
1 

 

Seed dispersal by animals influences the diverse woody plant community on 1 

mopane woodland termite mounds 2 

 3 

Chisato Yamashina1 and Masaya Hara2 4 

 5 

1Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennoudai, 6 

Tsukuba-city, Ibaraki, JAPAN  7 

2The Center for African Area Studies, Kyoto University, 46 Shimoadachi-cho, Yoshida 8 

Sakyo-ku, Kyoto 606-8501 Japan 9 

 10 

ABSTRACT 11 
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or fire), may influence the distinct vegetation on termite mounds; however, seed dispersal 14 

has not yet been evaluated as a filter in this ecosystem. This study examined the effects 15 

of seed dispersal, particularly animal seed dispersal, on the distinct woody plant 16 

community on termite mounds in a mopane woodland in north-western Namibia. We 17 

compared the functional traits of woody plants related to dispersal, as well as responses 18 

to resource availability and disturbance, between plant communities on and those off 19 

termite mounds. We conducted vegetation surveys of woody plants in 13 paired mound–20 

savannah plots and measured their functional traits. Soil samples were also collected from 21 

10 of the 13 plots for soil chemical analysis to compare the differences between mound 22 

and savannah plots. Drupe-type fruits and dispersal by animals, including mammals and 23 

birds, were more dominant in plant communities on termite mounds, whereas pod and 24 

winged fruits and wind-dispersed species were typical in matrix communities. Termite 25 

mounds were rich in soil nutrients compared with the surrounding matrix, and soil 26 

phosphorus was associated with mound soil. We conclude that dispersal mechanisms 27 

contribute to the distinct and diverse woody plant community on termite mounds. Seed 28 

dispersal by animals is likely to be more common in the distinct woody plant community 29 

of the mounds, whereas the community in the surrounding matrix was characterised by 30 

wind dispersal. 31 
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 35 

INTRODUCTION 36 

In savannah ecosystems, spatial heterogeneity plays an important role (Scholes 1990) in 37 

maintaining a high level of biodiversity (Mittermeier and others 1998; Scholes and Biggs 38 

2005). This heterogeneity is found at different spatial scales and is driven by different 39 

abiotic and biotic factors (Pickett and others 2003). At the continental to regional scales, 40 

spatial and temporal variations in precipitation drive vegetation dynamics (Wiegand and 41 

others 2005), whereas fire, geology and soil factors (Scholes 1990; Higgins and others 42 

2000; Bond and others 2005) and herbivory (Cromsigt and Olff 2008) become more 43 

important at the regional to landscape scales. The landscape -scale heterogeneity 44 

positively affects species richness, especially in severe environments (Yang and others 45 

2015), by providing niche space for species that have different ecological strategies 46 

(Bergholz and others 2017).  47 

In African savannahs, mound-building termites are important agents producing 48 

fine-scale heterogeneity through the reallocation of nutrients and subsoil particles (Sileshi 49 
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and others 2010; Gosling and others 2012). Termite-induced heterogeneity often creates 50 

a distinct woody plant assembly, with high species richness and woody biomass 51 

(Loveridge and Moe 2004; Traore and others 2008) compared with the surrounding 52 

savannah. However, why plant communities on termite mounds are so different from the 53 

surrounding savannah is poorly understood. 54 

Plant species differ in their environmental requirements for successful 55 

establishment and survival; thus, the environment acts as a filter, removing species that 56 

lack traits allowing their persistence under a particular set of conditions (Keddy 1992). 57 

The process of seed dispersal determines which species reach a site (i.e., dispersal 58 

limitation, Nathan and Muller-Landau 2000; Kraft and others 2015). Then biotic and 59 

abiotic filters determine which species establish under conditions formed by the 60 

environment and other organisms (Weiher and Keddy 1995; Belyea and Lancaster 1999). 61 

The observed community composition is an outcome of the sum of these filters, which 62 

sort the species by functional traits.  63 

Numerous abiotic and biotic filters contribute to the unique vegetation on termite 64 

mounds. Enriched soil (Sileshi and others 2010; Erpenbach and others 2013), higher soil 65 

moisture (Dangerfield and others 1998; Konate and others 1999; Sileshi and others 2010), 66 

and elevated topography, which acts as a refugium from fire (Moe and others 2009; 67 
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Joseph and others 2011; Joseph and others 2013), and savannah flooding (Dangerfield 68 

and others 1998; McCarthy and others 1998) have been suggested as causes for the 69 

distinct plant communities found on termite mounds. Herbivory acts as a biotic filter to 70 

the plant community on mounds. Herbivores prefer to browse plants on mounds, which 71 

results in higher deposition of urine and dung on mounds as a result of longer or more 72 

frequent visits, creating a positive feedback loop (Holdo and McDowell 2004; Loveridge 73 

and Moe 2004). Furthermore, the higher browsing activity alters herbaceous and woody 74 

plant communities (Okullo and Moe 2012b; Stoen and others 2013). In addition to these 75 

herbivores, small vertebrate (Fleming and Loveridge 2003) and avian species (Joseph and 76 

others 2011) also frequently visit termite mounds for browsing and nesting spots, which 77 

leads to seed deposition on mounds. However, the effects of dispersal on the distinct plant 78 

assembly of termite mounds have not been sufficiently evaluated.  79 

In north-eastern Namibia, large Macrotermes (Isoptera) termite mounds are 80 

sparsely distributed (Coaton and Sheasby 1972). The vegetation in this region is classified 81 

as mopane, Colophospermum mopane ((J. Kirk ex Benth.) J. Kirk ex J. Léonard) 82 

woodland (White 1984). Although C. mopane is a dominant species both on and off 83 

termite mounds, there is higher density and species richness of woody plants on these 84 

mounds than in the surrounding savannah matrix (Yamashina 2013). Avian seed dispersal 85 
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may contribute to this unique woody plant community (Yamashina 2014); however, clear 86 

evidence is lacking. 87 

We examined the effects of seed dispersal, particularly by animals, on the 88 

community composition of termite mound vegetation by exploring woody plant 89 

functional traits related to dispersal. The plant community on termite mounds will also 90 

reflect the effects of filters other than dispersal; therefore, we assessed the effects of traits 91 

related to soil resource use and disturbance. The soil nutrient environment, a well-studied 92 

factor affecting termite mound vegetation, was also analysed as an underlying factor. We 93 

used community-weighted mean (CWM) trait values (i.e., the mean of the trait values 94 

weighted by the relative abundances of species), which are adequate to summarise shifts 95 

in mean trait values within a given community (Ricotta and Moretti 2011). 96 

We examined three questions by measuring plant traits, including the traits 97 

related to seed dispersal and other processes, and analysing the relationship between soil 98 

components and woody species composition on and off mounds: 1) Do the functional 99 

traits of woody plant communities differ between termite mounds and the surrounding 100 

savannah matrix? 2) If so, which traits differ in woody plant communities between the 101 

mound and savannah matrices? 3) Does seed dispersal by animals contribute to the 102 

distinct woody plant community on termite mounds?  103 
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  104 

METHODS 105 

Study site 106 

Fieldwork was conducted in the Muyako Community Forest (17.88°S, 24.40°E) in the 107 

Zambezi region of Namibia in November 2012, November 2014, January 2015 and 108 

November 2015. The altitude is approximately 1000 metres above sea level and the 109 

topography is nearly flat. The annual precipitation is greater than 650 mm (Mendelsohn, 110 

2002), with most rain falling between October and March. The average temperature 111 

ranges between 20 and 22°C. September is the warmest month (range, 14.1–33.8°C) and 112 

June is the coolest (range, 6.1–24.5°C) (Namibia Meteorological Service 2013). Large 113 

areas of the landscape are covered by eutric Fluvisols and fertile soils with high base 114 

saturation are found along large river margins and valleys (Mendelsohn 2002). The 115 

research site lies between the Zambezi and Chobe Rivers, downstream from the Kwando 116 

River. The site is located on the boundary between the Kwando and Zambezi drainage 117 

basins; some areas were inundated during the rainy season. Lyambezi Lake, which 118 

contained water all year round during the study period, lies to the west of the study site. 119 

The local vegetation contains mopane woodland, acacia woodland, riparian forest, and 120 

floodplains, which cover small areas of the landscape (Mendelsohn and Roberts 1997). 121 
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The understory vegetation of mopane veldt, including grasses and herbs, is poorly 122 

developed (Werger and Coetzee 1978); therefore, we only surveyed woody plants.  123 

 124 

Field sampling 125 

This study included 13 paired mound–savannah plots (20 × 20 m). Within our study site, 126 

there were several types of mound shapes: 1) mostly active cone-shaped mounds; 2) 127 

sometimes active cone-shaped areas with surrounding erosion skirts; and 3) mostly 128 

inactive dome-shaped mounds without a prominent cone-shaped area. Our plots focused 129 

on the latter two types, and we selected mounds at least 20 m in diameter, based on 130 

accessibility in the forest and low human impact due to far distances from residential 131 

areas. Termite samples, including soldiers and workers, were collected from two mounds 132 

and were identified as Macrotermes michaelseni (Sjӧstedt) by a termite expert in the 133 

National Museum of Namibia. Although we could not identify the builders of all of the 134 

mounds in our samples, a previous study conducted in a floodplain in Botswana suggested 135 

that dome-shaped mounds with a large diameter originated from the cone-shaped mounds 136 

built by M. michaelseni (McCarthy and others 1998). Savannah plots were set in the 137 

surrounding savannah matrix at least 50 m from each mound.  138 

In each plot, all woody plants taller than 1 m were counted and identified by their 139 
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leaves, flowers and fruit, using Wyk and Wyk (1997) as a reference. Leaf, fruit/pod and 140 

twig samples were collected for trait measurements. We collected 10 paired mound–141 

savannah soil cores (> 200 g per core) between 0 and 10 cm in depth for soil chemical 142 

analysis. 143 

 144 

Trait selection and measurement 145 

To examine if functional traits of woody plants differ between termite mounds and the 146 

surrounding matrix, we selected 16 traits related to seed dispersal, and responses to soil 147 

nutrient availability or disturbance (Table 1) including growth form, plant height, 148 

phenology, specific leaf area (SLA), leaf area (LA), leaf thickness, leaf dry matter content 149 

(LDMC), twig dry matter content (TDMC), leaf palatability (for mammal herbivores), 150 

spinescence, seed mass, fruit/pod palatability, fruit type (drupe, pod, winged), dispersal 151 

mode (mammal, bird, wind), nitrogen (N)-fixing ability, leaf N content and leaf carbon 152 

(C) content. We followed standardised protocols to measure functional traits (Cornelissen 153 

and others 2003; Perez-Harguindeguy and others 2013). To determine LA and leaf 154 

thickness, 10 leaves from 3–6 individuals (n=157) were collected from each species (n= 155 

31). Each leaf was weighed fresh and photographed using a reference scale in the field. 156 

LA was measured using the Photoshop CS6 software. Leaf thickness was measured using 157 
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a digital micrometre (Mitsutoyo, Tokyo, Japan). Leaves were oven-dried at 75°C for at 158 

least 48 h, and dry weight was measured to 0.001 g precision. SLA was expressed as the 159 

ratio of fresh LA to dry mass of the leaf sample (mm2 mg-1). LDMC was expressed as the 160 

ratio of dry mass to fresh mass. Leaf samples were collected at both mound and savannah 161 

plots where possible. Other traits including N-fixing ability, phenology, growth form and 162 

fruit type were obtained from the literature (Defaria and others 1989; Campbell 1996; 163 

Jacobs and others 2007; Roux and Muller 2009; Cramer and others 2010).  164 

We measured three traits related to seed dispersal: seed mass, fruit type, and 165 

dispersal mode. Seed mass is related to dispersal and establishment, with smaller-seeded 166 

species producing more seeds per reproductive bout to increase the chance of dispersal, 167 

whereas species with lager seeds are more likely to establish in competitive environments 168 

(Westoby 1998). Dispersal agents can be inferred from seed morphology (Levin and 169 

others 2003). In this study, we classified the plant seeds as either drupes, pods, or winged. 170 

Seeds with wings are dispersed by wind. Drupes are fleshy fruits dispersed by birds and 171 

mammals (Perez-Harguindeguy and others 2013). Pods occur mostly in the Fabaceae 172 

family and are eaten and dispersed by livestock, ungulates, elephants, and other wildlife 173 

(Miller 1996; Dudley 1999). Species with a higher LDMC tend to be resistant to physical 174 

damage, such as herbivory and fire, and are associated with low-nutrient envronements 175 
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(Perez-Harguindeguy and others 2013; Wigley and others 2016). The leaf C:N ratio and 176 

SLA also reflect the soil resource, i.e. a higher leaf C:N ratio tends to be associated with 177 

a low-nutrient envronements, whereas lower C:N ratio tends to be associated with 178 

productive environments (Wigley and others 2016). N fixation is a costly process that 179 

consumes carbon (Vitousek and Howarth 1991), and N fixing ability reduces the need for 180 

this in rich environements (Van der Plas and others 2013). 181 

 182 

Soil and leaf analysis 183 

Soil samples were analysed for pH (H2O), conductivity (EC), calcium carbonate 184 

equivalent (% CaCO3), organic C, organic matter, phosphorus (P), sodium (Na), 185 

potassium (K), magnesium (Mg), calcium (Ca) and total N at the Analytical Laboratory 186 

Services in Namibia. Soil pH was measured in a supernatant suspension with a 2:5 187 

soil:water ratio using a hydrogen-selective electrode and pH meter (WTW MultiLab 540, 188 

Weilheim, Germany). Conductivity (with a soil:water ratio) was measured using a 189 

specific conductivity meter (WTW MultiLab 540). The calcium carbonate equivalent was 190 

measured by neutralising the 2:5 soil:HCl (1M) suspension with standardised 1 M sodium 191 

hydroxide and titrating the supernatant. The determination of soil organic C was based on 192 

the Walkley–Black chromic acid wet oxidation method. P was measured by the Olsen 193 
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method using a spectrophotometer (UVmini-1240, Shimadzu, Kyoto, Japan). Soil organic 194 

C was converted to soil organic matter using a van Bemmelen factor of 1.724. Soil 195 

exchangeable bases (Na, K, Mg and Ca) were analysed using 1 M ammonium acetate (pH 196 

7.0) by inductively coupled argon plasma optical emission spectroscopy (Optima 7000 197 

DV, Perkin Elmer, Waltham, MA, USA). The Kjeldahl method was used to determine the 198 

total N content in soil samples. Soil particle analyses were also performed using a pipette 199 

method. Leaf C and N were measured using an NC Analyser at a laboratory in Kyoto 200 

University (Sumigraph NC-22F Sumika Chemical Analysis Service, Tokyo, Japan) with 201 

ground-dried leaves processed after dry weight measurements had been taken.  202 

 203 

Statistical analysis 204 

All statistical analyses were performed using R software (version 2.15.2 for Windows, 205 

Vienna, Austria). To compare the plant communities on termite mounds with those in the 206 

surrounding matrix, we calculated the density, species richness and species diversity 207 

index (alpha diversity, evenness and beta diversity) of the woody plant community on 208 

each plot. Species richness was expressed as the total number of species in each plot. For 209 

alpha diversity, we used the Shannon–Wiener index, calculated as H’=－∑𝑃𝑖(𝑙𝑛𝑃𝑖), 210 

where Pi is the proportion of each species ‘i’ in the sample. Evenness was calculated as 211 
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H’/lnS, where ‘S’ is the total number of species in each plot. Beta diversity was assessed 212 

as among-plot dissimilarity in community composition. We used the Bray–Curtis index, 213 

computed using the ‘vegdist’ function in the ‘vegan’ R-package (Oksanen and others 214 

2016). To test for differences in these indices, the CWMs of each functional trait and the 215 

soil components between mound and matrix plots, we used paired t-tests or the Wilcoxon 216 

signed-rank test following Shapiro–Wilk tests. Functional traits and soil components were 217 

standardised, and multicollinearity of functional traits and soil components were assessed 218 

using a correlation matrix of all of the functional traits and soil parameters (Pearson’s 219 

correlation coefficient) to examine possible linkages between variables before subsequent 220 

analyses.  221 

To assess differences in dispersal-related traits between mound and matrix plots, 222 

we defined an ‘indicator species’ for each site using typical species and their dispersal 223 

mode. To identify indicator species, an indicator value (Dufrene and Legendre 1997) was 224 

calculated using the ‘labdsv’ package (Roberts 2016) in R with 100,000 iterations.  225 

We conducted a detrended correspondence analysis (DCA), which indicated that 226 

the gradient length of the first axis was long (5.2 standard deviation), suggesting a 227 

unimodal distribution response of species assemblages to environmental variables (ter 228 

Braak and Smilauer 2002). To explore whether differences in woody plant communities 229 
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can be explained by soil nutrients and functional traits, we used a canonical 230 

correspondence analysis (CCA). CCA is a constrained ordination method that detects key 231 

variables accounting for the variation (ter Braak, 1995). Variables that significantly 232 

explained the variance in species assemblages (p < 0.05) were selected using the ‘ordistep’ 233 

function in the ‘vegan’ package (Oksanen and others 2016) of R. A separate CCA was 234 

used to evaluate the influence of soil components and functional traits on species 235 

composition. Explanatory variables with p < 0.05, P and Na for soil components and 236 

dispersal mode (endozoochory, bird, and wind) for functional traits, were selected for a 237 

separate CCA analysis. A permutation of 1000 iterations was used to evaluate significance 238 

in CCA. The CCA and DCA were also conducted using the ‘vegan’ package. 239 

 240 

RESULTS 241 

Termite mounds exhibited higher density of woody plants (t = 3.6, p < 0.01), species 242 

richness (t = 7.2, p < 0.0001), alpha diversity (t = 5.4, p < 0.0001) and evenness (t = 3.6, 243 

p < 0.001) of woody plants than the matrix; however, beta diversity did not differ between 244 

the mound and matrix plots (Table 2). We extracted 10 indicator species (p < 0.05) to 245 

represent the mound plots. Species with significant indicator values (> 60%) were 246 

considered characteristic mound species (McGeoch and others 2002). Thus, the top six 247 
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indicator species were characteristic of mounds; Salvadora persica had the highest 248 

indicator value of 92% (Table 3). Four indicator species were extracted to represent 249 

matrix plots; however, the indicator values were not significant (Table 3). All of the 250 

indicator species in mound plots were bird- and/or mammal-dispersed, whereas matrix 251 

plots were characterised mostly by wind-dispersed species and one mammal-dispersed 252 

species (Table 3).  253 

CWMs of woody species exhibiting traits related to mammal (W = 128, p < 0.05) 254 

and bird dispersal (W = 159, p < 0.001) were higher on mounds, whereas wind-dispersed 255 

species (W = 38, p < 0.05) were more common in the matrix (Table 4). CWMs of woody 256 

species bearing drupe-type fruits were higher on mounds (W = 160, p < 0.0001), whereas 257 

those of pod and winged seeds were higher in the matrix (W = 14, p < 0.001; W = 41, p < 258 

0.05, respectively). Woody species in the matrix plots had heavier seeds than the species 259 

in mound plots (t = –2.6, p < 0.05). Leaf traits with high CWMs in the matrix included 260 

leaf palatability (W = 14, p < 0.0001), LA (t = –2.1, p < 0.05), LDMC (W = 37, p < 0.05), 261 

leaf C content (W = 0, p < 0.0001) and leaf C:N (W = 23, p < 0.01), whereas SLA (W = 262 

124, p < 0.05) and leaf thickness (W = 150, p < 0.001) had high CWMs on mounds. There 263 

were no differences in CWM of leaf N content between mound and matrix plots. The 264 

CWM of evergreens was higher on mounds than in the matrix (W = 165, p < 0.0001), and 265 
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the CWM of deciduous species was conversely higher in the matrix than on mounds (W 266 

= 4, p < 0.0001); CWMs of plant height (W = 40, p < 0.05) and N-fixing ability (W = 13, 267 

p < 0.001) were higher in the matrix. The tree growth form was common in the matrix (W 268 

= 15, p < 0.001), whereas shrubs and climbers were typical on mounds (W = 155, p < 269 

0.0001; W = 118, p < 0.05, respectively). The CWMs of TDMC and spinescence showed 270 

no difference between the mound and matrix plots. 271 

Values of soil pH, EC, total N, P, K, Ca, CaCO3, organic C and organic matter 272 

were higher on mounds than in the matrix (all p < 0.05). The soil on mounds contained 273 

more silt than the matrix (Appendix 1). In the evaluation of the effect of soil components 274 

on species composition, the first two axes explained 58% of the species composition (Fig 275 

1a; ANOVA: F = 3.8, p < 0.01; eigenvalues for axes 1 and 2: 0.361 and 0.219, 276 

respectively). The first axis separated mound plots from matrix plots. P values tended to 277 

be associated with mound plots, whereas Na was associated with Terminalia spp. and 278 

Acacia spp., which produce winged or pod fruits. In the evaluation of the relationship 279 

between functional traits and species composition, the first two axes explained 64% of 280 

the species composition (Fig 1b; ANOVA: F = 5.1, p < 0.05; eigenvalues for axes 1 and 281 

2: 0.475 and 0.161, respectively). The first axis was separated by traits related to 282 

endozoochory or wind. Mound plots were strongly associated with traits related to 283 
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endozoochory and bird dispersal, whereas matrix plots tended to be associated with traits 284 

related to wind dispersal. Indicator species on termite mounds were also strongly 285 

associated with traits related to bird dispersal. 286 

 287 

DISCUSSION 288 

We used woody plant functional traits related to seed dispersal to understand the 289 

contribution of seed dispersal by animals in determining the woody plant community 290 

species composition on termite mounds in an African savannah. We found that termite 291 

mounds in the savannah have a diverse woody plant community, which is consistent with 292 

the findings of previous studies (e.g. Joseph and others 2014). Many functional traits of 293 

woody plants and soil components differed between the mound and matrix.  294 

Seed dispersal by animals, including mammals and birds, and drupe-type fruits 295 

were defined as the traits of the community composition on the mounds, whereas woody 296 

species with winged seeds dispersed by wind were common in the matrix. These results 297 

would indicate the contribution of animal seed dispersal in forming the distinct woody 298 

plant community found on termite mounds. In the indicator species on these mounds, S. 299 

persica and Capparis tomentosa bear drupes at the beginning of the rainy season, and 300 

many avian species visit fruiting plants and consume these fruits (Yamashina 2014). In 301 
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addition, many mammal species were observed on termite mounds; African elephants 302 

(Loxodonta africana) fed on the leaves of Commiphora sp., vervet monkeys (Chlorocebus 303 

pygerythrus) ate the fruits of Ximenia americana, and aardvarks (Orycteropus afer) 304 

hunted termites (personal observation using automatic sensor cameras in October for 1 305 

month).  Genets (Genetta genetta or Genetta maculata), common warthogs 306 

(Phacochoerus africanus), cape porcupines (Hystrix africaeaustralis), and mongoose 307 

(species unknown) were also observed on termite mounds (same method as above), and 308 

their nests were also found on mounds, except for genets (personal direct observation on 309 

mounds). Studies have suggested that large herbivores and small mammals utilise termite 310 

mounds, more than the surrounding matrix, as browsing and nesting sites (Loveridge and 311 

Moe 2004; Okullo and others 2013). Avian species nesting in woody species on termite 312 

mounds may disperse seed among the mounds (Joseph and others 2011). Of the animal 313 

species observed at our site, the genet, vervet monkey, elephant and mongoose have been 314 

suggested to act as seed dispersers (Jackson and Gartlan 1965; Debussche and Isenmann 315 

1989; Clevenger 1996; Barnes 2001; Tews and others 2004). Additional observational 316 

studies on matrix need to compare the relative abundance of potential seed dispersers 317 

between mounds and surrounding matrix. However, these mammals, in addition to avian 318 

species, visited S. persica and C. tomentosa, possibly dispersing seeds that shape the 319 
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unique vegetation on termite mounds, because some of them feed on the indicator species 320 

on mounds and utilise the mounds as nesting sites.  321 

Soil components would contribute to the differences in the species compositions 322 

of distinct vegetation on mounds. As many studies have shown (e.g. Sileshi and others 323 

2010), Macrotermes mounds are relatively resource-rich islands with higher total N, P, K, 324 

Ca and organic matter contents compared with the surrounding matrix. Of these 325 

components, P was associated with mound plots, and indicated the difference in species 326 

composition between mound and matrix plots. We also found that N-fixing ability, LDMC, 327 

LA and leaf C:N were higher in the resource-poor matrix, whereas SLA and leaf thickness 328 

were higher on resource-rich mounds. These results are consistent with the findings of 329 

previous studies, which showed that species growing in resource-rich environments 330 

generally have higher SLA and lower LDMC values (Cornelissen and others 2003), 331 

whereas species growing in resource-poor environments have higher leaf C:N and LDMC 332 

values and larger leaves (Perez-Harguindeguy and others 2013; Wigley and others 2016). 333 

Van der Plas and others (2013) suggested that the presence of fewer N fixers in mounds 334 

indicates the role of the mounds as refugia for woody plant species that are less adapted 335 

to environments with relatively poor nutrient availability, which is consistent with our 336 

results.  337 
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We found more evergreen species on mounds and more deciduous species in the 338 

matrix. In recent studies, termite mounds have been shown to act as buffers against 339 

drought by enhancing revegetation and plant growth (Bonachela and others 2015) and 340 

woody species associated with the mounds have been shown to exert cooling effects, 341 

which modulate temperature and humidity in African savannahs (Joseph and others 2016). 342 

Deciduous species have traits associated with drought avoidance, whereas evergreen 343 

species are less well adapted to drought (Lebrija-Trejos and others 2010). Therefore, these 344 

mound-induced environments would be advantageous for the establishment of drought-345 

sensitive evergreen species and act as revegetation foci during drought periods, resulting 346 

in non-uniform distributions of evergreen and deciduous species and further distinction 347 

of the vegetation patterns on mounds and the surrounding matrix. Termite mounds might 348 

also act as refugia for fire-prone evergreen species (Van der Plas and others 2013). The 349 

vegetation on termite mounds experiences less fire damage due to low fuel load (Joseph 350 

and others 2013), high water availability (Konate and others 1999) and elevated 351 

topography (Moe and others 2009; Sileshi and others 2010). Although grass cover did not 352 

differ significantly between termite mounds and the surrounding matrix at this site 353 

(Yamashina 2013), water availability, elevated topography and fire frequency should be 354 

examined to assess their filtering effects.  355 
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Large herbivores have been suggested to influence the vegetation community of 356 

termite mounds, as a disturbance factor (Okullo and Moe 2012a), and have been shown 357 

to negatively affect mound woody plant diversity at high densities, with browsers having 358 

a greater impact than grazers (Joseph and others 2015). In miombo woodland, termite 359 

mounds provide preferred forage for large herbivores (Loveridge and Moe 2004; Mobaek 360 

and others 2005) because of their nutrient-rich foliage (Holdo, 2004), although the reverse 361 

pattern, in which the plants on mounds are less preferred by mammal herbivores, was 362 

found in mosaic vegetation in South Africa (Van der Plas and others 2013). Davies and 363 

others (2016) found that the importance of termite mounds for herbivores as foraging sites 364 

varied with nutrient availability and season, and is likely to be more important in nutrient-365 

poor environments in the wet season, and more important in nutrient-rich environments 366 

in the dry season. In this study, we found no differences in leaf N content, fruit/pod 367 

palatability, or spinescence between mound and matrix, and leaf palatability was higher 368 

in the matrix plots. Thus, we found no evidence from functional traits that termite mounds 369 

should act as browsing hotspots, which may be explained by the fact that the leaves and 370 

pods of C. mopane, the sole dominant species at the site, are the most important resource 371 

for herbivores in mopane vegetation ecosystems. The lack of difference in spinescence, 372 

which acts as physical protection against herbivores, also indicates no difference in 373 
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browsing pressure on the woody species on the mound and in the matrix. Therefore, we 374 

found no filtering effects due to herbivory in this study. 375 

This study suggested that dispersal processes, especially animal seed dispersal, 376 

contribute more to the distinct and diverse woody plant community found on termite 377 

mounds than that in the surrounding matrix. Certainly, this non-uniform distribution of 378 

woody species with animal dispersal traits could be an incidental result of other filters 379 

rather than dispersal mechanisms. Actually, soil can act as a filter of vegetation from the 380 

soil P in mound plots. This study, however, found a clear association only between soil P 381 

and woody species composition on mounds, despite of the significant differences in many 382 

soil components between mounds and matrix. Then animal seed dispersal was suggested 383 

as a filter. The seed-dispersal process, including direct measurement of seed dispersal, 384 

during the creation of diverse plant assemblies on the termite mounds (Pringle and others 385 

2010; Sileshi and others 2010; Erpenbach and others 2013) should be evaluated in future 386 

studies, in addition to biotic and abiotic filters, such as the soil environment (e.g. Konate 387 

and others 1999; Sileshi and others 2010), topography (Dangerfield and others 1998; 388 

McCarthy and others 1998) and disturbance (Holdo and McDowell 2004; Loveridge and 389 

Moe 2004; Moe and others 2009; Joseph and others 2013). Animals contribute to the 390 

development of this hotspot via nutrient input (Holdo and McDowell 2004; Loveridge 391 



23 

 

and Moe 2004) and seed deposition, whereas termite mounds act as browsing and nesting 392 

hotspots for mammals and birds (Holdo and McDowell 2004; Loveridge and Moe 2004; 393 

Joseph and others 2011). Therefore, more studies are needed to explore the interaction 394 

between animals and the plant community on termite mounds to understand the 395 

heterogeneity induced by mound-building termites (Sileshi and others 2010; Erpenbach 396 

and others 2013).  397 
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 594 

Table 1.  595 

 596 

 597 

Table 2. 598 

Traits
Response to

dispersal

Response to soil

resource

Response to

disturbance

(fire, herbivore)

Dispersal mode (Mammal, Bird, Wind) ✔

Fruit type (Drupe, Pod, Winged) ✔

Seed mass ✔

Leaf palatability (for herbivore) ✔

Fruit/pod palatability ✔

LDMC ✔ ✔

Leaf thickness ✔

LA ✔

SLA ✔

Spinescence ✔

Leaf N ✔

Leaf C ✔

LeafC:N ✔

N-fixing ✔

Growth form (Tree, Shrub, Climbler) ✔ ✔

Phenology (Deciduous, Evergreen) ✔

Tree height ✔ ✔
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 599 

 600 

 601 

Table 3.  602 

 603 

 604 

Table 4.  605 

Mound Matrix p -value

Tree density (/400m
2
) 81.1 ± 39.1 38.7 ± 16.2 **

Species richness (/400m
2
) 11.9 ± 2.4 4.1 ± 3.1 ***

Alpha diversity (Shannon-Wiener index) 2.8 ± 0.7 1.0 ± 0.9 ***

Evenness (Shannon evenness index) 1.0 ± 0.2 0.5 ± 0.4 **

Beta diversity (Bray-Curtis) 0.6 ± 0.2 0.6 ± 0.3

Family Species
Indicator

value

Individuals

%

Dispersal

vector
Family Species

Indicator

value

Individuals

%

Dispersal

vector

Salvadoraceae Salvadora persica 92*** 12.24 bird Fabaceae Colophospermum mopane 46 n.s. 64.02 wind 

Fabaceae Acacia nigrescens 89*** 5.50 mammal Fabaceae Dichrostachys cinerea 30 n.s. 21.27 mammal

Tiliaceae Grewia  spp. 81*** 3.98 bird/mammal Combretaceae Combretum imberbe 23 n.s. 1.59 wind 

Burseraceae Commiphora glandulosa 66** 4.55 bird Combretaceae Combretum hereroense 15 n.s. 1.39 wind 

Olacaceae Ximenia americana 62** 5.22 mammal

Braginaceae Cordia  spp. 62** 3.22 bird/mammal 

Braginaceae Ehretia  spp. 53** 4.17 bird 

Capparaceae Capparis tomentosa 49* 3.13 mammal

Rhamnaceae Berchemia discolor 44* 1.90 bird/mammal 

Anacardiaceae Lannea discolor 38* 0.66 bird

Mound Matrix



36 

 

 606 

 607 

 608 

 609 

Table legends 610 

Table 1. Woody plant functional traits reflecting their responses to dispersal, soil 611 

resources and disturbances (fire and herbivores). 612 

 613 

Table 2. Woody plant community species on termite mounds and in the surrounding 614 

matrix (average±standard deviation). 615 

p -value

Dispersal mode (b ) Endozoochory 0.69 ± 0.27 0.34 ± 0.36 *

Bird 0.43 ± 0.18 0.08 ± 0.17 ***

Wind 0.28 ± 0.26 0.65 ± 0.36 *

Fruit type (b ) Drupe 0.45 ± 0.19 0.08 ± 0.17 ***

Pod 0.51 ± 0.20 0.86 ± 0.19 ***

Winged 0.30 ± 0.24 0.66 ± 0.36 *

Seed mass (g) 0.26 ± 0.14 0.44 ± 0.21 *

Leaf palatability (for herbivore) (b ) 0.93 ± 0.06 1.00 ± 0.01 ***

Fruit/pod palatability (b ) 0.91 ± 0.05 0.94 ± 0.10

LDMC (mg/g) 393.94 ± 20.87 412.91 ± 13.55 *

Leaf thickness (μm) 239.00 ± 23.94 209.05 ± 10.88 ***

LA (mm
2
) 1932.36 ± 493.80 2436.24 ± 726.89 *

SLA (mm
2
/mg) 10.76 ± 1.08 10.07 ± 0.75 *

Spinescence (b ) 1.35 ± 0.73 0.99 ± 1.09

Leaf N (%) 2.73 ± 0.27 2.53 ± 0.31

Leaf C (%) 43.12 ± 2.86 47.41 ± 0.54 ***

LeafC:N 18.27 ± 1.82 21.08 ± 2.51 **

N-fixing (b ) 0.53 ± 0.17 0.87 ± 0.19 ***

Growth form (b ) Tree 0.67 ± 0.17 0.94 ± 0.15 ***

Shrub 0.29 ± 0.15 0.06 ± 0.14 ***

Climbler 0.03 ± 0.04 0.01 ± 0.01 *

Phenology (b ) Deciduous 0.81 ± 0.14 0.99 ± 0.01 ***

Evergreen 0.19 ± 0.14 0.01 ± 0.01 ***

Tree height (m) 3.91 ± 0.37 4.35 ± 0.64 *

Mound Matrix
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Student’s t-test or Wilcoxon signed rank test. * p < 0.05 , ** p < 0.01, *** p < 0.001 616 

 617 

Table 3. Indicator species on termite mounds and in the surrounding matrix. 618 

 619 

Table 4. Community-weighted mean (CWM) values of each functional trait in woody 620 

plants on termite mounds and in the surrounding matrix (average±standard deviation). 621 

Student’s t-test or Wilcoxon signed rank test. * p < 0.05 , ** p < 0.01, *** p < 0.001 622 

(b): binary data (yes=1, no=0) 623 

 624 

Figure 1. 625 

 626 

 627 
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 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

Figure Legends 636 

Figure 1. CCA of woody plant species composition with statistically significant 637 

explanatory variables for (a) soil components and (b) functional traits. Abbreviations 638 

indicate the indicator species names of woody plants: A.n., Acacia nigrescens; B.d., 639 

Berchemia discolor; C.g., Commiphora glandulosa; C.h., Combretum hereroense; C.i., 640 

Combretum imberbe; C.m., Colophospermum mopane; C.t., Capparis tomentosa; Cordia, 641 

Cordia sp.; D.c., Dichrostachys cinereal; Ehretia, Ehretia sp.; Grewia: Grewia sp.; L.d., 642 

Lannea discolor; S.p., Salvadora persica; X.a., Ximenia americana. Italics indicate the 643 

indicator species of the mounds, and underline indicates the indicator species of the 644 

matrix. 645 
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 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

Appendix 1. Soil contents on termite mounds and in the surrounding matrix. 654 

 655 

Student’s t-test or Wilcoxon signed rank test. * p < 0.05 , ** p < 0.01, *** p < 0.001 656 

 657 

p -value

pH 7.84 ± 0.38 6.99 ± 0.71 **

EC (mS/m) 100.79 ± 103.97 38.24 ± 46.49 **

Total N (mg) 2063.42 ± 1412.64 652.07 ± 366.21 *

P (mg/kg) 18.60 ± 10.35 3.44 ± 1.76 ***

K (cmolc/kg) 1.94 ± 1.39 0.44 ± 0.34 ***

Ca (cmolc/kg) 24.31 ± 3.60 7.57 ± 9.35 ***

Mg (cmolc/kg) 3.64 ± 1.45 2.36 ± 2.86

CaCO3 (%) 1.28 ± 0.69 0.29 ± 0.17 ***

Organic C (%) 1.41 ± 0.68 0.57 ± 0.33 **

Organic matter (%) 2.44 ± 1.17 0.98 ± 0.57 **

Na (cmolc/kg) 2.42 ± 5.32 0.52 ± 0.65

Sand (>53 µm %) 62.30 ± 10.79 73.15 ± 28.67

Silt (53-2 µm %) 20.34 ± 9.04 10.27 ± 7.36 *

Clay (< 2 µm %) 17.36 ± 4.79 16.58 ± 22.12

Mound Matrix


