Synthesis and characterization of a thermally cross-linkable polyolefin from oleic acid

Kazuhisa Ohtake, Yusuke Onose, Junpei Kuwabara and Takaki Kanbara*

Tsukuba Research Center for Energy Material Science (TREMS), Graduated School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.

Correspondence to: Takaki Kanbara (E-mail: kanbara@ims.tsukuba.ac.jp)

KEYWORDS: polyolefins, biopolymers, cross-linking, thermosets, adhesion

INTRODUCTION Bio-based compounds contain unique structures such as inner olefins, monocyclic and bicyclic structures, etc. These compounds have been recognized as key ingredients for specialty chemicals and have been widely used as food additives, plasticizer, cosmetics, fragrances, and essential oils.¹⁻³ Owing to their unique structures, these compounds are difficult to synthesize from petrochemicals. For instance, oleic acid synthesis from 1-decyne, which is a kind of petrochemical, a six-step process.⁴⁻⁵ Unprecedented is functional polymers can be obtained from biobased resources via utilization of their unique structures. Many researchers have investigated new polymer materials derived from bio-based resources like fatty acids, lactic acids, and hydroxyalkanoates. ⁶⁻¹⁰ Among various available bio-based resources, herein we focused on oleic acid ((9Z)-9-octadecenoic acid), a naturally occurring fatty acid, because it is abundantly available in olives and various industrial and agricultural food wastes.¹¹ There have recently been reports on the application of oleic acid as a feedstock for polymer materials;^{8, 12} however, utilization of oleic acid must be developed further based on its unique internal olefin moiety in long alkyl chain, which is a structural feature not easily obtained from petroleum. Herein, we have introduced a chemical transformation of oleic acid to a novel polyolefin possessing an internal olefin moiety as a reactive functional group (Scheme 1). Since the of oleic conversion acid to (8Z)-1,8-

heptadecadiene (**MO**) via catalytic decarbonylative elimination has been reported, 13-15 envisioned we the site-specific polymerization of **MO** to obtain a new functional polyolefin (PO). The internal olefin moiety in PO can be converted to various functional groups. Nomura reported that copolymerization of 1,7octadiene with 1-octene afforded highmolecular-weight copolymers containing side chains bearing terminal olefins; hydroxyl groups can be quantitatively introduced into the terminal olefin moieties.¹⁶ Selective 1,2polymerization of 1,3-diene also affords polyolefins bearing olefinic side chains.17-19 Coates and Grubbs reported а post functionalization of 1,2-polybutadiene using ring closing metathesis at the olefin moieties.²⁰ While most of reported reactive polyolefins contain terminal olefinic moieties in the side chain,²¹⁻²³ this study focuses on internal olefin moieties as a reactive functional group, which is expected to lead a new post functionalization methodology. To summarize, herein we report the molecular design of a novel functional polyolefin derived from oleic acid: an applicable synthesis and characterization of **PO** is presented. The thermal cross-linking reactions and adhesive properties of PO were also evaluated to elucidate the usability of the polymer.

RAPID COMMUNICATION

WWW.POLYMERCHEMISTRY.ORG

SCHEME 1 Synthesis of PO from oleic acid.

RESULTS AND DISCUSSION

The transformation of oleic acid to MO was performed according to previous reports.¹³⁻¹⁵ Pdcatalyzed decarbonylative elimination afforded MO in good yield (70%). Since MO has both terminal and internal olefin moieties, to obtain a structurally defined polymer material, its polymerization should proceed stereoregularly and site-selectively at the terminal olefin moiety. Previously, the Kaminsky group reported that C_2 symmetric bridged zirconocene complexes with methylaluminoxane (MAO) catalysts gave stereoregular polyolefins.²⁴ More specifically, the Wahner group reported the highly isotactically selective polymerization of 1decene using Et(Ind)₂ZrCl₂/MAO catalyst.^{25,26} Therefore, Et(Ind)₂ZrCl₂/MAO can facilitate the isotactic polymerization of MO. To confirm the site-selectivity of the polymerization, control experiments were conducted using a mixture of 1-decene and (6Z)-6-dodecene, giving isotactic poly-(1-decene) in good yield (Supporting Information, Scheme S1). This result indicated that the C₂ symmetric nature of Et(Ind)₂ZrCl₂ was efficient in the site-selective polymerization of MO. Next, to determine the appropriate polymerization conditions, polymerization of **MO** using the Et(Ind)₂ZrCl₂/MAO catalyst was performed under various conditions (Table 1). All the resulting polymers were transparent and viscous oily compounds. Low-molecular-weight polymers were obtained at entry 1 to 3 (Table 1). At a MO/catalyst ratio of 17000 (Table 1, entry 4), the corresponding polymer, with the highest molecular weight of 16400, was obtained in 80% yield. The number-averaged molecular weight of the polymer did not increase with the addition of **MO** (entry 5). In contrast, other Zr complexes produced less to no desired products. The polymerization of **MO** using the non-bridged C_{2v} symmetric (Ind)₂ZrCl₂/MAO catalyst²⁷ gave the corresponding polymer in moderate yield (entry 6), while Ph₂C(Cp)(9-fluolenyl)ZrCl₂ showed no catalytic activity toward MO (entry 7). Radical polymerization of **MO** was also investigated using AIBN as the catalyst; however, the reaction did not occur. Additional control experiments were also performed and are summarized in the ESI (Supporting Information, Tables S2 and S3). The chemical structures of the synthesized polymers were elucidated using nuclear magnetic resonance (NMR) spectroscopy. Figure 1(a) and 1(b) shows the ¹H NMR spectra of **MO** and the obtained **PO** (entry 4, Table 1). While the terminal olefin signals of **MO** appeared at δ 4.9 ppm and δ 5.8 ppm (Fig. 1(a)), no terminal olefin signals were observed in the spectrum of **PO** (Fig. 1(b)). However, the peak corresponding to the inner olefin moiety remained at 5.3 ppm (Fig. 1(b)). ¹H NMR spectrum of the **PO** obtained using the (Ind)₂ZrCl₂/MAO catalyst (Table 1, entry 6) exhibited a pattern similar to that of PO obtained using the Et(Ind)₂ZrCl₂/MAO catalyst (Table 1, entry 4) (Supporting Information, Fig. S3). In addition, all ${}^{13}C{}^{1}H$ NMR signals of **PO** obtained using the Et(Ind)₂ZrCl₂/MAO catalyst were assigned to the carbons of the product (Supporting Information, Fig. S7-S10). Figure 1(c) shows the ¹³C{¹H} NMR spectra of **PO** (entries 4) and 6, Table 1) at the pentad regions of the branched carbon atom. The sharp signal at δ 34.9 ppm in the ^{13}C {¹H} NMR spectrum of PO obtained using the Et(Ind)₂ZrCl₂/MAO catalyst (*iso*-**PO** in Figure 1(c)) indicated high isotacticity of the polymer (*iso*-**PO**). In contrast, the ${}^{13}C$ { ${}^{1}H$ } NMR spectrum of PO prepared using the (Ind)₂ZrCl₂/MAO catalyst (entry 6, Table 1) displayed broad and complicated signals in the same region (ata-PO in Fig. 1(c), Supporting Information, Fig. S5 and S6). This difference was attributed to the atactic structure of the second polymer (ata-PO),

Entry	MO (mmol)	Cat.ª	Cat. (µmol)	MO /Cat.	Temp. (°C)	Yield (%)	<i>M</i> _n × 10 ^{-3 b}	PDI	DP°
1	1.7	А	0.5	3400	25	90	12.8	1.54	54
2	1.7	А	0.2	8500	50	88	8.30	1.52	35
3	1.7	А	0.2	8500	25	82	11.2	1.69	47
4	3.4	А	0.2	17000	25	80	16.4	1.55	69
5	5.1	А	0.2	25500	25	45	15.6	1.69	66
6	3.4	В	0.2	17000	25	42	12.7	1.71	54
7	3.4	С	0.2	17000	25	0	-	-	-

TABLE 1 Results of polymerization reactions

^a A: Et(Ind)₂ZrCl₂ B: (Ind)₂ZrCl₂ C: Ph₂C(Cp)(9-fluolenyl)ZrCl₂. These structures were described in Fig. S1. ^b Estimated by GPC calibrated on polystyrene standards. ^c Degree of polymerization (based on *M*_n evaluated by GPC)

FIGURE 1 ¹H NMR spectra of (a) **MO** and (b) *iso*-**PO** (entry 4) (600 MHz, $C_2D_2Cl_4$, 373 K). ¹³C{¹H} NMR spectra of (c) *iso*-**PO** (entry 4) and (d) *ata*-**PO** (entry 6) at the branched carbon atom regions (150 MHz, $C_2D_2Cl_4$, 373 K).

which may arise from the differences in the structures of the catalysts used. In light of previous studies in this field, these results were reasonable.²⁸ Since signal corresponding to the terminal olefin moiety of the polymer was not observed, β -hydrogen elimination occurred negligibly as a chain transfer reaction due to a transmetalation reaction between the Zr catalyst and MAO. Therefore, site-selective and stereoregular polymerization of **MO** was achieved using Zr metallocene catalysts.

During the curing of unsaturated fatty acids by heat, oxy-radical species form at the internal olefin moieties and attack the neighboring olefin moieties; this is called auto oxidation.²⁹⁻³⁰ Since **PO** has a long side chain bearing an internal olefin moiety, its thermal transformation was investigated. While pristine *iso*-**PO** is a viscous liquid at room temperature, it formed a hard and transparent film after thermal treatment on a glass plate at 100 °C for 12 h in air (iso-PO-CR, Supporting Information, Fig. S11). Iso-PO-CR was insoluble in organic solvents, suggesting that thermal cross-linking reaction proceeded at the internal olefin moieties of the side chain of iso-**PO**. In contrast to the process in air, no thermal cross-linking was observed when the process was carried out under N₂. Thermogravimetric analysis (TGA) of the thermal transformation of iso-PO in air (Supporting Information, Fig. S12) showed a weight gain due to oxidation. The FT-IR spectra of pristine iso-PO and iso-PO-CR in thin-film state (Fig. 2) showed the disappearance of the olefinic C-H stretching peak, and the appearance of carboxy, hydroxy, peroxide, and ether peaks instead. This result indicated the formation of an oxy radical, which underwent subsequent reactions like cross-linking,

Figure 2 IR spectra of iso-PO and iso-PO-CR.

carbonylation, and hydroxylation (Supporting Information, Fig. S13).³¹ ata-PO exhibited a thermal transformation similar to that of iso-PO (Supporting Information, Fig. S14). Considering the durability and transparency (Supporting Information, Fig. S11, S15) of iso-PO-CR, the adhesive performance of thermally cured iso-PO was examined. Notably, the polymer exhibited adhesion to a glass plate by heating in air. To quantitatively determine the adhesion performance, lap shear tests were conducted on and other substrates (Supporting glass Information, Fig. S16, S17).³²⁻³³ First, the effects of curing temperature and time on the adhesion performance on the glass plate were investigated (Supporting Information, Fig. S16). At a curing temperature of 80 °C, the adhesion was too weak to stand the weight of the glass plate, while higher curing temperature (120 °C) provided better lap shear strength. The lap shear strength of iso-PO-CR on glass increased from 0.026 to 0.16 MPa upon increasing the heating time from 4 to 20 h at 120 °C (Supporting Information, Fig. S16). This indicated that better adhesion performance can be achieved by prolonging the reaction time and increasing the temperature. Moreover, the adhesion performance of *ata*-**PO-CR** on the glass substrate (0.080 MPa) was slightly lower than that of iso-PO-CR (Supporting Information, Fig. S16), suggesting that the tacticity of the polymers was associated with their adhesion performance. iso-PO-CR exhibited higher adhesion to aluminum

(0.27 MPa) and stainless steel (0.33 MPa), and no adhesion to polyethylene (PE) and polypropylene (PP), due to the interaction of the polar functional groups of **PO-CR** with the polar groups on the substrates (Supporting Information, Fig. S17). Therefore, the negligible amount of polar groups on PE and PP would lead to no adhesion.

Herein we demonstrated the facile conversion of oleic acid to a thermally cross-linkable polyolefin based on the unique structure of oleic acid. Pdcatalyzed decarbonylative elimination of oleic acid provided **MO** under mild conditions. Subsequent polymerization of **MO** using the Et(Ind)₂ZrCl₂/MAO catalyst proceeded at the terminal olefin moiety in a site-selective and stereoregular manner. The obtained iso-PO had high isotacticity and long side chain bearing an internal olefin moiety. While pristine iso-PO was an oily product, its thermal treatment in air led to auto-oxidation and cross-linking at the internal olefin moiety, providing a hard and transparent cross-linked film. Notably, PO exhibited adhesion properties to various substrates such as glass, aluminum, and stainless steel. To the best of our knowledge, this is the first report on a method to access reactive functional polyolefins from fatty acids. Therefore, this protocol provides new insights and facilitates the development of biomass-based functional reactive polyolefins. Further investigations on the applicability of this synthetic protocol to other fatty acids, as well as experiments on other chemical transformation of iso-PO, are currently underway.

EXPERIMENTAL

Synthesis of MO ((8Z)-1,8-heptadecadiene)

A dried 200 mL flask was charged with oleic acid (7.16 g, 25.0 mmol), pivalic anhydride (9.20 g, 50.0 mmol), palladium chloride(II) (133 mg, 0.750 mmol), bis[2-(diphenylphosphino) phenyl] ether (1.21 g, 2.25 mmol), and triethylamine (0.300 mL, 2.30 mmol). *N*,*N*'-dimethylpropyleneurea (50 mL) was added and degassed by 3 times of freeze-pump-thaw cycles. The reaction was stirred 15 h at 110 °C. After the reaction was complete (monitored by TLC), 200 mL of ethyl acetate was added and the organic layer was washed with 200 mL of saturated ammonium chloride aqueous solution and brine. The product was filtered through an amine functionalized silica gel pad (Φ 60 x 50 mm) using hexane as eluent. After concentrating to dryness, crude product was purified by silica column chromatography (Φ 50 x 150 mm) using hexane as eluent. After concentrating to dryness, pure product (4.2 g, 71%) was obtained as a transparent oil.

¹H NMR (600 MHz, $C_2D_2Cl_4$, δ): 5.84-5.79 (ddt, J = 16.8, 10.0, 6.8 Hz, 1H), 5.39-5.33 (m, 2H), 5.02-4.94 (m, 2H), 2.06-2.02 (m, 6H), 1.41-1.27 (m, 18H), 0.89 (t, J = 6.9 Hz, 3H) ; ¹³C{¹H} NMR (150 MHz, $C_2D_2Cl_4$, δ):139.1, 130.0, 129.7, 114.2, 33.7, 31.8, 29.7, 29.5, 29.4, 29.2, 28.8, 28.7, 27.1, 27.0, 22.6, 14.1.

Polymerization procedure of isotactic-PO (entry 4 in Table 1)

Et(Ind)₂ZrCl₂ (5.0 μmol) was dissolved in 2.5 mL toluene. A 20 mL dried greaseless Schlenk tube was charged with dry toluene (2.0 mL), MO 803 mg (3.40 mmol), MAO in toluene (0.20 mL, 0.20 mmol-Al), and catalyst (0.10 solution 0.20 μmol). mL, MO/MAO/catalyst ratio was 17000:1000:1. The reaction was carried out at 25 °C and was quenched after 24 h by addition of 1 mL methanol and 1 mL of HCl (3.5% in water). The reaction mixture was diluted with 10 mL of CHCl₃ and washed two times with 10 mL of distilled water. After drying the organic fraction over Na₂SO₄, the solvent was removed under vacuum. Residual monomer was removed by dissolving the product in CHCl₃ followed by precipitation with 300 mL of methanol for 2 days. Subsequently, the product was dried in vacuum. 641 mg of transparent viscous oily product was obtained (yield 80%).

¹H NMR (600 MHz, $C_2D_2CI_4$, 373 K, δ): 5.42-5.37 (m, 2H), 2.08-2.06 (br, 4H), 1.51-1.21 (br, 21H), 1.20-1.10 (br, 2H), 0.94 (t, 3H); ¹³C{¹H} NMR (150 MHz, $C_2D_2CI_4$, 373 K, δ): 129.7, 129.6, 40.4, 34.9, 32.6, 31.6, 29.8, 29.7, 29.6, 29.3, 29.1, 29.0, 27.2, 27.1, 26.4, 22.3, 13.7.

Polymerization procedure of atactic-PO (entry 6 in Table 1)

 $(Ind)_2 ZrCl_2$ was synthesized referring to reported procedure.²⁷ $(Ind)_2 ZrCl_2$ (5.0 µmol) was dissolved in 2.5 mL toluene. A 20 mL dried greaseless Schlenk tube was charged with **MO** 803 mg (3.40 mmol), MAO (0.20 mmol), and catalyst solution (0.10 mL, 0.20 µmol). **MO**/MAO/catalyst ratio was 17000:1000:1. Polymerization and purification were conducted with same procedure to above.

¹H NMR (600 MHz, C₂D₂Cl₄, 373 K, δ): 5.43-5.37 (m, 2H), 2.08-2.06 (br, 4H), 1.58-1.10 (br, 23H), 0.94 (t, 3H); ¹³C {¹H} NMR (150 MHz, C₂D₂Cl₄, 373 K, δ): 129.7, 129.6, 41.6-40.5(br), 34.9-33.6(br), 32.9, 31.6, 29.8, 29.7, 29.6, 29.3, 29.1, 29.0, 27.2, 27.1, 26.4-25.8(br), 22.3, 13.7.

ACKNOWLEDGEMENTS

The authors thank the Chemical Analysis Division and the OPEN FACILITY, Research Facility Center for Science and Technology, University of Tsukuba, for the measurements of ¹H and ¹³C{¹H} NMR and Thermogravimetric analysis. This research was partly supported by The Sasakawa Scientific Research Grant from The Japan Science Society (No. 29-312), Eno Scientific Foundation and New Energy and Industrial Technology Development Organization of Japan (NEDO) Grant (P16010).

REFERENCES AND NOTES

- 1. A. Corma, S. Iborra and A. Velty, *Chem. Rev.* **2007**, *107*, 2411.
- 2. A. Behr and L. Johnen, *ChemSusChem*. **2009**, *2*, 1072.
- 3. M. Eggersdorfer, *Terpenes. Ullmann's Encyclopedia of Industrial Chemistry*, Wiley-VCH Verlag GmbH & Co. KGaA, New York **2000**.

- 4. V. Martichonok and J. B. Jones, J. Chem. Soc., Perkin Trans. 1 1995, 2927.
- 5. S. Poigny, M. Guyot and M. Samadi, J. *Chem. Soc., Perkin Trans.* 1 **1997**, 2175.
- P. E. Kolattukudy, *Biochemistry*. **1974**, *13*, 1354.
- 7. J. J. La Scala, J. M. Sands, J. A. Orlicki, E. J. Robinette and G. R. Palmese, *Polymer* **2004**, *45*, 7729.
- 8. C. Vilela, R. Rua, A. J. D. Silvestre and A. Gandini, *Ind. Crops Prod.* **2010**, *32*, 97.
- 9. D. Garlotta, J. Polym. Environ. 2001, 9, 63.
- 10. Z. Li, J. Yang and X. J. Loh, *NPG Asia Mater.* **2016**, *8*, e265.
- 11. F. Visioli and C. Galli, *Am. J. Clin. Nutr.* **2000**, *72*, 853.
- 12. S. Miao, S. Zhang, Z. Su and P. Wang, J. Polym. Sci. Part A Polym. Chem. **2008**, 46, 4243.
- 13. L. J. Gooßen and N. Rodríguez, *Chem. Commun.* **2004**, 724.
- A. Chatterjee, S. H. Hopen Eliasson, K. W. Törnroos and V. R. Jensen, ACS Catal. 2016, 6, 7784.
- 15. A. Chatterjee and V. R. Jensen, *ACS Catal.* **2017**, *7*, 2543.
- 16. K. Nomura, J. Liu, M. Fujiki and A. Takemoto, *J. Am. Chem. Soc.* **2007**, *129*, 14170.
- 17. G. Ricci, A. Forini, A. Boglia and M. Sonzogni, *Organometallics* **2004**, *23*, 3727.
- D. Gong, W. Dong, Y. Hua, J. Bi, X. Zhang, L. Jiang, *Polymer* **2009**, *50*, 5980.
- C. Yao, F. Lin, M. Wang, D. Liu, B. Liu, N. Liu, Z. Wang, S. Long, C. Wu, and D. Cui, *Macromolecules* 2015, 48, 1999.
- 20. G. W. Coates and R. Grubbs, *J. Am. Chem. Soc.* **1996**, *118*, 229.
- 21. T. C. Chung, *Prog. Polym. Sci.* **2002**, *27*, 39.
- 22. T. C. Chung, Functionalization of Polyolefins; Academic Press: San Diego, CA **2002**.
- 23. N. K. Boaen and M. A. Hillmyer, *Chem. Soc. Rev.* **2005**, *34*, 267.

- 24. W. Kaminsky, Dalton Trans. 1998, 1413.
- V. Grumel, R. Brüll, H. Pasch, H. G. Raubenheimer, R. Sanderson and U. M. Wahner, *Macromol. Mater. Eng.* 2001, 2, 480.
- 26. J. Saito, Y. Suzuki, T. Fujita, *Chem. Lett.* **2003**, *32*, 236.
- A. Łapczuk-Krygier, K. Baranowska, Ł. Ponikiewski, E. Matern, J. Pikies, Inorganica Chimica Acta 2012, 387, 361.
- G. B. Galland, L. F. Da Silva and A. Nicolini, J. Polym. Sci. Part A Polym. Chem. 2005, 43, 4744.
- 29. H. Wexler, Chem. Rev. **1964**, 64, 591.
- 30. M. H. Brodnitz, J. Agric. Food Chem. **1968**, *16*, 994.
- 31. J. K. Agbenyega, W. Road and G. Ellis, Spectrochim. Acta Part A. **1991**, 47, 1375.
- S. Saito, S. Nobusue, E. Tsuzaka, C. Yuan, C. Mori, M. Hara, T. Seki, C. Camacho, S. Irle and S. Yamaguchi, *Nat. Commun.* 2016, 7, 1.
- M. Han, X. Liu, X. Zhang, Y. Pang, P. Xu, J. Guo, Y. Liu, S. Zhang and S. Ji, *Green Chem.* 2017, 19, 722.