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In a conventional view of motor control, the human brain might employ an optimization

principle that leads a stereotypical motor behavior which we observe as an averaged

behavioral data over subjects. In this scenario, the inter-individual motor variability is

considered as an observation noise. Here, we challenged this view. We considered a

motor control task where the human participants manipulated arm force by coordinating

shoulder and elbow torques and investigated the muscle-tuning function that represents

how the brain distributed the ideal joint torques to multiple muscles. In the experimental

data, we observed large inter-individual variability in the profile of a muscle-tuning

function. This contradicts with a well-established optimization theory that is based on

minimization of muscle energy consumption and minimization of motor variability. We

then hypothesized the inter-subject differences in the structure of the motor cortical

areas might be the source of the across-subjects variability of the motor behavior. This

was supported by a voxel-based morphometry analysis of magnetic resonance imaging;

The inter-individual variability of the muscle tuning profile was correlated with that of the

gray matter volume in the premotor cortex which is ipsilateral to the used arm (i.e., right

hemisphere for the right arm). This study suggests that motor individuality may originate

from inter-individual variation in the cortical structure.

Keywords: muscle tuning function, gray matter volume, VBM, motor control, brain structure

INTRODUCTION

A theory of motor control postulates that, in all individuals, the brain employs a certain principle
that produces stereotypical motor behavior to achieve a given task. However, the data from
individuals often deviate slightly from the ideal motor trajectory predicted by a theoretical model,
even though the averaged trajectory fits very well with the model prediction. This inter-individual
variability in motor behaviors contradicts the theory; however, the cause of this diversity in
movement trajectory has not yet been examined in depth. Here, we aim to explore a source of
the inter-individual variability of a motor behavior to reexamine a general theoretical framework.
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The contemporary consensus in the motor control
community regarding the mechanisms of how the brain
solves this redundancy problem is that the brain may employ an
optimization principle that minimizes the cost and maximizes
the task performance (Todorov and Jordan, 2002; Izawa and
Shadmehr, 2008, 2011) to keep consistence of intra-individual
motor behavior. Because different types of cost functions that
include different state variables (e.g., muscle force or joint
torques) predict dissociable motor behaviors, we are able
to infer a type of cost function that the brain might adopt.
To date, ample evidence has suggested that both the motor
costs that penalize energy consumptions (Emken et al., 2007;
Izawa and Shadmehr, 2008, 2011) and the accuracy costs that
penalize the influence of motor noise (Harris and Wolpert,
1998) on the precision of motor movement are essential
components of the optimization principle the human brain
employs (O’Sullivan et al., 2009).

However, in these previous studies of motor control,
scientists paid little attention to the effect of the limited neural
resources in computing motor commands. The structure of
the brain that characterizes neural resources for the brain
to optimize motor commands to achieve the certain task
requirement might alter the generated motor behaviors if this
variation of the motor commands does not interfere with the
task performance.

To test this idea, we employed a well-established force control
task where a participant manipulated arm force in the horizontal
plane, by coordinating torques of both the elbow and the shoulder
joints (Figure 1A). In this scenario, the brain has to solve the
redundancy problem in order to coordinate the activations of
at least six muscles that produce these joint torques. Here, we
specifically hypothesized that the structure the cortical motor
area might influence the coordination of multiple muscles,
yielding a correlation between the inter-individual variability of
the muscle-tuning function and the inter-individual variability of
the density of the neuronal population. To test this hypothesis,
we analyzed anatomical MRI data obtained from all participants
who underwent the hand-force control task. Next, we conducted
voxel-based morphometry (VBM) analysis to explore whether a
cluster of voxels in the motor cortex might explain the variability
of the motor behaviors.

MATERIALS AND METHODS

Participants
We measured EMG data during an isometric force production
task and obtained T1-weighted images from all participants.
Thirty volunteers without any history of the neurological
disorder participated in these experiments (all males; ages 21–27
years; all right-handed). All participants gave written informed
consent before participating in the study. The experimental
paradigm was approved by the local ethics committee of
the National Institute of Neuroscience, National Center of
Neurology and Psychiatry and Tokyo Bay Rehabilitation
Hospital and was conducted according to the Declaration
of Helsinki.

Experimental Design and Data Acquisition
Figure 1 shows the experimental setup of the behavioral
experiment. The participants held the handle of the force sensor
by the right hand and were instructed to produce joint torques.
The wrist joint of the participant was fixed by the cuff, and only
shoulder and elbow joint rotations in the horizontal plane were
permitted. The cuff was tightly coupled to the handle, and the
upper arm of the participants was supported in by the table.
The participants were able to control their hand force by the
torque produced from the only right elbow and shoulder joints.
We asked the participants to put their left hand on a left thigh
and relaxed.

EMG signals were recorded using an amplifier (The
Bagnoli 8 EMG System, DELSYS). EMG Sensors were
placed over the major muscles for flexion and extension
of shoulder and elbow in the right side; the shoulder
monoarticular flexor (pectoralis major) and extensor (posterior
deltoid), an elbow monoarticular flexor (brachioradialis) and
extensor (lateral head of triceps brachii) and a biarticular
flexor (biceps) and extensor (long head of triceps brachii).
EMG Signals were sampled with 16-bit A/D acquisition
systems at a sampling rate of 2000Hz and analyzed
offline. The amplifier was set to a gain 1000 and a range
of±5V.

In the experiment, the participants were instructed to produce
40N by applying force to the handle of a force sensor in
16 directions (θ1, . . . , θ16 =0, π/8, π/4, . . . , 15π/8 rad) in
the hand’s x–y plane. The current force vector (Fx, Fy) and
a small red circle indicating target direction (t1, . . . , t16)
of each trial were displayed on the computer monitor. The
participants were required to keep 40 ± 2N for 3 s for each
trial. The participants conducted 10 trials for each target;
160 trials in total. The participants took a 6-s rest between
each trial and a 1- to 10-min rest per 16 trials to avoid
muscle fatigue.

High-resolution T1-weighted anatomical images were
obtained with magnetization prepared rapid gradient-
echo images (TR = 2000ms; TE = 4.4ms; FA = 80;
matrix= 192× 176; FOV = 192 × 176; voxel size 1 × 1
× 1 mm3) on a 3-T MRI scanner (Siemens Trio, Erlangen,
Germany) with an 8-channel phased array receiver-only coil.

Data Analysis
EMG Data Pre-processing
Each EMG signal was band-pass filtered from 5 −500Hz and
rectified. We calculated the average of the EMG during a holding
period of all trials (10 trials) for each target (t = 1, . . . ,16), and
then the EMGs were normalized in each muscle (i= 1, . . . ,6).

uti =
eti −mini

maxi −mini
(1)

where e is the average EMG, mini and maxi are minimum and
maximum amplitude in each muscle and uti becomes 1 or 0
in the direction of the largest and smallest muscle activation,
respectively. The uti shows the tuning function of each muscle.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 28

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Kita et al. Individuality in Muscle Tuning Function

FIGURE 1 | Experimental setup. (A) In the isometric force production task, the participants held the handle of a force sensor mounted on a horizontal table, and they

were asked to manipulate the cursor presented on a vertical LCD monitor. The monitor indicated the force vector detected from the sensor. In each trial, a force target

was randomly selected from 16 directions positioned every 22.5 degrees. The coordinate system of the vertical display and the arm forces were defined (A) such that

the forward direction in the task space corresponded to the upward direction (y-axis) in the display space. EMG signals were recorded from six electrodes attached

over the six different muscles (1: pectoralis major, 2: posterior deltoid, 3: brachioradialis, 4: lateral head of the triceps brachii, 5: biceps brachii, 6: long head of the

triceps brachii) of the right arm. (B) The time course of the target presentation. The top graph shows the target force required for successful reaching over time. The

solid line represents the x-axis component and the dashed line the y-axis component. The bottom graph shows the example data of the force sensor measured from

a representative participant. After a 6-s rest period, a randomly selected target appeared on the screen. As soon as the participants noticed the target, they pushed

the handle such that the force cursor could reach the target. When the cursor position was held inside the target area represented by the gray shadow (± 2N in size)

for 3 s, the trial ended and moved on to the next trial.

To quantify the broadness of the muscle-tuning function, we
computed the summation of the normalized muscle activities, uti ,
over all target directions t across six muscles:

[

broadness (a.u.)
]

=

6
∑

i=1

16
∑

t=1

uti (2)

which is identical to the total area surrounded by the muscle-
tuning functions.

MRI Data Pre-processing and VBM
The high-resolution 3D T1-weighted images were subjected
to a VBM analysis using VBM8 toolbox (Ashburner and
Friston, 2000) implemented in SPM8 (Wellcome Trust Center
of Neuroimaging, UCL). The preprocessing steps were as
follows. First, each image was segmented into gray matter,
white matter and cerebrospinal fluid in the native image space.
Second, the gray matter images were transformed into the
Montreal Neurological (MNI) space. Third, these normalized
gray matter images were smoothed using a Gaussian kernel
of 10mm full-width at half-maximum. We investigated the
correlation of broadness of the tuning function with regional
gray matter volume. A voxel-wise multiple regression was
conducted, using the tuning function as an independent variable
and biomechanical factors such as arm length and weight as

confounding covariates. The search volume was limited to the
right or left primary motor cortex (Brodmann area 4) and right
or left premotor and supplementary motor areas (Brodmann
area 6). The voxelwise significance level was set at p < 0.05,
corrected for multiple comparisons in terms of the familywise
error (FWE) rate.

RESULTS

Tuning Functions Computed From EMG
Signals
The participants were asked to hold a handle mounted on a table
with their right hand, and to produce the required force vector
by pushing the handle (Figure 1A). After a 6-s rest period, a
reaching target was shown on a vertical screen. The participants
were asked to move a cursor to the reaching target immediately
after the target was displayed. The participants then continued
to apply arm force to keep the cursor inside the target for 3 s.
The movement of the cursor reflected the direction/size of the
arm forces in the horizontal plane. A single trial ended when the
cursor was held inside the target for 3 s. The participants were
requested to keep 40 ± 2N for 3 s for each trial. A single trial
lasted until the produced force satisfied this condition. Figure 1B
illustrates the example of the sequence of the target force on X
and Y axis with a representative force data.
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FIGURE 2 | Muscle-tuning function. (A) The across subjects average of the

normalized EMG signal with STD (gray shadow) measured from electrodes

attached over the six representative muscles of the right upper limb. The data

were averaged for each target direction and plotted after normalized by the

maximum EMG across all targets. (B) Histograms of the individual differences

in the broadness of the muscle-tuning function. The broadness (arbitrary unit)

was calculated as the area surrounded by the tuning function of each muscle

and summed across all muscles in each participant (See section Materials and

methods). The histogram was plotted from all participants’ EMG data.

Figure 2A shows the subjects across average of the normalized
EMG signals over the target angle measured from the electrodes
attached over the six muscles of the right arm of a representative
participant. Additionally, as has been observed in the previous
studies (Hoffman and Strick, 1999; van Bolhuis and Gielen, 1999;
Nozaki et al., 2005; Kurtzer et al., 2006), each muscle shows
a unimodal tuning function with a specific preferred direction.
These observed properties are congruent with the previousmodel
of muscle recruitment where the muscle activation is optimized
to minimize the muscle energy consumption, in addition to
minimizing the force vector error (van Bolhuis and Gielen, 1999;
Fagg et al., 2002; Kurtzer et al., 2006).

The optimization principle predicts a stereotypical muscle
tuning function no matter which optimization principle adopted
by the model. However, the participants’ actual behaviors
showed the large inter-individual variability in the broadness

of the muscle-tuning function as replicated in the present
study (Figure 2B). We thus explored the neurophysiological
correlates of the inter-individual variability in the broadness of
the tuning function.

Voxel-Based Morphometry
Our hypothesis here is that the inter-individual variability of
the neural structure might explain the inter-individual variability
of the broadness of the muscle-tuning function. We analyzed
anatomical MRI obtained from all participants who performed
the arm force task using a VBM analysis. We sought clusters of
voxels in the motor-related cortical areas that explain the inter-
individual variability of the broadness of the tuning function.
Figure 3 illustrates that the gray matter volume in the region of
right dorsal premotor cortex was significantly correlated with the
broadness of the muscle-tuning function (Cluster 1at the MNI
coordinate of x = 26, y = 0, z = 58, P=0.040 FWE corrected, 7
voxels; Cluster 2 at x= 32, y= 6, z= 52, P=0.043 FWE corrected,
4 voxels).

DISCUSSION

Studies of motor control have strongly relied on the hypothesis
that the brain might employ a common cost function across
all human participants to make a motor plan for a certain
task. Whereas the stereotypical motor behaviors such as smooth
reach trajectory (Abend et al., 1982; Flash and Hogan, 1985) or
distributed muscle forces (Ashburner and Friston, 2000) have
been found in human motor behavior, a large inter-individual
variability around the stereotypical movement was also evident.
Here, we exemplified the inter-individual variability in the
muscle force tuning function when the participants controlled
arm force and sought the source of the individuality of the
motor behaviors. We found that the broadness of the tuning
function had large variability across participants. This result
suggests that the process of optimization for a certain cost
function is influenced by an intrinsic property of the individual
participant. To explore the neurophysiological correlates of
this phenomenon, we conducted VBM on the anatomical MRI
data taken from the same participants who participated in the
behavioral study. We found that the gray matter volume of
the ipsilateral side to the used arm of the motor-related area
was significantly correlated with the broadness of the muscle-
tuning function. It is unlikely that the VBM findings reflect other
biomechanical confounding factors (arm length and weight) than
the muscle tuning function since these variables were included as
covariates in the GLM.

We observed an influence of the premotor area of the right
hemisphere on shaping muscle tuning function while it is not
clear how the right hemisphere shape the motor commands
formed in the left motor cortex. A study with transcranial
magnetic stimulation showed that a conditioning stimulus over
right premotor cortex induced suppression of the motor-evoked
potentials of the left motor cortex, suggesting interhemispheric
inhibition via commissural fibers between the premotor cortex
and the contralateral motor cortex (Mochizuki et al., 2004). A
similar interhemispheric interaction has been found in another
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FIGURE 3 | Results of Voxel-based morphometry (VBM). (A,C) show gray matter volume which significantly correlates with the broadness of the muscle tuning

function. The colored area in each brain image indicates clusters after family-wise error (FWE) correction for multiple voxels in volume of interest (Brodmann Aera) with

a threshold of P < 0.05 at the cluster level. Survived two clusters (cluster 1: MNI coordinate x = 26, y = 0, z = 58; cluster size, 7 voxels, cluster 2: MNI coordinates, x
= 32, y = 6, z = 52; cluster size, 4 voxels) are shown in upper images and lower images, respectively. (B,D) show correlation between C*beta values within the

clusters in left panels, i.e., gray matter volume, and the broadness of the muscle tuning function.

transcranial magnetic stimulation study between the primary
motor cortex and the ventral premotor cortex (Baumer et al.,
2009). This interhemispheric inhibition might lead to broader
muscle-tuning functions. However, evidence of interhemispheric
inhibition does not reject the other possibility of the descending
pathway from the right premotor area (Benecke et al., 1991;
Galea and Darian-Smith, 1994; Staudt et al., 2002). While the
projection from the right hemisphere to the right arm is a minor
pathway in terms of its number of neurons, it has the capacity to
explain the observed correlation between the gray matter volume
around the right premotor area and the broadness of the muscle-
tuning function in a more straightforward way. We propose
that further studies should be conducted with diffusion tensor
axonal tracking techniques (Lehericy et al., 2004; Wahl et al.,
2007) to examine ipsi/contralateral hemispheric contributions to
corticomuscular optimization.

One of the limitations of this study is not taking the previous
history of arm training into consideration. In fact, the prior
history of the practice of motor control increases the accuracy
of the motor skills, which is mediated by the structural plasticity
associated with the long-range practice and corresponding
neural activity change (Dayan and Cohen, 2011). This long-
range training induces axon sprouting, dendritic branching,
neurogenesis, glial changes, and angiogenesis, which all leads the
gray matter increase (Zatorre et al., 2012). Thus, the volume of
the gray matter of the individual subject is determined by the
history of the training, which is captured by the anatomical MRI

and VBM analysis. Each subject must have a unique history of
motor training, and thus the variety of experience, such as tennis,
golf, or running, of all participants, is too large to standardize
this experience. We rather think that the gray matter volume
is the standardized index which captures the property of the
motor skill at the moment of the experiment. Our aim here
is to seek the anatomical feature that causes a difference in
the tuning function which may be affected by the history of
the training.

Another limitation of this study is that any neural activity
was not examined. As we discussed above, the gray matter
volume change may lead neural activity change. Indeed, the
limitation of our study is that any neural activity was measured
while the subject is controlling the hand force. The signals
measured in fMRI might contain richer information of how
the motor-related are in the cortex activated differently among
the subjects. However, at the same time, the influence of the
history of the motor experience on the fMRI result is complex
with respect to the gray matter volume change. For instance,
fMRI signal (BOLD signal) is influenced by both the short-
range experience and the long-range experience of the motor
training and the decrease of the BOLD due to the short range
experience is also observed (Dayan and Cohen, 2011) We
considered that while how the brain optimize neural activity
is influenced by many different factors such as metabolism
or short range experience, this optimization process is always
constrained by the cortical structure which leads variation in
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motor behavior. Thus, the specific aim of this paper is to examine
how the long-range factors which change the structure of the
cortex alter how the nervous system optimize the muscle force
distribution problem.

A potential problem of this analysis is a spurious correlation.
We report here that we found two clusters which are correlated
with the broadness of the muscle tuning function. These two
clusters lie close each other (10 voxels apart), and both are in
the right premotor cortex. While spurious correlation can’t be
rejected ultimately in all VBM analysis in general, the SPM is
implemented with multiple approaches to minimize to detect
spurious correlation (Wilke and Lidzba, 2007). As it is suggested
in the standard procedure of the SPM package, we used the
strict thresholding by using the FWE correction. In addition,
evaluating the cluster size is reported as the effective approach
(Wilke and Lidzba, 2007). According to these criteria, one of the
clusters of the two (cluster size n=7) is above minimum cluster
size and is able to be considered as a meaningful cluster. While
the ipsilateral (i.e., right hemisphere) influence on the right limb
movement is counter-intuitive, a number of studies reported the
contribution of the motor is in the right hemisphere to the right
limb control.

It puzzled us that we did not detect any significant
correlation between the left premotor cortex involved in
computing motor commands to control isometric force on
the right arm. Indeed, the task performance improvement
achieved by the long-range training with arm’s reach task
increased the gray matter volume of the left motor cortex
(Landi et al., 2011). While a further investigation with the
isometric force control task of the present paper is certainly
necessary, the previously reported change of the gray matter
volume in the left motor cortex and the left premotor cortex
is not necessary to guarantee the influence of the gray matter
volume in the left motor cortices on the tuning function
of the muscle force production during the isometric force
production task. One important difference between the previous
report and our study is that we focused on the performance
irrelevant feature of the muscle activities whereas most of
the previous report discussed the correlation between the
performance (i.e., accuracy) and the cortical structure. The
optimization of the muscle tuning function involves the highly
complicated computational processes (Fagg et al., 2002). In fact,
the gray matter volume change in the right premotor cortex
without the change in the left premotor cortex was reported
for the complex force production task (Gryga et al., 2012).
We speculate that, whereas the contralateral contribution is
dominant in skill formation in the task-relevant performance, the
ipsilateral contribution is important in motor coordination in the
task-irrelevant dimension.

There is also a number of specific limitations in this study.
First, we recruited very specific cohort: male, young and right-
handed. The goal of this study is to find a correction between
the neural structure (GLM) which is influenced by the long-
range experience of the limb control and the tuning function
of the EMG . Theoretically, the tuning function is determined
by solving the muscle force distribution problem and, in
this computational process, not only the neural structure, but

biomechanical factors also constrain the optimization process.
In addition, age and sex-difference altered GLM (Pfefferbaum
et al., 1992; Chen et al., 2007). In order to reduce the effects of
these factors and to see the effect of the long-range experience
of the limb control dominantly, we recruited only male, young
and right-handed subjects. Second, we did not assess the tuning
function of the distal hand muscles and finger muscles. As
described in the method section, we constrained the subject’s
hand by the cuff which is tightly connected to the handle of
the force sensor. This cuff prevents the subject form holding
the handle while pushing the force sensor. Thus, the distal
hand and the finger muscles were not requested to achieve
tasks. This technique has been repeatedly used in the field of
motor control when we would like to minimize the effect of
the distal hand force and finger muscles when we measure
limbs stiffness which is potentially influenced by the distal
hand motion (Gomi and Kawato, 1996).Lastly, we analyzed
only gray matter volume and did not examine other potential
correlates such as the diffusion tensor imaging and the resting
state functional connectivity (Kaiser et al., 2015; Song et al.,
2015). Considering a process for the brain to solve the present
task, the brain should use the entire cortical network with
perceiving the target position first, computing the force vector
second, and then solving the muscle force distribution problem.
Thus, the long-range cortico-cortical connection and how the
neural network taking advantage of this connection should
influence the result of the optimization. It is reasonable to
think that the tuning function might be influenced by the
individuality of the anatomical and functional connectivity which
are measured by the DTI fiber tracking method and by the
resting state functional connectivity. we remain these studies for
future work.
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