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Abstract

Contour-integral based eigensolvers have been proposed for efficiently exploiting the perfor-
mance of massively parallel computational environments. In the algorithms of these meth-
ods, inner linear systems need to be solved and its calculation time becomes the most time-
consuming part for large-scale problems. In this paper, we consider applying a contour-integral
based method to a large dense problem in conjunction with a block Krylov subspace method
as an inner linear solver. Comparison of parallel performance with the contour-integral based
method with a direct linear solver and a ScaLAPACK’s eigensolver is shown using matrices
from a practical application.
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1. Introduction

We consider a dense Hermitian-definite generalized
eigenvalue problem (GEP),

Axi = λiBxi, i = 1, . . . ,m, m ≤ n,

where A, B ∈ Cn×n are dense Hermitian matrices and
B is positive definite. We compute all m eigenvalues in
I = [a, b]. It is assumed there are no eigenvalues at a and
b. This kind of problem appears in scientific problems,
e.g. electronic structure calculations.
To solve a large scale eigenproblem, one may consider

using a distributed parallel subroutine implementing a
method based on the Householder tridiagonalization in
e.g. the ScaLAPACK library and running it on a many-
node cluster. Parallel performance of currently available
libraries scales to a certain extent; however, in some
cases, their scalability is not satisfactory. That is, specif-
ically, in a case where a highly expensive computational
kernel (other than the eigensolver) that scales on a large
number of computational nodes exists in the application
program and the eigensolver poorly exploits the perfor-
mance of that amount of parallel resources.
On the other hand, state-of-the-art parallel comput-

ing environments equip GPUs and/or many-core CPUs.
Implementing algorithms that require fine-grained com-
munication like methods based on the Householder tridi-
agonalization is becoming more and more difficult for
such new complex architectures.
Because of this situation, in this paper, we con-

sider evaluating the performance of the Sakurai-Sugiura
method (SSM) [1] in conjunction with a block Krylov
subspace method as an inner linear solver. As shown in

the subsequent sections, owing to its coarse-grained par-
allelism and simplicity of the computationally dominant
kernel, the approach possibly outperforms conventional
Householder-based approaches when a large number of
computational resources are available.

2. The Sakurai-Sugiura method with

Rayleigh-Ritz procedure

Let Γ be a positively oriented Jordan curve which in-
tersects the real axis at a and b of I. Let L, M ∈ N
be input parameters such that LM ≥ m and L must
be larger than the maximum algebraic multiplicity of
the eigenvalues in I. We construct a complex moment
S := [S0, . . . , SM−1] ∈ Cn×LM by

Sk :=
1

2πi

∮
Γ

zk (zB −A)
−1

BV dz, (1)

where k = 0, . . . ,M −1 and V ∈ Cn×L is called a source
matrix that is usually generated by random numbers.
For discretizing the integral,

Ŝk :=

N∑
j=1

wjz
k
j (zjB −A)

−1
BV

is used for approximating (1), where zj is a quadrature
point and wj is a corresponding quadrature weight. We

also define Ŝ := [Ŝ0, . . . , ŜM−1].
We employ the Rayleigh-Ritz procedure for extract-

ing eigenpairs from Ŝ [2]. Let Q ∈ Cn×K be a ma-

trix whose columns are orthonormal bases of Range(Ŝ),

where K is the numerical rank of Ŝ. Then, we trans-
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form the original problem to the projected problem,
QHAQti = θiQ

HBQti. Here, (λi,xi) = (θi, Qti).
The SSM has hierarchical parallelism which consists

of the following layers. Layer 1: Multiple intervals can
be set for the SSM, then, each interval can be com-
puted simultaneously. Layer 2: For each interval, the
solutions of N linear systems of order n are required,
however, they can be computed simultaneously because
they are independent of each other. Layer 3: Parallel
linear solvers can be used for solving each linear system.

3. The SSM with block Krylov strategy

for dense GEPs

3.1 Motivation

Generally, Hermitian-definite dense GEPs are solved
by the following steps: 1) Reduction to a standard eigen-
problem (SEP) using the Cholesky factorization of B, 2)
Tridiagonalization of the SEP by Householder transfor-
mations, 3) Eigenpair computation for the tridiagonal
form e.g. the bisection method (followed by inverse it-
erations), 4) Back-transformation of eigenvectors to the
original GEP. This type of method is sometimes referred
to as a direct method. As a ScaLAPACK subroutine,
the driver routine PZHEGVX is provided for Hermitian-
definite GEPs and uses the bisection method for com-
puting eigenvalues of the tridiagonal form. Thus, it can
selectively compute the eigenvalues in a specified inter-
val. However, in distributed computing, the communi-
cation related to a level-2 BLAS type kernel used for
the Householder transformation becomes a bottleneck.
Moreover, the bisection method and the inverse itera-
tion are hard to scale and become an obstacle to paral-
lel speedup. Several efforts have been made to develop
highly efficient libraries for direct eigensolvers e.g. [3,4].
On the other hand, for dense eigenproblems, total se-

quential computational complexity of the SSM (which is
commonly used for sparse eigenproblems) is expected to
be greater than direct eigensolvers because multiple lin-
ear systems of order n need to be solved in the algorithm
of the SSM. However, if one can employ a highly scalable
implementation of a linear solver, and at the same time,
fully exploit the hierarchical parallelism of the SSM with
a large amount of computational resources, the SSM pos-
sibly outperforms direct eigensolvers.
In a multi-GPU parallel environment, the distributed

parallel performance of the SSM with a direct linear
solver for dense eigenproblems is evaluated [5]. An it-
erative linear solver is also an option while load imbal-
ance may occur at the Layer-1 and -2 parallelisms of the
SSM due to possible imbalance of iteration counts. Block
Krylov subspace linear solvers are used for solving sys-
tems with simultaneously given right-hand sides. In the
dense setting, block Krylov subspace linear solvers have
good property because their computationally dominant
kernel is the matrix-matrix product (GEMM) consist of
n×n and n×L dense matrices (in this study, we always
set the number of right-hand sides for a block Krylov
subspace linear solver as the parameter L of the SSM).
Obtaining distributed scalability of GEMM is substan-
tially easier than the kernels (e.g. the Householder trans-

formation) of direct eigensolvers.
Moreover, accuracy of the computed eigenpairs can

be adjusted by appropriately setting the parameters of
the SSM. Thus, we can controll the computational cost
according to the demanded accuracy in the application.
Accuracy of the computed eigenpairs can be controlled
indirectly by appropriately choosing the tolerance for
the residual norms of the inner linear systems. This is
a main advantage of iterative linear solvers over the di-
rect linear solvers. Therefore, in case where the appli-
cation accepts rough eigenpairs, the combination of the
SSM and a block Krylov subspace iterative solver can
be a promising approach for large dense GEPs. Precon-
ditioning for (block) Krylov subspace methods is crucial
for the performance; however, performance comparison
with preconditioning is beyond the scope of this paper.

3.2 Implementation

In the SSM, the contour path is assumed to be sym-
metric with respect to the real axis. Then, with a natu-
ral ordering of the indices, all pairs of quadrature points
have the relations

zj = zN−j+1, j = 1, . . . , N (2)

(when N is an even number). Let the coefficient matrix
of a linear system with respect to the quadrature point
zj be Cj = zjB −A. From the Hermitian symmetries of
A and B and the relations (2), CN−j+1 = CH

j is satisfied.
This indicates, in a case where a direct solver used for the
linear systems, the LU factors of Cj can be used to solve
the linear system of CN−j+1. On the other hand, the bi-
Lanczos type (block) Krylov subspace linear solvers can
simultaneously solve linear systems of Cj and CN−j+1

as the primary and dual systems (by setting initial so-
lutions properly). Because of this characteristic, in this
study, we choose a block BiCG type method as the it-
erative method for the inner linear systems. Specifically,
we employ Block BiCGrQ [6] which orthogonalizes the
residual matrix at every iterations. For the computation-
ally dominant GEMM kernel involving an n×n matrix,
we use the 2D block distribution.

4. Numerical experiments

In this section, we show the performance comparison
of the SSM with Block BiCGrQ, the SSM with the direct
linear solver and a ScaLAPACK’s direct eigensolver by
some numerical experiments. The experiments are per-
formed on the Oakforest-PACS, a huge Knights Land-
ing Xeon Phi cluster operated by JCAHPC, up to 1024
nodes. For all measurements, we assigned four processes
per node and 64 OpenMP threads per process with the
compact affinity. Also, MCDRAM mode is set as cache.
For the experiments, we used a Hermitian-definite

generalized eigenvalue problem obtained from the elec-
tronic structure calculation software SIRIUS [7]. The
degree of the matrices n is 95951. We compute 1960
eigenvalues in [−10,−0.1] and corresponding eigenvec-
tors. The eigenvalue distribution is shown in Fig. 1.
For the SSM, we set multiple intervals, [−10.0,−9.0],

[−5.0,−4.0], [−4.0,−3.0] and [−1.0,−0.1]. We call them
Interval 1, 2, 3 and 4, respectively. Parameters L, M and
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N are set as 256, 8 and 16, respectively in all intervals.
We implemented the method using z-Pares, a software

library which implements the SSM, and its new C++
interface. z-Pares itself supports the hierarchical paral-
lelism; however only the Layer-3 parallelism is used in
the experiments. Intel Compiler 18.0.1 and Intel MPI
2018 Update 1 are used as the compiler and the MPI en-
vironment, respectively. Also we used Intel MKL 2018.0
Update 1 as BLAS, LAPACK and ScaLAPACK.

4.1 Experiment 1
In Experiment 1, we compare scalability of Block

BiCGrQ and the direct linear solver of ScaLAPACK,
PZGETRF and PZGETRS, for the linear systems,
whose right-hand side has L vectors, in the SSM. Exper-
iment 1 is a preliminary experiment for estimating the
whole computation time of the SSM in Experiment 2 and
investigates how much the both methods can utilize the
Layer-3 parallelism. For Block BiCGrQ, we measured
the computation time for solving the linear system at a
quadrature point on 42, 82, 122, . . . , 322 nodes. The se-
lected quadrature point is the one which requires the
largest iteration count of Block BiCGrQ among all in-
tervals. The iteration counts with respect to all quadra-
ture points are measured in a preliminary experiment.
Note that we assume the number of split blocks in the
2D block distribution is the same for rows and columns.
Thus, the number of nodes is set as square numbers.
Here, we show the scalability of Block BiCGrQ only with
tolerance 10−6 because the scalability should be same
in the different tolerance. For the direct linear solver of
ScaLAPACK, we measured the computation time, which
includes the LU factorization and two calls of the for-
ward and backward substitutions, at a quadrature point
on the same number of nodes. The block sizes of ScaLA-
PACK’s 2D block cyclic distribution, mb and nb, are set
as 1024. Then, we calculated the scalability with refer-
ence to the result on 16 nodes for the both methods. The
results of Experiment 1 are shown in Table 1 and Fig. 2.
In Table 1, BB-GEMM, BB-Other, SL-LU and SL-FBS
are the measured computation time for the distributed
GEMM kernel of Block BiCGrQ, the other part of Block
BiCGrQ, PZGETRF and two calls of PZGETRS, re-
spectively.
From Fig. 2, the scalability of Block BiCGrQ is bet-

ter than that of ScaLAPACK’s direct linear solver. From
Table 1, PZGETRF does not scale well and PZGETRS
does not scale at all. This is because the utilization of
a large number of OpenMP threads makes the local
computation time too small to take advantage of the
distributed parallelism. On the other hand, distributed
GEMM kernel scales well and the other part of Block
BiCGrQ slightly scales. Thus, Block BiCGrQ for dense
matrices is more appropriate than ScaLAPACK’s direct
linear solver on Knights Landing Xeon Phi clusters.

4.2 Experiment 2
In Experiment 2, we evaluate computation time of the

SSM with Block BiCGrQ (SSM-BB), the SSM with the
direct linear solver (SSM-SL) and PZHEGVX, eigen-
solver of ScaLAPACK. For SSM-BB and SSM-SL, we
estimate the computation time using the result of Exper-

Table 1. Computation time of the both linear solvers in seconds.

#node BB-GEMM BB-Other SL-LU SL-FBS

16 728.1 139.0 565.3 57.7
64 218.3 100.9 369.9 66.4

144 201.3 94.2 334.2 70.8
256 154.9 67.9 316.8 64.4

400 115.1 72.0 317.7 65.8
576 87.6 63.7 316.2 65.0
784 65.1 59.7 310.4 61.7

1024 56.8 57.5 308.9 58.9

Fig. 1. Eigenvalue distribution of the target problem.

Fig. 2. Scalability of Block BiCGrQ and ScaLAPACK’s
PZGETRF and PZGETRS.

iment 1. For SSM-BB, we measured the iteration counts
of every quadrature points of all intervals with three tol-
erances for Block BiCGrQ: 10−6, 10−8 and 10−10 only
on 64 nodes. Here, we show the assumed parallelisms of
the layers for the estimation in Table 2. Pint, Pq, PLS

and Ptotal are the number of (groups of) nodes used for
the parallelism of interval, quadrature points and linear
solver and the total number of nodes, respectively. Note
that Oakforest-PACS has 8208 nodes in total. The par-
allel scalability of the SSM is estimated as if Oakforest-
PACS has more than 32768 nodes.
The computation time on Ptotal nodes, ttotal(Ptotal),

can be estimated by ttotal(Ptotal) := maxi,j t
(i,j)
LS (PLS) +

tother(PLS), where t
(i,j)
LS (PLS) and tother(PLS) are com-

putation time for solving the linear system on the j-th
quadrature point in Interval i and the other part of z-
Pares on PLS nodes for using the Layer-3 parallelism,
respectively. Note that full use of the Layer-1 and -2

parallelisms is assumed. For SSM-BB, t
(i,j)
LS (PLS) is es-

timated by using the measured iteration count and the
average computation time for a loop of Block BiCGrQ
on PLS nodes measured in Experiment 1. For SSM-SL,
we assumed that the computation time of the direct lin-
ear solver is the same as the result of Experiment 1 at
all of the quadrature points in all intervals. tother(PLS) is
measured in a preliminary experiment. For PZHEGVX,
we measured the computation time on the same number
of nodes in Experiment 1 with (mb, nb) = (1024, 1024).
The result is shown in Fig. 3.
On a small number of nodes, PZHEGVX is the fastest;

however, the computation time stagnates around hun-
dreds of nodes. On the other hand, SSM-BB and SSM-SL
are about 3 times slower than PZHEGVX on 16 nodes;
although, both methods become faster than PZHEGVX
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Table 2. Node usage of the SSM for each parallelism.

Pint Pq PLS Ptotal Pint Pq PLS Ptotal

1 1 16 16 4 8 64 2048
2 1 16 32 4 8 144 4608
4 1 16 64 4 8 256 8192
4 2 16 128 4 8 400 12800

4 4 16 256 4 8 576 18432
4 8 16 512 4 8 784 25088

4 8 1024 32768

Fig. 3. Computation time comparison with PZHEGVX, SSM-SL
and SSM-BB.

Fig. 4. Relative residual norms of computed eigenpairs by SSM-
BB with 3 tolerances.

on over hundreds nodes. Because SSM-SL uses the direct
linear solver, it scales linearly when Pint increases and
also scales almost linearly when Pq increases. However,
its computation time does not reduce significantly due
to the poor scalability of the linear solver. SSM-BB has
load imbalance on the Layer-1 and Layer-2 parallelisms
due to the differences of the iteration counts. Thus, it
does not scale linearly and is slower than SSM-SL on
512 nodes, the case of maximum use of the Layer-1 and
-2 parallelisms. However, it becomes the fastest on thou-
sands of nodes because Block BiCGrQ has better scal-
ability than the direct linear solver of ScaLAPACK as
shown in Experiment 1. This indicates that SSM-BB
will be able to exploit whole of huge computational re-
sources effectively whereas direct eigensolvers may not
scale well.

4.3 Experiment 3

In Experiment 3, we evaluate how the tolerance of
the solution of the linear systems affects the accuracy of
the computed eigenpairs in the SSM. The evaluation is
performed by calculating relative residual norms of the
computed eigenpairs in all intervals on 64 nodes for each
tolerance. The result is shown in Fig. 4.
The result shows rough eigenpairs can be obtained if

inaccurate solutions of linear systems are used in the
SSM. On the other hand, the relative residual norms of
the computed eigenpairs are not uniformly distributed
over the intervals. In Intervals 3 and 4, there are many
eigenvalues. If LM is not large enough, it is known that

the accuracy of the computed eigenpairs degrades [8].
Moreover, there are many clustered eigenvalues in Inter-
val 3. In this case, we should use larger L for computing
more accurate eigenpairs. To achieve uniform distribu-
tion of the residual norms, parameters and intervals of
the SSM should be determined by information of eigen-
value distribution, e.g. estimated eigenvalue count ob-
tained by stochastic estimation [9].

5. Conclusion

In this paper, we evaluated the performance of the
SSM with Block BiCGrQ as an inner linear solver. From
numerical experiments, SSM-BB is scalable than SSM-
SL and ScaLAPACK’s PZHEGVX in extremely parallel
environments. Also, the computation time can be re-
duced if the application does not need accurate eigen-
pairs. In addition, the use of Block BiCGrQ is also ap-
pealing in the sense that it has high portability for other
architectures (e.g. GPUs) owing to the simplicity of the
GEMM kernel.
Since we used only one example in the experiments of

this paper, as a future work, we will perform additional
experiments using matrices arising from various applica-
tions. We will also evaluate actual parallel scalability of
our approach using state-of-the-art supercomputers.
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