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Abstract 

 

To develop high-efficiency multijunction solar cells onto inexpensive substrates, an 

innovative technique for growing a large-grained Ge layer on glass is strongly desired. We 

investigated the epitaxial growth of a light absorbing Ge flim (500-nm thickness) on a large-

grained (> 100 µm) Ge seed layer (50-nm thickness) formed on glass by Al-induced layer 

exchange. After examining molecular beam epitaxy (MBE) and solid-phase epitaxy (SPE) 

for both methods, Ge layers with a low Al concentration were epitaxially grown at 350 °C. 

Microwave photoconductivity decay revealed that the MBE-Ge layer exhibited a short 

minority carrier lifetime owing to the rough surface. Conversely, the SPE-Ge layer was 

relatively flat and exhibited a long bulk minority carrier lifetime (5.6 µs), which is close to 

that of a single-crystal Ge. Therefore, the seed layer concept that combines SPE with Al-

induced layer exchange is a promising way for fabricating ideal bottom cells for high-

efficiency multijunction solar cells based on inexpensive substrates.  
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I. INTRODUCTION 

Multijunction solar cells have updated the highest conversion efficiency of solar cells. Ge 

has been used in the bottom cell of the multi-junction solar cells because of its desirable 

characteristics, such as its narrow band gap (0.66 eV), high absorption coefficient (~104 cm−1 

at 0.8 eV), and good lattice matching to group III-V compound semiconductors (0.1% lattice 

mismatch with GaAs) [1,2]. However, bulk Ge substrates are expensive, which has limited their 

application to special uses. One promising approach to reducing the fabrication cost is 

substituting the bulk Ge substrate with a Ge thin film on an inexpensive glass substrate 

(softening temperature: ~550 °C) [3]. Additionally, (111)-oriented Ge is favorable for forming 

silicide solar cell materials [4] and nanowire arrays [5], which may improve solar cell 

performance. Transferring single-crystal Ge layers to inexpensive substrates is a promising 

method [6‒8]; however, there remain difficulties in keeping the process costs low and 

fabricating in large areas.  

In line with this, the low-temperature synthesis of polycrystalline (poly-) Ge on glass has 

been investigated using solid-phase crystallization (SPC) [9‒11], sputtering [12], and chemical 

vapor deposition (CVD) [13,14]. Metal-induced layer exchange, using Al [15‒19], Au [20,21], 

and Ag [22,23] as catalysts, is a unique method that significantly lowers the crystallization 

temperature of amorphous (a-) Ge (≤ 350 °C). In particular, Al-induced layer exchange (ALILE) 

allows for large-grained (> 50 µm), (111)-oriented, and highly p-doped Ge thin films (thickness: 

50 nm) [18,19], which will be useful as a seed layer for a thick (> 500 nm) light absorbing layer. 

Research on ALILE of Si [24‒31] has a longer history than that of Ge, and therefore, the ‘seed 

layer concept’ using ALILE-Si has been well studied [32‒34], resulting in excellent thin-film 

solar cells [35‒42]. In this study, we adopted the Ge layer formed by ALILE as an epitaxial 

seed of a high-quality light absorption layer. The resulting Ge layer, formed by solid-phase 

epitaxy (SPE), exhibited a long minority carrier lifetime, comparable to that of a bulk Ge 
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substrate. 

 

II. EXPERIMENT 

The 50-nm-thick Ge seed layer on the glass substrate was prepared using ALILE (Fig. 

1(a)). In the ALILE process, 50-nm-thick Al and 75-nm-thick a-Ge thin films were sequentially 

prepared onto a quartz glass (SiO2) substrate at room temperature using radiofrequency (RF) 

magnetron sputtering (base pressure: 3 × 10−4 Pa) with an Ar sputtering pressure of 0.2 Pa and 

an RF power of 50 W. The deposition rate was 28 nm/min for Ge and 31 nm/min for Al. An 

AlOx layer between the Al and a-Ge layers was prepared by air exposure (5 min). The sample 

was annealed at 350 °C for 100 h in N2. After annealing, the sample was treated by an H2O2 

(50%) solution for 30 min to remove “Ge islands”, followed by an HF solution (1.5%) for 1 

min to remove Al and AlOx layers [18]. These etching were processed at room temperature 

without agitation. Then, Ge layers were grown on the ALILE-Ge seed layer by molecular beam 

epitaxy (MBE) or SPE. For both methods, the Ge atoms were supplied by a Knudsen cell in an 

MBE system (base pressure: 5 × 10−7 Pa) at a deposition rate of 1.0 nm/min. For the MBE, Ge 

layers were deposited for 500 min at the growth temperature, Tg, ranging from 200 to 650 °C. 

For the SPE, a-Ge layers were deposited at room temperature for 100−500 min. The a-Ge 

samples were then annealed at Tg ranging from 300 to 500 °C for 50 h in a N2 ambient. The 

crystal quality of the samples was evaluated using scanning electron microscopy (SEM), 

electron backscatter diffraction (EBSD), Raman spectroscopy (wavelength 532 nm), and 

secondary ion mass spectroscopy (SIMS). The light absorption coefficient α and the effective 

minority carrier lifetime τeff of the samples were evaluated using transmittance measurement 

and microwave photoconductivity decay (µ-PCD; excitation wavelength 349 nm, microwave 

frequency 26 GHz), respectively.  
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III. RESULTS AND DISCUSSION 

Figure 1(b) and (c) show the EBSD images in the normal direction (ND) and (c) 

transverse direction (TD), corresponding to the crystal orientation in the out-of-plane and in-

plane directions, respectively. These images show that the ALILE-Ge seed layer is highly (111)-

oriented and large-grained (> 100 µm). These are the typical features of ALILE-Ge, especially 

owing to the AlOx diffusion controlling layer and low temperature annealing [15]. Figure 2(a) 

shows that the Ge peaks of the MBE samples are sharp and present at 300 cm−1, corresponding 

to crystalline (c-) Ge [11], while the Ge peak of the seed layer is broadly shifted to the lower 

wavenumber, likely due to high Al concentration (4 × 1020 cm-3) [17]. These results suggest that 

the deposited Ge layers are crystalline and contain fewer Al atoms than the seed layer. Figure 

2(b) and (f) show that the Tg = 200 °C sample has only a small area of (111) orientation and is 

small-grained, respectively. These results clearly indicate that epitaxial growth is incomplete. 

In contrast, Fig. 2(c)‒(e) and (g)‒(i) show that the samples for Tg ≥ 350 °C exhibit high (111) 

orientation and large grains, respectively. These results suggest the epitaxial growth of Ge from 

the ALILE-Ge seed layer. Figure 2(j) shows that the Ge surface for Tg = 200 °C is almost flat, 

although there are voids originating from the seed layer [18]. However, Fig. 2(k)‒(m) show that 

the Ge layer becomes discontinuous and island-shaped as Tg increases. This is the typical 

feature of MBE growth from the (111) oriented seed layer, which can be explained from the 

anisotropy of the growth rate. Because the growth rate of the (111) plane is the slowest [43], 

other planes appear during the growth, resulting in the rough surface. Thus, under the current 

growth conditions, epitaxial growth of a flat continuous MBE-Ge layer on the ALILE-Ge seed 

layer was difficult.  

Figure 3(a) shows that the closer the epi-Ge/ALILE-Ge interface, the higher the Al 

concentration in the epi-Ge layer, which is more prominent as Tg is higher. Figure 3(b) shows 

that the Al concentration of the MBE-Ge layers, determined by the SIMS profiles at 100 nm 
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depth, are lower than that of the ALILE-Ge seed layer. The Al concentration decreases to the 

order of 1017 cm-3 by lowering Tg. These results are consistent with the fact that the diffusion 

coefficient of impurities increases with increasing temperature [44]. Figure 3(c) shows that the 

MBE-Ge samples exhibit much faster decay than the ALILE-Ge. By defining τeff as the time 

until the microwave intensity decays to 1/e, τeff of the MBE-Ge layers is determined to be 8 ns. 

This value is around the detection limit of the µ-PCD system and is lower than τeff of the ALILE-

Ge (67 ns). Therefore, the deterioration of τeff is likely attributed to the surface carrier 

recombination due to the rough surface of the MBE-Ge layers. The MBE-Ge layers thus 

achieved an Al concentration three orders of magnitude lower than ALILE by lowering Tg; 

however, there was a problem of islandization significantly degrading τeff. 

To solve the degrading islandization problem, we investigated the SPE of Ge from the 

ALILE-Ge seed layer. Figure 4(a) shows that the SPE-Ge layer crystallizes at Tg > 300 °C. 

Considering that nucleation in a-Ge requires at least 375 °C [11], the Tg = 350 °C sample likely 

crystallizes from the seed layer. Figure 4(b)‒(e) show that the crystal orientation map of the 

SPE-Ge layer greatly varies depending on Tg. According to the correspondence with the Raman 

results, the Tg = 300 °C sample is amorphous (Fig. 4(b) and (f)) and the Tg = 500 °C sample is 

microcrystalline, likely due to the bulk nucleation (Fig. 4(e) and (i)). The Tg = 350 °C sample 

is highly (111)-oriented and large-grained (Fig. 4(c) and (g)), indicating the epitaxial growth 

from the seed layer. Although the Tg = 450 °C sample seems to have epitaxially grown partially 

from the seed layer, there are also many randomly oriented grains due to bulk nucleation (Fig. 

4(d) and (h)). Thus, only the Tg = 350 °C sample perfectly inherits the (111)-orientation and 

large grains of the seed layer. The SEM images in Fig. 4(j)‒(m) show that, although there are 

indentations corresponding to the holes in the ALILE-Ge layer [18], the SPE-Ge surface is 

continuous and much flatter than the MBE-Ge surface regardless of Tg. 

The optical properties of the SPE-Ge for Tg = 350 °C was evaluated. Figure 5 (a) shows 
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that α of SPE-Ge is the same as that of conventional undoped poly-Ge directly formed on a 

glass substrate at 350 °C. This result indicates that the SPE-Ge is low Al doped and not 

degenerated. From the α spectrum, the penetration depth of µ-PCD laser in SPE-Ge is found to 

be approximately 100 nm. Figure 5(b) shows that the µ-PCD decay curve depends on the 

thickness of the SPE-Ge layer. Figure 5(c) shows that the SPE-Ge samples appear larger τeff 

than the ALILE-Ge. In addition, τeff increases with the increasing thickness of SPE-Ge, w. The 

SPE-Ge for w = 500 nm achieves τeff of more than 1 µs, exceeding that of the MBE-Ge by two 

orders of magnitude. In general, τeff includes the contributions of bulk, surface, and interface 

recombination. When the minority carrier diffusion length is sufficiently larger than w, τeff can 

be expressed as  

1
𝜏𝜏eff

= 1
𝜏𝜏bulk

+ 𝑆𝑆0+𝑆𝑆w
𝑤𝑤

,    (1) 

where τbulk is the bulk minority carrier lifetime, and S0 and Sw are the surface and interface 

recombination velocities, respectively. Figure 5(d) shows that 1/τeff is proportional to 1/w, 

indicating τeff of the SPE samples is limited by the surface and/or interface recombination. The 

value of S0 + Sw was determined to be 38 cm/s. Therefore, the passivation of the surface and/or 

interface is essential for improving τeff. From the intercept of the least-squares line in Fig. 5(c), 

τbulk is determined to be 5.6 µs. This value is close to that of a single-crystal Ge with hole 

concentration in the latter half of 1017 cm-3 [45]. SIMS measurement revealed that the amount 

of Al in the SPE-Ge layer for Tg = 350 °C was 6 × 1017 cm-3, almost the same as that of the 

MBE-Ge layer for Tg = 350 °C. Assuming that the Al atoms in the SPE-Ge are fully activated 

as acceptors, τbulk of the SPE-Ge is mostly limited by impurity scattering. Therefore, further 

reducing the Al concentration in the SPE-Ge will lead to the further improvement of τbulk.  

 

IV. CONCLUSION 

The large-grained, highly (111)-oriented Ge layer formed by ALILE worked well as an 
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epitaxial seed layer for a high-quality Ge layer. After examining MBE and SPE for both 

methods, 500-nm-thick epitaxial Ge layers with an Al concentration of the order of 1017 cm-3 

were obtained at Tg = 350 °C. The MBE-Ge layer exhibited a short τeff (8 ns) owing to the rough 

surface, while the flat SPE-Ge layer exhibited a long τeff (1.1 µs). Moreover, τbulk of the SPE-

Ge layer was determined to be 5.6 µs, which is close to that of a single-crystal Ge. This 

achievement will directly lead to the fabrication of novel high-efficiency multijunction solar 

cells based on inexpensive substrates. 
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Fig. 1. (a) Schematic of the sample preparation. EBSD images of an ALILE-Ge seed layer in 

the (b) ND and (c) TD. The coloration indicates the crystal orientation, refer to the inserted 

legend. 
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Fig. 2. Characterization of the crystal quality of the samples for MBE where Tg = 200−650 °C. 

(a) Raman spectra where the data of the seed layer is shown for comparison. EBSD images in 

(b)−(e) ND and (f)−(i) TD. (j)−(m) SEM images. Tg is labeled in each image.  
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Fig. 3. (a) SIMS depth profiles of Al concentration in the epi-Ge layers formed by MBE (Tg = 

350 and 500 °C) and SPE (Tg = 350 °C). (b) Tg dependence of Al concentration in the MBE-

Ge layers obtained by SIMS analyses. (c) Normalized µ-PCD decay curves for the MBE 

samples where Tg = 350, 500, and 650 °C. The data for the ALILE-Ge seed layer are shown 

for comparison.  
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Fig. 4. Characterization of the crystal quality of the samples for SPE where Tg = 300−500 °C. 

(a) Raman spectra where the data of the seed layer is shown for comparison. EBSD images in 

(b)−(e) ND and (f)−(i) TD. (j)−(m) SEM images. Tg is labeled in each image.  
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Fig. 5. Optical properties of the SPE-Ge for Tg = 350 °C. (a) α spectra of the SPE-Ge and 

conventional undoped poly-Ge samples where w is 500 nm. (b) Normalized µ-PCD decay 

curves of the SPE samples where w is 100, 300, and 500 nm. The data of the ALILE-Ge are 

shown for comparison. (c) τeff of the SPE-Ge layers as a function of w. The data of the ALILE-

Ge and MBE-Ge are shown for comparison. (d) Dependence of the inverse of τeff on the inverse 

of w, including a dotted line fitted with three points.  
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