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Abstract

This paper investigates the role of loss-aversion in affecting the long-run equilibria of stochas-

tic evolutionary dynamics. We consider a finite population of loss-averse agents who are repeat-

edly and randomly matched to play a symmetric two-player normal form game. When an agent

revises her strategy, she compares the payoff from each strategy to a reference point. Under the

resulting dynamics, called prospect dynamics, risk-dominance is no longer sufficient to guarantee

stochastic stability in 2×2 coordination games. We propose a stronger concept, loss-dominance:

a strategy is loss-dominant if it is risk-dominant and a maximin strategy. In 2×2 coordination

games, the state where all agents play the loss-dominant strategy is uniquely stochastically stable

under prospect dynamics for any degree of loss-aversion and all types of reference points. For

symmetric two-player normal form games, a generalized concept, generalized loss-dominance,

gives a sufficient condition for stochastic stability under prospect dynamics.
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1 Introduction

Loss-aversion captures the tendency of people being more sensitive to losses than to gains. It is

a type of reference-dependent preference which describes a person’s assessment of choices by com-

paring the corresponding outcomes to a reference point. Pioneered by Kahneman and Tversky

(1979)’s seminal work on prospect theory, loss-aversion has been widely accepted as a common psy-

chological departure from standard expected utility theory that can affect individual decisions. For

example, Kőszegi and Rabin (2006) applied loss-aversion to explain some well-known phenomena

in individual consumption behavior and daily labor supply decisions.1

However, little is known about how and to what extent loss-aversion affects the long-run be-

havior of people in society. Answering this question would enable us to better understand societal

phenomena such as the emergence of social conventions, norms and traditions. In this paper, we

attempt to answer this question via an evolutionary approach. We employ stochastic stability

analysis as the main analytical tool for two reasons. 1) It offers models to examine the long-run

equilibrium of games played by boundedly rational agents. Hence, it is natural to incorporate psy-

chological biases such as loss aversion into evolutionary models. 2) It often gives sharp equilibrium

selection results when there are multiple Nash equilibria. We compare the long-run equilibrium for

settings where the value of a strategy equals the probability-weighted average of its outcomes with

the long-run equilibrium for settings where the value of a strategy is affected by loss aversion. This

allows us to examine whether the predictions coincide or differ under the two theories, expected

utility theory and prospect theory.

We consider a finite population of loss-averse agents who are recurrently and randomly matched

to play a symmetric two-player normal form game.2 In each discrete-time period, one agent is given

an opportunity to revise her strategy. When an agent receives a revision opportunity, she compares

the payoff of each strategy to her reference point and switches to the one with the highest value

(with probability close to one). We call the evolutionary dynamics generated by such loss-averse

agents the prospect dynamics.

We analyze stochastic stability of the population states under prospect dynamics. To make a

more relevant comparison to the extant literature, we mainly focus on 2×2 coordination games and

characterize long-run equilibria of the games. Our results provide a new insight to evolutionary

1See also Thaler (1980), Knetsch and Sinden (1984), Samuelson and Zeckhauser (1988), among many others.
2We assume that agents are identically loss-averse in most part of the paper. We relax the assumption and consider

heterogeneity in the degree of loss-aversion in Section 7.1.
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equilibrium selection in coordination games. Kandori et al. (1993) and Young (1993) showed that

a risk-dominant equilibrium is uniquely selected in a population of agents who do not have loss-

averse preferences. In contrast to those studies, we find that risk-dominance is no longer sufficient

to guarantee stochastic stability under prospect dynamics. Moreover, even if an equilibrium is

both payoff-dominant and risk-dominant, it may not be always selected in the long run. Therefore,

we propose a stronger concept, loss-dominance: a strategy is loss-dominant if it is both the risk-

dominant strategy (Harsanyi and Selten (1988)) and the maximin strategy (von Neumann and

Morgenstern (1944)). The strategy is less risky and is associated with the largest payoff in the

worst case scenario. This concept captures the tendency of people to avoid not only risks but also

losses. Our main result, Theorem 3.2, shows that the state in which all agents play a loss-dominant

strategy is uniquely stochastically stable under prospect dynamics for any degree of loss-aversion

and for any type of reference points.

The assumption of the 2×2 coordination game is relaxed in Section 4, where we generalize the

concept of loss-dominance for symmetric two-player normal form games. A strategy is a generalized

loss-dominant strategy if it is half-dominant and a globally pairwise maximin strategy, an extension

of the notion of maximin. This new concept captures the essence of the concept of loss-dominance.

Our second main result (Theorem 4.4) shows that, in a class of symmetric two-player normal form

games, the generalized loss-dominance guarantees stochastic stability under prospect dynamics for

any degree of loss-aversion and for any type of reference points.

We then consider two models with endogenous reference points that naturally arise in a game

theoretical context: The first model is called the social comparison model. Pioneered by the research

of Festinger (1954), social psychologists have found that social comparison often serves as a driving

force in determining a person’s beliefs and decisions.3 More specifically, people derive extra utility

when they believe that they are doing better than other individuals, while they incur disutility

when they believe that they are falling behind others. In this context, the social average payoff

can serve as a natural reference point for an agent to evaluate whether each possible outcome she

would get is a success or a failure comparing to the other agents.

The second model is called the status-quo bias model. Status-quo bias is one of the most well-

studied psychological biases (Samuelson and Zeckhauser (1988)), and it may appear in a variety of

decision-making situations. For example, it offers an explanation for the endowment effect found by

Thaler (1980). Experimental studies have shown that peoples’ decisions are biased toward adhering

3In economics, the ideas of inequality aversion (Fehr and Schmidt (1999)) and status competition (Veblen (1899),

Hopkins and Kornienko (2009)) also capture people’s tendency to make comparison with others.
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to status-quo choices, and it is as if people were to take the status-quo as a reference point. Hence,

this bias can also be modeled by loss aversion (see Kahneman et al. (1991), for example). In a

dynamic context, an agent may regard the payoff obtained in the latest game she played as her

status-quo, and may use it as her reference point.

Our main result implies that loss-dominance is a sufficient condition for stochastic stability in

2×2 coordination games under these two models. However, necessary conditions differ in the two

models. We are interested to which extent they differ. To this end, we investigate games that

have no loss-dominant strategy, i.e., the risk-dominant strategy differs from the maximin strategy.

For each model, we characterize the precise condition for a state to be stochastically stable for all

degrees of loss-aversion. We find that the state in which all agents play the risk-dominant strategy

will be stochastically stable if the largest payoff associated with the risk-dominant strategy is larger

than a threshold. In other words, the payoff advantage of the strategy in the best case scenario

compensates the perceived loss brought by the strategy in the worst case scenario. We call such a

strategy the compensation-attractive strategy.

Finally, we extend the model to allow agents to have diminishing sensitivity to gains and losses,

which is another important element of prospect theory besides loss-aversion. We find that loss-

dominance still guarantees stochastic stability as long as agents’ degree of diminishing sensitivity

to gains/losses is not sufficiently small.

Related studies in the literature on stochastic evolutionary games are Norman (2009) and Sawa

(2015), both examined stochastic stability with behavioral biases that are similar to what we

consider in this paper. Norman (2009) introduced a switching cost for strategy revisions, which

can be viewed as a status-quo bias. Sawa (2015) considered stochastic stability in bargaining games

with players obeying prospect theory. Our model differs from theose studies in two aspects. First,

we do not restrict reference points to one particular type, but provide a general condition that

guarantees stochastic stability for all types of reference points. Second, we consider models with

endogenous reference points, while those studies assume exogenous switching costs or reference

points.4 Another related study is a companion paper of ours, Sawa and Wu (2018), that addresses

4This paper also shares some similarities with a few works in the literature of learning. Sarin and Vahid (1999)

provided an adaptive learning foundation for maximin strategies in an uncertain world. Börgers and Sarin (2000)

considered a reinforcement learning model with endogenous aspiration level, and showed that as the aspiration level

increases, a decision maker’s incentive can be distorted from reaching the efficient outcome. The main differences

between our paper and these works are that we consider strategic interaction and provide a psychological foundation

for the maximin strategy.
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(universal) stochastic stability for a broad class of preferences including loss-averse preferences

with any degree of diminishing sensitivity. In contrast to the results here, Sawa and Wu (2018)

show that for such a class of preferences, an equilibrium must be not only loss-dominant but also

payoff-dominant for it to be stochastically stable.

Many recent papers contribute to the understanding of stochastic evolutionary dynamics and

equilibrium selection problem in coordination games. See for example, Maruta (2002), Blume

(2003), Peski (2010), Sandholm (2010), Neary (2012), Staudigl (2012), Staudigl and Weidenholzer

(2014), Kreindler and Young (2013), Lim and Neary (2016), Bilancini and Boncinelli (2016), Sand-

holm and Staudigl (2016), Mäs and Nax (2016), Hwang and Newton (2017), Hwang and Rey-Bellet

(2017) and Newton (2018a), among many others. See Newton (2018b) for an excellent survey.

Among these works, Bilancini and Boncinelli (2016) consider symmetric two-player, two-strategy

games for a class of choice rules including the condition-dependent mistake model, in which the

error probability negatively depends on the payoff earned in the last period. In this respect, there

is some similarity to the status-quo bias model in this paper in which agents use the last earned

payoff as a reference point. They find that the state where every player plays the maximin strategy

is stochastically stable for some class of games if players adopt the condition-dependent mistake

model and rematch every period. In addition, Mäs and Nax (2016) find in their experiment that

a payoff decrease in the previous period would induce higher deviation rates from myopic best

response behavior, which indicates that subjects’ choices are sensitive to past payoff losses.

This paper is also related to several studies in the experimental literature. Cachon and Camerer

(1996), Rydval and Ortmann (2005), Feltovich (2011), and Feltovich et al. (2012) studied whether

subtracting a constant payoff from people’s game payoffs would affect their behavior in games.

They found evidence that people are sensitive to outcomes being framed as losses. This together

with our theoretical results would suggest that long-run equilibria of a society can be affected by

its members’ cognitive biases.

The paper is organized as follows. Section 2 introduces the model. Section 3 defines loss-

dominance, delivers the main result on stochastic stability in 2×2 coordination games. Section 4

extends the main result to symmetric two-player normal form games. Section 5 studies prospect

dynamics in two models of endogenous reference points: 1) the social comparison model, and 2)

the status-quo bias model. Section 6 extends our main results to reference-dependent preferences

combined with diminishing sensitivity to gains/losses. We discuss the robustness of our results and

consider a few extensions of the model in Section 7. Section 8 concludes.
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2 The Model

2.1 The Population Game and Its Dynamics

We consider a dynamic process in which n < ∞ identical loss-averse agents are repeatedly and

randomly matched to play a coordination game in discrete time. We restrict our attention to 2× 2

symmetric coordination games with strategy space S = {0, 1}. The monetary returns received from

the game are illustrated in Table 1.5 The state of the process is described by the current fraction

of agents playing strategy 1. Let X ≡ {0, 1n ,
2
n , . . . , 1} denote the state space, and x ∈ X denote

the current state. x is observed by every agent.

Table 1: 2× 2 Coordination Game (Monetary Returns)

Player 2

0 1

Player 1 0 a00, a00 a01, a10

1 a10, a01 a11, a11

The monetary outcomes satisfy a00, a01, a10, a11 > 0, a00 > a10 and a11 > a01. A pure strategy

profile (s, s) is said to be risk-dominant if as0 + as1 > as′0 + as′1 for s′ 6= s, and we also call such

strategy s risk-dominant. Similarly, strategy profile (s, s) and strategy s are said to be payoff-

dominant if ass > as′s′ for s′ 6= s. We will shortly assume that the utility function is strictly

increasing in monetary returns. Thus, (0, 0) and (1, 1) are strict Nash equilibria. The set of pure

strategy Nash equilibria remains unchanged throughout the paper although we consider different

models of reference points and various degrees of loss aversion.

In the dynamic process, each agent occasionally reconsiders her choice of strategy, using myopic

best response rules. Myopic best responses for an agent are not determined by monetary returns

but by her perceived utilities, which will be introduced in Section 2.2. Their myopic choice rules are

assumed to be perturbed by stochastic noise. The choice rule, the dynamics and the evolutionary

selection principle will be introduced in Section 2.3.

5Note that Shalev (2000) and Kőszegi and Rabin (2006) proposed loss-aversion utility functions defined over von

Neumann-Morgenstern utility functions, which are different from the conventional way of modeling loss-aversion over

monetary outcomes initiated by Kahneman and Tversky (1979). In this paper, we follow Kahneman and Tversky

(1979), but we emphasize that replacing the monetary outcomes with von Neumann-Morgenstern utility functions

would not change our main results.
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2.2 Loss Aversion and Reference-Dependent Utility

Agents’ preferences are reference-dependent. Each agent has a reference point, which determines

whether she perceives the monetary return from the game as a gain or a loss. The reference point

of an agent can be endogenously determined. A model of reference points is given by a function

r(·) explained below.6

If a reference point is endogenous, then it is assumed to depend on her reference strategy

(it could be her current strategy, a strategy she is considering switching to, and so forth), her

opponent’s strategy as well as the population state. The reference point of an agent i is given by

a function r(sri , ŝi, x) : {0, 1} × {0, 1} × [0, 1]→ R, where sri is agent i’s reference strategy, ŝi is her

(last) matched opponent’s strategy, and x is the population state. If a reference point is exogenous,

then it is constant over time, r(sri , ŝi, x) = r for some r ∈ R.

Example 1 (social comparison). A person’s reference point can be determined by other people’s

achievements. People may evaluate their outcomes relative to the social average of monetary

payoffs, that is, the reference point is given by

r(sri , ŝi, x) = (1− x)((1− x)a00 + xa01) + x((1− x)a10 + xa11).

We examine a model of such social comparisons in Section 5.1.

Following Kahneman and Tversky (1979), we model the value function of a loss-averse agent

who anticipates receiving the payoff ass′ as follows:7

v(ass′ , r(s
r
i , ŝi, x)) =

(ass′ − r(sri , ŝi, x)) if ass′ − r(sri , ŝi, x) ≥ 0,

λ(ass′ − r(sri , ŝi, x)) otherwise,

where λ ≥ 1.

The value function indicates that the agent derives positive value from gains and negative value

from losses. The degree of loss-aversion is measured by λ. If λ > 1, then she dislikes losses more

than she likes same-sized gains. Given the value function, an agent’s reference-dependent utility of

6For heterogeneous reference points, which we will discuss in Section 7.1, a model of reference points is given by

a tuple of functions, {ri(·)}i∈N .
7For now, we assume that agents are risk-neutral. In Section 6, we incorporate risk-attitudes (diminishing sen-

sitivity to losses/gains) to the model and show that our main results are robust as long as the degree of agents’

diminishing sensitivity to losses/gains is not sufficiently small.
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choosing strategy s ∈ {0, 1} is given by8

us(x, r(s
r
i , ŝi, x)) = (1− x)v(as0, r(s

r
i , ŝi, x)) + xv(as1, r(s

r
i , ŝi, x)), (1)

which is the expectation of her value function. The probability weights are objective and equal to

the probabilities of strategies that this agent faces.9

2.3 Prospect Dynamic and Stochastically Stable States

The agents are recurrently and randomly matched to play the coordination game in Table 1. For

simplicity in terms of presenting the model, we allow self-matching in the matching protocol and

assume that agents follow a simple decision rule under which they do not take into account the

effect of strategy change on their utilities when revising strategies. However, we emphasize that

our results are robust to different matching protocols and decision rules.10

In each period t ∈ {1, 2, . . .}, one agent is randomly chosen and given an opportunity to revise

her strategy. Given the revision opportunity, an agent is matched with another randomly selected

agent to play the game, and then revise her strategy probabilistically according to the following

simple noisy best response revision protocol:

ρ01(x, r0) = ση(u1(x, r0)− u0(x, r0)), (2)

ρ10(x, r1) = ση(u0(x, r1)− u1(x, r1)), (3)

where ση : R → [0, 1], rs = r(s, ŝi, x), and η > 0 denotes the noise level. ρ01(x, r0) denotes the

probability that an agent playing strategy 0 switches to strategy 1. ρ10(x, r1) is the probability

that an agent playing strategy 1 switches to strategy 0. ρ01(x, r0) and ρ10(x, r1) are functions

of the utility change that the agent expects from switching strategy, i.e., u1(x, r0) − u0(x, r0) and

u0(x, r1)−u1(x, r1) respectively. Note that the revising agent is matched with another agent, whose

strategy becomes the (last) matched opponent’s strategy for the revising agent. We assume that

8In Kőszegi and Rabin (2006), the utility function of a loss-averse consumer depends on both the absolute con-

sumption level and the value of gains/losses. We argue that adding the absolute payoff level into the agent’s utility

function in our model would not change the main results.
9The probabilities people assign to stochastic events might be subjective and be influenced by loss-aversion (see

Tversky and Kahneman (1992)). In our model, we assume that all agents can observe the population state and

evaluate outcomes with objective probabilities.
10Please refer to Section 7.2 for a detailed discussion.
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ση(·) becomes the best response protocol in the limit of the small noise level, that is,

lim
η→0

ση(a) =

1 if a > 0,

0 if a < 0.
(4)

We call the dynamic generated by (2) and (3) prospect dynamic. In particular, we adopt the

widely used protocol, best response with mutations (BRM) from Kandori et al. (1993), which is

defined by

ση(a) =

1− exp(−η−1) if a > 0,

exp(−η−1) if a < 0.
(5)

Consider an agent playing strategy 0. When she is given a revision opportunity, she switches

to strategy 1 with probability ρ01(x, r0). Similarly, when an agent playing strategy 1 is given a

revision opportunity, she switches to strategy 0 with probability ρ10(x, r1). This model defines a

Markov chain {Xn
t } on the discrete state space X.11 Observe that each x ∈ {0, 1} ⊂ X corresponds

to a pure-strategy Nash equilibrium of the game.

We examine the stationary distribution µ of the Markov chain when the noise level approaches

zero and the population size is sufficiently large. We say that state x ∈ X is stochastically stable

if x has a positive mass in the limiting stationary distribution for all sufficiently large n,

lim
η→0

µ(x) > 0. (6)

In the subsequent sections, we employ the ‘mutation counting’ technique from Kandori et al. (1993)

and Young (1993) to characterize stochastically stable states. The set of states for which strategy

s is unique best response is called the basin of attraction of the all-s state. Theorem 1 of Sandholm

(2010) showed that, for all sufficiently large n, the mutation counting technique reduces to exam-

ining which strategy has a greater basin of attraction on the continuous interval [0, 1]. That is, in

order to prove that the all-0 state is uniquely stochastically stable, it suffices to show that strategy

0 is the unique best response for all x ∈ [0, 1/2].

Remark 2.1. The simple noisy best response revision protocol we specify assumes that agents

regard strategy s as the most successful option if us(x, rs) ≥ us′(x, rs′) for s′ 6= s and they try to

“imitate success” by switching to s with a probability going to 1 in the limit of the small noise

11Rigorously speaking, a state should include the profile of agents’ reference strategies, because r(s, ŝi, x) depends

on it. However, for the examined behavioral models in Sections 3, 4, 5 and 6, the process only depends on X.
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level. Rigorously speaking, the notion of best response should take into account the effect of strategy

change, see Kandori and Rob (1995) and Sandholm (1998). For example, in a 2× 2 game, strategy

0 is a best response for agents playing 0 if u0(x, r0) ≥ u1(x − 1
n , r1), and it is a best response for

agents playing 1 if u0(x − 1
n , r0) ≥ u1(x, r1). See Section 7.2 for a discussion on a decision rule in

which agents take into account the effect of strategy change.

3 Loss-dominance and its stochastic stability

3.1 Loss Dominance

We propose a new concept called loss-dominance which combines two well-studied concepts: risk-

dominance and maximin strategy.12

Definition 3.1. Strategy s ∈ {0, 1} is a loss-dominant strategy if for s′ ∈ {0, 1}, s′ 6= s,

(1) as0 + as1 > as′0 + as′1,

(2) min{as0, as1} ≥ min{as′0, as′1}.

A population state in which every agent is playing the loss-dominant strategy s ∈ {0, 1} (the all-s

state) is a loss-dominant equilibrium.

The first condition in Definition 3.1 states that a loss-dominant strategy must be the risk-

dominant strategy. The second one states that it must also be the (weak) maximin strategy. Hence,

loss-dominance captures not only people’s reluctance to take risks but also the tendency to avoid

losses, particularly the loss occurred in the worst case scenario. Observe that a sufficient condition

for loss-dominance is that a strategy s is risk-dominant but not payoff-dominant, i.e., ass + ass′ >

as′s + as′s′ and ass < as′s′ .
13

3.2 Stochastic stability of loss-dominant equilibria

For the sake of simplicity, we assume that all agents adopt the same model of reference points

throughout the paper. However, the assumption can be readily relaxed, which will be discussed

in Section 7.1. The next theorem shows that loss-dominance is a solution concept that passes the

12Similarly to experimental studies, e.g. Battalio et al. (2001) and Schmidt et al. (2003), we define those criteria

in terms of (usually observable) monetary payoffs. Our intention is to examine if such criteria on monetary payoffs

guarantee stochastic stability despite the effect of reference-dependent preferences.
13We thank a referee for this observation. Example 2 offers a graphic illustration.
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stochastic stability test under loss-averse preferences with any degree of loss-aversion. Most of the

proofs in this paper are relegated to the Appendix.

Theorem 3.2. The all-s state is uniquely stochastically stable for all models of reference points

and all λ ≥ 1 if and only if strategy s is loss-dominant.

The rationale behind Theorem 3.2 is as follows. Without loss of generality, let strategy 0 be

the loss-dominant strategy. Note that being the maximin strategy implies that a10 must be the

smallest among a00, a01, a10, and a11. When r > maxi,j∈S aij or r ≤ a10, the payoffs are either all

viewed as gains or all viewed as losses. Hence, being the risk-dominant strategy guarantees that

the all-0 state is uniquely stochastically stable as in Kandori et al. (1993) and Young (1993). When

r ∈ [a10,maxi,j∈S aij ], a10 is regarded as a loss and the loss associated with a10 is the largest among

all potential losses associated with the outcomes. Therefore, when the degree of loss-aversion is

high, agents tend to avoid choosing strategy 1. This makes the basin of attraction of the all-0

state larger than the all-1 state. Hence, the all-0 state is uniquely stochastically stable. On the

other hand, when the degree of loss-aversion is low, being risk-dominant ensures that the all-0

state is uniquely stochastically stable. Since agents’ utilities from a loss are linear in the degree of

loss-aversion λ, the all-0 state being uniquely stochastically stable for sufficiently small and large

λ implies that the same holds for all degrees of loss-aversion.

Payoff-dominance, risk-dominance, and maximin are well-known equilibrium selection principles

for coordination games. Our result suggests that risk-dominance and maximin together play an

important role in determining stochastically stable states for loss-averse agents. For smaller degrees

of loss aversion, risk-dominance plays a major role in selecting equilibrium as in Kandori et al. (1993)

and Young (1993). While for larger degrees of loss aversion, maximin becomes the dominant force in

equilibrium selection. An interesting implication is that an equilibrium that is both payoff-dominant

and risk-dominant can fail to be stochastically stable when agents are (highly) loss-averse. The

following example provides a graphic illustration for the relationship between payoff-dominance,

risk-dominance and maximin.

Example 2. Consider a coordination game with a01 = 0 and a11 = 1. In Figure 1, we put a10

on the x-axis and a00 on the y-axis. Since we are considering a coordination game, all feasible

pairs of (a10, a00) should be above the 45 degree dotted line through the origin. Strategy 0 is the

payoff-dominant strategy if a00 > a11 = 1, which is satisfied by all payoff profiles above the “PD”

line. Strategy 0 is the risk-dominant strategy if a00 − a10 > a11 − a01 = 1, which is satisfied by all

profiles above the “RD” line. Finally, it is maximin if a10 < 0, which is to the left of the y-axis.
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Figure 1: The relationship between payoff-dominance, risk-dominance and maximin

We call the y-axis the “MM” line. Point A is above the “RD” line and to the left of the “MM” line

but below the “PD” line. It lies in the region of payoff profiles that satisfy the criterion of loss-

dominance. For those payoff profiles, the all-0 state is uniquely stochastically stable for all degrees

of loss aversion. Point B satisfies both payoff-dominance and risk-dominance. For payoff profiles in

this region, the all-0 state may fail to be stochastically stable for large λ. For example, if the payoff

profile is Point B, only a01 is regarded as a loss for an exogenous reference point r ∈ (0, bx] where

bx is the x-coordinate of Point B. Then the all-0 state is not stochastically stable for r ∈ (0, bx]

and all sufficiently large λ. Point C fails to be risk-dominant but satisfies the maximin criterion.

In this region, the all-0 state is stochastically stable only for sufficiently large λ.

When strategy 0 is loss-dominant, the loss associated with a10 is the largest loss and it has a

significant negative impact on the perceived value of choosing strategy 1 for agents with higher

degrees of loss-aversion. This observation implies that higher degrees of loss-aversion may help to

enhance the stability of a loss-dominant equilibrium (to enlarge its basin of attraction). The next

result will clarify this conjecture in terms of the size of the basin of attraction. Let Bi(λ) denote

the basin of attraction of the all-i state for the degree of loss aversion λ, that is, strategy i is the

unique best response for agents with λ for all x ∈ Bi(λ). Let also

Lk(x) = (1− x) (`k(x, a00)− `k(x, a10)) + x (`k(x, a01)− `k(x, a11)) ,
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where `k(x, aij) = max{r(srk, ŝk, x)− aij , 0} defines agent k’s perceived loss of receiving aij . Lk(x)

measures the difference of the perceived losses of the two strategies for agent k being in state x.

Lk(x) < 0 implies that the perceived loss associated with strategy 1 is greater than that associated

with strategy 0 for agent k. Lk(x) > 0 implies the opposite.

The proof of Theorem 3.2, roughly speaking, shows that Lk(x) < 0 for all x ∈ [0, 1/2], and thus

the basin of attraction of a loss-dominant equilibrium never shrinks beyond the midpoint of the

state space for any degree of loss-aversion. The next corollary offers a further comparative statics

property with respect to the basin of attraction. We omit the proof since it is immediate from the

proof of Theorem 3.2.

Corollary 3.3. Let x ∈ X and ∆uk(x;λ) = u1(x, rk(x;λ)) − u0(x, rk(x;λ)), where rk(x) denotes

the reference point for agent k. If Lk(x) < 0, then ∆uk(x;λ) is strictly decreasing over λ. If

Lk(x) > 0, then ∆uk(x;λ) is strictly increasing over λ. Furthermore, if Lk(x) < 0 for all agents,

then x ∈ B0(λ) for all sufficiently large λ.

The function ∆uk(x;λ) represents the difference in reference-dependent utilities of the two

strategies for agent k. If ∆uk(x;λ) > 0, the utility of playing strategy 1 is greater than that of

playing strategy 0. Corollary 3.3 shows that if the perceived loss associated with a strategy is

greater than that with the other strategy, then the utility of playing this strategy relative to the

utility of playing the other strategy decreases as the degree of loss aversion increases. Therefore,

a state x with Lk(x) < 0 must be in B0(λ) for all large λ, even if x is in B1(λ) for small λ.

Figures 2(a) and 2(b) in Section 5.1 depict u1(x) − u0(x) in two different games, which provide

an illustration for Corollary 3.3. Lk(x) = 0 holds at the intersection of u1(x) − u0(x) curves for

both games. Lk(x) < 0 holds for states to the left of the intersection, for which u1(x) − u0(x)

is strictly decreasing in λ. Lk(x) > 0 holds for states to the right of the intersection, for which

u1(x) − u0(x) is strictly increasing in λ. This implies that as λ approaches infinity, the basin of

attraction of the all-0 state will converge to the x-coordinate of the intersection. For the game

depicted in Figure 2 (a), where strategy 0 is loss-dominant, the basin of attraction of the all-0 state

monotonically expands as λ increases. For the game depicted in Figure 2 (b), where strategy 0 is

not loss-dominant, the basin of attraction of the all-0 state monotonically shrinks as λ increases.

Theorem 3.2 provides a general result that holds true for all models of reference points. We

extend it to symmetric two-player normal form games in Section 4. In Section 5, we consider two

specific models of reference points: social comparison and status-quo bias. For specific models of

reference points, the necessary and sufficient conditions may vary. We show that a new condition
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called compensation-attractiveness plays an important role in determining stochastic stability in

these models.

4 Symmetric two-player normal form games

In this section, we relax the assumption of two strategies and consider a class of symmetric two-

player normal form games. The strategy space is given by S = {0, 1, 2, ...,K}. Let X1/n =

{0, 1n , . . . , 1}. The state space for the dynamic process is given by X = {x ∈ XK+1
1/n :

∑
i∈S xi = 1},

where xi denotes the fraction of agents playing strategy i.

We extend the definitions of risk-dominance, maximin strategy and loss-dominance to symmetric

two-player normal form games.

Definition 4.1. Strategy i ∈ S is a half-dominant strategy if

αaii + (1− α)(
∑
k 6=i

βkaik) > αaji + (1− α)(
∑
k 6=i

βkajk), (7)

for any j, k ∈ S\{i}, α ∈ [12 , 1], βk ∈ [0, 1], and
∑

k 6=i βk = 1.

Definition 4.2. Strategy i ∈ S is a globally pairwise maximin strategy if

min{aii, aij} ≥ min{aki, akj}, ∀j, k ∈ S\{i}. (8)

Definition 4.3. Strategy i ∈ S is a generalized loss-dominant strategy if it is both a half-

dominant strategy and a globally pairwise maximin strategy.

Observe that the strategy profile (i, i) is a Nash equilibrium of the game if strategy i is half-

dominant. The condition for a globally pairwise maximin strategy is stronger than the condition

that a strategy has the greatest minimum payoff, i.e., minj(aij) ≥ minj(akj) for all k 6= i. For

every state, the worst possible payoff of a globally pairwise maximin strategy is at least equal to

the worst possible payoff of every other strategy. We have the following result.

Theorem 4.4. Consider a symmetric two-player normal form game with S = {0, . . . ,K}, K ≥ 1.

The all-i state is uniquely stochastically stable for all models of reference points and all λ ≥ 1 if

strategy i ∈ S is the generalized loss-dominant strategy.

We explain its intuition using an example. Suppose that the monetary payoffs are given by

Table 2. Agents are loss-averse and they have reference-dependent utilities with a common reference
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Table 2: 3×3 Game (Monetary Returns)

Player 2

0 1 2

0 a00, a00 a01, a10 a02, a20

Player 1 1 a10, a01 a11, a11 a12, a21

2 a20, a02 a21, a12 a22, a22

point r ∈ R. The all-0 state being uniquely stochastically stable is implied by strategy 0 being the

half-dominant strategy with respect to the reference-dependent utilities, which is equivalent to

1

2
v(a00, r) +

1

2
(βv(a01, r) + (1− β)v(a02, r))

> max

1
2v(a10, r) + 1

2(βv(a11, r) + (1− β)v(a12, r)),

1
2v(a20, r) + 1

2(βv(a21, r) + (1− β)v(a22, r))

 (9)

for any β ∈ [0, 1]. These two conditions are equivalent to the conditions below:

v(a00, r) + v(a01, r) > max {v(a10, r) + v(a11, r), v(a20, r) + v(a21, r)} , (10)

v(a00, r) + v(a02, r) > max {v(a10, r) + v(a12, r), v(a20, r) + v(a22, r)} . (11)

Theorem 3.2 suggests that v(a00, r) + v(a0k, r) > v(aj0, r) + v(ajk, r) is implied by a00 + a0k >

aj0 + ajk and min{a00, a0k} ≥ min{aj0, ajk}, for j, k ∈ {1, 2}, which are exactly captured by

half-dominance on monetary payoffs (Definition 4.1) and the notion of globally pairwise maximin

strategy (Definition 4.2).

The next proposition concerns two-player coordination games. A coordination game is a game

with S = {0, . . . ,K} and monetary returns {aij}i,j∈S such that aii > aji for all i, j ∈ S, i 6= j. In

contrast to Theorem 3.2 we have an “only-if” result for this class of games.

Proposition 4.5. Consider a two-player coordination game with K + 1 strategies. The all-i state

is uniquely stochastically stable for all models of reference points and all λ ≥ 1 only if strategy i is

a globally pairwise maximin strategy.

Proposition 4.5 suggests that the globally pairwise maximin strategy plays a more important

role for coordination games. Being the globally pairwise maximin strategy is a necessary condition

for unique stochastic stability for coordination games, while it is not necessary for some normal

form games. The next example illustrates the difference between the two classes of games.
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Example 3. Consider two games for which monetary returns are shown in Tables 3a and 3b. The

two games differ in the value of a11. Game A in Table 3a is a coordination game, while Game

B in Table 3b is not. For both games, strategy 0 is half-dominant and is not a globally pairwise

maximin strategy. Assume that all agents adopt an exogenous reference point with r = 0. The

half-dominance of strategy 0 guarantees that the all-0 state is uniquely stochastically stable for

small λ in both games. We show that, for large λ, the all-0 state is not stochastically stable in

Game A, but it is uniquely so in Game B.

Table 3: Two 3×3 Games (Monetary returns)

(a) Game A: Coordination Game

Player 2

0 1 2

0 10, 10 1, 3 −1,−1

Player 1 1 3, 1 4, 4 0,−2

2 −1,−1 −2, 0 1, 1

(b) Game B: Non-Coordination Game

Player 2

0 1 2

0 10, 10 1, 3 −1,−1

Player 1 1 3, 1 0, 0 0,−2

2 −1,−1 −2, 0 1, 1

Let us first look at Game A in Table 3a. Let x̂ = (x̂0, x̂1, x̂2) which satisfies x̂0 = n−1
n , x̂1 = 0

and x̂2 = 1
n . Observe that, for sufficiently large λ,

n− 1

n
· 10− 1

n
λ <

n− 1

n
· 3 ⇔ u0(x̂, r) < u1(x̂, r).

Suppose that the process is in the all-0 state. The above inequality implies that one agent mutating

to strategy 2 will make strategy 1 the best response for all agents and will move the process from

the all-0 state to the all-1 state. By a similar argument, one mutation to strategy 1 will move the

process from the all-2 state to the all-1 state. However, one mutation to either strategy 0 or 2

cannot destabilize the all-1 state. Thus, the all-1 state is uniquely stochastically stable for r = 0

and for all sufficiently large λ.

For Game B in Table 3b, suppose that the process is in the all-0 state. Similarly to Game A,

one agent mutating to strategy 2 will make strategy 1 the best response for all agents. However,

the process will not move to the all-1 state because the all-1 state is not an equilibrium in Game

B; the best response against strategy 1 is 0, so the process will likely move back to the all-0 state.

Thus, one mutation cannot destabilize the all-0 state. On the other hand, for the all-2 state, one

mutation to strategy 1 will make strategy 1 the best response, so agents will switch to strategy 1.
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Strategy 0 will eventually become the best response, and the process will move to the all-0 state.

Hence, the all-0 state is uniquely stochastically stable for r = 0 and all sufficiently large λ.

5 Endogenous Reference Points

In this section, we consider two models of endogenous reference points that are commonly adopted

in the real life. In the first model, agents adopt the average monetary payoff in the population

(social average) as their reference points. We call it the social comparison model. In the second

model, agents adopt their payoffs gained from their latest games (status-quos) as their reference

points. We call it the status-quo bias model.

5.1 Social Comparison

We consider the model in which agents’ reference points are endogenously determined by social

comparison. We assume that agents evaluate possible outcomes by comparing them to what people

“ought to get” in the society. The average monetary payoff in the population (social average)

provides a natural reference point for such agents. Let F̄ (x) denote the average monetary payoff

at state x, where

F̄ (x) = (1− x)((1− x)a00 + xa01) + x((1− x)a10 + xa11). (12)

5.1.1 Prospect Dynamic with Social Comparison

In the case of social comparison, all agents’ reference points are identical and solely depend on the

population state, r(sri , ŝi, x) = F̄ (x). The revision probabilities can be written as a function of the

population state:

ρ01(x) = ση(u1(x, F̄ (x))− u0(x, F̄ (x))), (13)

ρ10(x) = ση(u0(x, F̄ (x))− u1(x, F̄ (x))), (14)

where ση(·) is given by Eq.(5).

For an agent playing strategy s, she switches to strategy s′ 6= s with probability ρss′(x). The

process is a Markov chain with the state space X. It is characterized by the following transition
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probabilities,

Pnxy =



(1− x)ρ01(x) if y = x+ 1
n ,

xρ10(x) if y = x− 1
n ,

1− (1− x)ρ01(x)− xρ10(x) if y = x,

0 otherwise.

(15)

We call this dynamic prospect dynamic with social comparison, which takes a familiar form of

the best response dynamic with mutations because agents’ reference points are only affected by the

population state.

5.1.2 Analysis

Given the prospect dynamic with social comparison, the condition for stochastic stability of the

population states for all degrees of loss-aversion is characterized as follows.

Theorem 5.1. The all-s state is uniquely stochastically stable under prospect dynamic with social

comparison for all λ ≥ 1 if and only if

(1) strategy s is loss-dominant, or

(2) strategy s is risk-dominant and ass ≥ 3(as′s + as′s′)− 5ass′, for s′ 6= s.

Condition (1) of Theorem 5.1 is directly implied by Theorem 3.2. Let us focus on condition

(2) of Theorem 5.1. Consider that strategy 0 is not loss-dominant but satisfies condition (2) of

Theorem 5.1. This implies that a00 is the maximum monetary return and a01 is the minimum one.

Hence, a00 is always regarded as a gain, while a00 ≥ 3(a10 +a11)−5a01 implies that the other three

payoffs are losses for x ≤ 1
2 . In this case, the loss associated with strategy 0 is smaller than the loss

associated with strategy 1 for all x ≤ 1
2 . In other words, high a00 compensates the potential loss

incurred by choosing strategy 0. Therefore, strategy 0 is the unique best response for x ≤ 1
2 . We

call such a strategy 0 a compensation-attractive strategy.

Intuitively, Theorem 5.1 implies that loss-averse agents prefer a strategy that is not only less

risky but also unassociated with the worst outcome, unless the worst outcome is sufficiently com-

pensated in the best case. In the following examples, we graphically illustrate the implications of

Theorem 5.1.

Example 4. Consider a standard stag-hunt game, a00 = 2, a01 = 2, a10 = 0, and a11 = 3. Strategy

0 is loss-dominant. Figure 2(a) plots u1(x) − u0(x) for λ ∈ {1.5, 3}. As shown in the figure, the

basin of attraction for the all-0 state is from 0 through the point at which u1(x)− u0(x) = 0.
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When λ = 1.5, the all-0 state has a larger basin of attraction than the all-1 state, which implies

that the all-0 state is stochastically stable. When λ increases to 3, the all-0 state still has a larger

basin of attraction than the all-1 state. Moreover, the basin for λ = 3 is larger compared to that

for λ = 1.5. This indicates that a loss-dominant equilibrium is more “stable” as the degree of

loss-aversion increases.

Example 5. Suppose that a00 = 3, a01 = 0, a10 = 1, and a11 = 1. Strategy 0 is both risk-

dominant and payoff-dominant, but not loss-dominant. The game also fails to satisfy condition (2)

in Theorem 5.1. Figure 2(b) plots u1(x)− u0(x).

When λ = 1.5, the all-0 state has a larger basin of attraction than the all-1 state implying

that the all-0 state is stochastically stable. This indicates when the degree of loss-aversion is low,

risk-dominance still plays an essential role. However, when λ increases to 3, the all-1 state has a

larger basin of attraction than the all-0 state. Hence, the all-1 state is now uniquely stochastically

stable. Given that strategy 0 is associated with the minimum payoff and fails to satisfy condition

(2), strongly loss-averse agents will choose strategy 1 in the long run to avoid the loss in the worst

outcome.

Example 6. Suppose that a00 = 7, a01 = 1, a10 = 2, and a11 = 2. Strategy 0 is not loss-dominant,

but satisfies condition (2) of Theorem 5.1. The minimum payoff is associated with strategy 0, but

the payoff for coordinating on strategy 0 is sufficiently high. Figure 2(c) plots u1(x)− u0(x).

Similarly to Example 4, for all degrees of loss-aversion, the all-0 state is uniquely stochastically

stable. However, the basin of attraction of the all-0 state shrinks as the degree of loss-aversion

increases. The minimum payoff associated with strategy 0 negatively affects the basin for the all-0

state as agents become more loss-averse.

Risk-dominance is a necessary condition for stochastic stability in Theorem 5.1 because the the-

orem considers all degrees of loss aversion including the loss-neutral one, λ = 1. However, Theorem

5.1 also implies that when the degree of loss-aversion increases, the risk-dominance criterion be-

comes less important because agents care more about avoiding losses than avoiding being exposed

to risks.

Next, we investigate if we can relax the risk-dominance criterion for a fixed degree of loss-

aversion. We find that under a certain payoff structure, a weakened criterion is enough for stochastic

stability. As shown below, that criterion is associated with the concept of p-dominance by Morris

et al. (1995).14

14See a discussion of p-dominance in sampling best response dynamic by Sandholm (2001) and Oyama et al. (2015).
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Figure 2: u1(x)− u0(x) for x ∈ [0, 1]

Definition 5.2. Strategy s ∈ {0, 1} is a p-dominant strategy if for s′ ∈ {0, 1}, s′ 6= s, pass +

(1− p)ass′ > pas′s + (1− p)as′s′ for p ∈ [0, 1].

Proposition 5.3. Suppose a coordination game that satisfies min{as0, as1} > min{as′0, as′1} and

ass′ + as′s ≥ 2ass for s 6= s′. For a fixed degree of loss aversion λ ≥ 1, the all-s state is uniquely

stochastically stable if and only if strategy s is λ
1+λ -dominant.

A strategy satisfying the conditions in Proposition 5.3 must be the maximin strategy. Note

that the λ
1+λ -dominance criterion reduces to ass > ass′ in the limit of large λ and is automatically

satisfied. When λ approaches 1, the λ
1+λ -dominance criterion reduces to risk-dominance. The next

example illustrates an intuition of the proposition.

Example 7. Suppose that a00 = 2, a01 = 5, a10 = 0, and a11 = 10. Strategy 0 satisfies the payoff

structure specified in Proposition 5.3. Observe that strategy 0 is 5
7 + ε-dominant for any ε > 0 and
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that λ
1+λ = 5

7 for λ = 2.5. Proposition 5.3 implies that the all-0 state is uniquely stochastically

stable for λ > 2.5, while the all-1 state is so for λ < 2.5.

Figure 2(d) plots u1(x)−u0(x). When λ = 3, the all-0 state has a larger basin of attraction than

the all-1 state, which implies that the all-0 state is stochastically stable. When λ = 2, however, the

all-0 state has a smaller basin of attraction than the all-1 state, so it is no longer stable.

Finally, we briefly discuss how compensation-attractiveness of a strategy depends on the value

of λ. Assume that strategy s is risk-dominant but not the maximin strategy. For a fixed degree

of loss aversion λ, the all-s state is uniquely stochastically stable if ass exceeds some lower bound.

Such a lower bound is strictly increasing in λ. In other words, when agents are more loss-averse,

they need a higher compensation for their losses. Moreover, when λ goes to infinity, the lower

bound for ass converges to 3(as′s + as′s′)− 5ass′ , which is exactly the lower bound in condition (2)

of Theorem 5.1.

Our result may bring some new insights to the marginal impact of payoffs on coordination in

coordination games. In an experimental study on four-player weak-link games, Brandts and Cooper

(2006) find that an increase in the benefits of coordination (with no change in non-coordination

payoffs) leads to improved coordination, but large increases have no more impact than small in-

creases. On the other hand, our theoretical result shows that an increase in the non-coordination

payoff may have a larger impact than an increase in the coordination payoff in two-player coor-

dination games played by loss-averse agents. As suggested by Theorem 5.1, the non-coordination

payoff ass′ is 5 times more important than the coordination payoff ass, since ass + 5ass′ needs to

exceed some threshold for the all-s state to be stochastically stable.

5.2 Status-Quo Bias

Status-quo bias refers to a reference-dependent preference in which a loss-averse agent uses her

current endowment as her reference point. In our setting, we assume that when an agent receives

a revision opportunity, she uses the payoff she gained from her latest game as her reference point.

That is, an agent’s reference point r(sri , ŝi, x) = asiŝi , where si is her current strategy and ŝi the

strategy she played against in her latest match. For example, if a revising agent has gained a00 in

the latest match, her evaluations of the two strategies will be given as

u0(x, a00) = xv(a01, a00),

u1(x, a00) = (1− x)v(a10, a00) + xv(a11, a00).
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There are potentially four different reference points that agents would use in the population:

a00, a01, a10, a11.

5.2.1 Prospect Dynamic with Status-Quo Bias

Agents employ the best response with mutations (BRM) protocol as in Section 5.1. Recall that,

given a revision opportunity, an agent is matched with another randomly selected agent to play the

game, and then revise her strategy. Her reference point is given by the outcome of the last match.

Observe that, the probability of the strategy profile being (s, s′) for the matched agents is given by

the product of the proportions of agents playing the two strategies. For example, the probability

that the profile of the next match will be (s, s′) = (0, 0) is given by (1− x)2.15

The probabilities of switching depend on the reference points of the agents as follows:

ρ01(x, a0s) = ση(u1(x, a0s)− u0(x, a0s)) for s ∈ {0, 1},

ρ10(x, a1s) = ση(u0(x, a1s)− u1(x, a1s)) for s ∈ {0, 1}.

The transition probabilities of the Markov chain are given by

Pnxy =



(1− x)2ρ01(x, a00) + (1− x)xρ01(x, a01) if y = x+ 1
n ,

x(1− x)ρ10(x, a10) + x2ρ10(x, a11) if y = x− 1
n ,

1− (1− x)2ρ01(x, a00)− (1− x)xρ01(x, a01)

−x(1− x)ρ10(x, a10)− x2ρ10(x, a11) if y = x,

0 otherwise.

(16)

We call this dynamic prospect dynamic with status-quo bias.

5.2.2 Analysis

We have the following result for the prospect dynamic with status-quo bias.

Theorem 5.4. The all-s state is uniquely stochastically stable under prospect dynamic with status-

quo bias for any λ ≥ 1 if and only if

(1) strategy s is loss-dominant, or

15Note that the probability that either plays strategy 0 and the other plays strategy 1 is 2x(1− x) since there are

two possible cases: (s, s′) = (0, 1) and (s, s′) = (1, 0). Since either agent will revise, the probability that an agent

with s revises is given by x(1− x) for each s ∈ {0, 1}.
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(2) strategy s is risk-dominant but not loss-dominant, and satisfies (i) ass − as′s >
(as′s′−ass′ )2
as′s′−as′s

and

(ii) as′s′ > as′s.

The condition (1) of Theorem 5.4 shows that loss-dominance serves as part of the necessary and

sufficient condition for unique stochastic stability. This is implied by Theorem 3.2. The intuition

behind the condition (2) of Theorem 5.4 can be illustrated graphically. Without loss of generality,

let strategy 0 be risk-dominant but not loss-dominant. Figure 3 depicts the basins of attraction for

the all-0 state and the all-1 state for sufficiently large λ.

Figure 3: Basins of Attraction under Status-Quo Bias

In the status-quo region, strategy 0 is the unique best response for agents currently choosing

strategy 0, while strategy 1 is the unique best response for agents currently choosing strategy 1.

Therefore, any state in this region is an absorbing state and does not contribute to determining

the stochastically stable states.16 To the left of the status-quo region, for agents with reference

points a00, a01 and a11, their best response is strategy 0; for agents with reference point a10, their

best response is strategy 1. This region can be viewed as the basin of attraction of the all-0 state.

because no agent playing strategy 0 will switch to strategy 1 and agents playing strategy 1 will

switch to strategy 0 if they are matched with agents playing strategy 1.17

To the right of the status-quo region, strategy 1 is the unique best response for every agent

when λ is sufficiently large. Thus, the region is the basin of attraction of the all-1 state. The

condition a00 − a10 > (a11−a01)2
a11−a10 in Theorem 5.4 ensures that the basin of attraction of the all-0

state is larger than that of the all-1 state. Therefore, the all-0 state is uniquely stochastically stable

for all degrees of loss aversion.

16This is because the cost of moving from one basin to the other is identical to that of the opposite one.
17Since agents can be matched with themselves, any agent playing strategy 1 is matched with an agent playing

strategy 1 with positive probability for all states except the all-0 state. In Section 7.2, we show that the state in which

all but one agent playing strategy 0 is also stochastically stable given a matching protocol without self-matching.
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Note that the condition, a00−a10 > (a11−a01)2
a11−a10 , is stronger than the risk-dominance, or a00−a10 >

a11 − a01. To see this, observe that a10 > a01 implies that a11 − a01 > a11 − a10. Then,

a00 − a10 >
(a11 − a01)2

a11 − a10
> a11 − a01.

It is satisfied when a00 is sufficiently large. Similarly to the model of social comparison, when

strategy 0 is compensation-attractive, the all-0 state is stochastically stable in the model of status-

quo bias.

5.3 Comparison between the two models of endogenous reference points

In both models, when a risk-dominant strategy s fails to be the maximin strategy but is compensation-

attractive to a certain extent, the all-s state is still stochastically stable for all degrees of loss

aversion. However, the mechanisms for which a strategy is sufficiently compensation-attractive are

distinct across the two models. For the following discussion, assume that strategy 0 is risk-dominant

but is not the maximin strategy.

For the social comparison model, as a00 increases, the common reference point for agents, the

social average, also increases. For agents with a sufficiently high degree of loss-aversion, this makes

the losses associated with strategy 1 larger and makes strategy 0 more attractive. Hence, the

basin of attraction of the all-0 state expands, while that for the all-1 state shrinks. Thus, the

compensation induced by a00 affects both the attractiveness of strategy 0 and that of 1.

While, for the status-quo bias model, any change in a00 does not affect the reference points

of agents playing strategy 1. When the degree of loss-aversion is sufficiently high, the region

[ a11−a10
2a11−a01−a10 , 1], where agents playing strategy 1 have no incentive to switch to strategy 0, remains

unchanged as a00 increases. That is, the attractiveness of strategy 0 is not increased for agents

playing 1, and the basin of attraction of the all-0 state does not expand in response to an increase

in a00. On the other hand, an increase in a00 makes agents playing strategy 0 more reluctant to

switch to strategy 1. Hence, the region [0, a00−a10
a00+a11−a01−a10 ], where agents playing strategy 0 have

no incentive to switch, expands toward the all-1 state. This makes the basin of attraction of the

all-1 state shrink relative to that of the all-0 state.

Example 8. Similarly to Example 2, suppose a coordination game with a01 = 0 and a11 = 1.

The parameter profiles of (a00, a10) for which the all-0 state is uniquely stochastically stable are

depicted as a gray-shaded area in Figure 4. Strategy 0 is risk-dominant for all payoff profiles above

the “RD” line, i.e. a00 − a10 > a11 − a01 = 1. The “SC” and “SQ” lines denote the necessary
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conditions for stochastic stability for the social comparison model and the status-quo bias model,

respectively.

‒1.0 ‒0.5 0.5 1.0 1.5 2.00

2

4
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10
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SQ

0 is loss-
domiant

a₁₀

a₀₀

Figure 4: Regions for all-0 being stochastically stable

If a00 − a10 > 1 and a10 ≤ 0, then strategy 0 is loss-dominant and thus the all-0 state is

uniquely stochastically stable for both models. For a10 > 0, the regions for which the all-0 state is

stochastically stable differ in the two models. For the social comparison model, if a00 ≥ 3a10 + 3,

or profiles above the ”SC”, the all-0 state is uniquely stochastically stable. The compensation

required for the all-0 state to be stochastically stable is linear in an increase in a10. While, for

the status-quo bias model, for all profiles above the “SQ”, the all-0 state is uniquely stochastically

stable. As we discussed, any increase in a00 does not raise the attractiveness of strategy 0 for

agents playing 1, which makes it increasingly difficult to compensate those agents for switching to

strategy 0 in response to an increase in a10. And it becomes impossible to attract those agents

when a10 ≥ 1 = a11, for which the all-0 state cannot be uniquely stochastically stable.

6 Diminishing Sensitivity to Gains/Losses

Besides loss-aversion, another important element of prospect theory is diminishing sensitivity to

gains and losses. That is, people are risk-averse when dealing with gains, but are risk-seeking when

dealing with losses. In this section, we investigate if loss-dominance still has predictive power when

agents exhibit such diminishing sensitivity.

According to Tversky and Kahneman (1992), we modify the value function of a loss-averse agent

who has a reference strategy sri , matched with another agent playing strategy ŝi, and anticipates
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receiving the payoff ass′ at the population state x as follows:

v(ass′ , r(s
r
i , ŝi, x)) =

(ass′ − r(sri , ŝi, x))α if ass′ − r(sri , ŝi, x) ≥ 0,

−λ(r(sri , ŝi, x)− ass′)α otherwise,

where λ ≥ 1 and α ∈ (0, 1]. α represents the degree of diminishing sensitivity to gains and losses.18

The next theorem shows that as long as the degree of diminishing sensitivity α is not sufficiently

small, loss-dominance still guarantees stochastic stability in any 2× 2 coordination game.

Theorem 6.1. Fix a 2 × 2 coordination game g. There exists α(g) ∈ (0, 1) such that for any

α ∈ [α(g), 1], the all-s state is uniquely stochastically stable for all models of reference points and

all λ ≥ 1 if s is loss-dominant.

Theorem 6.1 generalizes Theorem 3.2 to a more general class of loss-averse preferences. It shows

that for each game, there exists a lower bound for α that is invariant to the choice of models of

reference points and the agents’ degree of loss-aversion, such that loss-dominance is sufficient for

stochastic stability.19

Intuitively, one should expect that when the degree of loss aversion λ is sufficiently large,

strategy s being the maximin strategy still guarantees stochastic stability of the all-s state because

the loss associated with the worst outcome as′s is sufficiently amplified. However, if we decrease α

while keeping λ constant, agents will perceive less disutility in the loss frame and they become more

risk-seeking. Hence, for sufficiently small α, strategy s being loss-dominant on monetary payoffs

may no longer guarantee the all-s state to be stochastically stable. The following example provides

an illustration.

Example 9. Suppose that a00 = 2, a01 = 2, a10 = −2.5, a11 = 3, r = 2.5 and λ = 1. Strategy 0

is loss-dominant but not payoff-dominant. When α is 0.4, u0(
1
2 , r)− u1(

1
2 , r) ≈ −.2 < 0, implying

that the all-0 state is not stochastically stable. By a numerical computation, we can find that α(g)

for this game is around .49. For any α ∈ [.5, 1], the all-0 state is uniquely stochastically stable for

all models of reference points and all λ ≥ 1.

18Tversky and Kahneman (1992) found that people’s sensitivity to gains is approximately the same as their sen-

sitivity to losses. For simplicity, we follow their observation here. In general, an agent’s sensitivity to gains can be

different from her sensitivity to losses. We emphasize that allowing for different sensitivities to gains and losses would

not change the main insight of this section.
19Sawa and Wu (2018) consider a class of preferences including loss-averse preferences with high degrees of dimin-

ishing sensitivity and show that the sufficient condition for stochastic stability must combine payoff-dominance with

risk-dominance and maximin for such a class of preferences.
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Finally, Theorem 4.4 together with the proof of Theorem 6.1 implies that as long as the degree

of diminishing sensitivity to gains and losses is not sufficiently small, generalized loss-dominance

still guarantees stochastic stability in any symmetric normal form game. The proof is omitted.

Theorem 6.2. Fix a symmetric normal form game g with S = {0, . . . ,K}, K ≥ 1. There exists a

α(g) ∈ (0, 1) such that for any α ∈ [α(g), 1], the all-i state is uniquely stochastically stable for all

models of reference points and all λ ≥ 1 if strategy i ∈ S is the generalized loss-dominant strategy.

7 Discussion

7.1 Heterogeneous Preferences

In previous sections, we have shown that loss-dominance is a sufficient condition for stochastic

stability for agents employing the same type of reference points with the same degree of loss-

aversion. In reality, agents are heterogeneous; some would be loss-neutral, other would be loss-

averse, and different loss-averse agents would exhibit different degrees of the aversion and may

adopt different types of reference points. Hence, it is important to consider whether our main

results are robust with respect to such heterogeneous preferences. We answer the question in the

affirmative; loss-dominance is still sufficient for stochastic stability.

We restate our model in order to accommodate heterogeneous agents. Our model is a dynamic

process where n heterogeneously loss-averse agents are (repeatedly and randomly) matched to play

a coordination game where the strategy set is by S = {0, 1}. The state of the process is described

by their strategy profile. Let Z ≡ Sn which denotes the state space, and z = {z1, . . . , zn} ∈ Z

which denotes the current strategy profile, i.e., agent k playing strategy zk for 1 ≤ k ≤ n. The ‘all-i

state’ for i ∈ S is redefined as the state being z = {i, . . . , i}. Let x(z) = n−1
∑

k≤n 1{zk = 1} which

is the fraction of agents playing strategy 1, e.g., x(z) corresponds to the state used in our original

model. There is no essential change from the model with homogeneous agents, i.e., n loss-averse

agents are repeatedly matched to play a game.

The next proposition shows the robustness of Theorem 3.2. Its intuition is straightforward.

Without loss of generality, let strategy 0 be loss-dominant. For any z such that x(z) ≤ 1
2 , regardless

of the degrees of loss-aversion, strategy 0 is the unique best response for all agents. Hence, the

basin of attraction of the all-0 state is larger than that of the all-1 state, leading the all-0 state to

be uniquely stochastically stable.
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Proposition 7.1. If s is loss-dominant, then all-s state is uniquely stochastically stable in a hetero-

geneous population consisting of agents with any degrees of loss-aversion and any types of reference

points.

Proof. Without loss of generality, assume that strategy 0 is loss-dominant. In the proof of Theorem

3.2, we have shown that, for all z ∈ Z such that x(z) ∈ [0, 1/2], strategy 0 is the unique best response

for all agents with any reference point r ∈ R. This implies that at least dn2 e mutations are required

for the process to escape from the all-0 state.20 While, strategy 1 is not a best response for all

agents for all z ∈ Z with x(z) ∈ [0, 1/2]. This implies that mutations less than dn2 e are enough

for the process to move away from the all-1 state toward the all-0 state. Those observations imply

that the all-0 state is uniquely stochastically stable.

The necessary condition for stochastic stability in a heterogeneous population depends on the

detailed composition of the population. We leave it to interested readers. The next example

considers agents with heterogeneous reference points. The composition of the population affects

the set of stochastically stable states, and computing the set becomes more involved if there is no

loss-dominant strategy.

Example 10 (heterogeneity). Consider the two coordination games shown in Table 4. Strategy 0

is loss-dominant for Game A in Table 4(a). Proposition 7.1 implies that the all-0 state is uniquely

stochastically stable for any mixture of heterogeneous agents.

Table 4: Two Coordination Games (Monetary Returns)

(a) Game A: strategy 0 being loss-dominant

Player 2

0 1

Player 1 0 3, 3 3, 1

1 1, 3 4, 4

(b) Game B: no loss-dominant strategy

Player 2

0 1

Player 1 0 5, 5 1, 3

1 3, 1 2, 2

Suppose that agents play the game in Table 4(b) and have different reference points. There are

two types of them; type I agents have r1 = 3, while type II agents have r2 = 4. Table 5 shows

player 1’s utilities for each type.

20dae denotes the smallest integer greater than or equal to a.
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Table 5: Player 1’s utilities for each type in Game B

(a) Type I: r1 = 3

0 1

0 2 −2λ

1 0 −λ

(b) Type II: r2 = 4

0 1

0 1 −3λ

1 −λ −2λ

For this setting, where no loss-dominant strategy exists, the stochastically stable state depends

not only on r1, r2 and λ but also on the relative proportion of each type. For example, let λ = 5,

n = 11. Suppose that 2 agents are type I, and 9 agents are type II. Observe that type I agents

prefer strategy 0 if and only if at least 8 agents play strategy 0. On the other hand, type II agents

become indifferent between the two strategies if 6 agents play strategy 0 and 5 agents play strategy

1. Suppose that the process is in the all-0 state. If 4 type II agents mutate to strategy 1, then

strategy 1 will become the best response for type I agents. All of type I agents will thus switch

to strategy 1, and the number of agents playing strategy 1 becomes 6. Strategy 1 becomes a best

response for type II agents and all the remaining agents playing strategy 0 may switch to strategy 1.

This implies that escaping from the all-0 state requires 4 mutations. On the other hand, escaping

from the all-1 state requires at least 5 mutations since no agent will find strategy 0 a best response

if x(z) < 5
11 . Hence, the all-1 state is uniquely stochastically stable.

In contrast to the above observation, if all agents are type II, then all agents are indifferent

between the two strategies at x(z) = 5
11 . This implies that escaping from the all-0 state requires

6 mutations, while escaping from the all-1 state requires 5. Hence, the all-0 state is uniquely

stochastically stable.

7.2 Matching protocols without self-matching and clever revision protocols

In this section, we consider an alternate matching protocol and an alternate decision rule, and show

that our main results hold in general for different combinations of matching protocol and decision

rule. The alternate matching protocol is the protocol without self-matching. When agents cannot

be matched with themselves, their reference-dependent utilities of playing strategies 0 and 1 are

respectively written as

u0(x, r(s
r
i , ŝi, x)) =

n(1− x)− 1

n− 1
v(as0, r(s

r
i , ŝi, x)) +

nx

n− 1
v(as1, r(s

r
i , ŝi, x)), (17)
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u1(x, r(s
r
i , ŝi, x)) =

n(1− x)

n− 1
v(as0, r(s

r
i , ŝi, x)) +

nx− 1

n− 1
v(as1, r(s

r
i , ŝi, x)). (18)

As for an alternate decision rule, following Kandori and Rob (1995) and Sandholm (1998), we

consider a decision rule under which “clever” agents take into account the effect of their strategy

change on their reference-dependent utilities. Under this criterion, the noisy best response revision

protocol is given as follows.

ρ01(x, r0) = ση(u1(x+
1

n
, r0)− u0(x.r0)), (19)

ρ10(x, r1) = ση(u0(x−
1

n
, r1)− u1(x, r1)). (20)

Observe that the above protocol takes into account the effect of strategy change on the population

state. For example, if an agent playing strategy 0 switches to strategy 1 in state x, then the

population state will be changed to x + 1
n . ρ01(x, r0) above takes into account such a change.

ρ10(x, r0) can be interpreted similarly. We call the revision protocol given by (2) and (3) the simple

revision protocol, and the protocol given by (19) and (20) the clever revision protocol.21 We consider

the following four settings:

(I) the simple revision protocol with self-matching (our primary setting),

(II) the clever revision protocol with self-matching,

(III) the simple revision protocol without self-matching,

(IV) the clever revision protocol without self-matching.

The next proposition generalizes our results to settings with clever agents and/or with the

matching protocol without self-matching.

Proposition 7.2. For all sufficiently large population size n, Theorems 3.2 and 5.1 are valid for

all (I)–(IV), while Theorem 5.4 is valid for (I),(II) and (IV).

Proof. Observe that the utilities expressed in Eq.(17) and (18) converge to the utilities expressed

in Eq.(1) in the limit of the large population size, i.e.,

lim
n→∞

u0(x, r(s
r
i , ŝi, x)) = lim

n→∞

n(1− x)− 1

n− 1
v(as0, r(s

r
i , ŝi, x)) +

nx

n− 1
v(as1, r(s

r
i , ŝi, x))

= (1− x)v(as0, r(s
r
i , ŝi, x)) + xv(as1, r(s

r
i , ŝi, x)), (21)

21Rhode and Stegeman (1996) showed that the simple revision protocol together with the matching protocol without

self-matching may result in selecting states which are not Nash equilibria. Using “clever” agents avoids the issue.
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lim
n→∞

u1(x, r(s
r
i , ŝi, x)) = lim

n→∞

n(1− x)

n− 1
v(as0, r(s

r
i , ŝi, x)) +

nx− 1

n− 1
v(as1, r(s

r
i , ŝi, x))

= (1− x)v(as0, r(s
r
i , ŝi, x)) + xv(as1, r(s

r
i , ŝi, x)). (22)

Observe also that the utility differences, u0(·)−u1(·) and u1(·)−u0(·), in Eq.(19) and (20) converge

to those in Eq.(2) and (3) in the large population limit, i.e.,

lim
n→∞

u0(x−
1

n
, r(sri , ŝi, x−

1

n
)) = lim

n→∞
u0(x, r(s

r
i , ŝi, x))

= (1− x)v(as0, r(s
r
i , ŝi, x)) + xv(as1, r(s

r
i , ŝi, x)), (23)

lim
n→∞

u1(x+
1

n
, r(sri , ŝi, x+

1

n
)) = lim

n→∞
u1(x, r(s

r
i , ŝi, x))

= (1− x)v(as0, r(s
r
i , ŝi, x)) + xv(as1, r(s

r
i , ŝi, x)). (24)

Hence, the limiting reference-dependent utilities in the settings (II)–(IV) coincide with the reference-

dependent utilities in (I), which is our main model. The claim is thus implied by the proofs of

Theorems 3.2, 5.1 and 5.4.

For the setting (III) with the status-quo bias, the next corollary is implied by the proof of

Theorem 5.4.

Corollary 7.3. Consider the simple revision protocol without self-matching. The all-s state and

the state in which all but one agent play strategy s are both stochastically stable under prospect

dynamic with status-quo bias if and only if strategy s is risk-dominant but not loss-dominant, and

satisfies (i) ass − as′s >
(as′s′−ass′ )2
as′s′−as′s

and (ii) as′s′ > as′s.

The intuition for Corollary 7.3 is as follows. Assume that strategy 0 satisfies the conditions

(i) and (ii). The conditions imply that a00 > a11 > a10 > a01. In the state in which all but one

agent play strategy 0, the only agent choosing strategy 1 must match with another agent choosing

strategy 0 under the matching protocol without self-matching. Therefore, the reference point of

the agent choosing strategy 1 in this state is always a10. Given this, her best response is always

strategy 1 for sufficiently large λ because only a01 is perceived as a loss for this agent. At the same

time, the best response is strategy 0 for all other agents. Hence, this state is an absorbing state

and can be stochastically stable.22

Note that if we instead consider the clever revision protocol, at the state in which all but one

agent play strategy 0, the agent playing strategy 1 can correctly anticipate that there will be no

agent playing strategy 1 (thus she will not receive a01) if she revises her strategy. Therefore, her

best response would be strategy 0 and consequently the state is not stochastically stable.

22See also footnote 28 in the proof of Theorem 5.4.
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7.3 Local Interaction Games

Loss-dominance is a sufficient condition for a strategy to be the unique best response when at least

half of the population of loss averse agents adopt the strategy. This implies that a loss-dominant

strategy can be contagious in local interaction games. For simplicity, consider a circle model of

Ellison (1993) in which agents are distributed around a circle and each agent is only matched with

her two immediate neighbors. Let N = {1, . . . , n} denote the set of agents, si ∈ {0, 1} denote the

strategy played by agent i, and ri denote the reference point of agent i. Let s = {s1, . . . , sn} and

s−i = s \ {si}. The reference-dependent utility of agent i is given as below.

ui(si, s−i, ri) =
∑

j∈{i−1,i+1}

v(asisj , ri) ∀i ∈ N, (25)

with a convention that i − 1 = n for i = 1 and i + 1 = 1 for i = n. Assume that the revision

protocol for agent i is given as follows.

ρ01(s, ri) = ση(ui(1, s−i, ri)− ui(0, s−i, ri)), (26)

ρ10(s, ri) = ση(ui(0, s−i, ri)− ui(1, s−i, ri)). (27)

Let st denote the strategy profile in period t. Define

W (n, ε) = E
[
min{t|st = {0, . . . , 0}|s0 = {1, . . . , 1}

]
,

where W (n, ε) is the expected waiting time until all agents simultaneously play strategy 0 given

that every agent starts with strategy 1. The next proposition shows that the waiting time for a

loss-dominant strategy to spread to the whole population is independent of the population size

when they interact only with their neighbors. One agent switching to a loss-dominant strategy is

enough for the strategy to spread. Consequently the expected waiting time is roughly given by ε−1.

We omit the proof since it is implied by Theorem 3.2 and Theorem 3 of Ellison (1993).

Proposition 7.4. Suppose that strategy 0 is loss-dominant. Consider a circle model with the initial

state being the all-1 state. W (n, ε) = O(ε−1) for all models of reference points and all λ ≥ 1.

7.4 Synchronous learning protocols

So far, we have considered the asynchronous learning protocol, in which exactly one agent revises

in each period. We relax this assumption and consider a class of synchronous learning protocols in

which a subset of agents simultaneously revise their strategies in each period. Let N = {1, . . . , n}
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denote the set of agents and N denote the set of all subsets of N . For each J ∈ N , qJ denotes

the probability that exactly the agents in J receive a revision opportunity. Each revising agent is

matched with another randomly selected agent to play the game, and then she revises her strategy

according to the revision protocol given by (2) and (3). Following Alós-Ferrer and Netzer (2015),

we consider a regular revision distribution, that is, q{i} > 0 for all i ∈ N . We call a learning

protocol with a regular revision distribution a regular synchronous learning protocol. We generalize

Theorem 3.2 for all regular synchronous learning protocols.

Proposition 7.5. Consider a regular synchronous learning protocol. The all-s state is uniquely

stochastically stable for all models of reference points and all λ ≥ 1 if and only if s is loss-dominant.

The intuition behind the proposition is that the basin of attraction of each strategy does not

differ between the asynchronous and the regular synchronous learning protocols. If a strategy is

loss-dominant, then its basin of attraction is greater than half of the interval [0, 1]. This implies

that the set of stochastically stable states under any regular synchronous learning protocol coincides

with that under the asynchronous protocol described in Section 2.

Remark 7.6. Proposition 7.5 can also be extended to a synchronous learning protocol with qN = 1,

that is, all agents simultaneously revise their strategies in each period. Again, the basin of attraction

of each strategy under such a synchronous learning protocol does not differ from that under the

asynchronous learning protocol. For instance, suppose that strategy 0 is loss-dominant. The basin

of attraction of the all-0 state is [0, x∗) for x∗ > 1/2. To escape from the all-0 state (under

the synchronous protocol with qN = 1), it requires simultaneous mistakes of nx∗ agents, while

simultaneous mistakes of n(1− x∗) agents are required to escape from the all-1 state. This implies

that the all-0 state is uniquely stochastically stable for sufficiently large n.

7.5 Exogenous reference points

Theorem 3.2 considers both endogenous and exogenous reference points and shows that loss-

dominance is a sufficient condition for unique stochastic stability for any reference point. However,

when a strategy fails to be loss-dominant, whether it is stochastically stable hinges on the model of

the reference point. We have examined a few compelling models of endogenous reference points in

Section 5. In this section, we restrict our attention to exogenous reference points, or fixed reference

points, and examine stochastically stable states. The next corollary is implied by the proof of

Theorem 3.2 and it gives the exact condition for stochastic stability for exogenous reference points.
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Corollary 7.7. Suppose that λ ≥ 1 and that all agents have the same exogenous reference point,

r ∈ R. Then, the all-s state is uniquely stochastically stable if and only if

v(ass, r) + v(ass′ , r) > v(as′s, r) + v(as′s′ , r) for s′ 6= s.

The next example illustrates the implication of Corollary 7.7. Observe that the game depicted

in Table 4b offers a case where a risk-dominant and payoff-dominant equilibrium may not be

stochastically stable under the prospect dynamics.

Example 11 (dependence on the level of r). Recall the games given by Table 4 in Example 10.

Suppose that all agents have the same reference point r. For the game in Table 4a, strategy 0 is

loss-dominant. Hence, the all-0 state is uniquely stochastically stable for all r ∈ R and all λ ≥ 1.

For the game in Table 4b, strategy 0 is risk-dominant and is associated with the payoff-dominant

equilibrium, while strategy 1 is the maximin strategy. For r = 0 and λ = 1, it is known that the

all-0 state is uniquely stochastically stable. However, since strategy 0 is not loss-dominant, there

may exist a pair of r and λ for which the all-0 state is not stochastically stable. For example,

suppose r = 3. The utilities are given by

v(a00, r) = 2, v(a01, r) = −2λ, v(a10, r) = 0, v(a11, r) = −λ.

Then, observe that

v(a00, r) + v(a01, r) < v(a10, r) + v(a11, r) ⇔ λ > 2.

Corollary 7.7 implies that the all-1 state is uniquely stochastically stable for r = 3 and all λ > 2.

8 Conclusion

This study serves an attempt to incorporate insights from behavioral economics into the study of

evolutionary game theory. We propose new evolutionary dynamics called prospect dynamics, which

are generated by a population of loss-averse agents being randomly matched and making repeated

decisions in a 2×2 coordination game. We find that regardless of the type of reference points agents

adopt, a population state in which all agents play the same strategy is stochastically stable if the

strategy corresponds to a new solution concept, loss-dominance, which combines the notions of

risk-dominance and maximin strategy and captures people’s psychological needs to avoid not only

risks but losses. We also show that this result can be extended to symmetric two-player normal
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form games by introducing a new concept, generalized loss-dominance, which combines the notions

of half-dominance and globally pairwise maximin strategy, a generalization of maximin strategy.

We then consider two models of endogenous reference points, the social comparison model and the

status-quo bias model. We show that in both models, if a risk-dominant strategy fails to be loss-

dominant, the population state in which all agents play the risk-dominant strategy is stochastically

stable if it is compensation-attractive, that is, the highest outcome of this strategy compensates

the loss associated with it. Finally, we characterize the conditions for which our results are robust

given that the agents exhibit diminishing sensitivity to gains/losses.

We hope that this study will encourage further research on how psychological biases influence

the long-run behavior of individuals in society. An extension of this paper would be to consider

prospect dynamics with revision protocols different from BRM, such as the logit protocol (c.f.

Blume (1993)). Another line of extension would incorporate more psychological foundations into

agents’ decisions. For example, incorporating distributional social preferences such as inequality

aversion (c.f. Fehr and Schmidt (1999) and Fehr et al. (2001)) may enable us to better understand

how interdependence among individuals affect their adoption of norms. Another example would be

to combine psychological game theory (c.f. Geanakoplos et al. (1989), Rabin (1993) and Battigalli

and Dufwenberg (2009)) with evolutionary game theory. By doing so, we will be able to learn not

only the evolution of individuals’ behavior but also their beliefs and intentions.

Appendix

Proof of Theorem 3.2. We first prove the ‘only-if’ part and then the ‘if’ part.

‘only-if’ part:

Without loss of generality, we assume that strategy 0 is not loss-dominant and show that the

all-0 state is not uniquely stochastically stable for some reference-dependent preference. If strategy

0 is not risk-dominant, then Theorem 3 of Kandori et al. (1993) implies that the all-0 state is not

uniquely stochastically stable for the exogenous model with r = 0 and λ = 1. If strategy 0 is not a

maximin strategy, then a01 < a10 must hold. Suppose that r is such that a01 < r < min{a10, a11}.

Then, the all-0 state is not stochastically stable for the exogenous model with such r and sufficiently

large λ. This is because such r and large λ will imply that, for all x ∈ [0, 1],

(1− x)v(a00, r) + xλ(a01 − r) < (1− x)(a10 − r) + x(a11 − r)

⇔ u0(x, r) < u1(x, r).
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For any value of a00, the above inequality will hold if λ is sufficiently large. Thus, if strategy 0 is

not loss-dominant, then there exist some reference-dependent models where the all-0 state is not

uniquely stochastically stable.

‘if’ part:

Let r ∈ (−∞,∞), which denotes the reference point for an agent.23 Without loss of generality,

suppose that strategy 0 is the loss dominant strategy, i.e., a10 = min aij . We examine that the

all-0 state is uniquely stochastically stable for all r and all λ ≥ 1. For the proof, it suffices to

show that u0(x, r) > u1(x, r) for x ∈ [0, 1/2] and all r ∈ R. This is because the strict inequality,

u0(x, r) > u1(x, r), implies that there exists some small δ > 0 such that u0(x, r) > u1(x, r) for

x ∈ [0, 1/2 + δ), which further implies that the basin of attraction of the all-0 state is strictly

greater than all-1.

If r ≤ a10, then player 1’s utilities are given by Table 6.

Table 6: Player 1’s utility for r ≤ a10

Player 2

0 1

Player 1 0 a00 − r a01 − r

1 a10 − r a11 − r

Table 7: Player 1’s utility for r > max aij

Player 2

0 1

Player 1 0 λ(a00 − r) λ(a01 − r)

1 λ(a10 − r) λ(a11 − r)

Obviously, in this case, u0(x) > u1(x) holds for x ∈ [0, 1/2]. Since r is subtracted from each of

the payoffs, r does not essentially change the game. Then the risk-dominance on monetary payoffs

implies that the all-0 state is uniquely stochastically stable for any λ.

Next, suppose that r > maxi,j∈S aij . Player 1’s utilities are shown in Table 7. Observe that,

for x ∈ [0, 1/2], we have that

u0(x, r)− u1(x, r) = (1− x)λ(a00 − r) + xλ(a01 − r)− (1− x)λ(a10 − r)− xλ(a11 − r)

= λ((1− x)a00 + xa01 − (1− x)a10 − xa11) > 0.

The last inequality comes from that strategy 0 is risk dominant and x ≤ 1/2. Thus, the all-0 state

is stochastically stable for any λ.

23This is an exogenous reference point. But, we will show that the loss dominant equilibrium is uniquely stochas-

tically stable for all r. Then it will imply that it is sufficient for any endogenous reference point.
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For other cases, i.e., min aij ≤ r ≤ max aij , we consider three possible scenarios of the payoff

structure: (i) a11 ≥ a00 ≥ a01 ≥ a10, (ii) a11 > a01 > a00 > a10 and (iii) a00 > a11 > a01 ≥ a10.

Suppose the case (i) a11 ≥ a00 ≥ a01 ≥ a10. First let r be such that a00 ≤ r ≤ a11. Player 1’s

utilities are shown in Table 8a.

Table 8: case (i) a11 ≥ a00 ≥ a01 ≥ a10

(a) a00 ≤ r ≤ a11

0 1

0 λ(a00 − r) λ(a01 − r)

1 λ(a10 − r) a11 − r

(b) a01 ≤ r < a00

0 1

0 a00 − r λ(a01 − r)

1 λ(a10 − r) a11 − r

(c) a10 ≤ r < a01

0 1

0 a00 − r a01 − r

1 λ(a10 − r) a11 − r

Let G(x) = (1 − x)a00 + xa01 − (1 − x)a10 − xa11. Note that G > 0 for all x ∈ [0, 1/2] due to

the risk dominance of strategy 0 and a00 > a10. Then, observe that

u0(x, r)− u1(x, r) =(1− x)λ(a00 − r) + xλ(a01 − r)− (1− x)λ(a10 − r)− x(a11 − r)

=(λ− 1)((1− x)a00 + xa01 − (1− x)a10 − xr) +G

The risk dominance together with r ≤ a11 implies that the first term is strictly positive for x ∈

[0, 1/2].24 Then, this with G > 0 implies that the all-0 state is uniquely stochastically stable for

any λ.

Next, Suppose that r is such that a01 ≤ r < a00. Table 8b shows Player 1’s utilities. Observe

that

u0(x, r)− u1(x, r) =(1− x)(a00 − r) + xλ(a01 − r)− (1− x)λ(a10 − r)− x(a11 − r)

=(λ− 1)((1− x)(r − a10)− x(r − a01)) +G > 0.

The last strict inequality comes from that G > 0 and that a10 ≤ a01, which implies that (1−x)(r−

a10)− x(r − a01) ≥ 0 for x ≤ 1/2.

Lastly, suppose that r is such that a10 ≤ r < a01, for which Player 1’s utilities are shown in

Table 8c. Observe that

u0(x, r)− u1(x, r) =(1− x)(a00 − r) + x(a01 − r)− (1− x)λ(a10 − r)− x(a11 − r)

=(λ− 1)(1− x)(r − a10) +G > 0.

24To see this, observe that the first term is strictly positive even if r = a11.
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G > 0 and r ≥ a10 imply the last strict inequality. This completes the proof for the case (i).

Suppose the case (ii) a11 > a01 > a00 > a10. First suppose that r is such that a01 ≤ r ≤ a11.

Player 1’s utilities are shown in Table 9a. This is the same as the case (i) with utilities given in

Table 8a. Thus, strategy 0 is always the best response for x ∈ [0, 1/2].

Table 9: case (ii) a11 > a01 > a00 > a10

(a) a01 ≤ r ≤ a11

0 1

0 λ(a00 − r) λ(a01 − r)

1 λ(a10 − r) a11 − r

(b) a00 ≤ r < a01

0 1

0 λ(a00 − r) a01 − r

1 λ(a10 − r) a11 − r

(c) a10 ≤ r < a00

0 1

0 a00 − r a01 − r

1 λ(a10 − r) a11 − r

Next, suppose that r is such that a00 ≤ r < a01, for which 1’s utilities are shown in Table 9b.

Observe that

u0(x, r)− u1(x, r) =(1− x)λ(a00 − r) + x(a01 − r)− (1− x)λ(a10 − r)− x(a11 − r)

=(λ− 1)(1− x)(a00 − a10) +G > 0.

G > 0 and a00 > a10 imply the last strict inequality.

Lastly, suppose that r is such that a10 ≤ r < a01. Player 1’s utilities are shown in Table 9c.

Observe that this is the same as the case (i) with Table 8c. Thus, strategy 0 is always the best

response for x ∈ [0, 1/2]. This proves our claim for the case (ii).

Suppose the case (iii) a00 > a11 > a01 ≥ a10. First suppose that r is such that a11 ≤ r ≤ a00.

Player 1’s utilities are shown in Table 10a. Observe that

u0(x, r)− u1(x, r) =(1− x)(a00 − r) + xλ(a01 − r)− (1− x)λ(a10 − r)− xλ(a11 − r)

=(λ− 1)((1− x)(r − a10)− x(r − a01) + x(r − a11) +G > 0.

The last strict inequality is implied by G > 0, r ≥ a11, and a01 ≥ a10, which implies that (1−x)(r−

a10)− x(r − a01) ≥ 0 for x ∈ [0, 1/2]. Thus, strategy 0 is always the best response for x ∈ [0, 1/2].

Next, suppose that r is such that a01 ≤ r < a11. Player 1’s utilities are shown in Table 10b.

This is the same as the case (i) with Table 8b. Thus, strategy 0 is always the best response for

x ∈ [0, 1/2]. Lastly, suppose that a10 ≤ r < a01, for which Table 10c shows 1’s utilities. This is the

same as the case (i) with Table 8c. Thus, strategy 0 is always the best response for x ∈ [0, 1/2].

Through the above discussion, we have shown that strategy 0 is always the best response for

x ∈ [0, 1/2] for any r ∈ R and any λ ≥ 1. This completes the proof.
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Table 10: case (iii) a00 > a11 > a01 ≥ a10

(a) a11 ≤ r ≤ a00

0 1

0 a00 − r λ(a01 − r)

1 λ(a10 − r) λ(a11 − r)

(b) a01 ≤ r < a11

0 1

0 a00 − r λ(a01 − r)

1 λ(a10 − r) a11 − r

(c) a10 ≤ r < a01

0 1

0 a00 − r a01 − r

1 λ(a10 − r) a11 − r

Proof of Theorem 4.4. Notice that if there exists a generalized loss-dominant strategy, it must be

unique. Also note that the half-dominance of strategy i implies that aii > aji for all j 6= i, which

further implies that,

v(aii, r) > v(aji, r) ∀j ∈ S\{i}, r ∈ R, λ ≥ 1. (28)

Inequality (7) implies that

1

2
aii +

1

2

∑
k∈S\{i}

βkaik >
1

2
aji +

1

2

∑
k∈S\{i}

βkajk, (29)

for any j ∈ S\{i}, βk ∈ [0, 1], for any k ∈ S\{i} and
∑

k∈S\{i} βk = 1. By letting βk = 1 for each

k 6= i, inequality (29) implies that

aii + aik > aji + ajk, for any j, k ∈ S\{i}. (30)

Observe that inequalities (8) and (30) together imply that

v(aii, r) + v(aik, r) > v(aji, r) + v(ajk, r), for any j, k ∈ S\{i}. (31)

To see this, recall that for payoff structures with ajk > aik, we have proved that inequality (31)

holds, which has been shown in the proof of the “if” part of Theorem 3.2.25 If the payoffs are such

that aik ≥ ajk, then it implies that v(aik, r) ≥ v(ajk, r) for all r ∈ R and all λ ≥ 1. This with

inequality (28) implies (31).

Observe that inequalities (28) and (31) together imply that

αv(aii, r) + (1− α)(
∑

k∈S\{i}

βkv(aik, r)) > αv(aji, r) + (1− α)(
∑

k∈S\{i}

βkv(ajk, r)), (32)

for any j ∈ S\{i}, α ∈ [12 , 1], βk ∈ [0, 1], for any k ∈ S\{i} and
∑

k∈S\{i} βk = 1. Hence, strategy

i is half-dominant with respect to the reference-dependent utility function. Corollary 1 of Ellison

(2000) implies that all-i state is uniquely stochastically stable.
25We have proved (31) for the case with k = j in Theorem 3.2. It can be readily extended to cases with k 6= j.
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Proof of Proposition 4.5. Suppose that strategy i is not a globally pairwise maximin strategy. Then

there exist j, k 6= i such that min{aii, aij} < min{aki, akj}. Since the game is a coordination game,

aii > aki, which implies that aij < min{aki, akj}. Choose r ∈ R such that aij < r < min{aki, akj}.

Let x ∈ X be such that xj > 0 and xi = 1 − xj . Observe that, for any xj > 0, if λ is sufficiently

large, strategy k becomes the best response:26

(1− x)v(aii, r) + xλ(aij − r) < (1− x)(aki − r) + x(akj − r)

⇔ ui(x, r) < uk(x, r).

This implies that, for all sufficiently large λ, if an agent mutates to strategy j in the all-i state, then

strategy i will be no longer a best response. Note that, after that mutation, there is non-vanishing

probability that each agent playing strategy i will switch to strategy k and the process will reach

the all-k state. This implies that one mutation to strategy j can destabilize the all-i state and

the process will move to another equilibrium, the all-k state. Then, Lemma 4 of Nöldeke and

Samuelson (1993) implies that if the all-i state is stochastically stable, then the all-k state must be

also stochastically stable. Then, the all-i state cannot be uniquely so.27

Proof of Theorem 5.1. We first prove the sufficient part of the theorem. We have proved that loss-

dominance guarantees uniquely stochastic dominance in Theorem 3.2. So let us consider the case

in which strategy 0 is a risk-dominant strategy, min{a00, a01} < min{a10, a11} and a00 + 5a01 ≥

3(a10 + a11).

First we observe that min{a00, a01} < min{a10, a11} implies a01 = min{a00, a01, a10, a11}.

The risk-dominance of strategy 0 implies that a00 > a11, which further implies that 2a00−a01−a10
2(a00+a11−a10−a01) >

1
2 . Therefore F (x) decreases in x for x ∈ [0, 12 ]. By the fact that a01 = min{a00, a01, a10, a11} and

a00 + 5a01 ≥ 3(a10 + a11), we know max{a11, a10} < F (12). Hence, for an agent playing strategy

1, when x ∈ [0, 12 ], she always regards both a11 and a10 as losses comparing to the reference point.

The utility for an agent playing strategy 1 for 0 ≤ x ≤ 1
2 is given by

u1(x) = λ(1− x)(a10 − F (x)) + λx(a11 − F (x)). (33)

For an agent playing strategy 0, she always regards a00 as gain and a01 as loss comparing to

the reference point. Therefore, the utility for an agent playing strategy 0 for 0 ≤ x ≤ 1
2 is given by

u0(x) = (1− x)(a00 − F (x)) + λx(a01F (x)). (34)

26Some strategy other than k may become the best response. Then, let that strategy be denoted by k.
27Roughly speaking, Lemma 4 of Nöldeke and Samuelson (1993) says that if an equilibrium, say A, is stochastically

stable and another equilibrium, say B, is one mutation away from A, then B is also stochastically stable.
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When 0 ≤ x ≤ 1
2 , u1(x) ≤ λx(a10−F (x))+λx(a11−F (x)). Hence, to ensure that u1(x)−u0(x) <

0, for 0 ≤ x ≤ 1
2 and any λ ≥ 1, it suffices to show that λx(a10 − F (x)) + λx(a11 − F (x)) <

λx(a01 −F (x)) for any 0 ≤ x ≤ 1
2 . When λ is low, we use the fact that strategy 0 is risk-dominant

to show that u1(x)− u0(x) < 0. When λ is high, We need 2F (x)− a11 − a10 ≥ F (x)− a01 for any

x ∈ (0, 12 ], which is equivalent to a00 + 5a01 ≥ 3(a10 + a11).

To conclude, we prove that if strategy 0 is a risk-dominant strategy, min{a00, a01} < min{a10, a11}

and a00 + 5a01 ≥ 3(a10 + a11), then the all-0 state is uniquely stochastically stable for all λ ≥ 1.

Next, we prove the necessary part of Theorem 5.1 by proving the contrapositive statement.

Without loss of generality, let us focus on strategy 0. There are two possible scenarios: 1) strategy

0 is not risk-dominant; 2) strategy 0 is risk-dominant but not a maximin strategy and a00 + 5a01 <

3(a10 + a11).

When strategy 0 is not risk-dominant, it is well known that the all-0 state is not uniquely

stochastically stable for λ = 1. (see Kandori et al. (1993), for example.)

In the scenario in which strategy 0 is risk-dominant but not a maximin strategy and a00+5a01 <

3(a10 + a11), we fix x ∈ (12 , 1] and show that strategy 1 is the unique best response for sufficiently

large λ. Then, we show that strategy 1 is the best response also for x = 1
2 . This will imply that

the basin of attraction of strategy 1 is greater than 1
2 .

We already know that a00 ≥ a10, a11 ≥ a01 in this scenario.

There are three cases to consider, 1) a11 ≥ F (x) ≥ a10, 2) a10 ≥ F (x) ≥ a11, and 3) F (x) >

max{a11, a10}. For the first case, observe that

u1(x)− u0(x) = λ(1− x)(a10 − F (x)) + x(a11 − F (x))− (1− x)(a0 − F (x))− λx(a01 − F (x)).

When λ→∞, u1(x) > u0(x), because a10 ≥ a01 and x > 1− x.

Similarly, we can show that when λ→∞, u1(x) > u0(x) in the second case.

For the third case, observe that

u1(x)− u0(x) = −λ
[
(1− x)(F (x)− a10) + x(F (x)− a11)− x(F (x)− a01)

]
− (1− x)(a00 − F (x)).(35)

To show that u1(x)−u0(x) > 0 for some large λ, it suffices to show that G(x) ≡ (1−x)(F (x)−

a10) + x(F (x)− a11)− x(F (x)− a01) < 0.

Observe that

G(x) = (1− x)(F (x)− a10) + x(a01 − a11)

= (1− x)3a00 + x((1− x)2 + 1)a01 + (1− x)(x(1− x)− 1)a10 + x(x(1− x)− 1)a11
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<
{
x(1 + (1− x)2)− 5(1− x)3

}
a10 +

{
3(1− x)3 − (1− x)(1− x(1− x))

}
a10

+
{

3(1− x)3 − x(1− x(1− x))
}
a11 (36)

For the last inequality, we use the fact that a00 + 5a01 < 3(a10 + a11). Let

G1(x) ≡ x(1 + (1− x)2)− 5(1− x)3,

G2(x) ≡ 3(1− x)3 − (1− x)(1− x(1− x)),

G3(x) ≡ 3(1− x)3 − x(1− x(1− x)).

Note that G1(x) +G2(x) +G3(x) = 0. Then, we have that

G(x) ≤ G2(a10 − a01) +G3(a11 − a01).

∂G2(x)

∂x
= −6x2 + 14x− 7,

∂G3(x)

∂x
= −12x2 + 20x− 10.

Some numerical computation reveals that G2(x), G3(x) < 0 for x ∈ (12 , 1), G2(
1
2) = G2(1) =

G3(
1
2) = 0, and that G3(1) < 0.

Since a01 ≤ a10 and a01 < a11.

G(x) < G2(a10 − a01) +G3(a11 − a01) < 0. (37)

G(x) < 0 implies that when λ→∞, u1(x)− u0(x) > 0 in the third case.

For x = 1
2 , observe that

u1(
1

2
)− u0(

1

2
) =

λ

8
(3a10 + 3a11 − a00 − 5a01)−

1

2
(a00 − F (

1

2
)). (38)

Since 3a10 + 3a11 − a00 − 5a01 > 0, when λ→∞, u1(
1
2)− u0(12) > 0.

The above analysis shows that there exists a λ > 1, such that for any λ > λ, the basin of

attraction of the all-1 state is greater than or at least 1
2 . Therefore, the all-0 state is not uniquely

stochastically stable for some λ ≥ 1.

Proof of Proposition 5.3. Without loss of generality, let strategy 0 be the strategy that satisfies the

criteria in the proposition. Then the payoff structure we consider corresponds to the first scenario

in case 1 in the proof of Theorem 5.1. In this scenario, when x ∈ [0, 12 ], for an agent playing strategy
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0, a00 is always a loss to her and a01 is always a gain to her. On the other hand, for an agent

playing strategy 1, a10 is always a loss to her and a11 is always a gain to her. Hence, we have

u0(x) = λ(1− x)(a00 − F (x)) + x(a01 − F (x)); (39)

u1(x) = λ(1− x)(a10 − F (x)) + x(a11 − F (x)). (40)

Therefore, u0(x)− u1(x) = −x(a11 − a01) + λ(1− x)(a00 − a10), which is a decreasing function

in x. Hence, to ensure that the all-0 state has a larger basin of attraction, we need u0(
1
2) > u1(

1
2),

which is equivalent to

λ

1 + λ
a00 +

1

1 + λ
a01 >

λ

1 + λ
a10 +

1

1 + λ
a11, (41)

which is exactly the definition of λ
1+λ -dominance.

Proof of Theorem 5.4. When strategy s is loss-dominant, the stochastic stability of the all-s state is

implied by Theorem 3.2. Let us prove the Condition (2) of the theorem by proving the contrapositive

statement. Without loss of generality, let strategy 0 be risk-dominant and satisfy min{a00, a01} <

min{a10, a11}. Since we must have a00 ≥ a10 and a11 ≥ a01, there are two possible scenarios:

a00 > a10 ≥ a11 ≥ a01 (with a10 > a01), and a00 ≥ a11 > a10 > a01.

In the first scenario in which a00 > a10 ≥ a11 ≥ a01 (with a10 > a01), for an agent currently

using strategy 0 and gaining the payoff of a00, her utilities of choosing the two strategies are given

by

u0(x, a00) = λx(a01 − a00); (42)

u1(x, a00) = λ(1− x)(a10 − a00) + λx(a11 − a00). (43)

By risk-dominance, u0(x, a00) > u1(x, a00) for x ∈ [0, a00−a10
a00+a11−a01−a10 ].

For an agent currently using strategy 0 and gaining the payoff of a01, her utilities of choosing

the two strategies are given by

u0(x, a01) = (1− x)(a00 − a01); (44)

u1(x, a01) = (1− x)(a10 − a01) + x(a11 − a01). (45)

By risk-dominance, u0(x, a01) > u1(x, a01) for x ∈ [0, a00−a10
a00+a11−a01−a10 ].

For an agent currently using strategy 1 and gaining a10, the utilities are:

u0(x, a10) = (1− x)(a00 − a10) + λx(a01 − a10); (46)
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u1(x, a10) = λx(a11 − a10). (47)

When λ→∞, u1(x, a10) > u0(x, a10) for any x ∈ [0, 1] because a01 ≤ a11.

For an agent currently using strategy 1 and gaining the payoff of a11, her utilities of choosing

the two strategies are given by

u0(x, a11) = (1− x)(a00 − a11) + λx(a01 − a11); (48)

u1(x, a11) = (1− x)(a10 − a11). (49)

When λ→∞, u1(x, a11) > u0(x, a11) for any x ∈ [0, 1].

Therefore, when λ → ∞, each state in [0, (a00 − a10)/(a00 + a11 − a01 − a10)) is an absorbing

state and ( a00−a10
a00+a11−a01−a10 , 1] is the basin of attraction of the all-1 state. Hence, the all-1 state is

uniquely stochastically stable. This implies that the all-0 state cannot be stochastically stable if

a10 ≥ a11.

Next, let us consider the second scenario in which a00 ≥ a11 > a10 > a01. Similarly to the first

scenario, for agents using strategy 0, their best response is strategy 0 for x ∈ [0, a00−a10
a00+a11−a01−a10 ],

given any degree of loss aversion.

For an agent currently using strategy 1 and gaining the payoff of a10, her utilities of choosing

the two strategies are given by

u0(x, a10) = (1− x)(a00 − a10) + λx(a01 − a10); (50)

u1(x, a10) = x(a11 − a10). (51)

When λ→∞, u1(x, a10) > u0(x, a10) for any x ∈ [0, 1]

For an agent currently using strategy 1 and gaining the payoff of a11, her utilities of choosing

the two strategies are given by

u0(x, a11) = (1− x)(a00 − a11) + λx(a01 − a11); (52)

u1(x, a11) = λ(1− x)(a10 − a11). (53)

When λ→∞, we have u1(x, a11) > u0(x, a11) for x ∈ ( a11−a10
2a11−a01−a10 , 1].

To summarize, when λ → ∞, in the region of [0, a11−a10
2a11−a01−a10 ), strategy 0 is the best response

for agents currently choosing strategy 0 and agents currently choosing strategy 1 and gaining a11.

On the other hand, strategy 1 is the best response for agents currently choosing strategy 1 and

gaining a10. However, for any agent choosing strategy 1, there is positive probability that she is
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matched with herself and a11 becomes her reference point. Thus, the region of [0, a11−a10
2a11−a01−a10 ) is

the basin of attraction of strategy 0.28

In the region of ( a00−a10
a00+a11−a01−a10 , 1], strategy 1 is the best response for all agents.

In the region of ( a11−a10
2a11−a01−a10 ,

a00−a10
a00+a11−a01−a10 ), the unique best response for agents currently

playing strategy 0 is still strategy 0 while the unique best response for agents currently playing

strategy 1 is still strategy 1. Hence, each state in this region is an absorbing state.

Therefore, the size of the basin of attraction for the all-0 state is a11−a10
2a11−a01−a10 and the size of the

basin of attraction for the all-1 state is 1− a00−a10
a00+a11−a01−a10 . When a11−a10

2a11−a01−a10 > 1− a00−a10
a00+a11−a01−a10 ,

we have a00 − a10 > (a11−a01)2
a11−a10 . Hence, when the inequality holds, the all-0 state is uniquely

stochastically stable. When a11−a10
2a11−a01−a10 ≤ 1 − a00−a10

a00+a11−a01−a10 , the all-0 state is not uniquely

stochastically stable.

To conclude, in the second scenario (a11 > a10), the all-0 state is uniquely stochastically stable

if and only if the condition a00 − a10 > (a11−a01)2
a11−a10 holds.

Lastly, when strategy 0 is not risk-dominant, for λ sufficiently close to 1, the all-0 state cannot

be uniquely stochastically stable.

Proof of Theorem 6.1. Without loss of generality, assume that strategy 0 is loss-dominant. For

notational convenience, let h(x) = xα. Note that given a reference point r, u1(x, r)− u0(x, r) is a

linear function of x. u0(0, r)− u1(0, r) > 0 is guaranteed by a00 > a10, so as long as we show that

u0(
1
2 , r)− u1(

1
2 , r) > 0, we prove that strategy 0 is uniquely stochastically stable.

Case 1: a11 ≥ a00 ≥ a01 > a10.

1) Suppose r ≤ a10. In this case u0(
1
2 , r)−u1(

1
2 , r) = 1

2(h(a00−r)+h(a01−r)−h(a10−r)−h(a11−r)).

Consider two lotteries: L that gives a00−r with probability 1
2 and gives a01−r with probability

1
2 ; and L′ that gives a10 − r with probability 1

2 and gives a11 − r with probability 1
2 . We want to

show that L is strictly preferred to L′ for any risk-averse decision maker. To prove this, construct a

third lottery L′′ that gives a10− r with probability
a11− 1

2
(a00+a01)

a11−a10 and gives a11− r with probability
1
2
(a00+a01)−a10
a11−a10 .

Note that L and L′′ have the same mean, i.e., E[L] = E[L′′]. we first show that L second-

order stochastically dominates L′′. Let FL denote the cdf associated with L and FL′′ denote the

28For the matching protocol without self-matching, when there is exactly one agent choosing strategy 1, she always

matches with another agent choosing strategy 0. Therefore, the state in which all but 1 agents play strategy 0 is a

candidate for a stochastically stable state for the matching protocol without self-matching.
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cdf associated with L. For any y ∈ (∞, a10 − r),
∫ y
∞ FL(y)dy =

∫ y
∞ FL′′(y)dy = 0. For any

y ∈ [a10 − r, a01 − r),
∫ y
∞ FL(y)dy = 0 ≤

∫ y
∞ FL′′(y)dy =

a11− 1
2
(a00+a01)

a11−a10 (y − (a10 − r)). For any y ∈

[a01−r, a00−r), letm(y) =
∫ y
∞ FL′′(y)dy−

∫ y
∞ FL(y)dy =

a11− 1
2
(a00+a01)

a11−a10 (y−(a10−r))−1
2(y−(a01−r)),

which is a linear function in y. Since, m(a10−r) > 0 andm(a00−r) = a11−a00
2(a11−a10)(a00+a01−2a10) ≥ 0,

we conclude that m(y) ≥ 0, for any y ∈ [a01 − r, a00 − r). For any y ∈ [a00 − r, a11 − r], let

n(y) =
∫ y
∞ FL′′(y)dy−

∫ y
∞ FL(y)dy =

a11− 1
2
(a00+a01)

a11−a10 (y− (a10−r))− 1
2(a00−a01)− (y−a00), which is

a linear function in y. Since, n(a00− r) > 0 and n(a11− r) = 0, we conclude that n(y) ≥ 0, for any

y ∈ [a00 − r, a11 − r]. When y > a11, we have
∫ y
∞ FL(y)dy =

∫ y
∞ FL′′(y)dy. In sum, we prove that ,∫ y

∞ FL(y)dy ≤
∫ y
∞ FL′′(y)dy for any y ∈ R, implying that L second-order stochastically dominates

L′′.

In addition, L′′ first-order stochastically dominates L′ because strategy 0 being risk-dominant

implies that
a11− 1

2
(a00+a01)

a11−a10 <
1
2
(a00+a01)−a10
a11−a10 . Hence, we conclude that any risk-averse decision

maker strictly prefers L to L′, implying that u0(
1
2 , r)− u1(

1
2 , r) > 0.

2) Suppose r ∈ [a10, a01]. In this case, u0(
1
2 , r) − u1(

1
2 , r) = 1

2(h(a00 − r) + h(a01 − r) + λh(r −

a10) − h(a11 − r)), which is a linear function of λ. When λ → ∞, u0(
1
2 , r) − u1(

1
2 , r) > 0

regardless of the value of α. When λ = 1, define f(r) = 2(u0(
1
2 , r) − u1(

1
2 , r)). We have

f ′′(r) = h′′(a00 − r) + h′′(a01 − r) + h′′(r − a10) − h′′(a11 − r). When α < 1, we have h′′′ > 0,

implying that h′′(a00 − r) − h′′(a11 − r) < 0, together with h′′ < 0, we have f ′′(r) < 0. Hence,

f(r) takes its minimum either at a10 or at a01 for any α ∈ (0, 1). We already know that when

α = 1, f(a10) > 0 and f(a01) > 0. By continuity of f , there exists a α1 ∈ (0, 1) such that for any

α ∈ [α1, 1], f(a10) > 0 and f(a01) > 0, implying that f(r) > 0, for any r ∈ [a10, a01].

3) Suppose r ∈ (a01, a00]. In this case, u0(
1
2 , r) − u1(

1
2 , r) = 1

2(h(a00 − r) − λh(r − a01) + λh(r −

a10)− h(a11 − r)), which is a linear function of λ. When λ→∞, u0(
1
2 , r)− u1(

1
2 , r) > 0 regardless

of the value of α because a01 > a10. When λ = 1, define f(r) = 2(u0(
1
2 , r) − u1(

1
2 , r)). We have

f ′(r) = −h′(a00−r)−h′(r−a01)+h′(r−a10)+h′(a11−r). When α < 1, we have h′′ < 0, implying

that −h′(a00 − r) + h′(a11 − r) < 0 and −h′(r − a01) + h′(r − a10) < 0. Hence, f ′(r) < 0 and f(r)

takes its minimum at a00 for any α ∈ (0, 1). We already know that when α = 1, f(a00) > 0. By

continuity of f , there exist α2 ∈ (0, 1) such that for any α ∈ [α2, 1], f(a00) > 0, implying that

f(r) > 0, for any r ∈ [a01, a00].

4) Suppose r ∈ (a00, a11). In this case, u0(
1
2 , r)− u1(

1
2 , r) = 1

2(−λh(r− a00)− λh(r− a01) + λh(r−

46



a10)−h(a11−r)), which is a linear function of λ. For λ = 1 and any given α, if u0(
1
2 , r)−u1(

1
2 , r) > 0,

then −h(r − a00) − h(r − a01) + h(r − a10) > 0, which implies that u0(
1
2 , r) − u1(

1
2 , r) > 0 for all

λ ≥ 1. Hence, it suffices to consider the case of λ = 1.

Define f(r) = 2(u0(
1
2 , r) − u1(

1
2 , r)). We have f ′(r) = −h′(r − a00) − h′(r − a01) + h′(r −

a10) + h′(a11 − r). For α < 0, limr↘a00 f
′(r) = −∞, limr↗a11 f

′(r) = ∞. We also have f ′′(r) =

−h′′(r − a00) − h′′(r − a01) + h′′(r − a10) − h′′(a11 − r). When α < 1, we have h′′′ > 0, implying

that −h′′(r − a01) + h′′(r − a10) > 0, together with h′′ < 0, we have f ′′(r) > 0. Hence, for any

α ∈ (0, 1), there exists a unique solution to minr∈(a00,a11) f(r), denoted as r∗(α), which satisfies

f ′(r∗(α)) = 0.29

Define f̃(α) = f(r∗(α)), which is a continuous function in α on (0, 1) as well. By the fact that

strategy 0 is risk-dominant, when α = 1, f(r) > 0 for any r ∈ (a00, a11]. Hence, by extending the

domain of f̃ to (0, 1], we have limα→1 f̃(α) > 0. By continuity of f̃ , there exist α3 ∈ (0, 1) such

that for any α ∈ [α3, 1], f̃(α) > 0, implying that f(r) > 0, for any r ∈ [a01, a00].

5) Suppose r ≥ a11. In this case u0(
1
2 , r)−u1(

1
2 , r) = λ

2 (−h(r−a00)−h(r−a01)+h(r−a10)+h(r−

a11)). We first prove that if u0(
1
2 , r)− u1(

1
2 , r) > 0 for r = a11, then u0(

1
2 , r)− u1(

1
2 , r) > 0 for all

sufficiently large r. Let f(r) = −h(r−a00)−h(r−a01)+h(r−a10)+h(r−a11). Let d00 = a11−a00,

d01 = a11 − a01 and d10 = a11 − a10. Risk-dominance of strategy 0 implies that d10 > d00 + d01.

Choose α4 < 1 and δ > 0 such that dα10 ≥ dα00 + dα01 + δ for all α ≥ α4. Let d = r − a11. Observe

that for α ∈ [α4, 1),

f(r) =(d10 + d)α + dα − (d00 + d)α − (d01 + d)α

≥((dα00 + dα01 + δ)1/α + d)α + dα − (d00 + d)α − (d01 + d)α

>(d00 + d+ (dα01 + δ)1/α)α + dα − (d00 + d)α − (d01 + d)α.

For the last inequality, note that x1/α is a convex function if α < 1. Let D01 = (dα01 + δ)1/α. Note

that D01 > d01 for all α ≤ 1. The mean value theorem implies that (a + b)α ≥ aα + bα(a + b)α−1

for any 0 < α < 1. Applying the mean value theorem to the above inequality, we obtain

f(r) >(d00 + d)α + αD01(d00 +D01 + d)α−1 + dα − (d00 + d)α − (d01 + d)α

=αD01(d00 +D01 + d)α−1 − ((d01 + d)α − dα).

29r∗(α) is a C1 function. Fix α1 ∈ (0, 1). Since f ′′ 6= 0, the implicit function theorem implies that there is a C1

function r̃(α) such that f ′(r̃(α)) = 0 for all α in some neighborhood L of α1. Since r∗(α) is unique and f ′(r∗(α)) = 0

must hold for all α ∈ L, it must be that r∗(α) = r̃(α) on L.
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Observe that

lim
d→∞

αD01(d00 +D01 + d)α−1

(d01 + d)α − dα
= lim

d→∞

αD01(d00 +D01 + d)α−1d−α(
d01+d
d

)α
− 1

= lim
d→∞

αD01

[
(α− 1)(d00 +D01 + d)α−2d−α − α(d00 +D01 + d)α−1d−α−1

]
−α

(
d01+d
d

)α−1
· d01
d2

= lim
d→∞

αD01

[
(α− 1)(d00 +D01 + d)α−2d2−α − α(d00 +D01 + d)α−1d1−α

]
−α

(
d01+d
d

)α−1
d01

=
D01

d01
> 1.

We apply the L’Hôpital’s rule in the second equality. For the last equality, observe that limd→∞(d00+

D01 + d)α−2d2−α = 1, limd→∞(d00 + D01 + d)α−1d1−α = 1 and limd→∞

(
d01+d
d

)α−1
= 1. This ob-

servation implies that there exists a large M > 0 such that f(r) > 0 for all r > M .

Next we consider r ≤ M . h′(·) > 0 and h′′(·) < 0 imply that h(r − a11) − h(r − a00) is

strictly increasing in r and h(r − a10) − h(r − a01) is strictly decreasing in r. Hence, we have

f(r) > h(r−a10)−h(r−a01)−h(a11−a00). When α = 1, h(r−a10)−h(r−a01)−h(a11−a00) > 0

by the fact that strategy 0 is risk-dominant. By continuity of h(·) on α, there exists α5 ∈ (0, 1),

such that for any α ∈ [α5, 1], f(r) > 0 for all r ≤M .

Let α6 = max{α1, α2, α3, α4, α5}. The above discussion implies that for all α ∈ [α6, 1], the all-

s state is uniquely stochastically stable for all models of reference points and all λ ≥ 1.

Case 2: a11 ≥ a01 ≥ a00 > a10. The proof is identical to the previous case. We can find α7

such that for any α ∈ [α7, 1], all-s is uniquely stochastically stable for all models of reference points

and all λ ≥ 1.

Case 3: a00 > a11 ≥ a01 ≥ a10. In this case, v(a00, r) > v(a11, r) and v(a01, r) ≥ v(a10, r)

indicate that u0(
1
2 , r)− u1(

1
2 , r) > 0 for any λ ≥ 1 and any r.

Proof of Proposition 7.5. Consider a synchronous learning protocol in which every agent receives a

revision opportunity with probability q > 0 in each period. We call this protocol the Independent

Learning (IL) protocol. Similarly to the asynchronous protocol, the all-s state is uniquely stochas-

tically stable under the IL protocol if it has a larger basin of attraction than the other strategy (see

Kandori and Rob (1998)). Thus, the stochastically stable states under the two protocols coincide.
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Proposition 1 of Alós-Ferrer and Netzer (2015) implies that the all-s state is uniquely stochastically

stable under any regular synchronous learning protocol if it is uniquely stochastically stable under

the IL protocol and the asynchronous protocol. Hence, the conclusion of Theorem 3.2 must hold

for all regular synchronous learning protocols.
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