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ABSTRACT
We propose a theoretical and computational approach to investigate temporal behavior of a nonlinear polarization in a perturba-
tive regime induced by an intense and ultrashort pulsed electric field. First-principles time-dependent density functional theory
is employed to describe the electron dynamics. Temporal evolution of third-order nonlinear polarization is extracted from a
few calculations of electron dynamics induced by pulsed electric fields with the same time profile but different amplitudes. We
discuss characteristic features of the nonlinear polarization evolution as well as an extraction of nonlinear susceptibilities and
time delays by fitting the polarization. We also carry out a decomposition of temporal and spatial changes in the electron density
in power series with respect to the field amplitude. It helps to get insight into the origin of the nonlinear polarization in atomic
scale.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5068711

I. INTRODUCTION

Nonlinear polarization is a fundamental quantity that
characterizes the interaction of a high intensity light with bulk
materials.1,2 In early studies, measurements have been carried
out for nonlinear susceptibilities in frequency domain, χ(n)(ω),
using a sufficiently long pulsed light that can be regarded as a
continuous wave. A number of applications utilizing nonlinear
optical properties have been developed including frequency
conversion,3,4 optical Kerr effect,5 and so on. There have been
intensive attempts to find photonic materials that have useful
nonlinear optical properties.4,6

Recently, owing to developments in ultrashort laser
pulse technologies, it has become possible to explore non-
linear polarization in time domain. Attosecond metrologies7
have made it possible to explore electron dynamics in crys-
talline solids in time resolution less than a period of opti-
cal pulses.8–11 These studies aim, as an ultimate goal, to
achieve information processing utilizing ultrashort pulsed
light. For such purposes, it is essentially important to establish

experimental and theoretical methods to explore the temporal
evolution of the nonlinear polarization.

In the theoretical side, there have been many efforts to
describe, understand, and predict nonlinear optical response
of materials. In accord with the developments of mea-
surements and applications in frequency domain, theoret-
ical efforts have been first devoted to explore frequency-
dependent nonlinear susceptibilities. Empirical formulas that
relate nonlinear susceptibilities with the linear one introduc-
ing an anharmonicity coefficient have been established.12,13
Quantum mechanical approaches of different levels of sophis-
tication have been developed for theoretical evaluations
of frequency-dependent nonlinear susceptibilities. Indepen-
dent particle approximation (IPA)14–16 is a well established
approach to calculate the susceptibilities using electron
orbitals from the static electronic structure calculation.
Although it provides reasonable descriptions,17 it has been
known that there are difficulties in quantitative descriptions.
Significances of many-body effects such as the local field and
excitonic effects have been suggested.18,19
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In the last two decade, first-principles computational
approaches based on time-dependent density functional the-
ory (TDDFT)20,21 have been developed and applied to explore
nonlinear polarizations. Several computational methods have
been developed to investigate nonlinear polarizabilities in fre-
quency domain: for molecules22,23 and for solids.24 Time-
domain methods solving the time-dependent Kohn-Sham
(TDKS) equation, the basic equation of TDDFT, in real time
have also been developed and applied to extract nonlinear
polarizabilities in molecules25 and in solids.26–28

Numerical methods to solve the TDKS equation in
real time have been implemented using various basis sets.
Earlier implementation has been carried out using real-
space grid,21,29–31 plane-wave,32–34 and augmented-plane-
wave basis.35 Recently, numerical methods using local orbitals
such as Gaussian type orbitals25,36–38 and numerical atomic
orbitals39,40 have been carried out.

Recently, TDDFT have also been applied successfully to
investigate temporal, ultrafast evolution of nonlinear polariza-
tion in solids in femto- and attosecond time scale. In Ref. 10,
electron dynamics in crystalline silicon has been calculated
and the results are compared with measurements utilizing
attosecond metrology. In the previous work,30 large-scale
computations simultaneously solving Maxwell’s equations for
light electromagnetic fields and the TDKS equation for elec-
tron dynamics have been carried out and compared with
time-domain measurements to explore temporal evolution of
nonlinear polarization in dielectrics.8,9

Although TDDFT has been successful to describe non-
linear optical responses, it has been recognized that inclu-
sion of many-body correlation effects is not sufficient in
most exchange-correlation potentials employed in practice.
To include long-range correlation effects, time-dependent
density-polarization functional theory has been developed
and applied for nonlinear susceptibilities.27 Use of a hybrid
functional that partially utilizes exchange potential in nonlo-
cal form is also a useful option to incorporate the long-range
effects. However, calculation using the hybrid functional is
computationally very expensive.41

In the present work, we propose a method based on
TDDFT to investigate temporal evolution of nonlinear polar-
ization in a perturbative regime induced by an intense and
ultrashort pulsed light. Carrying out a few calculations using
pulsed electric fields with the same time profile but different
amplitudes, we numerically extract temporal evolution of non-
linear polarization in power series of the field amplitude up to
third order. From the extracted nonlinear polarization compo-
nents, we extract the coefficients of nonlinear susceptibilities
and the time-delay and compare them with measurements
and previous calculations. We also perform a power series
expansion of the electron density changes. Temporal and spa-
tial distribution of the electron density change is expected
to be useful to understand the mechanism of the nonlinear
optical responses in atomic scale.

This paper is organized as follows: In Sec. II, we provide
a formalism and a computational method based on TDDFT
to extract the individual component of the nonlinear polar-
ization. Calculated nonlinear polarization components in time

domain and their analyses are presented in Sec. III. Finally, in
Sec. IV, a summary will be presented.

II. FORMALISM
A. Time-dependent Kohn-Sham equation

In this section, we explain our formalism to calculate non-
linear polarization in time domain and to decompose it into
perturbative series. In optical frequencies, the applied electric
field can be treated as spatially uniform in a unit cell of crys-
talline solids (dipole approximation) since the wavelength is
much longer than both the spatial scale of the electron motion
induced by the field and the lattice constant of the cell. There-
fore, we describe the electron dynamics using the following
TDKS equation in a unit cell of crystalline solids:31,42,43

i~
∂

∂t
unk(r, t) =

[
1

2m

(
p̂ + ~k +

e
c
A(t)

)2
+ Vion + VH + Vxc

]
unk(r, t),

(1)

where e, m, and ~ are the elementary charge, electron mass,
and reduced Planck constant, respectively. unk(r, t) is the
Bloch orbital specified by the crystalline wave number k and
the band index n. The vector potential A(t) is related to the
applied pulsed electric field by E(t) = −(1/c)[∂A(t)/∂t]. Vion, VH,
and Vxc are the ionic (pseudo-) potential, the Hartree poten-
tial, and the exchange-correlation potential, respectively.
In the present calculation, we ignore exchange-correlation
effects on the vector potential for simplicity.

From the Bloch orbitals, the electric current density J(t) is
obtained as

J(t) = −
e

mΩ

∑
nk

[∫
u∗nk(r, t)

(
p̂ + ~k +

e
c
A(t)

)
unk(r, t) dr

+
m
i~

∫
u∗nk(r, t)[r̂, VNL]unk(r, t) dr

]
, (2)

where Ω is the volume of the unit cell and VNL is the nonlo-
cal part of the pseudo-potential Vion. The induced polariza-
tion density P(t) is obtained by integrating the electric current
density over time,

P(t) =
∫ t

J(t′) dt′. (3)

B. Perturbative expansion of nonlinear polarization
The polarization defined in Eq. (3) contains both linear

and nonlinear components. We numerically decompose it into
power series with respect to the field amplitude. We assume
a linearly polarized pulsed electric field Ei(t) of the following
form:

Ei(t) = Eie f(t), (4)

where f(t) specifies the time profile of the field that has a max-
imum value of unity at around t = 0. Ei specifies the maximum
amplitude of the electric field. e is a unit vector that specifies
the polarization direction. We will later specify the practical
profile of f(t) to be used in the calculations.
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To decompose the polarization into power series, we
carry out electron dynamics calculations utilizing the pulsed
electric field of the same time profile f(t) and the polarization
direction e but different maximum amplitudes Ei. We denote
the induced polarization caused by the pulsed electric field
Ei(t) as Pi(t).

Assuming that the applied electric field is sufficiently
weak, the induced polarizations Pi(t) can be expressed in
power series,

Pi(t) =
∑

n
p(n)(t)(Ei)

n, (5)

where p(n)(t) is the nth order component of the polarization.
When the polarization vector e coincides with one of the
Cartesian directions, e = eα (α = x, y, z), the Cartesian com-
ponents of p(n) may be expressed using susceptibility tensors
χ(n) as

p(n)
β (t) =

∫
χ

(n)
βα···α(t − t1, t − t2, · · · t − tn)

× f(t1)f(t2) · · · f(tn) dt1dt2 · · ·dtn. (6)

Expressions for a general polarization vector will be obvious.
Once we obtain a set of N results of the polariza-

tion amplitudes
{
P1(t),P2(t), . . . ,PN(t)

}
for the field amplitudes

{E1, E2, . . . , EN}, we use Eq. (5) to obtain p(n)(t) up to Nth order.
Regarding Eq. (5) as a linear system, we have

*.....
,

p(1)(t)

...

p(N)(t)

+/////
-

=

*.....
,

E1 · · · EN
1

...
. . .

...

EN · · · EN
N

+/////
-

−1

*.....
,

P1(t)

...

PN(t)

+/////
-

. (7)

To carry out the inversion accurately and stably, the following
conditions should be satisfied:

1. The amplitude Ei ’s should be sufficiently small so that
components higher than Nth order included in Pi(t) can
be ignored.

2. The amplitude Ei ’s should be sufficiently large so that the
extracted nonlinear components do not suffer substantial
numerical noises and/or rounding errors.

We can find an appropriate amplitude window to carry
out the stable inversion procedure, as will be described
below.

In the calculations presented in later sections, we will
extract nonlinear polarization components up to third order
and only for cases where the inversion symmetry exists and
the second-order component, p(2)(t), vanishes identically. For
such cases, two calculations with the maximum amplitudes, E1
and E2, should be sufficient to extract two components, p(1)(t)
and p(3)(t). In practice, however, we find it useful to calcu-
late for the phase-inverted pair, the time evolution calculation
using the electric field with the sign inverted, to remove the
even-order components accurately. We carry out four calcu-
lations using electric fields of E1(t) and E2(t) with the max-
imal amplitudes of E1, E2, and E1(t) and E2(t) that are their
phase-inverted pairs. The induced polarizations correspond-
ing to these four applied pulses are denoted as P1(t), P2(t), P1(t),

and P2(t), respectively. Using them, the solution of the linear
system of Eq. (7) is expressed as

p(1)(t) =
E3

1

[
P2(t) − P2(t)

]
− E3

2

[
P1(t) − P1(t)

]

2E1E2(E1 − E2)(E1 + E2)
, (8)

p(3)(t) = −
E1

[
P2(t) − P2(t)

]
− E2

[
P1(t) − P1(t)

]

2E1E2(E1 − E2)(E1 + E2)
. (9)

This formula will be used in the calculations shown below.

C. Expansion of nonlinear charge density
The power-series inversion method can also be applied

to other observables. We will apply the method to electron
density ρ(r, t) as follows:

ρ(r, t) − ρGS(r) =
∑

n
ρ(n)(r, t)(Ei)

n, (10)

where ρ(r, t) and ρGS(r) represent the electron density at time
t and that in the ground state, respectively. Using a simi-
lar inversion procedure to Eq. (7), perturbative components
of electron density change, ρ(n)(r, t), can be determined. We
will show that such decomposition is useful to understand the
nonlinear interaction in microscopic scale and to investigate
the physical origin of the nonlinear polarization.

III. RESULTS AND DISCUSSION
We apply our method to three different bulk materials:

α-SiO2, diamond (C), and silicon (Si). We show their crys-
tal structures and the unit cells used in our calculations in
Figs. 1(a) and 1(b). α-SiO2 is an ionic crystal with a wide optical
gap. Diamond and silicon are typical covalent crystals with the
diamond structure, having different optical gap energies.

For the time profile of the applied electric field, we adopt
the one defined for the vector potential,

A(t) = Aie cos2
{
π

TL

(
t −

TL

2

)}
sin ωL

(
t −

TL

2

)
, (11)

for 0 < t < TL and 0 for otherwise. TL and ωL are the pulse
length and the central frequency of the applied electric field,
respectively. The maximal amplitude of the vector potential
Ai is related to the maximal electric field amplitude Ei by
Ei = (ωL/c)Ai. Numerical values used in our calculations are
summarized in Table I.

FIG. 1. Crystal structure of α-SiO2 (a) and silicon/diamond (b).
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TABLE I. Parameters of applied electric fields.

Central Frequency (eV) ~ωL 1.55

Pulse length (fs) Tp 20

Amplitude (V/Å) E1 8.680 × 10−2

E2 6.138 × 10−2

E3 3.882 × 10−2

E4 2.745 × 10−2

E5 8.680 × 10−3

As for the exchange-correlation potential Vxc in Eq. (1), we
assume an adiabatic approximation utilizing the same func-
tional form of the potential as that used in the ground state
calculation. We will employ two different types for the poten-
tial. One is the local density approximation (LDA).44 As is
well known, optical gap energies are substantially underesti-
mated in the LDA. Related to this failure, χ(1) values are also
often overestimated. The other one is TBmBJ potential.45 It
depends on kinetic energy density and belongs to a functional
group of metageneralized gradient approximation. The TBmBJ
potential is known to give reasonable descriptions for the
bandgap energies of various dielectrics. We choose the param-
eter of the TBmBJ potential, cm, to reproduce the experimental
optical gap energies.

For numerical calculations, we use an open-source
TDDFT program package, SALMON (Scalable Ab-initio Light-
Matter simulator for Optics and Nanoscience), which has been
developed in our group.46 Before starting the time evolu-
tion calculation, we first calculate the ground state which
will be used as an initial state of the time evolution cal-
culations. We then carry out time evolution calculations of
Bloch orbitals solving Eq. (1) in time domain. The current den-
sity and the polarization are calculated according to Eqs. (2)
and (3). To express Bloch orbitals, we use a uniform grid
system in the three-dimensional Cartesian coordinates. The
Brillouin zone is uniformly sampled by the Monkhorst-Pack
grids. The numerical parameters used in the calculations are
summarized in Table II.

A. α-SiO2

We extract nonlinear polarization components p(n)(t) for
α-SiO2 using the procedure explained in Sec. II B. We choose

TABLE II. Numerical parameters used in the calculations. Atomic unit is used for
length and time.

Lattice constant r-space grid Time step k-space grid

Si 10.26 × 10.26 × 10.26 0.08
16 × 16 × 16 16 × 16 × 16

α-SiO2 9.28 × 16.1 × 10.2 0.04
20 × 36 × 52 4 × 4 × 4

C 6.74 × 6.74 × 6.74 0.02
24 × 24 × 24 12 × 12 × 12

FIG. 2. Applied electric field (black-dashed line) and the induced polarization (blue-
solid line) in α-SiO2.

the polarization direction parallel to c-axis which is set to
coincide with the z-direction. In this setting, the direction of
the polarization is parallel to the direction of the applied elec-
tric field. There appears no second-order polarization due to
the crystal symmetry.

First we show the results employing the adiabatic LDA.
Figure 2 shows the applied electric field and the induced
polarization. The maximum amplitude of the field is set to
E1 = 8.680 × 10−2 V/Å, the weakest one among those listed

FIG. 3. (a) Linear component, p(1), and (b) third-order nonlinear component, p(3), of
the induced polarization in α-SiO2. The blue-solid and the orange-dotted-dashed
lines are calculated using a set of E1, E2 and a set of E2, E3, respectively. Black-
dashed lines are the fit using simple functions. See text for details.
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TABLE III. Calculated values of χ(1) and χ(3) for α-SiO2.

TDDFT LDA χ(1) 1.50
χ(3) 4.3 × 10−22 (m2/V2)
EG 6.3 eV

TBmBJ χ(1) 1.18
χ(3) 1.3 × 10−22 (m2/V2)
EG 8.9 eV (cm = 1.2)

Expt.47 χ(1) 1.38
χ(3) 2.65 × 10−22 (m2/V2)

in Table II. P(t) looks proportional to E(t) since the response is
dominated by the linear polarization.

In Fig. 3, we show calculated p(1)(t) and p(3)(t). Results using
two amplitudes of E1 and E2 are shown by blue-solid lines, and
those using E2 and E3 are shown by orange-dotted-dashed
lines. An excellent agreement of the two calculations indicates
that our procedure to decompose the polarization into power
series works with high accuracy.

As a next step, we fit the polarization components using
simple functional forms, f(t) for linear and f(t)3 for third-order
nonlinear components,

p(1)(t) = χ(1)f(t), (12)

p(3)(t) = χ(3)[f(t)]3. (13)

As shown by black-dashed lines in Fig. 3, the fitting works very
well. Since the optical gap of α-SiO2 is much larger than the
three-photon energy (3~ω1 = 4.65 eV), real electron-hole exci-
tations do not take place up to the third-order nonlinearities.
This explains the reason why we can fit the polarization com-
ponents ignoring the retardation effects. In panel (b), a small
amplitude, high frequency oscillation is seen after the pulse
ends. We consider this oscillation comes from real electronic
excitations caused by small high-frequency components that
are included in the applied electric field.

In Table III, extracted nonlinear susceptibilities employ-
ing LDA and TBmBJ functionals are shown and are compared
with measured values. Calculations using LDA overestimate
both χ(1) and χ(3) values. Employing TBmBJ, χ(1) decreases by

a factor of 3. For both quantities, the measured values lie
between two calculations.

We next show a decomposition of electron density dis-
tribution in powers of the electric field amplitude using the
method explained in Sec. II C. We expect that such decompo-
sition provides a useful information regarding the microscopic
origin of the nonlinear polarization components.48 Figure 4
shows the results. As seen from (a), valence electrons locate
dominantly around O atoms, while electron density around Si
atoms is small in the ground state. The linear, the second-
order nonlinear, and the third-order nonlinear components,
ρ(1), ρ(2), and ρ(3), are shown in (b), (c), and (d), respectively, at a
time when the electric field is maximum. The red and the blue
colors indicate the positive (increase from the ground state)
and the negative (decrease from the ground state) changes in
the density.

The linear component shown in (b) is dominated by the
dipole motion of electrons around O atoms. The second-
order nonlinear component shown in (c) is dominated by the
quadrupole motion around O atoms. Finally, the third-order
nonlinear component in (d) shows a complex behavior. While
dipole-like shape is seen around the O atoms, a contribu-
tion from electrons in more distant place than the case of the
linear response is found. In any case, both linear and non-
linear optical responses are dominantly originated from the
electron dynamics around the O atoms since electrons locate
dominantly around them in the ground state.

B. Diamond (C)
Diamond (C) is a covalent material with a large band gap

energy. We extract linear and nonlinear polarization compo-
nents using the same procedure as that used for α-SiO2. We
apply the pulsed electric field along one cubic axis. The result
employing adiabatic LDA is shown in Fig. 5. Calculations using
two sets of different amplitudes (E3, E5) and (E4, E5) again
coincide accurately with each other. This confirms that the
extraction of the third-order nonlinear component is accu-
rately carried out. From the time profile of the third-order
nonlinear component shown in Fig. 5(b), it is apparent that the
time profile is not simply proportional to f(t)3, contrarily to the
case of α-SiO2.

FIG. 4. Electron density profiles on a slice containing both z-axis and a Si–O bond are decomposed into power series with respect to the field amplitude.48 (a) Ground state
electron density ρGS. [(b)–(d)] 1st, 2nd, and 3rd-order components of the electron density.
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FIG. 5. Polarization components of diamond extracted by our calculations. (a) Lin-
ear component, p(1)(t). (b) Nonlinear (3rd-order) component, p(3)(t). The blue-solid
and the orange-dotted-dashed curves are calculated using the sets of the electric
field amplitude of E3, E5 and E4, E5, respectively.

Since the applied electric field dominantly contains fre-
quency components around ωL, the third-order component
p(3)(t) should dominantly contain two frequency components
of ωL and 3ωL. They are related to the optical Kerr effect
and the third harmonic generation (THG), respectively. To
examine each frequency component separately, we perform a
frequency-domain filtering of p(3)(t), decomposing it into low
(|ω| < 2ωL) frequency component, p(3)(t; ωL), and high (2ωL
< |ω| < 4ωL) frequency component, p(3)(t; 3ωL), as defined by

p(3)(t;ωL) =
∫ 2ωL

−2ωL

dωp(3)(ω)e−iωt, (14)

p(3)(t; 3ωL) = *
,

∫ −2ωL

−4ωL

+
∫ 4ωL

2ωL

+
-
dω p(3)(ω)e−iωt, (15)

with

p(3)(ω) =
1

2π

∫ T

0
dt′ eiωt′p(3)(t′). (16)

In Fig. 6, we show by yellow-solid curves the low fre-
quency component p(3)(t; ωL) in (a) and the high frequency
component p(3)(t; 3ωL) in (b). We also show filtered functions
of f(t)3 by red-dotted-dashed curves: the low frequency com-
ponent f (3)(t;ωL) in (a) and the high frequency component f (3)(t;
ωL) in (b). As seen from the figure, the time profile of the fre-
quency components p(3)(t; ωL) looks very similar f (3)(t, ωL), and
also for p(3)(t; 3ωL) and f (3)(t; 3ωL).

In p(3)(t; 3ωL), an oscillation with a small amplitude con-
tinues after the applied electric field ends. We consider that

FIG. 6. Fourier-filtered 3rd-order components of the nonlinear polarization (yellow
curves) and those of the time profile of the applied pulse cubed, f (t)3, (red-dotted-
dashed curves), (a) for low- and (b) for high-frequencies. Black-dashed curves
show fitting results using Eqs. (17) and (18).

this oscillation comes from a real, resonant excitation by
three-photon absorption. In our calculation, the direct band
gap energy of the diamond employing LDA is 4.7 eV, which
is slightly larger than 3~ω1 = 4.65 eV. However, because of
the wide spectral distribution of the applied pulse, excitation
across the band gap is partly possible by the three-photon
absorption.

The above analysis shows that while the time profile of the
third-order polarization p(3)(t) is rather different from the time
profile of f(t)3, the filtered functions have very similar shapes
for high and low frequency components. This fact indicates
a strong frequency dependence of the third-order nonlinear
susceptibilities, χ(3)(ωL) = χ(3)(ωL; ωL, ωL, −ωL) and χ(3)(3ωL)
= χ(3)(3ωL; ωL, ωL, ωL). We extract them by simply fitting

p(3)(t;ωL) = χ(3)(ωL)f (3)(t;ωL), (17)

p(3)(t; 3ωL) = χ(3)(3ωL)f (3)(t; 3ωL). (18)

We assume that there is no time delay in the response. The
result of the fitting is shown by black-dashed curves in Fig. 6.

Linear and nonlinear susceptibilities obtained by the anal-
ysis using LDA and TBmBJ are summarized in Table IV. We find
the linear susceptibility χ(1) is reasonably reproduced by the
calculation. The result employing TBmBJ is in better agree-
ment with the measured value. As for χ(3)(ωL) and χ(3)(3ωL),
the latter is larger than the former in both LDA and TBmBJ
calculations. The values employing TBmBA is about a factor
of two to three smaller than those employing LDA, consistent
with the larger gap energy using TBmBJ. The measured values

J. Chem. Phys. 150, 094101 (2019); doi: 10.1063/1.5068711 150, 094101-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE IV. Calculated linear and nonlinear susceptibilities of diamond.

TDDFT LDA χ(1) 4.79
χ(3)(ωL) 3.3 × 10−21 (m2/V2)
χ(3)(3ωL) 7.5 × 10−21 (m2/V2)

EG 4.7 eV

TBmBJ χ(1) 4.87
χ(3)(ωL) 1.6 × 10−21 (m2/V2)
χ(3)(3ωL) 2.7 × 10−21 (m2/V2)

EG 5.9 eV (cm = 1.27)

Expt. χ(1) 4.861

χ(3) 2.1 × 10−21 (m2/V2)1
1.8 × 10−21 (m2/V2)50

Other theory χ(3) 1.1 × 10−21 (m2/V2)49

of χ(3) are in reasonable agreement with the calculated values
using TBmBJ. Semi ab initio calculation using the tight-binding
model49 gives a slightly smaller value.

C. Silicon (Si)
Silicon (Si) has the same crystalline structure as diamond

with a smaller optical gap energy. For this system, we inves-
tigate the directional dependence of the nonlinear polariza-
tion for which abundant measurements are available. From
the crystalline symmetry, it is sufficient to calculate nonlinear
polarization components for two different directions to inves-
tigate the third-order nonlinear polarization. We adopt [001]
and [011] for it.

From the calculations for the two directions, we extract
the linear and nonlinear polarization components. The linear
polarization does not depend on the direction and is expressed
as p(1)(t). The third-order nonlinear polarization components
along the two directions are denoted as p(3)

[001](t) and p(3)
[011](t).

From these two components, we define two third-order non-
linear polarizations,

p(3)
1111(t) = p(3)

[001](t) (19)

and

p(3)
1122(t) =

2
3

(
p(3)

[011](t) −
1
2

p(3)
[001](t)

)
, (20)

which are related to the third-order nonlinear susceptibilities
of χ(3)

1111 and χ
(3)
1122, respectively.

Figure 7 shows p(1)(t), p(3)
1111(t), and p(3)

1122(t) using pulses with
the amplitudes of E3, E5 (blue-solid curve) and E4, E5 (orange-
dotted-dashed curve). Adiabatic LDA is used in the calcula-
tion. A good agreement of two calculations using different
sets of amplitudes indicates, again, that the decomposition
of the polarization into nonlinear components works reliably.
Because of the small gap energy, we find it necessary to use
electric fields with the amplitude smaller than those used
in diamond and α-SiO2 to extract the nonlinear polarization
components accurately.

FIG. 7. Polarization components of silicon extracted by our calculations: (a) Linear

component, p(1)(t), (b) third-order nonlinear component, p(3)
1111(t), and (c) p(3)

1122(t).
The blue-solid and the orange-dotted-dashed curves are calculated using the sets
of the electric field amplitude of E3, E5 and E4, E5, respectively.

The linear component p(1)(t) can be well fitted using a real
constant χ(1) as χ(1)f(t) with χ1 = 1.21 (15.2 in SI units). The third
order components are not simply proportional to the cube of
the field, as in the case of diamond. Employing LDA, the opti-
cal gap energy in silicon is about EG ∼ 2.4 eV, which is lower
than 3~ωL ∼ 4.65 eV. This indicates that real excitations of the
valence electrons take place in the third order response. As
seen in Fig. 7(b), an oscillating current persists even after the
pulse ends. This also indicates the formation of the excited
carriers. We should note, however, that such oscillatory cur-
rent is expected to be damped by mechanisms that are not
taken into account sufficiently in the present calculation, for
example, the dephasing effect caused by the coupling with
phonons.

We carry out frequency filtering for the third-order non-
linear components using Eqs. (14)–(16) and show results for

J. Chem. Phys. 150, 094101 (2019); doi: 10.1063/1.5068711 150, 094101-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. Fourier-filtered 3rd-order components of the nonlinear polarization p(3)
1122(t)

(yellow curves) and those of the time profile of the applied pulse cubed, f (t)3 (red-
dotted-dashed curves): (a) for low- and (b) for high-frequencies. Black-dashed
curves are fitting curves using Eqs. (21) and (22).

p(3)
1122(t) in Fig. 8. We show the low frequency component

p(3)
1122(t;ωL) in (a) and the high frequency component p(3)

1122(t; 3ωL)
in (b) by yellow-solid curves. We also show functions applying
the filtering procedure to f(t)3, the low frequency component
f (3)(t;ωL) in (a) and the high frequency component f (3)(t; 3ωL) in
(b) by red-dotted-dashed curves. It is observed that there are
phase differences in both ωL and 3ωL components. The phase
difference between p(3)(t; ωL) and f (3)(t, ωL) is expected since
the phase difference is necessary for the energy transfer from
the applied electric field to electrons in the medium.

We fit the filtered components using functions incorpo-
rating the delay time δt(ωL) and δt(3ωL) as well as the real
amplitudes, χ(3)

1122(ωL) and χ
(3)
1122(3ωL),

p(3)
1122(t;ωL) = χ(3)

1122(ωL)f (3)[t − δt1122(ωL);ωL], (21)

p(3)
1122(t; 3ωL) = χ(3)

1122(3ωL)f (3)[t − δt1122(3ωL); 3ωL]. (22)

In the fitting procedure, we did not include the influence
of the oscillating current after the pulse ends. We show the
obtained results employing LDA and TBmBJ in Table V, includ-
ing a comparison with measurements and other calculations.

In our calculations, linear susceptibility using the TBmBJ
is close to the measured value, while the result using LDA is
much larger. For the third-order nonlinear susceptibilities, we
find the values by LDA is about a factor 3-4 larger than the
values by TBmBJ for χ(3)(ωL), while there is not so much dif-
ference for χ(3)(3ωL). The time delay at ω ∼ ωL region is much

TABLE V. Calculated linear and nonlinear susceptibilities of Si.

Previous work
TDDFT LDA TBmBJ semi ab initio TB49 TDLDA Opt. pol. func.27 Experiments

χ(1) 15.2 12.4 12.8a Ref. 51
χ

(3)
1111(ω) (m2/V2) 2.2 × 10−18 8.6 × 10−19 2.5 × 10−18 1.4 × 10−19b Ref. 52

1.1 × 10−19 Ref. 1
δt(3)

1111(ω) (fs) 0.6 0.2
χ

(3)
1111(3ω) (m2/V2) 1.3 × 10−18 1.4 × 10−18 5.2 × 10−19 1.1 × 10−18 Ref. 27 2.8 × 10−18 Ref. 1

3.6 × 10−20c Ref. 26
δt(3)

1111(3ω) (fs) 0.7 0.6
3χ(3)

1122(ω) (m2/V2) 3.0 × 10−18 1.2 × 10−18 3.8 × 10−18

δt(3)
1122(ω) (fs) 0.6 0.2

3χ(3)
1122(3ω) (m2/V2) 2.3 × 10−18 2.2 × 10−18 5.7 × 10−19 1.8 × 10−18 Ref. 27

5.2 × 10−20c Ref. 26
δt(3)

1122(3ω) (fs) 0.7 0.2
|σ| 0.7 0.6 0.2 0.6 Ref. 27 0.6 0.69a, 0.85d Ref. 53
φ (deg) 6 6 11 7 Ref. 27 7 Ref. 27 7d Ref. 53

11 Ref. 49
EG (eV) 2.5 3.1 2.4 Ref. 54

aMeasurement at ω = 1.6 eV.
bMeasurement at ω = 1.24 eV.
cCalculation at ω = 1.7 eV.
dω = 1.51 eV.

J. Chem. Phys. 150, 094101 (2019); doi: 10.1063/1.5068711 150, 094101-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. Electron density change in Si
for two different directions of applied
electric fields is decomposed into power
series. For the third-order component,
frequency filtering is applied.

smaller in the TBmBJ calculation, indicating that the real exci-
tation is much less for the case of TBmBJ than for the case of
LDA.

Third-order nonlinear susceptibilities related to third-
order harmonic generations have been traditionally discussed
using the complex quantities: A = χ

(3)
1111, B = 3χ(3)

1122, σ = (A
− B)/B, and the angle φ(A/B). We can construct the complex
susceptibilities χ(3)

1111(3ωL) from the magnitude |χ(3)
1111(3ωL) | and

the time delay δt1111(3ωL) as χ(3)
1111(3ωL) = |χ(3)

1111(3ωL) |e3iωLδt1111(3ωL)

and similar relations for other quantities.
Since values are rather scattered in both measurements

and other theories, it is not simple to make a definite con-
clusion. Apparently, more efforts are required. Our results are
not so different from the TDLDA calculation by Grüning et al.27
We find more than order of magnitude difference between our
results and results by Goncharov26 although both calculations
use a similar numerical method.

A direct comparison between two calculations is not sim-
ple because the induced polarization is treated differently. In
Ref. 26, the induced polarization is included in the applied
electric field which we call the longitudinal geometry,30 while
we use the transverse geometry in which the induced polar-
ization is not included. Although the final results should be the
same in two schemes, quantities that appear in the interme-
diate steps are very different. We also note that the magni-
tude of the electric field used to extract the nonlinear polar-
ization components is different: In Refs. 26, it is mentioned
that the electric field of 3 eV/A is used in the longitudinal
geometry. This corresponds to the effective electric field of
∼3 × 10−1 eV/Å in the transverse geometry that we adopted. In
our calculation, as shown in Table I, we employ much weaker
electric fields of 4 × 10−2 eV/Å or smaller. In our experience,
use of the electric fields larger than this value causes inaccu-
racy in the final results because of mixtures of components
fifth order and higher.

In Fig. 9, we show decompositions of the electron den-
sity change for silicon in the calculations of two directions,

[001] and [011]. Linear, second-order, and third-order com-
ponents are shown at a time of t ∼ 10.6 fs where the electric
field is maximum. Surfaces of equal density changes are dis-
played in the unit cell volume. Yellow surfaces indicate pos-
itive, and blue surfaces indicate negative changes. For the
third-order density changes, we achieve a frequency filtering
as well as the power series expansion with respect to the field
amplitude.

Although linear optical response of silicon is isotropic and
is characterized by a single scalar dielectric function, the lin-
ear density change looks different depending on the direc-
tion of the applied field. In ρ

(1)
[011], in which the electric field is

applied along the cubic axis, density oscillation along the bond
direction is seen. Nodal planes are seen perpendicular to the
bond direction. In ρ

(1)
[011], in which the electric field is parallel

to a part of the bonds, the density oscillation is seen in the
bonds which are parallel to the applied field. Second-order
density changes show a markedly different behavior depen-
dent on the direction of the electric field. In ρ(2)

[001], an increase

in electron density connecting bonds is seen, while in ρ
(2)
[011],

movement of electrons between orbitals perpendicular and
parallel to the field is seen. In the third-order density change,
we first observe that the electron density change does not dif-
fer much if we decompose it into the frequency components.
The electron density change looks more or less similar to the
case of linear density change.

IV. SUMMARY
Nonlinear polarization is a fundamental quantity that

characterizes the interaction between intense light and solids.
It is important in both fundamental sciences and engineering
applications. Recently, measurements of nonlinear polariza-
tion in time domain become feasible by virtue of the devel-
opment of ultrashort laser technologies including attosec-
ond metrologies. It brings an opportunity to explore electron
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dynamics in real time and is also expected to provide novel
concepts of future signal processing using optical pulses.
Searches for materials of high nonlinear susceptibilities are
also an important task.

In this work, we develop a theoretical and computa-
tional framework to explore nonlinear polarizations in time
domain induced by an ultrashort laser pulse based on first-
principles time-dependent density functional theory. We pro-
pose a numerical method to extract linear and nonlinear
polarization components, p(n)(t) (n = 1 3), from solutions of the
time-dependent Kohn-Sham equation with the applied elec-
tric fields, E(t) = Eif(t), of a few different amplitudes, Ei. The
method is tested in three typical dielectrics, α-SiO2, diamond,
and silicon. It has been shown that the method works accu-
rately and reliably to extract the third-order nonlinear polar-
ization components if one uses electric fields with sufficiently
small amplitudes.

The extracted nonlinear polarization components show
characteristic features depending on the optical bandgap
energies of the materials and the frequency of the applied
pulses, ωL. In α-SiO2 that has a large optical gap, the third-
order nonlinear polarization is essentially proportional to
the field amplitude cubed. For diamond for which the opti-
cal gap energy is close to 3ωL, nonlinear polarization shows
complex time profile reflecting the frequency dependence of
the response. The complexity further increases for silicon in
which real electronic excitations take place by the third-order
nonlinear process.

By fitting the extracted nonlinear polarization using the
time profile of the applied field, we extract the nonlinear sus-
ceptibilities and the time delay. The extracted coefficients
are compared with measurements and previous theoretical
calculations.

We also show that it is possible to decompose the electron
density change from the ground state into linear and nonlinear
components. The method is expected to be useful to get an
intuitive picture for the electron dynamics in dielectrics and
to understand the origin of the nonlinear susceptibilities.
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