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Lithium intercalation into bilayer graphene
Kemeng Ji 1,2, Jiuhui Han1,2, Akihiko Hirata1, Takeshi Fujita 1, Yuhao Shen1,3, Shoucong Ning4, Pan Liu 1,

Hamzeh Kashani1,2, Yuan Tian1,2, Yoshikazu Ito5,6, Jun-ichi Fujita5 & Yutaka Oyama2

The real capacity of graphene and the lithium-storage process in graphite are two currently

perplexing problems in the field of lithium ion batteries. Here we demonstrate a three-

dimensional bilayer graphene foam with few defects and a predominant Bernal stacking

configuration, and systematically investigate its lithium-storage capacity, process, kinetics,

and resistances. We clarify that lithium atoms can be stored only in the graphene interlayer

and propose the first ever planar lithium-intercalation model for graphenic carbons. Corro-

borated by theoretical calculations, various physiochemical characterizations of the staged

lithium bilayer graphene products further reveal the regular lithium-intercalation phenomena

and thus fully illustrate this elementary lithium storage pattern of two-dimension. These

findings not only make the commercial graphite the first electrode with clear lithium-storage

process, but also guide the development of graphene materials in lithium ion batteries.
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Despite its limited capacity (maximum of 372 mAh g−1 by
forming the so-called LiC6 intercalation compound1),
graphite has many excellent properties and therefore

has been regarded as the state-of-the-art anode material in
rechargeable lithium ion batteries (LIBs)2. Before its commercial
application in 19902, intensive studies had been performed to
determine its related Li-storage process/mechanism3,4. Examples
include the classical pleated-layer model by Daumas and Hérold
in 1969, and the earlier Rüdorff model in 19655–7. Recently, in
the wake of the discovery and development of graphene (i.e.,
“monolayer graphite”) and the numerous reports of enhanced
energy-storage performances of graphene-modified electrode
materials, many researchers believe that the capacity of LIB can
be significantly enhanced through simply replacing the traditional
graphite anode by this ultimate carbon material that has metal-
level conductivity, large surface area (2630 m2 g−1 in theory), and
possibly two exposed sides to adsorb Li atoms (namely forming
the expected Li2C6 stoichiometry with a doubled capacity of
744 mAh g−1)2,8–10. However, despite the considerable invest-
ment in money and time, this target has not been achieved by
using pure graphene materials. Even the Li-storage mechanism
(or the storage locations) on graphene is still up for debate both
experimentally and theoretically9–12. For instance, based on
density functional theory (DFT) calculations1,11–14 and the dif-
ferent electrochemical behavior of monolayer graphene supported

by Cu foil from those of multilayer graphenes/graphite for
LIBs9,11,15, it has been proposed that Li atoms cannot be adsorbed
onto pristine monolayer graphene, instead they only intercalate
into the graphene interlayer or the interspace between graphene
and substrate through edge planes or high-order defects (e.g.,
divacancies). The understanding and resolution of this problem
are rather essential for the development of graphene materials
in LIBs.

Taking the number of graphene sheet layers (denoted as n)
into account, the considerable difference between the deduced
theoretical capacities assuming the above opposite viewpoints
(in particular with n ≤ 5, Supplementary Fig. 1a) should make it
easy to know which Li-storage situation is possible for pure
graphene (n= 1). However, basic requirements for graphene in
LIBs, such as a sufficient monolithic mass and absence of
extrinsic interference from the as-applied substrates (e.g., planar
Cu or Ni foil9,11,15, Supplementary Fig. 1b, c) make it impractical
to use pure 2D graphene sheet with a negligible mass (density:
0.77 mgm−2) to address this issue.

In this study, through developing a high-temperature-switched
chemical vapor deposition (CVD) route8,16,17 (Fig. 1a and Sup-
plementary Fig. 2), we have successfully synthesized a bilayer
graphene foam dominated by large enough basal plane of
graphenic carbon with few defects and high electronic quality.
The foam is ca. 30 μm thick after removing the Ni template and
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Fig. 1 Preparation and identification of bilayer graphene with 3D porous morphology. a Schematic of high-temperature-switched CVD process by using 3D
nanoporous nickel (np-Ni) substrate. Only a small area of the ligament is presented in illustration. b, c Scanning electron microscopy (SEM; scale bar, 500
nm) and transmission electron microscopy (TEM; scale bar, 1 μm) images of the freestanding bilayer graphene exfoliated from Ni foam. d SAED pattern in
the flat region of the bilayer graphene foam. The Miller–Bravais indices (hkil) are used to label the typical sixfold Bragg reflections. e Typical Raman spectra
captured from 3D porous graphene foam, which may possess different numbers of graphene layers in the local areas. All the I2D/IG ratios and the values of
2D and G bandwidth (presented as full width at half maximum-FWHM) are shown in (i). The Lorentzian fitting analyses of the 2D bands of the two bilayer-
featured Raman spectra are shown in (ii). For either fit, the four green peaks refer to the four components of the 2D band in Bernal stacking bilayer
graphene when the single pink peak represents the contribution of monolayer or misoriented/incommensurate regions
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supercritical drying to prevent the collapse of the 3D porous
structure and thus the restacking of graphene sheets (Fig. 1b–e
and Supplementary Fig. 3). Such a 3D porous monolith as a
model system not only meets the basic test requirements, but also
possesses the well-known resistance against the ubiquitous
aggregation and restacking of graphene sheets17,18. Consequently,
by systematically studying various physiochemical phenomena of
Li storage in it, we have clarified the elementary storage pattern of
Li atoms in the graphene interlayer to solve the above problem.

Results
Quality assessment of the 3D bilayer graphene foam. As shown
in Fig. 1b, c and Supplementary Fig. 3a–c, the as-synthesized
bilayer graphene foam well duplicated the interconnected porous
structure of the Ni template17 (Supplementary Fig. 2d, residual Ni
< 0.08 at.%) with pore size between 500 nm and 1 μm. The
selected-area electron diffraction (SAED) patterns (Fig. 1d and
Supplementary Fig. 3d, e) further indicate that this crystalline
carbon material should be bilayer graphene18–20. In particular, the
intensity ratio of the {0110} to {1210} peaks in the sixfold sym-
metric pattern (corresponding to ca. 0.212 and 0.123 nm in the in-
plane lattice spacings, respectively) was measured to be about 0.49,
in good agreement with the computational and experimental
values of I{0110}/I{1210} ≈ 0.4–0.5 for the Bernal (AB) stacking
bilayer graphene19–23. By distinguishing the height, width, Lor-
entzian fits, intensity, and chemical-shift features of the 2D and
G bands, Raman spectroscopy can provide more definitive iden-
tification for graphene materials with diverse numbers of layers
regardless of the macroscopic appearance17,21,23–27, as displayed
in Fig. 1e(i) for this kind of porous graphene materials. Never-
theless, it is impractical to use current analytical techniques to
exactly distinguish the mono-, few-, and multilayer fractions in
this sponge-like 3D graphene (Fig. 1a). Hence, a large number of
Raman spectra (with the laser spot diameter of >5 μm, namely
covering at least 4 × 108 C6-ring units with an area of 0.052 nm2)
were randomly collected from different locations on the surface
and cross-section of the as-prepared samples (before and after
removing the Ni substrate). In this way, the bilayer-dominated
region in our target material was estimated to be over
90%17,20,24,25. Moreover, the specialized Lorentzian fitting ana-
lyses of the 2D bands in Fig. 1e(ii)23,26, together with the matched
FWHM and I2D/IG values (i.e., peak area ratios)27, can help con-
firm the predominant Bernal stacking configuration of this CVD-
grown bilayer graphene foam. This is also in line with subsequent
X-ray diffraction (XRD) results showing an interplanar spacing
d002 of ~3.35 Å (ca. 3.58 Å at the AA stacking mode (ref. 28—this
study reports that, “the equilibrium interplanar distance in gra-
phite changes from 3.42 Å with AB stacking to 3.58 Å for AA
stacking,” and that “in the first-stage Li-GICs, the AA stacking
sequence has lower total energy than the AB,” for which the
interplanar distance of LiC6 may vary at 3.62–3.74 Å)). The weak
D band from the Ni-free bilayer graphene indicates the mere
existence of some intrinsic structural defects originating from the
edge planes, grain boundaries, vacancies, or geometrical curva-
tures of the graphene sheets1,2,4,11,12,17. These defective sites on
graphene are essential in coordinating the 3D nanoporosity17 as
well as suppressing the aforementioned restacking effect18,29.
Combining the preparation mechanism and the above character-
ization results, we presume that such bilayer graphene foam can
help elucidate the Li-storage mechanism in graphene-based
electrodes.

Determination of Li-storage capacity and Li-bilayer graphene
phases. Using Li metal as the counter negative electrode and
the mixed electrolyte of LiPF6 in ethylene carbonate/dimethyl

carbonate in R2032-type coin cells, the common half-cell con-
figuration2 was adopted for the electrochemical characterizations
of the freestanding bilayer graphene foam. For graphite-based
LIBs, it is well known that (1) the insertion/deinsertion potential
of Li+ ions is always below 0.3 V (vs. Li+/Li)2,11,30,31, a range that
contributes to the overwhelming capacity of graphite (close to
372 mAh g−1), and that (2) the inevitable solid-electrolyte inter-
phase (SEI) is usually generated at above 0.5 V during the initial
charging–discharging cycles30,32–34. Both the highly reversible
galvanostatic charge–discharge (GCD) measurements (Fig. 2a
inset and Supplementary Fig. 4) and cyclic voltammograms (CVs,
Supplementary Figs 5 and 6) demonstrated that this bilayer
graphene foam and graphite electrode share similar potential
plateaus/redox peaks31. However, its maximum GCD capacity
only reached ~180 mAh g−1 at 50−0.2 A g−1 (Fig. 2a), suggesting
that the interlayer should be the sole space for bilayer graphene
to store Li atoms to generate stoichiometric LiC12, rather than
Li3C12 at 558 mAh g−1 (Supplementary Fig. 1a). The increased
but still low capacities of the few- and multilayer samples (Sup-
plementary Fig. 7a, b) confirmed this observation, and so did
the CV-based charge quantities (ca. 6000–7000 Cmol−1 at 0.10
−0.002 mV s−1) that are close to the theoretical value of LiC12 at
8040 Cmol−1 (Supplementary Fig. 7c), in good agreement with
previous DFT predictions1,11–14.

Further, analysis was carried out in terms of the CVs at low
scan rates between 0.25 and 0.001 V (vs. Li+/Li) to gain deep
insight into the Li-intercalation behavior in bilayer graphene.
Clearly, there are seven intrinsic and quasi-reversible redox peaks
in each CV profile (the cathodic peaks are denoted as C1–5 and
CI–II on behalf of the Li-intercalation reactions of Li++ e−+
LiCx→ LiCy, and the five main anodic ones as A1–5 in Fig. 2b and
Supplementary Fig. 6a), characteristic of the continuous quasi-
equilibrium transformations from the Li-free bilayer graphene to
the lithiated graphene phases (LiCx, denoted as P1–5, and PI and
PII). Compared to those reported for graphite30,35,36, other than
the emergence of one new pair of redox peaks (namely C1/A1 at
the low cutoff potential; Supplementary Fig. 8a, b), the relative
integral areas of these peaks (corresponding to the amount
of charge transfer) seemed to change for different samples
(Supplementary Fig. 8c), suggesting possible influences from the
graphene quality, which depends on the specific preparations4,5,32.
Despite the variability, the ever-present intensity changes in
various bilayer samples, together with the later kinetics analysis
(Fig. 2d, e), show that the C1/A1 pair should originate from the
final Li-plating behavior at the defective sites on the graphene
sheets. In other words, the ultimate Li-intercalation product with
LiC12 stoichiometry still corresponds to the PI phase like the case
of graphite30 rather than the P1 phase. Thus, an approximate Li-
intercalation/deintercalation process for bilayer graphene could be
obtained (Fig. 2b and Supplementary Fig. 7d): C⇋C122LiC122⇋
C42.7LiC42.7⇋C14LiC14⇋C6LiC6, analogous to that estimated
for graphite electrodes (C⇋ LiC72⇋ LiC36−27⇋ LiC12⇋
LiC6

3,30,31,37), especially considering the staged distribution
densities of Li atoms on the X–Y plane (Supplementary Fig. 9a,
b). That is to say, even without the long-distance Z-axis diffusion
of Li+ ions in graphite and the possible influence from the
neighboring layers4,5,7,11,14,32, bilayer graphene still exhibits
the same Li-storage process as graphite, indicating that the
Daumas–Hérold domain model5,7 should be more suitable for
describing the Z-axis Li-storage behavior in graphite. Moreover,
the planar distribution of these staged Li atoms (Fig. 2c and
Supplementary Fig. 9c–e) may indicate that, except for the PI
generation, any incoming Li+ ions can enter the centroid of
three adjacent Li atoms in the former phase without disturbing
their initial locations too much. In other words, the whole
Li-storage process needs to go through four-time fractal-way
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Li intercalations (Supplementary Fig. 9d), and the graphene
interlayer just plays as a molecular machine to precisely control
each Li-intercalation step.

Kinetics analysis of the Li-storage process. According to the
power-law relation (i= aνb) between the CV peak-current
response (i) and the sweep rate (ν), the pseudocapacitive inter-
calation for Li+ ions, namely the surface-controlled behavior with
b ≈ 1.0 at the initial C5–C3 and unique C1 stages, tended to
become slow solid-state diffusion (like the case in a battery with
b ≈ 0.5) for the PI generation (Fig. 2d and Supplementary Fig. 6e,
f)38–40. The apparent diffusion coefficients of Li+ ions at
various stages (DLi

+, Fig. 2e), ca. 10−9–10−7 cm2 s−1 by the well-
known CV method40 and 10−9–10−5 cm2 s−1 by the Warburg
impedance method (Supplementary Fig. 10)35,40–43 (ref. 43—
using an “open” on-chip electrochemical cell to exclude the
electrolyte’s influence, the study measured the Li diffusion coef-
ficient into bilayer graphene flake with locally varying Li densities,
and provided real-time evidence that the Li intercalation/
diffusion only occurs at the graphene interlayer), further verified
this rate-determining step. These values and their trends are
also similar to those of natural graphite electrodes (DLi

+ ≈ 10−9

–10−7 cm2 s−1)32,35,41–45. Obviously, it is the planar distribution
density of Li atoms, not the number of graphene layers, that
intrinsically determines the intercalation kinetics of Li-graphene/
graphite products, in line with the above-mentioned 2D model
(Fig. 2c). Therefore, for either bilayer graphene or thick graphite,
the interlayer should just provide a “specially restricted

space”7,44,46,47 to store Li atoms regardless of the number of
graphene layers9 or material morphology, fundamentally illus-
trating and complementing the Daumas–Hérold model5,7 from
the 2D perspective. By the way, in addition to the intrinsic limits
in capacity and mass transfer, the high conductivity of graphene
material also cannot endow LIBs with superior power compared
to graphite, due to their similar high system resistances domi-
nated by the same SEI (Supplementary Fig. 11)42.

Structural information of Li-bilayer graphene phases. To verify
the 2D model, we further investigated the main phases by mul-
tiple in situ and ex situ techniques. It is important to emphasize
that, with respect to the angstrom-sized LiCx units and the tiny
C6-ring unit (refer to the hard sphere model for LiC6 of graphite
in ref. 7 and the Discussion section), all the characterization
results are statistical and thus can reflect the macroscopic features
and general phenomena. Firstly, the highly reversible in situ
Raman spectra9 for this graphene electrode (Supplementary
Fig. 12) displayed no noticeable variation in the defect-related D
band, in contrast to G band, which kept changing according
to the Li concentration. This clearly illustrates the high stability
of both the original defective and defect-free regions on the
graphene sheets, removing concerns about the possible impact
of regenerative defects on the Li-storage performances (refer to
Supplementary Fig. 1d)1,11,32. Then, the combined characteriza-
tion results using the scanning electron microscopy (SEM),
ex situ Raman spectroscopy, transmission electron microscopy
(TEM), and electron energy loss spectroscopy (EELS) techniques
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(Supplementary Figs 13–15) show that, all the lithiated graphene
electrodes (even those oxidized in air) preserved the foam and
bilayered architecture (irrespective of the stacking order) without
Li-dendrite or graphene restacking problems. This ulteriorly
demonstrates the merit of this 3D porous morphology and the
protection of the internal Li layer (denoted as R) by the outer
graphene sheets in the CRC-stacking configuration1,8,31. Fur-
thermore, according to the simultaneous XRD patterns of the
typical bilayer and multilayer electrode samples (Supplementary
Fig. 16a–c), in the wake of Li intercalation (along with the transi-
tion from Li+ (radius: 0.76 Å) to Li atom (radius: 1.52 Å))7,28, the
d002 value (~3.35 Å, similar for graphites possessing the pre-
dominant AB stacking configuration7,31,45) seemed to increase
slightly in the foregoing P5−P3 phases of ARB stacking (<0.02 Å),
only relying on a small population of Li atoms. However, after the
unstable P2 phase48 with a theoretically transitional stacking con-
figuration from ARB to ARA28 (Fig. 2b and Supplementary Figs 8
and 16), it appeared to become 3.64 Å for the bilayer PI sample
(namely the ARA-stacking C6LiC6, Supplementary Fig. 16b). This
was smaller than the multilayer (~3.70 Å, similar to that for LiC6 of
graphite electrode28,48, Supplementary Fig. 16c), but larger than
that of the pristine AA stacking graphite (~3.58 Å)28. These
inequalities likely result from the varied electrostatic repulsions
between neighboring graphene layers bonding with the interbedded
Li atoms of different volume concentrations (namely Li/C atom
ratios, Supplementary Fig. 16d), which can account for the above
slight d002 increase at the initial ARB mode, too. The overall
increasing trend of this average spacing upon Li intercalation is
consistent with literature reports for graphites3,4,10,32,41,45,48 and
was further shown by the SAED results for Li-bilayered products
(from <3.42 Å at P4 to >3.50 Å at P1, Supplementary Fig. 17a, d)28.
The in situ Raman study (see its detailed analysis in the supple-
mentary information) and the following ex situ XPS results also
favor these observations and discussions. That is to say, Li inter-
calation into the interlayers of various graphenic carbons not only
follows similar mechanisms in the 2D plane (Fig. 2c), but also along
the Z-axis (Supplementary Fig. 16d), further supporting the
Daumas–Hérold model5,7.

Specially, we investigated the normal-incidence SAED
patterns19,46 of four lithiated bilayer graphene phases (i.e., P4,
P3, PI, and P1 in Fig. 3 and Supplementary Fig. 17). Except P3 (to
be explained later), all the other samples showed recognizable
{0110} and {1210} peaks with the typical sixfold symmetry of
pristine graphene19,20,46. It is worth mentioning that, the high-
energy electron beam irradiation, even after a quite short time,
can easily influence the initial positions of Li atoms in the
interlayer by forcing them into the honeycomb lattices of the
bottom graphene sheet (Supplementary Figs 18 and 19). In this
way, both the originally uniform Li distribution and standard
graphene stacking order are disturbed over some local regions or
even the overall selected area, resulting in changing diffraction
patterns for each sample. This irradiation effect is reflected by
contradictions between several observed values/phenomena,
including: total I{0110}/I{1210} ratios and the branched diffracted
intensities for the P4 phase with a low Li population (see the two
insets taken along the red lines marked in Fig. 3a(i) and 3b(i) vs.
the case in Fig. 3b(iii)); the emergence of paired orthohexagonal
diffraction patterns with an arbitrary rotation angle but varied
spot brightness (on behalf of incommensurate/misoriented
stacking configuration (Fig. 3b(i, iii) and Supplementary Fig. 17);
the changing I{0110}/I{1210} ratios listed in Fig. 3a(i, iii) and
3b(i, iii) and Supplementary Fig. 17d; and the disparate in-plane
lattice spacings for the Li-inlaid (with a ~3% lattice expansion28)
and Li-free graphene sheets at the highly lithiated PI or P1 phases
(Fig. 3c and Supplementary Figs 17c, d and 18). Despite the
physical interference, quickly captured initial patterns successfully

showed the variation trend of the I{0110}/I{1210} ratio during Li
intercalation (from pristine 0.49 to 0.53 and finally to 1.4, Figs. 1d
and 3a), which vividly displays the configuration transformation
from the AB stacking mode of bilayer graphene to the theoretical
ARA state of fully intercalated bilayer graphene/graphite32, as
evidenced by the computer simulation in Fig. 3d and Supple-
mentary Fig. 20 and Table 1 (e.g., with the I{0110}/I{1210} ratios at
0.44 (1.36) and 0.40 (1.17) for A–B (A–A) stacking C6C6 and
C6LiC6, respectively). In particular, for the P3 phase with a large
enough but still unsaturated Li concentration, the plentiful
vacancies would make the initial movements of its interlayered Li
atoms rather disordered (Supplementary Fig. 19a), which can
drive the local-region graphene sheets to rotate arbitrarily and
thus bring about various graphene stacking configurations over
the selected area, as reflected by the particularly ambiguous
sixfold-symmetry diffractogram of both the bilayered and multi-
layered P3 samples (Fig. 3a(ii) and Supplementary Fig. 17b, e).
In fact, a similar situation was proclaimed before for the Li-
graphite product at this stage, which was regarded to possess an
indeterminate or possibly liquid-like structure (i.e., lacking
in-plane ordering of Li)3,35,44,45,48, supporting our observation
and discussion here. After full irradiation, a sufficient number
of Li atoms would be driven into the graphene honeycomb
lattices, causing a remarkable lattice expansion at P3 (ca. 6–8% in
experiment and 6.5% by the DFT simulation, Fig. 3b(ii, iv) and 3c
and Supplementary Figs 17b,e and 19b). Thus, these comparative
but regular extrinsic SAED patterns can further illustrate the
intrinsic CRC configurations of the generated Li-bilayer graphene
phases in the LIB.

Chemical compositions of Li-bilayer graphene phases. In view
of the roughly equal concentrations (at 50 ± 3 at.%) and the
common source of their O components (namely Li2CO3 or
lithiated hydrocarbon R′-CH2OCO2Li in the surface SEI film49,
Supplementary Fig. 21a, b), before analyzing the chaotic raw
X-ray photoelectron spectra (XPS, analytical range diameter
>10 μm), the O 1s, C 1s, and Li 1s species originating from SEI in
each phase were assumed to share the same binding energies
(BEs) at ca. 531.8, 289.9, and 55.0 eV (marked by blue in
Fig. 4a–d and Supplementary Fig. 21c, d)15,50, respectively. As a
result, one can see very regular and parallel evolutions for almost
every species along with the Li intercalation (where the practical
P2 and P1 samples with exceptional and analogous profiles were
inferred as mixtures, Supplementary Fig. 21), clearly implying the
charge overlapping or bonding interaction between the inter-
bedded Li atoms and the C atoms arranged on a perfectly hon-
eycomb lattice11,14,46. Specifically, for the C 1s spectra (Fig. 4a, b),
other than two inherent peaks derived from the (lithiated) gra-
phene body (at ca. 284.9 and 286.6 eV, respectively), there were
still three (or more) peaks with lower BE values in the lithiated
products. This splitting phenomenon was considered to be
associated with the various distances between the imbedded Li
atom and its adjoining but nonequivalent C atoms23,50, as con-
firmed by our DFT calculations here taking the ARB, ARA, and
SP configurations of C6LiC6 into account (Fig. 4e). A similar
splitting phenomenon occurred in the Li 1s spectra (Fig. 4c, d, f).
Therein, the peaks at higher BE (around 53 eV) were assigned to
the Li atoms exhibiting some ionicity (like in the ARA or SP
mode), when the peaks at 52–51 eV were ascribed to metallic Li
species (like in the ARB mode)11,12,49,50. Thus, from the point of
view of chemical composition change, the combined experimental
and theoretical results further reveal and verify the phase-wise
stacking configurations suggested by the XRD and SAED char-
acterizations performed at different analytical ranges. This is seen
in: the maintained ARB structure at P5 (C122LiC122, showing
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predominant metallic Li 1s and relatively few C 1s species) and
P4 (C42.7LiC42.7, possibly with two Li-embedded sites according
to Fig. 4e, f and the Discussion below); the coexisting ARB and
SP (unstable) modes at P3 (C14LiC14) with a large enough Li
concentration (Supplementary Fig. 16); and the ARA mode at
PI (C6LiC6) with ionic Li 1s species of high BE (Fig. 4d, f, with
the electrostatic charge of Li possibly at +0.9|e| in the C6-Li
constitutional unit)11,14,28,47 and a simultaneous nearly single C
1s species. In brief, upon the Li intercalation, the holistic ionic
character of Li atoms is enhanced along with the stacking con-
figuration transformation, while the metallic character decreases
(Fig. 4d, f), providing an explanation for the regular variations
of the measured electrochemical impedance/condensance
(Supplementary Fig. 11b, c)38,42. Besides, the Li-plating behavior
at the limited defective sites seemed to lead P1 to deviate

from the normal ARA configuration (Supplementary Fig. 21
and refer to its other characterization results in Supplementary
Figs 13−15), suggesting the weak (van der Waals-like) out-of-
plane interaction responsible for the relative slipping of adjoining
graphene sheets in achieving the configuration transformation46.
Thus, by linking the regular evolutions of C 1s, Li 1s, and O 1s
spectra, it is reasonable to imagine a continuous configuration
transformation of bilayer graphene as the Li intercalation pro-
gresses (see below).

Discussion
The electrochemical CD and CV measurements (Fig. 2a, b)
initially suggest the CRC-stacking configuration and stoichio-
metric LiCx compositions of the staged Li-intercalated bilayer
graphene phases. Then, the geometric and kinetics analyses
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(Fig. 2c–e) reveal a 2D model for Li storage in the interlayer of
graphenic carbon. Furthermore, the subsequent ex situ and in situ
characterizations clearly display the structural evolution induced
by Li intercalation and dependent on its staged concentrations, in
terms of related physicochemical phenomena, such as (1) the
increasing interlayer spacings (Fig. 5a) depending on the charge
amounts of neighboring graphene layers and, in particular, on
their stacking orders by the phase-wise XRD and SAED patterns
(Supplementary Figs 16 and 17a,d), (2) the relatively stable in-
plane lattice spacings of graphene sheet by the experimental
SAED patterns and computer modeling28 (Fig. 3c), and (3) the
alternating configurations from A–B to A–A stacking modes
(Fig. 5b) according to the XRD (002) diffraction peaks (Supple-
mentary Fig. 16), the observed-simulated brightness ratios of the
{0110} and {1210} diffraction spots (Fig. 3a, d), and the regular
XPS data assisted by the BEs of C and Li elements from the DFT
calculations (Fig. 4). All these interrelated and consistent results
from a wide range of analyses (also including the in situ Raman
spectra and impedance analyses, as well as the other electron
microscopy data) indicate that, the integrated Li-intercalation
process in Fig. 5 is a reasonable mechanism for the fundamental
Li storage into graphenic carbon with few defects. In a word, the
Li+ ions entering the graphene interlayer under the electro-
dynamic forces tend to diffuse along and become stabilize by
Li++ e−→ Li at those overlapped sites with the most balanced
electronic cloud density committed by the staged LiCx units
(Fig. 5b).

In summary, by developing a high-quality freestanding bilayer
graphene foam and systematically studying various aspects of

Li storage in it (such as capacity, process, kinetics, and resistances
as well as the regular composition and configuration evolution
of staged products), we have demonstrated that Li atoms can
only intercalate into graphene interlayer and proposed a planar
Li-storage model for 2D graphenic carbon material. It is found
that there is no fundamental difference between bilayer or few-
layer graphenes and graphite electrodes in the Li-storage manner
and kinetics behavior, and the whole Li-storage process goes
through four-time fractal-way Li intercalations to achieve the
saturated composition of LiC6, with the final step the rate-
controlling step. This study not only clarifies the Li-storage
mechanism for commercial graphite anodes, but also highlights
the potential of defect-free graphene in LIBs to guide its devel-
opment in the energy-storage field.

Methods
CVD-preparation of nanoporous graphene foam. Nanoporous Ni foam, by
directly dealloying the Ni30Mn70 foil in 2.0M (NH4)2SO4 solution for 10 h, was put
at the center of a quartz tube (φ30 × φ27 × 1000mm) of the CVD furnace. The
initial flow of Ar was 500 sccm until that the temperature reached the low tem-
perature Tl shown in Supplementary Fig. 2b. Before reaching the high temperature
Th, the flow of Ar and H2 was gradually increased to be 2500 and 100 sccm,
respectively. After the above reduction pre-treatment, benzene (0.5mbar, 99.8%,
anhydrous) was introduced with the gas flow of Ar and H2 for graphene growth. For
bilayer graphene, the initially total pressure and the partial pressure at the tube’s
front end should be controlled at 5–6 and 0.5–0.7Mpa, respectively. The minimum
Tl value was determined to be 700 °C, below which a large amount of defects would
generate on the graphene sheets. The furnace was immediately opened to let the
inner quartz tube rapidly cool to room temperature with a fan (in 15–20 s from Tl to
400 °C, Supplementary Fig. 2a, b). The nanoporous Ni substrate of the graphe-
ne@np-Ni composite was dissolved by 2.0M HCl and the as-obtained initial sample
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was repeatedly washed by water and isopropanol before the final supercritical CO2

drying process (or the other post-processing process) for the target material.

Electrochemical measurements. Coin 2032-type test cells were assembled in a
high-purity argon-filled glove box (H2O < 0.5 p.p.m., O2 < 0.5 p.p.m., MBraun,
Unilab) with LiPF6 solution of 1M in ethylene carbonate (EC)/dimethyl
carbonate (DMC) (EC:DMC= 1:1 vol/vol) as the electrolyte, the freestanding gra-
phene foams, the graphene@np-Ni composites, monolayer graphene on plate Cu
foil, bilayer graphene on plate Ni foil directly as the working electrodes, fresh Li foil
as the counter electrode, and Whatman glass fiber as the separator. No binder was
adopted for the coin-cell assembly. For the graphite electrode supported by Rany Ni
current collector or not, polytetrafluoroethene (with the mass ratio to graphite
powder at 1:9) dissolved in ethanol was used as the binder. Both GCD and CV
measurements were carried out at room temperature on an electrochemical work-
station and a battery-measurement equipment. The alternating-current electro-
chemical impedance spectrum with varied open circuit voltages were recorded
simultaneously at a frequency range from 100 kHz to 0.1 Hz and an amplitude of 5
mV. ZView software was applied to simulate the Nyquist plots in view of the
reported equivalent electric circuit proposed for graphite electrode42.

Characterization of structure and composition. The microstructure was char-
acterized by both of a field-emission SEM (JEOL JIB–4600F, at an accelerating
voltage of 15 kV) and a field-emission TEM (JEOL JEM-2100F, at an accelerating
voltage of 100–200 kV) equipped with two aberration correctors (CEOS GmbH)
for the image- and probe-forming objective lens systems. The SAED patterns of
each sample were recorded from areas of 30–100 nm in diameter. High-resolution
EELS spectra of the samples were collected using a Gatan Enfina spectrometer, and
energy dispersion was 0.5 eV per pixel. The XRD patterns were collected on X-ray
diffractometer (SmartLab) using Cu Kα radiation and nickel filter (λ= 0.15406
nm), and the operating voltage and current were 40 kV and 30 mA, respectively.
A micro-Raman spectrometer (Renishaw InVia RM 1000) with laser wavelength
of 514.5 nm (excitation energy: 2.41 eV) was used for Raman measurements.
The laser power was set at 2.0 mW to avoid possible damage by laser irradiation.
The spectrum acquisition time was 150 s. The surface species of the samples were
determined by XPS (AxIS-ULTRA-DLD, exceptional small spot capabilities
<15 µm) with an Al Kα (mono) anode at 150W in a vacuum of 10–7 Pa. Both
the Raman and XPS spectra were recorded from micron-sized regions.

Preparation and characterization of Li-graphene phases. To prepare lithiated
graphene samples for the ex situ TEM and XPS measurements, in case of oxidation,
each coin cell loading the target Li-graphene product (Fig. 2b) was disassembled in
an argon-filled glove box and then the specimen was fully rinsed in pure EC/DMC

electrolyte. After the electrolyte evaporated completely, the as-obtained dry sample
was fixed on the specimen holder for the XPS (using conductive adhesive tape)
or TEM (using two Cu grids without carbon support film) measurements. Every
time the holder was carefully sealed in the glove box before it was rapidly trans-
ferred into the testing equipment. After the XPS measurements, the same samples,
which had been exposed in air for some time, were further checked by the
ex situ SEM and Raman techniques (Supplementary Fig. 13). To prepare lithiated
graphene samples for the ex situ XRD characterization (Supplementary Fig. 16),
after disassembling their corresponding coin cells in the argon-filled glove box
and washing them in the EC/DMC electrolyte, each dried specimen was fixed by
Kapton tape on a glass slide. In addition, the XRD measurements were performed
again for those samples after removing their surface tapes. A special Li-ion battery
liquid cell was designed and assembled in the glove box for the in situ Raman
characterization of the electrode material under the CV tests with different sweep
rates (Supplementary Fig. 12).

Electron diffraction simulation for Li-graphene phases. The multislice method
was adopted to simulate the diffraction spot brightness of various graphene-based
structures. The scattering factors in ref. 51 was applied to generate projected
electrostatic potential of the Li and C atoms. The applied accelerating voltage was
set at 200 kV. Standard deviation of the random Gaussian distribution accounting
for atom vibration was 0.085 Å, and phonon configuration number was 300.
Considering the large area selected for the SAED, the periodic boundary condition
was set in order to acquire intense Bragg peaks. Different rectangle supercells were
constructed to meet the rectangle dimensional of simulated image size (1024 ×
1024). Meanwhile, CaRine Crystallography 3.1 software was applied to simulate
the diffraction patterns of various structure models to obtain the information of
lattice spacings.

DFT calculations. First-principles calculations were performed by using the
Vienna ab initio simulation package, based on the spin-polarized DFT. The
electron-ion interactions were presented by the frozen core all-electron projector
augmented wave pseudopotentials, and generalized gradient approximation of the
electron exchange-correlation functional was adopted. The atomic layer distance
was fully optimized until the Hellmann–Feynman force was <0.01 eV Å−1. In
the static calculations of total energy, a 10 × 10 × 1 Monkhorst–Pack k grid was
employed and the electron wavefunctions were expanded by using a plane wave
basis set with a cutoff energy of 400.0 eV.

On the one hand, to confirm the in-plane lattice-expansion phenomena of
lithiated bilayer graphene induced by electron beam irradiation (Fig. 3c and
Supplementary Figs 17b and 18), the Li-inlaid unit cells of LiC14 sheet and LiC6

sheet with normal in-plane lattice parameters (as well as many other configuration
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models by adjusting the Z-axis spatial positions of Li atoms) were constructed in
the first step. Then, we restricted the Z-axis relaxation and merely allowed atoms to
relax in the X–Y plane (namely to achieve the smallest system energy) to obtain the
optimized structure achievable in theory. Finally, the above CaRine
Crystallography 3.1 software was applied to simulate the in-plane lattice
parameters of the new structure (namely the optimized unit cell) used for
comparison with those experimental SAED data.

On the other hand, considering different configured Li sites relative to carbon
lattice in the X–Y plane, we fixed the interlayer spacing (namely the d002 value),
restricted the in-plane relaxation, and merely allowed individual atoms to relax
along the Z-axis direction in the binding-energy calculations (Fig. 4). The lithium
BE (ΔELi) was calculated as

ΔELi ¼ Egrapheneþ n�1ð ÞLi þ μLi � EgrapheneþnLi;

where Egraphene+(n−1)Li and Egraphene+nLi are the total energies of the bilayer
graphene with (n−1) and n Li atoms interlaminated between two graphene atomic
layers. μLi is the average Li chemical potential calculated as the unit cell merely
contains isolated Li atoms. As for the BE of different equivalent C sites in different
stacking configurations with Li interlaminated, its value was calculated as

ΔEcarbon ¼ EgrapheneþnLiþCV
þ μC � EgrapheneþnLi;

where EgrapheneþnLiþCV
is the total energy of the Li-interlaminated bilayer graphene

with a vacancy of the specific C site (CV). Similarly, μC is the average C chemical
potential calculated as the unit cell merely contains the specific isolated C atoms.

Data availability
The authors declare that the major data supporting the findings of this study are
available within the paper and its Supplementary Information. Extra data are
available from the authors upon reasonable request.
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