Single C–F Bond Activation of the CF₃ Group with a Lewis Acid: CF₃-Cyclopropanes as Versatile 4,4-Difluorohomoallylating Agents

Kohei Fuchibe, Rie Oki, Hibiki Hatta, and Junji Ichikawa*[a]

Abstract: The selective activation of one C–F bond (single activation) of the CF_3 group on cyclopropanes was achieved for the first time. When (trifluoromethyl)cyclopropanes were treated with arenes, allylsilanes, silyl enol ethers, or hydrosilanes in the presence of Me_2AlCl , fluoride elimination and the subsequent ring opening proceeded to afford 4,4-difluorohomoallylated products. In the absence of external nucleophiles, an alkyl group of AlR_3 was effectively introduced to provide the corresponding 1,1-difluoroalkenes.

Among the C–F bond activation reactions of CF₃-bearing compounds, ^[1] the selective activation of one of the C–F bonds constitutes a great challenge, while the other two C–F bonds remain unreacted. ^[2] This is due to the harsh reaction conditions required to cleave the first sp^3 C–F bond, which is indeed stronger than the second and third C–F bonds. To date, the single activation of the CF₃ group has been mainly performed on ArCF₃ platforms, ^[3] which has facilitated the straightforward synthesis of various fluorine-containing aromatic compounds. ^{[4][5]}

Recently, we developed an ethylaluminum dichloride (EtAlCl₂)-promoted single activation of the CF₃ group on alkene moieties (2-trifluoromethyl-1-alkenes, CF₃-alkenes, Scheme 1a). [6] In this system, the fluorine substituents stabilize the α -carbocations by donating their unshared electron pair to the vacant p orbital of the cationic centers (*i.e.*, α -cation stabilizing effect of fluorine). [7] Thus, upon elimination of F⁻ from the CF₃-

(a) Single Activation of CF₃-Alkenes (3,3-Difluoroallylation)

$$\begin{array}{c|c}
R & EtAlCl_2 \\
CF_2 & F^-
\end{array}$$

$$\begin{array}{c|c}
R \\
CF_2
\end{array}$$

$$\begin{array}{c}
Ar-H \\
-H^+
\end{array}$$

$$Ar \\
CF_2$$

(b) Single Activation of CF₃-Cyclopropanes (4,4-Difluorohomoallylation): this work

Scheme 1. Single Activation of CF₃-Alkenes and CF₃-Cyclopropanes.

 [a] Dr. K. Fuchibe, R. Oki, H. Hatta, Prof. Dr. J. Ichikawa Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba

Tsukuba, Ibaraki 305-8571 (Japan) E-mail: junji@chem.tsukuba.ac.jp

Homepage: http://www.chem.tsukuba.ac.jp/junji/index.html

Supporting information for this article is given via a link at the end of the document.

alkenes promoted by $EtAlCl_2$, stabilized *allylic* CF_2 cations (**A**) are generated, which in turn react with arenes (Ar–H) via a Friedel–Crafts-type mechanism leading to the corresponding 3,3-difluoroallylation products. [8]

Motivated by this success, we next turned our attention on the single activation of the CF $_3$ group on cyclopropane moieties [(trifluoromethyl)cyclopropanes, CF $_3$ -cyclopropanes, Scheme 1b]. In this case, the cyclopropane ring, which has electron-donating C–C σ bonds, [9] would promote the elimination of F $^-$ from CF $_3$ -cyclopropanes to generate stabilized *cyclopropyl*-bearing CF $_2$ cations (**B**). Their ring opening and subsequent bond formation with nucleophiles (Ar–H or R'–SiR" $_3$) might lead to 4,4-difluorohomoallylated products. It is worth noting that there has been only a few ring opening reactions [10] and heterocycle formations [11] involving CF $_3$ -cyclopropanes and that there is little precedent for C–C bond forming reactions of CF $_3$ -cyclopropanes. In this paper, we describe a novel function of CF $_3$ -cyclopropanes in organic synthesis as versatile 4,4-difluorohomoallylating agents. [12]

The required CF₃-cyclopropanes were prepared following our improved procedure for (trifluoromethyl)cyclopropanation. Carreira reported on the FeCl(TPP)-catalyzed (trifluoromethyl)carbene transfer reaction of styrenes with diazo(trifluoro)ethane

Table 1. Preparation of CF₃-Cyclopropanes 1.

Entry	Ar	Solvent	Conditions	Yield [%] [a] (dr)[b]
1	C ₆ H₄ <i>p</i> -Ph	Toluene	40 °C, 21 h	1a , 84 (<i>trans</i> only)
2	Ph	CH ₂ Cl ₂	reflux, 71 h	1b , 35 (96:4)
3	C ₆ H ₄ <i>p-i</i> -Pr	CH ₂ Cl ₂	reflux, 91 h	1c , 54 (94:6)
4	C ₆ H ₄ <i>p</i> -F	CH ₂ Cl ₂	reflux, 132 h	1d , 37 (99:1)
5	C ₆ H ₄ <i>p</i> -Cl	Toluene	80 °C, 29 h	1e , 56 (<i>trans</i> only)
6	C ₆ H ₄ o-Cl	THF	40 °C, 22 h	1f , 59 (99:1)
7	C ₆ H ₄ <i>p</i> -O <i>t</i> -Bu	THF	40 °C, 63 h	1g , 69 (98:2)
8	1-naphthyl	THF	40 °C, 36 h to 60 °C, 25 h	1h , 80 (<i>trans</i> only)
9	C_6H_4 <i>o</i> -Tol ^[c]	THF	40 °C, 6 h to reflux, 1 h	1i , 79 (99:1)
10	Ph, Ph ^[d]	THF	40 °C, 52 h	1 j, 40

[a] Isolated yield. [b] Trans/cis ratio determined by ¹⁹F NMR spectroscopy. [c] Tol = C_6H_4p -Me. [d] 1,1-Diphenylethene.

Table 2. Optimization of Lewis Acids

$$\begin{array}{c} \text{Lewis Acid} \\ \text{ρ-PhC}_6\text{H}_4 \\ \hline \\ \text{ρ-Xylene (10 equiv)} \\ \hline \\ \text{CF_2} \\ \hline \\ \text{f min then RT} \\ \end{array}$$

Entry	Lewis acid (equiv)	<i>t</i> [h]	Products [%] ^[a]	
	Lewis acid (equiv)		2a	1a ^[b]
1	BF ₃ ·OEt ₂ (3.6)	3.5 ^[c]	0	94
2	EtAICI ₂ (1.2)	1	88 ^[d]	0
3	Me ₂ AlCl (1.2)	1	92	_
4	TiCl ₄ (3.5)	4	85	0
5	ZrCl ₄ (1.1)	2	73	trace

[a] Ar =
$$C_0H_4\rho$$
-Ph. [a] ^{19}F NMR yield based on PhCF3 as internal standard. [b] Recovery. [c] -65 °C, 5 min then reflux, 3.5 h. [d] Reduction product 3 was obtained in 3% yield.

generated in situ from trifluoroethylamine hydrochloride (TPP = tetraphenylporphine). [13] We adopted Aggarwal's method, which facilitates the decomposition of sodiohydrazones to diazoalkanes with quaternary ammonium salt (PTC) at mild temperature (40 °C). [14] Thus, we treated styrenes with trifluoroacetaldehyde tosylhydrazone in the presence of tetrabutylammonium chloride, a FeCl(TPP) catalyst, and sodium methoxide (Table 1). The in situ-generated trifluoroacetaldehyde sodiohydrazone readily underwent decomposition, followed by the desired Fe(III)-catalyzed (trifluoromethyl)cyclopropanation. It should be noted that the generation of diazo(trifluoro)ethane was readily achieved starting from a commercially available trifluoroacetaldehyde hemiacetal.

As expected, the treatment of CF_3 -cyclopropane with Lewis acids facilitated the desired single activation of the CF_3 group. A model compound bearing a p-phenylphenyl group (1a) reacted with p-xylene in the presence of aluminum, titanium, or zirconium Lewis acids to afford 4,4-difluorohomoallylation product 2a in 73–88% yields (Entries 2, 4, and 5, Table 2). Products that would arise from the attack on the CF_2 carbon of B (Scheme 1b) were not observed (vide infra). EtAlCl₂ generated the hydride reduction product 3 in 3% yield (Entry 2), whereas dimethylaluminum chloride (Me₂AlCl) afforded the desired 2a in an increased yield (92%) without formation of 3 (Entry 3). [15][16]

With the optimized conditions in hand, the scope of the reaction regarding the arene substrates was investigated (Figure 1). Using Me₂AlCl, alkylated benzenes and naphthalene, anisole, and thiophene reacted with **1a** to afford the corresponding products **2a–f** in 60–95% yields. CF₃-Cyclopropanes **1b–g** also promoted difluorohomoallylation leading to the products **2g–l** in 67–90% yields. In the case of **2l**, removal of a *tert*-butyl group was observed. The reaction of **1h** afforded the corresponding **2m** (39% yield). The intramolecular reaction (**1i**) also proved successful, and the corresponding difluoroallylated fluorene **2n** was obtained in 56% yield.

The regioselectivity concerning the nucleophilic arene nuclei was considerably high, presumably due to steric effects: products **2b** (from toluene) and **2c** (from *o*-xylene) were obtained as single products. Meanwhile, naphthalene, which normally undergoes Friedel–Crafts-type reactions on its α carbon, reacted with CF₃-cyclopropane **1a** predominantly at the β carbon ($\beta/\alpha = 86:14$). [17] This high and/or abnormal selectivity suggests that the regioselectivity is controlled by the greater steric hindrance of cation **B** (vide infra).

[a] An external arene was not used.

Figure 1. Difluorohomoallylation of Arenes [Isolated yield; Ar = C_6H_4p -Ph; Conditions: CF₃-cyclopropane **1**, arene (3.0 equiv), Me₂AlCl (1.2 equiv), CH₂Cl₂, -65 °C to 40 °C, 10 min].

The following observations could be extracted from a theoretical calculation (structural optimization), which suggest that the cation ${\bf B}'$ generated from a model ${\rm CF_3}$ -cyclopropane has a charge-localized and distorted structure (Figure 2): (i) In the model ${\bf B}'$, the carbon at the position α to the fluorine substituents has a positive charge value of +0.52. (ii) In the original three-membered ring, the C–C bond distal to the methylene group is

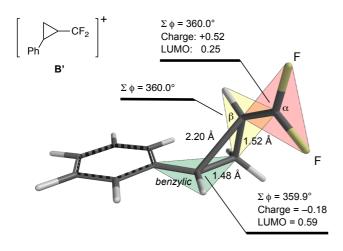


Figure 2. Optimized Structure of the Cation Generated from CF_3 -Cyclopropane (DFT, B3LYP/6-31G*).

$$\mathbf{B'} = \begin{bmatrix} & & & \\ & \mathsf{Ph} & & & \\ & \mathsf{Ph} & & & \\ & & \mathsf{B'1} & & & \mathsf{B'2} \end{bmatrix}$$

Scheme 2. Resonance Structures of Cation B'.

lengthened to 2.20 Å, which is much longer than the value of 1.51 Å of the parent cyclopropane. (iii) The carbons at the positions α and β to the fluorine substituents and the benzylic carbon have sp²-hybridized, planar structures, whose sums of bond angles are almost 360°. Namely, B' has a major contribution from the canonical form B'2 (Scheme 2). The regioselectivity of the reaction involving the CF₃-cyclopropanes likely from the prevented cyclopropyl(difluoro)methylation due to (a) the relative destabilization of the arenium ion **D** compared to **C** (Figure 3)^[8] by the electron-withdrawing inductive effect of the two fluorines and/or (b) the larger LUMO coefficient on the benzylic carbon of B' (0.59 vs. 0.25, Figure 2).

Figure 3. The structures of arenium ions $\bf C$ and $\bf D$, leading to $\bf 2$ and cyclopropyl(difluoro)methylation products (not shown), respectively.

The single activation of CF_3 -cyclopropanes was also applicable to silicon nucleophiles (Scheme 3), [5m][15b,f] allowing the synthesis of functionalized 1,1-difluoroalkenes. Thus, allylsilane **4** and silyl enol ether **5** reacted with **1a** in the presence of Me₂AlCl to afford the corresponding difluorohomoallylation products **6** and **7** in 94% and 79% yields, respectively. Introduction of hydride with triethylsilane was facilitated under the identical conditions and the corresponding 1,1-difluoroalkene **3** was obtained in 86% yield.

Scheme 3. Difluorohomoallylation of Silicon Nucleophiles (TBS = Si*t*-BuMe₂, Ar = C_6H_4p -Ph).

By conducting the reaction in the absence of external nucleophiles, the alkyl groups on the aluminum Lewis acids were difluorohomoallylated with CF_3 -cyclopropanes (Scheme 4). When CF_3 -cyclopropanes 1a and 1j were treated with trimethyl- or triethylaluminum, 1,1-difluoroalkenes 8a–c were obtained in 82%, 71%, and 76% yields, respectively, whereas dimethylaluminum chloride reacted with 1j to promote elimination (not methylation), leading to 1,1-difluoro-1,3-diene 9 in 77% yield.

[a] ¹⁹F NMR yield based on PhCF₃.

Scheme 4. Alkylation and HF Elimination of CF₃-Cyclopropanes.

In summary, the aluminum Lewis acid-promoted single activation of CF₃-cyclopropanes was achieved for the first time. The reaction was triggered by the elimination of fluoride to generate difluorocarbocations, which were effective for the selective introduction of a 4,4-difluorohomoallyl unit into external and internal nucleophiles such as arenes and organosilicons. A significant regioselectivity was observed in arene nucleophiles.

Acknowledgements

This research is supported by JSPS KAKENHI Grant Numbers JP18H04234 (J.I.) and JP16H04105 (J.I.). Central Glass Co., Ltd. is acknowledged for the generous gift of CF₃CH(OH)(OEt), which can be purchased from the same company. Shin-Etsu Chemical Co., Ltd. is acknowledged for the generous gift of TBSCI

Keywords: bond activation • carbocations • cyclopropane • fluorine • trifluoromethyl group

- [1] For reviews on activation of sp³ C–F bonds, including CF₃ groups, see:
 a) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183; b) T. Stahl,
 H. F. T. Klare, M. Oestreich, ACS Catal. 2013, 3, 1578–1587; c) T. A.
 Unzner, T. Magauer, Tetrahedron Lett. 2015, 56, 877–883; d) Q. Shen,
 Y.-G. Huang, C. Liu, J.-C. Xiao, Q.-Y. Chen, Y. Guo, J. Fluorine Chem.
 2015, 179, 14–22.
- [2] For a review on single activation of CF₃ groups, see: a) F. Jaroschik, Chem. - Eur. J. in press (DOI: 10.1002/chem.201801702). See also: b) G. Chelucci, Chem. Rev. 2012, 112, 1344–1462.
- [3] For example, see: a) D. Ferraris, C. Cox, R. Anand, T. Lectka, J. Am. Chem. Soc. 1997, 119, 4319–4320; b) H. Amii, Y. Hatamoto, M. Seo, K. Uneyama, J. Org. Chem. 2001, 66, 7216–7218; c) S. Yoshida, K. Shimomori, Y. Kim, T. Hosoya, Angew. Chem. Int. Ed. 2016, 55, 10406–10409; d) H. Wang, N. T. Jui, J. Am. Chem. Soc. 2018, 140, 163–166.
- [4] For complete activation of the three C–F bonds in ArCF₃, see for example: a) V. J. Scott, R. Celenligil-Cetin, O. V. Ozerov, J. Am. Chem. Soc. 2005, 127, 2852–2853; b) C. Douvris, O. V. Ozerov, Science 2008, 321, 1188–1190; c) J. Terao, M. Nakamura, N. Kambe, Chem. Commun. 2009, 6011–6013; d) T. Yamada, K. Saito, T. Akiyama, Adv. Synth. Catal. 2016, 358, 62–66.
- For single activation of a C-F bond in CF₃-compounds other than ArCF3, see for example: (CF3-alkenes) a) J.-P. Bégué, D. Bonnet-Delpon, M. H. Rock, Synlett 1995, 1995, 659-660; b) J. Ichikawa, H. Fukui, Y. Ishibashi, J. Org. Chem. 2003, 68, 7800-7805; c) J. Ichikawa, R. Nadano, N. Ito, Chem. Commun. 2006, 4425-4427; d) T. Miura, Y. Ito, M. Murakami, Chem. Lett. 2008, 37, 1006-1007; e) T. Ichitsuka, T. Fujita, J. Ichikawa, ACS Catal. 2015, 5, 5947-5950; f) Y. Huang, T. Hayashi, J. Am. Chem. Soc. 2016, 138, 12340-12343; g) T. Kumar, F. Massicot, D. Harakat, S. Chevreux, A. Martinez, K. Bordolinska, P. Preethalayam, R. Kokkuvayil Vasu, J.-B. Behr, J.-L. Vasse, F. Jaroschik, Chem. - Eur. J. 2017, 23, 16460-16465; h) G. Meißner, K. Kretschmar, T. Braun, E. Kemnitz, Angew. Chem. Int. Ed. 2017, 56, 16338-16341; i) X. Wu, F. Xie, I. D. Gridnev, W. Zhang, Org. Lett. 2018, 20, 1638–1642. (RCF₂-alkenes) j) M. Okada, Y. Nakamura, A. Saito, A. Sato, H. Horikawa, T. Taguchi, Chem. Lett. 2002, 31, 28-29; k) J.-F. Paquin, Synlett 2011, 2011, 289-293; I) H. Yanai, H. Okada, A. Sato, M. Okada, T. Taguchi, Tetrahedron Lett. 2011, 52, 2997-3000; m) A. Sato,

- H. Yanai, D. Suzuki, M. Okada, T. Taguchi, *Tetrahedron Lett.* **2015**, *56*, 925–929. (CF₃-ketones and -imines) n) H. Amii, T. Kobayashi, Y. Hatamoto, K. Uneyama, *Chem. Commun.* **1999**, 1323–1324; o) K. Uneyama, H. Amii, *J. Fluorine Chem.* **2002**, *114*, 127–131; p) R. Doi, M. Ohashi, S. Ogoshi, *Angew. Chem. Int. Ed.* **2016**, *55*, 341–344.
- [6] K. Fuchibe, H. Hatta, K. Oh, R. Oki, J. Ichikawa, Angew. Chem. Int. Ed. 2017, 56, 5890–5893.
- [7] a) K. Uneyama, Organofluorine Chemistry, Blackwell Publishing, Oxford, 2006; b) B. E. Smart, Organofluorine Chemistry, Principles and Commercial Applications, Plenum Press, New York, 1994.
- [8] For our previous publications on the synthetic use of stabilized CF₂ cations, see: a) J. Ichikawa, M. Kaneko, M. Yokota, M. Itonaga, T. Yokoyama, Org. Lett. 2006, 8, 3167–3170; b) J. Ichikawa, M. Yokota, T. Kudo, S. Umezaki, Angew. Chem. Int. Ed. 2008, 47, 4870–4873; c) K. Fuchibe, H. Jyono, M. Fujiwara, T. Kudo, M. Yokota, J. Ichikawa, Chem. Eur. J. 2011, 11, 12175–12185; d) K. Fuchibe, Y. Mayumi, N. Zhao, S. Watanabe, M. Yokota, J. Ichikawa, Angew. Chem. Int. Ed. 2013, 52, 7825–7828. See also: e) M. Yokota, D. Fujita, J. Ichikawa, Org. Lett. 2007, 9, 4639–4642; f) K. Fuchibe, R. Takayama, T. Yokoyama, J. Ichikawa, Chem. Eur. J. 2017, 23, 2831–2838.
- [9] a) Y. E. Rhodes, V. G. DiFate, J. Am. Chem. Soc. 1972, 94, 7582–7583; b) T. Nagasawa, K. Suzuki, Synlett 1993, 1993, 29–31; c) W. Rao, P. W. H. Chan, Chem. Eur. J. 2008, 14, 10486–10495; d) J. I.-C. Wu, P. R. Schleyer, Pure Appl. Chem. 2013, 85, 921–940.
- [10] For the ring opening of perfluoromethylcyclopropane, see: Z.-Y. Yang, P. J. Krusic, B. E. Smart, J. Am. Chem. Soc. 1995, 117, 5397–5398.
- [11] a) G. Daniel, R. Hans-Ulrich, Helv. Chim. Acta 2012, 95, 1818–1830;
 b) O. S. Artamonov, E. Y. Slobodyanyuk, D. M. Volochnyuk, I. V. Komarov, A. A. Tolmachev, P. K. Mykhailiuk, Eur. J. Org. Chem. 2014, 2014, 3592–3598.
- [12] For the reported syntheses and utility of difluoroalkenes, see: a) J. Ichikawa, Chim. Oggi 2007, 25, 54–57; b) X. Zhang, S. Cao, Tetrahedron Lett. 2017, 58, 375–392; c) W. Zhang, Y. Wang, Tetrahedron Lett. 2018, 59, 1301–1308.
- [13] B. Morandi, E. M. Carreira, Angew. Chem. Int. Ed. 2010, 49, 938–941.
- [14] V. K. Aggarwal, E. Alonso, G. Hynd, K. M. Lydon, M. J. Palmer, M. Porcelloni, J. R. Studley, Angew. Chem. Int. Ed. 2001, 40, 1430–1433.
- [15] For a review on C–F bond activation by main group Lewis acids, see: T. Stahl, H. F. T. Klare, M. Oestreich, ACS Catal. 2013, 3, 1578–1587.
- [16] For C–C bond formation with aluminum Lewis acids or reagents, see for example: a) T. Ooi, D. Uraguchi, N. Kagashima, K. Maruoka, Tetrahedron Lett. 1997, 38, 5679–5682; b) J. Terao, S. A. Begum, Y. Shinohara, M. Tomita, Y. Naitoh, N. Kambe, Chem. Commun. 2007, 855–857; c) M. Ali, L.-P. Liu, G. B. Hammond, B. Xu, Tetrahedron Lett. 2009, 50, 4078–4080; d) W. Gu, M. R. Haneline, C. Douvris, O. V. Ozerov, J. Am. Chem. Soc. 2009, 131, 11203–11212; e) A. K. Jaiswal, K. K. Goh, S. Sung, R. D. Young, Org. Lett. 2017, 19, 1934–1937.
- [17] It should be noted that toluene, o-xylene, and naphthalene afforded "normal" regioisomeric mixtures when subjected to the previous CF₃alkene/EtAlCl₂ system (ref 6).

COMMUNICATION

Single C-F Bond Activation

The selective activation of one C–F bond (single activation) of the CF_3 group on cyclopropanes was achieved for the first time. When (trifluoromethyl)cyclopropanes were treated with arenes, allylsilanes, silyl enol ethers, or hydrosilanes in the presence of Me_2AlCl , fluoride elimination and the subsequent ring opening proceeded to afford 4,4-difluorohomoallylated products. In the absence of external nucleophiles, an alkyl group of AlR_3 was effectively introduced to provide the corresponding 1,1-difluoroalkenes.

Kohei Fuchibe, Rie Oki, Hibiki Hatta, and Junji Ichikawa*

Page No. - Page No.

Single C-F Bond Activation of the CF₃ Group with a Lewis Acid: CF₃-Cyclopropanes as Versatile 4,4-Difluorohomoallylating Agents

