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Abstract
Measurements of longitudinal flow decorrelations for charged particles are presented in the pseudorapidity range

|η| < 1 using a reference detector at 2.5 < ηref < 4 in Au+Au collisions at
√

sNN = 200 GeV by STAR. The factorization
ratio (rn), which represents the magnitude of decorrelation, shows a strong centrality dependence for the second-order
factorization ratio (r2), while a weak centrality dependence for the third-order factorization ratio (r3). Furthermore, the
decorrelation measured at RHIC energy is found to be stronger than that at the LHC energies. Current ideal and viscous
hydrodynamic models fail to simultaneously describe the longitudinal flow decorrelations measured at RHIC and the
LHC energies.
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1. Introduction

Initial-state fluctuations in the transverse plane in the heavy-ion collisions are essential for the under-
standing of the final-state dynamics of multiparton interactions in Quark-Gluon Plasma. However, most of
these studies assumed that the initial condition and space-time evolution of the collisions are boost-invariant
in the longitudinal direction. It is recently realized that the longitudinal fluctuations could have a similar
important role for the entire space-time evolution of the medium produced in heavy-ion collisions [1–3].

The decorrelation of flow harmonics, Vn, in the longitudinal direction explores the non-boost-invariant
nature of the initial-collision geometry and final-state collective dynamics. The decorrelations were first
measured at the LHC [4, 5], but are predicted by several (3+1)D hydrodynamic models to be stronger
for lower

√
sNN at RHIC due to the smaller number of initial partons and shorter string length at lower

energies [6]. In this proceeding, we present the new measurements of flow decorrelation in Au+Au at
√

sNN

= 200 GeV with the STAR detector. Comparisons with results from the LHC and calculations from different
models for different centralities are discussed.

2. Analysis method

The azimuthal anisotropy of the particle production in an event is described by harmonic flow vector,
Vn = vneinΨn , where vn and Ψn are the magnitude and phase (or event plane), respectively. Experimentally,
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Vn is estimated from the observed per-particle flow vector, qn ≡ ∑ωieinφi/
∑
ωi, where the sum runs over

all charged particles in the phase-space sample and ωi is the weight assigned to the ith particle. The flow
vector, qn, deviates from Vn due to non-flow contribution and statistical fluctuations. By requiring a large
pseudorapidity gap, the non-flow contribution can effectively suppressed and the statistical fluctuation drops
after event average. The correlation between Vn from two pseudorapidity intervals can then be estimated
with the observed flow vector qn:

〈qn(η)q∗n(ηref)〉 = 〈Vn(η)V∗n(ηref)〉 (1)

The factorization ratio, rn, is used to measure the decorrelation between η and −η relative to a common
reference ηref [4]. It is defined as Eq. 2. The observable is sensitive to the event-by-event fluctuations of the
initial condition in the longitudinal direction. If flow harmonics from two-particle correlations factorize into
single-particle flow harmonics, then the value of rn is expected to equal to unit. Therefore rn � 1 implies
the breakdown of the two-particle correlation factorization.

rn(η) =
〈qn(−η)q∗n(ηref)〉
〈qn(η)q∗n(ηref)〉 =

〈vn(−η)vn(ηref) cos n(Ψn(−η) − Ψn(ηref))〉
〈vn(η)vn(ηref) cos n(Ψn(η) − Ψn(ηref))〉 (2)

In this analysis, the measurements are performed using charged particles with 0.4 < pT < 4 GeV/c from
the Time Projection Chamber (TPC, |η| < 1), and the reference flow vector is calculated from the Forward
Meson Spectrometer (FMS, 2.5 < ηref < 4) for the

√
sNN = 200 GeV Au+Au collisions. The systematic

uncertainties for the observables are estimated using positive track and negative tracks, respectively, and
indicated with hollowed boxes.

3. Results and discussion

Figure 1 shows the factorization ratio r2 and r3 as a function of η, averaged over 0.4 < pT < 4 GeV/c
for 20-30% central Au+Au collisions. Both r2 and r3 decrease linearly with η increasing. This decreasing
trend could be well described by a linear fit.

Fig. 1. (Left panel) The factorization ratio r2 as a function of η, averaged over 0.4 < pT < 4 GeV/c for 20-30% Au+Au collisions, The
error bars and hollowed boxes are statistical and systematic uncertainties, respectively. (Right panel) Same style as r2, but for r3.

The similar behavior is also observed for the other centralities. To study the centrality dependence, the
rn is parameterized with a linear function, rn = 1 − 2Fnη. Figure 2 shows the centrality dependence of
Fn in terms of Npart, which quantifies the strength of the decorrelation effect. F2 shows a clearly centrality
dependence, where the decorrelation effect is the weakest at midcentral collisions. F3 shows weak centrality
dependence.
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Fig. 2. Centrality dependence of Fn for 200 GeV Au+Au collisions. The error bars and hollowed boxes are statistical and systematic
uncertainties, respectively.

Since the beam rapidity has energy dependence, a direct comparison between the decorrelation results
at RHIC energy with the results at the LHC energies could be biased by the reach of beam rapidity ybeam,
therefore, rn are plotted as a function of normalized pseudorapidity η/ybeam as shown in Fig. 3. r2 (top
panel) is plotted in various centrality intervals at three collision energies, the markers are the experimen-
tal measurements [5]. A clear energy dependence is observed, where the results at

√
sNN =200 GeV and√

sNN =5.02 TeV show the strongest and the weakest decorrelation effects, respectively. The decorrelation
difference between lower and higher collision energies also shows a centrality dependence. The (3+1)D
CLVisc ideal hydrodynamics [7], which is tuned to describe the decorrelation effect at

√
sNN = 2.76 TeV

Pb+Pb collisions can quantitatively describe the data [6]. However, the ideal hydrodynamics overestimates
the effect at

√
sNN = 200 GeV Au+Au collisions. The hydrodynamic calculations also capture the deviation

between higher and lower
√

sNN . With a shear viscosity to entropy density ratio η/s = 0.16, the (3+1)D
CLVisc hydrodynamics can roughly describe the Au+Au data, while it underestimates the LHC measure-
ments. Figure 3 (bottom panel) shows the similar results, but for r3. Unlike r2, the difference between higher
energy and lower energy shows a weak centrality dependence. The (3+1)D CLVisc ideal hydrodynamic cal-
culations still slightly overestimate the decorrelation effect at RHIC energy. With a viscous correction,
the hydrodynamic calculations suggest an even stronger decorrelation for r3 [8]. The results indicate the
decorrelation is not only an initial-state effect, but also sensitive to the dynamical evolution of the collision
system.

4. Conclusion

Measurements of longitudinal flow correlations for charged particles are presented in the pseudorapidity
range |η| < 1 using a reference detector at 2.5 < ηref < 4 in Au+Au collisions at

√
sNN = 200 GeV with the

STAR detector at RHIC. The factorization of two-particle azimuthal correlations into single-particle flow
harmonics, Vn, is found to be broken, and the amount of factorization breakdown increases approximately
linearly as a function of the η separation between the two particles. The strength of the decorrelation is
nearly independent of centrality for r3. However, for r2, the effect has a strong centrality dependence and
is weakest in midcentral collisions. The results are compared with those from LHC and calculations from
hydrodynamic models. The effect shows clear energy dependence and it is stronger for lower energies.
The (3+1)D ideal hydrodynamics overestimates the decorrelation effect at RHIC energies. With a viscous

M. Nie / Nuclear Physics A 982 (2019) 403–406 405



Fig. 3. rn(η) as a function of the normalized rapidity, and compared with three collision energies. Each panel shows results from one
centrality interval. The error bars and hollowed boxes are statistical and systematic uncertainties, respectively. The top row shows the
results for r2(η), and the bottom row shows those for r3(η).

correction, it can better describe r2, while it suggests an even larger r3. The results provide new constraints
on both the initial-state geometry fluctuations and final-state dynamics of heavy-ion collisions.
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