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1 Introduction

We consider a dynamic model of coalitional bargaining, where subsets of n players meet rand-
omly and may form coalitions over time. The potential gains from cooperation are stylized by
a characteristic function that maps each coalition to the surplus it generates. Feldman (1974)
and Green (1974) show that such dynamic recontracting processes converge in core allocations.
Agastya (1997) and Rozen (2013) model the cooperative setting as non-cooperative games with
individual strategies. Both studies show that, in such games, myopic best-response dynamics
converge in core allocations. Arnold and Schwalbe (2002) and Nax (2018) consider similar coa-
litional bargaining games for perturbed best-response dynamics and aspiration-based dynamics,
respectively, and both obtain convergence to the core.

Agastya (1999) applies a stochastic stability analysis (Foster and Young 1990, Kandori et al.
1993 and Young 1993a) to the non-cooperative game of Agastya (1997).1 Newton (2012b) unites
the approach adopted by Feldman (1974) and Green (1974) with a stochastic stability analysis by
incorporating joint deviations into a non-cooperative adaptive process. Following the spirit of
Newton (2012b), we study the stochastically stable states of an adaptive process, where joint devi-
ations are allowed. In each period, a group of players come to the bargaining table with a proposal
for the division of a surplus. If the players in the group all agree, they form a coalition and distri-
bute the surplus according to the proposal. Any existing coalition is dissolved if it includes any
member of the newly formed coalition. Our approach differs from that of Newton (2012b) in two
respects: (i) joint deviations are restricted to groups of players who are in a coalition or are for-
ming a coalition; and (ii) players adopt the logit choice rule with one-period memory. We review
the related literature in more detail in Section 2.

We find that stochastically stable allocations are core allocations whenever the set of interior
points in the core, called the strict core, is nonempty. Moreover, we find the following two proper-
ties: (i) the stability of an allocation decreases in the wealth of the richest player; and (ii) stochas-
tically stable allocations are core allocations that minimize the wealth of the richest player among
all core allocations. These results are interesting because they show that equity considerations
play an important role, even with myopic payoff-maximizing players.

This study makes two contributions to the literature. First, we characterize stochastically stable
allocations under behavioral and institutional assumptions that differ from those of extant studies.
We consider a situation where a group of players meet, discuss forming a coalition, and make joint
decisions. We model this situation as a dynamic process, where groups of players stochastically
receive opportunities to revise coalitions over time. Players are assumed to follow the logit choice
rule. This is the main difference from extant works, which impose different assumptions, such as
players submitting requests to an authority and making decisions according to the “best response

1Examples of studies that apply stochastic stability analyses to bargaining settings include those of Young (1993b),
Sáez-Martı́ and Weibull (1999), Naidu et al. (2010), and Hwang et al. (2018). Jackson and Watts (2002), Klaus et al. (2010),
Newton (2012a), Sawa (2014), Nax and Pradelski (2015, 2016), Newton and Sawa (2015), Klaus and Newton (2016), and
Boncinelli and Pin (2018), among many others, apply the same analysis technique to cooperative settings. See Newton
(2018) for a review of recent developments in this area.
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with mutations” rule in the style of Young (1993a). We provide a more detailed comparison in
Section 2.

Second, we relax the strong assumptions often imposed on the characteristic function. For
example, Chatterjee et al. (1993) assume strict super-additivity; that is, the production of S∪ T has
to be strictly greater than the sum of the productions of S and T for any two disjoint coalitions S, T.
Here, we simply assume the existence of the strict core. However, we do briefly consider settings
with an empty core at the end of Section 5.2. Some studies on coalition formation (e.g., Gomes
and Jehiel (2005)) consider more general settings, without assuming any particular characteristic
function. However, we do assume a characteristic function in our model because this helps us to
characterize allocations that arise in the long run.

With regard to the second contribution described above, we employ a somewhat relaxed defi-
nition of the core. The traditional definition of the core requires the formation of a grand coalition
(e.g., Definition 4.2 of Moulin (1988)). This assumption has been relaxed by several studies on
coalition formation, such as Konishi and Ray (2003). In a similar way, we allow multiple coaliti-
ons to coexist in a core allocation. The selection results depend on whether a setting has a core
with a grand coalition or with multiple coalitions. Accordingly, we define the former as a core and
the latter as a dispersed core. Then, we conduct separate stochastic stability analyses for each in
Sections 5.1 and 5.2, respectively.

The paper is organized as follows. Section 2 provides a literature review. Section 3 introdu-
ces the coalitional bargaining model and defines the core and the dispersed core. In Section 4, we
describe the dynamic of the bargaining model, after which we characterize stochastically stable al-
locations in Section 5. Section 6 extends the model to incorporate heterogeneous utility functions.
Lastly, Section 7 concludes the paper.

2 Related literature

Table 1 summarizes related studies on coalitional bargaining with myopic or rational players.
Feldman (1974) and Green (1974) conducted pioneering work on the dynamic recontracting pro-
cess. Agastya (1997) and Rozen (2013) consider dynamic non-cooperative processes of coalitional
bargaining, where players submit a demand or a pair comprising a demand and a list of accepta-
ble partners. The model of Arnold and Schwalbe (2002) is similar to that of Agastya (1997), except
that players choose a demand and a coalition to join (or to form a singleton coalition). Arnold and
Schwalbe (2002) relax the super-additivity of the characteristic function, and consider the pertur-
bed dynamics in which players make uniform errors outside of the core. Nax (2018) considers
aspiration-based dynamics. Here, rather than providing a best response, players revise their in-
dividual strategies according to their aspiration levels. Such dynamics have fewer information
requirements than those of best-response dynamics; that is, the dynamics are uncoupled (Hart
and Mas-Colell, 2003). These studies all assume myopic players and show that the dynamic pro-
cesses converge to some core allocation. Our (unperturbed) process is similar to that of Feldman
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Table 1: Coalitional bargaining models and selection results

Model Agencya Foresight Noiseb Selection result
Feldman (1974) C myopic No Some core allocation
Green (1974) C myopic No Some core allocation
Agastya (1997) I myopic No Some core allocation
Agastya (1999) I myopic Yes (U) Minimizing payoff for the richest
AS (2002) c I myopic Yes (U) Some core allocation
Newton (2012b) C myopic Yes (U) Maximizing payoff for the poorest
Rozen (2013) I myopic No Some (strict) core allocation
Nax (2018) C myopic No Some core allocation
Okada (1996) C perfect No Maximizing per capita (maxJ⊂N v(J)/|J|)
CJ (2010)d C perfect No Maximizing product of payoffs
This study C myopic Yes (L) Minimizing payoff for the richest player

a “Agency” indicates whether the study employs a unilateral (I) or a collective (C) decision-making process.
b “Noise” indicates whether the study examines robustness against stochastic noise. “(U)” and “(L)” indicate that

the study employs a uniform error model and a payoff-dependent error model (logit), respectively.
c Arnold and Schwalbe (2002).
d Compte and Jehiel (2010).

(1974) in that we assume that forming a new coalition dissolves all existing coalitions.
The selection results are more refined in the works of Agastya (1999), Newton (2012b), Okada

(1996), and Compte and Jehiel (2010), as well as in our study. Here (as in Agastya (1999) and
Newton (2012b)), we assume myopic players and examine the robustness of allocations against
stochastic noise by perturbing a dynamic process. These models all select a subset of the core that
is independent from the initial state. The works of Okada (1996), and Compte and Jehiel (2010)
assume rational players who are perfectly farsighted and make no mistakes, thus obtaining finer
selection results. The refined selection results of these studies favor the egalitarian outcome: if
it is in the core (or in the strict core), then it will be selected under certain conditions.2 Even if
the egalitarian outcome is not in the core, equity considerations seem to play a role. For example,
surplus is equally distributed among coalition members in Okada (1996), and the wealth of the
richest player is minimized in Agastya (1999) and in our study.

The institutional assumptions, particularity those related to the unit of agency, vary among the
studies. This difference superficially appears as the state space of the dynamic process. Agastya
(1997, 1999); Arnold and Schwalbe (2002); Rozen (2013) assume individual agency; that is, players
make unilateral decisions. In their processes, players submit requests (e.g., a demand and a list of
acceptable partners), and then the process chooses which coalitions to form, which are typically
the coarsest coalition structures. The state of a typical process is the current profile of these indi-

2The model of Okada (1996) requires one additional condition for the egalitarian outcome:

v(S)
|S| ≤

v(T)
|T| for all S, T ⊆ N with S ⊆ T.
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vidual strategies. Other studies allow players to jointly choose strategies (i.e., collective agency).
The latter studies, other than that of Newton (2012b), assume that players considering forming a
coalition make joint decisions. In a typical process, a state is given by a claim profile and a set of
existing coalitions. A proposal for a coalition and the division of a surplus is made in each period,
and the proposed coalition is formed if all members jointly accept the proposal. The assumption
is relaxed in Newton (2012b), who makes a distinction between groups of players who jointly
choose their strategies and the coalitions they would like to form. Together with the difference
in the behavioral assumption described below, Newton (2012b) predicts the set of allocations that
maximizes a Rawlsian social welfare function for a class of utility functions, which is a finer pre-
diction than ours. Despite their differences in the coalition-formation process, these studies all
show that players choose an allocation in the core.

In addition to the institutional assumptions, there are two other differences between our study
and those of Agastya (1999) and Newton (2012b). The first is related to behavioral assumptions.
Agastya (1999) and Newton (2012b) employ a behavioral model similar to that of Young (1993b).
That is, players possess more than one-period memory and follow the “best response with muta-
tions” choice rule. In our model, players possess one-period memory and follow the logit choice
rule. The logit choice is a prominent discrete-choice model that assumes that error probabilities
depend on payoffs. In recent experimental studies, Mäs and Nax (2016), Lim and Neary (2016),
and Hwang et al. (2018) found evidence of payoff-sensitivity in errors. These differing behavioral
assumptions may lead to different predictions. Since the difference in predictions would be clearer
for heterogeneous preferences, this will be further discussed in Section 6.

The second difference is related to restrictions on the characteristic function v. Agastya (1999)
assumes convexity: v(J ∪ J′) ≥ v(J) + v(J′) − v(J ∩ J′), for any pair of coalitions J, J′. Newton
(2012b) assumes super-additivity: v(J ∪ J′) ≥ v(J) + v(J′) if J ∩ J′ = ∅. Our model does not
impose any restriction on v, except the existence of strict core allocations, which the other two stu-
dies assume as well. Example 2 in Section 5.1 considers a setting with a non-convex characteristic
function and illustrates the difference in the institutional assumptions.

Finally, we offer a brief comparison with studies that assume rational players. Examples in-
clude the works of Okada (1996) and Compte and Jehiel (2010), which resemble ours in that the
proposer is chosen randomly in each period. In these studies, discount factors are assumed to be
close to one, and a proposer chooses her proposal in a rational manner. Consequently, the selection
results of the rational models are sensitive to the chances of being a proposer; the probability of
a player being a proposer becomes her bargaining power. In our model, players are assumed to
be myopic and the probability of a subgroup of players being chosen plays little role. Our results
hold as long as each subgroup is chosen with positive probability.
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3 Model

We consider a non-cooperative model of multi-player coalitional-bargaining situations, as
examined in several studies (e.g., Chatterjee et al. (1993)). The model is given by a tuple
(N, v, {ui}i∈N), where N = {1, . . . , n} denotes a set of players, v is a characteristic function, and
ui is player i’s utility function. Let R be the class of all nonempty subsets of N. Any J ∈ R may
form a team, and the (monetary) surplus that a team generates is determined by the characteristic
function v : R → R+, with v(∅) = 0. The team of size n is called the grand coalition. We fix small
∆ > 0 and let Si = {0, ∆, 2∆, . . . , S̄} denote the set of player i’s claims si, where S̄ ≥ maxJ∈R v(J).3

We call s ∈ ∏i∈N Si a claim profile. Thus, sJ ∈ ∏i∈J Si, for J ∈ R, is the claim profile of team J. A claim
profile of a team J ∈ R is feasible if it satisfies the following feasibility constraint:

∑
i∈J

si ≤ v(J). (1)

We impose the following assumption on v(·) and ∆.

Assumption 3.1. v(J)/∆ ∈ Z for all J ∈ R, and v(N)/(n∆) ∈ Z.

The first condition of Assumption 3.1 ensures the existence of claim profiles for which the fea-
sibility constraint is binding for all formed teams. The second condition ensures that the feasibility
constraint is binding for the egalitarian allocation, where each receives v(N)/n.

The utility of player i who receives si is represented by a function ui : Si → R, which is strictly
increasing and strictly concave.4 We assume that the utility function is common across players
(i.e., ui(·) = u(·)) throughout this paper, except in Section 6, where we consider settings with
heterogeneous utility functions. The set of feasible claim profiles of team J is denoted by

SJ =

{
sJ ∈∏

i∈J
Si : sJ satisfies (1).

}
.

We interpret v({i}) as the reservation surplus for player i, and assume that player i receives v({i})
if she forms a singleton team (i.e., S{i} = {v({i})}, for all i ∈ N).5

Each player can participate in exactly one team. A player forms a singleton team if she does not
form a team with others. The set of existing teams is expressed as a partition of N.6 Let part(N)

denote the set of partitions of N. We refer to a pair comprising a claim profile s and a set of existing
teams as an allocation. The set of allocations forM ∈ part(N) is defined as

ΩM =
{
(s,M) : sJ ∈ SJ ∀J ∈ M

}
.

3We assume that the set Si is finite, for mathematical convenience. Our results hold for all sufficiently small ∆.
4We implicitly assume that a surplus v(·) is transferable, but that utility is not. A similar strictly concave utility

function is assumed in Agastya (1999).
5This assumption is made for the sake of simplicity. Our results still hold for an alternative constraint where player

i receives at most v({i}): S{i} = {si ≤ v({i})}.
6M is a partition of N if N = ∪M∈MM, and M ∩M′ = ∅ ∀M, M′ ∈ M, M 6= M′.
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The allocation space, denoted by Ω, is given by the union of the sets of allocations for all partitions
of N. That is,

Ω =
⋃

M∈part(N)

ΩM.

We say that coalition J blocks allocation (s,M) ∈ Ω if there exists s′ ∈ SJ , such that

s′i > si ∀i ∈ J.

Similarly, coalition J /∈ M weakly blocks allocation (s,M) ∈ Ω if there exists s′ ∈ SJ , such that

s′i ≥ si ∀i ∈ J.

For J ∈ M, “weakly block” is defined as follows: J ∈ M weakly blocks ((sJ , s−J),M) if there exists
s′ ∈ SJ with s′ 6= sJ , such that s′i ≥ si for all i ∈ J. If (s,M) cannot be weakly blocked by J, then
for any claim profile s′ ∈ SJ , there is at least one player in J who would be strictly worse off than
she is in s. We define the core and its extended notion, the dispersed core, as follows.

Definition 3.2. The core consists of the claim profiles with M = {N} that cannot be blocked by any
coalition J ∈ R. The strict core consists of those claim profiles that cannot be weakly blocked by any
J ∈ R.

Definition 3.3. The dispersed core consists of the claim profiles with M ∈ part(N) that cannot be
blocked by any J ∈ R. The strict dispersed core consists of those claim profiles that cannot be weakly
blocked by any J ∈ R.

In other words, (s,M) is a core allocation if, for any J ∈ R, there is no coalitional deviation
that strictly improves the payoffs of all players in J. It is strict if there is no deviation that weakly
improves the payoffs of all players in J. The dispersed core is a weaker definition in that it does
not require that a grand coalition be formed. A similar definition is used in studies on coalition
formation, such as those of Arnold and Schwalbe (2002) and Konishi and Ray (2003).

Observe that the grand coalition weakly blocks any allocation (s,M) with M 6= {N} if the
strict core is nonempty. Thus, when the strict core exists, it coincides with the strict dispersed core.
A strict dispersed-core allocation is not weakly blocked, even by any existing team, which implies
that the surplus is distributed without loss in any strict-core allocation. That is, ∑i∈J si = v(J) for
all J ∈ M if (s,M) is in the strict dispersed core. Note too that a strict dispersed-core allocation
(s,M) satisfies the set of inequalities:

∑
i∈J

si ≥ v(J) + ∆ ∀J ∈ R \M, (2)

whereM = {N} if the strict core is nonempty.
In what follows, we assume that the strict dispersed core is nonempty. Let Ω∗∆ denote the set

of strict dispersed-core allocations, given ∆, and C∆ denote the set of claim profiles of the strict
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dispersed-core allocations (i.e., C∆ = {s : (s,M) ∈ Ω∗∆}).
Let s(i) denote the i-th largest claim for a claim profile s. Define

smin = min
s′∈C∆

s′(1),

minΩ∗∆ =
{
(s,M) ∈ Ω∗∆ : s(1) = smin

}
.

In other words, smin is the lowest claim of the richest player among all strict dispersed-core allo-
cations. Then, minΩ∗∆ is the set of allocations that minimize the wealth of the richest player over
all strict dispersed-core allocations.

We say that (s,M) is the egalitarian allocation if si = v(N)/n, for all i ∈ N andM = {N},
and is denoted as (sE, {N}). Assumption 3.1 guarantees that the egalitarian allocation is in the
allocation space (i.e., (sE, {N}) ∈ Ω). The following lemma shows that the wealth difference is at
least 2∆ if an allocation is not egalitarian.

Lemma 3.4. Suppose that the strict core exists. For all s ∈ C∆, such that s 6= sE, s(1) − s(n) ≥ 2∆.

Proof. The lemma is proved by way of contradiction. Suppose that s ∈ C∆ is such that s(1)− s(n) =
∆. That is, s ∈ C∆ implies that s must be efficient (i.e., ∑i si = v({N})). If s(1) ≤ v({N})/n, then

∑i si < v({N}). If s(n) ≥ v({N})/n, then ∑i si > v({N}). Therefore, it must be that s(1) = s(n),
which is a contradiction.

4 Dynamics

4.1 The Coalitional Logit Dynamic

We consider a dynamic process of coalitional bargaining with the state space Ω, and examine
the robustness of allocations to stochastic noise. The dynamic process of coalitional bargaining
proceeds as follows. The state of the process in period t is denoted by ωt = (st,Mt) ∈ Ω, where
st denotes the claim profile in period t, andMt is the set of existing teams in t. At the beginning
of period t, J ∈ R is chosen with probability qJ . We assume that qJ > 0 for every J ∈ R. Then a
payment proposal s = {si}i∈N ∈ S(J, st,Mt) is chosen with probability qs(J, st,Mt), where the set
S(J, st,Mt) is specified soon. Each player in J decides whether to accept or reject proposal s. If at
least one player in J rejects s, the state remains unchanged. If all players in J accept the proposal,
team J is formed and any existing team containing some i ∈ J is dissolved. Then, members other
than i of these previous teams form singleton teams. If some J ∈ Mt is chosen to be revised, this is
interpreted to mean that the members of J negotiate its surplus division. In such cases, they may
change the claim profile, but do not changeMt.

Given st,Mt and J, a proposal s is feasible if it satisfies the following conditions:

sJ ∈ SJ ,

si = v({i}) ∀i ∈ M \ J, ∀M ∈ Mt such that M ∩ J 6= ∅,
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si = st
i ∀i ∈ M, ∀M ∈ Mt such that M ∩ J = ∅.

The first condition is the feasibility constraint for J. The second condition implies that players in te-
ams being dissolved form singleton teams and earn their reservation surplus. The third condition
implies that forming J should not affect any team that includes no member of J. Here, S(J, s,M)

denotes the set of feasible proposals for team J, where the current allocation is (s,M) ∈ Ω. We
assume that qs′(J, s,M) > 0 for all s′ ∈ S(J, s,M) and all (s,M) ∈ Ω.

We assume that players’ utilities are temporarily affected by stochastic shocks. Following
Blume (1993), these shocks are assumed to follow a type-I extreme-value distribution, which ma-
kes players follow the logit choice rule. To describe the logit choice rule, suppose that the current
claim profile is s, a randomly chosen coalition is J, and s′ is proposed as the surplus distribution.
The probability that player i in coalition J agrees with s′ is given by

Ψη
i (s, s′) =

exp
[
η−1u(s′i)

]
exp

[
η−1u(s′i)

]
+ exp [η−1u(si)]

, (3)

where η ∈ (0, ∞) denotes the noise level of the logit choice rule. Note that player i takes into
account other players’ new claims (i.e., s′J) in Equation (3). The probability that all members in J
agree with s′ is given by ∏i∈J Ψη

i (s, s′).
The dynamic process described above forms a Markov chain with a state space of Ω.7 A tran-

sition from (s,M) occurs when coalition J /∈ M forms a new team, or when J ∈ M redistributes
its surplus. We express the transition from (s,M) to (s′,M′) as ((s,M), (s′,M′)). A transition
((s,M), (s′,M′)) is said to be possible if the following conditions are satisfied.

(i) ForM 6=M′, there exists J ∈ M′, such that

{i} ∈ M′ ∀i ∈ M \ J, ∀M ∈ M such that J ∩M 6= ∅,

M ∈ M′, and si = s′i ∀i ∈ M, ∀M ∈ M such that J ∩M = ∅.

(ii) ForM =M′, there exists J ∈ M′, such that

si = s′i ∀i ∈ M′, ∀M′ ∈ M′ \ {J}.

Condition (i) states that when a new team J is formed and there is at least one player leaving
an existing team M to join J, M is dissolved. The other existing teams remain intact and their
distributions are unaffected. Condition (ii) applies to cases of a surplus redistribution (M =M′).
It states that at most one team can redistribute its surplus in a transition. Condition (ii) also applies
to cases in which a proposal is rejected. Then, M = M′ holds, and the claim profile s remains

7Transitions depend not only on the current claim profile, but also on the set of existing teams. If a coalition forms
a new team, it will affect other players in terms of teams being dissolved. Which players are affected depends on the
existing teams.
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unchanged. This implies that transition (ω, ω) is possible for any ω ∈ Ω.
Define

R(s,M),(s′,M′) =

{J ∈ R : J satisfies (i).} ifM 6=M′,

{J ∈ R : J satisfies (ii).} ifM =M′.

Here, R(s,M),(s′,M′) is the set of coalitions potentially leading from (s,M) to (s′,M′). A transition
from (s,M) to (s′,M′) is impossible if R(s,M),(s′,M′) = ∅.

Recall that qJ is the probability that coalition J is chosen for revision, and qs′(J, s,M) is the pro-
bability that s′ is chosen, given J, s, andM. For the perturbed process, the transition probability
from (s,M) to (s′,M′) is given by

Pη

(s,M),(s′,M′) = ∑
J∈R(s,M),(s′ ,M′)

qJ qs′(J, s,M) ∏
i∈J

Ψη
i (s, s′) ∀(s′,M′) 6= (s,M). (4)

The probability of staying in the same state ω is given by 1−∑ω̂ 6=ω Pη
ω,ω̂.

For the unperturbed process (η = 0), the transition probability P0
(s,M),(s′,M′) is given by repla-

cing Ψη
i (s, s′) in Equation (4) with Ψ0

i (s, s′), as follows:

Ψ0
i (s, s′) =


0 u(si) > u(s′i)
1
2 u(si) = u(s′i)

1 u(si) < u(s′i).

4.2 Limiting Stationary Distributions and Stochastic Stability

The Markov chain induced by Pη
·,· is irreducible for η > 0, and thus admits a unique stationary

distribution. Let πη(ω) denote the mass that the stationary distribution places on state ω ∈ Ω.
The players’ long-term behavior is summarized by πη(·). For example, as the Markov chain is
also aperiodic, πη(ω) is the probability that state ω is observed at any given time t, provided that
t is sufficiently large. πη(ω) also represents the fraction of time in which ω is observed over a long
time horizon. We say that ω is stochastically stable if the limiting stationary distribution imposes
a positive probability on ω.8

Definition 4.1. State ω is stochastically stable if limη→0 πη(ω) > 0.

Next, we introduce several definitions that we use to compute stochastically stable states. Gi-
ven a state ω, define an ω-tree, denoted by T(ω), as a directed graph on Ω that has a unique path
from any state ω′ ∈ Ω to the root state ω. An edge of an ω-tree, denoted by (ω′, ω′′) ∈ T(ω),
represents a transition from ω′ to ω′′ in the dynamic.

8This definition follows the R-stochastic stability of Sawa (2014). A state is R-stochastically stable if it is stochasti-
cally stable on the limiting perturbed process in which any coalition J ∈ Rmay make joint deviations.
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Let ω = (s,M) and ω′ = (s′,M′). We define the cost of a transition (ω, ω′) as follows:

cω,ω′ =


min

J∈Rω,ω′

[
∑i∈J max{u(si)− u(s′i), 0}

]
if Rω,ω′ 6= ∅,

∞ if Rω,ω′ = ∅.
(5)

In other words, the cost of a transition is the sum of the utility losses of players involved in a
revision in the transition. Equation (5) shows a difference between our model and that of Alós-
Ferrer and Netzer (2010), who consider settings where players make unilateral deviations simul-
taneously. The cost of (ω, ω′) in our model evaluates the payoff disadvantages of a coalitional
deviation s′J , for J ∈ Rω,ω′ , rather than those of unilateral deviations.

The next lemma shows that the cost cω,ω′ is equal to the exponential rate of decay of the corre-
sponding transition probability, Pη

ω,ω′ .
9

Lemma 4.2. If Rω,ω′ 6= ∅, then
− lim

η→0
η log Pη

ω,ω′ = cω,ω′ .

Proof. See Sawa (2014).

Lemma 4.2 implies that the utility loss of a transition determines the likelihood of the transi-
tion. Let T (ω) denote the set of ω-trees. The cost of a tree T ∈ T (ω) is defined as

W(T) = ∑
(ω′,ω′′)∈T

cω′,ω′′ . (6)

The cost of a tree is the sum of the payoff losses along the tree. The stochastic potential of state ω

is defined as
W(ω) = min

T∈T (ω)
W(T).

A tree T(ω) is called a minimum-cost tree of ω if W(ω) = W(T(ω)).
As η approaches zero, the stationary distribution converges to a unique limiting stationary

distribution. Identifying stochastically stable states is simplified by Young (1993a), who proposes
an equivalence theorem with states that minimize the stochastic potential (see also Freidlin and
Wentzell (1998)). This version, which postulates coalitional deviations under the logit choice rule,
follows the work of Sawa (2014). Our main results in Section 5 are built on Theorem 4.3.

Theorem 4.3. A state is stochastically stable if and only if it minimizes W(ω) among all states.

Proof. See Young (1993a) and Sawa (2014).

9See Chapter 12 of Sandholm (2010) for a discussion on defining transition costs in this way.
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5 Characterization of Stochastically Stable Allocations

5.1 Core Allocations with a Grand Coalition

In this section, we address coalitional bargaining problems with a nonempty strict core. We
examine problems with a strict dispersed core in Section 5.2. We first consider the unperturbed
process (i.e., there is no stochastic shock). The next lemma shows that an unperturbed process
starting from any state can reach a strict-core allocation. Note that the proofs in this section are
relegated to the Appendix.

Lemma 5.1. Starting from (s,M) ∈ Ω, with s /∈ C∆, the unperturbed process induced by P0 reaches
some (s∗, {N}) ∈ Ω with s∗ ∈ C∆ with positive probability.

Lemma 5.1 resembles Theorem 2 of Feldman (1974) and implies that an unperturbed process
reaches some strict-core allocation within finite time and with probability one. Similarly to Feld-
man (1974), we assume that any existing team is dissolved if it includes any member of a newly
formed coalition. The assumption plays a key role in proving Lemma 5.1, as well as in the results
of Lemmas 5.2 and 5.7. For example, if a single player deviates from the grand coalition, then the
grand coalition is dissolved and every player forms a singleton team. It is easy to see that the pro-
cess can reach a strict-core allocation from such a state. Using a similar assumption, we prove that
the process can reach a strict-core allocation from any state. In contrast to Theorem 2 of Feldman
(1974), we drop the assumption that the number of teams of multiple players is at most one. The
process still converges to the (strict) core under our relaxed assumptions.

Let Ri = {J ∈ R : i ∈ J}, which is the set of coalitions that include player i. Let I$(s) =

{i : si = s(1)} denote the set of the richest players in s ∈ C∆. Now we can define the following
condition, Condition (7).

∑
i∈J

si ≥ v(J) + 2∆ ∀J ∈ Ri$ \ {N}, ∀i$ ∈ I$(s). (7)

Any allocation satisfying Condition (7) is a strict-core allocation. Furthermore, even if a player
transfers ∆ of her surplus to another in an allocation satisfying (7), the resulting allocation satisfies
Inequality (2); that is, it is still a strict-core allocation.

For ω = (s, {N}), with s ∈ C∆, let R(ω) denote the lowest cost of escaping from ω, that is, the
minimum cost for the process to escape from ω to some other ω′ = (s′, {N}), with s′ ∈ C∆. See
Equation (10) in the Appendix for the formal definition of R(·). A sequence of transitions from ω

to ω′, with s′ ∈ C∆, is called a least-cost escape from ω if the cost of the sequence is R(ω). We say
that a least-cost escape from ω leads the process to ω′ if there is a least-cost escape from ω that ends
at ω′. Condition (7) is a key part of identifying which allocation is most likely to be reached after
any departure from a strict-core allocation. This is shown in the following lemma.

Lemma 5.2. For s ∈ C∆, s has three properties:
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(i) The least cost of escaping from state ω = (s, {N}) is given by

R(ω) = u(s(1))− u(s(1) − ∆). (8)

(ii) Suppose that allocation s satisfies Condition (7). If s 6= sE, there exists a least-cost escape from s to
s′ ∈ C∆, where s′ is either an allocation with the richest player claiming s(1) − ∆ or that in which the
number of players claiming s(1) is strictly fewer than that of s. If s = sE, any least-cost escape from s
leads the process to some s′ ∈ C∆, where s′(1) = smin + ∆.

(iii) If allocation s violates Condition (7), then for any s′ ∈ C∆, there exists a least-cost escape from s that
leads the process to s′.

Lemma 5.2 shows that the stability of a core allocation depends on the richest player. Moreover,
the concavity of u(·) implies that u(x) − u(x − ∆) < u(y) − u(y − ∆), for all x > y. Therefore,
this lemma and the concavity suggest that the stability of a core allocation decreases in the wealth
of the richest player. Our main result in this section is described in the following theorem. The
stochastically stable allocations are core allocations that minimize the wealth of the richest player.

Theorem 5.3. State (s,M) is stochastically stable if and only if (s,M) ∈ minΩ∗∆ .

Remark 5.4. The implication of Theorem 5.3 is identical to that of Theorem 1 of Agastya (1999) for
homogeneous preferences. This is because of the following observation for the strictly increasing
and strictly concave utility function u(·):

argmax
s∈C∆

min
i∈N

u(si)− u(si − ∆) = argmin
s∈C∆

max
i∈N

si = argmax
s∈C∆

min
i∈N

u(si)− u(si − ∆)
u(si)

.

The LHS is the set of allocations that minimize the marginal utility of the richest player, which
is the set of stochastically stable states in our model. The second set is the set of allocations that
minimize the wealth of the richest player. The RHS is the set of allocations that minimize the
growth rate of marginal utility of the richest player, which is the set of stochastically stable states
in Agastya (1999). The three sets coincide for homogeneous preferences. Predictions based on the
two models may differ for heterogeneous preferences. We discuss this further in Section 6.

For the “only if” part of the proof, suppose a strict-core allocation ω /∈ minΩ∗∆ . Let T(ω) denote
a minimum-cost tree of ω. The lowest cost of escaping from ω is given by R(ω) = u(s(1)) −
u(s(1) − ∆). Lemma 5.2 implies that a sequence of least-cost escapes can lead the process from ω

to another strict-core allocation ω̂, in which the wealth of the richest players is strictly smaller than
s(1). Add the sequence to T(ω) of ω and delete the edges exiting from the states in the sequence.
Because R(ω) < R(ω̂), the cost of the resulting tree is strictly smaller than the cost of T(ω). Thus,
stochastically stable allocations must be in minΩ∗∆ .

Next, we provide a corollary and two examples of the theorem. For the egalitarian allocation
sE, the corresponding state must be the unique element of minΩ∗∆ if sE ∈ C∆. Corollary 5.5 follows
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immediately from Theorem 5.3. Example 1 is an application to a cost-sharing problem, and Exam-
ple 2 illustrates the difference in institutional assumptions between our model and that of Agastya
(1999). Note that our selection result may disagree with that of Agastya (1999) for settings with a
non-convex characteristic function.

Corollary 5.5. If sE ∈ C∆, then (sE, {N}) is uniquely stochastically stable.

Example 1 (Cost-sharing problem). This is based on Example 4.2 of Moulin (1988). A public utility
(a water system) serves four consumers, with the following symmetric cost structure:

cost of serving: one consumer, alone 40
two consumers 60
three consumers 70
all four consumers 80

The monetary benefits to the consumers from using the facility are

b1 = 41, b2 = 24, b3 = 22, b4 = 13.

Consumer i agrees to purchase this facility if she is charged no more than bi. Given this setting, the
characteristic function is given by v(J) = max{∑i∈J bi − c(J), 0}, where c(J) is the corresponding
cost structure. Observe that v(J) = 0 if a coalition J does not include consumer 1. Then, v(J) is
computed as follows for J ⊂ N, with 1 ∈ J:

v(1) = 1, v(12) = 5, v(13) = 3, v(14) = 0,

v(123) = 17, v(124) = 8, v(134) = 6, v(1234) = 20.

Let ∆ = 1. Any coalition J with 1 /∈ J has no incentive to deviate from an allocation if every
member receives at least ∆. The strict core of this game is a relatively large subset of the set of
allocations and, thus, provides only loose guidelines for allocations. For example, (17, 1, 1, 1) is a
strict-core allocation, as is (2, 8, 8, 2).

This problem has a unique stochastically stable allocation, namely, (6, 6, 6, 2). To see this, ob-
serve that s1 + s2 + s3 ≥ v(123) + ∆ = 18 must hold in any strict-core allocation. Thus, (6, 6, 6)
is the allocation for the three players that minimizes the maximum wealth. The cost share corre-
sponding to the allocation is (35, 18, 16, 11).

Example 2 (Example 1 of Agastya (1999)). Let N = {1, 2, 3} and u(x) =
√

x. The characteristic
function is such that v({1, 2}) = v({1, 3}) = 300, v({N}) = 302, and v(·) = 0 for any other
coalition. Suppose that ∆ = 1, for which (s,M) = ((300, 1, 1), {N}) is the unique allocation in
the strict core. Assume that the probabilistic rule in Agastya (1999) is such that the only coalitions
that are formed are the largest that satisfy claims, and that each forms with equal probability. Our
model predicts a strict-core allocation that differs from that of the model of Agastya (1999).
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Consider that every player claims 150 (i.e., a claim profile (150, 150, 150)). The claim profile
is not feasible in our model, whereas players can submit such a profile in Agastya (1999). The
probabilistic rule accommodates their claims and chooses {1, 2} and {1, 3}with equal likelihood in
each period. The players evaluate the expected payoffs of the claim profile and have no incentive
to deviate. For example, if player 2 deviates by claiming 151, no allocation will be feasible except
{1, 3}. Then, coalition {1, 3} forms with probability one, and player 2 obtains zero. The cost of
escaping from (150, 150, 150) is positive and proportional to u(150)− u(150− ∆). Furthermore,
the cost is greater than the cost of escaping from the core allocation, which is proportional to
u(300)− u(300− ∆). Thus, the core allocation is not stochastically stable in Agastya (1999).

5.2 Core Allocations with Non-Grand Coalitions

Thus far, we have restricted our attention to settings with a nonempty strict core. In this
section, we consider settings with a nonempty strict dispersed core. That is, we switch the solution
concept from Definition 3.2 to 3.3.10 Recall that Ω∗∆ is the set of strict dispersed-core allocations. In
addition, let Vmax = maxM∈part(N) ∑J∈M v(J), andMmax = {M ∈ part(N) : ∑J∈M v(J) = Vmax}.
Here, Vmax is the maximum attainable sum of the surpluses generated among all profiles of teams
M ∈ part(N).Mmax is the set of profiles of teams that can attain Vmax.

The next lemma identifies the properties of strict dispersed-core allocations. The lemma shows
that if there is some strict-core allocation withM∗ 6= {N}, thenM∗ is unique and maximizes the
sum of the generated surpluses (i.e.,Mmax = {M∗}).

Lemma 5.6. Suppose that C∆ is nonempty. Then, we have that

(i) M∗ ∈Mmax ∀(s,M∗) ∈ Ω∗∆ ,

(ii) |Mmax| = 1.

We briefly describe the proof. For (i), if M∗ /∈ Mmax, then there exists some coalition J ∈
M ∈ Mmax such that v(J) > ∑i∈J si.11 Then, there is some allocation for coalition J under which
its members are weakly better off. This contradicts that (s,M∗) is in the strict dispersed core.
For (ii), if M′,M′′ ∈ Mmax, then for any allocation (s′,M′), there exists J′′ ∈ M′′, such that
v(J′′) ≥ ∑i∈J′′ s′i.

12 This implies that there is some allocation under which the members of J′′ are
weakly better off. Therefore, no allocation can be in the strict dispersed core, which contradicts
that the core is nonempty.

The next lemma guarantees that the unperturbed dynamic will converge to the set of strict
dispersed-core allocations, Ω∗∆ . The proof is more involved than that of Lemma 5.1. For the set-
tings described in Section 5.1, there is a unique optimal team, called the grand coalition, that can

10A core allocation with a grand coalition is a dispersed-core allocation. All results in this section can be applied to
strict-core allocations with a grand coalition.

11If such a team does not exist, then ∑i∈J si ≥ v(J), for all J ∈ M. This contradicts that M∗ /∈ Mmax and M ∈
Mmax.

12Otherwise, v(J′′) < ∑i∈J′′ s′i for all J′′ ∈ M′′, which contradicts thatM′′ ∈ Mmax.
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weakly block any allocation with non-grand coalitions. For the settings described in this section,
there exists a optimal profile of teams, that is,M∗ ∈Mmax. These teams cannot form at the same
time because at most one team is formed in each period. Moreover, not every team J ∈ M∗ can
weakly block the current allocation. For some J ∈ M∗ to form, it will need to take on at least
some players from existing teams, and may or may not be able to compensate them better than
their current allocation does; that is, v(J) does not necessarily exceed the sum of the current shares
of all i ∈ J.13

Nevertheless, we find that, for any state, there is a particular order of teams in the profileM∗.
In the dynamics, there is a non-vanishing probability that each team ofM∗ will form sequentially
according to this order. Using this observation, Lemma 5.7 shows that the process will eventually
enter the strict dispersed core.

Lemma 5.7. Starting from (s,M) ∈ Ω, with s /∈ C∆, the unperturbed dynamic induced by P0 reaches
some (s∗,M∗) ∈ Ω∗∆ with positive probability.

Similarly to Lemma 5.1, Lemma 5.7 guarantees that the unperturbed process of our decentra-
lized coalition formation will result in some allocation in the strict dispersed core. Recall that

minΩ∗∆ =
{
(s,M) ∈ Ω∗∆ : s(1) = smin

}
,

which is the set of strict-core allocations that minimizes the claims of the richest players. Based on
this lemma and the above definition, we can now state our second main theorem. All stochastically
stable allocations are in the strict dispersed core and, moreover, are in the set minΩ∗∆ . Note that
this characterization is slightly weaker than that of Theorem 5.3. For settings with the strict core,
we have shown that all states in minΩ∗∆ are stochastically stable. For the strict dispersed core,
stochastically stable states must be in minΩ∗∆ , but the converse is not necessarily true.

Theorem 5.8. limη→0 πη(minΩ∗∆) = 1.14

The next two examples illustrate the implications of Theorem 5.8. For settings with a dispersed
core, not all allocations in minΩ∗∆ are necessarily stochastically stable. The first example highlights
the difference between Theorems 5.3 and 5.8. The second example shows that there exist settings
with a dispersed core in which all allocations in minΩ∗∆ are stochastically stable.

Example 3. Suppose that N = {1, 2, 3, 4} and ∆ = 1. Let Jij = {i, j}, which denotes the team of
two players, i and j. The characteristic function is given by

v(J12) = 4, v(J34) = 10, v(N) = 12,

and v(J) = 0 for any coalition that is not listed above. Because v(J12) + v(J34) > v(N), players
1 and 2 and players 3 and 4 form teams in any strict dispersed-core allocation. More precisely,

13The grand coalition includes all members of all teams. Thus, if the strict core exists with a grand coalition, v(N)
exceeds the sum of their current shares.

14Let πη(X) denote the sum of the probabilities of the states of X (i.e., ∑ω∈X πη(ω)).
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the strict dispersed core includes all allocations in which J12 and J34 are formed and every player
receives at least one unit of surplus (i.e., s1 + s2 = 4, s3 + s4 = 10, si ≥ ∆, for all i ∈ N).

Observe that

minΩ∗∆ = {(s,M∗) : s ∈ {(1, 3, 5, 5), (2, 2, 5, 5), (3, 1, 5, 5)}}, M∗ = {J12, J34}.

Our theorem tells us that limη→0 πη(minΩ∗∆) = 1.

For the setting in Example 3, a careful inspection shows that the allocation (2, 2, 5, 5) is uni-
quely stochastically stable. It is the most stable because each coalition distributes its surplus
equally. Intuitively, the formation of teams J12 and J34 should be examined separately because
there is no incentive for players 1 and 2 to form a team with 3 or 4. The allocation for team J12 that
minimizes the wealth of the richest player, (2, 2), is more stable than other allocations, and is also
uniquely stochastically stable. It seems that considering equity works in all coalitions for settings
with a dispersed core.

However, it does not always work for all coalitions. Consider the next example, where we
slightly modify the setting by adding a fifth player.

Example 4. Suppose that N = {1, 2, 3, 4, 5}, ∆ = 1, Jij = {i, j}, and the characteristic function is
given by

v(J12) = 4, v(J34) = 10, v(N) = 12,

v({1, 2, 5}) = 7, v({5}) = 4.

Here, v(J) = 0 for any coalition that is not listed above. It is easy to see that

minΩ∗∆ = {(s,M∗) : s ∈ {(1, 3, 5, 5, 4), (2, 2, 5, 5, 4), (3, 1, 5, 5, 4)}},

whereM∗ = {J12, J34, {5}}. For this modified setting, all allocations in minΩ∗∆ are stochastically
stable. For any pair of ω, ω′ ∈ minΩ∗∆ , the cost of escaping from ω to ω′ is u(4) − u(3). For
ω = (s,M∗), the cost of players 1,2, and 5 forming a team and accepting the allocation ŝ1,2,5 =

(s1, s2, 3) is u(4) − u(3), because the utility of player 5 decreases by that amount. Then, there
is non-vanishing probability that the process reaches ω′ = (s′,M∗). That is, player 5 leaves
team {1, 2, 5} and forms a singleton team. Then, players 1 and 2 form a team with allocation
ˆ̂s1,2 = (s′1, s′2), and the process reaches ω′. Because the transition cost between any two states in

minΩ∗∆ is the same, all states in the set are stochastically stable. In this case, players 1 and 2 will
end up in one of (1, 3), (2, 2) and (3, 1).

To conclude this section, we relax the assumption that C∆ 6= ∅ and consider predictions for
settings with an empty core. We first define individually rational allocations and unbeatable te-
ams.

Definition 5.9. (1) An allocation (s,M) ∈ Ω is individually rational if si ≥ v({i}) for all i ∈ N.
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Let ΩIR be the set of individually rational allocations, and SJ
IR ⊆ SJ be the set of individually rational

claim profiles for team J (i.e., si ≥ v({i}) for all i ∈ J if sJ ∈ SJ
IR).

(2) Team J is unbeatable under claim profile sJ if

∑
i∈J

si = v(J), and ∑
i∈J∩ Ĵ

si > ∑
i∈J∩ Ĵ

ŝi ∀ŝJ ∈ S Ĵ
IR and Ĵ 6= J.

Here, sJ is an unbeatable claim profile for J if J is unbeatable under sJ .

Individually rational allocations are those in which each player i receives at least their reserva-
tion surplus, v({i}). Unbeatable teams have claim profiles that cannot be weakly blocked by any
coalition. This implies that if some players in an unbeatable team with an unbeatable claim profile
deviate, then at least one of the deviating players must be worse off.

LetRub be a set of teams, each of which is unbeatable under some claim profile. The definition
implies that any two unbeatable teams are disjoint, or J ∩ J′ = ∅, for all J, J′ ∈ Rub. Let Ωub =

{(s,M) ∈ ΩIR : Rub ⊂ M} be the set of states under which all unbeatable teams are formed.
Furthermore, let SJ

ub = {sJ ∈ SJ : J is unbeatable under sJ .}, which is the set of claim profiles
under which J is unbeatable. Define

sub
min = max

J∈Rub
min

sJ∈SJ
ub

max
i∈J

sJ
i ,︸ ︷︷ ︸

Minimum wealth
of the richest in J

minΩub =

{
(s,M) ∈ Ωub : max

J∈Rub
max

i∈J
si ≤ sub

min

}
.

In other words, sub
min is the minimum claim of the richest player in all unbeatable teams for all

unbeatable claim profiles. Thus, minΩub is the set of states where all unbeatable teams are formed
and the wealth of the richest in the unbeatable teams is at most sub

min. Corollary 5.10 characterizes
stochastically stable allocations for settings with an empty core.

Corollary 5.10. (1) limη→0 πη(ΩIR) = 1.

(2) IfRub 6= ∅, then limη→0 πη(minΩub) = 1.

The first claim is straightforward. Any state that is not individually rational is not stochasti-
cally stable. For the second claim, note that the definition of an unbeatable team J implies that if
the state is not in Ωub, then there is some claim profile that makes every member of J weakly better
off. Therefore, J can be formed with a zero transition cost, and the process will place probability
one on all states where unbeatable teams are formed. Similarly to our main result, Corollary 5.10
provides an upper bound sub

min on the wealth of the richest player in the unbeatable teams.

6 Heterogeneity in Utility Functions with a Strict Core

Here, we relax the assumption of homogeneous preferences and examine stochastically sta-
ble allocations with heterogeneous utility functions for settings with a nonempty strict core. Let
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player i’s utility function be ui : R→ R, which is concave and strictly increasing. These functions
may vary between players; that is, it might be that ui(x) 6= uj(x), for x ∈ R and i 6= j. All other
aspects of the setup are the same as that in Section 3. We omit most of the proofs in this section
because the analysis does not differ significantly from those in Sections 4 and 5.

The discussion on the stochastic potential in Section 4 still applies to the settings here; that
is, the stochastically stable states are those minimizing the stochastic potential. However, the
characterization differs from that in Section 5.1 because transition costs depend on the players’
utility functions. Formally, we have the following lemma, which is analogous to Lemma 5.2. The
minimum cost of escaping from an allocation is approximately given by the minimum marginal
utility of the players.

Lemma 6.1. For s ∈ C∆, s has three properties:

(i) The lowest cost of escaping from s is given by

R(s, {N}) = min
i∈N

ui(si)− ui(si − ∆). (9)

(ii) If allocation s satisfies Condition (7) and s /∈ argmins∈C∆
mini∈N ui(si) − ui(si − ∆), then the

least-cost escape from s leads the process to s′ ∈ C∆, where s′ has one of the following two properties:

min
i∈N

ui(s′i)− ui(s′i − ∆) < min
i∈N

ui(si)− ui(si − ∆),

or | argmin
i∈N

ui(s′i)− ui(s′i − ∆)| = | argmin
i∈N

ui(si)− ui(si − ∆)| − 1,

where min
i∈N

ui(s′i)− ui(s′i − ∆) = min
i∈N

ui(si)− ui(si − ∆).

(iii) If allocation s violates Condition (7), then the least-cost escape from s leads the process to any s′ ∈ C∆.

Recall that Ω∗∆ is the set of strict-core allocations. Define

minΩ∗∗∆ =

{
(s, {N}) ∈ Ω∗∆ : s ∈ argmax

s∈C∆

min
i∈N

ui(si)− ui(si − ∆)

}
.

We say that an allocation in the strict core, (ssw, {N}) ∈ Ω∗∆ , maximizes the social welfare if

∑
i∈N

ui(ssw
i ) = max

s∈C∆
∑
i∈N

ui(si).

This is an allocation that maximizes the sum of the players’ utilities among all strict-core alloca-
tions. The next lemma shows that such allocations must be in minΩ∗∗∆ for bilateral and trilateral
bargaining. The proof is given in the Appendix.

Lemma 6.2. Suppose that n ≤ 3. If (s, {N}) maximizes the social welfare, then (s, {N}) ∈ minΩ∗∗∆ .
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We have the following result, corresponding to Theorem 5.3. Despite the heterogeneity in
utility functions, the expression for stochastically stable states is similar; that is, the minimum
marginal utility is approximately maximized. The theorem (along with Lemma 6.2) also states
that the utilitarian social welfare is maximized in a stochastically stable allocation for n ≤ 3.
However, this does not necessarily imply that the maximum wealth is minimized. The following
example applies the theorem and highlights the difference between this case and the settings of
homogeneous utility functions.

Theorem 6.3. limη→0 πη(minΩ∗∗∆ ) = 1.

Example 5 (Heterogeneity in the degree of sensitivity). Suppose that N = {1, 2, 3}, ∆ = 1, and
that the characteristic function is given by v(N) = 12 and v(J) = 0, for all J 6= N. The strict core
is given by the set of the profiles (s1, s2, s3), which satisfy that ∑i si = 12, for si > 0 and all i ∈ N.
The egalitarian allocation (4, 4, 4) is in the strict core and, thus, is uniquely stochastically stable if
the utility functions are homogeneous.

Suppose that player i’s utility function is given by ui(x) =
√

βix, where βi = i for i ∈ N. Then,
βi represents the degree of sensitivity to monetary payoffs. Players with a higher index are more
sensitive.

Observe that minΩ∗∗∆ = {((2, 4, 7), {N})}, because

min{
√

2− 1,
√

8−
√

6,
√

21−
√

18} > max{
√

3−
√

2,
√

10−
√

8,
√

24−
√

21}.

The LHS gives the cost of escaping from (2,4,7), and the RHS gives the upper bound of the cost
of escaping for other strict-core allocations. Theorem 6.3 implies that the claim profile (2,4,7) is
uniquely stochastically stable and, thus, maximizes the social welfare among allocations in Ω∗∆
(Lemma 6.2). Those who are more sensitive to monetary payoffs (i.e., players with higher βi)
obtain a larger share.

To conclude this section, we briefly compare our results with those of Young (1993b) and Agas-
tya (1999). Suppose a two-person bargaining game, given by N = {1, 2}, v({1}) = v({2}) = 0,
and v(N) = V > 0. Young (1993b) shows that if the players have the same size memory, then
the stochastically stable allocation maximizes the Nash product, u1(s1)u2(V − s1). The same pre-
diction is obtained by Agastya (1999) for two-person bargaining games. In their models, the es-
cape cost for player i is approximated by u′i(si)/ui(si) for sufficiently small ∆, where u′i(·) denotes
player i’s marginal utility. The minimum escape cost of two players is maximized when the state
is such that u′1(s1)/u1(s1) = u′2(V − s1)/u2(V − s1) (i.e., the Nash-bargaining solution).

In contrast, the stochastically stable allocation in our model maximizes the utilitarian welfare,
u1(s1) + u2(V − s1). As in Lemma 6.1, the escape cost is approximated by the minimum marginal
utility of the players, mini∈{1,2} u′i(si). The escape cost is maximized when the players have the
same marginal utility, which is the state that maximizes the sum of their utilities. For homogene-
ous preferences, the sets of stochastically stable states of the two models coincide. However, the
predictions differ when preferences are heterogeneous. For two-person bargaining games, Young
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(1993b) and Agastya (1999) support the Nash-bargaining solution, whereas our result supports
the utilitarian solution.

7 Concluding remarks

We have characterized stochastically stable allocations in coalitional bargaining games. For
games with a nonempty core, allocations that minimize the maximum payoff over all players
have been shown to be stochastically stable. Then, we extended this result to games with an empty
core, for which the maximum wealth of unbeatable teams is minimized. In future work, we plan
to further investigate the dependence of stochastically stable allocations on behavioral models
and institutional settings. A comparison of the findings of Agastya (1999), Newton (2012b), and
this study suggests that combinations of behavioral models and institutional settings influence
the stability of allocations. Recent experimental studies have revealed behavioral biases in people
(e.g. Hwang et al. 2018; Lim and Neary 2016; Mäs and Nax 2016). For example, Mäs and Nax
(2016) found an increase in errors when subjects had changed their action in the previous period;
that is, errors might be dependent not only on the strategy distribution, but also on some other
variables. Thus, merging these behavioral biases in a stochastic stability analysis could be fruitful.

A Appendix

Proofs for Section 5

Proof of Lemma 5.1. By definition, it is obvious that any strict-core allocation is an absorbing state
in the unperturbed dynamic. Let (s∗, {N}) denote an arbitrary strict-core allocation. We show
that, for any (s,M) ∈ Ω with s /∈ C∆, the unperturbed dynamic starting from (s,M) reaches
(s∗, {N}) with a positive probability.

First, suppose that the process is in (s,M), in which allocation s is in the core, but not in the
strict core. Then, there exists a coalition J ⊂ N that weakly blocks s. Let s′ be such that

s′i ≥ si ∀i ∈ J with ∑
i∈J

s′i ≤ v(J), s′i = v({i}) ∀i /∈ J.

Because J weakly blocks s, such s′ is feasible. Let players form team J and accept s′.15 Let s′′ be
such that s′′i = s′i for all i ∈ N. Such s′′ is feasible for the grand coalition because the existence of
the strict core implies that v(J) + ∑i/∈J v({i}) ≤ v(N). Let players form the grand coalition and
accept s′′. Then, let player i∗ /∈ J, who receives v({i∗}) in s′′, form a singleton team and accept
s′′′i∗ = v({i∗}). Because i∗ leaves the grand coalition, it is dissolved and the state becomes (s′′′, ·),
with s′′′i = v({i}) for all i 6= i∗. Let players form the grand coalition again and accept s∗ ∈ C∆.

15Here, “let players form J and accept s” means there is a positive probability that coalition J and allocation s are
chosen, and that the players of J accept this allocation. In addition, we assume this event is realized in the dynamic.
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Second, suppose that the process is in (s,M), in which allocation s is not in the core. If no
multi-player team is formed in (s,M), let players form the grand coalition and accept s∗. Next,
suppose that at least one multi-player team is in (s,M). Let ŝ be such that ŝi = si for all i ∈ N.
Owing to the existence of the core, such ŝ must be feasible for a grand coalition (i.e., ∑i ŝi ≤ v(N)).
Let players form a grand coalition and accept ŝ. If ŝ is a core allocation, then there is positive
probability that the process reaches some s∗ ∈ C∆, as shown above. If ŝ is not a core allocation,
then there exist J and s′ such that J blocks ŝ. Let players form J and accept s′. Following similar
reasoning to that in the previous paragraph, we can show that there is a positive probability that
the process reaches (s∗,M).

For the proofs of Lemma 5.2 and Theorem 5.3, we first define the minimum deviation cost
from a state. A directed graph d(ω1, ωk) on Ω is a path if d(ω1, ωk) is a finite, repetition-free
sequence of transitions {(ω1, ω2), (ω2, ω3), . . . , (ωk−1, ωk)}, such that ωi ∈ Ω for all i = 1, . . . , k.
A path d(ω1, ωk) is possible if Rωiωi+1 is nonempty for all i = 1, . . . , k− 1. Let D(ω, ω′) be the set
of all paths with initial point ω and terminal point ω′. Let the cost W(d(ω, ω′)) be the sum of the
transition costs of d(ω, ω′) (i.e., W(d(ω, ω′)) = ∑(ωi ,ωi+1)∈d(ω,ω′) cωi ,ωi+1).

The basin of attraction of state ω, B(ω) ⊆ Ω, is the set of all states ω′ such that there exists a
revision path d ∈ D(ω′, ω), with W(d) = 0. We define the lowest cost of escaping from state ω as

R(ω) = min
ω′/∈B(ω)

{
W(d)

∣∣d ∈ D(ω, ω′)
}

, (10)

where R(ω) is the minimum cost for the process to move away from the basin attraction of ω.
Recall that smin denotes the lowest claim of the richest player among all strict-core allocations,

and let smax be the highest of these:

smin = min
s′∈C∆

s′(1), smax = max
s′∈C∆

s′(1).

Proof of Lemma 5.2. Observe that the RHS of Equation (8) gives the minimum cost of a mistake over
all mistakes in allocation s. Because s is a core allocation, some player’s share must decrease as a
result of a transition from s. Owing to the concavity of u(·), the lowest cost of such a transition is
a ∆ transfer from the richest player’s share to another player’s share. We prove that this least-cost
mistake is enough for the process to move to another strict-core allocation.

First, suppose that the current allocation s satisfies Condition (7) and that s 6= sE. Recall that
I$(s) = {i ∈ N : si = s(1)} (i.e., the set of the richest players). Let i$ ∈ I$(s). Choose h such that
sh ≤ s(1) − 2∆. Lemma 3.4 guarantees that such h exists. We show that a transfer of ∆ from i$ to h
results in a new strict-core allocation. Let s′ be such that s′i$

= s(1) − ∆, s′h = sh + ∆, and s′i = si for
i /∈ {i$, h}. The escape cost from s to s′ is given by (8). Observe that s′ satisfies Inequality (2) and
is a strict-core allocation. In addition, s′ is either an allocation in which the richest player claims
s(1)−∆ or that in which the next richest players claim s(1). If s = sE, then any transfer will increase
some player’s share by ∆ to smin + ∆. Then, the claim is immediate. This proves claim (ii).
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Next, suppose Condition (7) does not hold for allocation s. Then, there exists at least one richest
player i$ ∈ I$(s) and one coalition J ∈ Ri$ , such that ∑i∈J si = v(J) + ∆. Consider allocation s′,
such that s′i$

= si$ − ∆, s′h = sh + ∆ for some h /∈ J, and s′i = si for i /∈ {i$, h}. Note that the cost
of switching from (s, {N}) to (s′, {N}) is given by (8) (i.e., u(s(1))− u(s(1) − ∆)). Suppose that the
process starts with (s, {N}) and that the following events occur sequentially:

(i) Players form the grand coalition and accept s′. The state becomes (s′, {N}).

(ii) Let s′′J ∈ SJ be such that s′′j = s′j for all j ∈ J, and s′′ = (s′′J , s′′−J) be such that s′′i = v({i}) for
i /∈ J. Let the players of J form a new team and accept s′′. Note that the grand coalition is
dissolved.

(iii) Let ŝ be such that ŝi = s′′i for all i ∈ J, and ŝi = v({i}) otherwise. The existence of the strict
core guarantees that ŝ is feasible. Let the players form the grand coalition and accept ŝ. This
moves the process to (ŝ, {N}).

(iv) Let ĩ /∈ J and s̃i = v({i}) for all i ∈ N. Player i forms a singleton team {ĩ} and switches from
ŝ to s̃. Note that the grand coalition is dissolved when player ĩ quits.

(v) Let s∗ ∈ C∆. The players form the grand coalition and accept s∗.

Observe that (ii)–(v) occur with non-vanishing probability; that is, the cost of these transitions is
zero. Once the process reaches (s′, {N}), it can reach any strict-core allocation s∗ without incurring
a cost. Thus, the escape cost is given by (8). This proves claim (iii). We have also proved claim
(i) because the cost of escaping is given by (8) for both cases, regardless of whether or not (7) is
satisfied.

Proof of Theorem 5.3. First, we prove the “only if” part by way of contradiction. Suppose that there
exists ω0 = (s0, {N}) ∈ Ω∗∆ \min Ω∗∆ that is stochastically stable. Let h̄ > 0 be such that smin + h̄∆ =

smax. Define for h ∈ {0, 1, . . . , h̄},

Uh =
{
(s, {N}) ∈ Ω∗∆

∣∣∣s(1) = smin + h∆
}

, U≤h =
⋃

h′≤h

Uh′ .

Then, Uh is the set of strict-core allocations with the richest player claiming smin + h∆, and U≤h is
the set of strict-core allocations where the richest player claims at most smin + h∆.

Let h be such that ω0 ∈ Uh. Note that h ≥ 1 because ω0 /∈min Ω∗∆ . Construct a path
{ω0, . . . , ωL} that satisfies the following two conditions: (i) ωi = (si, {N}) ∈ Uh, for all i ∈
{0, . . . , L − 1} and ωL = (sL, {N}) ∈ U≤h−1; (ii) cωi ,ωi+1 = R(ωi) and the number of the richest
players in ωi+1 is less than that in ωi, for all i ∈ {0, . . . , L − 2}. Lemma 5.2 implies that such a
path exists. Add the constructed path to T(ω0) and remove the existing edges emanating from
ω1, . . . , ωL. Let T(ωL) denote the resulting set of edges, which must be an ωL-tree. Observe that

W(ω0) = W(T(ω0)) > W(T(ω0)) + R(ω0)− R(ωL) ≥W(T(ωL)) ≥W(ωL).
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This contradicts that ω0 is stochastically stable. Because the choice of ω0 is arbitrary, this proves
the “only if” part of the claim.

Next, we prove the “if” part (i.e., all allocations in minΩ∗∆ are stochastically stable). If minΩ∗∆ has
only one state, then the “only if” part implies that the state is uniquely stochastically stable. Sup-
pose that |minΩ∗∆ | > 1.16 The “only if” part implies that there exists some ω1 ∈ minΩ∗∆ that is
stochastically stable. Let T(ω1) denote a minimum-cost tree of ω1. Fix ωK ∈ minΩ∗∆ , such that
ωK 6= ω1.

Consider the following operation, starting with k = 1. This constructs an ωK-tree with a
weakly smaller stochastic potential than that of T(ω1). In what follows, let ωk = (sk, ·).

(i) If sk violates Condition (7), then Lemma 5.2 (iii) implies that there exists a sequence of
transitions d(ωk, ωK) = {(ωk, ωk+1), . . . , (ωK−1, ωK)}, such that W(d(ωk, ωK)) = u(sk

(1))−
u(sk

(1) − ∆). Construct a new tree T(ωK) by adding edges of d(ωk, ωK) to T(ωk) and remo-
ving edges from T(ωk) that emanate from ωk+1, . . . , ωK. Stop the operation.

(ii) If sk satisfies Condition (7), then let Ik
2∆ = {i ∈ N : sk

(1) − sk
i ≥ 2∆}, where sk

(1) is the claim of
the richest player in sk. Lemma 3.4 implies that Ik

2∆ 6= ∅. Let j be the richest player in sk (i.e.,
sk

j = sk
(1)). Choose h ∈ Ik

2∆. Let sk+1 be such that

sk+1
j = sk

j − ∆, sk+1
h = sk

h + ∆, sk+1
i = sk

i ∀i /∈ {j, h}.

Because sk satisfies Condition (7), sk+1 ∈ C∆. Note that ωk+1 = (sk+1, {N}) ∈ minΩ∗∆ . Con-
struct a new tree T(ωk+1) by adding edge (ωk, ωk+1) to T(ωk) and removing the edge from
T(ωk) that emanates from ωk+1. The resulting set T(ωk+1) must be an ωk+1-tree.

Stop if sk+1 = sK. Otherwise, increment k by 1 (i.e., k = k + 1), and repeat the above opera-
tion.

Observe that the sum of the wealth differences between the richest player and the players in Ik
2∆,

∑i∈Ik
2∆

sk
(1) − sk

i , is strictly decreasing over k in operation (ii). The sum does not reach zero. If it
is zero, then the allocation must be egalitarian, but the egalitarian allocation is not in the core
for |minΩ∗∆ | > 1. Thus, the process following the operation will reach some k such that either sk

violates Condition (7) or sk+1 = sK within a finite number of steps. When the operation stops, the
set of edges T(ωK) must be an ωK-tree. Observe that

W(ωK) ≤W(T(ωK)) ≤W(T(ω1)) +
K−1

∑
k=1

R(ωk)−
K

∑
k=2

R(ωk)

= W(T(ω1)) = W(ω1).

16The egalitarian allocation must not be in C∆ if |minΩ∗∆| > 1. If it is, then it must be the unique element of minΩ∗∆.
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This implies that ωK must be stochastically stable. Because the choice of ωK is arbitrary, any strict-
core allocation in minΩ∗∆ is stochastically stable.

Proof of Lemma 5.6. Claim (i):
We prove this lemma by way of contradiction. Suppose that ω = (s,M∗) ∈ Ω∗∆ , such that

∑J∈M∗ v(J) < Vmax (i.e.,M∗ /∈ Mmax). Let M̂ be such that ∑ Ĵ∈M̂ v( Ĵ) = Vmax. Observe that

∑
Ĵ∈M̂

v( Ĵ) > ∑
J∈M∗

∑
i∈J

si = ∑
Ĵ∈M̂

∑
i∈ Ĵ

si.

Then, there exists some Ĵ ∈ M̂ such that v( Ĵ) > ∑i∈ Ĵ si. This contradicts that s is a strict-core
allocation.

Claim (ii):
The proof is by way of contradiction. Suppose that |Mmax| ≥ 2. Choose (s′,M′) ∈ Ω∗∆ . The proof
of Claim (i) implies thatM′ ∈ Mmax. ChooseM ∈Mmax \ {M′} and a claim profile s, such that

∑i∈J si = v(J) for all J ∈ M. Observe that

∑
J∈M

∑
i∈J

si = ∑
J′∈M′

∑
i∈J′

s′i

⇔ ∑
J∈M∩M′

∑
i∈J

si + ∑
J∈M\M′

∑
i∈J

si = ∑
J∈M′∩M

∑
i∈J

s′i + ∑
J′∈M′\M

∑
i∈J′

s′i (11)

⇔ ∑
J∈M\M′

∑
i∈J

si = ∑
J′∈M′\M

∑
i∈J′

s′i.

There must exist J ∈ M \M′, such that v(J) ≥ ∑i∈J s′i. Otherwise, v(J) < ∑i∈J s′i for all J ∈
M \M′, which contradicts the last equality in Equation (11). Then, J weakly blocks s′, which
contradicts that s′ is a strict-core allocation.

Proof of Lemma 5.7. We group non-equilibrium states, or Ω \Ω∗∆ , into four cases. For Case I, we
show that the process will reach some strict-core allocation. For Cases II and III, we show that
the process eventually falls into Case I. For Case IV, the process will reach some state of the other
cases.
Case I:
Suppose that the current state is (s,M∗), which satisfies the following conditions:

(i) s /∈ C∆, (ii) ∑i∈J si = v(J) ∀J ∈ M∗,
(iii) M∗ ∈Mmax, (iv) si ≥ v({i}) ∀i ∈ N.

(12)

Let (s∗,M∗) ∈ Ω∗∆ . Because s /∈ C∆, there exists J, such that v(J) ≥ ∑i∈J si. Let J form a coalition
with s′ in which s′i ≥ si ≥ v({i}) for all i ∈ J. Let {M1, . . . , Mk} ⊆ M∗ be a set of teams that
are dissolved as a result of J being formed. Then, there must exist some Mj ∈ {M1, . . . , Mk},
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such that ∑i∈Mj∩J s∗i > ∑i∈Mj∩J s′i.
17 Note that Mj \ J 6= ∅.18 Let Mj form a coalition with s′′

in which s′′i = v({i}) for i ∈ Mj \ J, and s′′i = s′i for i ∈ Mj ∩ J.19 Then, let i ∈ Mj \ J form a
singleton team. Because s′′i = v({i}) for i ∈ Mj \ J, the transition cost is zero. The resulting state
is such that all players of {M1, . . . , Mk} form singleton teams. Let Mx form a coalition with s∗Mx

for all Mx ∈ {M1, . . . , Mk} in the subsequent periods. The resulting state must be either some
(s∗,M∗) ∈ Ω∗∆ or (s,M∗), which satisfies condition (12). Note that all dissolved teams in the
above operations form again and that there are more teams whose claims are consistent with s∗

after the operations. Repeat Case I until the process reaches some (s∗,M∗) ∈ Ω∗∆ .

Case II:
Suppose that the current state is (s,M∗), which satisfies (i),(iii), and (iv) and violates (ii) of Equa-
tion (12); that is, there exists J∗ ∈ M∗, such that ∑i∈J∗ si < v(J∗). Then, let J∗ form a coalition
with s′ in which s′i ≥ si, for all i ∈ J∗ and ∑i∈J∗ si = v(J∗); that is, J∗ redistributes its surplus in
an efficient way.

Repeat the above operation until there is no team J such that ∑i∈J si < v(J). The resulting state
will either be some (s∗,M∗) ∈ Ω∗∆ or be (s,M∗), satisfying the conditions of (12) in Case I.

Case III:
Suppose that the current state is (s,M) ∈ Ω, which satisfies (iv) and violates (iii) of Equation (12)
(i.e., ∑J∈M v(J) < Vmax). Let (s∗,M∗) ∈ Ω∗∆ . Observe that

∑
J∗∈M∗

v(J∗) > ∑
J∈M

∑
i∈J

si = ∑
J∗∈M∗

∑
i∈J∗

si.

Then, there exists J∗, such that v(J∗) > ∑i∈J∗ si. Choose some s′J∗ , such that ∑i∈J∗ s′i = v(J∗) and
s′i ≥ si for all i ∈ J∗.20 Let J∗ form a coalition with s′J∗ . LetM′ denote the resulting set of teams.
Observe that ifM′ 6=M∗, then the resulting state must fall into Case III. Any member i of J∗ will
earn s′i ≥ si. Any member i of a dissolved team will earn v({i}).

Repeat the above operation until the state becomes some (s,M∗). The resulting state will
either be some (s∗,M∗) ∈ Ω∗∆ or be (s,M∗), which satisfies the conditions of (12) in Case I.

Case IV:
Suppose that the current state is (s,M), which violates (iv) (i.e, si < v({i}) for some i ∈ N). For
each i, such that si < v({i}), let i form a singleton team and earn v({i}). The resulting state will

17If such Mj does not exist, then J weakly blocks s∗, which contradicts that s∗ is a strict-core allocation.
18If Mj \ J = ∅, then Mj ⊆ J, which implies that (Mj ∩ J) ∈ M∗. From condition (ii), we have that ∑i∈Mj∩J si =

v(Mj ∩ J) = ∑i∈Mj∩J s∗i > ∑i∈Mj∩J s′i , which implies that some member of (Mj ∩ J) will be strictly worse off by
deviating from s. This contradicts that J weakly blocks s.

19Every player i of Mj \ J forms a singleton team and earns his/her reservation surplus, v({i}). They accept s′′ with
positive probability. In addition, note that s′′ is feasible because Mj is chosen such that ∑i∈Mj∩J s∗i > ∑i∈Mj∩J s′i .

20s′i is not necessarily equal to s∗i ; that is, s′i may or may not be part of a strict-core allocation.
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fall either in Case I or in Case III.

Proof of Theorem 5.8. We prove that the first two claims of Lemma 5.2 still hold for (s,M) ∈
Ω∗∆ \ minΩ∗∆ . Then, observing that R(s, {M}) = u(smin) − u(smin − ∆) for (s,M) ∈ minΩ∗∆ , the
subsequent proof is the same as the “only if” part of the proof of Theorem 5.3. Thus, we omit the
subsequent proof.

Suppose that the current state is (s,M∗) ∈ Ω∗∆ \ minΩ∗∆ . Recall that I$(s) ∈ {i : si = s(1)}.
Let J$ ∈ M∗ denote a team that includes i$ ∈ I$(s). Choose i$ ∈ I$(s) and h ∈ J$, such that
sh ≤ si$ − 2∆. Such i$ and h exist. Otherwise, any transfer will result in at least one player
receiving at least s(1). Then, s(1) = smin and (s,M∗) ∈ minΩ∗∆ must hold, which is a contradiction.
Let s′ be such that s′i$

= s(1) − ∆, s′h = sh + ∆ for h ∈ J$, and s′i = si otherwise. Observe that s′

satisfies Inequality (2), and that the escape cost from (s,M∗) to (s′,M∗) is given similarly to that
of Equation (8). That is, we show that R(s, {M∗}) = u(s(1))− u(s(1)−∆). The resulting allocation
s′ is either one in which the richest player claims s(1) − ∆ or one in which the next richest players
claim s(1). This proves the first two claims of Lemma 5.2 for (s,M) ∈ Ω∗∆ \ minΩ∗∆ .

Proofs for Section 6

Proof of Lemma 6.2. Let (ssw, {N}) ∈ Ω∗∆ maximize the social welfare. Assume that (ssw, {N}) /∈
minΩ∗∗∆ . Let (s∗, {N}) ∈ minΩ∗∗∆ . Furthermore, let

x ∈ argmin
i∈N

ui(ssw
i )− ui(ssw

i − ∆), y ∈ argmin
i∈N

ui(s∗i )− ui(s∗i − ∆).

Here, x is a player with the lowest marginal utility in ssw, and y is such a player in s∗. Note that
ssw

x > s∗x , which is implied by

ux(ssw
x )− ux(ssw

x − ∆) < uy(s∗y )− uy(s∗y − ∆) ≤ ui(s∗i )− ui(s∗i − ∆) ∀i ∈ N.

Note too that s∗x ≥ v({x}) + ∆ implies that ssw
x ≥ v({x}) + 2∆.

Suppose that ∑i∈J ssw
i ≥ v(J) + 2∆, for all J ⊂ N with x ∈ J. Because ssw

x > s∗x , there exists
some j 6= x, such that ssw

j < s∗j . Observe that

ux(ssw
x )− ux(ssw

x − ∆) < uj(s∗j )− uj(s∗j − ∆) ≤ uj(ssw
j + ∆)− uj(ssw

j ).

A transfer of ∆ from x to j in ssw results in an allocation that is in the strict core and increases the
social welfare. This contradicts that ssw maximizes the social welfare. This completes the proof for
n = 2. This is because J = {x} is the only subset for n = 2 that satisfies J ⊂ N, with x ∈ J, and
ssw

x ≥ v({x}) + 2∆.
Suppose that ∑i∈Jsw ssw

i = v(Jsw) + ∆ for some Jsw ⊂ N, with x ∈ Jsw. Note that |Jsw| = 2. Note
too that such Jsw must be unique. If Jsw is not unique, any transfer from x to another player will
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result in an allocation that is not in the strict core. This means that s∗, where s∗x < ssw
x , cannot be

in the strict core, which is a contradiction.
Now, observe that ux(ssw

x )− ux(ssw
x − ∆) ≥ ui(ssw

i + ∆)− ui(ssw
i ) for all i ∈ Jsw \ {x}. Other-

wise, a transfer from x to some i ∈ Jsw should increase the social welfare. Because s∗ is a strict-core
allocation, ∑i∈Jsw s∗i ≥ v(Jsw) + ∆. Then, ssw

x > s∗x implies that there exists z ∈ Jsw, who must be
better off in s∗ than ssw (i.e., s∗z > ssw

z ). However, this implies that

uz(s∗z )− uz(s∗z − ∆) ≤ uz(ssw
z + ∆)− uz(ssw

z ) ≤ ux(ssw
x )− ux(ssw

x − ∆) < uy(s∗y )− uy(s∗y − ∆),

which contradicts that player y has the lowest marginal utility in s∗.
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