1	An Improved Algorithm for Estimating the Secchi Disk Depth from Remote
2	Sensing Data Based on the New Underwater Visibility Theory
3	Dalin Jiang ¹ , Bunkei Matsushita ^{2*} , Setiawan Fajar ¹ , Augusto Vundo ¹
4	¹ Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki,
5	305-8572, Japan
6	² Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572,
7	Japan
8	
9	
10	
11	
12	
13	Submittal date: April 1, 2019
14	*Corresponding Author
15	Phone: 81-29-853-7190
16	Fax: 81-29-853-7190
17	Email: matsushita.bunkei.gn@u.tsukuba.ac.jp
18	

19An Improved Algorithm for Estimating the Secchi Disk Depth from Remote20Sensing Data Based on the New Underwater Visibility Theory

21

22 Abstract

The Secchi disk depth (Z_{SD}) is a widely used parameter for evaluating water clarity. Here we 2324propose an improved algorithm, which is based on a new underwater visibility theory, for retrieving more accurate Z_{SD} from remote sensing reflectance (R_{rs}) in various waters. Two 25improvements were carried out in the new algorithm. First, we used a hybrid quasi-analytical 26algorithm (QAA hybrid) instead of the sixth version of QAA (QAA v6) for retrieving more 27accurate total absorption coefficient $(a(\lambda))$ and total backscattering coefficient $(b_h(\lambda))$ even in 2829turbid inland waters. Second, we used a dynamic K_T/K_d ratio (i.e., ratio of diffuse attenuation coefficient of upwelling radiance and diffuse attenuation coefficient of downwelling irradiance) 30 instead of using the fixed ratio (i.e., 1.5). The results obtained from in situ R_{rs} show that the 31improved Z_{SD} estimation algorithm gave more accurate Z_{SD} estimations, with the root mean 32square error (RMSE) reduced from 0.2 to 0.1 in log10 unit, mean absolute percentage error 33 (MAPE) reduced from 39 % to 20 % (N=178 with in situ Z_{SD} values between 0.3 – 20.8 m). We 34then applied the improved Z_{SD} estimation algorithm to the 2003–2012 MERIS images for Lake 35Kasumigaura to further confirm the performance of the improved Z_{SD} estimation algorithm. The 36

37	results obtained from 19 matchups demonstrate that the estimated Z_{SD} matched well with the in
38	situ $Z_{SD},$ with the RMSE of 0.11 m and the MAPE of 15%. The improved Z_{SD} estimation
39	algorithm shows a potential to estimate more accurate Z_{SD} values from remote sensing data in
40	various waters.
41	Keywords: Secchi disk depth, quasi-analytical algorithm, remote sensing, various waters, hybrid
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	

55 1. Introduction

The Secchi disk depth (Z_{SD}), also termed 'water clarity' or 'transparency' in aquatic 56sciences, is a direct record of water optics and an important indicator of water quality (Wernand 57et al., 2010). Therefore, the Z_{SD} has been a routine measurement in field survey of aquatic 58environments using a called Secchi disk since the 1860s (Secchi, 1864). Over a century later, the 5960 remote sensing technique has also been widely used for retrieving the Z_{SD} values because of the technique's large area coverage and rapid data acquisition (Yarger and McCauley, 1975; Carlson, 611977). Generally, there are two approaches for retrieving the Z_{SD} from remote sensing data: 62 63 empirical and semi-analytical approaches. The empirical approach usually estimates the Z_{SD} by directly carrying out a regression analysis between the remote sensing data and in situ Z_{SD} 64 65 measurements (e.g., Giardino et al., 2001; Kloiber et al., 2002; Kratzer et al., 2003; Chen et al., 2007; Olmanson et al., 2008; Kabbara et al., 2008; Kratzer et al., 2008; Zhao et al., 2011; 66 Olmanson et al., 2016). 67

In contrast, the semi-analytical approach retrieves the Z_{SD} based on an underwater visibility theory (Doron et al., 2011; Fukushima et al., 2016, 2018; Alikas and Kratzer, 2017; Rodrigues et al., 2017). Compared to the empirical approach, the semi-analytical approach has two advantages: (1) a clearer mechanism and thus more reliable results; and (2) this approach often does not need in situ data for recalibrating the retrieval algorithm. It can thus be considered

that the semi-analytical approach would be more useful for monitoring the Z_{SD} in various water

bodies, especially for those that lack in situ measurements.

74

Before 2015, semi-analytical algorithms for Z_{SD} retrieval were based mainly on an 75underwater visibility theory proposed by Duntley (1952) (hereafter referred to as the 'classical 76theory'). According to the classical theory, the Z_{SD} is inversely proportional to the sum of the 77beam attenuation coefficient (c, m^{-1}) and the diffuse attenuation coefficient of downwelling 78irradiance (K_d, m^{-1}) within the visible domain (Tyler, 1968; Preisendorfer, 1986). However, Lee 79 et al. (2015a, 2018) pointed out that there are some drawbacks or mistakes in the classical theory, 80 81 which has been used for more than 60 years. First, the critical assumption, i.e., that the radiance distribution over the target is equal to the radiance distribution over the background, may not be 82 83 valid for water bodies because a 30-cm Secchi disk cannot be treated as a point at a distance shorter than tens of meters. Second, the use of full visible domain to determine a Z_{SD} value is not 84 appropriate because how far the human eye-brain system is able to see should depend on 85 information from a visible wavelength with maximum transmittance in a water body. Third, the 86 use of relative difference between water and Secchi disk just match the sharpness of an object, 87 which is not the case of using a 30-cm Secchi disk to measure Z_{SD} within tens of meters. 88 To overcome the above problems, Lee et al. (2015a) proposed a new theory for underwater 89

90 visibility (hereafter referred to as the 'new theory'). Based on this new theory, Lee et al. also

91	developed a semi-analytical algorithm for retrieving the Z_{SD} from remote sensing data (hereafter
92	referred to as the 'Lee15'). The Lee15 algorithm is comprised of three main steps: (1) retrieving
93	the total absorption coefficient $a(\lambda)$ and the total backscattering coefficient $b_b(\lambda)$ from the
94	remote sensing reflectance $R_{rs}(\lambda)$ by using the sixth version of the quasi-analytical algorithm
95	(QAA_v6, Lee et al., 2002; IOCCG, 2014); (2) calculating the $K_d(\lambda)$ from $a(\lambda)$ and $b_b(\lambda)$ as
96	well as the corresponding solar zenith angle by using a semi-analytical model developed by Lee
97	et al. (2005, 2013); and (3) estimating the Z_{SD} from the selected minimum K_d and the
98	corresponding R_{rs} at the visible bands.
99	However, several research groups have reported that the QAA_v6 or its previous version
100	(QAA_v5) often failed in turbid inland waters (Le et al., 2009; Yang et al., 2013; Huang et al.,
101	2014; Mishra et al., 2014; Watanabe et al., 2016; Wang et al., 2017). It can be speculated that the
102	estimation errors of $a(\lambda)$ and $b_b(\lambda)$ will be propagated to the estimations of $K_d(\lambda)$ and then the
103	final estimations of the Z_{SD} . Some of the above-cited groups also sought to modify the QAA_v6
104	or QAA_v5 for obtaining more accurate $a(\lambda)$ and $b_b(\lambda)$ values in turbid inland waters. It is
105	thus necessary to integrate these new endeavors into the Lee15 algorithm to improve its

- 106 applicability for various water bodies around the world.
- 107 Another potential error source in the Lee15 algorithm is the assumption of a constant ratio 108 of the upwelling radiance diffuse attenuation coefficient (K_T) and K_d . Empirically, the ratio value

109	of 1.5 was used in the Lee15 algorithm (i.e., $K_T = 1.5K_d$). However, a wide range of ratios have
110	been reported (0.5–2.0). For example, Philpot (1989) pointed out that the reasonable range for
111	K_T/K_d was from 0.5 to 2. Maritorena et al. (1994) reported that K_T/K_d ranged from 1.02 to
112	1.66 based on simulations. A K_T/K_d range of 1.4–1.7 can also be estimated when the solar
113	zenith angle $\theta = 0$ degrees according to Lee et al. (1994). It can thus be speculated that using a
114	fixed K_T/K_d value in a Z _{SD} estimation may lead to errors, and more realistic K_T/K_d ratios are
115	needed to further improve the performance of the Lee15 algorithm.
116	We therefore conducted the present study to: (1) improve the Lee15 algorithm for
117	estimating the Z_{SD} values in various waters by integrating different types of QAAs and dynamic
118	K_T/K_d ratios into the original algorithm, and (2) evaluate the performance of the improved
119	Lee15 algorithm using in situ data collected from several Japanese lakes and SeaBASS dataset as
120	well as MERIS (MEdium Resolution Imaging Spectrometer) data over Lake Kasumigaura,
121	Japan.
122	

- 123 **2.** Study Area and Data Collection
- 124 2.1. Study area

The study area of this research included 8 lakes in Japan (Fig. 1a) and coastal waters in
United States. The 8 Japanese lakes include Lakes Biwa, Kasumigaura, Akan, Suwa, Motosu, Sai,

127	Unagi, and Shirakaba. The water quality parameters of these lakes varied widely, with Z_{SD} values
128	from 0.4 m to 16.4 m, chlorophyll-a concentrations ranging from 0.5 mg/m ³ to 148.6 mg/m ³ , and
129	total suspended solids (TSS) ranging from 0.4 g/m^3 to 45.6 g/m^3 (Table 1). The coastal waters in
130	United States include San Francisco Bay and the northern Gulf of Mexico (Fig.1c). In total 129
131	in situ-measured R_{rs} spectra with corresponding Z_{SD} were collected from the SeaBASS dataset,
132	and the Z_{SD} values ranged from 0.3 m to 20.8 m.
133	Lake Kasumigaura, with a surface area of 220 km ² and a mean water depth of 4 m, was
134	also used for MERIS data analyses (Fig. 1b). Its Z_{SD} values ranged from 0.4 m to 1.2 m. The
135	chlorophyll-a concentration ranged from 12.0 mg/m^3 to 148.6 mg/m^3 and the TSS ranged from
136	4.1 g/m ^{3} to 45.6 g/m ^{3} in this lake. There are 10 routine monitoring sites in Lake Kasumigaura
137	with a monitoring frequency of 1 month.

Lake name	Area (km ²)	Maximum depth (m)	Z _{SD} (m)	Chl-a (mg/m ³)	TSS (g/m ³)	Number of data
Biwa	670.3	103.8	3.2-9.3	0.7-2.9	0.6-2.0	15
Kasumigaura	220.0	11.9	0.4-1.2	12.0-148.6	4.1-45.6	77
Akan	13.0	44.8	6.7	0.8	1.5	1
Suwa	12.9	7.6	0.9-1.9	9.8-29.4	4.6-9.6	16
Motosu	4.7	121.6	16.4	0.6	0.4	1
Sai	2.1	71.7	6.8-7.1	1.8	1.3	2
Unagi	1.2	55.8	12.8	0.5	0.4	1
Shirakaba	0.4	9.1	3.5	2.3	2.8	1

Table 1. Area, depth, water quality, and number of collected data of 8 Japanese studied lakes

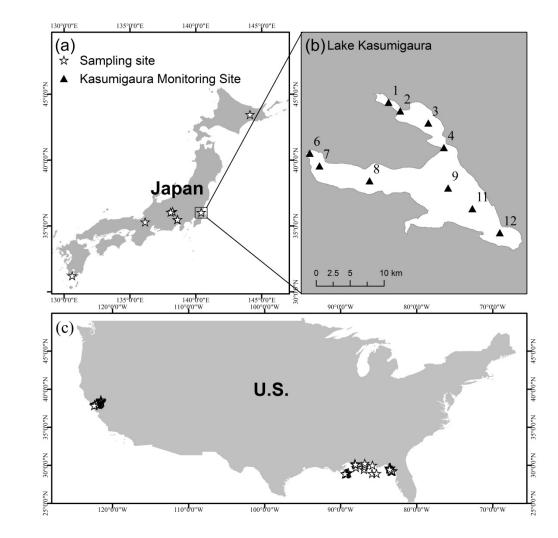
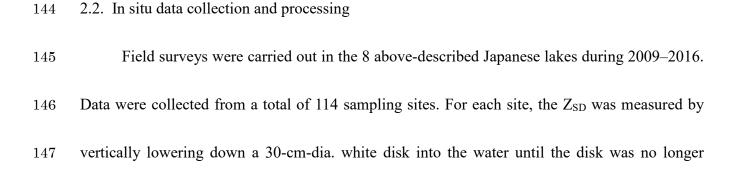


Fig. 1. Study area. (a) Field samplings were carried out in 8 lakes in Japan. (b) Lake
Kasumigaura (only western part is shown) and its 10 routine monitoring sites. (c) Sampling sites
of data collected from SeaBASS.



visible (or lower a Secchi disk out of sight and then raise the disk until it becomes visible). At the same time, the radiance of skylight (L_s), the radiance from a standard gray board (L_g), and the total upwelling radiance from the water (L_t) were measured using a FieldSpec[®] HandHeld spectroradiometer (ASD Inc., Bloulder, CO, USA) between the local time 9:30 to 14:00 (three measurements between 14:00 and 16:00), with the sensor zenith angle of 40° and azimuth angle of 135° from the sun.

154 Remote sensing reflectance (R_{rs}) was then calculated using the following equation:

155
$$R_{rs} = (L_t - \rho L_s) / \left(\frac{\pi}{R_g} L_g\right) - \Delta$$
(1)

156where ρ is the skylight reflectance (0.028 when the wind speed was <5 m/sec, Mobley, 1999), and R_g is the reflectance of the gray board; Δ is the contribution of the residual reflected skylight, 157158which was calculated from the median R_{rs} value between the wavelengths of 950 and 1000 nm for turbid water and 800-850 nm for clear water. This is because the absorption coefficient of 159pure water is extremely high (it can reach 48 m⁻¹) at the wavelengths of 950–1000 nm (Kou et 160 al., 1993), and thus the R_{rs} at these wavelengths can be reasonably assumed as 0 sr⁻¹. For the R_{rs} 161spectra obtained from SeaBASS, we only downloaded those data marked as 'final' status, which 162indicate the R_{rs} spectra have been preprocessed (including the correction of residual reflected 163skylight). The quality of all R_{rs} spectra (including 114 spectra from Japanese lakes and 129 164spectra from SeaBASS) was checked using a method proposed by Wei et al. (2016), which is a 165

quality assurance (QA) system for providing a score between 0 (unusable) and 1 (perfect) to each R_{rs} spectrum to objectively evaluate its quality. In this study, only the R_{rs} spectra with quality scores larger than 0.8 were used for Z_{SD} estimations. Figure 2 shows the final remained R_{rs} spectra (84 from Japanese lakes, 94 from SeaBASS). All selected R_{rs} spectra were then converted

170 to MERIS bands based on the MERIS Spectral Response Functions.

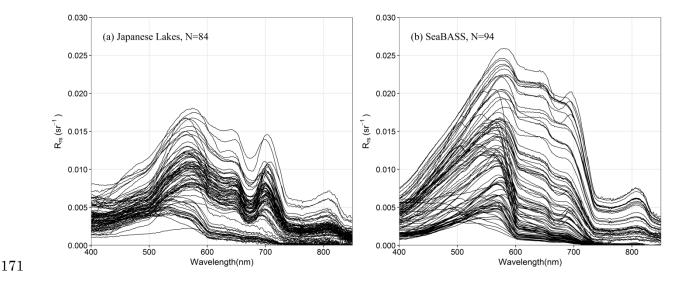


Fig.2. *R_{rs}* spectra used in this study. (a) 84 *R_{rs}* spectra collected from 8 lakes in Japan. (b) 94 *R_{rs}*spectra collected from SeaBASS.

For 8 Japanese lakes, water samples were collected and kept in ice boxes, and taken to the laboratory immediately after finishing the collection. The absorption coefficients of phytoplankton $(a_{ph}(\lambda))$, tripton $(a_{tr}(\lambda))$ and CDOM $(a_{CDOM}(\lambda))$ were measured following the NASA protocols (Mitchell et al., 2002). The total absorption coefficient $a(\lambda)$ was calculated as the sum of $a_{ph}(\lambda)$, $a_{tr}(\lambda)$, $a_{CDOM}(\lambda)$, and the absorption coefficient of pure water, i.e., 179 $a_w(\lambda)$. The values of $a_w(\lambda)$ were taken from Lee et al. (2015b), Pope and Fry (1997), and Kou 180 et al. (1993). In total, $a(\lambda)$ values at 52 sites from Lakes Suwa and Kasumigaura were 181 collected.

In several Japanese lakes (Lakes Shirakaba, Unagi, Sai, Biwa, Suwa and Kasumigaura), the downward irradiance (E_d) at 443 nm, 555 nm, and 669 nm at different depths of the water column was also measured using a Multispectral Radiometer (Satlantic, Halifax, Canada). These data were used to obtain the measured K_d and then compared with R_{rs} -derived K_d at these wavelengths. In total, the measured K_d values at 99 sites were collected.

We also obtained the in situ Z_{SD} data measured between 2003 and 2012 from the Lake 187Kasumigaura Database, which was published by the National Institute for Environmental Studies, 188Japan (NIES, 2016; referred to hereafter as the 'NIES-dataset'). This database provides monthly 189Z_{SD} values at 10 sites in Lake Kasumigaura (the monitoring sites shown in Fig. 1b). We used 190191these data to evaluate the performance of the proposed algorithm by using actual satellite images. For more appropriate comparison, we corrected variations of visibility due to changes in the 192solar zenith angle for these in situ-measured Z_{SD} values using a method proposed by Verschuur 193194(1997).

195 2.3. Satellite image pre-processing

196 We used MERIS data in this study because of its higher spatial (300 m) and temporal (3

days') resolutions. All available MERIS images covering Lake Kasumigaura from 2003 to 2012
were downloaded from the European Space Agency (ESA, https://www.esa.int/ESA). The
downloaded images were first clipped to the Lake Kasumigaura area, and then radiometric
correction was performed to remove the smile-effect.

We used the Case-2 Regional Processor in the BEAM 5.0 Earth Observation Toolbox and Development Platform (Brockmann Consult, Geesthacht, Germany) to perform atmospheric correction. Clouds, cloud shadows, cloud buffers and coastal lines were then detected using the Idepix algorithm in the Sentinel Application Platform 6.0 (SNAP). Finally, the pixels with failed atmospheric correction, clouds, cloud shadows, cloud buffers, or land and coastal lines were masked out. A total of 200 images remained for the Z_{SD} estimation.

For all MERIS-derived Z_{SD} values, we firstly corrected variations of visibility due to changes in the solar zenith angle using Verschuur's method (Verschuur, 1997). We then averaged all daily estimated Z_{SD} values in the same month to generate monthly estimated Z_{SD} values. Finally, a temporal trend analysis was carried out for both monthly measured and estimated Z_{SD} values during the study period using a linear regression method, which has been widely used in previous studies (e.g., Shang et al., 2016).

Matchups were generated to compare MERIS-derived Z_{SD} values and the in situ-measured
 Z_{SD} values from NIES-dataset (acquired on the same day). A 3×3 window was used to extract the

215 estimated Z_{SD} values from the MERIS images, and we used the averaged Z_{SD} estimations for the

216 comparison to mitigate effects due to imperfect geometric corrections.

217

218 **3.** Development and Assessment of the ZsD Retrieval Algorithm

219 3.1. The original Lee15 algorithm

The original Lee15 algorithm contains three main steps. First, QAA_v6 is used to retrieve $a(\lambda)$ and $b_b(\lambda)$ from $R_{rs}(\lambda)$. In the QAA_v6, if $R_{rs}(670) < 0.0015 \text{ sr}^{-1}$, 560 nm is used as the reference band (i.e., QAA_v5), otherwise the reference band is shifted to 670 nm. Second, $K_d(\lambda)$ is estimated from $a(\lambda)$ and $b_b(\lambda)$ using the following equation (Lee et al., 2005, 224 2013):

225
$$K_d(\lambda) = (1 + 0.005\theta)a(\lambda) + 4.259 \left(1 - 0.265\eta_w(\lambda)\right) \left(1 - 0.52e^{-10.8a(\lambda)}\right) b_b(\lambda)$$
(2)

where θ is the solar zenith angle, $\eta_w(\lambda)$ is the ratio of $b_{bw}(\lambda)$ (the backscattering coefficient of pure water, Morel, 1974; Zhang et al., 2009) and $b_b(\lambda)$. Finally, the Z_{SD} is estimated from $K_d(\lambda)$ and the corresponding $R_{rs}(\lambda)$ using the following equation based on the new underwater visibility theory (Lee et al., 2015a):

230
$$Z_{SD} = \frac{1}{2.5 \operatorname{Min}(K_d(\lambda))} \ln\left(\frac{|0.14 - R_{rs}^{PC}|}{c_t^r}\right)$$
(3)

where $Min(K_d(\lambda))$ is the minimum K_d value among the visible bands, R_{rs}^{PC} is the corresponding R_{rs} at the band with the minimum K_d , and C_t^r is the contrast threshold for sighting a white disk (i.e., 0.013 sr⁻¹). The coefficient of 2.5 was obtained under an empirical assumption of $K_T = 1.5K_d$.

3.2. Improving the Lee15 algorithm for Z_{SD} retrieval in a variety of water bodies

We carried out two improvements for the original Lee15 algorithm. First, by considering the shortcoming of QAA_v6 in turbid waters, we proposed the use of another QAA, which was specifically developed for turbid inland waters by Yang et al. (2013), to estimate $a(\lambda)$ and $b_b(\lambda)$ in this type of waters (hereafter referred to as the 'QAA_T'). We selected the QAA_T algorithm in this study because all of the equations in the QAA_T are semi-analytical or analytical equations without any in situ data used for recalibration (Yang et al., 2013).

For clear waters, we still used QAA_v5 because of its good performance in this type of waters (Lee et al., 2002; Fukushima et al., 2016). We adapted the maximum chlorophyll-a index (MCI) originally developed by Gower et al. (2005) for switching the QAA_v5 and QAA_T. The modified MCI is defined as (Matsushita et al., 2015):

246
$$MCI = R_{rs}(709) - R_{rs}(665) - \left[\frac{(709-665)}{(754-665)} \left(R_{rs}(754) - R_{rs}(665)\right)\right]$$
(4)

where $R_{rs}(665)$, $R_{rs}(709)$ and $R_{rs}(754)$ are the remote sensing reflectance at 665 nm, 709 nm and 754 nm, respectively. According to Matsushita et al. (2015), MCI = 0.0016 sr⁻¹ was used to distinguish clear and turbid waters. We named this blended QAA as 'QAA_hybrid', and its main steps are summarized in Table 2.

Step	Property	Deriv	vation
1	$r_{rs}(\lambda)$	$r_{rs}(\lambda) = R_{rs}(\lambda) / ($	$\left(0.52 + 1.7R_{rs}(\lambda)\right)$
2	$u(\lambda)$	$u(\lambda) = -0.089 + \sqrt{0.00000000000000000000000000000000000$	$\frac{089^2 + 4 \times 0.125 r_{rs}(\lambda)}{2 \times 0.125}$
3	МСІ	$MCI \le 0.0016 \text{ sr}^{-1} (QAA_v5)$	$MCI > 0.0016 \text{ sr}^{-1} (QAA_T)$
4	$a(\lambda_0)$	$x = \log\left(\frac{r_{rs}(443) + r_{rs}(490)}{r_{rs}(560) + 5\frac{r_{rs}(670)}{r_{rs}(490)}r_{rs}(670)}\right)$	$a(754) = a_w(754)$
		$a(560) = a_w(560) + 10^{-1.146 - 1.366x - 0.469x^2}$	
5	$b_{bp}(\lambda_0)$	$b_{bp}(560) = \frac{u(560) \times a(560)}{1 - u(560)} - b_{bw}(560)$	$b_{bp}(754) = \frac{u(754) \times a(754)}{1 - u(754)} - b_{bw}(754)$
6	$b_{bp}(\lambda)$	$Y = 2.0 \left(1 - 1.2 \exp\left(-0.9 \frac{r_{rs}(443)}{r_{rs}(560)} \right) \right)$	$Y = -372.99\beta^2 + 37.286\beta + 0.84$ $\beta = \log[u(754)/u(779)]$
		$b_{bp}(\lambda) = b_{bp}(560) \left(\frac{560}{\lambda}\right)^{Y}$	$b_{bp}(\lambda) = b_{bp}(754) \left(\frac{754}{\lambda}\right)^{Y}$
7	$a(\lambda)$	$a(\lambda) = (1 - u(\lambda)) (b_{l})$	$b_{bw}(\lambda) + b_{bp}(\lambda) \Big) / u(\lambda)$

251Table 2. Main steps of the QAA hybrid

Our second improvement for the Lee15 algorithm was to develop another algorithm for 252estimating a more realistic ratio of K_T and K_d in various waters. According to previous studies, 253the subsurface remote sensing reflectance (r_{rs}) at optically shallow waters can be expressed as 254follows (Philpot, 1989; Maritorena et al., 1994; Lee et al., 1998): 255

256
$$r_{rs} \approx r_{rs}^{dp} \{1 - A_0 \exp[-(K_d + K_u^C)H]\} + A_1 \rho \exp[-(K_d + K_u^B)H]$$
(5)

where r_{rs}^{dp} is the r_{rs} for optically deep waters, A_0 is 1.0, and A_1 is $1/\pi$ for a lambertian bottom, 257 K_u^C is the diffuse attenuation coefficient of upwelling radiance from the water column scattering, 258 K_u^B is the diffuse attenuation coefficient of upwelling radiance from the bottom, ρ is the bottom 259reflectance, and H is the bottom depth. The first term on the right side of the equation refers to 260

the reflectance from the water column, and the second term on the right refers to the reflectance from the bottom. According to Lee et al. (1999) and Barnes et al. (2018), K_d and K_u^B can be estimated using the following equations:

264
$$K_d = D_d \alpha \approx [1/\cos(\theta_w)]\alpha \tag{6}$$

265
$$K_u^B = D_u^B \alpha \approx [1.04(1+5.4u)^{0.5}]\alpha$$
(7)

where θ_w is the subsurface solar zenith angle, α is defined as $(a + b_b)$, and u is defined as $b_b/(a + b_b)$. If we treat the bottom of the water as the Secchi disk, and assume that the disk is a lambertian object, then the second term on the right side of Eq. (5) becomes the light that comes from the Secchi disk. Therefore, the K_u^B can be considered to be the K_T in the new Z_{SD} theory (i.e., $K_T = K_u^B$). By converting the subsurface solar zenith angle θ_w to the above surface solar zenith angle θ , and combining the Eqs. (6) and (7), the ratio of K_T and K_d can be expressed as: $K_T/K_d = \frac{1.04(1+5.4u)^{0.5}}{(-1.02)^{0.5}}$ (8)

$$1/(1-\frac{\sin(O)}{RI^2})$$

273 where *RI* is the refractive index value of the water (1.34, Lee et al., 1998). By replacing the fixed

value of 2.5 in Eq. (3) with $(1+K_T/K_d)$, the Lee15 algorithm can be modified as:

275
$$Z_{SD} = \frac{1}{(1 + K_T / K_d) \cdot \operatorname{Min}(K_d(\lambda))} \ln\left(\frac{|0.14 - R_{rs}^{PC}|}{C_t^r}\right)$$
(9)

276 3.3. Accuracy assessment

We used the root mean square error (RMSE), the mean absolute percentage error (MAPE), and bias to evaluate the performance of the improved Lee15 algorithm. The equations are as 279 follows:

280
$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (X_{estimated,i} - X_{measured,i})^2}{N}}$$
(10)

281
$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{X_{estimated,i} - X_{measured,i}}{X_{measured,i}} \right| \cdot 100\%$$
(11)

282
$$Bias = \frac{1}{N} \sum_{i=1}^{N} (X_{estimated,i} - X_{measured,i})$$
(12)

where $X_{estimated}$ is the estimated parameter (e.g., *a*, *K_d* or Z_{SD}), $X_{measured}$ is the corresponding in situ measurement, and *N* is the number of data. The determination coefficient (R²) was also calculated for reference.

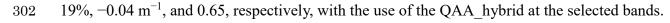
286

287 4. **Results**

288 4.1. The *a*, K_d and Z_{SD} values estimated from in situ R_{rs} spectra

289	Figure 3 shows the results of our comparisons of the derived $a(\lambda)$ and in situ $a(\lambda)$ at all
290	MERIS visible bands. It can be seen that the QAA_v6 gave larger underestimations of $a(\lambda)$ at
291	all visible bands, with RMSE=1.82 m ⁻¹ , MAPE = 59% and Bias = -1.29 m ⁻¹ (Fig. 3a). In
292	contrast, the QAA_hybrid showed better retrievals of $a(\lambda)$ at all visible bands with
293	RMSE = 0.77 m ⁻¹ , MAPE = 22% and Bias = -0.30 m ⁻¹ (Fig. 3b). The determination coefficient
294	was also increased from 0.66 to 0.79. However, some retrieved absorption coefficients at 443 nm
295	(data collected from Lake Kasumigaura on April 18, 2016) still showed slight underestimations.
296	We checked the bands corresponding to the minimum K_d and found that 443 nm was not

selected for Z_{SD} estimations. If we compare only the retrieved $a(\lambda)$ and the in situ $a(\lambda)$ at the selected bands (i.e., the band with minimum K_d in visible domain and finally used for Z_{SD} estimations), no obvious underestimations or overestimations from the use of QAA_hybrid were observed (Fig. 3d), whereas the QAA_v6 still showed larger underestimated $a(\lambda)$ at the selected bands (Fig. 3c). The values of RMSE, MAPE, Bias, and R² were calculated as 0.23 m⁻¹,



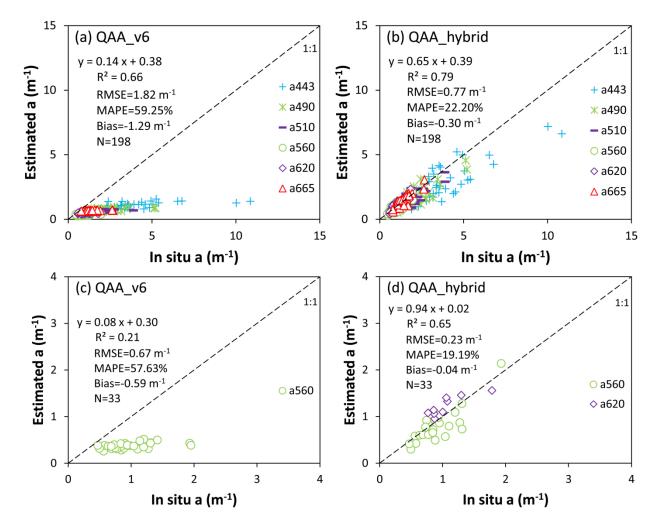


Fig. 3. Comparison between in situ absorption coefficients and estimated absorption coefficients,

estimated using (a) QAA_v6 at all MERIS visible bands, (b) QAA_hybrid at all MERIS visible bands, (c) QAA_v6 only at the bands corresponding to the minimum K_d values, and (d) the QAA_hybrid only at the bands corresponding to the minimum K_d values.

308

Figure 4 illustrates the results of our comparisons of the retrieved K_d and the in 309 situ-measured K_d at 443, 555 and 669 nm. It can be seen that using $a(\lambda)$ and $b_b(\lambda)$ estimated 310 from the QAA v6 resulted in large underestimations of K_d (RMSE = 2.33 m⁻¹, MAPE = 54% and 311Bias = -1.73 m⁻¹, Fig. 4a), and these underestimations were largely improved by using the 312QAA hybrid instead of QAA v6 (RMSE = 0.93 m^{-1} , MAPE = 24% and Bias = -0.44m^{-1} , Fig. 3134b). We also compared only the K_d at the bands finally used for the Z_{SD} estimations (i.e., the 314minimum K_d) and the corresponding in situ-measured K_d ; similar improvements were found by 315comparing the use of $a(\lambda)$ and $b_b(\lambda)$ obtained from QAA_v6 with those obtained using the 316317QAA hybrid (Fig. 4c, d). It should be noted that the smaller numbers of data in Fig. 4c and Fig. 4d are because the estimated minimum K_d values were found at wavelengths without in situ 318measurements for some sampling sites. 319

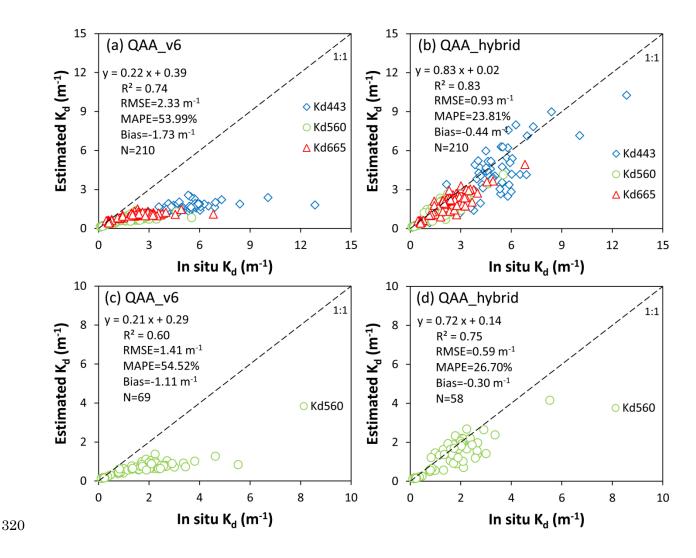
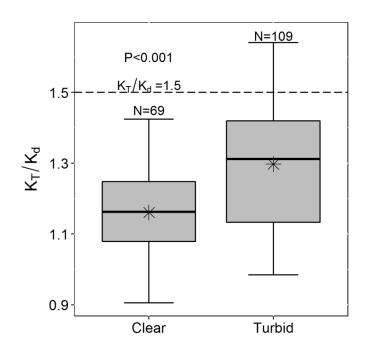


Fig.4. Comparison between in situ-measured K_d and estimated K_d at bands of 443 nm, 560 nm and 665 nm. (a) Estimated $K_d(\lambda)$ using $a(\lambda)$ and $b_b(\lambda)$ from QAA_v6. (b) Estimated $K_d(\lambda)$ using $a(\lambda)$ and $b_b(\lambda)$ from the QAA_hybrid. (c) Only the estimated K_d at the minimum K_d bands using $a(\lambda)$ and $b_b(\lambda)$ from QAA_v6. (d) Only the estimated K_d at the minimum K_d bands using $a(\lambda)$ and $b_b(\lambda)$ from the QAA_hybrid.

327 Figure 5 shows the estimated K_T/K_d ratios obtained using Eq. (8) for all available data

(N=178). The results showed that the K_T/K_d ratios ranged from 0.91 to 1.64 with an average value of 1.24. These ratios were different from the fixed value of 1.5 used in the original Lee15 algorithm. In addition, the K_T/K_d ratios of clear waters (i.e., Z_{SD} values ≥ 2 m) were significantly lower than those of turbid waters (i.e., Z_{SD} values < 2 m), with a mean K_T/K_d ratio of 1.16 in clear waters and 1.30 in turbid waters (P < 0.001).



333

Fig. 5. Comparison of estimated K_T/K_d values between clear (Z_{SD} values ≥ 2 m) and turbid (Z_{SD} values ≤ 2 m) waters. *Black star:* The mean K_T/K_d ratio. *Dashed line:* $K_T/K_d = 1.5$, which was used in the original Lee15 algorithm.

337

Figure 6 shows the results of our comparisons of the estimated and in situ-measured Z_{SD} values. The results showed that: (1) the original Lee15 algorithm clearly underestimated the Z_{SD}

340	in clear waters (solid symbols) and overestimated the Z _{SD} in turbid waters (hollow symbols),
341	with the RMSE of 0.18 in log10 unit and MAPE of 39% (Fig. 6a); (2) the overestimations in
342	turbid waters were improved by using the QAA_hybrid instead of QAA_v6, with a reduced
343	RMSE of 0.14 in log10 unit and MAPE of 23% (Fig. 6b; hollow symbols); (3) the
344	underestimations in clear waters were much improved by using dynamic K_T/K_d ratios instead
345	of the constant ratio of 1.5, even with slightly increased RMSE of 0.19 in log10 unit and MAPE
346	of 45% (Fig. 6c; solid symbols); and (4) both overestimations and underestimations were
347	improved by combining the QAA_hybrid and dynamic K_T/K_d ratios, with a reduced RMSE of
348	0.11 in log10 unit and MAPE of 20% (Fig. 6d). The slope and intercept values of the regression
349	lines were also changed from 0.70 to 0.89 and from 0.59 to 0.13, respectively.

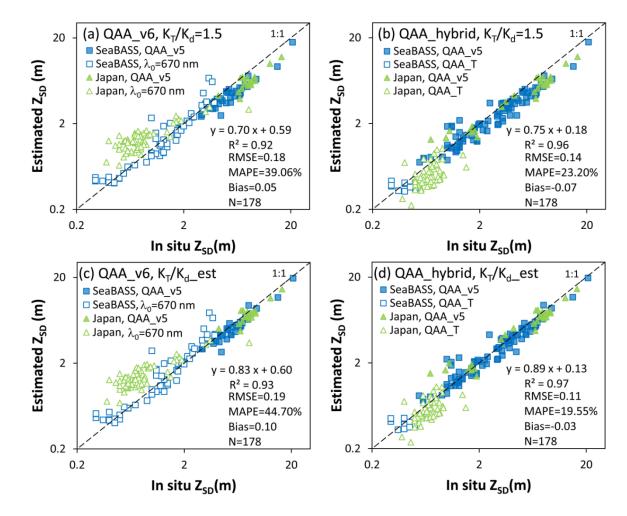


Fig. 6. Comparisons between in situ measured Z_{SD} values and estimated Z_{SD} values from in situ 351 $R_{rs.}$ (a) Estimated Z_{SD} based on QAA_v6 with $K_T/K_d = 1.5$ (i.e., original Lee15 algorithm). 352(b) Estimated Z_{SD} based on the QAA_hybrid but still with $K_T/K_d = 1.5$. (c) Estimated Z_{SD} 353based on QAA_v6 but with dynamic K_T/K_d ratios (K_T/K_d_est) . (d) Estimated Z_{SD} based on 354the QAA_hybrid with dynamic K_T/K_d ratios (i.e., the improved Lee15 algorithm). Solid 355 symbols represent the Z_{SD} estimated using 560 nm as reference band in both QAA v6 and 356QAA hybrid (i.e., QAA v5), and hollow symbols represent the Z_{SD} estimated using 670 nm as 357reference band in QAA v6 and using 754 nm as reference band in QAA hybrid (i.e., QAA T). 358

360 4.2. Z_{SD} estimated from MERIS data in Lake Kasumigaura

361	Figure 7 shows the comparisons of the estimated Z_{SD} values from actual MERIS data and
362	the in situ-measured Z_{SD} values for 19 matchups (with time windows \leq 4 hours and differences
363	of solar zenith angles \leq 9 degree). Similar to the results showed in Figure 6, the improved Lee15
364	algorithm achieved the best performance with the smallest RMSE of 0.11 m, MAPE of 15%, and
365	the highest determination coefficient of 0.58 (Fig. 7d). The original Lee15 algorithm
366	overestimated the Z_{SD} in Lake Kasumigaura (Fig. 7a). These overestimations were improved
367	mainly by using the QAA_hybrid instead of QAA_v6 (Fig. 7b, with the RMSE reduced from
368	0.54 m to 0.15 m and the MAPE reduced from 76% to 20%). Figure 7c shows that only using the
369	dynamic K_T/K_d ratios instead of the constant ratio of 1.5 resulted in decreased estimation
370	accuracy with the largest RMSE (0.72 m) and MAPE (99%) values, but improved determination
371	coefficient (from 0.49 to 0.54).

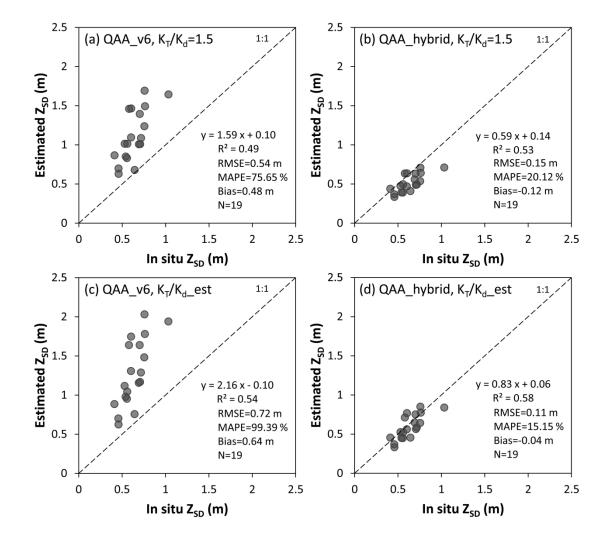


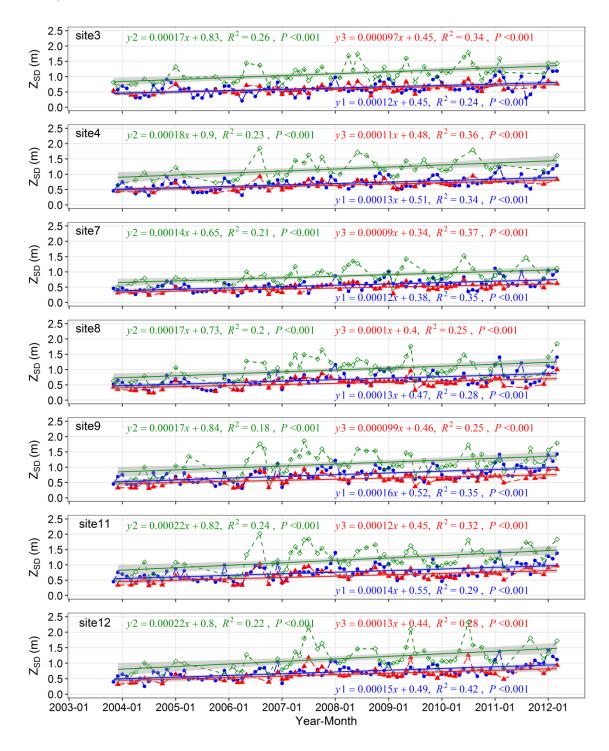
Fig. 7. Comparisons of the in situ Z_{SD} and estimated Z_{SD} values from MERIS data. (a) Estimated Z_{SD} using QAA_v6 with $K_T/K_d = 1.5$ (i.e., the original Lee15 algorithm). (b) Estimated Z_{SD} using the QAA_hybrid but still with $K_T/K_d = 1.5$. (c) estimated Z_{SD} using QAA_v6 but with dynamic K_T/K_d ratios (K_T/K_d _est). (d) Estimated Z_{SD} using the QAA_hybrid with dynamic K_T/K_d ratios (i.e., the improved Lee15 algorithm).

372

379 Figure 8 shows the comparisons of the monthly measured and estimated Z_{SD} values in

380	Lake Kasumigaura for a long-term period (2003–2012). The monthly measured Z_{SD} values were
381	obtained from the NIES-dataset, and the monthly estimated Z_{SD} values were obtained from the
382	available MERIS data between 2003 and 2012 using the original Lee algorithm and the improved
383	Lee15 algorithm. Sites 1, 2 and 6 of Lake Kasumigaura were excluded from the comparison
384	because they are too close to the shoreline and strongly influenced by the land (i.e. no any
385	available estimated Z_{SD} values within the 3×3 windows after one pixel buffer from shoreline was
386	removed). In total, we obtained 200 MERIS images; however, because a few sites were covered
387	by clouds, cloud shadows, or not covered by MERIS images (Lake Kasumigaura was partly
388	covered by one MERIS image), there were the following numbers of available MERIS images
389	for the sites: 122 images for site 3; 72 images for site 4; 114 images for site 7; 135 images for
390	site 8; 138 images for site 9; 133 images for site 11; and 124 images for site 12.
391	Overall, the temporal trends of Z_{SD} values obtained from MERIS data by using the
392	improved Lee15 algorithm (red line with triangles) agreed well with those obtained from field
393	surveys (blue line with circles) at all seven sites. Both the monthly estimated Z_{SD} values using
394	the improved Lee15 algorithm and the monthly in situ-measured Z_{SD} values showed a significant
395	increase trend in Lake Kasumigaura during the 10-year study period (with all slopes > 0 and all P
396	values < 0.001). In contrast, the estimated Z_{SD} using the original Lee15 algorithm showed
397	obvious overestimations and lower R^2 values in the temporal trend analyses (green line with

398 diamonds).



399

400 Fig. 8. Monthly Z_{SD} changes from 2003 to 2012 at seven sites in Lake Kasumigaura. Blue

401 dashed line with solid circles represents monthly in situ-measured Z_{SD} values, and blue solid line

402	represents temporal trend obtained from the monthly in situ-measured Z_{SD} values (y1); red
403	dashed line with solid triangles represents monthly mean MERIS-derived Z _{SD} values using the
404	improved Lee15 algorithm, and red solid line represents temporal trend obtained from the
405	monthly mean MERIS-derived Z _{SD} values using the improved Lee15 algorithm (y3); green
406	dashed line with hollow diamonds represents monthly mean MERIS-derived Z_{SD} values using
407	the original Lee15 algorithm, and green solid line represents temporal trend obtained from the
408	monthly mean MERIS-derived Z_{SD} values using the original Lee15 algorithm (y2).

410 **5.** Discussion

411 5.1. Necessity of the QAA hybrid

The estimations of $a(\lambda)$ and $b_b(\lambda)$ using QAA_v6 is the first step in the original Lee15 algorithm (Lee et al., 2015a). Both previous studies and our results have confirmed that the estimation errors that occur in this step will be propagated to the $K_d(\lambda)$ estimations in the second step and then the Z_{SD} estimations in the final step (Yang et al., 2014, 2015; Figs. 3a, 4a, and 6a in this study). Failures of QAA_v6 applications usually occurred in turbid waters (Yang et al., 2014; Wang et al., 2017; Rodrigues et al., 2017). It is thus necessary to use an alternative to QAA_v6 for turbid waters.

419 Although several modified QAAs have been proposed for retrieving $a(\lambda)$ and $b_b(\lambda)$

420	values in turbid waters, two empirical relationships for estimating the absorption coefficient at a
421	reference band ($a(\lambda_0)$), step 4 in Table 2) and the spectral slope of the backscattering coefficient
422	of suspended particles (Y, step 6 in Table 2) must be recalibrated by using in situ data in most of
423	these modified QAAs (Le et al., 2009; Huang et al., 2014; Mishra et al., 2014; Wang et al., 2017).
424	The constant requirement of in situ data for model recalibration will make the two empirical
425	relationships the first important equations in these modified QAAs, and thus will limit their
426	applicability in various waters. In contrast, QAA_T proposed by Yang et al. (2013) does not
427	include empirical equations for $a(\lambda)$ and $b_b(\lambda)$ retrievals, and thus it is the most proper
428	algorithm to replace QAA_v6 for retrieving $a(\lambda)$ and $b_b(\lambda)$ in turbid waters (Yang et al., 2014,
429	2015; Fukushima et al., 2016).
430	However, QAA_T did not work well in clear waters. For example, if we used QAA_T to
431	retrieve $a(\lambda)$ and $b_b(\lambda)$ for waters with an in situ $Z_{SD} \ge 2$ m (there are 69 such points in Fig.
432	6), larger errors occurred in the estimated Z_{SD} values with the RMSE of 5.24 m, the MAPE of
433	77%, and the very low determination coefficient of 0.01 (data not shown). In contrast, QAA_v5
434	performed very well for these points with the RMSE of 1.01 m, the MAPE of 14%, and the

435 determination coefficient of 0.94.

In QAA_hybrid, we selected QAA_v5 for clear waters rather than QAA_v6. This is because that we found QAA_v5 outperformed QAA_v6 in our dataset. Figure 9 shows the

comparison of the estimated Z_{SD} values using QAA_v5 and using QAA_v6 for 59 R_{rs} spectra. 438The 59 R_{rs} spectra were selected by using the criteria of MCI ≤ 0.0016 sr⁻¹ and $R_{rs}(670) > 0.0015$ 439sr⁻¹. In other words, the 59 R_{rs} spectra would select 670 nm as reference band if we used 440 QAA v6 instead of QAA v5 for clear waters. In contrast, all R_{rs} spectra with MCI ≤ 0.0016 sr⁻¹ 441(111 R_{rs} spectra in total) only used 560 nm as reference band in QAA hybrid. From Figure 9, it 442can be seen that QAA v5 (left) performed better than QAA v6 (right) with the RMSE reduced 443from 1.06 m to 0.53 m, the MAPE reduced from 29% to 23%, and the R² increased from 0.49 to 4440.80. The above findings indicate that it is necessary to select the appropriate QAA according to 445 water turbidities. In other words, it is necessary to use a hybrid QAA to address various waters. 446

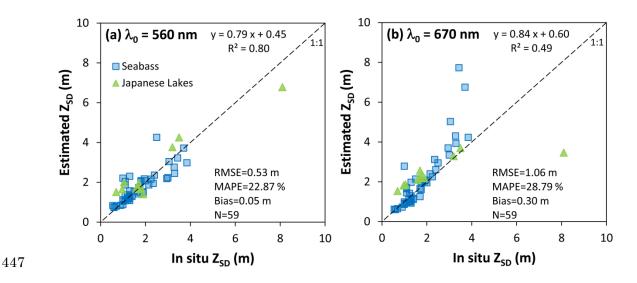


Fig. 9. Comparisons between in situ-measured Z_{SD} values and corresponding estimated Z_{SD} values from 59 selected in situ R_{rs} (see text for details). (a) using 560 nm as reference band; (b) using 670 nm as reference band.

452	In this study, we used MCI=0.0016 sr ⁻¹ to switch QAA_v5 and QAA_T. This MCI
453	threshold was suggested by Matsushita et al. (2015) based on the data collected from five Asian
454	lakes (Lake Erhai and Lake Dianchi in China; Lake Biwa, Lake Suwa, and Lake Kasumigaura in
455	Japan). Our present findings also demonstrated that this threshold is reasonable. Other
456	information can also be used to select the appropriate QAA. For example, Moore et al. (2014)
457	proposed a method to classify waters into seven optical water types (OWTs); Spyrakos et al.
458	(2018) identified 13 OWTs for inland waters based on comprehensive data from more than 250
459	aquatic systems. Further study is needed to compare the performances of different water
460	classification algorithms for selecting the most appropriate QAAs.
461	5.2. The importance of the estimation of the K_T/K_d ratio
462	The reported K_T/K_d ratios range from 0.5 to 2.0 (Philpot, 1989; Maritorena et al., 1994;
463	Lee et al., 1994). In the present study, the K_T/K_d ratios were estimated in the range of 0.91–1.64
464	with an average of 1.24 (Fig. 5). This range is similar to that reported by Maritorena et al. (1994)
465	with K_T/K_d ratios between 1.02 and 1.66. Our results also showed that the K_T/K_d ratios in clear
466	waters are significantly smaller than those in turbid waters (Fig. 5, p<0.001). This finding agrees

467 with Philpot (1989), who reported that the K_T/K_d ratios tended to be higher in strongly absorbing 468 waters.

469	Compared to the K_T/K_d ratios in turbid waters (with a mean ratio of 1.30), the K_T/K_d ratios
470	in clear waters (with a mean ratio of 1.16) are far smaller than the constant K_T/K_d ratio of 1.5
471	used in the original Lee15 algorithm. The above findings indicate that the use of the constant
472	K_T/K_d ratio of 1.5 will lead to larger underestimations of the Z _{SD} in clear waters. For example, in
473	Lake Motosu, a clear Japanese lake with the in situ-measured Z_{SD} of 16.4 m, the K_T/K_d ratio was
474	estimated to be 1.06 by using Eq. (8); the estimated Z_{SD} using the original Lee15 algorithm was
475	12.01 m with a relative error of 26.8% (Fig. 6a), and this error was reduced to 11.2% by using
476	the improved Lee15 algorithm (the estimated $Z_{SD} = 14.58$ m, Fig. 6d). Even in a turbid Japanese
477	lake, i.e., Lake Kasumigaura, the use of dynamic K_T/K_d ratios also improved the Z _{SD} estimations
478	(Fig. 7b vs. Fig. 7d).
479	Although our results have confirmed that the use of the dynamic K_T/K_d ratios can improve
480	Z_{SD} estimations in both clear and turbid waters, further study is still needed to evaluate the
481	relationship between K_T and K_d in various waters due to the Eq. (8) is based on an assumption of
482	treating a Secchi disk as a lambertian bottom.
483	5.3. Applicability of the improved Lee15 algorithm

484 Similar to the original Lee15 algorithm, the improved Lee15 algorithm does not require 485 any in situ data for recalibration. This is because both the QAA_hybrid (the combination of 486 QAA_v5 and QAA_T) and the equation for estimating K_T/K_d ratios (i.e., Eq. (8)) are designed as only using semi-analytical equations, which indicates that the assumptions and empirical equations are all of secondary importance for Z_{SD} retrievals (Lee et al., 1998, 2002, 2015a; Yang et al., 2013). Therefore, although we validated the improved Lee15 algorithm by using only the data collected from 8 Japanese lakes and SeaBASS dataset, it is apparent that the algorithm can also be applied for Z_{SD} estimations in other waters worldwide.

492Since both the original and improved Lee15 algorithms used only a single band for Z_{SD} retrieval (i.e., the band with the minimum K_d), an accurate algorithm for atmospheric correction 493is crucial when actual satellite data are used. For clear waters, the atmospheric correction 494 algorithm proposed by Gordon and Wang (1994) will be the best choice, whereas for turbid 495waters, although there are several algorithms (e.g., Ruddick et al., 2000; Wang and Shi, 2007; 496 497Guanter et al., 2007; Doerffer and Schiller, 2008; Bailey et al., 2010; Jaelani et al., 2015), it is still not clear which is the most appropriate algorithm for atmospheric correction. Our present 498results showed that the Case-2 Regional Processor proposed by Doerffer and Schiller (2008) can 499be an option for turbid inland waters such as Lake Kasumigaura (Fig. 7). Further validations 500obtained by using more comprehensive datasets should be carried out in the future to further 501502confirm the above considerations.

503

504 6. Conclusions

505	The original Lee15 algorithm showed overestimations of Z_{SD} values in turbid waters and
506	underestimations of Z_{SD} values in clear waters. In the present study, the use of QAA_hybrid
507	instead of QAA_v6 mainly overcame the former shortcoming through blending QAA_T and
508	QAA_v5 for estimating more accurate absorption and backscattering coefficients in both turbid
509	(QAA_T) and clear waters (QAA_v5); and the use of the dynamic K_T/K_d ratios instead of using
510	the fixed K_T/K_d ratio (i.e., 1.5) mainly overcame the latter shortcoming in the original Lee15
511	algorithm. Our results show that the improved Lee15 algorithm gave more accurate Z_{SD}
512	estimations, with RMSE reduced from 0.18 to 0.11 (in log10 unit) and MAPE reduced from 39%
513	to 20% for using the in situ R_{rs} values from 8 Japanese lakes (Z _{SD} values ranged from 0.4 m to
514	16.4 m, N=84) and SeaBASS dataset (Z _{SD} values ranged from 0.3 m to 20.8 m, N=94). The
515	improved Lee15 algorithm is expected to estimate more accurate Z_{SD} values in various types of
516	waters.

518 Acknowledgements

519 This research was supported in part by the Grants-in-Aid for Scientific Research of MEXT 520 from Japan (No. 17H01850 and No. 17H04475A), and Kurita Water and Environment 521 Foundation Grant (18B048). We thank the European Space Agency (ESA) for providing MERIS 522 satellite data, and the National Institute for Environmental Studies (NIES) for providing 523 monitoring data on Z_{SD} . The authors would also like to thank two anonymous reviewers for their

valuable comments and suggestions for improving the quality of the manuscript.

- 527 Alikas, K., & Kratzer, S. (2017). Improved retrieval of Secchi depth for optically-complex
- 528 waters using remote sensing data. *Ecological Indicators*, 77, 218-227.
- 529 https://doi.org/10.1016/j.ecolind.2017.02.007.
- 530 Bailey, S. W., Franz, B. A., & Werdell, P. J. (2010). Estimation of near-infrared water-leaving
- reflectance for satellite ocean color data processing. *Optics express*, *18*(7), 7521-7527.
 https://doi.org/10.1364/OE.18.007521.
- 533 Barnes, B. B., Garcia, R., Hu, C., & Lee, Z. (2018). Multi-band spectral matching inversion
- algorithm to derive water column properties in optically shallow waters: An optimization of
- 535 parameterization. *Remote Sensing of Environment*, 204, 424-438.
- 536 https://doi.org/10.1016/j.rse.2017.10.013.
- 537 Carlson, R. E. (1977). A trophic state index for lakes. Limnology and oceanography, 22(2),
- 538 361-369. https://doi.org/10.4319/lo.1977.22.2.0361.
- 539 Chen, Z., Muller-Karger, F. E., & Hu, C. (2007). Remote sensing of water clarity in Tampa Bay.
- 540 *Remote Sensing of Environment*, 109(2), 249-259. https://doi.org/10.1016/j.rse.2007.01.002.

541	Doerffer, R., and Schiller, H., 2008. MERIS Regional Coastal and Lake Case 2 Water Project -
542	Atmospheric Correction ATBD. GKSS Research Center 21502 Geesthacht Version 1.0 18.
543	May 2008.

- Doron, M., Babin, M., Hembise, O., Mangin, A., & Garnesson, P. (2011). Ocean transparency 544
- from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and 545
- 546SeaWiFS data. Remote Sensing of Environment, 115(12), 2986-3001.
- https://doi.org/10.1016/j.rse.2011.05.019. 547

- Duntley, S. Q. (1952). The visibility of submerged objects. Visibility Lab., Mass. Inst. Tech (pp. 548
- 74). San Diego: Scripps Institution of Oceanography. 549
- Fukushima, T., Matsushita, B., Oyama, Y., Yoshimura, K., Yang, W., Terrel, M., ... & Takegahara, 550
- A. (2016). Semi-analytical prediction of Secchi depth using remote-sensing reflectance for 551
- lakes with wide turbidity. Hydrobiologia, 780(1), range of 5-20. 552а https://doi.org/10.1007/s10750-015-2584-7. 553
- Fukushima, T., Matsushita, B., Yang, W., & Jaelani, L. M. (2018). Semi-analytical prediction of 554
- Secchi depth transparency in Lake Kasumigaura using MERIS data. Limnology, 19(1), 555
- 89-100. https://doi.org/10.1007/s10201-017-0521-3. 556
- Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, 557
- Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. 558

- 561 Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical
- 562 thickness over the oceans with SeaWiFS: a preliminary algorithm. Applied optics, 33(3),

563 443-452. https://doi.org/10.1364/AO.33.000443.

- 564 Gower, J., King, S., Borstad, G., & Brown, L. (2005). Detection of intense plankton blooms
- using the 709 nm band of the MERIS imaging spectrometer. International Journal of
- 566 *Remote Sensing*, 26(9), 2005-2012. https://doi.org/10.1080/01431160500075857.
- 567 Guanter, L., Del Carmen González-Sanpedro, M., & Moreno, J. (2007). A method for the
- 568 atmospheric correction of ENVISAT/MERIS data over land targets. International Journal
- 569 of Remote Sensing, 28(3-4), 709-728. https://doi.org/10.1080/01431160600815525.
- 570 Huang, J., Chen, L., Chen, X., Tian, L., Feng, L., Yesou, H., & Li, F. (2014). Modification and
- validation of a quasi-analytical algorithm for inherent optical properties in the turbid waters
- of Poyang Lake, China. Journal of Applied Remote Sensing, 8(1), 083643.
- 573 https://doi.org/10.1117/1.JRS.8.083643.
- 574 IOCCG. Update of the Quasi-Analytical Algorithm (QAA v6). IOCCG, 2014. Available online:
- 575 http://www.ioccg.org/groups/Software OCA/QAA v6 2014209.pdf.
- 576 Jaelani, L. M., Matsushita, B., Yang, W., & Fukushima, T. (2015). An improved atmospheric

- 577 correction algorithm for applying MERIS data to very turbid inland waters. *International* 578 *Journal of Applied Earth Observation and Geoinformation*, 39, 128-141.
 579 https://doi.org/10.1016/j.jag.2015.03.004.
- 580 Kabbara, N., Benkhelil, J., Awad, M., & Barale, V. (2008). Monitoring water quality in the
- 581 coastal area of Tripoli (Lebanon) using high-resolution satellite data. *ISPRS Journal of*
- 582
 Photogrammetry
 and
 Remote
 Sensing,
 63(5),
 488-495.

 583
 https://doi.org/10.1016/j.isprsjprs.2008.01.004.
 583
 https://doi.org/10.1016/j.isprsjprs.2008.01.004.
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 583
 <
- 584 Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002). A procedure for
- regional lake water clarity assessment using Landsat multispectral data. *Remote sensing of*
- 586 *Environment*, 82(1), 38-47. https://doi.org/10.1016/S0034-4257(02)00022-6.
- 587 Kou, L., Labrie, D., & Chylek, P. (1993). Refractive indices of water and ice in the 0.65-to
 588 2.5-μm spectral range. *Applied optics*, *32*(19), 3531-3540.
 589 https://doi.org/10.1364/AO.32.003531.
- 590 Kratzer, S., Brockmann, C., & Moore, G. (2008). Using MERIS full resolution data to monitor
- 591 coastal waters—A case study from Himmerfjärden, a fjord-like bay in the northwestern
- Baltic Sea. *Remote Sensing of Environment*, 112(5), 2284-2300.
 https://doi.org/10.1016/j.rse.2007.10.006.
- 594 Kratzer, S., Håkansson, B., & Sahlin, C. (2003). Assessing Secchi and photic zone depth in the

- 595 Baltic Sea from satellite data. AMBIO: A Journal of the Human Environment, 32(8),
- 596 577-585. https://doi.org/10.1579/0044-7447-32.8.577.
- 597 Le, C. F., Li, Y. M., Zha, Y., Sun, D., & Yin, B. (2009). Validation of a quasi-analytical algorithm
- 598 for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China. *IEEE Transactions*
- 599
 on
 Geoscience
 and
 Remote
 Sensing, 47(8),
 2492-2500.

 600
 https://doi.org/10.1109/TGRS.2009.2015658.
- Lee, Z. P., Du, K. P., & Arnone, R. (2005). A model for the diffuse attenuation coefficient of
- downwelling irradiance. Journal of Geophysical Research: Oceans, 110(C2).
 https://doi.org/10.1029/2004JC002275.
- Lee, Z., Carder, K. L., & Arnone, R. A. (2002). Deriving inherent optical properties from water
- 605 color: a multiband quasi-analytical algorithm for optically deep waters. *Applied* 606 *optics*, *41*(27), 5755-5772. https://doi.org/10.1364/AO.41.005755.
- 607 Lee, Z., Carder, K. L., Hawes, S. K., Steward, R. G., Peacock, T. G., & Davis, C. O. (1994).
- 608 Model for the interpretation of hyperspectral remote-sensing reflectance. *Applied* 609 *Optics*, *33*(24), 5721-5732. https://doi.org/10.1364/AO.33.005721.
- 610 Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral
- 611 remote sensing for shallow waters. I. A semianalytical model. Applied optics, 37(27),
- 612 6329-6338. https://doi.org/10.1364/AO.37.006329.

613	Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1999). Hyperspectral
614	remote sensing for shallow waters: 2. Deriving bottom depths and water properties by
615	optimization. Applied optics, 38(18), 3831-3843. https://doi.org/10.1364/AO.38.003831.
616	Lee, Z., Hu, C., Shang, S., Du, K., Lewis, M., Arnone, R., & Brewin, R. (2013). Penetration of
617	UV-visible solar radiation in the global oceans: Insights from ocean color remote
618	sensing. Journal of Geophysical Research: Oceans, 118(9), 4241-4255.
619	https://doi.org/10.1002/jgrc.20308.
620	Lee, Z., Shang, S., Du, K., & Wei, J. (2018). Resolving the long - standing puzzles about the
621	observed Secchi depth relationships. Limnology and Oceanography.
622	https://doi.org/10.1002/lno.10940.
623	Lee, Z., Shang, S., Hu, C., Du, K., Weidemann, A., Hou, W., & Lin, G. (2015a). Secchi disk
624	depth: A new theory and mechanistic model for underwater visibility. Remote sensing of
625	environment, 169, 139-149. https://doi.org/10.1016/j.rse.2015.08.002.
626	Lee, Z., Wei, J., Voss, K., Lewis, M., Bricaud, A., & Huot, Y. (2015b). Hyperspectral absorption
627	coefficient of "pure" seawater in the range of 350-550 nm inverted from remote sensing
628	reflectance. Applied Optics, 54(3), 546-558. https://doi.org/10.1364/AO.54.000546.
629	Maritorena, S., Morel, A., & Gentili, B. (1994). Diffuse reflectance of oceanic shallow waters:
630	Influence of water depth and bottom albedo. Limnology and oceanography, 39(7),

1689-1703. https://doi.org/10.4319/lo.1994.39.7.1689.

632	Matsushita,	В.,	Yang,	W.,	Yu,	G.,	Oyama,	Y.,	Yoshimura,	К.,	&	Fukushima,	T.	(2015)). A l	hybrio	d
-----	-------------	-----	-------	-----	-----	-----	--------	-----	------------	-----	---	------------	----	--------	--------	--------	---

- algorithm for estimating the chlorophyll-a concentration across different trophic states in
- Asian inland waters. ISPRS journal of photogrammetry and remote sensing, 102, 28-37.
- 635 https://doi.org/10.1016/j.isprsjprs.2014.12.022.
- 636 Mishra, S., Mishra, D. R., & Lee, Z. (2014). Bio-optical inversion in highly turbid and
- 637 cyanobacteria-dominated waters. *IEEE Transactions on Geoscience and Remote* 638 Sensing, 52(1), 375-388. https://doi.org/10.1109/TGRS.2013.2240462.
- 639 Mitchell, B. G., Kahru, M., Wieland, J., Stramska, M., & Mueller, J. L. (2002). Determination of
- 640 spectral absorption coefficients of particles, dissolved material and phytoplankton for
- 641 discrete water samples. Ocean optics protocols for satellite ocean color sensor validation,
- 642 *Revision*, *3*(2), 231.
- Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. *Applied optics*, *38*(36), 7442-7455. https://doi.org/10.1364/AO.38.007442.
- Moore, T. S., Dowell, M. D., Bradt, S., & Verdu, A. R. (2014). An optical water type framework
- 646 for selecting and blending retrievals from bio-optical algorithms in lakes and coastal
- 647 waters. *Remote sensing of environment*, 143, 97-111.
- 648 https://doi.org/10.1016/j.rse.2013.11.021.

649	Morel, A. (1974). Optical properties of pure water and pure sea water. Optical aspects of
650	oceanography, 1, 22.
651	National Institute for Environmental Studies (2016) Lake Kasumigaura Database, National
652	Institute for Environmental Studies, Japan. Accessed via
653	http://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/index.html on
654	29-05-2018.
655	Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census
656	of Minnesota's 10,000 lakes. Remote Sensing of Environment, 112(11), 4086-4097.
657	https://doi.org/10.1016/j.rse.2007.12.013.
658	Olmanson, L. G., Brezonik, P. L., Finlay, J. C., & Bauer, M. E. (2016). Comparison of Landsat 8
659	and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote
660	Sensing of Environment, 185, 119-128. https://doi.org/10.1016/j.rse.2016.01.007.
661	Philpot, W. D. (1989). Bathymetric mapping with passive multispectral imagery. Applied
662	optics, 28(8), 1569-1578. https://doi.org/10.1364/AO.28.001569.
663	Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380-700 nm) of pure water. II.
664	Integrating cavity measurements. Applied optics, 36(33), 8710-8723.
665	https://doi.org/10.1364/AO.36.008710.
666	Preisendorfer, R. W. (1986). Secchi disk science: Visual optics of natural waters. Limnology and

667	oceanography, 31(5), 909-926. https://doi.org/10.4319/lo.1986.31.5.0909.
668	Rodrigues, T., Alcântara, E., Watanabe, F., & Imai, N. (2017). Retrieval of Secchi disk depth
669	from a reservoir using a semi-analytical scheme. Remote Sensing of Environment, 198,
670	213-228. https://doi.org/10.1016/j.rse.2017.06.018.
671	Ruddick, K. G., Ovidio, F., & Rijkeboer, M. (2000). Atmospheric correction of SeaWiFS
672	imagery for turbid coastal and inland waters. Applied optics, 39(6), 897-912.
673	https://doi.org/10.1364/AO.39.000897.
674	Secchi, P. A. (1864). Relazione delle esperienze fatte a bordo della pontificia pirocorvetta
675	Imacolata Concezione per determinare la trasparenza del mare. Memoria del PA Secchi. Il

- 676 Nuovo Cimento Giornale de Fisica, Chimica e Storia Naturale, Ottobre 1864, Published
- 677 1865, 20, 205-237.
- 678 Spyrakos, E., O'Donnell, R., Hunter, P. D., Miller, C., Scott, M., Simis, S. G., ... & Bresciani, M.
- 679 (2018). Optical types of inland and coastal waters. *Limnology and Oceanography*, 63(2),
- 680 846-870. https://doi.org/10.1002/lno.10674.
- 681 Shang, S., Lee, Z., Shi, L., Lin, G., Wei, G., & Li, X. (2016). Changes in water clarity of the
- Bohai Sea: Observations from MODIS. *Remote Sensing of Environment*, 186, 22-31.
- 683 Tyler, J. E. (1968). The secchi disc. Limnology and oceanography, 13(1), 1-6.
- 684 <u>https://doi.org/10.4319/lo.1968.13.1.0001</u>.

685Verschuur, G. L. (1997). Transparency measurements in Garner Lake, Tennessee: The 686 relationship between Secchi depth and solar altitude and a suggestion for normalization of Secchi depth Lake Reservoir Management, 13(2), 142-153. 687 data. and https://doi.org/10.1080/07438149709354305. 688

- 689 Wang, M., & Shi, W. (2007). The NIR-SWIR combined atmospheric correction approach for
- MODIS ocean color data processing. *Optics Express*, 15(24), 15722-15733.
 https://doi.org/10.1364/OE.15.015722.
- Wang, Y., Shen, F., Sokoletsky, L., & Sun, X. (2017). Validation and Calibration of QAA
- Algorithm for CDOM Absorption Retrieval in the Changjiang (Yangtze) Estuarine and
- 694 Coastal Waters. *Remote Sensing*, 9(11), 1192. <u>https://doi.org/10.3390/rs9111192</u>.
- Watanabe, F., Mishra, D. R., Astuti, I., Rodrigues, T., Alcântara, E., Imai, N. N., & Barbosa, C.
- 696 (2016). Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic
- 697 waters. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 28-47.
- 698 https://doi.org/10.1016/j.isprsjprs.2016.08.009.
- 699 Wei, J., Lee, Z., & Shang, S. (2016). A system to measure the data quality of spectral remote -
- sensing reflectance of aquatic environments. Journal of Geophysical Research: Oceans,
- 701 121(11), 8189-8207. <u>https://doi.org/10.1002/2016JC012126</u>.
- Wernand, M. R. (2010). On the history of the Secchi disc. Journal of the European Optical

703 Society-Rapid publications, 5. https://doi.org/10.2971/jeos.2010.10013s.

- 704Yang, W., Matsushita, B., Chen, J., Yoshimura, K., & Fukushima, T. (2013). Retrieval of inherent optical properties for turbid inland waters from remote-sensing reflectance. IEEE 705706 **Transactions** Geoscience Remote Sensing, 51(6), 3761-3773. on and https://doi.org/10.1109/TGRS.2012.2220147. 707Yang, W., Matsushita, B., Chen, J., Yoshimura, K., & Fukushima, T. (2014). Application of a 708semianalytical algorithm to remotely estimate diffuse attenuation coefficient in turbid inland 709 710 waters. IEEE Geoscience Sensing Letters, 11(6), 1046-1050. and Remote https://doi.org/10.1109/LGRS.2013.2284343. 711712Yang, W., Matsushita, B., Yoshimura, K., Chen, J., & Fukushima, T. (2015). A Modified 713Semianalytical Algorithm for Remotely Estimating Euphotic Zone Depth in Turbid Inland Waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 714715Sensing, 8(4), 1545-1554. https://doi.org/10.1109/JSTARS.2015.2415853. Yarger H.L. & McCauley J.R. (1975) Quantitative water quality with Landsat and Skylab. In 716717Proc., NASA Earth Resources Survey Symposium, Houston, pp.347–369.
 - 718 Zhang, X., Hu, L., & He, M. X. (2009). Scattering by pure seawater: effect of salinity. Optics
 - 719 *Express*, 17(7), 5698-5710. https://doi.org/10.1364/OE.17.005698.
 - Zhao, D., Cai, Y., Jiang, H., Xu, D., Zhang, W., & An, S. (2011). Estimation of water clarity in

- 721 Taihu Lake and surrounding rivers using Landsat imagery. Advances in Water Resources,
- 722 34(2), 165-173. https://doi.org/10.1016/j.advwatres.2010.08.010.