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Abstract (100-120 words) 24 

Germline stem cells (GSCs) are critical for the generation of sperms and eggs in most 25 

animals including the fruit fly Drosophila melanogaster. It is well known that self-26 

renewal and differentiation of female D. melanogaster GSCs are regulated by local 27 

niche signals. However, little is known about whether and how the GSC number is 28 

regulated by paracrine signals. In the last decade, however, multiple humoral factors, 29 

including insulin and ecdysteroids, have been recognized as key regulators of female 30 

D. melanogaster GSCs. This review paper summarizes the role of humoral factors in 31 

female D. melanogaster GSC proliferation and maintenance in response to internal 32 

and external conditions, such as nutrients, mating stimuli, and aging. 33 

 34 

Highlights (≤85 characters including space for each) 35 

- Drosophila female germline stem cells (GSCs) are regulated by humoral factors 36 

- Insulin and steroid hormones regulate proliferation and maintenance of female 37 

GSCs 38 

- Nutrients, mating and aging affect female GSCs through multiple hormones 39 

  40 
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Introduction 41 

Regulation of stem cell proliferation and maintenance is a key factor accompanying a 42 

number of developmental and physiological events in multicellular organisms [1,2]. 43 

Female germline stem cells (GSCs) in the fruit fly Drosophila melanogaster are one of 44 

the best understood stem cell types and provide an excellent model for study of the 45 

regulation of stem cell proliferation and maintenance in vivo. It is well known that D. 46 

melanogaster GSCs reside in their special microenvironment, called the stem cell 47 

niche. The niche produces some factors that regulate the balance between GSC self-48 

renewal and differentiation. For example, the bone morphogenetic protein (BMP) 49 

ligands Decapentaplegic (Dpp) and Glass bottom boat (Gbb) produced from the niche 50 

cell directory activate BMP receptors in GSCs, leading to the repression of the 51 

differentiation inducer, bag-of-marbles (bam) [3••,4,5,6••]. GSCs that leave the niche 52 

cells can escape from BMP signaling, upregulate bam expression, and undergo the 53 

differentiation process. Many studies have reported that the niche and the paracrine 54 

signals from the niche described above have an important role in balancing the self-55 

renewal and differentiation of GSCs. In contrast, how tissue-extrinsic hormonal signals 56 

systemically act on stem cells, particularly in response to environmental cues and 57 

changes in physiological status is not yet clearly understood in detail. 58 

 In the last decade, however, many studies have revealed that several insect 59 

hormones play indispensable roles in regulating GSC behavior. In this short review, we 60 

summarize the current knowledge of the roles of hormonal and systemic signals, such 61 

as steroid hormones and insulins, in GSC proliferation and maintenance in response to 62 

external and internal conditions, such as nutritional availability, mating stimuli, and 63 

aging. 64 

 65 
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Roles of insulin and other humoral signaling in diet-dependent GSC maintenance 66 

Drosophila insulin-like peptides (DILPs) are the first example of the hormonal 67 

regulation involved in nutrient-dependent GSC maintenance [7]. On a nutrition-rich 68 

diet, each female lays an average of over 80 eggs per day. In contrast, egg production, 69 

as well as the division rate of GSCs are significantly suppressed when the female is fed 70 

a nutrition-deficient diet [8••]. Dr. Daniela Drummond-Barbosa’s group clearly 71 

demonstrated that brain DILP-producing cells are required for the ovarian response to 72 

nutrition. Moreover, DILPs are received in the ovary via a single DILP receptor called 73 

the Insulin receptor (InR). InR-dependent signaling not only directly acts on GSCs to 74 

stimulate their proliferation and self-renewal, but also indirectly regulates GSCs by 75 

increasing the niche cell number and adhesion of GSC to the niche cells [7,8••,9•,10]. 76 

Since DILP secretion from brain insulin-producing cells is tightly regulated in response 77 

to sufficient nutrients [11] , it is quite likely that nutritional input can modify female 78 

GSC activity via the insulin signaling pathway. More recently, it is reported that diet 79 

reversibly controls escort cell-germ cell interaction via DILP-InR signaling [12]. 80 

While DILPs play an indispensable role in diet-mediated GSC proliferation in 81 

female D. melanogaster, there are other humoral signals regulating GSC number in 82 

response to nutrition [13•]. For example, DILPs specifically control the G2 phase of the 83 

GSC cell cycle, while the G1 phase appears to be regulated by a separate diet mediator 84 

[10]. Since a recent GFP-trap screen has found many uncharacterized candidate genes 85 

encoding diet-regulating proteins [14], future studies will reveal new candidates 86 

involved in diet-dependent GSC maintenance. Furthermore, a recent study shows that 87 

diet-regulated signaling and metabolic pathways in adipocytes have a significant role 88 

in GSC maintenance in a DILP-independent manner [15••,16,17]. Interestingly, 89 

enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in 90 
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adipocytes regulate GSC maintenance, whereas lipid and iron transport from 91 

adipocytes controls the GSC number [15••]. These findings suggest that not only 92 

peptides (such as DILPs), but also metabolic products, originating from the diet and 93 

produced by internal organs, affect GSC regulation in a product-specific manner. Since 94 

all metabolites circulating in the fly body are not produced in adipocytes, metabolites 95 

from other tissues may have other roles in GSC regulation.  96 

 97 

Ecdysteroid signaling and its role in GSC maintenance 98 

About 5 years after the discovery of DILP-mediated GSC maintenance [7], it was 99 

reported that a signaling pathway of the principal insect steroid hormones, 100 

ecdysteroids, are indispensable for GSC maintenance in female D. melanogaster [18•101 

•,19,20•]. While ecdysteroids are best known to control molting and metamorphosis 102 

during development [21], this steroid hormone also has a significant impact on adult 103 

physiology [22–24]. These studies [18••,19] have demonstrated that the active form of 104 

ecdysteroids, 20-hydroxyecdysone (20E), its two nuclear hormone receptors coded by 105 

Ecdysone Receptor (EcR) and ultraspiracle (usp), and downstream epigenetic 106 

machinery have a significant impact on GSCs, controlling GSC maintenance during 107 

aging by affecting BMP signaling in GSCs. The downstream targets of EcR/USP, 108 

including E74 and E78, are also involved in regulating GSC maintenance [18••,25]. In 109 

addition, a genetic mosaic screen has further identified a bunch of ecdysteroid-110 

responsive genes regulating GSC maintenance and other oogenesis processes [26]. 111 

Moreover, our group demonstrates that the biosynthesis of ecdysteroids in the ovary 112 

is essential for GSC proliferation and maintenance. For example, knockdown of the 113 

ecdysteroidogenic enzyme gene neverland (nvd) impairs GSC proliferation and 114 

maintenance [27•,28]. 115 
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 Ecdysteroid signaling is also involved in the control of early germline 116 

differentiation. Ecdysteroids are necessary for the establishment of the identity of 117 

escort cells, which coordinate GSC differentiation via somatic-germ cell 118 

communication [19]. The EcR/USP complex and its soma-specific co-activator and co-119 

repressor, Taiman and Abrupt, respectively, regulate the niche establishment [19]. 120 

These ecdysteroid-signaling components and let-7 microRNA form a positive 121 

feedback loop to modify the Wnt/β-catenin signaling strength in the germline cells, 122 

leading to their normal development [29]. 123 

 While the adult ovary in female D. melanogaster is well known to 124 

biosynthesize ecdysteroids [23], it is still unclear which tissue is responsible for 125 

ecdysteroid biosynthesis in adult male flies [22,30]. Nevertheless, a recent interesting 126 

study reveals that EcR/USP and its downstream genes ftz-f1 and E75 are required for 127 

stem cell maintenance in the testes [31]. Therefore, it is likely that both male and 128 

female GSCs share the similar ecdysteroid-dependent mechanisms to regulate their 129 

self-renewal and differentiation. 130 

 It is also noteworthy that neuronal ecdysteroid signaling controls female 131 

feeding rates and nutritional state of the whole body [32]. Thus, ecdysteroids not only 132 

directly act on the ovary to control GSC maintenance, but might also indirectly 133 

influence GSCs in a diet-dependent manner. 134 

 135 

Ecdysoteroids and mating-induced GSC proliferation 136 

While ecdysteoids are important for GSC regulation, it was still unclear what kind of 137 

external conditions were required for ecdysteroid signaling to regulate GSCs. In 2016, 138 

our group succeeded in partly answering this question, demonstrating that mating 139 

stimuli induce GSC proliferation in an ecdysteroid-dependent manner in female D. 140 
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melanogaster [27•]. We showed that the mated female retains more GSCs compared 141 

to the virgin female, and that mating enhances the division of GSCs. Mating increases 142 

the ovarian 20E titer due to upregulation of the transcription of some 143 

ecdysteroidgenic genes [27• ,28]. The post-mating GSC proliferation is disrupted by 144 

EcR or nvd knockdown in ovarian somatic cells, especially escort cells, but EcR 145 

knockdown in germ cells had no effect. 146 

The mating-induced GSC proliferation is under the control of Sex peptide 147 

(SP), a male seminal fluid protein which is produced from the male accessory gland 148 

[33]. Sex peptide is received by its specific receptor, the Sex peptide receptor (SPR), in 149 

a small number of SPR-positive sensory neurons (SPSNs), which innervate the uterine 150 

lumen and send afferent processes into the tip of the abdominal ganglion [34•,35151 

•,36,37]. The SP-SPR signaling in the SPSNs is required for post-mating responses such 152 

as increasing rejection behaviors to further copulation, feeding, ovulation, and egg-153 

laying. 154 

 Since SPSNs do not directly innervate into the ovary, a question to be 155 

addressed is how the SP-SPR signal eventually transmits the mating information to 156 

GSCs. Unknown neuronal and/or endocrine systems downstream of SPSNs would 157 

contribute to the upregulation of ovarian ecdysteroid biosynthesis to regulate GSC 158 

proliferation. Interestingly, some octopaminergic neurons, whose cell bodies are 159 

located at the tip of the abdominal ganglion, directly project to the ovary and regulate 160 

the oviposition [38]. It is intriguing to examine whether the mating signal from SPSNs 161 

is transmitted to the octopaminergic neurons and is required for mating-induced GSC 162 

proliferation. 163 

 Besides ecdysteroids, it is noteworthy that the hemolymph level of Juvenile 164 

hormone (JH), another important insect hormone, is triggered by mating [39]. 165 
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Intriguingly, the mating-induced increase of JH titer is also under the control of SP 166 

signaling, similar to mating-induced ecdysteroid elevation [39,40]. Moreover, JH 167 

signaling promotes gut remodeling to sustain egg production and also suppresses the 168 

immune system after mating [39,41,42]. However, disruption of the JH biosynthesis 169 

enzyme (JH acid O-methyltransferase) in the corpus allatum or JH receptors 170 

(Methoprene-tolerant and Germ cell-expressed) in ovarian somatic cells have no 171 

effect on mating-induced GSC proliferation, suggesting that JH signaling is not 172 

required for mating-induced GSC proliferation [27•]. Thus, while the increase in JH 173 

titer is essential for the mating-induced morphological and physiological changes 174 

after mating, it seems unlikely that JH has a major role in mating-induced GSC 175 

proliferation in D. melanogaster. 176 

 177 

Aging and GSC maintenance 178 

In general, the proliferation and maintenance of stem cells are strongly influenced by 179 

animal aging [43]. In female D. melanogaster, aging leads to a gradual loss of GSCs and 180 

niche cells, and governs the decrease of the BMP level and E-cadherin-mediated GSC-181 

niche adhesion [44•]. As a consequence, GSCs in aged females exhibit a prolonged G2 182 

phase and a delay at the S phase of the cell cycle [10,45•]. At the organismal level, 183 

aged female flies exhibit decreases in feeding amounts [46] and insulin production [9184 

•], which also potentially affect GSC maintenance. In addition, aging may also 185 

attenuate ecdysteroid synthesis, as InR mutants are defective in terms of ecdysteroid 186 

synthesis [47]; conversely, ecdysteroid signaling affects the aging process [48]. 187 

Therefore, nutrition, DILPs, and ecdysteroids mutually interact with each other to 188 

influence age-associated changes of GSC maintenance. 189 

DNA damage and Reactive oxygen species (ROS), the by-products of 190 
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oxidative energy metabolism that have long been suggested as the main causes of 191 

aging, accumulate within aging GSCs. Aging GSCs show a decreased regenerative 192 

potential, which results in a defective ability to recover from DNA damage [45•]. The 193 

regenerative potential is regulated by two key components of the insulin signaling 194 

pathway: foxo and Tor (Target of rapamycin). In young flies, Foxo represses Tor activity, 195 

pushing the GSCs into quiescent states in response to radiation stress. After the stress, 196 

Foxo is deactivated and then Tor overcomes the action of Foxo, followed by the 197 

resumption of GSC division and regeneration. On the other hand, in old flies, 198 

quiescent GSCs cannot reenter the cell cycle due to over activation of Foxo, leading to 199 

the loss of GSCs and differentiating cystoblasts [49••]. Aging-related GSC cell cycle 200 

collapse is regulated by the reduction of insulin signaling and ecdysteroid signaling, 201 

i.e. indeed due to DNA damage (ROS production). Furthermore, most surprisingly, the 202 

lack of cell cycle progression capacity in aging GSCs after ionizing radiation can indeed 203 

be rescued by loss of foxo [49••], indicating an unexpected “positive” role of insulin 204 

signaling in the youth of GSC maintenance.  205 

Aging gradually reduces the number and division ability of GSCs. However, it 206 

is still unclear whether aged females can undergo post-mating GSC proliferation. Post-207 

mating increase in GSC number is observed in a 3-week-old female that experienced 208 

at least-2 time-mating-induced GSC proliferation [27•]. The rate of increase in GSC 209 

number gradually reduced along with aging, suggesting that the female lost post-210 

mating GSC proliferation ability with aging. Aging, diet, and hormones are highly 211 

interactive and closely related; next-generation studies will shed light on how these 212 

components change adult physiology and fertility. 213 

 214 

Conclusion 215 
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As described above, the accumulated evidence has shown that DILPs and 216 

ecdysteroids coordinately regulate GSC proliferation and maintenance by acting on 217 

both ovarian somatic cells and germ cells dependently, in the context of nutrition, 218 

mating, and aging (Fig. 1). However, many interesting questions still remain to be 219 

answered. Firstly, we need to investigate whether and how humoral factors other than 220 

DILPs and ecdysteroids influence GSC proliferation and maintenance. We recently 221 

found that a gut-derived peptide hormone directly acts on the ovary to positively 222 

regulate mating-induced GSC proliferation in female D. melanogaster (T.A., Y.Y., R.N., 223 

unpublished). Our transgenic RNAi screen also revealed the existence of additional 224 

secreted factors and their receptors, which seem to be involved in mating-induced 225 

GSC proliferation (Y.Y., Y.K., T.A., R.N., unpublished). We expect that a complex of 226 

humoral factor networks must exist and possibly reflect some external environmental 227 

conditions to properly regulate GSC activity. Secondly, which cell types of the niche 228 

cells, such as cap cells and escort cells, receive each of the many types of humoral 229 

factors, and how multiple signals are integrated to regulate GSC maintenance have 230 

not yet been fully understood. Elucidation of the cross-talk among multiple signaling 231 

pathways in GSCs and niche cells would be very important for future studies. Finally, 232 

whether a part of the identified humoral mechanisms in female D. melanogaster is 233 

functionally conserved and plays essential roles in regulating GSC maintenance and 234 

fertility in other animals including mammals must be examined. 235 
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GSC phenotype is not due to DNA damage, but caused by the overactivation of Foxo. 441 

The authors have proposed that the balance between Foxo and Tor is crucial for the 442 

regeneration of the damaged GSCs. 443 

  444 
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Figure Legend 445 

Figure 1. A cartoon illustrating the mechanisms that regulate the proliferation and 446 

maintenance of germline stem cells (GSCs) in female D. melanogaster. GSCs are 447 

affected by insulin, ecdysteroids, and several metabolites from the fat body and the 448 

gut. These hormones and metabolites respond to internal and external conditions, 449 

such as nutrition, mating stimuli, and aging. While mating activates juvenile hormone 450 

(JH) biosynthesis and there are interactions between ecdysteroids and JHs, it is 451 

unclear whether JHs play a direct role in regulating GSC proliferation and/or 452 

maintenance. 453 
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