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Abstract 

 

Perovskite solar cells (PSCs) have sparked great excitement in the scientific community due to their 

easy and low cost of fabrication. With significant contribution from researchers around the world, the power 

conversion efficiency (PCE) of PSCs has been approached to the established photovoltaic technology within 

a few years. However, the stability and toxicity issues, prevent the commercialization of PSCs. At present, a 

lot of research have been focused not only to fabricate efficient device but also stable. For PSCs, the perovskite 

materials itself, having higher sensitivity towards moisture and oxygen, is the key issue for stability. It has 

been demonstrated that the morphology and crystallinity of perovskite film determine the performance of PSCs. 

If the perovskite films contain pin-holes, oxygen and moisture can easily penetrate into the inner domain and 

oxidize. So, the fabrication of pin-hole free uniform and robust nature of perovskite films is the prerequisite 

for efficient and stable PSCs. In order to achieve these goals, the main focus of this thesis is to develop the 

perovskite films for high efficiency and stable PSCs. 

Therefore, in this thesis, the widely used one step anti-solvent dripping (ASD) method was optimized 

through the detail observation of different anti-solvents such toluene, chlorobenzene, p-xylene and ether 

treatment on the MAPbI3 films and corresponding device performance. From the structural and optical 

characterization, it was revealed that the intrinsic properties of perovskite were independent of different anti-

solvent treatment, but the morphology changed which affects the corresponding device performance. Due to 

the high boiling point and miscibility in precursor solution, toluene and chlorobenzene treated perovskite form 

single grain structure across the cross-section with high stability. As a result, the corresponding devices showed 

highly efficient and stable performance both in dark and under continuous light illumination. Hence, a 

correlation between different anti-solvent treatment with morphology of perovskite films and stability in 

corresponding device was observed.  

In ASD method, usually a mixed of solvents such as Dimethylformamide (DMF) and Dimethyl 

sulfoxide or DMF and Gamma-Butyrolactone are used to control the perovskite crystallization rate by forming 

intermediate complex with metal halide before final perovskite film formation. However, for large scale 

commercial applications, the ASD system with single solvent precursor solution is more beneficial. But the 

perovskite film from single solvent precursor system experienced poor morphological and optoelectronic 

properties which negatively affect the final device performance. 

Therefore, in this thesis, an additive engineering was performed for single solvent precursor system 

to control the crystallization rate of perovskite films. Here, copper chloride (II) was used as additive in which 

the Cl- ion formed intermediate phase with PbI2 and slowed down the CH3NH3PbI3 crystallization rate. As a 

result, larger and uniform grain size perovskite film with optimum optoelectronic properties was observed and 

the corresponding PSCs showed 56% higher PCE as compare with the pristine PSCs.  

Although the PCE of Pb-based PSCs has approached to 23.3%, but the toxicity of Pb in PSCs 

effectively hinders their wide spread applications. As an alternative of Pb, Sn-based perovskites have been 

extensively explored due to their similar or even superior photovoltaic properties. However, the Sn-based PSCs 
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suffer from poor device performance and stability. This is because, the facial tendency to Sn2+ oxidation and 

inability to form pin-hole free uniform Sn-based perovskite films. For Sn-based perovskite film formation, 

SnF2 has been identified as essential additive for continuous film with lower Sn4+ content. However, the 

addition of SnF2 more than 10 mol% causes phase separation but at this concentration, the perovskite contains 

a lot of pin-holes with higher Sn4+ content.  

Therefore, along with SnF2, a coadditive engineering with hydrazinium chloride (N2H5Cl) was 

performed to use its dual beneficial aspects for controlling crystal growth rate and retarding Sn2+ oxidation. To 

do this, the additive engineered single solvent precursor system was used that was optimized during the Pb-

based work. A detail morphological, structural and optoelectronic characterizations were performed to observe 

the effects of N2H5Cl on the fabricated films. From these analyses, it was revealed that the addition of N2H5Cl 

reduce the Sn4+ concentration up to 20% which lead to the suppression of charrier recombination and pinhole-

free uniform coverage. These remarkable improvements in FASnI3 film enhanced both PCE and shelf life 

stability of Sn-based PSCs in dark condition. However, these devices showed poor light soaking stability but 

for real life implementation, this is the most crucial factor for a solar. 

In an attempt to improve light soaking stability of Sn-based PSCs, another coadditive engineering 

was performed with long carbon chain containing bifunctional organic additive, 5-ammonium valeric acid 

iodide (5-AVAI). From the 1H NMR analysis, it was observed that the addition of 5-AVAI into the precursor 

solution undergoes a hydrogen bond interaction with SnI6
4- octahedra through its bifunctional groups (COOH- 

and NH3
-). This interaction slowed down the perovskite crystallization rate and cross-linked adjacent grains to 

form pinholes-free uniform and crystalline film with a preferred orientation along <h00> direction. As a result, 

the addition of 5-AVAI augmented the PCE of FASnI3-based PSCs from 3.4 to 7.0% in a 0.25 cm2 area. 

Moreover, this additive formed a hydrophobic layer over the perovskite film which protects the perovskite film 

from moisture and oxygen. This enhanced the air stability of FASnI3 film and the corresponding PSCs were 

able to maintain their initial performance for 100 h under continuous illumination and at maximum power 

point tracking conditions.   
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Chapter 1 

General Introduction 

 

1.1 Motivation 

1.1.1 Global Worming  

 

Energy is the basic need of humankind. The demand of energy is increasing exponentially with rising 

population and development of newer technology. The human race needs more energy than ever for the 

advancement of civilization towards the future direction. Energy has different forms such as thermal energy, 

mechanical energy, electrical energy, magnetic energy, chemical energy, nuclear energy etc. Among these, 

electrical energy is the most convenient form of energy which can be easily converted to any other form of 

energy as required. At present, the modern civilization is based on the electrical energy.  

Usually, Electricity is harnessed by burning fossil fuels, nuclear power sources, and renewable energy 

sources. Due to the safety and difficulty in radioactive waste disposal process issues, nuclear power plants 

have lost their attractiveness. In addition, improper radioactive waste disposal leads to threatn environment 

and life. At present, production of electricity by burning fossil fuels is the only choice from the cost and 

available technological perspective. However, fossil fuel will not able to meet the growing energy demand of 

world economy for long time. It has been estimated that the reserve oil and natural gas will be depleted within 

several decades if other alternative energy sources are not developed. 

Moreover, over usage of fossil fuels generates a lot of toxic gases which are responsible for many 

environmental disasters. After the industrial evaluation, the concentration of CO2, one of the greenhouse gas 

(GHG), has been increased up to 35% primarily due to burning of fossil fuel.1The greenhouse gases act as a 

blanket for infrared radiation which traps the radiative energy and increases temperature. This is triggering the 

melting of polar ice in the north and south pole. As a result, the rise of sea level start to threaten the existence 

of many countries which are at par or below sea level. 

By realizing the threat, a lot of efforts are being taken to generate environmental awareness from all 

over the world. Among the different global organization, the United Nation Framework on Climate Change is 

regularly organizing Conference of Parties (COP) since 1995 to make an agreement among all nations. From 

these efforts, the organizers have succeeded to achieve a huge landmark at COP21 in 2015, whereby all nations 

agreed to keep the global warming level below 2°C. After realizing the severity of global warming, the green 

policies are now being seriously adopted by a lot of country. To fight against the global warming and to secure 

the energy crisis, the strategies have been taken mainly based on uprooting its base such as stop deforesting 

and limiting CO2 emission. Although continuous efforts have been given to make these processes more 

sustainable but still over 80 % of the global energy demand is now fulfilled by using fossil fuels such as coal, 

oil, natural gas etc. So, to get ride from the global warming problems, we must have to focus on the substitution 

of fossil fuel with renewable energy. 
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1.1.2 Renewable Energy  

 

Renewable energy is known as the green energy which are generated from the infinite natural source. 

The production of energy from the renewable sources such as sunlight, wind, rain, tides, waves, biomass and 

geothermal heat etc. are clean, natural and have no negative impact on the earth’s atmosphere. In comparison 

with other energy source, renewable energy resources exist over wide geographical areas. So, the development 

of renewable energy can solve a lot of current major problems such as energy crisis, climate change and 

economic scourge. To discourage the use of fossil fuel, an ordinance has been passed in which the GHG 

emitters will have to pay penalty for the climate change due to the GHG effect.2 This initiative will provide 

powerful tool for the development of renewable energy technologies. To promote the development of 

renewable sources such as solar power and wind power, an international public concern has already been grown. 

In this regard, 30 countries have started to use renewable energy sources and meet more than 20% of their 

energy requirement from these sources. Some countries such as Iceland and Norway have fixed their goals to 

meet their all energy demand from renewable energy in near future. In this regard, Denmark has decided to 

use 100% renewable energy for their total energy supply by 2050.  

In general, to implement the renewable energies in practical life, they must have to price competitive 

against the energy divided from the conventional sources. In this parameter, every source of renewable energy 

has its own limitations. For example, although the production of electricity from hydropower is much cheaper 

but their main disadvantages are the location of the plant, dependency of rainfall, cost of energy transmission 

and the significant impact on the environment as large area have to be flooded. The other renewable sources 

of energy such geothermal, wave and biomass are very much inefficient and also much depended on the nature 

which make them unrealistic for applications. This leaves wind and solar are the only realistic candidate as the 

substituent of fossil fuel and hope for the future energy demand. But these sources also have some of their won 

disadvantages, beside high cost of fabrication, they are also depended on the nature such as wide and sun light. 

Due to this dependency, the power grid integrates with a substantial amount of wind and solar power, must 

have to build up a storage system or a very efficient way of energy re-distribution among different remote area. 

Despite of these limitations, the wind and solar are consider as the only future green energy supplier due to 

their abundant source materials.  

 

1.1.3 Solar Energy 

  

Due to eco-friendly and sustainability, the solar energy has attracted tremendous attention.4 Every 

year, the sun supplies energy to earth on the order of gigantic i.e. 33×1024 joule which is about 10,000 time 

more than what mankind consumes currently. This means the solar panels with 2 % power conversion 

efficiency (PCE) covering 1.5% of total land area of earth are sufficient to fulfill current energy demand. So, 

the efficient harness of sun light can solve most of the urgent problems associated with energy that the world 

is facing now.   
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According to a theoretical calculation, the sun will shine more than six billion years with its full 

illumination. In term of energy sources, only solar energy is more than enough to meet the world's energy 

demand without any adverse effect to human beings as well as without contributing to any greenhouse gases 

to the atmosphere in the up-coming future.5 Therefore, solar energy is the only potential renewable source to 

fulfill the current and future energy demand. At present, most of the develop countries are moving toward solar 

cells or photovoltaic devices to meet their energy demand. 

 

 1.1.4 Solar Cells 

 

The photoelectric effect was first observed by a French physicist, Edmund Bequerel as early as 1839. 

With ~1% PCE, the first photovoltaic cell was built in 1883. The photovoltaic devices attracted much attention 

with the significant enhancement of PCE up to 6% by Bell Laboratories in 1954. But the use of photovoltaic 

devices was still limited due to their complicated and expensive fabrication procedure. In 1960s, the space 

programs research revealed the fundamental mechanism of photovoltaic which drastically improved the 

performance and cost effectiveness. Later the rise of energy crisis forced the researcher to involve into the 

photovoltaic technology as an alternative source of fossil fuel. The solar cells can be classified into three 

generations such as first, second and third. The first-generation solar cells are based on silicon wafer such as 

monocrystalline, polycrystalline and amorphous silicon solar cell. At present, these type of solar are 

dominating the market although their high cost of expensive fabrication. With much cheaper, thin films based 

solar cells are known as the second-generation solar cell such cadmium telluride and copper indium 

selenide/sulfide solar cells etc. In comparison with the first generation, these solar cells are much cheaper but 

still expensive due to their sophisticated fabrication technology. To overcome these problems, the third-

generation solar cells have been developed which involve easy and low-cost fabrication techniques. The third-

generation solar cells include organic photovoltaics, dye-sensitized solar cells (DSSC), quantum dot sensitized 

solar cells, and perovskite solar cells (PSCs) etc. Among the third-generation solar cells, the PSCs have 

experienced a rapid enhancement of PCE within very short period and become a competitor with the existing 

silicon solar cells in the market. Although an enhanced PCE of PSCs have been observed but some crucial 

drawbacks such toxicity of Pb, stability and reproducibility etc. effectively hinder their commercial 

applications. In accord to the latest development of PSCs, the aims of this study are to solve some of the 

existing problems in this solar cell device engineering technology.    

 

1.2  Perovskite Solar Cells 

1.2.1  Properties of Perovskite 

 

Perovskite solar cells are the third-generation solar cell in which the active layer that’s means the 

absorber is made of perovskite material. The perovskite material is composed of optimum photovoltaic 

properties which makes them most suitable candidate for solar cells. Some of their important properties are 
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discussed in the following section. 

 

Crystal Structure of Organic-Inorganic Perovskite Materials 

 

The crystal structure of organic-inorganic perovskite is generally expressed by ABX3 formula. Here 

the [BX6] octahedrons share their corner in three-dimensional space as shown in figure 1.1. In this structure 

the A site is monovalent organic or inorganic cation (CH3NH3
+ NH2CHNH2

+ or Cs+), B is the divalent metal 

cation (Pb2+ or Sn2+) and X is the halogen anion (Cl-, Br- or I-). The figure 1.1 schematically illustrate a unit 

cell of 3D perovskite.  

 

 

 

Figure 1.1: The unit cell of 3D organic inorganic perovskite structure 

 

To form a stable perovskite structure, ionic radius of cation (A) and anion (B) must be maintained a certain 

ratio range which is known as tolerance factor. The tolerance factor (t) is expressed by the follows expression.6 

 

𝑡 =
𝑅𝐴 + 𝑅𝐵

√2(𝑅𝐵 + 𝑅𝑋)
 

 

Where RA, RB, RX are the ionic radius of cation A, cation B and anion X respectively. Depending on the value 

of tolerance factor different type of perovskite is formed. The following table shows the range of tolerance 

factor and corresponding structure. 

 

Table 1.1: Tolerance factor for perovskite materials 

 

Beside tolerance factor, the octahedral factor (𝜇) must be fulfilled to form perovskite structure which can be 

expressed by the following equation. 

 

Tolerance factor Structure Comments 

<0.7 Non-perovskite A is too small or B is too large 

0.7-0.9 Tetragonal/orthorhombic rhombohedral Ideal perovskite structure 

>1.0 Various layered structures A-cation too large 
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𝜇 =
𝑅𝐵

𝑅𝑋
 

 

Table 1.2: Value of tolerance and octahedral factor of some common perovskite materials 

Compound t μ Perovskite 

CH3NH3SnI3
 0.720 0.536 Yes 

CH3NH3PbI3
 0.822 0.541 Yes 

CH3NH3CdI3 0.884 0.432 no 

 

Table 1.2 shows some value of tolerance and octahedral factor. From this table we can see that to form 

perovskite both tolerance and octahedral factor must be fulfilled. The octahedral factor should be higher than 

0.442.7 

The phase or structure of perovskite is also dependent on temperature. Here table 1.3 shows the range of 

temperature over which different phase exist for CH3NH3PbX3 (X=Cl-, Br-, and I-).  

 

Table 1.3: Crystal structure data for CH3NH3PbX3(X=Cl-, Br- and I-) as a function of temperature.7 

Structure CH3NH3PbCl3 CH3NH3PbBr3. CH3NH3PbI3. 

Cubic >178.8 K >236.9 K >327.4 K 

Tetragonal 172.9-178.9 K 144.5-236.9 K 162.2-327.4 K 

Orthorhombic <172.9 K <144.5 K <162.2 K 

 

High Absorption Coefficient 

 

Perovskite materials usually have very high absorption coefficient. For example, the MAPbI3 has an 

absorption coefficient of about 1.5x104 at 550 nm. This value is one order higher than that of silicon.8-9 The 

large absorption coefficient value help to efficient light absorption with a thin absorber. The thinner the 

absorber is, the lesser the defect and higher the charge recombination resistance. Thus, the absorber material 

with higher absorption coefficient not only absorb light more efficiently but also have optimum photovoltaic 

properties.10 

 

Low Exciton Binding Energy 

 

The exciton binding energy is the required energy needed to dissociate exciton into free electron and 

hole. Lower exciton binding energy is needed to reduce energy loss. For example, the lower open circuit 

voltage (VOC) in organic photovoltaic cells are mainly due to the higher exciton binding energy which are in 

the range of 0.6 V to 1.0 V.11 On the other hand, depending on the perovskite materials, the excitonic binding 

energy is in the range of 9-80 mV.12 Such a small energy value help to contribute lower VOC losses in PSCs. 
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Long Charge Carrier Diffusion Length 

 

Solution process organic-inorganic perovskites show much longer carrier diffusion length (500 nm-

8000 nm) in comparison with the organic semiconductors (~10nm).13 For photovoltaic application, the carrier 

diffusion length is one of the most important parameter for efficient charge transportation. The longer diffusion 

length allows to increase the thickness of absorber layer without affecting charge recombination and collection. 

The diffusion length is related with charge carrier lifetime (τ) and mobility (μ) according to the following 

equation. 

 

𝐿𝐷 = √𝐾𝐵𝑇μτ/e 

 

Here, 𝐾𝐵, T and e are the Boltzman constant, temperature and elementary charge, respectively. 

All of these parameters depend on the crystallinity, morphology, and type of defects of perovskite materials. 

 

Ambipolar Charge Transport 

 

The perovskite is well known for its ambipolar charge transport properties in which they can transport 

both electron and hole in a balance way. Most of the semiconductor show unbalanced transport properties due 

to their higher difference in effective mass of electron and hole (me
* and mh

*). On the other hand, theoretical 

analysis shows that effective mass of electron and hole in perovskite is nearly similar (me
* = 0.23 m0 and mh

* 

= 0.29m0) which balance ambipolar charge transportation.14 In a working solar cell, the bulk polarization 

depends on the balanced ambipolar charge transportation, consequently affects the short circuit current (JSC), 

open circuit voltage (VOC) and fill factor (FF). So, the ambipolar charge transportation is necessary properties 

for solar cell. The perovskite can behave as n-type or p-type depending on the interfacial layer to which it is 

attached.15  

 

Predominant p-Type Character in Perovskite  

 

Although perovskite is considered as an intrinsic semiconductor, but it usually behaves p-type or n-

type depending on the synthesis procedure. For example, if Sn-based perovskite is synthesized from reducing 

condition it become n-type but when it is synthesized from oxidizing condition it behaves like p-type 

semiconductor. But in general, both Sn-based or Pb-based perovskite behave p-type. 

 

1.2.2 Structure of Perovskite Solar Cells 

 

The first perovskite solar cells were based on DSSC type in which CH3NH3PbI3 (perovskite) was 

used as a sensitizer on thick mesoporous scaffolds in 2009.26 Due to the reaction between liquid electrolyte 

and perovskite, the cell was too unstable. This problem was overcome by replacing electrolyte with solid state 
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hole transporting material. After that the PSCs experienced a rapid development. At present, the PSCs have 

mainly three type structure which are briefly discussed in the following section. 

 

Meso TiO2 Structure 

 

Figure 1.2 shows the meso TiO2 structure. In this structure, a mesoporous TiO2 layer is deposited on 

to the transparent fluorine doped tin Oxide (FTO) or indium tin oxide (ITO) coated glass as an electron 

transporting layer (ETL). Then a perovskite capping layer is placed on the TiO2. After that the hole transporting 

layer, followed by metal electrode (Au or Ag).    

 

 

 

Figure 1.2: Meso TiO2 type PSC 

 

Planar Structure 

 

The sequence of different layers of planar structure is same as the meso -TiO2 structure. The only 

difference is the use of compact ETL (such as TiO2, SnO2 etc.) instead of meso-TiO2 layer. The figure 1.3 

schematically shows the planar structure of PSCs. 

 

 

 

Figure 1.3: Planar structure PSCs 

 

Inverted Planar Structure 

 

The Inverted Planar PSCs is just opposite of normal structure in which a hole transporting layer 

(HTL) is first deposited on the transparent conductive oxide coated (FTO or ITO) glass. Then, the perovskite 

Meso-TiO2

Planar structure

https://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=106837645
https://www.sigmaaldrich.com/catalog/product/aldrich/703192?lang=en&region=US
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layer is deposited on to it. Subsequently, the ETL is deposited on the perovskite layer and finally the 

photovoltaic device is completed by evaporating low work-function metal such Au or Ag (Figure 1.4). 

 

 

 

Figure 1.4 Inverted planar structure PSCs 

 

1.2.3 Perovskite Film Deposition Technique 

 

For PSCs, the deposition of perovskite film is the most important part as its quality determine the 

performance of device. There are several methods have been developed for the fabrication of perovskite film 

such one-step annealing method, two-step dipping method, vapor assist solution process, dual sources vapor 

method and one-step anti-solvent method. A brief discussion about different fabrication methods are given in 

the following paragraph. 

 

1.2.3.1 One Step Annealing Method 

 

In this method, the starting material such AX (A = methylammonium ion or formamidinium ion etc. 

and X= I, Br, Cl etc.) and BX2 (B = Pb2+ or Sn2+ etc.) is first dissolved in a suitable solvent such 

(Dimethylformamide) DMF or (Dimethyl sulfoxide) DMSO or (Gamma-Butyrolactone) GBL to make 

precursor solution. The precursor solution is then spin coated at a certain speed for a certain time. After that, 

it is annealed at 100 OC to 120 OC time for 30 to 60 min and obtained the final perovskite film. Figure 1.5 

schematically show the whole process. 

 

 
 

Figure 1.5: Schematically represent the one step annealing method 

 

 

Reverse structure

https://www.sigmaaldrich.com/catalog/product/aldrich/806048?lang=en&region=US
https://www.sigmaaldrich.com/catalog/product/aldrich/806048?lang=en&region=US
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 1.2.3.2 Two-Step Dipping Method 

 

In two-step dipping method, BX2 is fist dissolved in a suitable solvent (DMF, DMSO etc.) to make 

precursor solution. The precursor solution is then spin coated at a certain rate and dried at room temperature. 

After that it is dipped in to AX solution (usually Isopropanol used as solvent) and annealed at 100 0C to 130 

0C for 30 min to obtain final perovskite film. Figure 1.6 schematically shows the two-step dripping processes. 

The morphology of perovskite film directly depends on the concentration of both BX2 and AX solution. 

 

 

 

Figure 1.6: Schematically represent the two-step dipping method 

 

1.2.3.3 Dual Source Vapor Method 

 

The dual source vapor method was developed by Snaithe et al. in 2013 and produced high quality 

perovskite film with uniform thickness. In this method, AX and BX2 are placed into two crucibles and 

simultaneously evaporated. The thickness and composition of perovskite film are controlled by regulating the 

evaporation rate (Figure 1.7). All the process is performed under high vacuum and needed relatively longer 

time in comparison with spin coating method. 

 

 

 

Figure 1.7: Schematic illustration of perovskite film formation through dual source vapor method 

 

1.2.3.4 Vapor Assist Solution Process  

 

In vapor assist solution process, BX2 layer is first deposited by spin coating BX2 solution at a certain 
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rotation speed for certain period of time, and dried at 110 0C for 15 min. Then, AX powder was spread out 

around the BX2 coated substrates with a petri dish covering on the top and heated at 150 °C for desired time 

(Figure 1.8). Both the deposition of BX2 film and vapor treatment of BX2 film are carried out in glovebox. 

After cooling down, the as-prepared substrates are washed with isopropanol, dried and annealed.   

 

 

 

Figure 1.8 Schematic presentation of perovskite film formation through vapor assist solution process. 

 

1.2.3.5 One Step-Anti Solvent Dripping Method 

 

One-step anti solvent dripping (ASD) method is considered as the most efficient perovskite film 

fabrication method, was developed by Seok et al in 2014. In this method, the perovskite precursor solution is 

prepared by mixing AX and BX2 in to a solvent or mixture of solvents such DMF or DMSO or DMF-DMSO 

etc. The precursor solution is then spin coated at a certain rate and during this spinning an optimum amount of 

anti-solvent is dripped on the substrate to accelerate the heterogeneous nucleation. After completing the spin 

coating, the substrate is annealed at 100 0C to 130 0C for 30 min to obtain highly uniform crystalline perovskite 

films. Figure 1.9 schematically shows the whole process. 

 

 

 

Figure 1.9: Schematic illustration of one-step anti-solvent dripping method 

 

 



11 

 

1.2.4 Working Principle of Perovskite Solar Cells 

 

When light is illuminated on to the perovskite material, electron from the valence band moves to the 

conduction band and creates exciton (i.e. electron-hole pair) (Figure 1.10). As the perovskites have low 

excitonic binding energy (i.e. 4-22 meV for CH3NH3PbI3), the exciton dissociated into free electron and hole 

at room temperature and move across the device. Due to the high charge mobility and long diffusion length, 

electron and hole can easily move across the perovskite. Thus, electron diffuse through the perovskite to the 

ETL and subsequently collected to the electrode whereas the photogenerated holes diffuse through the 

perovskite and collected at the electrode. The ETL and HTL are also known as the charge blocking or selective 

layer and are vital for the performance of PSCs. By the virtue of ETL and HTL, the right charge is collected at 

the appropriate electrode whereas the wrong one is prevented. To do this, selection of ETL or HTL with 

appropriate energy levels with respect to those of perovskite is most crucial. To be a good HTL for optimum 

photovoltaic operation, it should have its conduction band or lowest unoccupied molecular orbital far above 

that of conduction band of perovskite. Simultaneously, the valence band or highest occupied molecular orbital 

of HTL should be just above the valence band of perovskite. The opposite requirements are needed for ETL to 

screen the appropriate charges. This charge selectivity property is essential for the device performance because 

if an electron reach to wrong electrode it will recombine non-radiatively with one of many holes present there. 

This process leads the unwanted loss of photogenerated charges.27-28 

The charge recombination also occurs at the interface, grain boundaries or impurities in the perovskite leading 

to the conversion of these photogenerated charge into heat by a process of non-radiative recombination. This 

process is unwanted and can be minimized by controlling these defects. But there is one type radiative 

recombination in which the photogenerated charges recombine each other and emits photon leading to the loss 

of effective carriers. This is a natural phenomenon and cannot be avoided. 

 

  

 

Figure 1.10: Schematic illustration of working principle of PSC for inverted planar 

(ITO/HTL/perovskite/ETL/metal electrode) structure with energy diagram.  
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1.2.5 Characteristics of Perovskite Solar Cells 

 

The perovskite solar cell is behaved like a diode in dark condition (Figure 1.11a) but when 

illuminated its current increased by an order of magnitude which is due to the photogenerated current (Figure 

1.11b). For solar cell, the performance is determined through the current/voltage measurement. To do this, 

usually several potentials is applied (from negative value to positive value) and measure the corresponding 

current. 

 

 

 

Figure 1.11 J-V curves of PSCs measured under dark (a) and illumination conditions. J-V curves measured 

under illumination and the corresponding performance parameters (c). 

 

To determine the performance of solar cell, three parameters, short circuit current (JSC), open circuit voltage 

(VOC) and fill factor (FF) (Figure 1.11) are needed which can be defined by the following equation: 

 

Power conversion efficiency (PCE) = Ƞ = 
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
𝑋100 = 100 = 

𝐽𝑀𝐴𝑋𝑉𝑀𝐴𝑋

𝑃𝑖𝑛
𝑋100 

𝐹𝐹 =
𝐽𝑀𝐴𝑋𝑉𝑀𝐴𝑋

𝐽𝑆𝐶𝑉𝑂𝐶
 

𝑃𝐶𝐸 =
𝐽𝑆𝐶𝑉𝑂𝐶𝐹𝐹

𝐽𝑆𝐶𝑉𝑂𝐶
𝑋100 

to account the resistive loss, a series (RS) and shunt resistance (RSH) are added to the equivalent circuit of solar 

cell (Figure 1.12). So, the characteristic J-V curve can be expressed by the following equation. 

  

𝐽 = 𝐽𝑝ℎ − 𝐽0 {exp [
𝑞(𝑉 + 𝐽𝑅𝑆)

𝑛𝑘𝑇
] − 1} −

𝑉 + 𝐽𝑅𝑆

𝑅𝑠ℎ
 

 Where, Jph, J0, n, k, q and T are the photogenerated current density, reverse saturation current density, ideality 

factor of the diode, Boltzmann’s constant, temperature and elementary charge respectively. So, from this 

equation, we can see that the PCE of solar cell is mainly depended on the J0, Rs and Rsh. 
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Figure 1.12 Equivalent circuit of solar cell. 

 

For a solar cell, quantum efficiency is one of the important measure which provide information that how 

efficiently convert the incident light into the electrical energy at a given wavelength. There are two types of 

quantum efficiency exist: internal quantum efficiency (IQE) and external quantum efficiency (EQE). 

 

EQE is the ratio between the number of collected charge to the total number of incident photons on a certain 

active area at a given wavelength. 

 

𝐸𝑄𝐸 =
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/𝑠𝑒𝑐

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 /𝑠𝑒𝑐
=

𝑐𝑢𝑟𝑟𝑒𝑛𝑡/(𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛)

(𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠)/(𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑝ℎ𝑜𝑡𝑜𝑛)
 

 

IQE is the ratio between the number of collected charge to the number of incident photons at a given 

wavelength that are absorbed by the absorber layer only. 

 

𝐸𝑄𝐸 =
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/𝑠𝑒𝑐

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 /𝑠𝑒𝑐
=

𝐸𝑄𝐸

1 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
 

 

Due to the loss of light by reflection or transmission, the EQE is always less the IQE. The difference between 

IQE and EQE is used to identify the loss mechanism between absorbed photons and photo to charge conversion 

efficiency of absorbing materials. Generally, EQE is referred as incident photon to carrier conversion efficiency 

(IPCE) and is measured by using chronoamperometry (potentiostate). The IPCE is expressed by the following 

equation, 

 

𝐼𝑃𝐶𝐸 (𝜆) = 𝐸𝑄𝐸(𝜆) =
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/𝑐𝑚2/𝑠

𝑝ℎ𝑜𝑡𝑜𝑛𝑠/ 𝑐𝑚2/𝑠
=

𝑗𝑝ℎ (
𝑚𝐴
𝑐𝑚2) 𝑋1239.8 (𝑉𝑋𝑛𝑚)

𝑃𝑚𝑜𝑛𝑜 (
𝑚𝑊
𝑐𝑚2) 𝑋 𝜆(𝑛𝑚)
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Where, 1239.8V X nm is the product of plank’s constant and speed of light (c), Pmono is the illuminated power 

intensity in mW/cm2 and is the wavelength at which illumination power is measured. So, the integration of 

IPCE over the measured wavelength will give the JSC of solar cell. The result of this measurement makes a 

curve in which it crosses the voltage axis (X) at a point called open circuit voltage (VOC) and the current axis 

(Y) at a point called the short circuit current (JSC). 

 

1.3 Toxicity of Pb in Perovskite Solar Cells 

 

PSCs have undergone rapid progress during the last decade and reached the PCE over 23%.16 Despite 

the impressive progress in Pb-halide perovskite photovoltaics, the commercialization of PSCs are facing 

several challenges related to presence of toxic lead element and stability upon prolonged exposure to light, 

humidity, and high temperature. Moreover, the implementation of Pb-based PSCs in real life is effectively 

hinder due to the restriction of using vast amount of toxic Pb in industrial production. According to the U.S. 

EPA, the maximum limit for Pb2+ content in air and water were set to 0.15 μg L–1 and 15 μg L–1 respectively.17 

Pb2+ in PbI2, which is the decomposition product of perovskites, has a larger solubility (Ksp) on the order of 1× 

10–8 than the Cd2+ in toxic CdTe solar cells, Ksp on the order of ≈1 × 10–22.18 This makes Pb-based PSCs higher 

toxic than CdTe solar cells. The easy solubility of perovskite bears the risk of leakage into the environment by 

rain water and have vast impact on environment and nature surrounding us. With these potential exposure risk 

of vast amount of Pb to environment from PSCs, prior to commercialization, it is important to replace the toxic 

Pb in PSCs with non-toxic alternative materials. 

 

1.4 Substituent of Pb in Perovskite Solar Cells 

 

As a substituent of Pb2+, the other environmentally friendly cations such as germanium (II) (Ge2+), tin (II) 

(Sn2+), cupper (II) (Cu2+), and bismuth (III) (Bi3+) have been explored in PSCs.19-22 However, realizing the 

beneficial aspects and successful implementation of these non-toxic perovskite absorbers with non-toxic 

metals have seen limited success. Due to the similar group element to Pb, Sn has been extensively considered 

as an alternative of toxic Pb-based perovskite. Besides, similar atomic radius of Pb (1.4 Å) and Sn (1.35 Å), 

both elements have identical inactive outer shell orbitals. These similar features of Pb and Sn, encourages 

substitution of Pb by Sn without perturbating the favorable optoelectronic properties. Moreover, the theoretical 

limits for Sn-based PSCs is about 32.91% which is higher than Pb-based PSCs (30.14%) due to their optimum 

band gap in the range of 1.1 eV to 1.4 eV.23 The table 1.4 shows the comparative physical properties between 

Sn and Pb based perovskite films. Although the Sn-based perovskites have similar or even superior 

optoelectronic properties but the PCE of Sn-based PSCs are far below the Pb-based counterpart.24-25 This is 

because, the Sn based perovskites are suffered from some fundamental limitations. 

I. Difficult to synthesize uniform and fully covered Sn-based thin films without additives due to the rapid 

crystallization of perovskite at room temperature. 
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II. The facial tendency to oxidation from Sn2+ to Sn4+ when exposed in air or even in glove box with a trace 

amount of water or oxygen. 

III. Lack of energy levels matching among the existing ETL and HTL with the Sn-based perovskite materials. 

 

Table 1.4: comparison of physical properties between Sn and Pb based perovskite films 

Properties Sn-based perovskite Pb-based Perovskite 

Band gap (eV) ∼1.2-1.4 ∼1.6-1.8 

Electron mobility (cm2V−1s−1) ∼2000 ∼60 

Electron diffusion coefficient (cm2s−1) ∼1.28 ± 0.73 ∼0.036 

Diffusion length (nm) ∼500 ∼8000 

Absorption coefficient (cm-1) ∼104 ∼105 

 

 

1.5 Stability of Perovskite Solar Cells 

 

Over the past several years, the efficiency of PSCs has reached to the values that are competitive with 

the commercially established photovoltaic technologies. However, to be commercialized, any solar cell must 

have to go through the operational stability along with inexpensive fabrication technology and high PCE. The 

easy and low-cost fabrication techniques with high PCE have already made PSCs as potential price competitive 

candidate. However, for commercial products such as solar panels, the solar cell must have to sustain at least 

one decade regardless how inexpensive the fabrication process. This arise the question whether the PSCs can 

even meet the stability standard of commercial requirement. Initially most of the researches were focused 

mainly on the improvement of PCE but now a lot of attention has been paid on the stability issues. In general, 

the stability of PSCs cab be categorized into three classes such as extrinsic stability, device structure and 

intrinsic stability of perovskite materials. 

The factors influence the extrinsic stability are moisture, oxygen, and ultraviolet light etc. which can 

be eliminated by simply employing suitable encapsulation. As no encapsulation is perfect so these extrinsic 

factors limit the lifetime of PSCs. To exclude these extrinsic factors, throughout this work the encapsulation 

for PSCs were performed inside the N2 fill glove box. 

The device architecture has a significant effect on the stability of PSCs. This effect much pronounced 

for Sn-based PSCs. For example, X. W. Sun et al. has demonstrated that the regular structure suffered from the 

poor reproducibility and stability due the deposition of hole transporting material on perovskite film which 

contain different types of dopant.29 To get ride from this effect, in this work all the devices were fabricated in 

the inverted structure. 

The intrinsic stability is the properties of perovskite itself. The stability of PSCs mainly depends on 

the stability of perovskite layer. The perovskite materials are sensitive to the oxygen and moisture. Upon 

exposure to the moisture and oxygen, perovskite dissociates into its metal halide and readily dissolve in water. 

For films, the stability depends on morphology and crystallinity of perovskite. The highly crystalline and pin-

hole free uniform usually shows higher stability. The effects of morphology and crystallinity on the device 

performance and stability for Pb-based PSCs have been mentioned in chapter 2 and chapter 3. Due to the facial 
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tendency to oxidation and difficultly to fabricate uniform films, Sn-based PSCs are much unstable as compare 

with Pb-based PSCs. In this thesis work, the coadditive engineering has been performed for Sn-based PSCs as 

mentioned in chapter 3 and chapter 4.  

 

1.6 Aim of the Thesis 

 

To improve the perovskite film quality, several fabrication methods have been developed and among 

them, ASD has been widely used for the fabrication of highly efficient PSCs. The success of ASD method is 

mainly dependent on the selection and dripping time of anti-solvent. In this regard, Xiao et al. used twelve 

different anti-solvents to induce crystallization of MAPbI3 perovskite and find out four suitable anti-solvents 

for uniform film morphology.30 Recently, Paek et al. performed a thorough study on six commonly used anti-

solvents to evaluate the best one in term of device performance.31However, in all these conducted studies, they 

have failed to focus on the most crucial stability factor variation with anti-solvents. Hence, to further advance 

the development of PSCs, investigating the roles of various anti-solvents on the morphology of perovskite 

films for stable device performance is urgently needed which has not explored yet. 

Therefore, in this study, the effect of different anti-solvents on the stability of PSCs have been 

observed. The suitable anti-solvents have been identified from the perspective of performance and light 

soaking stability.  

In ASD method, to obtain uniform film with optimum optoelectronic properties, usually a mixed of 

solvents such as DMF and DMSO or DMF and GBL is used. The role of this mixed solvent is to slow down 

the perovskite crystallization rate by forming a complex compound before final perovskite film formation. 

However, a single solvent with medium boiling point for the perovskite precursor system is more beneficial 

for large scale fabrication. But the perovskite films fabricated from ASD method in single solvent system, are 

suffered from inferior structural and optoelectronic properties.     

Therefore, to optimize the single solvent ASD method, an additive engineering with CuCl2 has been 

performed. Detail morphological, structural and optoelectronic characterization have been performed to 

observe the effects of CuCl2 addition on perovskite film.   

Although the PSCs shows PCE above 23% but the presence of toxic of Pb in PSCs effectively hinders 

their commercial applications.16 Due to the similar or even superior optoelectronic properties of Sn based 

perovskite, it has been considered as the alternative of Pb. However, Sn-based perovskite compounds 

implemented in PSCs show poor photovoltaic performance. This is because Sn-based perovskite is suffered 

from some fundamental problems such as facial tendency to oxidation from Sn2+ to Sn4+ and inability to form 

pin-holes free uniform films. To retard the oxidation of Sn2+, Mathews et al. were used SnF2 as additive which 

is now considered as an essential element for fabrication of uniform perovskite films.32 Later it has been 

observed that suppression Sn2+ oxidation is not enough only by SnF2 and other reducing agents are necessary 

to overcome the issue arisen. But a negative impact has been observed on the morphology with the addition of 

another reducing agent. So, the addition of a secondary additive with suitable functionality which can 

simultaneously assist to form a uniform film and retard the Sn2+ oxidation might be beneficial. 
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Therefore, in this thesis, the effects of coadditive with dual beneficial aspects for uniform Sn-based 

perovskite film growth with controlled rate and effective suppression of Sn2+ oxidation have been observed. 

To do this, the Sn-based perovskite films were fabricated by the ASD method that was optimized during the 

Pb-based work. A detail morphological, structural and optoelectronic characterization have been performed 

for the fabricated perovskite films. In addition, the effects of coadditive on the performance of PSCs have also 

been observed. However, the Sn-based PSCs suffered from light soaking stability which is needed to overcome 

for real life applications. 

To enhance the stability of Sn-based PSCs, several attempts have been performed such as partial 

substitution of MA+ by FA+, I- by Br-, introduction of 2D/3D composite perovskite concept from Pb-based 

PSCs etc. But till now, the maximum reported stability is only 1h under operational condition at maximum 

power point tracking condition (MPPT). However, long carbon chain molecules with bifunctional groups at 

the two ends are well known for their dual beneficial aspects for Pb-based such as cross-linking adjacent grains 

through hydrogen bond formation and forming an inert passive layer on the surface.33-34 So, this type of 

additives might be useful for Sn-based PSCs to simultaneously enhance the performance and stability of Sn-

based PSCs. 

Therefore, in this studied, the effects bifunctional additive with long carbon chain molecule on the 

passivation of grain boundaries, film formation, and crystallinity, as well as on the device performance and 

stability of Sn-based PSCs have been observed. This is done by the detail characterization of the fabricated 

perovskite films and corresponding PSCs. 
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Chapter 2 

Influence of Anti-Solvents on CH3NH3PbI3 Films Surface Morphology 

for Fabricating Efficient and Stable Inverted Planar Perovskite Solar 

Cells 

 

2.1 Introduction 

 

 Perovskite solar cells (PSCs) have attracted tremendous attention due to the favorable photovoltaic 

properties of perovskite compound such as- tunable optical band gap, high molar extinction coefficient, broad 

absorption spectrum, high charge carrier mobility, and ambipolar charge transport capability.1-7 Since the 

introduction of PSCs, it has seen rapid improvement in power conversion efficiency (PCE) from 3.8% to 22.1% 

within few years.8-12 Besides, the unique properties of perovskite compounds, the development of various 

device structures and versatile fabrication processes of high quality perovskite film growth are the key factors 

for achieving high performance .13 Among existing various PSC structures, the inverted planar structure (p-i-

n) has been identified as a promising candidate.14,15 Generally, in a p-i-n PSC, a p type semiconducting material 

is deposited on top of the transparent conductive oxide glass followed by perovskite compound as the light 

absorber and n -type semiconducting material as the electron transport layer. In a PSC, light is absorbed by the 

perovskite absorber result in an efficient electron-hole pair generation to produce photovoltaic effect, which 

makes the morphology of the perovskite film an important factor. For deposition of a homogeneous and 

compact perovskite layer, several fabrication methods have been developed such as- one step spinning, two 

step dipping, single source evaporation, dual sources evaporation method, and one step anti-solvent dripping 

(ASD) method.7,16-19 Among the existing processes, the ASD method has been extensively used for the 

fabrication of the perovskite layer due to their enhanced capability of forming high quality perovskite 

crystals.20,21 Generally, high boiling point solvents - N, N-dimethylformamide (DMF), dimethyl sulfoxide 

(DMSO), gamma-butyrolactone or combination of two solvents are used to dissolve the perovskite precursor 

materials.22,23 However, only spin-coating of the precursor solution does not yield homogeneous and uniform 

perovskite layer with crystalline properties.24 ASD method was developed in 2014 by Jeon et al. highlighted 

that, formation of a dense and uniform perovskite layer can be anticipated by forming stable CH3NH3Br-PbI2-

DMSO intermediate phase and dripping with toluene as anti-solvent during the spin-coating process.19 At 

present, the ASD method has been used by numerous groups to fabricate perovskite absorber layers with 

recorded PCEs in PSCs.10,25-27 Dripping certain amount of anti-solvents during the spin coating of perovskite 

layer speeds up the heterogeneous nucleation by forming a local super-saturation of precursor solution on the 

spinning perovskite deposited substrate. To understand the effect of different anti-solvents on the perovskite 
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films morphology, Xiao et al. used 12 different anti-solvents to fabricate perovskite film.28 They observed that, 

the anti-solvents such as 2-propanol and chloroform produced non-uniform central area in the perovskite 

absorber film whereas the chlorobenzene, benzene, xylene and toluene anti-solvents formed uniform film over 

the entire substrate. Ahn et al. used diethyl ether to selectively remove the DMSO from the spinning solution 

containing equimolar CH3NH3I (MAI), PbI2, and DMSO which led them to fabricate PSCs with PCE as high 

as 18.3%.20 In a recent work, Paek et al. have conducted a thorough study on six anti-solvents for mesoporous 

PSCs to evaluate the best anti-solvent from the PCE perspective.29 However, all the studies conducted 

regarding anti-solvent has failed to reveal the most crucial factor of stability which is one of the key aspects 

for the development of PSC. Hence, understanding the effects of various anti-solvents on the morphology of 

perovskite films for designing stable PSCs has remained a challenge for further development. 

 Here in this work, the effects of four anti-solvents such as- toluene, chlorobenzene, p-xylene and 

ether on the film formation of high quality perovskite absorbers and their stability in p-i-n PSCs have been 

studied. The stability performances both in dark and under air mass (AM) 1.5G sunlight conditions have been 

observed. The effects of different ASD on the morphology of perovskite films and corresponding electrical 

behaviors of p-i-n PSCs have also been observed. This study reveals the inter-relation between the morphology 

of aforementioned ASD treated perovskite layer with their corresponding long-term stability in PSCs. From 

the conducted experiments and analysis, it has been highlights that, toluene and chlorobenzene anti-solvent 

treated PSCs are highly efficient with stable performances in dark and standard AM 1.5G sunlight condition 

for 30 days.  

 

2.2 Experimental Procedures 

 

2.2.1  Materials 

 

 In this work. all the chemical used as received without any further purification, including PbI2 (99%, 

Sigma–Aldrich), MAI (> 98%, Tokyo Chemical Industry Co., Japan), Nickel acetylacetonate (95%, Sigma–

Aldrich), PCBM (Phenyl-C61-butyric acid methyl ester) (99.5%, Lumtec Co., Taiwan). Magnesium 

acetatetetrahydrate (99%), Bathocuproine (BCP) and super dehydrated solvents of DMF, DMSO, toluene, 

chlorobenzene, p-xylene, ether, acetonitrile, methanol and ethanol, were all purchased from Wako Co., Japan. 

 

2.2.2  Perovskite Film Fabrication 

 

 The precursor solution for CH3NH3PbI3 perovskite film was obtained by mixing equaimolar ratio of 

(1.2 mmol) PbI2 and MAI in 1.8 mL of DMF and DMSO (4:1) mixed solvent. The perovskite film was 

deposited by spin-coating 70 μL of precursor solution at 5000 rpm for 42 s. During spin-coating, an optimum 

amount of anti-solvent was dripped on the substrate after 17 s. Four different anti-solvents such as toluene 

(100 μL), chlorobenzene (100 μL), p-xylene (100 μL) and ether (100 μL) has been used. The spin-

coated films were then annealed at 100 °C for 30 min. 
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2.2.3  Solar Cell Fabrication 

 

 PSCs were fabricated on the patterned fluorine doped tin oxide (FTO) coated glass substrates. The 

substrates were ultrasonically cleaned with detergent, deionized water, acetone, and ethanol respectively for 

15 min each. The cleaned substrates were treated with ultraviolet/ ozone radiation for 30 min. The NiOX layer 

was deposited on to the FTO substrate by spraying a solution of nickel acetylacetonate and magnesium acetate 

tetrahydrate in acetonitrile/ethanol (with 95:5%V) at 570 °C. The NiOX films were then annealed at 570 °C 

for 15 min and cooled down to room temperature. After cooling at room temperature, the substrates were 

transferred to glove box and the CH3NH3PbI3 perovskite films were deposited. An electron transporting layer 

PCBM (20 mg mL-1 in chlorobenzene) and BCP (saturated solution in methanol) were deposited by spin-

coating at 1000 rpm for 30 s and 6000 rpm for 30 s respectively. Finally, a 90 nm thick silver layer was vacuum 

deposited through a shadow mask with an active area of 1.02 cm2. For PSC sealing, the front active area of 

FTO was sandwiched by a cavity glass using UV glue. 

 

2.2.4  Characterization 

 

 The ultraviolet visible (UV–Vis) spectra were measured by a Shimadzu UV/Vis 3600 

spectrophotometer. Scanning electron microscope (SEM) images were obtained by using a JSM-6500F field-

emission scanning electron microscope under an acceleration voltage of 5 kV. The atomic force microscopy 

(AFM) measurements were performed by using JSPM - 5200 scanning probe microscope. The X-Ray 

Diffraction (XRD) was measured on a Rigaku MiniFlex600 powder X-ray diffractometer with 2θ -θ 

geometry at a scanning rate of 1° min-1 using Cu-Kα radiation (1.5418 Å). The current density-voltage (J-V) 

characteristics were measured using a solar simulator with standard AM 1.5G sunlight (100mWcm-2, WXS-

155S-10: Wacom Denso Co., Japan) under ambient conditions with a humidity>70%. The J-V curves were 

measured by forward (−0.2 V to 1.2 V) or reverse (1.2 V to −0.2 V) scans by using the Keithley 2400 as a 

digital source meter. The step voltage was fixed at 10 mV and the delay time was set at 50 ms. J-V curves for 

all devices were measured by masking the cells with a metal mask 1.02 cm2 in area. Monochromatic incident 

photon-to-current conversion efficiency (IPCE) spectra were measured with a monochromatic incident light 

of 1 × 1016 photons cm2 in direct current mode (CEP-2000BX, Bunkoukeiki Co., LTD). The light intensity of 

the solar simulator was calibrated by a standard silicon solar cell. The light soaking stability was tested on a 

solar cell light resistance test system (Model BIR-50, Bunkoukeiki Co., LTD) equipped with a Class AAA 

solar simulator;<420 nm ultraviolet light was cut off with an optical filter. 
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2.3 Results and discussion 

 

2.3.1 Perovskite Films Formation 

 

 The principle of solvent / anti-solvent crystallization is by rapid precipitation of super saturation level 

which leads to the formation of small crystals. In solvent / anti-solvent crystallization, this reduction in 

solubility is achieved by using an anti-solvent. The super saturation level depends on the miscibility of anti-

solvent with the solvent. In the process of ASD method, the anti-solvents are used for creating local super 

saturation in the precursor solution. With these principles of miscibility and immiscibility, different type of 

anti-solvents such as toluene, chlorobenzene (miscible both in DMF and DMSO), ether (miscible only in DMF) 

and p-xylene (immiscible both in DMF and DMSO) have been selected to this experiment. To find out the 

effect of miscibility of anti-solvents into the solvents for the fabrication of perovskite films, the change of color 

of the perovskite films has been observed immediately after anti-solvent treatment (Figure 2.1a), after 

annealing at 100 °C for 5 s (Figure 2.1b) and after annealing at 100 °C for 10 min (Figure 2.1c).  

 

 

 

Figure 2.1. Photographic  images of perovskite films formed by chlorobenzene, toluene, ether and p-xylene 

ASD treatment; (a) immediatly after anti-solvent treatment, (b) after 5 s annealing at 100 0C and (c) after 10 

min annealing at 100 0C. 

From figure 2.1, it was observed that immediatly after chlorobenzene dripping, the perovskite containing 

substrate changed to brown and toluene dripped perovskite films turned to light brown from light yellow color. 

Whereas, the ether and p-xylene treated perovskite films remained light yellow color. After 5 sec annealing at 

100 0C, chlorobenzene and toluene dripped perovskite films turned homogeneous dark brown whereas the 

ether treated film formed dark brown color with light brown circle at the center. The p-xylene treated film 

formed inhomogeneous light brown color. The variation of colors is expected due to the degree of anti-solvent 

ability which depends on the miscibility of anti-solvents into the solvents. As the p-xylene is immiscible both 

in DMF and DMSO with lowest crystallization rate, hence the change of color is the slowest for this ASD.  
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But after 10 min annealing at 100 0C all films turned to shiny black (Figure 2.1c). For toluene and 

chlorobenzene dripping, homogeneous perovskites were formed whereas the ether and p-xylene treatment 

formed inhomogeneous films with circle at the center of the substrate (Figure S2.1).  

The UV-vis absorption spectra of MAPbI3 perovskite layers fabricated using toluene, chlorobenzene, 

p-xylene and ether ASD treatment are shown in Figure 2.2a. The absorption spectra of toluene, chlorobenzene, 

p-xylene and ether treated perovskite films overlap with each other. All the films exhibited similar absorption 

band edge at 780 nm, which corresponds the band gap excitation of MAPbI3 perovskite material. The optical 

bandgap, Eg of the MAPbI3 compound was determined from diffuse reflectance measurements (Figure 2.2b). 

The optical absorption coefficient (𝑎/𝑆) was calculated using reflectance data according to the Kubelka–Munk 

equation, α/S = [(1-R)2]/2R , where R is the percentage of reflected light, and 𝛼 and S are the absorption and 

scattering coefficients respectively.30 The band gap of MAPbI3 perovskite layers formed with toluene, 

chlorobenzene, p-xylene and ether ASD were 1.61 eV each. 

 

 

 

Figure 2.2. (a) UV-vis absorbance spectra and (b) absorption coefficient of MAPbI3 films fabricated using 

toluene, chlorobenzene, p-xylene and ether anti-solvents. 

 

 XRD characterization was performed on the fabricated perovskite layers to investigate the crystal 

structure of materials formed by different anti-solvents treatment and has been shown in figure 2.3a. From the 

diffraction pattern, three clear peaks were observed at 14.08 0 , 28.40 0 and 31.83 0 which were represented by 

(110), (220) and (310) planes respectively indicating the formation of tetragonal CH3NH3PbI3.31-34 These 

diffraction patterns show no peaks corresponding to the PbI2 or CH3NH3I compounds which indicates the full 

conversion of CH3NH3PbI3. XRD patterns of perovskite films fabricated by different anti-solvents revealed 

that the formation of tretragonal CH3NH3PbI3 were independent of aforemensioned ASD treatments. After 

continuous illumination for 30 days under standard AM 1.5 sunlight (100 mW cm–2) and relative humidity of 

>70 %, XRD  measurement was performed  to evaluate  the stability of perovskite films (Figure 4.3b). The 

XRD patterns for the toluene and chlorobenzene ASD treated perovskite films showed no new peaks indicating 



26 

 

that these films were stable under 30 days continuous light soaking. On the other hand, for the p-xylene treated 

perovskite film,  a new peak at 12.72 0 which can be assigned for the PbI2 has been observed (Figure 2.3b).35 

This result indicate that the p-xylene ASD treated perovskite films decomposed during the light soaking period. 

 

 

 

Figure 2.3. XRD patterns of MAPbI3 fabricating by using toluene, chorobenzene, p-xylene and ether  anti-

solvents (a) fresh (b) after 30 days ligh soaking. 

 

 The AFM measurment has been peroformed to measure the roughness of the MAPbI3 films treated 

with toluene, chlorobenzene, p-xylene and ether anti-solvents. From the calculation of root mean-squared 

(R.M.S.) roughness, the R.M.S. values for MAPbI3 films treated with toluene, chlorobenzene, p-xylene and 

ether were recorded at 14.7 nm, 12.4 nm, 19.6 and 43.6 nm respectively (Figure 2.4). The detail line profiles 

are given in the supporting inforamtion (Figure S2.2-2.5). The toluene, chlorobenzene and p-xylene treated 

films showed similar low roughness whereas the ether treatment produced comparatively rougher MAPbI3 

films. Similar trend has been observed by the Paek et al. in which the toluene, chlorobenzene, and p-xylene 

formed very smooth surface but the perovskite surface treated with ether resulted with the roughest surface .29  
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Figure 2.4.  AFM images of perovskite films treated with toluene, chlorobenzene, p-xylene and ether. All the 

perovskite films has been deposited on NiOx substrates (area = 10 × 10 μm) 

 

The perovskite films treated with different anti-solvents exhibited different morphologies. The 

effects of anti-solvent on the morphology and the structure of corresponding perovskite layers were 

characterized by SEM. Figure 2.5 shows the surface morphologies of perovskite films dripped with various 

types of anti-solvent. The toluene and chlorobenzene treated MAPbI3 perovskite films were homogeneous and 

showed full coverage of the NiOx coated FTO substrate as shown in Figures 2.5a and 2.5b. Whereas the p-

xylene treated film fully covered the substrate with inhomogeneous particle size (Figure 2.5c), the ether 

treatment formed aggregate of small grains, cracks and numerous pinholes throughout the whole film surface 

(Figure 2.5d). These results are in consistent with the AFM measurement results (Figure 2.4). 
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Figure 2.5. SEM images of MAPbI3 films (top surface) formed by  anti-solvents - (a) toluene, (b) 

chlorobenzene, (c) p-xylene and (d) ether. 

 

To observe the grain structures of the MAPbI3 layer, the cross-sectional images have been taken for the 

perovskite films fabricated by different anti-solvent treatment (Figure 2.6). From the cross sectional view, one 

important feature of grain structure with toluene, chlorobenzene and p-xylene dripped has been observed. 

These perovskite layers formed single grain structure through out the cross-section (Figures 2.6a, 2.6b and 

2.6c). In this case, the grain boundaries were only in the vertical direction with no grain boundaries along the 

horizontal direction. The ether treated perovskite layer formed poly-grains with pinholes (Figure 2.6d). 
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Figure 2.6. Cross-sectional SEM images of MAPbI3 films formed by using (a) toluene, (b) chlorobenzene, 

(c) p-xylene and (d) ether. Inset shows the marked part of film cross section in higher magnification. 

 

To observe the effect of light soaking on the grain structures, the cross-sectional SEM measurement on the 

same perovskite films after 30 days continuous light soaking have been performaed (Figure 2.7). From this 

measurment, it has been ovserved that the grain structures of toluene and chlorobenzene treated perovskite 

films remained unaffected even after 30 days light soaking (Figures. 2.7a and 2.7b). But for the p-xylene treated 

perovskite film, some white particles along the grain boundaries of perovskite film were observed after 30 

days of light soaking (inset Figure 2.7c). The presence of these particles was not recorded at the initial cross-

section observation (Figure 2.6c). These white particles might be PbI2, as the decomposition product of 

CH3NH3PbI3 after light soaking (Figure 2.3b). For ether treated perovskite film, the size and number of pores 

increased with light soaking time until the 5th day (Figure 2.7d). 
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Figure 2.7. Cross-sectional SEM images of MAPbI3 films formed by (a) toluene, (b) chlorobenzene, (c) p-

xylene anti-solvents after 30 days light soaking and (d) ether anti-solvents after 5 days light soaking. Inset 

shows the marked part of film cross section in higher magnification. 

 

2.3.2 Photovoltaic Performance 

 

To observe the effects of anti-solvent treatment during the fabrication of perovskite films on the 

device performance, PSCs devices were fabricated with the corresponding films in 

FTO/NiOx/MAPbI3/PC61BM/BCP/Ag structure. Figure 2.8 shows the photovoltaic performances of 

corresponding PSCs fabricated with toluene, chlorobenzene, p-xylene and ether treated MAPbI3 films. Figure 

4.8a shows the IPCE spectra of freshly prepared PSC devices. All the freshly prepared devices exhibited similar 

quantum efficiency from the visible to the near-IR (300 nm - 800 nm) region. The toluene dripped PSC 

exhibited maximum IPCE of  90 % in the, 450 nm - 800 nm regions, whereas the chlorobenzene, p-xylene 

and ether treated cells showed IPCE of >80 % in the same region. The ether treated PSC showed a dip within 

350 nm - 425 nm wavelengths. 
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Figure 2.8. The performance of PSCs (freshly prepared) prepared by different anti-solvents; IPCE (a) and J-

V (b). 

 

Table 2.1. Summary of device performance parameters obtained from the J-V measurements of PSCs 

fabricated with different anti-solvents treatment.  

 a) The PSCs parameters were measured using a metal mask of 1.02 cm2 surface area and mean deviations 

are calculated from 10 devices for each anti-solvent treatment. 

The photovolatic performances parameters of PSCs fabricated with perovskite films treated with toluene, 

chorobenzene, p-xylene and ether are summarized in Table 2.1. The champion PSC fabricated with toluene 

treated perovskite showed high PCE of 17.93 % (short circuit current (JSC) = 22.68 mA/cm2, open circuit 

voltage (VOC) = 1.064 V, fill factor (FF) = 0.743). The best chlorobenzene treated perovskite film based PSC 

showed PCE of 15.78 % with photovoltaic parameters of  JSC = 21.58 mA/cm2, VOC = 1.022 V, and FF= 0.716. 

The p-xylene treated perovskite film yielded with PCE of 11.88 % in a PSC. In comparison to toluene and 

chlorobenzene tretated films, p-xylene treated PSC showed comparatively lower VOC and FF which were 0.850 

V and 0.646 respectively. The PCE of the ether treated champion PSC was 15.70 %. The FF of the PSC 

Anti-solvent Remarks of 

the PSCs 

JSC (mA/cm2) VOC (V) FF PCE (%)a) 

Toluene average 21.378 ± 0.39 1.051 ± 0.02 0.730 ± 0.02 16.38 ± 0.45 

champion 22.68 1.064 0.743 17.93 

Chlorobenzene average 20.44 ± 1.08 0.990 ± 0.03 0.705 ± 0.04 14.30 ± 0.93 

champion 21.58 1.022 0.716 15.78 

p-xylene average 20.11 ± 1.2 0.803 ± 0.06 0.626 ± 0.04 10.12 ± 1.08 

champion 21.61 0.850 0.646 11.88 

Ether average 19.96 ± 0.32 1.001 ± 0.17 0.703 ± 0.06 14.01 ± 1.37 

champion 19.94 1.057 0.745 15.70 
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fabricated by ether treated perovskite film was higher than that of cholorbenzene and p-xylene based PSCs 

fabricated with the same configuration. 

 

2.3.3 Stability Under Dark Condition 

 

The stability in dark condition for PSCs, fabricated with different anti-solvent treatment, has been 

observed by monitoring the variation of photovoltaic parameters as a function of time for 30 days (Figure 2.9). 

It has been observed that, the JSC and FF for the 

 

 

Figure 4.9. Time dependent  performances of photovoltaic  parameters  (a) JSC,  (b)VOC,  (c) FF and (d) 

PCE of p-i-n PSCs fabricated by toluene, chlorobenzene, p-xylene and ether treatment in dark condition for 

30 days. 

 

toluene treated PSC decreased from 22.68 mA/cm2 to 21.77 mA/cm2 and 0.743 to 0.727 respectively after 30 

days  in dark condition which resulted in  decreased PCE from 17.93% to 16.54%. The photovoltaic 

parameters for the chlorobenzene treated PSC remained constant throughout 30 days in  dark condition. The 

most distinct change has been observed for the p-xylene and ether treated PSCs.  For p-xylene treated PSC, 

the VOC and FF incresed from 0.850 V to 0.912 V and 0.646 to 0.706 respectively which lifted the PCE from 



33 

 

11.88 % to 13.31 % . But for the ether treated PSC, the PCE decreased from 15.70 % to 12.08 % on the 10th 

day and  no photovoltaic performance was observed afterwards. This detoriation in PCE was due to the 

decrease of FF and VOC from 0.745 to 0.724 and 1.057 V to 0.833 V respectively. From these results, it has 

been observed that, with increased duration in dark condition the p-xylene treated PSC shows increased PCE. 

Whereas a decreased PCE  has been recorded for toluene and ether treated PSCs. The PCE remained constant 

for the chlorobenzene treated cell during the test in dark condition. 

 

2.3.4 Stability Under Light Soaking Condition 

 

 Figure 2.10 shows the effects of light soaking on the IPCE for PSCs fabricated by toluene, 

 

 

Figure 2.10. The variation of IPCE for PSCs fabricated by toluene, chorobenzene, p-xylene and ether anti-

solvents treatment as a funtion of light soaking time (a) on after1st day and (b) 30th day of light soaking. 

 

chlorobenzene, p-xylene and ether ASD treatment after 1st and 30th day. The IPCE for the Figure 2.10 shows 

the effects of light soaking on the IPCE for PSCs fabricated by toluene, chlorobenzene, p-xylene and ether 

ASD treatment after 1st and 30th day. The IPCE for the chlorobenzene treated PSC showed 92 % at 600 nm 

after 1st day and decreased to 84 % after 30 days of light soaking. Whereas for the toluene treated PSC, we 

observed constant 84 % IPCE at 600 nm through the 30 days light soaking. p-xylene treated PSC showed 82 % 

IPCE after 1st day which was decreased to 60 % after 30 days light soaking. 

Figure 2.11a shows the time dependent performance of JSC for toluene, chlorobenzene, p-xylene and 

ether treated PSCs. JSC values for toluene and p-xylene remained constant during the entire light soaking period. 

The JSC for the chlorobenzene treated PSC decreased from 21.56 mA/cm2 to 18.45 mA/cm2 after 30 days light 

soaking. The declining trend in JSC value (from 20.38 mA/cm2 to 13.75 mA/cm2) is noticeable for the ether 

treated PSC with increasing time. Figure 2.11b presents the variation of VOC with increasing time under light 

soaking. The VOC for the PSCs fabricated by toluene and chlorobenzene were stable during this period, but the 
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p-xylene treated cell showed stable VOC up to 17 days only and after that decreased with increasing time. The 

ether treated cell showed a rapid decrease of VOC from the 1st day of light soaking test. The variation of FF 

with light soaking time followed the same trend as the VOC (Figure 2.11c). The PCE for the toluene and 

chlorobenzene treated PSCs were stable performance throughout the entire light soaking period. They retained 

~ 90 % of their respective initial PCE after 30 days. The p-xylene treated cell exhibited moderate stability in 

which the initial PCE was reduced by 5 % after 17 days and by 29 % within 30 days (Figure 2.11d). However, 

the ether treated PSC was most unstable and showed rapid degradation, which lost its initial PCE by 85 % on 

the 4th day and showed no photovoltaic performance on the 5th day. To further understand the underlying 

reasons for such variation in stability concerns, the hysteresis behavior of the corresponding PSCs has been 

studied both in dark and under continuous illumination which has been described in the following section. 

 

 

 

Figure 2.11. Time dependant variation of photovoltaic performance parameters (a) JSC, (b) VOC ,(c) FF  and 

(d) PCE of PSCs fabricated by toluene, chlorobenzene, p-xylene and ether treatment (for 3 devices each)  

under contionious illumination  for  30 days with standard AM 1.5 sunlight (100 mW cm–2) and relative 

humidity of >70%. 
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2.3.5 Hysteresis Analysis 

 

 To observe the hysteretic behavior of PSCs fabricated by toluene, chlorobenzene, p-xylene and ether 

as a function of time, the J-V measurement has been performed in forward bias (F-B, -0.2 to 1.2 V) and reverse 

bias (R-B, 1.2 to -0.2 V) at the step width of 10 mV and delay time of 50 ms. Figure 2.12 shows the hysteretic 

behavior of toluene, chlorobenzene, p-xylene and ether treated PSCs on 1st and after 30th day measured in dark 

condition. The detailed photovoltaic parameters on 1st and after 30th day of J-V measurements are summarized 

in Table 2.2. The PSCs fabricated by toluene and chlorobenzene ASD treatment showed negligible hysteresis 

within 30 days (Figure 2.12a and 2.12b). Whereas the p-xylene treated PSC shows a higher hysteresis than the 

toluene and chlorobenzene treated PSCs (Figure 2.12c). On the 1st day, the JSC showed 1.87 mA/cm2 decrease 

value but the VOC and FF increased from 0.850 V to 0.959 V and 0.646 to 0.687, respectively, in the R-B 

compared to F-B measurement. This increment in VOC and FF lifted the PCE from 11.88 % to 13.00 % in R-B 

measurement. After 30 days in dark condition, from the J-V measurement with F-B and R-B scan, the main 

difference has been observed on the VOC parameter rather than the JSC or FF (Table 2.2). The ether treated PSC 

showed negligible hysteresis on the 1st day but after the 10th day a large hysteresis was observed (Figure 2.12d). 

After the 10th day, the hysteresis was due to the change in VOC from 0.833 V to 1.064 V during F-B and R-B 

measurement respectively. 

 

 

 

Figure 2.12. Forward and reverse scan of J-V curves of PSCs, treated with different anti-solvents, at different 

period of time under dark condition. 
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Table 2.2. Photovoltaic parameters of PSCs devices with toluene, chlorobenzene, p-xylene and ether treated 

perovskite films studied under dark condition. 

 

Anti-solvent Time (day) Scan 

direction 

JSC (mA/cm2) VOC (V) FF PCE (%) 

 

 

Toluene 

 

1 

Forward 22.68 1.064 0.743 17.93 

Reverse 22.58 1.092 0.763 18.81 

 

30 

Forward 21.77 1.045 0.727 16.54 

Reverse 21.07 1.091 0.754 17.34 

 

 

Chlorobenzene 

 

1 

Forward 21.58 1.022 0.716 15.78 

Reverse 21.26 1.058 0.742 16.68 

 

30 

Forward 20.41 1.011 0.734 15.15 

Reverse 20.36 1.049 0.748 15.96 

 

 

p-xylene 

 

1 

Forward 21.61 0.850 0.646 11.88 

Reverse 19.74 0.959 0.687 13.00 

 

30 

Forward 20.66 0.912 0.706 13.31 

Reverse 20.35 1.013 0.714 14.71 

 

 

Ether 

 

1 

Forward 19.94 1.057 0.745 15.70 

Reverse 19.68 1.088 0.749 16.03 

 

10 

Forward 20.41 0.833 0.724 12.08 

Reverse 19.68 1.064 0.697 14.59 

 

The Hysteresis behaviour under light soaking condition has also been observed under light soaking 

condition for differente anti-solvent treated PSCs (Figure 2.13). Figure 2.13a presents the J-V  hysteresis 

curves for toluene treated cell after the 1st and 30th day of light soaking. Here the PSC experienced negligible 

hysteresis during the light soaking period. The JSC and FF vales for the forward and reverse bias were almost 

same and only showed little increase in VOC for the R-B than F-B. The chlorobenzene treated PSC showed  

similar hysteresis behavior as for toluene treated cell after the 1st day of light soaking (Figure 2.13b). After 30th 

day of light soaking, the hysteresis increased a little compared to the 1st day of light soaking as observed in 

Figure 2.13b. For the p-xylene treated PSC (Figure 2.13c), low hysteresis up to 17th  day was observed and 

immediate gradual hysteresis increament with increased light soaking time has been recorded. The increase in 

hysteresis was due to the variation in JSC and VOC parameters, whereas the FF remained unaffected. The F-B 

resulted in a higher JSC and lower VOC compared to R-B. The difference in JSC and VOC between F-B and R-B 

scans increased from 0.33 mA/cm2 to 5.83 mA/cm2  and 0.1 V to 0.14 V respectively, during light soaking 

period (Table 2.3). The PSC fabricated  by using ether ASD treated perovskite film showed very high 

hysteresis even after the 1st day of light soaking (Figure 2.13d) and no photovoltaic response was observed 

from the 5th day onwards. In this device, after the 1st day of light soaking, the hysteresis  was mainly due to 

the VOC difference, whereas a reduced value of 0.138 V in the F-B compared to R-B has been observed. But 

after the 4th day, the hysteresis behaviour was reflected by the difference in all photovoltaic performance 

parameters during F-B and R-B measurement. From the hysteretic behavior of the fabricated PSCs, it is 

eminent that, PSCs with perovskite layers fabricated by toluene and chlorobenzene ASD treatment were most 

stable and showed negligible hysteresis. The p-xylene treated PSC showed stable performance upto 17 days 
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under continuous light soaking and also showed minor hysteresis but after 17 days light soaking, the stability 

deteriorated and hysteresis eventually increased. Lastly, the ether treated PSC showed unstable performance 

as it was also reflected from its hysteresis behavior from the 1st day of light soaking. 

 

 

 

Figure 2.13. Forward and reverse  scan of  J-V curves of PSCs, treated with different anti-solvents, after 1 

day and 30 days of  light soaking under air mass 1.5 sunlight (100 mW cm–2) and relative humidity of >70 %. 

 

Table 2.3. Photovoltaic parameters of PSCs with different anti-sovents treatment after the 1st and 30th day for 

toluene, chlorobenzene and p-xylene and after  the 1st and 4th day for ether under light soaking. 

Anti-solvent Time (day) Scan 

direction 

JSC (mA/cm2) VOC (V) FF PCE (%) 

 

 

Toluene 

 

1 

Forward 21.77 1.045 0.727 16.54 

Reverse 21.69 1.075 0.746 17.39 

30 Forward 20.90 0.938 0.763 14.96 

Reverse 20.79 0.972 0.770 15.56 

 

 

Chlorobenzene 

1 Forward 21.56 0.936 0.717 14.47 

Reverse 21.52 0.961 0.727 15.04 

30 Forward 18.45 0.958 0.717 12.66 
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From the stability and J-V hysteresis observations during light soaking period, it is eminent that, the 

PSCs with low J-V hysteresis during F-B and R-B measurement were more stable. To find out the origin of J-

V hysteresis, Reenen et al. performed a numerical work on PSCs and demonstrated that both ions migration 

and interfacial trap states are combinedly responsible for hysteresis.36 In this study, the similar compostion has 

been used for for all layers during PSCs fabrication. So the ions migration in all PSCs should be same but the 

interfacial trap state may be varied due to different anti-solvent treatment. In this situation, it is suspected that 

the interfacial trap states are the only responsible candidate for different hysteresis behavior. It is well known 

that PCBM deposition on top of perovsktie film penetrates into the perovskite absorber film via grain 

boundaries and sufficiently passivates the trap states located at the grain boundaries resulting reduced 

hysteresis of the overall PSC.37 From the SEM cross-sectional characterization, it has been observed that 

toluene, chlorobenzene and p-xylene dripping formed single grains exceeding the perovskite films thickness. 

So, the PCBM deposited on the top of these perovskite films, easily penetrated into the corresponding films 

and effectively passivateed the trap. This process is schematrically illustrated in figure 2.14a. Hence, these 

PSCs showed negligible hysteresis and stable performance in dark condition. The ether treated perovskite film 

contained small aggregated grains with cracks and numerous pinholes providing limited penetration 

opportunities for PCBM to passivate the trap state (Figure 2.14b). Hence, the PSC formed via ether ASD 

treatment showed poor stability in the dark condition. 

 

Figure 2.14. Diagrams show the path for the PCBM penetration for (a) single grain structure and (b) multi-

grain structure. 

Reverse 17.76 0.996 0.728 12.88 

 

 

p-xylene 

1 Forward 20.77 0.941 0.716 14.01 

Reverse 20.44 1.038 0.699 14.83 

30 Forward 19.61 0.750 0.583 8.57 

Reverse 13.78 0.890 0.591 7.25 

 

 

Ether 

1 Forward 20.38 0.950 0.718 13.88 

Reverse 20.24 1.088 0.704 15.51 

4 Forward 13.75 0.505 0.307 2.14 

Reverse 10.80 0.556 0.360 2.16 
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After 30 days light soaking, the toluene and chlorobenzene treated perovsktie films remained same 

as initial films (Figure 2.7a and 2.7b). Hence these PSCs showed stable performance throughout the entire 

period of light soaking test. But for the p-xylene treated perovskite films after 30 days light soaking, some 

white particles aroung the grian boundaries were observed, may be decomposition product of CH3NH3PbI3 

after light soaking, the PSC experienced a large hysteresis. These newly formed white particles during light 

soaking may be act as interfacial trap state and hinder the overall charge transpotation process resulted in a 

large hysteresis with very low Jsc in the reverse scan (Figure 2.13c). Thus the p-xylene treated PSC intially 

showed stable performance but detoriated with increased time of light soaking. For ether treated perovskite 

film, the light soaking increases the pore size and number of pinholes. Hence, the PSC formed via ether ASD 

treatment showed worst performance and poor stability from the beginning of light soaking. 

 

2.4 Summary 

 

In this work, the effects of toluene, chlorobenzene, p-xylene and ether anti-solvents treatment on the 

perovskite film formation and corresponding device peroformance in terms of perovskite film morphology and 

corresponding device performancce and stability have been observed. From detail characterization, it has been 

revealed that the opetical and structural propeties of perovskite films were independent of anti-solvent 

treatment but the morphology varied which affects the device performance. Due to the formation of single 

grain structure across the cross-section and robust nature, the toluene and chlorobenzene treated PSCs showed 

stable performance both under dark and light soaking conditions. On the other hand, the unstable performance 

of p-xylene treated PSCs were due to the deterioration of perovskite films under light soaking condition. For 

the ether treated PSCs, the poor film morphology caused worest device performanc. Throug this study, a 

correlation between the morphology of perovskite film formed by different ASD treatment and stability in the 

respective fabricated PSCs has been successfully highlighted. This study will be help to choose the appropriate 

anti-solvent for the fabrication of stable and high efficient PSC. 
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Figure S2.1. Photograph of toluene, chlorobenzene, p-xylene and ether treated perovskite films after annealing 

at 100 0C for 15 min. 

 

 

 

Figure S2.2. AFM image of toluene treated perovskite film with line profile. 
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Figure S2.3. AFM image of chlorobenzene treated perovskite film with line profile. 

 

 

 

 

Figure S2.4. AFM image of p-xylene treated perovskite film with line profile. 
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Figure S2.5. AFM image of ether treated perovskite film with line profile. 
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Chapter 3 

Enhanced Photovoltaic Performance of Perovskite Solar Cells by 

Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite 

Precursor 

 

3.1 Introduction 

 

For highly efficient perovskite solar cells (PSCs), the fabrication of uniform and crystalline 

perovskite film is the most crucial part. In this regard, the one-step anti-solvent method is well known for the 

fabrication of perovskite with optimum properties. In one step anti-solvent method, usually two solvents such 

as N, N-dimethylfomamide (DMF) and dimethyl sulfoxide (DMSO) or DMF and γ-Butyrolactone (GBL) are 

used as solvent for precursor solution to fabricate high quality of perovskite films.1 Here DMSO or GBL form 

intermediate phase with BX2 and slow down the crystallization of perovskite formation and lead to the 

formation uniform and homogeneous film.2 For large scale fabrication in commercial aspects a single solvent 

perovskite precursor is more beneficial. But, the single solvent precursor solution leads to poor film 

morphology due to the uncontrol crystallization rate.3 However, in one-step annealing method, additive 

engineering is well known for fabrication of perovskite film with enhanced optoelectronic properties and so 

the performance of corresponding PSCs. For example, a various type of additives such as metallic chlorides, 

organic molecules, inorganic or ammonium salts, polymers, ionic liquids etc. have been successfully used to 

form uniform and full covered perovskite films.4-8 Here, the additive coordinate with BX2 to form complex 

compound and control the perovskite growth rate.9 This leads to the formation of uniform and homogeneous 

perovskite films with high crystallinity. The additive engineering has also been successfully used for other 

fabrication method to enhance the performance of PSCs. For example, Heben et al. used cadmium chloride 

(CdCl2) as an additive in two-step method and observed enhanced grain size with improved crystallinity of 

perovskite films. As a result, the PCE of corresponding boosted to 2 orders of magnitude as compare with 

pristine one.10 To simplify the one-step anti-solvent method, additive engineering has also been performed in 

this method for single solvent precursor system. For example, Troshin et al. have used HgI2 in a single solvent 

(DMF) CH3NH3PbI3 precursor solution to form uniform perovskite film and observed an enhancement of PCE 

from 9.4% (without HgI2) to 13% (with HgI2).3 So, the combination of additive engineering and anti-solvent 

method together might be beneficial to produce high quality perovskite films for efficient PSCs.  

In this work, the CuCl2 has been introduced as an additive in the CH3NH3PbI3 precursor solution with DMF as 

the solvent to obtain high quality perovskite films prepared by anti-solvent method. The effects of CuCl2 

addition on the final perovskite films was investigated through structural and optoelectronic characterization. 
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From the detail characterization, it has been observed that the addition of CuCl2, dramatically improved the 

morphology and optoelectronic properties. As a result, the optimized PSCs with 2.5 mol % CuCl2, showed the 

best PCE of 15.22% with short circuit current (JSC) of 17.99 mA/cm2, open circuit voltage (VOC) of 1.022 V 

and fill factor (FF) of 0.828. 

 

3.2 Experimental Procedure 

 

3.2.1 Materials 

 

 In this work, all the chemicals were used as received without any further purification including- PbI2 

(99%, Sigma–Aldrich), MAI (CH3NH3I) (> 98%, Tokyo Chemical Industry Co., Japan), CuCl2 (97%, Sigma–

Aldrich), nickel acetylacetonate (95%, Sigma–Aldrich), PC61BM (phenyl-C61-butyric acid methyl ester) 

(99.5%, Lumtec Co., Taiwan). Magnesium acetatetetrahydrate (99%), bathocuproine (BCP) and solvents of 

N,N-dimethylfomamide, toluene, chlorobenzene, acetonitrile, methanol and ethanol, were purchased from 

Wako Co. Japan. 

 

3.2.2 Device Fabrication 

 

 The patterned fluorine doped tin oxide (FTO) coated glass substrates were ultrasonically cleaned 

with detergent, de-ionized water and ethanol sequentially for 15 minutes each and  ultraviolet (UV)/ozone 

treated for 30 min . The NiOx layer was sprayed on to the cleaned FTO substrate  (Ni(acac)2: 

Mg(CH3COO)2•4H2O (95:5 %V), in acetonitrile/ethanol) at 500 0C and annealed for 15 min. After cooling at 

room temperature, the substrates were transfer to the glove box for the deposition of other layers. 1.2M 

CH3NH3PbI3 was prepared for pristine perovskite film. For CH3NH3PbI3. zCuCl2, CuCl2 was added in CH3NH3I 

/PbI2 with molar ratio of 1 (CH3NH3I): 1 (PbI2): z (CuCl2) (where z was varied from 1.25 to 15 mol %) in 1 

mL DMF. The perovskite precursor solution was spin-coated onto the substrate at 5000 rpm for 42 s. After 12 

s at 5000 rpm, an optimum amount (100 µL) of anti-solvent (toluene) was dripped on the spinning substrate 

and continue spinning till end. The spin coated substrates were then annealed at 100 0C for 30 min. 

Consequently, the electron transport layer (PCBM (20 mg mL-1 in chlorobenzene)) and interfacial layer (BCP 

(solution in methanol)) were spin-coated at 1000 rpm for 30 s and 6000 rpm for 30 s respectively. Finally, a 

90 nm thick silver electrode layer was thermally evaporated under 4.65×10-6 Pa vacuum through a shadow 

mask with an active area of 0.09 cm2. 

 

3.2.3 Characterization 

 

 Optical absorbance spectra were measured by a UV-Vis (Shimadzu UV/Vis 3600) spectrophotometer. 

The surface morphology of perovskite films was observed by scanning electron microscopy (SEM) (JSM-

6500F). The XRD was measured on a Rigaku RINT-2500 powder X-ray diffractometer using Cu Kα radiation. 
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The J-V characteristics were measured using a solar simulator with AM 1.5 sunlight (100mWcm-2, WXS-155S-

10: Wacom Denso Co., Japan). The J-V curves were measured by forward (-0.2V to 1.2V) scan by using the 

Keithley 2400. J-V curves for all devices were measured by masking the cells with a metal mask 0.09 cm2 in 

area. The incident photon-to-current conversion efficiency (IPCE) spectra were measured with a 

monochromatic incident light of  1×1016 photons cm-2 in direct current mode (CEP-2000BX, Bunko-keiki). 

Steady-state photoluminescence (PL) was recorded by a spectrometer (Spectra Pro-300i) with an excitation by 

an Ar+ laser of wavelength 514.5 nm (Stabilite 2017). 

 

3.3 Results and Discussion 

 

 To observe the effect of CuCl2 addition on the surface morphology of CH3NH3PbI3 films, the SEM 

measurement was performed. The surface morphology of CH3NH3PbI3 films at different concentration of 

CuCl2 are shown in Figure 3.1. The pristine CH3NH3PbI3 films showed small and inhomogeneous film 

morphology (Figure 3.1a). This may be due to the fast crystallization of CH3NH3PbI3. Upon addition of 1.25 

mol% CuCl2, the overall grain size become larger and some grain became 0.9 to 1.2 µm but still the film was 

inhomogeneous (Figure 3.1b). With increasing amount of CuCl2 concentration in the precursor solution up to 

2.5 mol%, the corresponding CH3NH3PbI3 films resulted in homogeneous grains with average size of 0.7 µm 

(Figure 3.1c). This is because, the addition of CuCl2 in the precursor solution provide chloride ions which leads 

to the formation of intermediate phase and slow down the crystallization rate and promotes the growth of larger 

perovskite grains.11 With further increment of CuCl2 concentration up to 5 mol%, the morphology of 

CH3NH3PbI3 film was similar to 2.5 mol% CuCl2 films but showed small pores within the CH3NH3PbI3 film 

(Figure 3.1d). The size of pore sizes and uncovered film morphology were increased with the increasing 

amount of CuCl2 at 10 mol% and 15 mol% CuCl2 concentration (Figures 3.1e and 3.1f). 

 

 

Figure 3.1.  SEM images of CH3NH3PbI3 films: (a) pristine (b) 1.25 mol% (c) 2.5 mol% (d) 5 mol% and (e) 

10 mol% and (f) 15 mol% of CuCl2 additive. 
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The performance of PSCs is directly dependent on the crystallinity of perovskite films.5,12 Figure 

3.2a shows the XRD pattern of CH3NH3PbI3 perovskite films without and with CuCl2 addition at different 

concentration. All the resulting films showed XRD peaks located at 14.2°, 28.5° and 31.9° corresponding to 

the 110, 220 and 310 crystal planes respectively for the tetragonal perovskite phase (space group I4/mcm).13-16 

From the XRD observation, it has been found that the intensity of the (110) peak at 2θ = 14.2° varied with 

CuCl2 concentration in the precursor solution. The sample with 1.25 mol% CuCl2 addition showed twice higher 

intensity and sharper as compared with pristine CH3NH3PbI3, indicating improved crystallinity and larger 

crystallite size.17 As the full width at half maximum of the diffraction peaks are inversely proportional to the 

crystallite size.18 This result is also consistent with the SEM images observation. With the addition of CuCl2 

beyond 1.25 mol%, the XRD intensity gradually decreased. For the perovskite films with 5 mol% to 15 mol% 

CuCl2, an extra peak at 12.6° was observed which can be assigned to the peak of PbI2, indicating incomplete 

crystallization of perovskite film due to presence of excess CuCl2.19  

To observe the effect of CuCl2 addition on the optoelectronic properties of CH3NH3PbI3, the steady 

state photoluminescence measurement has been performed. For this measurement, the perovskite films were 

deposited on glass and encapsulated by using cavity glass and UV glue. Figure 3.2b shows the steady state PL 

spectra of the CH3NH3PbI3 films with 2.5 mol% CuCl2 and without CuCl2 addition. The perovskite film 

without CuCl2 showed relatively weak PL intensity at 774 nm whereas, the PL emission from the CH3NH3PbI3 

with 2.5 mol% CuCl2 was more intense on the order of ~5. These results indicate a significant reduction in 

non-radiative recombination due to the formation of high quality crystals, eventually leading to lower trap 

states with the addition of 2.5 mol% CuCl2.20-21 

 

 

 

Figure 3.2. XRD pattern of CH3NH3PbI3 films at different concentration of CuCl2 (a) steady state PL spectra 

(b) of CH3NH3PbI3 films of pristine and 2.5 mol% CuCl2, deposited on the soda-lime glass substrate. 

 

 All the PSCs were fabricated in FTO/NiOX/CH3NH3PbI3.zCuCl2/PCBM/BCP/Ag configuration. The 

IPCE spectra for the PSCs as a function of CuCl2 concentration in the corresponding precursor solutions are 
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shown in Figure 3a and summarized in Table 3.1. The onset of the IPCE at 800 nm was consistent with the 

UV-vis light absorption of CH3NH3PbI3 which is shown in supporting information (Figure S3.1). The pristine 

device showed poor IPCE of 60% at 590 nm wavelenght. Whereas, the  PSCs  formed by addition of  2.5 

mol% and 5 mol% CuCl2 in the CH3NH3PbI3 precursor solutions showed highest IPCE of 76% at 590 nm 

wavelenght. The increased IPCE from the pristine device is due to the large and homogeneous grains structures 

which enhances the charge recombination resistance due to a decease in trap states which is in agreement with 

the PL observation. When the amount of CuCl2 exceeds beyond 5 mol%,  reduced pattern in the IPCE spectra 

were observed (40% to 60% at 15 mol% CuCl2). From the SEM images, it has been observed that the addition 

of CuCl2 increases the grain size resulting in reduced grain boundaries. This is why PSCs fabricated with 2.5 

mol% - 5 mol% CuCl2 in CH3NH3PbI3 films showed higher IPCE values. As the addition of CuCl2 was 

increased beyond 5 mol%, the lack of surface coverage by perovskite films results in lower IPCE in the 

respective PSCs. 

 

 

 

Figure 3.3. IPCE spectra(a) and J-V curves (b) for PSCs at different concentration of CuCl2. 

 

Figure 3b shows J-V curves for the PSCs fabricated using perovskite films with different concentration of 

CuCl2 and the corresponding photovoltaic performance parameters are summarized in Table 3.1. The PSC 

without additive exhibits PCE of 9.73 % with the JSC of 13.76 mA/cm2, VOC of 0.980 V, and FF of 0.72. With 

the addition of CuCl2 in perovskite precursor solution from 1.25 mol% to 5 mol%, all the performance 

parameters of corresponding devices improved (Table 3.1). The PSC with 2.5 mol% CuCl2 in the precursor 

solution, showed the best PCE of 15.22 %, with the JSC of 17.99 mA/cm2, VOC of 1.022 V, and FF of 0.828.  

As compared with the pristine PSC, the 2.5 mol% CuCl2 addition improved the JSC and FF from 13.76 mA/cm2 

to 17.99 mA/cm2 and 0.722 to 0.828 respectively. 
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Table 3.1: Photovoltaic Performance Parameters of PSCs at Different Concentration of CuCl2 in Perovskite 

Precursor Solution. 

Absorber layer JSC 

(mA/cm2) 

VOC (V) FF  PCE (%) IPCE (%) 

At 590 nm 

CH3NH3PbI3 13.756 0.980 0.722 9.73 60 

CH3NH3PbI3.zCuCl2 (z=0.0125) 16.622 1.008 0.789 13.21 76 

CH3NH3PbI3.zCuCl2 (z=0.025) 17.988 1.022 0.828 15.22 76 

CH3NH3PbI3.zCuCl2 (z=0.05) 18.590 0.950 0.782 13.81 76 

CH3NH3PbI3.zCuCl2 (z=0.1) 16.556 0.928 0.617 9.47 66 

CH3NH3PbI3.zCuCl2 (z=0.15) 14.811 0.907 0.531 7.13 63 

 

 

3.4 Summary  

 

 In this work, the decisive effect of CuCl2 addition on the morphology and optoelectronic properties 

of CH3NH3PbI3 film from a single precursor solvent have been observed. Higher charge recombination 

resistance due to reduced trap states via CuCl2 addition was observed in the perovskite films with an optimized 

2.5 mol% CuCl2 concentration in the precursor solution. Due to the positive aspects of CuCl2 addition into the 

precursor solution, the PCE has been boosted from 9.73% (pristine) to 15.22 % (with 2.5 mol% 2.5mol% 

CuCl2) which is 56 % higher than the pristine CH3NH3PbI3 based PSC. Hence, this work might be a pathway 

to obtain high quality perovskite films from a single solvent for large scale production. 
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Supporting Information 

 

 

 

Figure S3.1. UV-vis absorbance spectra for CH3NH3PbI3. zCuCl2. z denotes the molar ratio of CuCl2 to 

CH3NH3I and PbI2 in the corresponding CH3NH3PbI3 precursor solutions. 

 

 

 

 

Figure S3.2. EDS mapping of different elements of CH3NH3PbI3. zCuCl2 (z=2.5 mol) film. 
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Table ST3.1: Atomic percentage of different elements in the CH3NH3PbI3 .zCuCl2 (z=2.5 mol) film. 

 

Element Atomic % 

N 1.92 

Cl 0.03 

Cu 1.09 

I 59.55 

Pb 37.40 

Total 100.00 
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Chapter 4 

Enhanced Photovoltaic Performance of FASnI3 Based Perovskite Solar 

Cells with Hydrazinium Chloride (N2H5Cl) Coadditive 

 

4.1 Introduction 

 

 At present, the PCE of PSCs has crossed 23% which is higher that the commercially available 

polycrystalline silicon solar cell.1-2 However, all the reported high efficiency PSCs are generally constructed 

with Pb as the divalent metal in the perovskite compound which hinders the large-scale commercial production 

without any specified protocol for the vast amount of toxic Pb handling in the industrial production level. As 

a result, numerous researches are in constant pursuit to replace Pb with nontoxic metals such as Sn, Cu, Ge 

and Bi without compromising the favorable optoelectronic properties of the perovskite absorber.3-6 Among 

these, Sn based halide perovskite (ASnX3) has similar or even superior optoelectronic properties in comparison 

to Pb-based perovskites. Besides being less toxic, ASnX3
 perovskites contain favorable optoelectronic 

properties, such as- high light absorption competence, extremely high carrier mobility and bandgap of 1.2 eV-

1.4 eV.7-8 However, Sn-based perovskite compounds implemented in PSCs show poor photovoltaic 

performances reaching only up to 9%  of PCE .9-10 One of the reason for such limited performance is attributed 

to the facial tendency of oxidation from Sn2+ to Sn4+ state in Sn based perovskite film in ambient environment 

or even in glovebox with parts per million (ppm) level of water and oxygen (<10 ppm), which is well known 

as “self-doping.”3, 11-12 Due to the self-doping effect, the pure Sn-based perovskite loses suitable 

semiconducting properties for photovoltaic devices, leading to poor stability and reproducibility.13 To reduce 

the oxidation of Sn2+ with semiconducting properties, the addition of SnF2 in the precursor solution has been 

highlighted as a potential solution.14 However, addition of excess SnF2 has a tendency to form separate phase 

on the surface of perovskite films.15 As a solution to prevent phase separation, pyrazine as a mediator has 

shown potential to effectively restrict phase separation of SnF2.16 Similar approaches has been undertaken by 

addition of hypophosphorous acid into the Sn perovskite precursor solution to prevent the SnF2 phase 

separation.17 Hence, retarding the oxidation of Sn2+ to Sn4+ is one of the main pre-requisite for efficient Sn 

based PSC fabrication.18-19 However, SnF2 addition does not effectively result in homogenous and pinhole free 

Sn based perovskite films. For obtaining efficient Sn based PSC, a compact and uniform perovskite film which 

can mitigate the penetration of oxygen into its inner domain to oxidize Sn2+ is much anticipated.20 Additionally 

for Sn-based perovskite absorber layers, total control over the morphology is more challenging as compared 

to Pb-based perovskite absorber layer due to the faster reaction rate between SnI2 and methylammonium (MAI) 

/ formamidium iodide (FAI).18,21 For high-quality pinhole-free Sn-based perovskite films, the formation of the 

intermediate SnI2 solvates prior to final perovskite films is essential.18 In this concern, addition of a secondary 
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additive with suitable functionality which can simultaneously assist to form a uniform film and retard the Sn2+ 

oxidation might be beneficial. For Pb-based perovskite films, addition of chlorine salts such as HONH3Cl, 

GuCl, NaCl, CdCl2 and N2H5Cl can facilitate growth of compact pinhole free perovskite layer. 22-27 In such 

instances, the chloride ion successfully tuned the rate of chemical reaction of perovskite film formation and 

assisted to form homogeneous films. Among these chlorinated salts, hydrazinium chloride (N2H5Cl) has been 

proven as effective additive for uniform film formation and widely known as a reducing agent.27-29 However, 

using the dual beneficial aspects of N2H5Cl for uniform Sn based perovskite film growth with controlled rate 

provided by the chloride ion and effective suppression of Sn2+ oxidation has not been explored yet. 

Here in this work in addition to SnF2, the N2H5Cl has been added as a co-additive in a single solvent (dimethyl 

sulfoxide) precursor system to obtain homogeneous and pin-hole free FASnI3 films with retarded Sn2+ 

oxidation. The resultant PSCs fabricated with N2H5Cl co-additive in FASnI3 precursor showed increased shelf-

life up to 1000 h. The successful inclusion of N2H5Cl at 2.5 mol% in the FASnI3 precursor boosts the PCE up 

to 5.4% in an inverted planar PSC with short circuit current density (JSC) of 17.64 mA cm-2, open circuit voltage 

(VOC) of 0.455 V and fill factor (FF) of 0.67. 

 

4.2 Experimental Section 

 

4.2.1 Materials 

 

 We have used all the chemicals as received without any further purification, including- SnI2 

(99.99%, Sigma–Aldrich), FAI (> 98%, Tokyo Chemical Industry Co., Japan), SnF2 (>99%, Sigma-Aldrich), 

N2H5Cl (97%, Sigma-Aldrich), Poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) 

(Clevious P VP Al 4083), PCBM (Phenyl-C61-butyric acid methyl ester) (99.5%, Lumtec Co., Taiwan). 

Bathocuproine (BCP) and super dehydrated solvents of dimethyl sulfoxide (DMSO), chlorobenzene, methanol 

and ethanol, were purchased from Wako Co., Japan. 

 

4.2.2 Perovskite Film Fabrication 

 

 The precursor solution for FASnI3 perovskite film was prepared by mixing equaimolar ratio of (1 

mmol) SnI2 and FAI with 10 mol% SnF2 in 1ml of DMSO solvent. For the coadditive engineered FASnI3 films, 

the FAI was replaced with varying amount of N2H5Cl (0 mol%, 2.5 mol%, 5.0 mol% and 10 mol% in respect 

to the content of FASnI3) from the precursor solution. The perovskite film was deposited by spin-coating 70μL 

of precursor solution at 5000 rpm for 45 s. During spin-coating, 80 µL chlorobenzene was dripped on the 

substrate after 17 seconds. The spin-coated films were then annealed. The annealing process was performed in 

two steps: at first heating at 650 C for 30 s and then heating at 100 0C for 15 min. 
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4.2.3 Solar Cell Fabrication 

  

All the PSCs were fabricated on the patterned indium tin oxide (ITO) coated glass substrates which 

act as the transparent electrode. The substrates were ultrasonically cleaned with detergent, de-ionized water, 

acetone, and ethanol respectively for 15 min each. Before starting the device fabrication process, the cleaned 

substrates were treated with ultraviolet (UV)/ozone radiation for 30 min. The hole transport layer (HTL) was 

deposited on top of the ITO substrate by spin-coating 70μL of PEDOT:PSS solution at 1000 rpm and  4000 

rpm for 10 s and 30 s respectively. The PEDOT:PSS films were then annealed at 150 0C for 15 min and cooled 

down to room temperature. After cooling at room temperature, the substrates were transferred to glove box 

and the FASnI3 perovskite films were deposited. An electron transporting layer PCBM (20 mg ml-1 in 

chlorobenzene) and BCP (saturated solution in isopropanol) were deposited by spin-coating at 1000 rpm for 

30 s and 6000 rpm for 30 s respectively. Finally, a 90 nm thick silver layer was vacuum deposited through a 

shadow mask with an active area of 0.09 cm2. The PSCs were sealed, by a cavity glass using UV curable glue 

on top of the front active area of ITO. 

 

4.2.4 Characterization 

 

 The optical absorption spectra were measured by a Shimadzu UV/Vis 3600 spectrophotometer. The 

morphology of the films and structure of devices were observed by scanning electron microscope (JSM-6500F 

field-emission under an acceleration voltage of 5 kV). The XRD was measured by a Rigaku RINT-2500 powder 

X-ray diffractometer using Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) was performed on the 

film deposited on glass substrate by using PHI Quantera SXM (ULVAC- PHI). XPS measurement was carried 

out at ultrahigh vacuum as high as 5x10-11 mbar. X-ray from monochromatic Al Kα source (hυ =1486.7 eV) 

was used to excite the samples and electrons were detected at 45o take off angle. Multi pack software was used 

for curve fitting. Steady state photoluminescence (PL) and time resolve photoluminescence (TRPL) were 

measured by a Hamamatsu C12132 fluorescence lifetime spectrometer using a 1.5 ns pulsed laser (frequency 

15 kHz), at an excitation wavelength of =532 nm, and an excitation power of 1 mW. For PL and TRPL 

measurement, the relevant films were deposited on glass substrates and encapsulated in glovebox but were 

measured in ambient conditions. The current density-voltage (J-V) curves were measured using a solar 

simulator with standard air mass 1.5 sunlight (100mWcm-2, WXS-155S-10: Wacom Denso Co., Japan) under 

ambient conditions. The J-V curves were measured in forward (-0.1V to 0.5V) or reverse (0.5V to -0.1V) scans 

by using the Keithley 2400 as a digital source meter. The step voltage was fixed at 10mV and the delay time 

was set at 50 ms. J-V curves for all devices were measured by masking the cells with a metal mask 0.09 cm2 

in area. A monochromatic incident light (1x1016 photons/cm2) in direct current mode (CEP-2000BX, 

Bunkoukeiki Co., LTD) was used to measure monochromatic incident photon-to-current conversion efficiency 

(IPCE) spectra. The stability (shelf-life) of the fabricated PSCs were measured in ambient environment and 

stored in N2 filled glove box after measurement. 
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4.3  Results and Discussion 

 

 Hydrazine compounds are well explored reducing agents which decomposes based on the following 

equation and shows their reductive action.31 

2N2H4 → 2NH3 + N2 + H2 + e-………… (1) 

Sn2+ ⇌ Sn4+ +2e-………………………. (2) 

From equation 1, hydrazine dissociates into the solution and releases electrons which suppress the Sn2+ 

oxidation reaction (Equation 2). To evaluate the anti-oxidant properties of N2H5Cl, the precursor solution of 

FASnI3 with SnF2 and SnF2 + N2H5Cl (5 mol%) respectively were prepared and exposed the solution in ambient 

air. Initially, both of the precursor solutions exhibited light yellow color (Figure 4.1). After 2 hours exposure 

in ambient air, a dark red colored ring formed at the surface of the precursor solution resulting in oxidation of 

Sn2+ to Sn4+. With increasing exposure time, the ring extended into the solution and after 8 hours, the solution 

without co-additive turned dark red whereas, the N2H5Cl added solution still maintained light yellow color 

solution. Hence, addition of N2H5Cl into the precursor solution decelerates the oxidation rate of Sn2+ to Sn4+ 

in the FASnI3 precursor solution.  

 

 

 

Figure 4.1. Photographic images of FASnI3 precursor solution (1 mmol SnI2, 1 mmol FAI and 0.1 mmol SnF2) 

and SnF2+5 mol% N2H5Cl exposed in air for different period of time. 

 

In order to fabricate high quality FASnI3 films, the retardation of crystallization process is beneficial. Specially 

for Sn-based perovskite as their crystallization rate are much faster than Pb-based counter part due to their 

higher Lewis acidity.30 In this regard, DMSO solvent which has higher coordination affinity and lower 

saturated vapor pressure compared to DMF is used for Sn based perovskite films formation.31 A recent study 

has shown that DMSO forms a transitional SnI2.3DMSO intermediate phase which can facilitate decelerating 

perovskite formation rate and result in uniform Sn based perovskite film.18 Hence, in this study, only DMSO 

has been used as precursor solvent to fabricate FASnI3 films.  



60 

 

 

 

Figure 4.2. SEM images of FASnI3 films: (a) SnF2 (b) SnF2 +2.5 mol% N2H5Cl (c) SnF2 + 5 mol% N2H5Cl and 

(d) SnF2 + 10 mol% of N2H5Cl. 

 

To observe the effects of N2H5Cl on the morphology of FASnI3 film, scanning electron microscopy 

(SEM) images have been taken for FASnI3 at various concentration of N2H5Cl (Figure 4.2). The FASnI3 films 

fabricated with SnF2 additive exhibits very poor coverage with numerous pinholes over Poly (3,4-

ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) hole transport layer (Figure 4.2a). Upon 

addition of 2.5 mol% N2H5Cl, the surface morphology significantly improves with high coverage over the 

PEDOT:PSS under layer. The corresponding film showed larger grains with an average of 675 nm (Figure 4.2b, 

Figure S4.1). By the addition of N2H5Cl, the chloride ions in this additive led to formation of an intermediate 

fused template phase of perovskite which acts as seeds and directs the growth of larger FASnI3 grains with full 

coverage.32 The rapid decrease of pin-holes and formation of larger grains in the FASnI3 film results in reduced 

grain boundary defects. Further increased concentration of N2H5Cl up to 5 mol%, the grain sizes decreased to 

an average of 0.55 µm (Figure S4.1) and increased the number of pin-holes in the corresponding FASnI3 films 

(Figure 4.2c). However, with increased N2H5Cl concentration up to 10 mol%, resulted in 0.39 µm average 

grain sizes with some white dot particles on the surface of FASnI3 film (Figure 4.2d). 

The figure 4.3 shows X-ray diffraction pattern for FASnI3 films with SnF2 and SnF2 + various 

concentration of N2H5Cl. All the XRD pattern showed similar characteristics of XRD peaks located at 14.1, 

24.5, 28.3, 31.8, 40.50, and 42.9°, which can be assigned to 100, 102, 200, 122, 222, and 213 crystal planes, 

respectively, for the orthorhombic perovskite phase. Interestingly, by addition of N2H5Cl, the full width at half 

maxima of peak at 14.10 becomes narrower (0.145 for only SnF2 and 0.110 for SnF2 + 2.5 mol% N2H5Cl added 
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FASnI3 films) (see Table S4.1). This may be due to the significant enhancement of crystallinity of FASnI3 films 

with the addition of N2H5Cl.  

 

 

 

Figure 4.3. XRD patterns of FASnI3 films at various concentrations of N2H5Cl deposited on ITO coated glass 

substrate. 

 

The UV-Vis absorption spectra have been performed to observe the effect of N2H5Cl addition on the 

absorption band edge of FASnI3 films (Figure S4.2). The bandgap of the respective FASnI3 films have been 

determined from Tauc plot. From the results, it has found that all FASnI3 films showed 1.37 eV except the 10 

mol% of N2H5Cl added film. The FASnI3 film with 10 mol% N2H5Cl showed 1.39 eV which may be due to 

the substitution of FA or I with N2H4 or Cl respectively. 

X-ray photoelectron spectroscopy (XPS) measurement has been performed to evaluate the reducing 

effects of N2H5Cl addition as a co-additive on FASnI3 films (Figure 4.4 a, b.). The two main peaks at 495.3 eV 

and 486.9 eV were assigned to 3d3/2 and 3d5/3 for Sn2+ respectively. Whereas the fitting peaks situated at 595.9 

eV and 487.5 eV were ascribed as the binding energy of Sn4+. To determine the relative amount of Sn2+ and 

Sn4+ in the FASnI3 film, the XPS spectra were deconvoluted by curve fitting. The curve fitting was performed 

by using Multi-Pack software. The detail fitting results are given in table S4.2. The fitting results showed the 

atomic percent of Sn4+ were 7.3 and 4.9 for only SnF2 and SnF2+N2H5Cl added FASnI3 films respectively. This 

result indicates that the addition of 2.5 mol% N2H5Cl in the perovskite precursor solution reduced the Sn4+ 

content from 7.3 to 4.9 atomic percent (see Table S4.2 and S4.3). Hence, confirming the ability of N2H5Cl to 

retard the oxidation of Sn2+ in the FASnI3 films which is in accord with the results observed from the precursor 

solution test observation (Figure 4.1). In Sn based perovskite films, Sn4+ is considered as the Sn vacancies.17 
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Figure 4.4. High-resolution XPS spectra (Sn 3d) of FASnI3 thin films of (a) SnF2 and (b) SnF2 + 2.5 mol% 

N2H5Cl.  

 

To understand the charge dynamics of SnF2 and SnF2 + 2.5 mol% N2H5Cl based FASnI3 films, steady 

state PL and time resolved PL were performed and shown in Figure 4.5a and 4.5b. FASnI3 film with 2.5 mol% 

N2H5Cl shows a PL peak with a small blue shift from 900 nm to 895 nm in comparison to only SnF2 based 

FASnI3 film (without N2H5Cl). This blue shift in the PL peak, which is also observed in the absorption spectra, 

indicates that the addition of N2H5Cl passivates the defect states just below the conduction band. Figure 4.5b 

shows the TRPL spectra for the SnF2 and SnF2 + 2.5 mol% N2H5Cl added FASnI3 films. The 2.5 mol% N2H5Cl 

added FASnI3 film showed relatively longer PL lifetime (τ = 4.83 ns) compared to only SnF2 added FASnI3 

film (τ = 3.53 ns), assuming a first order decay (single exponential decay). This increase of the PL lifetime 

indicates a reduction of charge recombination in the FASnI3 film fabricated with N2H5Cl additives. This may 

be due to the formation of pin-hole free larger grains films and reduced Sn4+ content as deduced from the SEM 

and XPS measurements respectively. 
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Figure 4.5. Steady state photoluminescence (PL) (a) time-resolved photoluminescence (TRPL) (b) of FASnI3 

films with only SnF2 and SnF2+N2H5Cl. 

 

Inverted planar PSCs with a structure of ITO/PEDOT:PSS/FASnI3/PCBM/BCP/Ag were fabricated 

to evaluate the photovoltaic performance of the FASnI3 films. The schematic device structure and the cross-

sectional SEM image of the fabricated device are shown in Figure S4.3. Figure 4.6a shows the current density-

voltage (J-V) curves of the fabricated PSCs measured under AM 1.5 simulation (100 mWcm-2 illumination) in 

forward bias mode and the corresponding photovoltaic parameters are shown in Table 4.1. The champion SnF2 

based PSC exhibited PCE of 2.5% with photovoltaic parameters of JSC = 15.1 mAcm-2, VOC = 0.297 V and FF 

= 0.56. The PCE for this PSC is comparable with the previously reported DMSO based PSC. 27 For SnF2 +2.5 

mol% N2H5Cl based PSC, a high PCE of 5.4% has been observed with JSC of 17.64 mAcm-2, VOC of 0.455V 

and FF of 0.67. This improvement in PCE is twice higher compared to only SnF2 based PSC. The co-addition 

of 2.5 mol% N2H5Cl results in improved FF from 0.559 (SnF2) to 0.673 (SnF2+2.5 mol% N2H5Cl). With further 

increase of N2H5Cl concentration in the precursor solution, reduced PCE of corresponding PSCs has been 

observed (see in Table 4.1). The higher VOC in the PSC using N2H5Cl as a co-additive can be explained by 

means of reduced background carrier density which causes the recombination loss. The presence of Sn4+ is 

known as the primary source of background carrier density14, 33 which is suppressed by the addition of N2H5Cl 

as confirmed by the XPS results (Figure 4.4a and 4.4b). The improvement of FF mainly depends on the 

formation of pin-hole free uniform perovskite film which can effectively result in defect free interface with the 

corresponding electron transport layer.34The PCE of the champion PSC (5 mol% N2H5Cl) was 4.08% with JSC 

of 16.13 mA cm-2, VOC of 0.388 V and FF of 0.65. Further increased concentration of N2H5Cl by 10 mol% 

resulted in reduced PCE of 1.84 %. This may be due to the formation of pin-holes and reduced grain size of 

perovskite films as observed from the SEM image (Figure 4.2d). We have also studied the hysteresis behavior 

of PSCs with various concentrations of N2H5Cl; as shown in Figure S4.4. For only SnF2 added PSCs, we 

observed a distinct change in PCE from 2.5% to 0.61% during reverse scan (0.5 V to -0.1V). In contrast, this 

photocurrent hysteresis nearly disappeared for the PSCs fabricated by the addition of N2H5Cl as co-additive 

with SnF2. This may be due to the elimination of charge trap states such as Sn vacancies or pin-holes by the 

addition of N2H5Cl which are known as the origin of photocurrent hysteresis.35 Figure 4.6b shows the IPCE 
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spectra of the corresponding PSCs. Only SnF2 added FASnI3 based PSC showed 40% IPCE at 820 nm and 

maximum 60% at 520 nm. Whereas the PSC fabricated with 2.5 mol% N2H5Cl as co-additive with SnF2 showed 

increased IPCE of 50% at 820 nm and 70% at 520 nm. The enhancement of IPCE of PSCs with the addition 

of N2H5Cl is due to the improvement of carrier recombination resistance of the FASnI3 film. This result is also 

in accord with our TRPL results observed for 2.5 mol% N2H5Cl + SnF2 resultant FASnI3 films (Figure 4.5b).  

5 mol% N2H5Cl + SnF2 based PSC showed 40% IPCE at 820 nm and about 70% at 520 nm but for 10 mol% 

N2H5Cl addition, the IPCE was lower than the SnF2 based PSC. The IPCE at 820 nm reduced to 22% and 30% 

at 520 nm. 

 

 

Figure 4.6. J-V curves(a) and incident photon-to-electron conversion efficiency (IPCE) (b) of SnF2 and 

SnF2+2.5 mol% N2H5Cl added FASnI3 based PSCs. 

 

Table 4.1. Photovoltaic performance parameters of PSCs at various concentrations of N2H5Cl in the perovskite 

precursor solution. 

N2H5Cl 

concentration 

mol% 

Remarks of 

the PSCs 

JSC 

(mA cm-2) 

VOC 

(V) 

F.F. PCE (%) 

0 
Average 14.78±1.9 0.302±0.4 0.474±0.1 2.08±0.50 

Champion 15.069 0.297 0.559 2.50 

2.5 
Average 16.60±1.34 0.433±0.033 0.655±0.025 4.72±0.76 

Champion 17.637 0.455 0.673 5.40 

5 
Average 15.81±1.88 0.386±0.018 0.616±0.038 3.75±0.53 

Champion 16.128 0.388 0.652 4.08 

10 
Average 8.87±1.63 0.283±0.051 0.549±0.06 1.34±0.40 

Champion 10.53 0.351 0.497 1.84 

 

Figure 4.7a shows the shelf-life of SnF2 and SnF2 + 2.5 mol% N2H5Cl added FASnI3 based PSCs 

stored in N2 filled glovebox. The PSCs with 2.5 mol% N2H5Cl retains 65 % of its initial PCE after 1000 hours. 
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The PCE of only SnF2 added PSC degraded quickly and eventually showed no photovoltaic response after 850 

hours. Figure 4.7d shows the statistical histogram of PCEs for 10 individual PSCs fabricated with SnF2 and 

SnF2+2.5 mol% N2H5Cl based FASnI3 films. The SnF2 + 2.5 mol% N2H5Cl based PSCs yielded an excellent 

reproducibility with high PCE. 

 

 

 

Figure 4.7. Shelf-life stability of SnF2 and SnF2+various concentration of N2H5Cl based PSCs (a) and 

Histogram of PCE of SnF2 and SnF2+2.5 mol% N2H5Cl added FASnI3 based PSCs (b). 

 

 

4.4 Summary 

 

 In this work, we have demonstrated that incorporation of N2H5Cl into the FASnI3 precursor solution 

with SnF2 effectively suppresses the oxidation of Sn2+ and assist the formation of uniform pin-hole free 

perovskite films. The inclusion of 2.5 mol% N2H5Cl at the FASnI3 precursor solution resulted in perovskite 

films with less Sn4+ and longer charge carrier lifetime. As a result, the power conversion efficiency improved 

to 5.40% with VOC of 0.46 V and FF of 0.67. Moreover, due to the high-quality film morphology and improved 

crystallinity, the best device retained 65 % of its initial PCE up to 1000 h. This work highlights the viability of 

N2H5Cl as a co-additive for the growth of high quality FASnI3 films for Sn based PSCs and brings the 

application of non-toxic perovskite absorbers one step closer. 
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Supporting Information 

 

 

 

Figure S4.1. Grain size distributions determined from SEM images in figure 2a, b, c and d for perovskite films 

with only SnF2, SnF2+2.5 mol% N2H5Cl, SnF2+5 mol% N2H5Cl and SnF2+10 mol% N2H5Cl respectively. 
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Figure S4.2. (a) UV-Vis spectra (b) Tauc plot of FASnI3 films with only SnF2 and with SnF2 + various 

concentration of N2H5Cl. 

 

 

 

 

Figure S4.3. (a) Schematic illustration of the device structure, and (b) cross-sectional scanning electron 

microscope image of complete FASnI3 based PSC. 
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Figure S4.4. Current density-voltage (J-V) curves of SnF2 and SnF2 + various concentration of N2H5Cl based 

PSCs measured under forward and reverse voltage scan. 

 

Table S4.1. The full width at half maxima (FWHM) of different peaks at different angles 

 

 

 

 

 

 

Table S4.2. The fitting results of XPS spectra for the SnF2 added FASnI3 films. 

Sample FWHM at 

14.10 24.50 28.40 

FASnI3 (SnF2) 0.145 0.121 0.118 

FASnI3 (SnF2 +2.5 mol% N2H5Cl) 0.110 0.125 0.093 

FASnI3 (SnF2 +5 mol% N2H5Cl) 0.124 0.121 0.116 

FASnI3 (SnF2 +10 mol% N2H5Cl) 0.196 0.163 0.174 

FASnI3 (10 mol% SnF2) 

Sn 3d5/2
 Sn 3d3/2 

Sn 2+ Sn4+ Sn 2+ Sn4+ 

Energy position (eV) 486.54 487.47 494.95 495.88 

FWHM 1.20 1.57 1.20 1.54 

% Gauss 80 80 80 80 

Area 103185 57483 69134 38514 

Area ratio 1 0.56 1 0.56 

Atomic % 13.1 7.3 13.1 7.3 
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Table S4.3. The fitting results of XPS spectra for the SnF2+ N2H5Cl added FASnI3 films. 

FASnI3                                            

(10 mol% SnF2 + 2.5 mol% N2H5Cl) 

Sn 3d5/2 Sn 3d3/2 

Sn 2+ Sn4+ Sn 2+ Sn4+ 

Energy position (eV) 486.56 487.47 494.97 495.86 

FWHM 1.20 1.33 1.20 1.33 

% Gauss 80 80 80 80 

Area 103357 35525 69249 23802 

Area ratio 1 0.34 1 0.34 

Atomic % 14.3 4.9 14.3 4.9 

 

 

Table S4.4. Photovoltaic parameters of PSCs as a function of N2H5Cl concentration in the precursor solution 

under forward and reverse bias condition. 

 

 

 

 

  

N2H5Cl 

concentration 

in mol % 

Scan direction JSC (mA/cm2) VOC (V) FF PCE (%) 

0 Forward 15.069 0.297 0.559 2.5 

Reverse 9.54 0.139 0.458 0.61 

2.5 Forward 17.63 0.455 0.673 5.40 

Reverse 16.822 0.466 0.669 5.24 

5 Forward 15.317 0.395 0.632 3.83 

Reverse 14.43 0.408 0.629 3.71 

10 Forward 10.53 0.351 0.497 1.84 

Reverse 8.902 0.365 0.564 1.83 
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Chapter 5 

Coadditive Engineering with 5-Ammonium Valeric Acid Iodide for 

Efficient and Stable Sn Perovskite Solar Cells 

 

5.1 Introduction 

 

Sn-based perovskites have become promising candidates as an alternative of toxic Pb-based 

perovskite for the green energy technology due to their low toxicity and similar or even superior photovoltaic 

properties.1-3 Even though it’s favorable optoelectronic properties, the performance of Sn-based PSCs is still 

far below from the Pb-based devices.4 This is because the Sn-based perovskites are suffered from some 

fundamental limitations such as inability to form pin-holes free uniform films, facial tendency to oxidation 

from Sn2+ to Sn4+ and poor stability.5-6 The oxidation of Sn2+, which is also known as the Sn2+ vacancies, causes 

unwanted p-type doping in perovskite films, result resulting in loses of suitable semiconducting properties for 

Sn-based perovskite materials.7 

To lower the Sn4+ content in final film, Mathews et al. group used excess amount of SnF2 into the 

precursor solution and demonstrated that the addition of SnF2 is also essential for continuous film morphology 

with lower Sn4+ content.8 After that, the addition of excess amount of SnF2 is commonly used for Sn-based and 

other mixed metal-based PSCs.9-10 Later, several other additives such as SnCl2, SnBr2, H3PO2, pyrazine, 

hydrazine vapor etc. have also been used with SnF2 to further reduce the Sn4+ concentration and to improve 

the film morphology.11-15 In this regard, the addition of N2H5Cl as a coadditive of SnF2 has been found 

beneficial not only to reduce the Sn4+ content but also to deposit uniform and pin-holes free FASnI3 films.16 

Mixing of organic cation have has also been reported to enhance the performance and stability of Sn-based 

PSCs. For instant, Huang et al. replaced part of methylamonium (MA+) by formamidinium (FA+) for Sn-based 

perovskite films and improved the performance and reproducibility.17 However, the Sn-based PSCs are still 

suffered from their poor device stability. To enhance the stability, recently the two-dimensional (2D)/ three-

dimensional (3D) composite perovskites concept from the Pb-based PSCs has been implemented for Sn-based 

PSCs.18-19 In this case, a hydrophobic low dimensional perovskite is formed on the top of 3D perovskite by 

replacing small organic cation with bulkier organic cation which effectively protects the inner layer from 

ambient environment. For example, Ning et al. added 20 mol% phenylethylammonium iodide (PEAI) into 

FASnI3 precursor solution to form a 2D/3D perovskite interface layer and improved the device performance 

and stability.18 Later, Shao et al. group optimized the PEAI for FASnI3 based PSCs and improved the PCE up 

to 9% and light soaking stability for 2 h in nitrogen filled glove box.19 But they did not show the maximum 

power point tracking (MPPT) stability of Sn-based PSCs which is considered as the standard degradation test 
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for any photovoltaic solar cells. Recently, Diau et al. reported PCE of 9.6% with 1 h operational stability at 

MPPT condition by using two co-additives for FASnI3 based PSCs in 0.022 cm2 active area.  

Hydrophobic long carbon chain organic additives with bifunctional groups, like 5-ammonium valeric 

acid iodide (5- AVAI) and butylphosphonic acid 4-ammonium chloride (4ABPCl), are well-known for 

improving the crystallinity and stability of Pb-based perovskites by cross-linking adjacent grains and forming 

a protective layer.21-22 Nazeeruddin et al. used the hydrophobic nature of 5-AVAI to form an ultra-stable 2D 

perovskite with PbI2 and showed 1 year-stable PSCs.21 In contrast, Graetzel et al. demonstrated the crosslinking 

properties of 4-ABPCl to fabricate a compact and passive film morphology for stable Pb-based PSCs.22 

Therefore, these dual beneficial aspects of additives for cross-linking grains through hydrogen bond formation 

and forming an inert passive layer on the surface might simultaneously enhance the performance and stability 

of Sn-based PSCs, which has not been explored yet. 

In this thesis, the effects of 5-AVAI on the passivation of grain boundaries, film formation and 

crystallinity, and the overall device performance and stability have been studied. With the addition of 5-AVAI 

in to the precursor solution, it has been observed that the 5-AVAI coordinated with SnI6
-4 through hydrogen 

bond formation by its bifunctional groups and effectively passivated grain boundaries of FASnI3 films. We also 

found that a small proportion of 5-AVAI changed the crystal orientation and enhanced the crystallinity and 

optoelectronic properties of FASnI3 films. As a result, the PCE of PSCs improved from 3.30 % to 6.85 %. 

More importantly, the PSC with 3 mol% 5-AVAI showed remarkable operational stability with zero loss in 

performance up to 100 hours. 

 

5.2 Experimental Procedure 

 

5.2.1 Materials 

 

 We have used all the chemicals as received without any further purification, including- SnI2 (99.99%, 

Sigma–Aldrich), FAI (> 98%, Tokyo Chemical Industry Co., Japan), SnF2 (>99%, Sigma-Aldrich), 5-

Aminovaleric acid (Sigma-Aldrich), Poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) 

(Clevious P VP Al 4083), Phenyl-C61-butyric acid methyl ester (PCBM) (99.5%, Lumtec Co., Taiwan). 

Bathocuproine (BCP) and super dehydrated solvents of dimethyl sulfoxide (DMSO), chlorobenzene, methanol 

and ethanol, were purchased from Wako Co., Japan. 

 

5.2.2 Materials Synthesis 

 

 HOOC(CH2)4NH3I (5-AVAI) was synthesized by reacting hydroiodic acid with 5-amiovaleric acid 

with a molar ratio of 1:1 under continuous stirring for 2 hours at 00 C. After that, the remaining liquid was 

evaporated using rotary evaporator. Finally, the precipitate was washed three time with diethyl ether and 

vacuum dried overnight. 
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5.2.3 Perovskite Film Fabrication 

 

The precursor solution for FASnI3 perovskite film was prepared by mixing equaimolar ratio of (0.8 

mmol) SnI2 and FAI with 10 mol% SnF2 in 1ml of DMSO solvent. For the co-additive engineering of FASnI3 

films, we prepared precursor solution by adding 3 mol%, 5 mol%, 10 mol% and 100 mol% of 5-AVAI and 

maintained 1:1 molar ratio of 5-AVAI and FASnI3 to SnI2 in DMSO. The perovskite film was deposited by 

spin-coating 70μL of precursor solution at 5000 rpm for 45 s. During spin-coating, 80 µL chlorobenzene was 

dripped on the substrate after 17 seconds. The spin-coated films were then annealed. The annealing process 

was performed in two steps: at first heating at 650 C for 30 s and then heating at 1000C for 15 min. 

 

5.2.4 Solar Cell Fabrication 

 

 All the PSCs were fabricated on the patterned indium tin oxide (ITO) coated glass substrates. The 

substrates were ultrasonically cleaned with detergent, de-ionized water, acetone, and ethanol respectively for 

15 min each. Before starting the device fabrication process, the cleaned substrates were treated with ultraviolet 

(UV)/ozone radiation for 30 min. The hole transport layer (HTL) was deposited on top of the ITO substrate by 

spin-coating 70μL of PEDOT:PSS solution at 1000 rpm and  4000 rpm for 10 s and 30 s respectively. The 

PEDOT:PSS films were then annealed at 150 0C for 15 min and cooled down to room temperature. After 

cooling at room temperature, the substrates were transferred to glove box and the FASnI3 perovskite films were 

deposited. An electron transporting layer PCBM (20 mg ml-1 in chlorobenzene) and BCP (saturated solution 

in isopropanol) were deposited by spin-coating at 1000 rpm for 30 s and 6000 rpm for 30 s respectively. Finally, 

a 90 nm thick silver layer was vacuum deposited through a shadow mask with an active area of 0.25 cm2. The 

PSCs were sealed, by a cavity glass using UV curable glue on top of the front active area of ITO. 

 

5.2.5 Characterization 

 

 The absorption spectra of perovskite films were measured by a Shimadzu UV/Vis 3600 

spectrophotometer. A field-emission scanning electron microscope (SEM) (JSM-6500F SEM) was used to 

obtain SEM images of samples, under an acceleration voltage of 5 kV. MiniFlex600 powder X-ray 

diffractometer was used for XRD pattern of thin films. Proton nuclear magnetic resonance (1H NMR) spectra 

of FASnI3 films were collected on JEOL ECS 400 NMR spectrometer, operating at 400 MHz. X-ray 

photoelectron spectroscopy (XPS) spectra were collected for perovskite films deposited on ITO glass substrate 

by using PHI Quantera SXM (ULVAC- PHI). An ultrahigh vacuum as high as 5x10-11 mbar was used for XPS 

measurement. Multi pack software was used for curve fitting. Steady state photoluminescence (PL) and time 

resolved PL (TRPL) were measured with a Hamamatsu C12132 fluorescence lifetime spectrometer using a 1.5 

ns pulsed laser (frequency 15 kHz), at an excitation wavelength of λ=532 nm, and an excitation power of 1 

mW. The samples for the PL and TRPL measurements were deposited on glass substrates and encapsulated 

using cavity glass and UV-curable glue.  
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The current density - voltage (J-V) curves were measured by means of a solar simulator with standard air mass 

1.5 sunlight (100mWcm-2, WXS-155S-10: Wacom Denso Co., Japan) under ambient conditions. The J-V 

curves were measured in forward (-0.1V to 0.7V) or reverse (0.7V to -0.1V) scans by using the Keithley 2400 

as a digital source meter under ambient condition with a delay time of 10 ms. A metal mask of 0.25 cm2 in area 

was used for all J-V curves measurements. For incident photon-to-current conversion efficiency spectra, a 

monochromatic incident light (1x1016 photons/cm2) in direct current mode (CEP-2000BX, Bunkoukeiki Co., 

LTD) was used. The electrochemical impedance spectra (EIS) was performed by using electrochemical 

workstation (PAIOS 4, FLUXiM) in frequency range of 4Hz to 4MHz with ac amplitude 50 mV under dark 

condition at 0.3V. The operational (or light socking) stability test of the encapsulated solar cells was measured 

under maximum power point tracking condition (using VK-PA-25 PV Power Analyzer, SPD Laboratory, Inc) 

and under 1 sun continuous illumination (with a 420 nm UV cut filter). For operational stability the solar cells 

were encapsulated in nitrogen filled glovebox using cavity glass and UV-curable glue. In addition, the 

encapsulated solar cells were enclosed into a stainless-steel capsule equipped with electrical connectors, quartz 

window for illumination and inlets for gas flow (such as Ar, N2) to minimize the exposure to air during the 

measurements. 

 

5.3 Results and Discussion 

 

One step anti-solvent method has been used for the fabrication of FASnI3 films. Here, the precursor 

solution has been prepared by dissolving formamidinium iodide (FAI, 0.8 mmol), tin iodide (SnI2, 0.8 mmol), 

tin fluoride (SnF2, 0.1mmol) in dimethyl sulfoxide (DMSO) solvent. To observe the effect of 5-AVAI on the 

FASnI3 films, the 5-AVAI was added into the precursor solution by maintaining a 1:1 molar ratio of organic 

cations and SnI2. The optimized molar ratio of 5-AVAI to FAI was found to 1:30. To investigate the effects of 

5-AVAI addition into the precursor solution, we performed morphological, structural and optical 

characterization. For simplicity, hereafter the perovskite film prepared by addition of only SnF2 and SnF2 + 5-

AVAI will refer as pristine and with 5-AVAI respectively. 

Proton nuclear magnetic resonance (1H NMR) measurement was performed to observe the 

coordination of 5-AVAI with FASnI3 (Figure 5.1). To do this, the 1H NMR spectra of FAI, 5-AVAI, FAI-SnI2, 

and FAI-5-AVAI-SnI2 in deuterated dimethyl sulfoxide-d6 (DMSO-d6) solution have been performed (Figure 

5.1). For FAI-SnI2 1H NMR spectra, the proton resonance peaks at 7.8 ppm, 8.4 ppm and 8.7 ppm can be 

assigned for the -CH-, -NH2 and =NH2 for FA respectively23. But with the addition of 5-AVAI into FAI-SnI2 

solution, including the above three peaks, a new proton resonance peak appeared at 7.5 ppm. To assign this 

peak, we performed 1H NMR for FAI with 5-AVAI and SnI2 with 5-AVAI solution in DMSO-d6. For FAI with 

5-AVAI, we observed no new peak except the peaks related to the FAI and 5-AVAI. However, for SnI2 with 5-

AVAI, we found a new peak at about 7.5 ppm which was not present in the 1H NMR spectra of 5-AVAI but 

perfectly matched with the newly appeared peaks that was developed with the addition of 5-AVAI into FASnI3 

precursor solution. From this result, we proposed that the 5-AVAI undergoes a hydrogen bond interaction (O−

H···I and N−H···I) by the carboxylic acid (−COOH) and the ammonium (−NH3+) end groups of 5- AVAI with 
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iodide from SnI6
4− octahedra. This type of phenomena has been confirmed for Pb-based perovskite system in 

which a bifunctional additive such as 4-ABPCl, cross-links adjacent perovskite grains by hydrogen bonding 

between phosphonic acid moiety and iodine ion of PbI6
4-octahedra.22 

 

 

 

Figure 5. 1.  1H NMR spectra of FAI, 5-AVAI, FAI+5-AVAI, FAI+SnI2 and FAI+SnI2+5-AVAI in DMSO-d6 

solution. 

 

The surface morphology of FASnI3 films was investigated by means of scanning electron microscopy 

(SEM) (Figure 5.2). The pristine FASnI3 film exhibited relatively larger grains but very poor film coverage 

with numerous pinholes. The average grain size was about 603 nm (Figure S5.2a). However, after 

incorporating optimum amount (3 mol%) of 5-AVAI into FASnI3 precursor solution, a homogeneous and pin-

holes free uniform film was obtained. This is because the bifunctional 5-AVAI additive becomes coordinated 

with SnI2, which delays the perovskite crystallization rate and directs the growth of perovskite grains with full 

coverage. However, we observed a reduced grain size of perovskite with increasing amount of 5-AVAI (average 

grain size 418 nm, 343 nm and 128 nm for 3 mol%, 5 mol% and 10 mol% of 5-VAI respectively (Figure S5.2b-

d)), possibly due to the increasing number of heterogeneous nucleation sites with increasing 5-AVAI amount.24-

25   
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Figure 5. 2. SEM images of pristine and 5-AVAI added FASnI3 films. 

 

X-ray diffraction (XRD) patterns of pristine and with 5-AVAI FASnI3 films showed similar 

characteristic XRD peaks located at14.10, 24.5°, 28.30, 31.80, 40.500 and 42.90 which can be assigned to 100, 

102, 200, 122, 222 and 213 crystal planes respectively for the orthorhombic perovskite phase (Figure 5.3).18,26 

More in details, the FASnI3 films with 3 mol% of 5-AVAI show a change in intensity of (100), (102) and (200) 

peaks as compared with pristine FASnI3 XRD pattern. With the addition of 5-AVAI the diffraction intensity of 

(102) plane decreased whereas the intensities of (100) and (200) plans increased relatively to those of other 

peaks. This result indicates a preferred orientation along the <h00> direction with the addition of 5-AVAI into 

the precursor solution.27 The XRD pattern of film with composition of only 5-AVAI and SnI2 showed some 

sharp peaks at lower diffraction angle (2θ < 100). This result provides the evidence for the formation of low 

dimensional perovskite.28 

 

 

 

Figure 5.3. XRD patterns of FASnI3 films at various concentration of 5-AVAI. 
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To evaluate the impact of 5-AVAI addition on the optoelectronic properties of FASnI3 films, the UV-

Vis absorbance, steady state photoluminescence (PL) and time resolved PL (TRPL) measurement have been 

performed on pristine and 5-AVAI added FASnI3 films (encapsulated films on glass substrate). From the UV-

vis absorbance (Figure S5.3) and steady state PL (Figure 5.4a), it was observed that the addition of 5-AVAI did 

not have significant effects on the absorption band edge. For semiconducting materials, carrier PL lifetime is 

considered as the hall mark for the quality of materials. The higher the PL lifetime better the quality of material. 

From TRPL measurement, a longer PL lifetime (τ) for the FASnI3 with 5-AVAI (τ=5.88 nm) as compared to 

the pristine FASnI3 film (τ=3.53 nm) (Figure 5.4.b) have been observed. This enhancement in PL lifetime (τ) 

with the addition of 5-AVAI indicates the reduction of charge recombination in the FASnI3 film. 

 

 

 

Figure 5. 4. Steady-state photoluminecence (PL) (a) and time resolved PL (TRPL) (b) of pristine and 5-AVAI 

added FASnI3 films. 

 

To observe the existence of 5-AVAI on the surface of FASnI3 film, the X-ray photoelectron 

spectroscopy (XPS) measurement for pristine and 5-AVAI added FASnI3 films has been performed (Figure 

S5.4). As the 5-AVAI additive contains carbon, nitrogen and oxygen elements, so to observe the existence of 

5-AVAI on the surface of the FASnI3 films, the XPS peaks of C1s, N1s and O1s for pristine and 5-AVAI added 

FASnI3 films have been compared (Figure 5.5a-c). From elemental analysis, a new shoulder peak for C1s at 

286.0 eV (Figure 5.5a) and an overall increased amount of C concentration for FASnI3 film with 5-AVAI (see 

Table ST5.1) has been observed. For N1s, the peak at 401.5 eV (Figure 5.5b) can be assigned for NH4
+ group 

and for O1s, a dominated peak at 531.9 eV (Figure 5.5c) can be assigned for C-OH or C-O-C or COO- 

functional group. Therefore, the above elemental analysis, demonstrates the presence of NH4
+, COO- and an 

increased amount of carbon on the surface for 5-AVAI added FASnI3 film which ultimately indicates the 

existence of 5-AVAI on surface of perovskite film. In this measurement, a reduced atomic percentage of Sn4+ 

was observed for 5-AVAI added FASnI3 film as compared with the pristine FASnI3 film (Figure 5.5d-e) which 

reveals the Sn2+ oxidation retardation ability of 5-AVAI. Most importantly, the atomic ratio of Sn:I was found 
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1:1.2 for both pristine and 5-AVAI added FASnI3 films (Table ST5.2). But from the chemical composition it 

should be 1:3 as it is found for MAPbI3 system.29 This may be due to the higher content of SnF2 on the 

perovskite surface as XPS can detect only the elements situated up to a 5−6 nm depth from the surface.  

 

 

 

Figure 5.5. XPS spectra for C1s (a), N1s (b) and O1s (c) on the surface of pristine and 5-AVAI added FASnI3 

films; XPS spectra for pristine (d) and 5-AVAI added (e) FASnI3 films showing Sn2+ and Sn4+ distribution in 

their surface state. 

 

Photovoltaic Performance 

As the FASnI3 films with 5-AVAI are highly crystalline pin-holes free and featuring longer PL 

lifetime, it can be expected that FASnI3 based solar cells with 5-AVAI will have better device performances. 
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To study the effect of 5-AVAI on the device performance, the ITO/PEDOT:PSS/FASnI3/PCBM/BCP/Ag  

inverted planar heterojunction solar cells were fabricated. The current density-voltage (J-V) curves of the best 

FASnI3 solar cells either pristine or with 5-AVAI under 1 sun in forward bias scan (from -0.1 V to 0.7 V) are 

shown in Figure 5.6a, and the corresponding photovoltaic performance parameters are summarized in Table 

5.1. The PCE of the pristine FASnI3 solar cell is 3.40 % with short circuit current (JSC) = 15.75 mA/cm2, open 

circuit voltage (VOC) = 0.36 V and fill factor (FF) =0.59, which are consistent with the previously reported 

results.16 On the other hand, of the best solar cell consisting of FASnI3 with 5-AVAI (3 mol%) shows a superior 

JSC of 18.89 mA/cm2, VOC of 0.59 and FF of 0.62 which pushes the PCE to 7.0%.  

The incident photon-to-electron conversion efficiency (IPCE) spectra for both pristine and 5-AVAI 

added FASnI3 solar cells are shown in Figure 5.6b. The pristine PSC shows an IPCE of 25% at 800 nm and 

maximum 56% at 670 nm, whereas the PSC with 5-AVAI shows an enhanced IPCE with 42% at 800 nm and 

maximum 68% at 670 nm. The addition of 5-AVAI into FASnI3 leads to an overall increase the IPCE in the 

entire spectral range, which is consistent with the increase of JSC estimated from the J-V curves. 

 

 

 

Figure 5.6. J-V curves measured (a) under 1 sun (A.M. 1.5, 100 mW cm-2) and Incident photon-to-electron 

conversion efficiency (IPCE) (b) of pristine and 5-AVAI added FASnI3 based PSCs. 

 

Table 5.1. Photovoltaic performance parameters of pristine and 5-AVAI added FASnI3 PSCs. 

5-AVAI 

concentration 

(mol%) 

Comments 

of the PSCs 

JSC (mAcm-2) VOC(V) FF PCE (%) 

0 
Average 15.643 ± 0.840 0.341 ± 0.019 0.564 ± 0.018 3.0 ± 0.259 

Champion 15.747 0.363 0.591 3.4 

3 
Average 17.99 ± 1.60 0.504 ± 0.046 0.643 ± 0.029 5.8 ± 0.664 

Champion 18.89 0.592 0.623 7.0 
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It important to stress that the addition of 5-AVAI into FASnI3 significantly improves the VOC from 0.36 V to 

0.59 V as well as the JSC from 15.75 mA/cm2 to 18.89 mA/cm2. To find out the reason for the VOC enhancement, 

the dark J-V curves of the pristine and 5-AVAI added PSCs were measured (Figure 5.7a). From this 

measurement, it was observed that the dark current density for PSC with 5-AVAI was about 1 order of lower 

magnitude than the pristine one. This result indicates that the addition of 5-AVAI suppresses the leakage current, 

which is one of the harmful carrier recombination path that compete with dissociation and transport of the 

photo-generated charges. This result is also consistent with the XPS measurements showing that the 

concentration of Sn4+, considered as one of the recombination center, was reduced upon the addition of 5-AVAI 

into FASnI3 (Figure 5.5d-e). This result is also consistent with the longer PL lifetime (τ), which indicates the 

reduction of charge recombination in the FASnI3 film upon the addition of 5-AVAI. To observe the effect of 5-

AVAI on the charge recombination resistance, the electrochemical impedance measurement was performed on 

pristine and 5-AVAI added PSCs (Figure S5.5). From the Nyquist plots, a larger semicircle, which represents 

recombination resistance, for the 5-AVAI added device compared to that of pristine, which is consistent with 

the corresponding device performance (Figure 5.6). To confirm the reproducibility of results, 12 individuals 

PSCs were fabricated for pristine and for 5-AVAI added FASnI3 (Figure 5.7b and Figure S5.6). 

 

 

 

Figure 5.7. J-V curves measured in dark (a) and a histogram of PCE of 12 devices (b) of pristine and 5-AVAI 

added FASnI3 based PSCs. 

 

Device and Materials Stability 

 

To observe the effect of 5-AVAI on the stability, the change of PCE for pristine and 5-AVAI added 

FASnI3 based PSCs without capsulation in ambient air conditions at ~50% relative humidity have been 

measured (Figure 5.8a). The PCE of pristine PSC rapidly decays in ambient environment and eventually 
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degrade after 10 hours, whereas the PSC with 5-AVAI retains 40 % of its initial efficiency up to 50 hours. This 

result shows the relative ability of 5-AVAI to slowdown the degradation of PSCs even under extreme 

environment conditions. Next, the operational stability test on pristine and 5-AVAI added FASnI3 based PSCs 

in encapsulated condition, under air mass 1.5 global (1.5G) continuous illumination and using the MPPT were 

performed (Figure 5.8b). The PCE, in the MPPT mode, of pristine PSC continuously decays and reaches 75% 

of its initial efficiency within 100 h, whereas the PCE of the device with 5-AVAI remarkably maintains its 

initial efficiency during same period. These results demonstrate that encapsulated PSCs with 5-AVAI show a 

better operational (light soaking) stability than pristine PSCs. 

 

 

 

Figure 5.8. Normalized PCE of pristine and with 5-AVAI added PSCs versus time for: un-encapsulated devices 

in ambient air (a) and an encapsulated device under 1 sun continuous illumination in MPPT mode to test the 

operational stability (b).  

 

To further confirm that 5-AVAI improves the stability of the crystal structure of FASnI3 films, the 

XRD measurements on FASnI3 films with or without 5-AVAI were performed as a function of time. Their 

degradation was observed by monitoring the change of XRD peaks at different interval of exposure time to 

ambient air ~50% relative humidity (without encapsulation, in room light condition) (Figure 5.9a and 5.9b). 

The pristine FASnI3 film started to degrade within 3 hours exposure in air, as 3 new peaks appear at slightly 

higher angles adjacent to the (100), (102), (200) planes and the other one at 12.50. The peaks adjacent to the 

(100), (102), (200) planes can be assigned for different oxidation state of Sn2+.35 The peak at 12.50 which does 

not match with Sn-I or Sn-O compounds, can be assigned for (101) plane of the yellow FASnI3 phase.3, 31-32  

On the other hand, XRD pattern of 5-AVAI added FASnI3 film did not show any changes with time up to 15 h 

and some new XRD peaks corresponding to the yellow phase of FASnI3 and oxidation of Sn2+ appeared after 

26 h. Therefore, this result indicates that the addition of 5-AVAI significantly slows down the degradation and 

improves the environmental stability FASnI3 film. 
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Figure 5.9. XRD pattern as a function of time of pristine and 5-AVAI added FASnI3 films in ambient air (un-

encapsulated). 

 

From the detail characterization, it has been proposed that robust nature of FASnI3 with the addition 

of 5-AVAI into the FASnI3 precursor solution is due to the formation of thin hydrophobic film on the surface 

of perovskite film. This layer protects the FASnI3 film from moisture and air. The Figure 5.10 schematically 

represent the stability enhancement mechanism of FASnI3 by 5-AVAI. 

 

 

 

Figure 5.10. Schematically representation of proposed mechanism for the stability enhancement of FASnI3 

film by 5-AVAI.  

 

5.4 Summary 

 

In this work, it has been demonstrated that the incorporation of bifunctional 5-AVAI organic cation, 

effectively modifies the perovskite grains through the formation of hydrogen bonding and enhanced 

crystallinity of FASnI3. The suppression of Sn2+ oxidation and enhancement of charge carrier lifetime with the 
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addition of 5-AVAI augmented the PCE of FASnI3 based PSCs from 3.34% to 7.0%. Moreover, the existence 

of bulker 5-AVAI molecules at the grain boundaries of perovskite films and the formation of compact pinholes-

free films, effectively retarded oxygen penetration into the perovskite lattice and enhanced the air stability of 

FASnI3. These positive aspects of 5-AVAI made it possible to demonstrate stable FASnI3 based PSCs up to 100 

hours at MPPT condition. This work highlights the coadditive strategy with 5-AVAI for highly stable Sn-based 

PSCs, which may bring nontoxic PSCs one step closer to real-life application. 
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Supporting Information 

 

 

 

Figure S5.1. SEM images of FASnI3 with the addition of (a) 5 mol% and (b) 10 mol% of 5-AVAI. 

(a) (b) 
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Figure S5.2. Grain size distributions determined from SEM images in Figure 1b, S1a and S1b for FASnI3 with 

(a) 0 mol%, (b) 3 mol%, (c) 5 mol% and (d) 10 mol% of 5-AVAI respectively. 
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Figure S5.3. UV-Vis spectra (a) and Tauc plot (b) of pristine and 5-AVAI added FASnI3 films. 

 

 

 

Figure S5.4. XPS survey spectra of pristine and 5-AVAI added FASnI3 films. 
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Figure S5.5. Nyquist plots of pristine and 5-AVAI added FASnI3 based PSCs. 

 

 

Figure S5.6. Performance parameter of pristine and 5-AVAI added PSCs for 12 cells of each composition.  
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Table ST5.1. Atomic concentrations of different elements on the surfaces of pristine and 5-AVAI added FASnI3 

films, calculated from the XPS survey spectra.  

 

 

Table ST5.2. Atomic ratio of Sn:I  on the surfaces of pristine and 5-AVAI added FASnI3 films, calculated 

from the XPS survey spectra.  

 

Sample Sn: I 

Pristine FASnI3 1.0: 1.2 

With 5-AVAI FASnI3 1.0: 1.2 

 

 

 

 

  

Sample C 1s N 1s O 1s F 1s Sn 3d5 I 3d5 

Pristine FASnI3 23.2% 14.7% 17.2% 2.7% 18.1% 21.8% 

With 5-AVAI FASnI3 34.3% 11.7% 19.6% 0.9% 15.0% 17.7% 
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Chapter 6 

 

Conclusions 

 

To meet the future energy demand, the development of renewable energy is the most efficient 

response of mankind. In this regard, sun represents the most safe and unlimited renewable source of energy. 

For this reason, the solar cells, convert the sunlight into electricity, have experienced a constant development 

over time. Among the existing solar cell technologies, the perovskite solar cells (PSCs) have been recognized 

as a potential candidate for future energy harvesting. Due to the continuous research efforts from all over the 

world, the power conversion efficiency (PCE) of PSCs has been approached to the established PV technology 

within a few years. The low cost and easy fabrication and rapid progress in PSCs performance have motivated 

researchers to solve the existing issues. For the commercialization of PSCs, the research community has 

focused their attention not only to make efficient device but also stable. In PSCs, the perovskite absorber layer 

itself is the key issues for the performance. So, the fabrication of perovskite layer with optimum properties and 

robust stable nature will overcome the problems associated with efficiency and stability. In order to achieve 

these goals innovative design, detailed analysis, and optimization of fabrication technologies are in constant 

pursuit. The main focus of this thesis is to develop perovskite film for high efficiency and stable Pb-based and 

Sn-based PSCs. 

 

In an attempt to optimize the one step anti-solvent dripping (ASD) perovskite film fabrication method, 

a thorough studied was performed to observe the effects different anti-solvent such as toluene, chlorobenzene, 

p-xylene and ether anti-solvents treatment on the MAPbI3 perovskite film and the performance of 

corresponding PSCs. The anti-solvents with high boiling point and missible in solvent, such as toluene and 

chloroebenzene, formed MAPbI3 films with single grain structure and showed highest stability. Due to the 

stable nature of perovskite films, the corresponding PSCs showed stable performance both in dark and under 

light soaking condition.  

 

To simplify the ASD method, an additive engineering was incorporated for the fabrication of 

perovskite film from single solvent precursor solution. CuCl2 was used as additive to control the crystal growth. 

Cl- from the CuCl2 controls the perovskite crystallization rate and results in larger, and uniform grain size with 

optimum optoelectronic properties and showed 56% higher photovoltaic performance than the pristine MAPbI3 

based PSCs.  

 

In the following part of this thesis, attempts were taken to substitute the toxic Pb by non-toxic Sn 

from the absorber layer of PSCs. But for the Sn-based perovskite, the rate of crystal growth is much faster than 

the Pb-based perovskite which makes pin-hole free uniform film formation challenging. Due to the higher 
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coordination of Dimethyl sulfoxide (DMSO) with SnI2, the optimized single DMSO solvent precursor system 

was used for uniform Sn-based perovskite film. However, still the film contained pinholes with higher Sn4+ 

concentration. To overcome this problem, the dual beneficial aspects of hydrazinium chloride (N2H5Cl) 

additive for uniform Sn-based perovskite film formation by controlling perovskite growth rate and suppression 

of Sn2+ oxidation through its reducing nature have been used. From detail characterization, it was observed 

that the addition of N2H5Cl into the precursor solution assisted to fabricate pin-holes free uniform perovskite 

films with lowered Sn4+ content with longer PL lifetime. As a result, the PCE of FASnI3 based PSCs improved 

twice as compared to the pristine one and showed enhanced self-life time.  

 

In an attempt to improve the stability, most importantly the operational stability of Sn-based PSCs, 

another coadditive engineering was performed with hydrophobic long carbon chain organic additive with 

bifunctional groups, 5-ammonium valeric acid iodide (5-AVAI). The suppression of Sn2+ oxidation and 

enhancement of PL lifetime of Sn-based perovskite film were observed with the addition of 5-AVAI which 

augmented the PCE of FASnI3-based PSCs twice with a large surface area (0.25 cm2) area. Moreover, the 

incorporation of 5-AVAI into the precursor solution formed a thin layer on the surface of FASnI3 films which 

protected the film from moisture and air resulting in enhanced film stability. This robust nature of FASnI3 films 

made it possible for corresponding PSCs to maintain their initial performance for 100 h under continuous 

illumination under maximum power point tracking system, which is the longest period of light soaking stability 

for Pb free perovskite solar cells. 
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