measures solar radiation reflected by the Earth, 

at a ground spatial resolution of 300 m, in 21 spectral bands. Because it is an instrument prepared 

to provide data continuity for MERIS, it was used in this study to expand the range of temporal 

                                                   
3 https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris/design 

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris/design
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coverage of the study. Although the main purpose of OLCI was to give continuity to the MERIS 

legacy, some improvements have been made to this new satellite sensor such as a new channel at 

1.02 μm which was included to improve atmospheric and aerosol correction capabilities. 

Additional channels in the O2A absorption line (764.4 nm and 767.5 nm, adding to the existing 

channel at 761.25 nm) were included for improved cloud top pressure (height) and an additional 

channel at 940 nm in the H2O absorption region, to improve water vapor retrieval. A channel at 

673 nm has been added for improved chlorophyll fluorescence measurement (ESA, Standard 

Document Date: 13th January 2017, Issue: 1.1, Rev 1) [4]. The primary objective of OLCI to 

which was designed was to screen the ocean and land surface to collect information related to 

biology (e.g. phenology of marine and terrestrial biomass). Among other applicability are marine 

monitoring, net primary production estimates, and others. A total of 274 OLCI images were 

downloaded from [5], for the year 2017 and finally 261 were used for the subsequent application. 

The monthly distribution of OLCI data depended highly on the cloud cover. In this study 12 to 

26 images were downloaded for each month. Despite this number of images, the spatial coverage 

was relatively low, resulting in low monthly lake area coverage. Figure 6 shows the number of 

OLCI images used. The shaded bands in Table 3 are the new bands which were not available in 

MERIS.  

 

 

 

 

 

 

 

                                                   

4 https://sentinel.esa.int 

5 https://scihub.copernicus.eu/s3/#/home 
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Table 3. Band characteristics of MERIS and OLCI Sensor data.   

Band No Band Center (nm) Band Width (nm) Potential Application 

Oa 1 400 15 Aerosol correction, improved water 

constituent retrieval 

Oa 2 412.5 10 Yellow substance and detrital pigments 

Oa 3 442.5 10 Chl absorption ma, biogeochemistry, 

vegetation 

Oa 4 490 10 High Chl, other pigments 

Oa 5 510 10 Chl, sediment, turbidity, red tide 

Oa 6 560 10 Chlorophyll reference (Chl minimum) 

Oa 7 620 10 Sediment loading 

Oa 8 665 10 Chl ( 2nd Chl abs. max.) sediment, yellow 

substance/vegetation 

Oa 9 673.75 7.5 For improved fluorescence retrieval and to 

better account for smile together with the 

bands 666 and 680 

Oa 10 681.25 7.5 Chl fluorescence peak, red edge 

Oa 11 708.75 10 Chl fluorescence baseline, red edge 

transition 

Oa 12 753.75 7.5 O2 absorption/clouds, vegetation 

Oa 13 761. 25 2.5 O2 absorption band /aerosol correction 

Oa 14 764. 375 3.75 Atmospheric Correction 

Oa 15 767. 5 2.5 O2A used for cloud top pressure, 

fluorescence over land 

Oa 16 778.75 15 Atmos. corr/Aerosol corr 

Oa 17 865 20 Atmos. corr/Aerosol corr, clouds, pixel 

co-registration 

Oa 18 885 10 Water vapor absorption reference band. 

Common reference band/Vegetation 

monitoring 

Oa 19 900 10 Water vapor absorption/vegetation 

monitoring (max. reflectance) 

Oa 20 940 20 Water vapor absorption, atmos./aerosol 

corr. 

Oa 21 1020 40 Atmos./aerosol corr. 

Source[6]  

                                                   
6 https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris/design 
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Figure 6. Temporal availability of OLCI dataset used in this study from January to December in 

2017. 

 

A set of 1658 MERIS L1b FR images covering the study area were downloaded from the 

ESA[7], from 2003-2012. These data were subset to the lake’s basin area to reduce their size. 

After removing cloud-contaminated images, only 822 images from Jan. 20, 2003 to Dec. 30, 

2011, were used, of which 338 images covered just half or more of the lake area. Table 4 

summarizes the MERIS sensor data used in this study based on their temporal availability and 

pixel quality. 

 

 

 

 

 

 

                                                   
7 http://merisfrs-merci-ds.eo.esa.int/merci 
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Table 4. Temporal availability of MERIS images used in this study from January to December. 

 Year   

Month 2003 2004 2005 2006 2007 2008 2009 2010 2011 Total 

Jan 2 9 4 10 2 2 5 2 4 40 

Feb 1 7 2 6 2 5 4 1 3 31 

Mar 2 1 6 10 8 6 2 4 4 43 

Apr 3 1 3 8 9 10 6 11 6 57 

May 3 1 11 11 16 13 11 11 7 84 

Jun 10 0 15 14 13 13 11 10 13 99 

Jul 4 1 14 13 12 11 8 9 10 82 

Aug 10 3 12 14 13 15 9 13 12 101 

Sep 12 3 14 12 11 14 7 11 8 92 

Oct 7 1 13 6 12 12 8 6 7 72 

Nov 10 2 11 7 12 8 5 7 7 69 

Dec 9 5 8 6 5 5 3 5 6 52 

Subtotal   73      34      113     117     115     114      79      90       87 822 

 

The optical signal received by a satellite sensor is generally contaminated with several 

atmospheric particles. In total, the signal received by the top of atmosphere reflectance is a sum 

of the reflectance from Rayleigh scattering ρr(λ), the reflectance from the sum of aerosol 

scattering and the interaction between Rayleigh and aerosol scattering [ρa(λ) + ρra(λ)], the diffuse 

transmittances of the atmospheric column t(λ), and the water-leaving reflectance ρw(λ) (Gordon 

and Wang, 1994). 

The contributions to the top-of-the-atmosphere (TOA) radiance measured by a satellite 

come from several sources, from the solar radiance scattered by the atmospheric molecules and 
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aerosols, Sun and sky radiance reflected by the sea surface and from the water-leaving radiance 

[8]. Thus, for the estimation of any quantity of water quality parameters several steps must be 

followed. Figure 7 shows the schematic process of signal transmittance and interaction between 

the satellite and the water surface.  

 

 

Figure 7. Left panel: Illustration of Sun glint as seen from the TOA, which is described by a 

direct transmittance. Right panel: Illustration of water-leaving radiance as seen from the TOA, 

which is described by a diffuse transmittance [9].  

Where Lw is the water leaving radiance and Lu the upwelling radiance. Currently, there are 

several mechanisms for atmospheric correction, and they include those aimed at either clear or 

turbid waters. More details about atmospheric correction algorithms can be found in (Jaelani et 

al., 2013). Some of these atmospheric correction algorithms are embedded in software packages 

which are free of charge such as BEAMVISAT and they are based on neural network (NN) 

techniques (Doerffer and Schiller, 2007, 2008). The NN generally requires MERIS L1b TOA 

radiances as input to output atmospherically corrected water leaving reflectance at 12 bands. 

Because OLCI has similar characteristics of MERIS it was processed by using a new software 

                                                   
8 http://www.oceanopticsbook.info/view/atmospheric_correction/atmospheric_transmittances 
9 http://www.oceanopticsbook.info/view/atmospheric_correction/atmospheric_transmittances 

 

http://www.oceanopticsbook.info/view/atmospheric_correction/atmospheric_transmittances
http://www.oceanopticsbook.info/view/atmospheric_correction/atmospheric_transmittances
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designed to follow up the legacy of BEAMVISAT, i.e. the Sentinel Application Platform (SNAP). 

SNAP is a software package aimed at replacing the BEAMVISAT software for the processing of 

OLCI data, but they can still be used simultaneously, and SNAP contains similar functions of 

BEAMVISAT including the atmospheric correction algorithms.  

Among the existing atmospheric correction algorithms, the Case-2 regional processor 

(C2R) was chosen to carry out the atmospheric correction for both data, MERIS and OLCI. The 

C2R was chosen because (1) it has been tested over a wide range of atmospheric parameters 

(aerosol optical properties), and (2) it provides atmospheric correction, smile correction, land 

masking through its land detection, cloud and ice invalid pixels, and other flags for filtering the 

data (Doerffer and Schiller, 2008; Koponen et al., 2008; Doerffer and Brockmann, 2014). It is 

essential that atmospheric correction is performed on each satellite image to remove the 

atmospheric contributions and adjust for atmospheric attenuation of the water leaving radiance 

signal (Steissberg et al., 2010). The C2R processor uses a neural network which is trained with 

simulated Rrs spectra. About 30,000 spectra are used to cover a large range from case 1 and case 

2 waters as well as different observation and solar angles (IOCCG, 2006).  

To further avoid a possible influence from the bottom reflectance caused by the pixels 

along the shoreline, a 600-m buffer was generated to mask these pixels. After SD estimations, the 

daily SD values were aggregated into monthly (average 10-year SD values in each month) and 

yearly (average 12-months in each year) datasets.  
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2.2.2. In Situ Data Collection  

 

The in situ measured SD values used in this study and applied to MERIS data were measured in 

2007, Figure 8 shows the sampling locations. The SD values were measured along a 10-km 

South-North transect. The transect included one station (KGC) at the center of the cage farm 

(fish cages deployed in 2004 for fish aquaculture), 4 stations at the South (CS1-CS4) and 4 

stations at the North of the fish cage farm (CN1-CN4). The distance between two stations was 

controlled to be at least 1 km away (Gondwe et al., 2011). The name of stations and the number 

of in situ SD measurements for each station including the minimum and maximum SD values are 

summarized in Table 5. 

Although Malawi, Mozambique, and Tanzania have some research institutes focused on 

Lake Malawi studies, they investigate more about fish species and fish catch quantity, a little 

being done on the water quality (Guildford and Hecky, 2000). The available studies on water 

quality are mostly done by external researchers (Gondwe et al., 2011; Macuiane et al., 2016) 

who are not part of the research institutions and the studies are for academic purposes. The in 

situ data was used for comparison with the remotely sensed estimations through a validation 

process to check the performance of the two semi-analytical algorithms independently. Below is 

the location of the sampling stations.  
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Source: modified from Gondwe et al. (2011).        

Figure 8. Sampling locations in the southeast arm of Lake Malawi. KGC represents the center of 

the fish cage farm, CN1-CN4 represents four sampling stations in the North of KGC, and 

CS1-CS4 represents four sampling stations in the South of KGC, and the red circle is the 

sampling location for the data used in 2017.  

 

The in situ data for 2017 was measured on December 6th. This set of data was measured 

from the Mozambican side of the lake, a total of 10 sampling sites. The image from Figure 9 

shows the sampling location of the data used for validation of the OLCI sensor results. The 2017 

sampling locations are relatively close to the shore because it was possible to measure a 

reasonably wider range when compared to sampling made only in the center of the lake as it does 

not provide a dynamic range of water quality change. The other factor influencing the amount 

and location was the weather condition which changed unexpectedly.  
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Source: Google Earth 

Figure 9. Sampling locations for the 2017 validation data in Metangula, the red dots represent 

each location where sampling was carried out from North to South.  

 

 

The SD measured from the lake varied from 11.0 to 14.2. The sampling from 2017 was done in 

Metangula where a Fisheries Research Institute – Niassa Branch (Instituto de Investigação 

Pesqueira_Delegação de Niassa) is located. The sampling was done with the support of the staff 

from the institute. Figure 10-11 below show all the process, from preparation, departure and the 

sampling.   

 

 

 

Metangula  

1 

10 
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Figure 10. Sampling location, (A) the vision of the lake high from the road (B) vehicle being 

washed in the lake, small boats and people bathing, washing clothes and dishes in the lake, (C) 

the staff of the institute and the boat owners, (D) one of the boat owners trying to remove the 

anchor from the depths of the lake. 
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Figure 11. Sampling location, (A) departure to the sampling sites, (B) and (C) sampling in the 

first station.  
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Table 5. Stations and number of in situ SD measurements used for validation, including 

minimum and maximum values.  

 

 

 

Station       No of SD measurements       Min–Max (m)         

Sampling Time 

(Monthly) 

CS4                  20                  2.8 – 9.6                

 

except for Jul. and Aug. 

CS3                  15                  2.1 – 10.0 

CS2                  21                  2.4 – 10.2 

CS1                  14                  2.8 – 11.1 

KGC                 33                  2.9 – 9.6 except for Jan. and Aug. 

CN1                 15                   3.5 – 9.6  

except for Apr., Jul. and 

Aug. 

CN2                 22                   2.9 – 9.0 

CN3                 14                   3.0 –12.3 

CN4                 19                   3.9 –12.2 

In total               173                  2.1–12.3  

 

 

KGC represents the center of the cage farm, CN1-CN4 represents 4 sampling stations in the 

North of KGC, and CS1-CS4 represents 4 sampling stations in the South of KGC (Gondwe et al., 

2011). The total (min-max) is the range of the entire data. 
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2.3. The two Semi-Analytical Algorithms for estimating Secchi 

Disk Depth from Satellite Data  

 

Two main semi-analytical algorithms are currently being used by researchers to retrieve SD 

from several water bodies based on remotely sensed data. For Doron et al. (2011), SD is 

determined by the beam attenuation coefficient 𝑐 (m-1), and the vertical diffuse attenuation 

coefficient, 𝐾𝑑  (m-1), whereas for Lee et al. (2015) it is determined by 𝐾𝑑  (m-1), in the 

transparent window of the water body. 

 

2.3.1. Doron11 Algorithm 

 

The algorithm from Doron et al. (2011) was used to estimate SD. This algorithm focuses on 

the semi-analytical retrieval of the Inherent Optical Properties (IOPs), total absorption a (m-1) 

and backscattering coefficients bb (m
-1) from reflectance at two wavelengths, λ1, and λ2 in the 

visible (490 and 560 nm) region. This algorithm was validated using a wide range of coincident 

satellite estimates including from MERIS sensor. The comparison between SD retrieved from 

remotely sensed data and in situ measurements generated coefficients of determination between 

0.54 and 0.60, depending on the sensor. Therefore, following the algorithm from Doron et al. 

(2011), the first steps were carried out. Because the remotely sensed radiances from 

MERIS/OLCI had already been converted into Rrs, the next step was to convert them into 

irradiance reflectance. Thus, the following equations were used: 

 

 Rrs(0+, λ) = 
nLw (0+,λ)

F̅
0(λ)

                                                        (1) 

 

ρ
w (0+,λ,θ,ϕ) =  

πnLw (0+,λ) 

F̅
0(λ)

 =  πRrs(0+,λ)          
                                            (2)              
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Because the final goal was to calculate the irradiance reflectance just below the surface (R), the 

following equation was applied:  

 

R = 
Qρw

πℜ0+Qr̅ρw
                                                                (3) 

 

where Q = 4, ℜ0 = 0.529 and r̅ = 0.48; Consequently, R (490) and R (560) were obtained 

from Eq. (3). Knowing the values of R (490) and R (560), it was then calculated the 

backscattering coefficient at the reference wavelength bb (490) and the absorption at the same 

wavelength a (490), using Eqs. (4-7) and in the end Eq. (8) was used to calculate the vertical 

diffuse attenuation coefficient, 𝐾𝑑 (m-1). Note that in Eq. (6) bbw is the backscattering coefficient 

of pure water obtained from Zhang et al. (2009).  

The average ratio (B490−560 
) of the scattering coefficient at 490 and 560 nm was equal to 1.003 

(dimensionless) and the proportionality factor (α490−560) between the residual absorption at 490 

and 560 nm equal to 0.323 equally (dimensionless).  

 

  N = −B490−560 
bbw(560) + B490−560   

aw(560)

𝑓(560)
 R(560) + α490−560B490−560

 

𝑓(490)

𝑓(560)
 
R(560)

R(490)
bbw(490) −

α490−560B490−560
R(560)

𝑓(560)
 aw(490)                                                  (4) 

 

D = 1 − α490−560B490−560
𝑓(490)

𝑓(560)
 
R (560)

R (490)
                                           (5) 

 

bb(490) = bbw(490) + 
N

D
                                                       (6) 

 

a(490) = 
𝑓(490)bb (490)

R (490)
                                                         (7) 

 



31 

 

The value for the proportionality factor 𝑓 (λ) = 0.335 at both wavelength 490 and 560 nm, 

(Doron et al., 2011); and aw (490) and (560) from Pope and Fry (1997).  

 

𝐾𝑑(490) can be estimated from a(490) and bb(490) using the following equation (Lee et al., 

2013): 

 

𝐾𝑑(λ) = (1 + 0.005×θs)×a(λ) + (1-0.265×(bbw(λ)/bb(λ)))×4.259×(1 − 0.52e−10.8×a(λ)) ×bb(λ)             (8) 

 

where (θs) represents the solar zenith angle in degree, and bbw has been described above (Zhang 

et al., 2009). Eq. (8) was used by both Doron11 and Lee15, having as input their respective a and 

bb calculated independently.  

Once the diffuse attenuation coefficient was calculated, then Eq. (9) was used to calculate 

the particulate backscattering coefficient bbp(490), at the reference wavelength, Eq. (10) particulate 

scattering coefficient bp (490), and Eq. (11) for the scattering coefficient for pure water 

bw(490), in the end, the beam attenuation coefficient c (490) was calculated using Eq. (12):  

 

bbp(490) = bb490 −  bbw490                                                   (9) 

 

bp(490) =  
bbp(490)

−0.0310+0.0503 tanh(
bbp(490)+0.00686

0.00820
)
                                     (10) 

 

bw(490) = bbw(490)/0.5                                                    (11) 

 

c(490) = a(490) + bp(490) + bw(490)                                        (12) 

 

after obtaining 𝐾𝑑 (490) and c (490), the visual photopic vertical diffuse attenuation coefficient 

of the medium 𝐾𝑑(𝑣) and the visual photopic beam attenuation coefficient c(v) both in (m-1),  
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(𝐾𝑑(𝑣) + c(𝑣)) was calculated using: 

 

X = 𝐾𝑑(490) + c(490)                                                      (13) 

an important notice is that in equation (14) the “+” signal before “0.0467” was used as noted by 

Lee et al. (2018) instead of “-” in Doron et al. (2007, 2011).   

 

(𝐾𝑑(𝑣)+ 𝑐 (𝑣)) = 0.0989X2 + 0.8879X+0.0467                                  (14) 

 

where X represents 𝐾𝑑(490) + 𝑐(490), which are the vertical diffuse attenuation coefficient 

and beam attenuation coefficient at a wavelength of 490 nm, respectively. The 𝑐(490) can be 

further obtained from the sum of the total absorption coefficient and total scattering coefficient at 

490 nm (i.e., a(490) and b(490); a(490) and the total backscattering coefficient at 490 nm (i.e., 

bb(490)) can be calculated using Eqs. (11-12) in (Doron et al., 2011). The b(490) can be 

calculated from the sum of the particle scattering coefficient (Eq. 9 in Doron et al., 2007) and the 

scattering coefficient of pure water at a wavelength of 490 nm. 

Finally, using Eq. (15), SD from Doron11 was calculated as follows: 

  

  SD =
𝑙𝑛 (

𝐶0
𝐶𝑚𝑖𝑛

)

𝐾𝑑(𝑣)+𝑐 (𝑣)
   ,       ln(Co/Cmin) = 𝛤                                    (15) 

 

where the inherent contrast between the disk and background water reflectance (Co) is expressed 

as: 

Co = 
RSD − R∞

R∞
                                                               (16) 

The reflectance of the Secchi disk, RSD = 0.82 based on Tyler (1968), R∞ equal to 

irradiance reflectance just below the surface at 490 nm, and the minimum apparent contrast 

perceivable by the human eye (Cmin = 0.0066).  
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2.3.2. Lee15 Algorithm 

 

Lee et al. (2015) proposed a new mechanistic algorithm based on the underwater visibility 

theory. The new algorithm relies on the diffuse attenuation coefficients (Kd) at a wavelength 

corresponding to the maximum transparency for such interpretation. This algorithm was also 

validated by using data covering an extensive range of water types including oceanic, coastal, 

and inland, the results of SD showed excellent performance ranging from 1 to 30 m without 

regional tuning of any parameter. For the new algorithm, a and bb were firstly calculated from the 

quasi-analytical algorithm in its most recent version (QAAv6). 

The quasi-analytical algorithm was introduced by Lee et al. (2002), and the main objective 

was to retrieve absorption and backscattering coefficients, as well as absorption coefficients of 

phytoplankton pigments and gelbstoff. From its introduction, it has been modified into several 

versions including 4, 5 and more recently 6. Because it was designed for optically deep waters as 

input and applied to oceanic and coastal waters, some studies have proposed new alternatives, 

Yang et al. (2013) enhanced the QAAv5 to retrieve inherent optical properties IOPs for turbid 

inland waters based on the bandwidths of MERIS and the results indicated that the enhanced 

QAA had the potential to accurately retrieve the IOPs from MERIS Sensor observations for 

inland waters. Rodrigues et al. (2017) tested the applicability of Lee’s algorithm, by using 

QAAv5 to retrieve a and bb in an oligo-to mesotrophic reservoir in Brazil. They found that the 

results from (step 1) in their paper subsequently affected the performance of step 2 and 3. 

Because step 1 is mainly QAAv5, they then proposed a modified version of QAAv5 (QAAR17) 

and evaluated its performance. The results showed an improvement of Kd and SD. This 

conclusion denotes that a and bb are key elements in the calculation of SD. Lee et al. (2016) 

modified the QAA by verifying the representative wavelengths of Landsat-8 bands in the visible 

domain, as well as absorption and backscattering coefficients of pure water for these bands to be 

applied in the model of Lee et al. (2015). Once modified and applied to Landsat-8 data 
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high-spatial-resolution map of water clarity were produced. Table 6 describes the steps used to 

the calculation of a and bb as it was applied in this study.  

 

Table 6. Steps of the quasi-analytical algorithm version 6. 

Step                                  QAAv6 

0                                rrs (λ) = Rrs (λ)/(0.52 + 1.7Rrs (λ)) 

1                     u(λ) =
−g0 +√(g0 )2+4g1∗rrs (λ) 

2g1

, where g0 = 0.089 and g1 = 0.1245 

2     IF 𝐑𝐫𝐬 (670) < 0.0015 sr
-1  (QAAv5)                (else ) 

 

3 

χ = log (
rrs(443) + rrs(490)

rrs(55x) + 5
rrs(670)

rrs(490)
rrs(670)

) 

a(λ0) = a(55x) = aw(λ0) + 10h0+h1x+h2x2
 

a(λ0) = a(670) = aw(670) 

+0.39 (
Rrs(670)

Rrs(443) + Rrs(490)
)

1.14

 

 

4 bbp(λ0) = bbp(55x)

=
u(λ0) ∗ a(λ0)

1 − u(λ0)
− bbw(55x) 

bbp(λ0) = bbp(670)

=
u(λ0) ∗ a(λ0)

1 − u(λ0)

− bbw(670) 

5 
η = 2.0 (1 − 1.2exp (−0.9

rrs(443)

rrs(55x)
)) 

6 bbp(λ)= bbp(λ0) (
λ0

λ
)

η

 

 

The absorption and total backscattering coefficients are then calculated as:  

 

a(λ) = (1 − u(λ)) (bbw(λ) + bbp(λ)) /u(λ)                                      (17) 

 

bb(λ) = bbw(λ) + bbp(λ)                                                     (18) 
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Similarly, after calculating a and bb from QAAv6, and 𝐾𝑑  (λ), SD from Lee15 was 

calculated using Eq. (19): 

 

SD = 
1

2.5Min(𝐾𝑑(443,490,510,560,620,665))
ln(

|0.14−Rrs
pc

|

Ct
r )                                  (19) 

 

where Rrs
pc

 is the Rrs corresponding to the wavelength with the minimum 𝐾𝑑, and Ct
r is the 

contrast threshold of the human eye in radiance reflectance (= 0.013 sr-1). Min (𝐾𝑑(443, 490, 510, 

560, 620, 665) is the 𝐾𝑑 at MERIS/OLCI visible bands with a minimum value. The 𝐾𝑑 at a 

given band can be estimated from a and bb at the same band using Eq. (8) above. In the Lee15 

algorithm, the total absorption coefficient a and total backscattering coefficient bb were 

estimated from Rrs using the sixth version of the quasi-analytical algorithm (QAAv6). 
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2.4. Definition of Transparency Levels and Accuracy 

Assessment 

 

The Organization for Economic Cooperation and Development (OECD, 1982) classification 

system was used to define water transparency levels in Lake Malawi. In all, there are five 

transparency levels according to thresholds of SD values (OECD, 1982), which were also linked 

to trophic states of a water body (Table 7). This classification system was established to provide 

guidance on water to OECD members and non-OEDC member countries.   

 

Table 7. Transparency level definition according to thresholds of SD values in OECD (1982). 

  

Trophic Category Secchi Depth (m) Transparency Level  

Ultra-oligotrophic >12 1 

Oligotrophic 6 - 12 2 

Mesotrophic 3 - 6 3 

Eutrophic 1.5 - 3 4 

Hyper-eutrophic <1.5 5 

 

 In Table 7, the trophic categories from (OECD, 1982) are directly linked to the SD and 

water transparency levels. Because SD is related to light penetration in the water column and not 

productivity, only transparency levels are evaluated, and categorized from level 1 to 5. These 

transparency levels are graded from the clearest to the most turbid water in the lake. Before the 

definition of water transparency levels, the results were evaluated for their accuracy.  
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Thus, the following indexs were used: the Root mean square error (RMSE), Mean absolute 

percent error (MAPE), and Bias to evaluate the performance of the two semi-analytical 

algorithms. These error measurement indexs are defined as follows:       

 

 

RMSE = √∑ (𝑋𝑒𝑠𝑡,𝑖 −𝑋𝑚𝑒𝑎𝑠,𝑖)2𝑁
𝑖 = 1

𝑁
                                                 (20)  

                                                   

MAPE = 
1

𝑁
∑ |

𝑋𝑒𝑠𝑡,𝑖−𝑋𝑚𝑒𝑎𝑠,𝑖

𝑋𝑚𝑒𝑎𝑠,𝑖
|𝑁

𝑖 = 1 × 100%                                         (21) 

 

Bias = 
∑(𝑋𝑒𝑠𝑡,𝑖−𝑋𝑚𝑒𝑎𝑠,𝑖)

𝑁
 ,                                                      (22) 

 

where 𝑋𝑒𝑠𝑡 is the estimated SD value, 𝑋𝑚𝑒𝑎𝑠 is the corresponding in situ measured SD value, 

and N is the number of SD pairs. 

In order to avoid possible influence of any radiometric error and because the water surface 

is always in movement depending on the wind speed, it was used a 3×3 pixel, window size for 

the sensor pixel to be compared to the in situ data.  

 

 

   

   

   

 

The central pixel is taken as the representing value to be compared with the in situ measured 

data.  

900 m 

9
0
0
 m
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2.5. Results  

2.5.1. Comparison of Doron11 and Lee15 in Lake Malawi 

 

Spatially the two SD algorithms depict similarities regarding their distribution. An increase 

of SD from the shore to the center of the lake is visible in both results. The gradual increase is most 

visible in areas such as the West shore of the lake, southern and northern parts. The center of the 

lake is generally clear, as well as most of the East shore except for the southern region where both 

sides have a similar pattern of low SD. The southern part has lower depths than the northern, and it 

is the region where the only outlet of the lake is located. Figure 12 shows the spatial distribution of 

SD estimated from both algorithms. From the distribution maps and comparing the two algorithm 

results, SD from Doron11 > Lee15. From the maps of Lee15, the northern region shows low SD 

like the West and South parts of the lake. The Central and East parts are the clearest in terms of SD 

distribution. In 2004 the northern region shows the lowest SD when compared to other years 

within the study period. Because Doron11 estimated higher values, the same pattern could not be 

observed, but in the same year (2004), Doron11 also shows the lowest SD in the northern region. 

The West and South parts of the lake do also show low SD, though less expressive if compared 

with the results from Lee15. Doron11 shows a clearer result in almost all the regions of the lake as 

most of the SD is equal or above 13 m while Lee15 shows lower SD values in similar areas. The 

upwelling in Lake Malawi is more expressive at the South end of the lake, and the cool surface 

horizontal gradient is maintained by the upwelling of cooler deeper water (Hamblin et al., 2003). 

The upwelling can also occasionally bring nutrients to the surface waters, thus enabling the 

increase in productivity and decrease in SD.    

The results from both Doron11 and Lee15 show higher values in 2017 when compared to 

other years. Despite having similar band configuration, and same pre-processing procedures it the 

result from OLCI yields higher values when compared to the results from MERIS sensor. 
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However, it is still early to generalize such a difference between the products from both sensors. 

Only one year of OLCI was used, against 9 years from MERIS, thus making it a biased comparison 

and suggesting that further investigation is needed. For the first time in the study period values 

greater than 30 m were found in the lake in 2017.  

 

2003 2004 2005 

   

2006 2007 2008 
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2009 2010 2011 

   

2017  

 

Figure 12. Distribution maps of the results from the two algorithms showing the yearly average 

data. Left: Doron11 and right: Lee15. 

Because the two algorithms have shown similarities, further comparison were done 

including statistical evaluation on the pixel basis. In Figure 13 the yearly data from both 

algorithms are compared. From the scatter plot, the results from Doron11 are higher than Lee15. 

The results are more similar in the high SD values region than in the low SD values.  
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Table 8 shows more detailed information regarding the relationship between these two 

algorithms including the coefficient of determination, regression equations (polynomial fourth 

order), the absolute mean difference (AMD) and the relative mean difference (RMD). From 

2003-2011 all the scatter plots have the same characteristic, where the relation between the two 

datasets is very close and narrow. The scatter plot from OLCI shows a different pattern as it is 

shown in figure referent to the year 2017. One possibility for this difference might be on the 

atmospheric correction procedure which might not have worked properly for this data since both 

SD retrieval algorithms have produced higher values than MERIS results.  
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Figure 13. Pixel-based comparison of yearly estimated SD values using Doron11 algorithm and 

those using Lee15 algorithm in Lake Malawi.  
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The SD values derived from the Doron11 algorithm are strongly correlated with those 

derived from the Lee15 algorithm (Fig. 13), nonlinear but always with higher SD values. Similar 

relationships can be found in all years with high coefficients of determination larger than 0.96 for 

MERIS and 0.89 for OLCI, AMD ranging from 4.9 m to 6.5 m, and RMD ranging from 36.2% to 

58.7% (Tables 8 and 9).  

The summary of pixel-based comparison of yearly MERIS/OLCI - derived SD values using 

the Doron11 and Lee15 algorithms in Lake Malawi during the study period is found in Table 9. 

The absolute mean difference (AMD) is calculated as averaged |Doron11_SD – Lee15_SD|, and 

the relative mean difference (RMD) is calculated as averaged |Doron11_SD – Lee15_ SD|/ 

Lee15_ SD × 100.   

Table 8. Summary of pixel-based comparison of yearly estimated SD values using Doron11 

algorithm and those using Lee15 algorithm in Lake Malawi during the study period.  

 

Year R2 Regression Equation AMD 

(m) 

RMD 

(%) 

2003 0.99 y = (0.00012)x4+(-0.0054)x3+(0.04)x2+(1.51)x+(0.06) 5.6 48.1 

2004 0.98 y = (0.00013)x4+(-0.0050)x3+(0.04)x2+(1.53)x+(-0.10) 5.2 42.5 

2005 0.98 y = (0.00024)x4+(-0.0094)x3+(0.09)x2+(1.32)x+(0.34) 5.8 45.0 

2006 0.99 y = (0.00025)x4+(-0.0088)x3+(0.07)x2+(1.54)x+(-0.17) 6.5 48.9 

2007 0.98 y = (0.00035)x4+(-0.0131)x3+(0.13)x2+(1.18)x+(0.45) 5.7 46.8 

2008 0.99 y = (0.00021)x4+(-0.0074)x3+(0.05)x2+(1.61)x+(-0.23) 5.7 46.6 

2009 0.98 y = (0.00030)x4+(-0.0111)x3+(0.10)x2+(1.32)x+(0.25) 5.8 48.7 

2010 0.98 y = (0.00053)x4+(-0.0205)x3+(0.23)x2+(0.60)x+(1.54) 5.7 50.0 

2011 0.96 y = (0.00072)x4+(-0.0271)x3+(0.31)x2+(0.28)x+(1.91) 5.9 47.1 

2017 0.89 y = (0.00020)x4+(-0.0105)x3+(0.20)x2+(-0.20)x+(3.69) 5.5 36.2 

Average 0.97  5.7 46.0  
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Although their coefficient of determination shows a high correlation as shown in (Fig. 13) 

the error analysis indexes show that there is a considerable difference between Lee15 and 

Doron11 results. While the two algorithms originate from different theories, they still produce 

estimations that are highly correlated.      

In terms of SD spatial distribution, both yearly and monthly results show similar pattern 

characterized by low SD along the West shore and the southern part of the lake. In Lake Malawi, 

there is an influence from the inflow rivers, and they can highly determine the change in SD 

depending on the amount of rain and suspended matters and other substances drained into the 

lake from the watershed. The results from, January, February, and April show the lowest SD 

values in the northern region from both algorithms. The West and South regions are lower in 

February, July, and August; this feature can only be detected from Lee15 results. This is due to the 

low SD values estimated by Lee15. The difference within the water body is more visible from 

Lee15 results than Doron11, especially in the low SD regions. Since Doron11 estimated higher 

values than Lee15, the highest SD value was also found in January from Doron11. See Figure 14 

for more detailed monthly spatial distribution of SD.   
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Figure 14. Distribution maps of the results from the two algorithms for the monthly average data 

during the 2003-2011 study period. Left: Doron11 and right: Lee15.  

The scatter plot regarding the monthly comparison of the two algorithms results also illustrates a 

similar trend as the yearly data, where most of the pixels are concentrated in the higher SD 

levels.  
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Figure 15. Pixel-based comparison of monthly estimated SD values using Doron11 algorithm 
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and those using Lee15 algorithm in Lake Malawi.  

 

The summary of pixel-based comparison of monthly MERIS-derived SD values using 

the Doron11 algorithm and those using Lee15 algorithms in Lake Malawi during the study 

period is found in Table 9. The absolute mean difference (AMD) is calculated as averaged 

|Doron11_SD – Lee15_SD|, and the relative mean difference (RMD) is calculated as averaged 

|Doron11_SD – Lee15_SD|/ Lee15_SD × 100.  

 

Table 9. Summary of pixel-based comparison of monthly estimated SD values using Doron11 

algorithm and those using Lee15 algorithm in Lake Malawi during the study period.  

Month R2 Regression Equation AMD 

(m) 

RMD 

(%) 

Jan 0.98 y = (0.00024)x4+(-0.0093)x3+(0.10)x2+(1.07)x+(1.20) 6.5 47.3 

Feb 0.99 y = (0.00008)x4+(-0.0035)x3+(0.03)x2+(1.45)x+(0.18) 4.9 42.7 

Mar 0.98 y = (0.00033)x4+(-0.0145)x3+(0.19)x2+(0.52)x+(2.35) 6.3 48.1 

Apr 0.99  y = (0.00015)x4+(-0.0061)x3+(0.05)x2+(1.45)x+(0.12) 5.5 46.4 

May 0.98 y = (0.00028)x4+(-0.0094)x3+(0.06)x2+(1.72)x+(-0.87) 5.9 48.9 

Jun 0.98 y = (0.00005)x4+(0.0011)x3+(-0.11)x2+(2.98)x+(-3.73) 6.2 51.8 

Jul 0.97 y = (0.00042)x4+(-0.0124)x3+(0.06)x2+(2.12)x+(-2.13) 6.4 58.7 

Aug 0.97 y = (0.00090)x4+(-0.0323)x3+(0.35)x2+(0.37)x+(1.34) 6.0 54.2 

Sept 0.98 y = (0.00046)x4+(-0.0184)x3+(0.22)x2+(0.63)x+(1.66) 6.1 45.9 

Oct 0.99 y = (0.00014)x4+(-0.0049)x3+(0.02)x2+(1.63)x+(-0.08) 5.2 37.0 

Nov 0.99 y = (0.00018)x4+(-0.0064)x3+(0.05)x2+(1.49)x+(0.19) 5.2 40.0 

Dec 0.99 y = (0.00014)x4+(-0.0057)x3+(0.05)x2+(1.33)x+(0.55) 5.2 40.3 

Average 0.98  5.8 46.8 
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The combination of the two algorithms gave R2 ≥ 0.89. The annual results show a 

minimum R2 = 0.89 and a maximum of R2 = 0.99, which is like the monthly results, but the 

minimum is 0.97. On average the AMD and RMD are 5.8 m and 46.8 % for monthly data and 

5.8 m and 47.1% for yearly respectively.   

Figure 16 shows comparisons of in situ measured SD in 2007 and corresponding estimated 

SD values from MERIS data using Doron11 and Lee15 algorithms. First, all available in situ 

measured SD were compared to the estimated SD values from the closest MERIS data without 

consideration of the time difference between satellite acquisition day and in situ sampling day 

(Fig. 16a, b, N = 173). In this comparison, the maximum time difference was 31 days. The 

results show that the Lee15 algorithm generally performed better than the Doron11 algorithm 

with smaller RMSE value of 2.1 m (4.87 m for Doron11) and MAPE value of 30.76% (83.94% 

for Doron11). The SD values derived from the Doron11 algorithm showed obvious 

overestimations. In contrast, the SD values derived from the Lee15 algorithm almost distribute 

around the 1:1 line. However, the correlations between the estimated and in situ measured SD 

values are weak for both algorithms, although they were significant (R = 0.24 and p < 0.001 for 

both). 

Second, it was compared the in situ measured and MERIS data estimated SD values only 

for the same day data to reduce effects due to dynamic variation of water quality (Fig. 16c, d, N 

= 23). Results revealed that the RMSE and MAPE values were reduced to 1.86 m and 21.01% 

using the Lee15 algorithm, and 3.68 m and 66.87% with the Doron11 algorithm. In addition, the 

correlation coefficients were increased to 0.63 for the Lee15 algorithm and 0.65 for the Doron11 

algorithm (p <0.001). In this comparison, the Lee15 algorithm outperformed the Doron11 

algorithm.  

Third, it was further compared in situ measured and MERIS-derived SD values for 

matchups with a time gap smaller than 3h by considering NASA’s recommendation (Bailey and 

Werdell, 2006) and the high dynamic variation of water quality in the southeast arm of Lake 
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Malawi (Fig. 16e, f, N = 12). Results showed that the RMSE and MAPE values were further 

reduced to 1.17 m and 18.7% for Lee15 algorithm, with a correlation coefficient of 0.66 (p < 

0.05) and slope of 0.74. However, the RMSE and MAPE values using Doron11 algorithm were 

slightly increased with an insignificant correlation between the measured and estimated SD 

values (R = 0.52, but p > 0.05). This comparison also demonstrated that the Lee15 algorithm 

performed better than the Doron11 algorithm.  
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       (e)     (f) 

      

 

Figure 16. Comparison of in situ measured SD and estimated SD values from MERIS data. (a) 

using Lee15 algorithm for all available in situ SD measurements; (b) using Doron11 algorithm 

for all available in situ SD measurements; (c) using Lee15 algorithm for pairs at the same day; 

(d) using Doron11 algorithm for pairs at the same day; (e) using Lee15 algorithm for matchups 

within 3 h; (f) using Doron11 algorithm for matchups within 3 h, and (g) using OLCI for Lee15 

on the same day as the sampling data; (h) using OLCI for Doron11.  

The validation process of the 2017 data (Fig. 16g, h) was done under some limitations. The 

time gap between the measured and estimated data period had a difference of more than 3 h, thus 

restraining the possibility of having several combinations with a shorter time difference.  
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The closest dataset between the measured and estimated was on the same day as the 

satellite sensing day. In this pair of data, Lee15 had R = 0.49 and Doron11, R = 0.65. However, 

the other error evaluation indexs showed that Lee15 had better performance than Doron11 

(RMSE = 4.51 m vs 13.60 m; MAPE = 30.68% vs 81.91%; Bias = 3.64 m vs 8.83 m). As it was 

shown from the 2017 SD map, the SD values from Doron11 were higher than Lee15’s thus 

resulting in overestimation (Fig.16).  

These validation results give useful information on the consistency of the performance of 

both algorithms yet applied to ‘different’ satellite sensors. The results from Lee15 suggest that 

this algorithm is suitable for estimating SD from Lake Malawi as it was earlier tested by Lee et 

al. (2015, 2016) in water bodies with the SD range of Lake Malawi in terms of clarity. With the 

recent progress in the field of remote sensing and its application, and the free access to a ‘good’ 

set of data, using these two-sensor data would be a good opportunity to start a long-term change 

study over African lakes in general and Lake Malawi in particular. However, the accuracy of 

OLCI results is yet to be confirmed.     

 

 

 

2.5.2. Evaluation of Water Transparency in Lake Malawi 

 

After the better performance of Lee15 over Doron11 was confirmed through the validation 

process, Lee15’s results were then used as input for the water transparency evaluation. Figure 17 

shows yearly water transparency level maps in Lake Malawi, which were generated from the 

yearly SD distribution maps (obtained from MERIS/OLCI data using the Lee15 algorithm) based 

on the OECD classification system (i.e.Table 7). The yearly percentages for each water 

transparency level are summarized in Table 10. From Figure 17 and Table 10, it is seen that: (1) 

Lake Malawi maintained four transparency levels throughout the period from 2003-2011 and 

2017; (2) waters with transparency level 1 accounting for the largest area in the lake (58.7% - 
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84.6%), followed by waters with transparency level 2 (12.1% - 37.5%), level 3 (2.2% - 3.6%), 

and transparency level 4 (0.1% - 0.8%); (3) waters with transparency levels 3 and 4 always 

distributed along the southwestern and southern lakeshores, and sometimes found in the northern 

part (e.g., in 2004); (4) the largest change of transparency levels was found between level 1 and 

level 2; (5) waters with transparency levels 1 and 2 accounted for more than 95% of the lake. 

 

 

2003          2004            2005           2006            2007 

 

 

 

 

 

 

 

 



55 

 

2008           2009            2010           2011            2017 

 

 

 

 

 

 

Figure 17. Yearly water transparency level maps in Lake Malawi. These maps were generated 

from yearly SD distribution maps (obtained from MERIS/OLCI data using Lee15 algorithm) 

based on OECD (1982) classification system.  

 

Figure 18 shows monthly water transparency level maps in Lake Malawi, which were 

generated from monthly SD distribution maps (obtained from MERIS data using the Lee15 

algorithm) based on OECD classification system (OECD, 1982). From Figure 18 and Table 11, 

there were several noticeable seasonal variations of SD in Lake Malawi. First, the SD values 
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during October - January were generally higher than in other months, and more than 78.5% 

water area was classified as transparency level 1 during this period. Second, the lake water was 

more turbid in February, April, July, and August than in other months due to water areas with 

transparency level 2 constituting more than 31.3% in these months, especially in July the lake 

was dominated by water transparency level 2 (59.4%). Third, Lake Malawi was dominated by 

transparency levels 1 and 2 throughout the year (more than 95%), but other two water 

transparency levels (i.e., levels 3 and 4) were also found in the lake for each month.  
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Jul           Aug          Sept         Oct           Nov         Dec 

                                                 

   

Figure 18. Monthly water transparency level maps in Lake Malawi. These maps were generated 

from monthly SD distribution maps (obtained from MERIS data using Lee15 algorithm) based 

on (OECD, 1982) classification system. 

Table 10. The yearly percentage for each water transparency level shown in (Fig. 17). 

 

Year Level 1(%) Level 2(%) Level 3(%) Level 4(%) 

2003 67.6 28.4 3.6 0.4 

2004 65.5 30.5 3.6 0.4 

2005 79.7 17.3 2.8 0.2 

2006 80.0 17.7 2.2 0.1 

2007 72.5 23.9 3.3 0.3 

2008 73.6 22.5 3.6 0.3 

2009 68.6 27.6 3.6 0.2 

2010 58.7 37.5 3.6 0.2 

2011 

2017 

74.5 

84.6 

22.8 

12.1 

2.5 

2.5 

0.2 

0.8 

Average 72.5 24.0 3.1 0.3 

Legend

Level 1 (>12 m)

Level 2 (6-12 m)

Level 3 (3-6 m )

Level 4 (1.5-3 m)
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Table 11. The monthly percentage for each water transparency level shown in (Fig. 18). 

Month Level 1(%) Level 2(%) Level 3(%) Level 4(%) 

Jan 81.4 16.0 2.4 0.2 

Feb 53.8 40.8 4.2 1.2 

Mar 73.7 23.0 3.1 0.2 

Apr 64.7 31.3 3.5 0.5 

May 72.2 24.5 3.2 0.1 

Jun 70.0 26.7 3.2 0.1 

Jul 37.1 59.4 3.4 0.1 

Aug 50.9 45.1 3.8 0.2 

Sept 78.5 17.9 3.4 0.2 

Oct 87.5 9.5 2.7 0.3 

Nov 82.4 14.7 2.6 0.3 

Dec 79.2 17.4 3.0 0.4 

Average 69.3 27.2 3.2 0.3 

 

The yearly average results show that from 2003 there is a low SD value which then 

increased straight to 2006. From 2006 it dropped constantly until 2010 and from there increased 

all the way to 2017. Between 2005 and 2007, there was a peak in 2006. The lowest values of SD 

were found in 2010 and the highest in 2017. The trend line shows that SD in Lake Malawi 

increased from 2003 to 2017 (Fig. 19a). However, if the 2017 results are removed from the long 

term-analysis, then 2003-2011 results indicate that SD reduced during this period (Fig.19b). 

Additionally, if the overestimation is deducted from the 2017 results, (Fig. 19c) similar trend is 

found as in Figure 19b. Whether 2017 is included or not in the long-term analysis, the results 

indicate no significant change along the time as p > 0.05 in all three cases.  
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Figure 19. Yearly averaged SD from (2003-2017) (a), (b) (2003-2011), (c) (2003-2017 subtracted 

overestimation) in Lake Malawi (red solid line); the black dashed (---) line represents the trend 

line. 

The seasonal change was also analyzed, and the results show that there is one cycle in 

terms of SD variation. The first phase of the cycle goes from August to March with a sudden 

drop in February, and this first phase has higher SD values than the other phase which starts from 

April down to July constantly descending. Figure 20 shows the temporal change of average SD 

during the study period for the monthly data. 
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Figure 20. Temporal variability of SD during the study period, showing the lowest SD value in 

July and two negative peaks, in February and April. 

 

2.6. Discussion  

 

In this study, two semi-analytical algorithms were compared (i.e., Doron11 and Lee15) by 

applying them to Lake Malawi to estimate SD values from MERIS data (2003-2011) and OLCI 

data (2017). The results showed that although the two algorithms were developed based on 

different underwater visibility theories (i.e., classic and new), SD estimations using the two 

algorithms are highly correlated with R2 larger than 0.96 for MERIS and OLCI, R2 = 0.89 

(Tables 8 and 9). Lee et al. (2018) also reported a high R2 = 0.89 when comparing the 

relationship between the two algorithms with simulation data. These results indicate that there is 

no substantial difference between the two algorithms, especially if only one algorithm is used to 

evaluate water transparency change in a waterbody.  

However, it was found that the Doron11 algorithm always gave higher SD estimations than 

the Lee15 algorithm, with an averaged AMD value of 5.8 m in Lake Malawi. A similar trend was 
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also found by Lee et al. (2018). In addition, by comparing the SD estimations from the two 

algorithms to in situ SD measurements, it was found that Lee15 algorithm outperformed 

Doron11 algorithm with a MAPE value of 18.7% (Fig. 16e). In contrast, the Doron11 algorithm 

overestimated SD values with the MAPE value of 73.4% (Fig. 16f). These findings indicate that 

water quality would probably be overestimated if one used SD values from Doron11 algorithm. 

For example, if used the SD distribution maps generated using the Doron11 to classify water 

transparency levels, it was found that on average more than 94% of Lake Malawi were classified 

as level 1 and the sum of levels 3 and 4 were less than 1%, and thus probably resulted in an over 

evaluation for Lake Malawi. 

Preisendorfer (1968) reported that the value of the numerator of Equation (15) (i.e., Γ) 

could vary from 5 to 10. In the present study, the values of Γ were calculated in a range of 7.5–

8.3, with an average of 7.9, within the range of initially published values. Therefore, it is 

considered that the overestimations of SD values by Doron11 mainly derived from the 

denominator of Equation (15) (i.e., 𝐾𝑑(𝑣) + 𝑐 (𝑣)). Previous studies have pointed out that it is 

difficult to directly estimate 𝑐 (𝑣)  from Rrs because of the ratio’s requirement of the 

backscattering and scattering coefficients, which cannot be obtained from Rrs (Doron et al., 2007). 

In addition, it is well known that the ratio of the backscattering and scattering coefficients can 

vary temporally and spatially (Doron et al., 2007; Twardowski et al., 2001; Loisel et al., 2007; 

Stramska et al., 2000). The Lee15 algorithm overcomes this difficulty because the algorithm 

requires only 𝐾𝑑. Therefore, Lee15 algorithm can be considered more robust than the Doron11 

algorithm. However, it was still found some overestimations in lower SD values and 

underestimations in higher SD values with the Lee15 algorithm (Fig. 16), indicating that further 

improvements of the algorithm are necessary. 

As mentioned in the introduction, there is no routine monitoring of water transparency in 

Lake Malawi due to the financial and institutional constraints in the surrounding countries 

(Ballatore et al., 2014). In addition, even though there have been several studies measuring SD 
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values by field surveys, it is difficult to use these measurements to evaluate water transparency 

or its changes for the entire lake, because all these studies focused on only a small part of the 

lake for a short period of time. For example, Gondwe (2009) investigated seasonal variation of 

SD in the southeast Arm of Lake Malawi (see Fig. 8) and reported that SD values ranged from 

2.1 to 12.3 m; however, 79% of the SD values were between 4 and 8 m. Later, Macuiane et al. 

(2016) reported that SD values were between 2 and 6 m in the southeast part of the lake in 2012. 

In addition, Weyl et al. (2010) reported that SD values were between 12 and 20 m in Lake 

Malawi. 

None of the previous studies could show water transparency status for the entire surface of 

Lake Malawi, which, based on the results presented here, always has four transparency levels 

(SD values ranging from 1.5 m to > 12 m). The SD distribution maps generated from 

MERIS/OLCI data can show not only the different water transparency levels, and the percentage 

and spatial distribution of each level, but also their seasonal and annual variations (Fig. 17 and 

18). Such information is useful for lake water management. Therefore, it is considered that the 

combination of satellite data and the semi-analytical algorithm (Lee15) to be a useful tool for 

routinely monitoring water quality in Lake Malawi. 

These results also showed that turbid waters (transparency levels 3 and 4) in Lake Malawi 

are mainly distributed along the southwestern lakeshore. This is probably because most of the 

inflowing rivers, population, and rainfall are concentrated in the southwestern watershed of the 

lake (Nicholson et al., 2014). Although no significant water transparency changes were found in 

Lake Malawi during the study period (2003-2011, 2017), continuous monitoring of the lake’s 

water transparency remains necessary.  

As pointed out by a previous study, loss of biodiversity due to fishing and nearshore water 

quality impacts has been a threat to Lake Malawi (Bootsma and Jorgensen, 2004). The 

information on the water quality of Lake Malawi provided in this study can be used to help in the 

management of the lake and its basin.  
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Chapter 3 Evaluation of trophic states in 

Lake Malawi during 2003-2017 
 

Wang et al. (2018) focused on the assessment of the trophic states of the global inland 

waters using MODIS-derived Forel-Ule index (FUI) with results showing that within the water 

bodies considered in their study the eutrophic large lakes were in central Africa, eastern Asia, 

and mid-northern and southeast North America. Among the considered lakes only 3 were from 

Africa, of which 2 were considered eutrophic and 1 oligotrophic. When the lakes were analyzed 

based on their regional location, Lake Malawi was not considered as part of the African Great 

Lakes.          

According to Weyl et al. (2010) Lake Malawi receives drained material from the watershed 

in the form of inflow from rivers during the long and heavy rainy season carrying nitrogen, 

phosphorus, and other nutrients and the atmospheric deposition due to burning, thus increasing 

productivity in the lake.  

A long and intense practice of agriculture and other activities in the watershed can lead to 

an increase of nutrients in the lake resulting in eutrophication which is a process characterized by 

excess of nutrients in a water body (Bennett et al., 2001) but generally, this process is natural and 

takes time to occur if no human influence is detected. However, due to the water demands from 

the population living within the lake’s basin, an increase in population and urbanization, the 

possibilities of increase in nitrogen and phosphorus to the lake are higher. The possibility of an 

increase of nutrients could put the fish diversity and the population in jeopardize due to 

increasing in phytoplankton in the lake.  

Lake Malawi is generally qualified as oligotrophic (Macuiane et al., 2016, Chavula et al., 

2009) with an average chlorophyll concentration of 1 mg/m3. Bootsma and Jorgensen (2004) 

stated that Lake Malawi could be classified between oligotrophic to mesotrophic, considering its 
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Chl-a productivity. Weyl et al. (2010) considered the lake but with attention to the southern 

region and areas around major rivers which are mostly on the West shore as becoming 

increasingly eutrophic.  

Most of these studies were based on empirical observations which are time and space 

specific, and thus the difficulty in determining the precise trophic state of Lake Malawi, its 

spatial and temporal variation, and evaluate qualitatively and quantitatively.   

In Lake Malawi, an objective and descriptive evaluation of its trophic state are necessary. 

The focus of this chapter is on the qualitative and spatiotemporal evaluation of the trophic state 

of Lake Malawi based on Carlson’s TSI (Carlson, 1977).   

Several studies have been carried out based on Carlson’s TSI (Saluja and Garg, 2017; 

Cunha et al., 2013; Sheela et al., 2011; Watanabe et al., 2015; Cheng and Lei, 2001; Lillesand et 

al., 1983; Jarosiewicz et al., 2011; Adamovich et al., 2016; Bekteshi and Cupi, 2014). Saluja and 

Garg (2017) performed the spatial and temporal evaluation of the Bhindawas Lake in India and 

found that the lake’s trophic state varied between eutrophic and hypereutrophic. 

Membrillo-Abad et al. (2016) estimated the TSI of Lake Chapala in Mexico by combining the in 

situ measured water quality parameters (Chl-a and SD) and remotely sensed data. According to 

Cheng and Lei (2001) Carlson’s TSI is based on empirical relationships of the water quality 

parameters of a water body, thus its modification is desirable to meet the specific characteristics 

of each water body. Based on this assumption, studies such as Membrillo-Abad et al. (2016), 

Cunha et al. (2013), Sheela et al. (2011), and Sługocki and Czerniawski (2018) were carried out 

and the original equations from Carlson’s TSI were tuned into the target water bodies. Duan et al. 

(2007) performed a digital evaluation of Landsat TM data and field spectra measurements to 

estimate and map Chl-a and later converted into TSI. They concluded that Landsat TM data and 

in situ spectra could be used effectively to determine Chl-a concentration and evaluate the 

trophic state of their study area. Pomari et al. (2018) applied Carlson’s TSI equations and other 

three derived equations to 8 tropical/subtropical reservoirs in Brazil. Their results indicated that 
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the original model overestimated the trophic levels whereas the modified ones had a better 

performance.  

Considering the adjustable capability of the model to individual water bodies and 

independent evaluation of TSI, in this chapter, it is proposed the use of the TSI by Carlson 

(1977) combined with the water quality parameters derived from MERIS and OLCI sensor data, 

to help respond to the missing classification of Lake Malawi. For the calculation of TSI, Chl-a 

and SD from Lee15 algorithm were used as input in the individual regression analysis.  

 

3.1. Estimation of chlorophyll-a concentration from MERIS and 

OLCI data using OC4E algorithm 

 

NASA’s standard MERIS algorithm OC4E was used to retrieve Chl-a from Lake Malawi using the 

Rrs from the earlier pre-processing steps. The algorithm is expressed as follows based on O’Reilly 

et al. (1998): 

Chla_OC4E = 10(0.3255−2.7677𝑥+2.4409𝑥2 −1.1288𝑥3  −0.4990𝑥4)                      (23) 

where x is the 𝑙𝑜𝑔10 of the maximum band ratio of the three bands at the Rrs443, Rrs490, Rrs510 

to Rrs560 and the coefficients were derived using version 2 of the NASA bio-Optical Marine 

Algorithm Dataset (NOMAD).  

The results of Chl-a distribution maps in Figure 21 and 22 show that the lake is clearer in 

the center (open waters) but the West shore and the southern region show high Chl-a 

concentration. The average Chl-a concentration for the entire dataset is about 0.69 mg/m3, which 

is within the reported range (Chavula et al., 2009) but different from Macuiane et al. (2016) 

based on locally measured Chl-a in April 2012 (3.95 ± 0.19 μg/l in site 1, 4.79 ± 0.65 μg/l in site 

2, and 5.54 ± 0.29 μg/l in site 3). In the present study, the average minimum is 0.55 mg/m3 in 

2017 and an average maximum of 0.92 mg/m3 in 2003.  

https://seabass.gsfc.nasa.gov/wiki/NOMAD
https://seabass.gsfc.nasa.gov/wiki/NOMAD
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Figure 21. Yearly Chl-a spatial distribution for the entire lake.  

 

   

Legend

Value
High : 17 (mg/l)

Low :0



68 

 

 

Although high values of Chl-a are distributed along the shore, the area covered, and the values 

are still low. In terms of spatial distribution, both annual and monthly maps show similar pattern 

except for July and October where the concentration and area are higher than other months. High 

Chl-a concentration waters are along the shore and river mouth thus, denoting the influence from 

the rivers, and anthropogenic activities from the basin.   

Comparatively, the Chl-a monthly distribution maps show more variations than the yearly. 

Like the yearly spatial distribution, the monthly maps show high Chl-a from the shore to the 

center of the lake and regions with strong influence from the inflow rivers. The results from the 

monthly Chl-a concentration yield average value of 0.73 mg/m3 and an average minimum of 0.59 

mg/m3 in December and an average maximum of 0.96 mg/m3 in July. 
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Figure 22. Monthly Chl-a spatial distribution for Lake Malawi from OC4E.   

 

3.2. Adaptation of Carlson’s Trophic State Index for Lake 

Malawi  

 

From the traditional classification systems, three trophic states should be identified namely: 

oligotrophic: TSI < 40, mesotrophic: TSI 40-50 and eutrophic: TSI > 50 which could be found in 

any of the classification systems (Carlson, 1977; OECD, 1982). Carlson’s TSI has been modified 

and applied to tropical lakes successfully (Cunha et al., 2013; Salas and Martino, 1991). This TSI 
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model converts the water quality parameters into a standard numerical scale ranging from 0 to 

100. Cunha et al. (2013) developed and proposed a TSI model for tropical/subtropical reservoirs. 

In the results, they presented trophic state boundaries for TP and Chl-a and compared with other 

existing TSI boundaries.  

In this study, regressions analysis was carried out between the satellite-derived SD data and 

the satellite-derived Chl-a data. These two parameters were transformed into natural logarithm, 

i.e. (ln (Chl-a) vs ln (SD)). This process was applied to both yearly and monthly SD and Chl-a 

data.  
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Figure 23. Regression analysis between ln Chl-a (mg/m3) and ln SD (m) from 2003-2011 and 

2017. 
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The relations of log-transformed parameters for the yearly data shows that the highest 

relationship is found in 2017, and as expected they all had a negative relation (Fig. 23). The least 

R2 was found in 2007 (0.51). The relation of the log-transformed parameters was also built for 

the monthly datasets. These relationships from both yearly and monthly data were expected to 

produce linear relations. However, in some cases, the data are not as correlated as expected. 

Apart from October, all the other months have a high coefficient of determination (more than 

0.62). The monthly relation shows a higher correlation than yearly.  
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Figure 24. Regression analysis between ln Chl-a (mg/m3) and ln SD (m) from January to 

December. 

Carlson’s model was developed for temperate lakes, thus its application to other types of 

water bodies requires some modifications. The original equations in Carlson (1977) are 

presented below. First, an empirical relationship between water quality parameters were built, i.e. 

ln (SD) vs ln (Chl-a) Equation 24. Based on this relationship, TSI (SD) and TSI (Chla) was 

calculated by using Equations 25 and 26.  

 

𝑙𝑛 𝑆𝐷 = 2.04 − 0.68 𝑙𝑛 𝐶ℎ𝑙𝑎                                                  (24) 

 

TSI (SD) = 10(6 −
𝑙𝑛𝑆𝐷

𝑙𝑛2
)                                                      (25) 

 

TSI (Chl-a) = 10(6 −
2.04−0.68 (𝑙𝑛Chla)

𝑙𝑛2
)                                           (26) 

 

where 6 and 2 are the scale factor and Equation 24 is inserted into Equation 26.  
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Cheng and Lei (2001) suggested the replacement of the coefficients 6 and 2 in Eqs. (25 and 26) 

by the scale factor a and b to allow their adaptation to locally derived coefficients. Thus, the 

original equations from Carlson (1977) are rewritten as follows: 

  

 TSI (SD) = 10(𝑎 −
𝑙𝑛𝑆𝐷

𝑙𝑛𝑏
)                                                    (25a) 

 

TSI (Chl-a) = 10(𝑎 −
intercept−slope (𝑙𝑛Chla)

𝑙𝑛𝑏
)                                     (26a) 

 

The initial relationships between the two parameters ln (SD) vs ln (Chl-a) can be found in Figure 

23, 24, and replaced in Equation 26a. Further, the scale factors a and b are generated from the 

range factor 𝑏𝑎 using Eqs. (27 - 31).   

 

𝑏𝑎 = 𝑆𝐷max                                                                 (27)  

 

𝑇𝑆𝐼𝐶ℎ𝑙−𝑎 ≈ 𝐶ℎ𝑙 − 𝑎max = 100                                                   (28) 

where 𝑆𝐷max  is the maximum SD value and 𝐶ℎ𝑙 − 𝑎max is the maximum Chl-a value. 

From Eq. (27) the following equations are derived: 

 

 𝑎 = 𝑙𝑜𝑔𝑏(𝑆𝐷max )                                                          (29) 

 

 𝑎 = 
𝑙𝑛( 𝑆𝐷max ) 

𝑙𝑛𝑏
                                                             (30) 

 

In Eqs. (27 and 28) the 𝑆𝐷max and 𝐶ℎ𝑙 − 𝑎max  can be obtained from the satellite-derived 

estimates. Here the year 2005 is used as an example. Therefore, the intercept and slope from 

Figure 23 in the year 2005 are replaced in Eq. (26a), simultaneously Eq. (28 and 30) are also 
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combined in Eq. (26a) and the 𝑆𝐷max  and 𝐶ℎ𝑙 − 𝑎max  are found in Table 12. Then, Equation 

31 is used to calculate b and later replaced in Eq. (30) for the obtention of a for the year 2005. 

 

 

       100 = 10(
𝑙𝑛( 𝑆𝐷max ) 

𝑙𝑛𝑏
−

intercept − slope(𝑙𝑛(𝐶ℎ𝑙−𝑎max )) 

𝑙𝑛𝑏
) 

       100 = 10(
𝑙𝑛( 22.64) 

𝑙𝑛𝑏
−

2.20 + 0.55(𝑙𝑛(13.59))

𝑙𝑛𝑏
) 

       100 = 10(
3.12 

𝑙𝑛𝑏
−

2.20 + 0.55 x 2.61

𝑙𝑛𝑏
)               

       10 = 
3.12−2.20 + 0.55 x 2.61 

𝑙𝑛𝑏
                                               (31)   

        𝑙𝑛𝑏 = 
3.12−2.20 + 0.55 x 2.61 

10
 

       𝑙𝑛𝑏 = 0.23 

         𝑏 = 𝑒0.23     

        𝑏 = 1.26 

 

Finally, 𝑎 = 13.33 and the modified Carlson’s TSI for Lake Malawi is expressed as follows for 

the year 2005: 

 

TSI (SD) = 10(13.33 −
𝑙𝑛𝑆𝐷

𝑙𝑛1.26
)              (32) 

 

TSI (Chl-a) = 10(13.33 −
2.20−0.55 (𝑙𝑛Chla)

𝑙𝑛1.26
)           (33) 

 

The same steps were used to generate a and b for the remaining years and months.     
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Table 12. Yearly coefficients for the modified TSI in Lake Malawi. 

 

Year 𝑆𝐷max  𝐶ℎ𝑙 − 𝑎max  𝑎 𝑏 

2003 29.58 13.44 14.75 1.26 

2004 23.49 12.62 13.53 1.26 

2005 22.64 13.59 13.33 1.26 

2006 26.44 16.22 19.86 1.18 

2007 20.55 11.93 18.88 1.17 

2008 20.67 11.69 14.95 1.22 

2009 21.14 11.00 16.40 1.20 

2010 22.52 14.21 16.30 1.21 

2011 23.12 13.35 14.81 1.24 

2017 33.63 6.74 13.49 1.30 

 

 

Table 13. Monthly coefficients for the modified TSI in Lake Malawi 

 

Month 𝑆𝐷max  𝐶ℎ𝑙 − 𝑎max  𝑎 𝑏 

Jan 23.97 12.54 16.10 1.22 

Feb 27.08 12.31 13.12 1.29 

Mar 23.95 13.79 16.24 1.22 

Apr 28.56 11.42 13.54 1.28 

May 25.52 8.26 14.37 1.25 

Jun 29.58 8.64 14.07 1.27 

Jul 23.89 12.62 17.37 1.20 

Aug 21.51 11.38 15.53 1.22 

Sep 24.17 15.32 13.78 1.26 

Oct 20.53 12.47 20.21 1.16 

Nov 17.86 11.55 13.80 1.23 

Dec 23.15 13.22 14.32 1.25 

If the trophic state is generated for more than one parameter for a given lake it can serve as 

an internal evaluation of both the methodology and the assumption based on the relationships 

between parameters (Carlson, 1977).  
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Table 14. Carlson’s TSI and corresponding water quality parameters boundaries (Carlson, 1977). 

 

Characteristics TSI SD (m) Chl-a (mg/m3) 

 

 

Oligotrophic 

0 64 0.04 

10 32 0.12 

20 16 0.34 

30 8 0.94 

Mesotrophic 40 4 2.6 

50 2 6.4 

Eutrophic  60 1 20 

70 0.5 56 

 

Hypereutrophic 

80 0.25 154 

90 0.12 427 

100 0.062 1.183 

 

The TSI classification boundary was based on Carlson’s model scheme from Table 14. 

From these boundaries, the coverage of the trophic state in percentage was calculated to 

scrutinize how much water belonged to the existing TSI in Lake Malawi. Primarily, the four TSI 

ranges were found in the lake and then evaluated for their annual and monthly TSI (SD) and TSI 

(Chl-a) (see Table 15-18).   

Table 15. The yearly percentage for each TSI (SD) level. 

 

 

Percentage (%)  

Year  

TSI (SD) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2017 

Oligo 70.68 89.19 93.05 66.90 82.17 89.63 86.68 78.51 90.69 85.23 

Meso 22.81 7.11 4.35 24.94 11.28 6.23 8.04 15.65 5.92 10.09 

Eutro 4.30 2.88 2.13 4.50 3.37 2.87 3.31 3.60 2.58 3.05 

Hyper 2.21 0.82 0.48 3.65 3.17 1.27 1.97 0.81 0.81 1.63 

           
Oligotrophic:    < 40  

Mesotrophic:    40 - 50 

Eutrophic:      50 -70  

Hypereutrophic: > 70 
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The TSI (SD) shows that major portion of the lake belongs to the oligotrophic category 

followed by mesotrophic, eutrophic and hypereutrophic. On average, 83.27% of the lake was 

oligotrophic during the study period, 11.64% mesotrophic, 3.26% eutrophic and 1.68 % 

hypereutrophic. There is stabilization in terms of the distribution of the TSI (SD) since no 

extreme changes were found in the interannual variation of the portion covering each trophic 

level. This indicates that the lake is stable with most of its waters being oligotrophic to 

mesotrophic (Table 15).  

Table 16. The yearly percentage for each TSI (Chl-a) level.    

 

 

 

As to the TSI (Chl-a), the lake is also mostly dominated by oligotrophic waters on average 

79.63%, 16.54% for mesotrophic, 3.35% for eutrophic and 0.46% for hypereutrophic (Table 16). 

The results from Table 16 show that the lowest percentage of the oligotrophic index was found in 

2003, which is different from the TSI (SD). The TSI (Chl-a) percentage for the mesotrophic is 

higher than TSI (SD) and this pattern can be observed from the individual trophic state levels. 

While there are dissimilarities in the yearly percentage distribution for each TSI, their temporal 

variation is similar in the oligotrophic and mesotrophic levels but different in the eutrophic and 

hypereutrophic levels.  

 

Percentage (%)  

Year  

TSI (Chl-a) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2017 

Oligo 54.86 87.85 93.14 59.47 77.94 88.86 84.24 75.19 89.24 85.51 

Meso 41.47 9.42 4.77 31.61 19.15 7.44 13.40 20.58 8.04 9.52 

Eutro 3.33 2.50 1.74 8.09 2.52 3.18 2.22 3.91 2.57 3.43 

Hyper 0.34 0.22 0.35 0.83 0.39 0.52 0.14 0.15 0.15 1.53 

           
Oligotrophic:    < 40  

Mesotrophic:    40 - 50 

Eutrophic:      50 -70  

Hypereutrophic: > 70 
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Table 17. The monthly percentage for each TSI (SD) level. 

 

Percentage (%) 

TSI (SD) Oligo Meso Eutro Hyper 

Jan 87.61 7.90 3.00 1.49 

Feb 78.76 15.92 3.39 1.94 

Mar 81.19 13.01 3.93 1.86 

Apr 83.67 11.63 3.36 1.34 

May 87.81 8.04 3.40 0.74 

Jun 77.72 17.50 3.94 0.83 

Jul 48.15 44.42 4.62 2.81 

Aug 80.80 14.18 3.37 1.65 

Sep 90.23 6.11 2.78 0.88 

Oct 89.49 4.61 2.71 3.20 

Nov 94.69 3.34 1.45 0.52 

Dec 90.79 5.55 2.57 1.10 

Average 82.58 12.68 3.21 1.53 

 

 

 

 

The results from the monthly TSI (SD) show similar percentage distribution like the annual 

considering the coverage of oligotrophic, mesotrophic, eutrophic and hypereutrophic waters. 

However, in July there is an abnormal deviation from the remaining months showing that the 

oligotrophic state covers only 48.15%, mesotrophic 44.42% and eutrophic 4.62% and 

hypereutrophic 2.81%. Except for the data from July, the oligotrophic and eutrophic levels are 

stable when compared to the other two levels (mesotrophic and hypereutrophic) showing huge 

variations. The presence of the hypereutrophic level is obvious although with variations in terms 

of coverage between a minimum of 0.52% and maximum 3.20% and 1.53% on average. The 

percentage values of the eutrophic categories are higher and more stable on average 3.21% and a 

minimum of 1.45% and a maximum of 4.62%.  

Oligotrophic:    < 40  

Mesotrophic:    40 - 50 

Eutrophic:      50 -70  

Hypereutrophic: > 70 
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Table 18. The monthly percentage for each TSI (Chl-a) level.         

 

Percentage (%) 

TSI (Chl-a) Oligo Meso Eutro Hyper 

Jan 86.54 8.96 3.80 0.71 

Feb 78.26 16.26 4.69 0.79 

Mar 79.91 15.02 4.20 0.87 

Apr 81.36 13.67 4.63 0.34 

May 86.95 9.09 3.70 0.25 

Jun 77.49 18.03 3.96 0.52 

Jul 50.60 44.60 4.66 0.14 

Aug 81.18 16.08 2.49 0.26 

Sep 89.90 7.55 2.47 0.08 

Oct 86.70 12.03 1.21 0.06 

Nov 95.56 3.22 1.08 0.14 

Dec 88.92 7.89 2.97 0.23 

Average 81.95 14.37 3.32 0.37 

 

 

 

 

From Table 18 it can be observed that the TSI (Chl-a) shows stability in terms of the 

percentage distribution between the months, where the oligotrophic and eutrophic are 

comparatively stable. The distribution is like the previous results TSI (SD). These two TSI 

(Chl-a and SD) are closer at the oligotrophic and eutrophic levels.    

Attention should be given to the mesotrophic category as it can easily exchange positions 

with the oligotrophic and the eutrophic which in turn will influence the hypereutrophic. Based on 

the reports from Weyl et al. (2010) that some areas of Lake Malawi were becoming increasingly 

eutrophic, the results presented here show that not only eutrophic waters are present in the lake 

but also hypereutrophic. The results from both TSI (SD) and TSI (Chl-a) show that the 

percentage of eutrophic and hypereutrophic waters increase from December to April.         

Oligotrophic:    < 40  

Mesotrophic:    40 - 50 

Eutrophic:      50 -70  

Hypereutrophic: > 70 
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The SD average, minimum and maximum for the yearly data for the entire study period 

varied from 8.9 to 33.6 m corresponding to oligotrophic waters. In the mesotrophic waters, the 

SD ranges between 5.6 and 13.7 m. As for the eutrophic waters, the range varies from 3.5 to 9.8 

m and 0.4 to 7.1 m for hypereutrophic. This range covers the entire dataset from 2003-2017.  

Equally an analysis of the Chl-a average, minimum and maximum was made, and the 

following boundaries were found: 0.1 to 1.0 mg/m3 corresponding to the oligotrophic TSI; 0.4 to 

2.4 mg/m3 mesotrophic TSI; 1.4 to 5.8 mg/m3 eutrophic TSI; and 2.3 to 16.2 mg/m3 TSI. When 

evaluated individually, the maximum of SD (m) corresponding to the oligotrophic boundary 

could be representing a small number of pixels. The same applies to the maximum of Chl-a 

(mg/m3) boundary value corresponding to the hypereutrophic state.  

 

 

3.3. Spatiotemporal variations of trophic states in Lake Malawi  

 

The trophic state estimation using satellite data has the advantage of being able to assess its 

spatiotemporal variability. The spatiotemporal differences between the two TSI (Chl-a and SD) 

are visible from Figure 25 and Figure 26. Generally, oligotrophic waters are in the pelagic zone 

of the lake. Some years (e.g. 2003) have shown a huge difference in their TSI spatial distribution. 

However, the difference was caused by the water pixels found in the limit of the TSI boundaries. 

This can be observed from the mean values of the TSI from both Chl-a and SD (Fig. 27).   
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2009 2010 2011 

   

2017   

  

  

Figure 25. Comparison of the yearly spatiotemporal distribution of the TSI. Left: TSI (SD) and 

right: TSI (Chl-a). 

The spatial distribution shows that 2003 has the biggest discrepancy between the TSI 

(Chl-a) and TSI (SD), and the Chl-a derived TSI seems to be more sensitive to changes. In 2003 

for example, there was an enormous difference between TSI (Chl-a) and TSI (SD) in the 
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oligotrophic and mesotrophic levels. But in the eutrophic and hypereutrophic the distribution 

seemed to have matched. In 2004, 2005, 2008, 2011 and 2017 the TSI have similar spatial 

distribution. However, in the remaining years, they showed some differences (see Fig. 25). 

Despite these differences, the general pattern of the TSI spatial distribution is from the shore to 

the lake’s open waters. The hypereutrophic and eutrophic waters are located along the western 

shore and close to the river mouth. The same distribution could be said about the mesotrophic 

which functions as a transitioning level but mostly located in the western shore as well as the 

southern part of the lake.  

Figure 26 shows the monthly spatial distribution of the TSI. The northern region of the lake 

shows hypereutrophic waters during the warm wet season. In March TSI (Chl-a) shows an 

inflow from the Songwe River in the northern part of Lake Malawi.  

 

 

January February March 
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October November December 

      

 

 

 

 

 

Figure 26. Comparison of the monthly spatiotemporal distribution of the TSI. Left: TSI (SD) and 

right: TSI (Chl-a). 

The comparison shows that the average value of the TSI is very close as expected and 

referred by Carlson (1977), and Carlson and Havens (2005). The average monthly data were 

compared, and similar results were found. However, while the least coefficient of determination 

in the annual data was 0.50 in 2007, the monthly data showed the lowest coefficient of 

determination equal to 0.42 in October.  

The results shown here from the annual and monthly average data indicate that Lake 

Malawi is still oligotrophic with an annual and monthly average TSI around 31 for both TSI 
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(SD) and TSI (Chl-a) derived. And the individual year and month also do not exceed the 

determined limit for the oligotrophic except for 2003 and 2006 with a slight increase. The two 

TSI (SD) and TSI (Chla) have the same temporal variability. Their change over time is not 

significant, (p > 0.05) and it tends to reduce over time.  

 

 

Figure 27. Average temporal variability of TSI in Lake Malawi showing almost no deviation. 

 

A further evaluation was carried out based on each trophic levels and the results indicate 

that: (1) temporally the trend analysis for the oligotrophic levels does not have any significance, 

( p > 0.05 and R2 = 0.02), (2) the temporal change for the mesotrophic level is also insignificant, 

( p > 0.05 and R2 = 0.08). For the eutrophic level, (3) it is increasing but not significantly like the 

(4) hypereutrophic level (Fig. 28a-d).         
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Figure 28. Temporal variability of the individual TSI level (a) oligotrophic, (b) mesotrophic, (c) 

eutrophic and (d) hypereutrophic.    
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The monthly variation of the TSI from the two (Chl-a and SD) parameters show that from 

July to November the TSI in Lake Malawi drops substantially. From November to July it 

increases up to the boundary between oligotrophic and mesotrophic (Fig. 29a). This trend seems 

to agree with the rainy season and some additional months. A similar trend of variability was 

found in the oligotrophic level due to its huge percentage in the lake (Fig. 29b). In the 

mesotrophic level, it increases from August to March with a slight drop in February (Fig. 29c). 

This pattern combines with the rainfall variation described by Nicholson et al. (2014). The 

eutrophic level shows stability throughout the year except for a drop in July for TSI (SD) and 

another in October for TSI (Chl-a), and it increased for the TSI (SD) in the same period (Fig. 

29d). Finally, the hypereutrophic level also shows stability throughout the year with two peaks in 

July and October for TSI (SD) whereas the TSI (Chl-a) shows to be more stable (Fig. 29e).  
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Figure 29. Monthly variability of TSI in Lake Malawi (a) monthly average TSI (Chl-a and SD), 

(b) monthly average TSI (Chl-a and SD) oligotrophic, (c) monthly average TSI (Chl-a and SD) 

mesotrophic, (d) monthly average TSI (Chl-a and SD) eutrophic and (e) monthly average TSI 

(Chl-a and SD) hypereutrophic. 

 

3.4. Analysis of the Deviation between the Trophic State Index 

from Chlorophyll-a concentration and from Secchi Disk Depth  

 

The TSI is a biomass classification using chlorophyll as the main trophic definition 

parameter in the presence of the other two parameters, TP and SD (Carlson, 1977). The three 

parameters (Chl-a, SD and TP) independently estimate algal biomass and should produce the 

same index value for a given combination of parameters. This assumption is only valid in the 

presence of an ‘ideal’ pair of datasets and if no misclassification is found or occurs during the 

classification process (Cheng and Lei, 2001). Following the work from Carlson (1977), Carlson 
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(1991) and Carlson and Havens (2005) stated that the interrelationships between the parameters 

can be used to identify trophic state misclassification and this can indicate either methodological 

problems or provide additional insights about the lake’s dynamics. Using Carlson’s TSI and their 

deviations, Ndungu et al. (2013) found that Lake Naivasha in Kenya had a TSI that varied 

between eutrophic and hypereutrophic and the graphical representation of the deviations showed 

that the lake was phosphorus limited TSI (Chl-a) > TSI (TP). Mamun and An (2017) analyzed 

the TSI deviation of 182 agricultural reservoirs in Korea and found that phosphorus was also the 

limiting factor regulating phytoplankton growth and supported their statement with the deviation 

relations TSI (Chl-a) – TSI (SD) < TSI (Chl-a) – TSI (TP). In both studies, the results indicated 

that the lakes and reservoirs were phytoplankton productive as Lake Naivasha was more 

eutrophic than previous reports and the agricultural reservoirs in Korea had influence from high 

amounts of fertilizers (Ndungu et al., 2013; Mamun and An, 2017).            

Using the three (Chl-a, SD, and TP) parameters provides the opportunity for a more 

complete evaluation of the deviations, considering that the three can be cross-checked. 

Nevertheless, in this study, only the estimated parameters were used for the calculation of the 

TSI, and the deviation analysis.   

The TSI (SD) and TSI (Chl-a) estimates correspond to a series of boundaries. For Lake 

Malawi, the following trophic state boundaries for SD (m) and Chl-a (mg/m3) were found. The 

data are presented in pairs of two for each TSI and their equivalent parameter (Table 18). Each 

pair of data is made up of average minimum and average maximum for a specific TSI. From the 

values presented in Table 18 and the previous reports about the SD values and Chl-a 

concentration in Lake Malawi (Weyl et al., 2010; Chavula et al., 2009; Bootsma and Jorgensen, 

2004) the boundaries are still within the threshold since Chl-a at the oligotrophic boundary is still 

below 1 mg/m3. As for SD, there is a deviation of about 2.6 m between the reference value 12 m 

and 10.6 m. More detailed comparison could not be made based on the other TSI levels (i.e. 

mesotrophic, eutrophic and hypereutrophic) due to lack of reference study regarding the 
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boundary of the trophic state in Lake Malawi. Thus, in the absence of such type of information, 

the values from Table 19 and its approximations can be used as a base for further evaluation of 

these boundaries.             

 

Table 19. Trophic state boundaries for SD (m) and Chl-a (mg/m3) found in this study.  

 

TSI Level TSI Value SD (m) Chl-a (mg/m3) 

Oligotrophic < 40 10.6  -  24.4 0.1  -  0.8 

Mesotrophic 40 - 50 7.0  -  10.6 0.8  -  2.0 

Eutrophic 50 - 70 4.7  -  7.0 2.0  -  5.0 

Hypereutrophic > 70 1.2  -  4.7  4.7  -  12.5 

 

The existing deviations between the two TSI (Chl-a) and TSI (SD) were evaluated based 

on Carlson (1991). Table 20 shows the conditions associated with the deviations proposed by 

Carlson (1991). Due to the limitation on the number of parameters only three conditions and 

their corresponding description are given. 

    

Table 20. Conditions associated with deviations between trophic state, modified from Carlson 

(1991).   

Condition Description  

TSI (Chl-a) ≈ TSI(SD) Algae dominate light attenuation  

TSI (Chl-a) > TSI(SD) Large particulate, such as 

*Aphanizomenon flakes, dominate  

TSI (Chl-a) < TSI(SD) Sediments or other organic matter 

dominate  

 * Aphanizomenon: is a brackish and freshwater species of cyanobacteria. 

 

The yearly deviation analysis based on the average of the difference between the two TSI 

TSI (Chl-a) – TSI (SD) was performed and indicated that light attenuation in Lake Malawi was 

https://en.wikipedia.org/wiki/Cyanobacteria
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dominated by algae because almost all the years from the comparison were equal to zero (0.0) 

except for 2006 (0.1), 2007 (0.2) and 2017 (0.1). Even though there were these exceptions, it can 

be considered that overall the light attenuation in the lake is dominated by algae.  

The deviation results were then used to evaluate the lake’s light attenuation based on each 

TSI level. This information can be useful for regional, spatial or local understanding of the 

different elements influencing the light attenuation at each trophic level. The results from the TSI 

deviations analysis per trophic level show that for the oligotrophic and mesotrophic levels, the 

light is either attenuated by algae or larger particles such as Alphanizomenon as the average 

values for all years in this trophic are positive except for 2003 difference of -0.42 and -0.97 for 

2006. The difference in the mesotrophic level has the exception of 2003 with a difference of 

-0.04, -0.32 for 2005, and -0.31 for 2009. On average, the differences are positive (see Figure 

28a and 28b).   

The other two trophic states (eutrophic and hypereutrophic) show TSI (Chl-a) < TSI (SD) 

(see Figure 28c and 28d) and thus the light in these trophic levels is attenuated by non-algal 

particles most probably sediments from the watershed as they are distributed along the shore. 

The monthly deviation results also show that TSI (Chl-a) ≈ TSI(SD) in oligotrophic level. 

Thus, it can be considered that the monthly light attenuation in Lake Malawi is also determined 

by algae biomass which can include Asterionella Formosa, Melosira Granulate and others. These 

algae species are said to belong to oligotrophic waters (Rawson, 1956). 

When individually evaluated, the seasonal variation can be observed from the monthly 

average data. In the oligotrophic level, the deviations show that on average TSI (Chl-a) < TSI 

(SD) in January, April, June and December, TSI (Chl-a) > TSI (SD) in August and October and 

TSI (Chl-a) ≈ TSI (SD) in the rest of the months (see Figure 29b). 

The mesotrophic deviations show that TSI (Chl-a) < TSI (SD) in March, May, July, August 

and November and the remaining months TSI (Chl-a) ≈ TSI (SD) (Figure 29c). The eutrophic 

deviations show that from May to December except for July, TSI (Chl-a) < TSI (SD) and the 
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remaining ones TSI (Chl-a) ≈ TSI (SD) (Figure 29d). The hypereutrophic level indicates that TSI 

(Chl-a) < TSI (SD) through the year (Figure 29e). The deviations between the two TSI show that 

it is less than 1 TSI for oligotrophic, mesotrophic and eutrophic and less than 10 TSI for 

hypereutrophic.  

The growth and productivity of phytoplankton in Lake Malawi is very low, thus the 

absence of large amounts of nutrients or their dispersion in the lake makes the effects of nutrients 

to the lake neutral. According to Dardeau et al. (1992) there are five limiting factors for 

phytoplankton growth, they are light, temperature, circulation, grazing, and nutrients. Some 

studies have indicated that light and nutrient limitation could play an alternating role within 

different longitudinal zones (Cunha and Calijuri, 2011). The results from this study indicate that 

nutrient is not a limiting factor in Lake Malawi, but probably sun light.  
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Chapter 4 General Conclusions  

 

In this study, first the performance of two semi-analytical algorithms (i.e., Doron11 and 

Lee15) in Lake Malawi was compared from MERIS and OLCI sensor data. The results showed 

that even though the SD estimations from the two algorithms were highly correlated, with R2 

larger than 0.96, Lee15 algorithm outperformed Doron11 algorithm in Lake Malawi with a high 

estimation accuracy (RMSE = 1.17 m, MAPE = 18.7%, R = 0.66, p < 0.05) for MERIS and 

(RMSE = 4.51 m, MAPE = 30.7%, R = 0.49, p > 0.05) for OLCI data. These values indicate that 

the estimated SD can fairly represent the actual value from the measured data as p < 0.05 for the 

data compared within 3 h interval between the matchup. Doron11 algorithm usually 

overestimated SD values. These results indicate that water transparency in Lake Malawi can be 

evaluated by combining MERIS/OLCI data and Lee15 algorithm without algorithm recalibration 

using in situ data. This finding is important for most African lakes due to lack of in situ data for 

evaluating water quality or recalibrating algorithm in these lakes.  

It was then evaluated the water transparency in Lake Malawi using the SD values estimated 

from 9-year MERIS and 1-year OLCI data (2003-2011, 2017) a total of 14 years span, using 

Lee15 algorithm. The results showed that there always existed four water transparency levels in 

Lake Malawi throughout the study period. The levels 1 and 2 water areas tended to shift and 

trade places, depending on the year or season. In contrast, level 3 and 4 water areas were 

relatively stable and constantly distributed along the southwestern and southern lakeshores. 

Generally, Lake Malawi is dominated by waters with SD values larger than 6 m (> 95%). There 

was a change in terms of water area based on the transparency levels percentage. In 2003 level 1 

had about (67.6 %), level 2 (28.4 %), level 3 (3.6 %), and level 4 (0.4 %), and in 2011 it changed 

to (74.5 %), (22.8 %), (2.5 %) and (0.2 %) respectively and finally in 2017 (84.6 %), (12.1 %), 

(2.5 %) and (0.8 %). Considering these statistical values, it can be said that level 1 has increased 
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from 2003 to 2017, while level 2 decreased by almost half, level 3 decreased from 2003 to 2011 

but maintained in 2017. As for level 4, it decreased from 2003 to 2011 but then increased in 2017 

as much as double the initial year.     

This study provided an overall and comprehensive understanding of transparency levels 

and their spatiotemporal variation in Lake Malawi. The findings that were previously described 

in isolation from different field survey-based studies are now summarized into one.  

Along the first 9 years study, no significant change was found (Fig.19a). The results from 

the additional data from OLCI were independently analyzed. These results confirmed the 

strength of Lee15 over Doron11 (Fig. 16g, h).  

The SD distribution increases from the near shore to the center of the lake. Despite the 

existence of transparency level 4, the lake is still dominated by the first two levels. Yearly change 

in SD shows that 2006 and 2017 had the highest values, and they did not go over the reported 

values, 12-20 m but there was a small decrease to 11.5 m from Lee15. It can be concluded that 

the SD in Lake Malawi is still high but with a slight decrease in some regions, not significant.  

On the other hand, the monthly results show that February and the interval between April 

and August have the lowest SD in Lake Malawi.  

Second, Chl-a was estimated from the MERIS/OLCI data by using NASA’s OC4E Chl-a 

algorithm. The Chl-a results indicated that the average value of Chl-a concentration in Lake 

Malawi was < 1 mg/m3 corroborating with previous studies mainly in the pelagic zone. 

Nevertheless, the nearshore and river mouth regions have shown a higher concentration of Chl-a 

1-12.5 mg/m3. 

Third, both the SD results from Lee15 and Chl-a from NASA’s OC4E Chl-a algorithm 

were used as input for the modification of a TSI scheme by Carlson (1977). The yearly average 

TSI was about 31 for both SD and Chl-a derived TSI in the annual analysis and 30 for the 

monthly analysis demonstrating that Lake Malawi is oligotrophic. The spatial distribution of the 

trophic levels was progressive from the nearshore to the inner lake. Nearshore regions and close 
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to the river mouths showed eutrophic and hypereutrophic water areas. Based on studies from 

Carlson (1991) and Carlson and Havens (2005) the deviations of the TSI results from SD and 

Chl-a were analyzed. The deviation analysis indicated that algae was a key factor influencing the 

light attenuation in the pelagic zone and the nearshore was influenced by non-algae particles. 

The monthly deviation results also showed that TSI (Chl-a) ≈ TSI (SD) (see Fig. 29a). In the 

oligotrophic level, the deviations show that on average TSI (Chl-a) < TSI (SD) in January, April, 

June, and December, TSI (Chl-a) > TSI (SD) in August and October and TSI (Chl-a) ≈ TSI (SD) 

for the remaining months. In the mesotrophic deviations, results showed that TSI (Chl-a) < TSI 

(SD) in March, May, July, August and November and the remaining months TSI (Chl-a) ≈ TSI 

(SD). The eutrophic deviations showed that from May to December except for July, TSI (Chl-a) 

< TSI (SD) and the remaining months TSI (Chl-a) ≈ TSI (SD). The hypereutrophic level 

indicated that TSI (Chl-a) < TSI (SD) through the year. 

The results presented here provide good foundation for further investigation on the limiting 

factors in the eutrophic and hypereutrophic waters of Lake Malawi. This is the first analysis to 

provide an overall and comprehensive assessment of water quality status and spatiotemporal 

variation in Lake Malawi by combining remote sensing data, and semi-analytical algorithms. 

Nevertheless, some limitations were found throughout the study: (1) small size of the 

measured SD data for validation, and (2) lack of measured Chl-a for validation of estimated 

Chl-a. Based on the limitations, future studies should be carried out by increasing the sample size 

with SD data range covering a wider range, investigate the performance of C2R processor over 

OLCI data and find appropriate mechanisms to validate the results from the TSI.         
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