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Chapter 1. 

General Introduction 

 

1.1. Overview of method for protein production  

Proteins having a variety of functions are widely utilized for commercial uses such as pharmaceutical 

products [1] and industrial enzymes [2], and also for research uses in which proteins are used to elucidate 

various biological phenomena.  Thus, proteins are substances essential in improvements in quality of life and 

scientific advancements.  As means for producing these various proteins in large quantities at a low cost with 

a high reproducibility, techniques for producing proteins using recombinant organisms and techniques for 

purifying the proteins have been developed. The techniques for producing proteins using recombinant 

organisms utilize animal cells [3] and microorganisms [4]. The animal cells used include Chinese Hamster 

Ovary (CHO) cells, while the microorganisms used include Escherichia coli, yeasts [5], and so on. For example, 

there is a protein secretory production system using Corynebacterium glutamicum (hereinafter may be 

abbreviated as C. glutamicum) as the microorganism [6–8]. Main methods for purifying proteins produced by 

recombinant organisms include a method utilizing properties of a protein itself, and a method by adding a few 

amino acid sequence, called purification tag, used for purification to a protein and utilizing properties of the 

purification tag. 

 

1.2. Challenges for protein purification 

The method utilizing properties of a protein itself includes chromatography and liquid-solid separation [9]. 

The chromatography uses chromatographic matrixes having various properties. The chromatography utilizes 

an interaction between a protein and a chromatographic matrix [8], or the molecular sieving effect of the 

chromatographic matrix [10]. The interaction between a protein and a chromatographic matrix includes 

electrostatic interaction, hydrogen bond, hydrophobic interaction, specific interaction [11]. The liquid-solid 

separation is a separation method including: insolubilizing (i.e., making solid) a protein in a solubilized state 

by changing the solution conditions, obtaining a solid component by a simple process such as centrifugation, 

and bringing the separated solid component into a solubilized state again.  Specific examples of the means 

for insolubilizing the protein include isoelectric point precipitation [12], salting out [13], precipitation using 

an organic solvent [14], precipitation using a water-soluble polymer. The isoelectric point precipitation utilizes 

a property in which the solubility of a protein becomes lowest at an isoelectric point thereof.  The salting out, 

the precipitation using an organic solvent, and the precipitation using a water-soluble polymer utilize a property 

in which the solubility of a protein is decreased in the presence of the salt, the organic solvent, or the water-

soluble polymer [15], each of which is at a high concentration.  Another insolubilizing means is protein 

aggregation [16–18]. The protein aggregation may be particularly effective means when it is possible to select 
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conditions for aggregating a protein other than a protein to be purified while leaving the protein to be purified 

in a solubilized state. In order to overcome these problems, additional sequences having various properties, 

namely purification tags, have been developed [19].  

The method by adding a purification tag used for purification to a protein and utilizing properties of the 

purification tag includes a method utilizing properties of the purification tag itself, and a method utilizing an 

interaction between the purification tag and a substance immobilized on the matrix. In the method utilizing an 

interaction between the purification tag and a substance immobilized on matrix, the substance is often disposed 

on a chromatographic matrix [11,19–21]. The interaction between the purification tag and the substance other 

than the tag includes electrostatic interaction, hydrogen bond, hydrophobic interaction, specific interaction 

[22].  

Now, many kinds of purification tags and immobilized affinity ligands are commercially available; however, 

the scale-up of affinity chromatography can represent a major cost in the production of the final protein product 

at the industrial scale. So, new peptide tags are in demand for use in costless and simple methods for protein 

purification.  

 

1.3. Strategy for development of new purification tag 

The elastin-like polypeptide (ELP) tag is a widely used tag for non-chromatographic purification of several 

proteins, including calmodulin, catalase, and thioredoxin [23–25]. The ELP tag comprises thermally 

responsive polypeptides that undergo reversible aggregation above an intrinsic transition temperature (Tt), and 

this aggregation is caused by hydrophobic interaction [20–22]. ELP fusion proteins are soluble in aqueous 

solutions below Tt, whereas they form aggregates when the temperature is raised above Tt. The aggregation 

(precipitation) process of ELP fusion proteins is fully reversible. Accordingly, the precipitation–redissolution 

cycle of the ELP fusion protein controlled by temperature can be used for purification without the need for 

chromatography. However, the typical Tt of the ELP tag is 30°C–40°C, which may causes irreversible 

unfolding of heat-labile proteins. On the other hand, this type of purification tag for non-chromatographic 

purification of fusion protein has a lot of merits. So, I performed development of a new purification tag which 

can undergo reversible aggregation according to the environmental condition change by using cell surface 

protein B (CspB) which known as self-assembled protein in nature [26–28]. 

 

1.4. Objective of this thesis 

This thesis investigated the development of a new purification tag for protein purification. Chapter 2 describes 

a newly developed CspB-tag which insolubilizes-solubilizes in response to pH. Chapter 3 describes 

development of production process for pharmaceutical protein using CspB-tag. Chapter 4 describes an effect 

of small additive on the pH response behavior of CspB fusion protein. Subsequently, chapter 5 and chapter 6 

present the overview and discussion of this thesis including the future work to be studied. 
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Chapter 2. 

Development of A New pH-Responsive Peptide Tag 

for Protein Purification 

 

2.1. Introduction 

Recombinant proteins are widely used in many applications, as exemplified by pharmaceuticals and industrial 

enzymes. A number of protein expression systems have been designed to increase the purification efficiency 

of recombinant proteins incorporating purification tags, which are peptides or proteins that display highly 

specific and reversible binding with a ligand [1,2]. Such a fusion protein is typically purified from host cell 

proteins by affinity chromatography, which is both simple and efficient. Many kinds of purification tags and 

immobilized affinity ligands are commercially available [3]; however, the scale-up of affinity chromatography 

can represent a major cost in the production of the final protein product at the industrial scale. 

Peptide tags are in demand for use in costless and simple methods for protein purification. The elastin-like 

polypeptide (ELP) tag is a widely used tag for nonchromatographic purification of several proteins, including 

calmodulin, catalase, and thioredoxin [1,4,5]. The ELP tag comprises thermally responsive polypeptides that 

undergo reversible aggregation above an intrinsic transition temperature (Tt), and this aggregation is caused 

by hydrophobic interaction [6]. ELP fusion proteins are soluble in aqueous solutions below Tt, whereas they 

form aggregates when the temperature is raised above Tt. The aggregation (precipitation) process of ELP 

fusion proteins is fully reversible. Accordingly, the precipitation–redissolution cycle of the ELP fusion protein 

controlled by temperature can be used for purification without the need for chromatography. However, the 

typical Tt of the ELP tag is 30°C–40°C, which may causes irreversible unfolding of heat-labile proteins [4]. 

This paper describes a novel purification tag based on cell surface protein B (CspB) of Corynebacterium 

glutamicum. It has been shown that C. glutamicum strains have a surface (S) layer outside the normal cell wall, 

which comprises a single protein assembled in two-dimensional (2D) paracrystalline arrays [5]. The protein 
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CspB (also known as PS2) has been identified as a major secreted protein of several C. glutamicum strains and 

forms the S-layer in these species [7,8]. Electron microscopy and atomic force microscopy have shown that 

the S-layer of C. glutamicum formed from CspB assembles into hexameric complexes in a hexagonal 2D lattice 

structure mainly as a result of hydrophobic interactions [8–14]. The hexagonal lattice has been shown to be 

stable in 3% sodium dodecyl sulfate (SDS) at temperatures up to 60°C. Considering that (i) CspB is secreted 

in soluble form in physiological condition, (ii) the self-assembled structure of CspB forms in physiological 

condition and is highly stable [9], and (iii) the C-terminal portion of CspB works for anchoring to the cell wall, 

I assumed that a N-terminal partial sequence of CspB can be used as a stimuli responsive peptide and thus as 

a protein purification tag for precipitation and redissolution in physiological conditions. According to the above 

hypothesis, I prepared several gene constructs, which consist of various lengths of CspB as tags, and a 

proinsulin as a model pharmaceutical protein. Next, I investigated the behavior of the expressed fusion proteins 

in various solution conditions. Finally, I evaluated the versatility of the new CspB tag using other types of 

pharmaceutical proteins, Teriparatide and Bivalirudin.  

 

2.2. Materials and Methods 

Bacterial strains, plasmids, and the design of fusion proteins 

CspB fusion proteins were prepared according to a standard protocol for protein expression and secretion 

described previously[8], using a Corynebacterium glutamicum expression system, named CORYNEX® from 

the underlined characters which provided as a protein expression service from AJINOMOTO Co., Inc. The 

bacterial strain and plasmid used in this study were YDK010, a derivative of wild-type C. glutamicum 

ATCC13869, and pPK4, respectively [15–21]. The amino acid sequence of CspB (also known as PS2) has 

already been determined (Genbank Accession No. BAV24076.1). The amino acid sequence of mature CspB 

protein is shown in Figure 2.1A. The N-terminal portions of CspB of 5, 6, 17, 50, and 250 amino acid residues 

were selected as a tag to be fused and evaluated and were termed as CspB5, CspB6, CspB17, CspB50, and 

CspB250, respectively. 

The amino acid sequences of proinsulin (PIns), Teriparatide, and Bivalirudin have been determined as 

Genbank Accession Nos. 2KQP_A, AAQ51502.1, and ACW47046.1, respectively. For PIns, CspB5, CspB6, 
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CspB17, CspB50, and CspB250 fusion constructs were designed as shown in Figure 2.1B and termed as 

CspB5-PIns, CspB6-PIns, CspB17-PIns, CspB50-PIns, and CspB250-PIns, respectively. For Teriparatide, a 

CspB50 fusion construct, which includes a TEV protease recognition site, ENLYFQ, in between was designed, 

and termed as CspB50TEV-Teriparatide. For Bivalirudin, a sequence lacking N-terminal D-Phe and Pro 

(named as Biva18) was selected, and a CspB50 fusion construct, which includes a trypsin recognition site, 

lysine, in between was designed and termed as CspB50Lys-Biva18. The DNA sequences encoding these CspB 

fusion proteins were designed by incorporating the C. glutamicum codon bias. DNA fragments containing the 

promotor of cspB from C. glutamicum and the signal sequence of cspA from C. ammoniagenes were fused to 

the CspB fusion protein genes. These gene constructs were inserted into pPK4. 

 

Expression of fusion proteins 

C. glutamicum transformants expressing the PIns or CspB fusion PIns series were cultured in test tubes at 

30°C for 72 h in MM liquid media (120 g of glucose, 0.4 g of magnesium sulfate heptahydrate, 30 g of 

ammonium sulfate, 1 g of potassium dihydrogen phosphate, 0.01 g of iron sulfate heptahydrate, 0.01 g of 

manganese sulfate pentahydrate, 200 µg of thiamine hydrochloride, 500 µg of biotin, 0.15 g of DL-methionine, 

and 50 g of calcium carbonate, adjusted to 1 L with water and to pH 7.5) containing 25 mg/L of kanamycin. 

C. glutamicum transformants expressing the CspB50TEV-Teriparatide and CspB50Lys-Biva18 were 

cultured at 30°C for 3 days in a 1-L capacity jar fermenter to which 300 mL of an MMTG liquid medium (120 

g of glucose, 2 g of calcium chloride, 3 g of magnesium sulfate heptahydrate, 3 g of ammonium sulfate, 1.5 g 

of potassium dihydrogen phosphate, 0.03 g of iron sulfate heptahydrate, 0.03 g of manganese sulfate 

pentahydrate, 450 µg of thiamine hydrochloride, 450 µg of biotin, 0.15 g of DL-methionine, and 50 g of 

calcium carbonate, adjusted to 1 L with water and to pH 6.7) containing 25 mg/L of kanamycin had been 

charged, and the pH was maintained at 6.7 by the addition of gaseous ammonia.  

In the both of test tube and jar fermenter cultivation, the fusion proteins were constitutively expressed and 

secreted into the culture broth by C. glutamicum. After culturing by a test tube or jar fermenter was completed, 

the culture broth were transferred to microtubes and centrifuged at 12,000 g for 10 min to separate the bacterial 
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cells. The resulting supernatants were filtered through a sterile filter, and the culture supernatants were obtained, 

which were used for further experiments.  

 

Characterization of CspB fusion proteins 

The pH-dependent precipitation–redissolution behavior of the CspB fusion proteins was characterized as 

follows. The culture supernatant (1 mL) was adjusted to various pH values by adding 0.5 M H2SO4 or 0.5 M 

NaOH. After mixing well, the pH-adjusted culture supernatant was left for 10 min. The pH-adjusted culture 

supernatant was then centrifuged at 12,000 g for 5 min to separate precipitates formed by the pH change. The 

supernatant was transferred to another microtube, and an equal volume of 100 mM Tris-HCl buffer (pH 8.5) 

was added to the remaining precipitate. The precipitate dissolved immediately and a precipitation–

redissolution sample was obtained. The supernatant and precipitation–redissolution samples obtained at 

various pH values were analyzed by SDS-PAGE using AnykD Mini-PROTEAN® Precast Gel (Bio-Rad 

Laboratories, Inc.), and the bands of CspB fusion proteins were detected by staining with SYPRO®Ruby (Life 

Technologies Japan Ltd.). The band intensity was quantified as an intensity using a Multi Gauge (FUJIFILM 

Corporation), and the precipitation ratio (P/(S+P) × 100, where P and S denote the band intensities of the CspB 

fusion protein in supernatant and precipitation–redissolution samples, respectively) of each CspB fusion 

protein at each pH was calculated. 

 

2.3. Results 

Reversible pH responses of CspB fusion proinsulin 

Figure 2.1A shows the full sequence of mature CspB, which comprises 469 amino acid residues. I designed 

various lengths of the N-terminal CspB sequence with 5, 6, 17, 50, and 250 amino acid residues as the 

precipitation–redissolution tag for protein purification, named CspB5, CspB6, CspB17, CspB50, and CspB250, 

respectively (Fig. 2.1B). The model protein used was proinsulin (PIns), which is a precursor of a therapeutic 

protein comprising 86 amino acid residues; its isoelectric point is pH 5.2, and it contains 34% -helical 

structure at neutral pH [22]. 
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First, I investigated the solution states of CspB250-PIns, CspB50-PIns, CspB17-PIns, CspB6-PIns, and 

CspB5-PIns at neutral and weak acidic pH. The culture supernatants typically at around pH 7.8 were used, and 

the pH was lowered to around 4.6 by the addition of H2SO4. The precipitates formed by the pH change were 

separated by centrifugation and then mixed with 100 mM Tris-HCl buffer (pH 8.5). As a result, all the 

precipitates redissolved immediately and clear solutions (i.e., precipitation–redissolution samples) were 

obtained. Figure 2.1C shows the SDS-PAGE analyses of the supernatant (Sup.) and precipitation–redissolution 

(Ppt.) samples at neutral and weak acidic pH for each CspB fusion PIns. At weak acidic pH, CspB6-PIns, 

CspB17-PIns, CspB50-PIns, and CspB250-PIns formed precipitates, whereas PIns alone and CspB5-PIns did 

not form precipitates (Fig. 2.1C). Interestingly, six amino acid residues of CspB (CspB6) induced the 

precipitation of PIns depending on pH.  

Figure 2.1D shows the precipitation ratio as a function of the length of CspB fused to PIns. The precipitation 

ratio increased with increasing CspB peptide length from 37% precipitation by six residues (CspB6) to 65% 

precipitation by 250 residues (CspB250). Taken together, it was revealed that the small fragments of CspB 

fused to PIns can induce precipitation at weak acidic pH and that the precipitate formed can easily dissolve at 

a higher pH, i.e., in 100 mM Tris-HCl (pH8.5), suggesting that these CspB fragments can add a protein 

reversible pH-responsive character, which controls soluble and precipitated states of the protein simply by pH. 

I further investigated the CspB50 fragment as a pH-responsive tag fused to other types of pharmaceutical 

proteins. 
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Fig. 2. 1. Construction of CspB fusion proinsulin and evaluation of pH response. (A) Amino acid sequences 

of mature CspB. The underlined C-terminal amino acid sequence is thought to be a transmembrane region with 

the anchor on the cell wall of C. glutamicum. (B) Schematic structures of CspB fusion proinsulin are shown. 

Various lengths of the N-terminal portion of CspB, the length of which is indicated by the numbers, are fused 

with proinsulin (PIns). (C) SDS-PAGE analysis of the supernatant (Sup.) and precipitation–redissolution (Ppt.) 

samples obtained from the culture supernatant of CspB fusion protein at weak basic and weak acidic pH. (D) 

Plot of the relationship between the length of the CspB tag and the precipitation ratio of each CspB fusion 

proinsulin. Inset is the same plot focusing on the short CspB. 
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Reversible pH responses of CspB50TEV-Teriparatide and CspB50Lys-Biva18 

I selected the CspB50 fragment and investigated it as a pH-responsive tag for Teriparatide and Biva18 (Fig. 

2. 2). Teriparatide is a pharmaceutical protein with 34 residues that is used to treat osteoporosis [23]. Biva18 

is a pharmaceutical protein fragment comprising 18 residues that is a precursor of an anticoagulant Bivalirudin 

[24,25]. The two kinds of pharmaceutical proteins were fused to CspB50 with small cleavage sites (TEV and 

Lys) for TEV protease (for Teriparatide) or trypsin (for Biva18), named CspB50TEV-Teriparatide and 

CspB50Lys-Biva18, respectively (Fig. 2. 2A and 2B). 

 

 

Fig. 2. 2. Construction of CspB50 fusion Teriparatide and Bivalirudin and evaluation of pH response. 

(A, B) Schematic structures of the CspB50 fusion proteins CspB50TEV-Teriparatide and CspB50Lys-Biva18. 

The cleavage sites (TEV and Lys) recognized by TEV protease and trypsin were also fused. (C, D) Images of 

pH-dependent precipitation. (E, F) SDS-PAGE analysis of the supernatant (Sup.) and precipitation–

redissolution (Ppt.) samples prepared from the samples shown in C and D. (G, H) Snapshots of the pH response 

of each CspB50 fusion protein at the 50 mL scale (see Supplemental Data Fig. 2. 2. S1 for the original movie). 
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The fusion proteins of CspB50TEV-Teriparatide and CspB50Lys-Biva18 were expressed in C. glutamicum, 

and then the culture supernatants were collected. After that, the solution pH values of the culture supernatants 

were adjusted using 0.5 M NaOH or 0.5 M H2SO4. Figure 2. 2C and 2D shows photographs of the culture 

supernatants of CspB50TEV-Teriparatide and CspB50Lys-Biva18 adjusted at various pH values taken after 

centrifugation. As expected, precipitates were observed depending on pH for both the fusion proteins. Figure 

2. 2E and 2F show the SDS-PAGE analyses of the supernatant (Sup.) and precipitation–redissolution (Ppt.) 

samples prepared from the samples shown in Figures 2. 2C and 2D, respectively. CspB50TEV-Teriparatide 

was fully in a soluble state at pH 7.9–7.3, whereas it was precipitated at below pH 7.1 and redissolved by 100 

mM Tris-HCl (pH8.5) (Fig. 2. 2E). Similarly, CspB50Lys-Biva18 was fully in soluble state at pH 7.9–5.2, 

whereas it was precipitated at below pH 4.4 and redissolved by 100 mM Tris-HCl (pH8.5) (Fig. 2. 2F). The 

reversibility between soluble (redissolved) and precipitated states of the fusion proteins was monitored at the 

50 mL solution scale (Fig. 2. 2G and 2H). CspB50TEV-Teriparatide and CspB50Lys-Biva18 formed clear 

solutions at a weak basic pH of around 9.0. The clear solution became cloudy on adding 0.5 M H2SO4 to the 

solution. After that, the cloudy solution became clear on adding 0.5 M NaOH (see Supplemental Data for the 

original video for Fig. 2. 2G and 2H). Taken together, CspB50 was suggested to work as a versatile pH-

responsive tag for reversible precipitation–redissolution of various proteins. 

 

Effect of the type of acid  

As shown in the above analyses, three kinds of CspB50 fusion proteins showed reversible precipitation–

redissolution behavior that depended on the solution pH. Here, I investigate the effect of the type of acid on 

the precipitate formation of CspB50TEV-Teriparatide at various pH values (Fig. 2. 3). All types of acids tested, 

i.e., sulfuric acid, hydrochloric acid, and acetic acid, formed precipitates of the fusion proteins at weak acidic 

pH (Fig. 2. 3A). Figure 2. 3B shows the pH dependence of the precipitate formation of CspB50TEV-

Teriparatide. All types of acids tested yielded very similar transition curves for precipitation–redissolution in 

the pH range of 6.6–7.0. These results indicate that the reversible precipitation–redissolution of the fusion 

protein depends only on the solution pH and not on the type of acid used. 
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Fig. 2. 3. Effect of the type of acid on the transition pH of a CspB50-fusion protein. (A) SDS-PAGE analysis 

of the supernatant (Sup.) and precipitation–redissolution (Ppt.) samples prepared from culture supernatant of 

CspB50TEV-Teriparatide samples with various pH, adjusted by three different types of acid. (B) Plot of the 

relationship between the pH and the precipitation ratio of CspB50TEV-Teriparatide. The shaded area 

corresponds to the transition pH of precipitation–redissolution of CspB50TEV-Teriparatide. 

   

2.4. Discussion 

This paper proposes a new peptide tag based on CspB derived from C. glutamicum. The advantages of the 

CspB tag are (i) a sharp pH response centered around neutral pH, (ii) a relatively short amino acid sequence 

for versatile applications, and (iii) a simple costless method for precipitation–redissolution by using weak 

acidic and weak basic solutions. These advantages are discussed in the following subsections. 

 

Sharp pH response 

The most important advantage of the CspB based peptide tag is the sharp pH response centered around 

neutral pH. The transition occurs within a narrow range of only 0.5 pH units, as shown in Figure 2. 3B, and 

the recovery after redissolution of the precipitated CspB50TEV-Teriparatide was almost 100% (Fig. 2. 3B). In 

contrast, the thermally responsive ELP tag has a broad transition temperature range of around 30°C–40°C [26]. 
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The transition of the ELP tag from precipitation to redissolution usually requires an increase in temperature of 

15°C and also the higher end is sometimes harsh to proteins. Accordingly, the sharp transition of CspB tag 

near neutral pH with high recovery is a useful property for protein purification without protein denaturation 

from an industrial application point of view. For example, the purification of Teriparatide usually involves 

three chromatographic processes, including cation-exchange chromatography followed by two types of 

reversed-phase chromatography [27]; the overall recovery is around 48% for the conventional purification 

process. In contrast, the CspB tag can be used to skip at least one chromatographic process because 

CspB50TEV-Teriparatide can easily be isolated from a cell lysate of E. coli or a culture supernatant of C. 

glutamicum, yeast, or Chinese hamster ovary (CHO) cells with high recovery through the precipitation–

redissolution process by simply adjusting the pH near the sharp transition.  

  

Versatile applications due to a short amino acid sequence 

The three proteins with different characters showed pH-responsive behavior by fusing the CspB50, 

suggesting that this tag can be used for a wide variety of proteins. Note that all original proteins tested do not 

form precipitates without CspB tag. Considering the fact that the pH- responsive behavior is achieved even 

when its length is short, i.e., six residues, it is considered that the length of the tag might be optimized at a 

broad range for every target protein to be fused. CspB6 (or longer) -PIns formed precipitates at weak acidic 

pH but CspB5 PIns did not. The amino acid sequences of CspB5 and CspB6 are QETNP and QETNPT, 

respectively. It is suggested that the character built by the six amino residues is essential for pH-responsive 

behavior, but the role of each residue is currently unknown. One of the approaches is to use several solvent 

additives, such as salt, denaturant, and detergent to understand the mechanism of protein-protein interactions. 

According to the molecular mechanism, the CspB variant tag will be developed for various types of proteins 

in future. Actually, a thermally responsive ELP tag comprises simple amino acid residues with VPGXG (X 

stands for all amino acids other than proline). In addition, many kinds of ELP variant tags have been developed 

by changing the repeat number of the VPGXG sequence or by changing the guest residue (X), leading to 

favorable properties of the fusion proteins [28,29]. For example, the length of the ELP tag influences the 

transition temperature of aggregation of the fusion protein and the particle size of the aggregates [30], and the 
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role of the surface hydrophobicity of ELP and ELP fusion proteins has been investigated [6]. Furthermore, 

prediction of the transition temperature of ELP fusion proteins has been reported [31]. The CspB variant tag 

might offer different transition pH suitable for each target protein.  

 

Costless method compared with chromatography 

The development of efficient conventional chromatography methods involves examining and screening 

various types of conditions such as pH, conductivity, and the kinds of buffer and resin for both adsorption and 

elution [32]. To avoid this complicated development and cost required for actual production, various types of 

affinity tags have been developed, represented by His tag and MBP tag [1]. However, affinity chromatography 

also requires resins with corresponding ligands for affinity-tag purification, which raises the production cost, 

and sometimes other problems related to the ligand occur, such as its dissociation and/or regeneration. Thus, 

purification processes that do not require resins are in demand for industrial-scale purification due to their low 

cost. The pH-responsive CspB tag can be considered as one approach for purification without resins, and also 

as one approach for protein concentration process.  

Figure 2. 4 shows a schematic of a possible purification process based on CspB fusion proteins. The CspB 

fusion protein is harvested in culture supernatant (step 1), and then the pH of the culture supernatant is lowered 

by the addition of acid (step 2). The cloudy solution is next centrifuged to obtain the precipitate (step 3). The 

supernatant of the solution of the pH-adjusted solution, including soluble impurities is removed and rinsed, 

after which the precipitate is redissolved by the addition of a buffer with a high pH (step 4). The supernatant 

of the redissolved solution, including purified CspB fusion protein, is collected (step 5), leaving irreversibly 

precipitated insoluble impurities. Note that the highly reversible pH-dependent aggregation is used as a protein 

concentration method [33,34]. When a small amount of buffer is added in steps 3–4, the CspB fusion protein 

is easily concentrated. 
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Fig. 2. 4. Schematic illustration of a possible purification method making use of the precipitation–redissolution 

behavior of a CspB fusion protein. 

 

2.5. Conclusion 

In conclusion, CspB fragment was investigated as a pH-responsive tag for proinsulin, Teriparatide, and 

Bivalirudin. The advantages of the CspB tag are (i) full reversibility of the aggregated-state protein, (ii) pH 

responsivity centered around neutral pH, (iii) sharp pH responsivity within 0.5 pH units, (iv) versatility of 

application to pharmaceutical proteins at various pH values, and (v) utilization by a simple concentration 

method. I believe that the pH-dependent reversible precipitation–redissolution response can be used for the 

purification of various proteins. 
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Chapter 3.  

Non-Chromatographic Protein Purification with A 

pH-Responsive CspB Tag 

 

3.1. Introduction 

Recombinant proteins are widely used in many applications such as pharmaceuticals and industrial enzymes. 

Many protein expression systems have been designed to increase the purification efficiency of recombinant 

proteins incorporating purification tags, which are peptides or proteins that exhibit highly specific and 

reversible binding to a particular ligand [1–3]. A variety of purification tags and immobilized affinity ligands 

are commercially available [4]. Such protein tags are typically purified from the other proteins of the host cell 

by affinity chromatography. This purification process is both simple and efficient on a laboratory scale, but 

the scale-up of affinity chromatography can introduce a significant cost in the industrial-scale production of a 

protein. 

Thus, there is a demand for peptide tags that facilitate the non-chromatographic purification of proteins. An 

elastin-like polypeptide (ELP) tag has been used to purify several proteins including calmodulin, catalase, and 

thioredoxin [1,5,6]. The ELP tag is a thermally responsive polypeptide that is soluble in aqueous solutions at 

temperatures below an intrinsic transition temperature (Tt) but undergoes reversible aggregation above Tt 

because of hydrophobic interactions [7,8]. Thus, ELP fusion proteins are soluble in aqueous solutions below 

Tt, whereas they form aggregates when the temperature is raised above Tt. The aggregation (or precipitation) 

process of ELP fusion proteins is fully reversible. Therefore, precipitation–redissolution cycles of the ELP 

fusion protein can be controlled by cycling the temperature and can be leveraged for protein purification 

without the need for chromatography. However, the typical Tt of the ELP tag is 30–40 °C, which may induce 

irreversible unfolding of heat-labile proteins [6].  
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The CspB tag is derived from cell surface protein B (CspB) of Corynebacterium glutamicum. It is a pH-

responsive polypeptide that undergoes reversible precipitation and dissolution according to the pH of the 

solution [9–12]. Thus, CspB tag has been used as an alternative purification tag for the non-chromatographic 

purification of CspB fusion proteins [10,11]: the CspB fusion protein is harvested in the culture supernatant of 

the C. glutamicum. The pH of the culture supernatant is lowered by adding acid. The resulting cloudy solution 

is centrifuged to precipitate the CspB fusion protein while the supernatant, which contains other impurities, 

can be decanted. The precipitate was redissolved in a 1.0 M arginine solution of pH 8.0. The pH-driven 

precipitation–redissolution cycle with arginine was repeated three times in order to remove the pigments and 

other impurities through the precipitation–redissolution cycles. The final precipitate is then redissolved by 

adding a neutral buffer. However, in order to obtain an intact target protein, further steps are necessary to 

digest the CspB tag and purify the intact target protein. In this study, I investigated the purification of 

Teriparatide, which is a biologic treatment for osteoporosis, as a model target protein using the pH-responsive 

CspB tag fusion system. This is the first report of the purification of an intact target protein from the pH-

responsive CspB fusion protein. 

 

3.2. Materials and Methods 

Bacterial strain, plasmid, and the design of fusion protein 

CspB50TEV-Teriparatide comprised N-terminal 50 amino acid residues of CspB, the cleavage site (six amino 

acid residues; ENLYFQ) of TEV protease, and Teriparatide (Fig. 3. 1A). CspB50TEV-Teriparatide was 

prepared according to a standard protocol for protein expression and secretion described previously [13], using 

a Corynebacterium glutamicum expression system, named CORYNEX® from the underlined characters which 

provided as a protein expression service from AJINOMOTO Co., Inc. The amino acid sequences of CspB and 

Teriparatide were derived from GenBank (accession numbers BAV24076.1 and AAQ51502.1, respectively) 

[10]. The corresponding DNA sequence encoding CspB50TEV-Teriparatide was designed by incorporating 

the C. glutamicum codon bias (GenScript, Piscataway, NJ, USA). DNA fragments containing the promoter 

sequence of CspB from C. glutamicum and the signal sequence of CspA from C. ammoniagenes were fused to 

the CspB50TEV-Teriparatide gene. This synthesized construct was then inserted into the pPK4 plasmid and 



 

24 

incorporated into the YDK010 bacterial strain, which is a derivative of wild-type C. glutamicum (ATCC 

13869) [14–21]. 

 

Expression of the CspB50TEV-Teriparatide  

The C. glutamicum transformant expressing CspB50TEV-Teriparatide was cultured at 30 °C for 3 days in a 

1 L-capacity jar fermenter. The transformant was cultured in 300 mL of an MMTG liquid medium (120 g of 

glucose, 2 g of calcium chloride, 3 g of magnesium sulfate heptahydrate, 3 g of ammonium sulfate, 1.5 g of 

potassium dihydrogen phosphate, 0.03 g of iron sulfate heptahydrate, 0.03 g of manganese sulfate pentahydrate, 

450 µg of thiamine hydrochloride, 450 µg of biotin, 0.15 g of DL-methionine, and 50 g of calcium carbonate, 

adjusted to 1 L with water and to pH 6.7) containing 25 mg/L of kanamycin had been charged, and the pH was 

maintained at 6.7 by the addition of gaseous ammonia. In the jar fermenter cultivation, the CspB fusion protein 

was constitutively expressed and secreted into the culture broth by C. glutamicum. After the cultivation was 

completed, the culture broth was centrifuged at 12,000 g for 10 min to separate the bacterial cells. The resulting 

supernatant was filtered through a Stericup (Merck) for sterile filtration, and the culture supernatant was 

obtained, which was used for further experiments. 

 

Isolation of CspB50TEV-teriparatdie from the culture supernatant 

The 30 mL of culture supernatant was adjusted to pH 5.0 by adding a small amount of HCl to precipitate the 

CspB fusion protein. The sample was then centrifuged at 10,000 g for 5 min to pellet the precipitate. After the 

supernatant was removed, the precipitate was redissolved by adding an equal volume of a 1.0 M arginine 

solution (pH 8.0) to supernatant as described previously [11]. This pH-driven precipitation–redissolution cycle 

with arginine was repeated three times. The obtained precipitate was finally redissolved in 10 mL of 20 mM 

Tris–HCl buffer (pH 8.0). The initial culture supernatant and the finally obtained isolated CspB50TEV-

Teriparatide sample were subjected to reverse-phase high-performance liquid chromatography (RP-HPLC) as 

described in Section 2.6 to measure the CspB50TEV-Teriparatide concentrations. Then, the yield of the 

isolation process was calculated as the ratio between the amounts of CspB50TEV-Teriparatide in the isolated 

sample and initial culture supernatant (expressed as a percentage). 



 

25 

 

Enzymatic digestion of CspB50TEV-Teriparatide by TEV protease 

The enzymatic digestion of CspB50TEV-Teriparatide was carried out according to the standard protocol for 

the TEV protease used here, proTEV plus (Promega). Briefly, CspB50TEV-Teriparatide was treated by urea 

solutions of 0–6 M at 25 °C for 1 h. Then, each enzymatic digestion solution was diluted to 0.5 M urea by 

adding 20 mM Tris-HCl buffer (pH8.0). The enzymatic digestion solution comprised 1 mM DTT, 1.3 × 10−3 

unit/mL of TEV protease, 20 mM Tris–HCl (pH 8.0), and 0.5 M urea in the CspB50TEV-Teriparatide solution 

(which had a CspB50TEV-Teriparatide concentration of approximately 0.7 mg/mL). The enzymatic digestion 

process was performed in 5 mL scale for 24 h at 25 °C. 

The digested samples were subjected to RP-HPLC as described in Sections 2.6, to determine digestion 

efficiency. The digestion efficiency was calculated as the ratio between the amount of undigested CspB fusion 

protein in the digested solution and the initial amount of CspB fusion protein before the digestion (expressed 

as a percentage). 

 

Purification of Teriparatide by changing the solution pH 

The enzymatic digestion solution, which had a pH of 8.0 after the reaction, was aliquoted, and the aliquots 

were adjusted to pH 6.0, 5.0, 4.0, and 3.0 by adding small amounts of HCl. The pH-adjusted samples were 

incubated at 25 °C for 1 h and centrifuged at 10,000 g for 5 min to separate the supernatant and the precipitate 

formed by the pH change. The supernatants were then subjected to SDS-PAGE and RP-HPLC to calculate the 

purity and yield, respectively. The purity of the experimentally obtained Teriparatide was calculated as the 

ratio between the intensity of the band associated with Teriparatide and the total of the intensities of the bands 

for all detected proteins in the final sample (expressed as a percentage). The yield was calculated as the ratio 

between the amounts of Teriparatide in the samples of pH 3.0 and 8.0 (expressed as a percentage). 

 

RP-HPLC 

RP-HPLC was performed using a Waters Alliance PDA system with a YMC-Triart C18 column 

(φ4.6 × 100 mm, a particle diameter of 5 µm, and a pore diameter of 12 nm) at 30°. Into the column, 30 µL of 
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the sample was injected. The mobile phases were 10 mM ammonium acetate with 10% acetonitrile (A) and 

10 mM ammonium acetate with 80% acetonitrile (B). The flow rate was 1.0 mL/min, and elution gradient was 

0–25% B applied over 25 min. The absorbance was measured at 280 nm. A calibration curve was created from 

the peak areas in samples with different concentrations of a Teriparatide reference standard (Bachem). The 

concentration of Teriparatide was quantified from the peak areas based on the calibration curve of Teriparatide 

reference standard. On the other hand, CspB50TEV-Teriparatide and Teriparatide have a value of 0.947 and 

1.336, as absorbance values at 280 nm of 1.0 mg/mL, respectively. CspB50TEV-Teriparatide is 

underestimated about 1.4-fold (1.336/0.947) when Teriparatide is used as standard. Thus, I used the following 

equation when the concentration of CspB50TEV-Teriparatdie is calculated by RP-HPLC using Teriparatide 

as a reference standard. Actual concentration of CspB50TEV-Teriparatide [mg/mL] = estimated concentration 

by RP-HPLC [mg/mL] × 1.4. 

 

SDS-PAGE 

SDS-PAGE was performed using a 16.5% mini-PROTEAN peptide gel (Bio-Rad Laboratories, Inc.). The 

resulting protein bands were detected by applying a Bio-Safe™ Coomassie stain (Bio-Rad Laboratories, Inc.). 

Unstained polypeptide SDS-PAGE standards (Bio-Rad Laboratories, Inc.) and a Teriparatide reference 

standard (Bachem) were used as standards. The band intensities were quantified using Image Quant TL (GE 

Healthcare).  

 

Protein sequencing 

The RP-HPLC eluate containing Teriparatide was subjected to protein sequencing. The sequencing was 

performed using a protein sequencer, PPSQ-10 (Shimadzu Corporation), based on Edman degradation.  

 

Mass spectrometry 

The RP-HPLC eluate containing Teriparatide was subjected to mass spectrometry. The analysis was 

performed using AXIMA-TOF2 (Shimadzu Corporation) based on matrix-assisted laser desorption ionization 

time-of-flight mass spectrometry (MALDI-TOF-MS).  
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Circular dichroism 

The far-ultraviolet (far-UV) circular dichroism (CD) spectra were obtained for 0.1 mg/mL solutions of a 

Teriparatide reference standard (Bachem) and the experimentally obtained Teriparatide, each in 20 mM 

sodium acetate (pH 4.0). The far-UV CD spectra were measured at 25 °C using a J-720 spectropolarimeter 

(Jasco) in the range of 250 to 200 nm at a scanning rate of 100 nm/min. Each sample was loaded in a quartz 

cell with a 1-mm path length. 

 

3.3. Results 

Expression of CspB50TEV-Teriparatide 

Figure 3. 1A shows the amino acid sequences of the pH-responsive CspB tag and Teriparatide. CspB50TEV-

Teriparatide was composed of CspB50, which was derived from 50 amino acid residues starting at the N-

terminus of CspB, a digestion sequence of six residues that are recognized and digested by TEV protease 

(underlined), and the target protein, Teriparatide, which includes 34 residues (bold). Secretory expression 

using C. glutamicum was carried out, and the obtained culture supernatant and a Teriparatide reference 

standard (0.1 mg/mL) were analyzed by SDS-PAGE. Figure 3. 1B shows that a band specific to CspB50TEV-

Teriparatide could be detected in the culture supernatant. Based on the quantitative analysis by RP-HPLC, the 

accumulation of CspB50TEV-Teriparatide in the culture supernatant was 3.0 g/L (equivalent to approximately 

1.2 g/L Teriparatide).  
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Fig. 3. 1. Expression of CspB50TEV-Teriparatide by C. glutamicum. (A) Amino acid sequence of 

CspB50TEV-Teriparatide: 50 residues from the N-terminus of the CspB sequence, six-residue spacer that is 

recognized and digested by TEV protease (underlined), and Teriparatide, which contains 34 residues (bold). 

(B) SDS-PAGE analysis of the culture supernatant (lane 1) and 0.1 mg/mL of Teriparatide as a reference 

standard (lane 2).  

 

Isolation of CspB50TEV-Teriparatide 

Figure 3. 2 shows the process used to isolate CspB50TEV-Teriparatide by cycling the pH: the pH of the 

culture supernatant was adjusted to pH 5.0, and the precipitate was redissolved in a 1.0 M arginine solution of 

pH 8.0. The pH-driven precipitation–redissolution cycle with arginine was repeated three times. The observed 

color change was due to the removal of the pigments and other impurities through the precipitation–

redissolution cycles in the presence of arginine [11] as arginine increases the solubilities of aromatic 

compounds [22] and insoluble aggregation-prone proteins [23]. Then, the obtained precipitate was redissolved 

in 20 mM Tris–HCl buffer (pH 8.0). As a result, CspB50TEV-Teriparatide was successfully isolated, whereas 

the impurities were removed by the arginine effect. Figure 3. 2B shows the RP-HPLC results of the initial 

culture supernatant and the final sample of isolated CspB50TEV-Teriparatide. The final isolated CspB50TEV-

Teriparatide was eluted in a single peak around 19 min. In contrast, the culture supernatant exhibited various 
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peaks in addition to the 19 min peak associated with CspB50TEV-Teriparatide. Based on the quantitative RP-

HPLC data, the yield of the CspB50TEV-Teriparatide isolation process was about 98.9%. 

 

 

 

Fig. 3. 2. Isolation of CspB50TEV-Teriparatide by pH-driven precipitation–redissolution cycles. (A) Actual 

images of the samples over the precipitation–redissolution cycles. (B) RP-HPLC analysis of the initial sample, 

the culture supernatant (dotted line), and the final sample, isolated CspB50TEV-Teriparatide (solid line). A 

peak corresponding to CspB50TEV-Teriparatide is seen at a retention time of approximately 19 min. 

 

Enzymatic digestion of CspB50TEV by TEV protease 

In order to remove the CspB50 tag from Teriparatide, the CspB50TEV-Teriparatide was treated with TEV 

protease. It is possible that the TEV sequence was not exposed to the surface of the CspB50TEV-Teriparatide; 

thus, urea was added to loosen the tertiary structure of the CspB50TEV-Teriparatide (i.e., unfold the protein) 

to improve the digestion efficiency (Figure 3. 3). The digestion efficiency was only 5% without the urea 

treatment but was improved with increasing urea concentrations (1–6 M), reaching 98% with the 6 M urea 

pretreatment. 
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Fig. 3. 3. SDS-PAGE analysis of the TEV protease digestion of CspB50TEV-Teriparatide into CspB50TEV 

and Teriparatide. The samples were pre-treated with various concentrations of urea before the digestion step. 

 

Purification of Teriparatide 

After enzymatic digestion, the solution contains Teriparatide, CspB50TEV, non-digested CspB50TEV-

Teriparatide, and a small amount of TEV protease. At this point, the CspB50TEV-Teriparatide and 

CspB50TEV can be easily insolubilized by reducing the pH due to the pH-responsive behavior of the CspB 

tag. Figure 3. 4 shows the results of the SDS-PAGE analysis of the solution digested by TEV protease and 

adjusted to various pH values (pH 8.0, 6, 5, 4, and 3). The results show that most of the impurities, but not 

Teriparatide, were insolubilized in the enzymatic digestion solutions of pH <5.0. Interestingly, TEV protease 

was also insolubilized at acidic conditions due to the acid-induced aggregation. This was an unexpected but 

favorable effect that further facilitated the non-chromatographic purification. Accordingly, highly pure 

Teriparatide was easily obtained in the supernatant with minimal loss. 
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Fig. 3. 4. Purification of Teriparatide by pH changes. Teriparatide purification upon changing the pH of the 

solution following enzymatic digestion from 8.0 (i.e., the initial sample) to acidic pH values of 6–3 (i.e., the 

supernatants of pH-adjusted and centrifuged samples). 

 

Evaluation of the purification steps and the final product 

Figure 3. 5A shows the results of the SDS-PAGE analysis of the samples are different steps of the 

purification processes of Teriparatide from CspB50TEV-Teriparatide. The accumulation of the CspB50TEV-

Teriparatide was 3.0 g/L (equivalent to 1.2 g/L as Teriparatide) in the culture supernatant following secretory 

expression using C. glutamicum (lane 1). Using the pH-responsive properties of the CspB tag, the 

CspB50TEV-Teriparatide was recovered from the culture supernatant by three precipitation–redissolution 

cycles with a final yield of 98.9% (lane 2). The sample was then treated with 6 M urea followed by the addition 

of a buffer and TEV protease. The enzymatic digestion yielded CspB50TEV, undigested CspB50TEV-

Teriparatide, TEV protease, and Teriparatide with an efficiency of 97.6% (lane 3). The pH of the digested 

solution was then adjusted to 3.0 to insolubilize all components aside from Teriparatide. Finally, I obtained 

highly purified Teriparatide with a purity of 96.0% and a yield of 96.5%. The final productivity of the 

Teriparatide was 1.1 g/L of C. glutamicum culture. 
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In order to confirm the identity of the purified product, it was analyzed using a protein sequencer, MALDI-

TOF-MS, and CD spectroscopy. The purified sample had the amino acid residues (SVSEIQLMHN) that were 

identical to the N-terminal sequence of Teriparatide. In addition, the purified sample had a mass of 4118.1 Da 

as measured by MALDI-TOF-MS, which is close to the theoretical mass (4117.7 Da) of Teriparatide. The far-

UV CD spectrum of the purified sample was identical to that of the commercially available Teriparatide 

reference standard (Figure 3. 5B) with minima around 205 and 222 nm [24–28]. Although CspB50TEV-

Teriparatide was treated by 6 M urea for 1 hour at enzymatic digestion process, the final urea concentration 

was adjusted to 0.5 M.  Accordingly, it is naturally thought that Teriparatide can form an appropriate 

secondary structure during digestion process. Thus, it was concluded that the obtained protein was Teriparatide 

and that it retained the primary and tertiary structures associated with bioactive Teriparatide. 

 

Fig. 3. 5. Evaluation of the effectiveness of the process and the obtained Teriparatide. (A) SDS-PAGE 

analysis of the samples obtained from the various stages in the protocol: culture supernatant with CspB50TEV-

Teriparatide (lane 1), CspB50TEV-Teriparatide isolated via precipitation–redissolution cycles (lane 2), 

digested sample containing Teriparatide (lane 3), and acid-treated Teriparatide (lane 4). (B) Far-UV CD spectra 
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of a Teriparatide reference standard (dashed line) and the purified Teriparatide sample that was obtained 

experimentally (solid line).  

 

3.4. Discussion 

Here, I demonstrated a novel protocol for the purification of Teriparatide involving the expression of the 

CspB fusion protein, isolation of the CspB fusion protein, enzymatic digestion of the CspB tag, and purification 

of the target protein. The most valuable feature of this purification protocol is that it only requires pH 

adjustments and a pH meter and solid–liquid separation using a centrifuge.  

The purification of fusion proteins is usually performed by chromatography, but chromatography can be 

expensive and time-consuming [2]. For example, the standard method for Teriparatide purification involves 

the expression of histidine-tagged Teriparatide in Escherichia coli cells followed by Ni-NTA chromatography 

[29–33]. After the fused tag is digested, ion-exchange chromatography and reverse-phase chromatography are 

used for further purification of the Teriparatide. This affinity-based process yields Teriparatide with a purity 

of 99.5% and productivity of 0.5 g Teriparatide/L of culture [31] and with a purity of 95.0% and productivity 

of 0.3 g Teriparatide/L of culture [29]. On the other hand, the non-chromatographic CspB-fusion technique 

proposed here is relatively simple and yields Teriparatide with a comparable final purity (98.0%) and 

productivity of 1.1 g Teriparatide /L of culture. 

I have previously reported the versatility of the CspB tag as a pH-responsive purification tag for proinsulin 

(an insulin precursor) and a bivalirudin derivative [10]. Here, I demonstrated a non-chromatographic 

purification process that yields a tag-free protein. Moreover, various types of CspB fusion proteins can be 

created to achieve similar pH-responsive purification. However, the key to the purification process is the 

stability of the target protein denaturation in acidic condition. The CspB50TEV and TEV protease were 

insolubilized at pH <4.0 (Fig. 3. 4), and the Teriparatide alone remained soluble under the acidic pH. However, 

this characteristic cannot be guaranteed for all target proteins. Thus, only target proteins that are stable at 

pH 4.0 can be purified from the CspB fusion protein by the proposed non-chromatographic process. This 

condition is not so hard for various proteins, including monoclonal antibodies and peptide drugs. 
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Fig. 3. 6. Schematic of the proposed process for purifying intact target protein using a CspB tag.  

 

Figure 3. 6 shows a schematic illustration of the purification process that can potentially be used to purify 

other intact target proteins using the CspB tag fusion system. The target protein with the CspB tag is expressed 

and secreted into the culture supernatant by C. glutamicum, which serves as a host cell (Step 1). The pH of the 

culture supernatant is then reduced by adding acid, thus insolubilizing the CspB fusion protein so it can be 

recovered as a precipitate by centrifugation (Step 2). After the supernatant is removed, the precipitated CspB 

fusion protein is redissolved in an alkaline solution (Step 3). The use of arginine as an additive in this solution 

and repeating the precipitation–redissolution cycle facilitate the removal of impurities. Next, the CspB fusion 

protein is digested by TEV protease, yielding the CspB tag and the target protein (Step 4). The pH is again 

lowered by adding acid to insolubilize the CspB fusion protein, CspB tag, and TEV protease (Step 5). Finally, 

the sample is centrifuged, and the supernatant contains the highly purified target protein (Step 6). 

 

3.5. Conclusion 

Here, I developed a novel purification system for Teriparatide involving the expression of the protein with a 

pH-responsive CspB tag by C. glutamicum, an isolation of the CspB fusion protein, an enzymatic digestion of 

the CspB tag, and a final purification of the target protein from the digested components. The advantage of 

this non-chromatographic protein-purification method is its simplicity at the precipitation–redissolution cycles 

are actuated by adjusting the pH. Moreover, there is potential for this protocol to be broadly applied for protein 

preparation on laboratory and industrial scales. 
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Chapter 4.  

Effect of Small Additives for pH-Responsive 

Behavior of CspB Fusion Protein 

 

4.1. Introduction 

Protein purification process is complicated. In order to solve this problem, various type of purification tags 

have been developed so far [1–3]. Histidine tags are representative purification tags [4]. It has become possible 

to specifically purify the histidine tagged protein by specific interaction with nickel ions immobilized on the 

resin surface. However, the cost of the resin and the related equipment are the major cost on the industrial 

scale. In recent years, a new purification tag, CspB-tag that do not require resin, have been reported [5–7]. The 

CspB fusion protein has precipitation–redissolution properties in response to the pH of the solution. As a result, 

CspB fusion protein can be purified by simple pH adjustment and solid-liquid separation.  

A certain concentration of salt is often added to the solution for the purpose of preventing nonspecific 

adsorption of the target protein to the purification instrument [8]. In addition, PPC has been reported as a 

method for precipitation and concentration of the proteins using a polymer electrolyte [9,10]. However, 

precipitation does not occur in the presence of salt. On the other hand, it has not been investigated whether the 

pH response of the CspB fusion protein is maintained even in the presence of various additives. 

In this study, I investigated the effect of small additives on pH response of CspB fusion protein. 

 

4.2. Materials and Methods 

Preparation of CspB50TEV-Teriparatide 

CspB50TEV-Teriparatide was expressed same way in Chapter 3, and then the 30 mL of culture supernatant 

was adjusted to pH 5.0 by adding a small amount of HCl to precipitate the CspB50TEV-Teriparatide. The 

sample was then centrifuged at 10,000 g for 5 min to pellet the precipitate. After the supernatant was removed, 
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the precipitate was redissolved by adding an equal volume of a 1.0 M arginine solution (pH 8.0) to supernatant 

as described previously [11]. This pH-driven precipitation–redissolution cycle with arginine was repeated three 

times. The obtained precipitate was finally redissolved to 1.0 mg/mL in 20 mM Tris–HCl buffer (pH 8.0).  

 

Effect of small additives for pH-responsive behavior 

Samples were prepared in which the concentration of CspB50TEV-Teriparatide was 0.5 mg / mL, and the 

concentration of each additive (NaCl, Na2SO4, Arg-HCl, urea, Gdn-HCl) was 0.5 M, respectively. The pH of 

the solution was adjusted to pH 4.0 by adding 2 M HCl to each sample, and then it was held at 25 °C for 1 

hour. Each sample was centrifuged at 10000 g for 5 min, and the supernatant was subjected to 0.22 um filtration. 

The obtained filter permeate was subjected to RP-HPLC, and the concentration of CspB50TEV-Teriparatide 

remaining in the supernatant of each sample was calculated. Based on this concentration, the precipitation ratio 

was calculated by the following calculation formula. The precipitation ratio [%] = (1 - concentration of 

supernatant [mg/mL] / 0.5 [mg/mL]) × 100. 

 

Effect of denaturant for pH-responsive behavior 

Samples were prepared in which the concentration of CspB50TEV-Teriparatide was 0.5 mg / mL, and the 

concentration of each denaturant (urea, Gdn-HCl) was 0-6 M, respectively. And then, far-UV CD spectra at 

each denaturant concentration was obtained. After that, the pH of the solution was adjusted to pH 4.0 by adding 

2 M HCl to each sample, and then it was held at 25 °C for 1 hour. Each sample was centrifuged at 10000 g for 

5 min, and the supernatant was subjected to 0.22 um filtration. The obtained filter permeate was subjected to 

RP-HPLC, and the concentration of CspB50TEV-Teriparatide remaining in the supernatant of each sample 

was calculated. Based on this concentration, the precipitation ratio was calculated. On the other hand, these 

denaturants were removed from samples containing 6 M urea or Gdn-HCl using ultrafiltration membranes 

(molecular weight cut-off : 5 kDa).  These renatured samples were subjected to the measurement of far-UV 

CD spectra. After that, by adding 2 M HCl to each sample and adjusting the pH to 4.0, the precipitation ratio 

was calculated in the same manner as described above. 
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4.3. Results 

Effect of small additives for pH-responsive behavior 

The effect of various additives on pH response of CspB50TEV-Teriparatide was investigated. Various 

additives (NaCl, Na2SO4, Arg-HCl, urea, Gdn-HCl) were added to a final concentration of 0.5 M. Thereafter, 

the pH of the solution was adjusted from 8.5 to 4.0.  The resulting aggregation was precipitated by 

centrifugation, and then the concentration of CspB50TEV-Teriparatide remaining in the centrifugal 

supernatant was quantified by subjecting to RP-HPLC analysis. As a result, no CspB50TEV-Teriparatide was 

detected in the centrifugal supernatant of any sample containing any additive tested. So, it was found that 

CspB50TEV-Teriparatide completely precipitated at pH4.0, even in the presence of each additives (Fig. 4. 1).  

Fig. 4. 1. The effect of various additives on precipitation ratio of CspB50TEV-Teriparatide 

 

Effect of denaturant for pH-responsive behavior 

Next, by adding urea and Gdn-HCl known as a protein denaturant to a final concentration of 6 M, the 

relationship between pH response behavior and secondary structure of CspB50TEV-Teriparatide was 

investigated. As a result, in the addition of urea, the precipitation ratio decreased at 3 M, and it appeared that 

the pH response of CspB50TEV-Teriparatide was lost because no precipitate was formed at 4 M or more (Fig. 

4. 2A). On the other hand, the results from the far-UV CD spectra, the secondary structure was lost as the urea 

concentration became higher, and almost the same CD spectrum was observed at 4 M or more (Fig. 4. 2C). A 

similar trend was observed when plotting 222 nm meaning the presence of α-helix (Fig. 4. 2E). Similarly, in 
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the addition of Gdn-HCl, the precipitation ratio decreased at 1 M, and it appeared that the pH response of 

CspB50TEV-Teriparatide was lost because no precipitate was formed at 4 M or more (Fig. 4. 2B). On the 

other hand, the far-UV CD spectra were significantly different in the presence of 1 M Gdn-HCl and the absence 

condition. The secondary structure was lost as the Gdn-HCl concentration became higher, and almost the same 

CD spectra was observed at 4 M or more (Fig. 4. 2D). A similar trend was observed when plotting 222 nm 

meaning the presence of α-helix (Fig. 4. 2F). In both denaturant treatment, pH response was lost at 4 M or 

more and at the same time the secondary structure was also disappeared. However, for urea and Gdn-HCl, the 

CD spectra at each denaturant concentration and the plot at 222 nm were significantly different. 

 

 

Fig. 4. 2. Effect of denaturant for pH-responsive behavior of CspB50TEV-Teriparatide. (A, B) Precipitation 

ratio at pH4.0 in the presence of urea and Gdn-HCl, respectively. (C, D) Far-UV CD spectra at pH8.0 in the 

presence of urea and Gdn-HCl, respectively. (E, F) Plot at 222nm of far-UV-CD spectra at pH8.0 in the 

presence of urea and Gdn-HCl, respectively. 

 

Next, it was investigated whether the pH response was restored by removing the denaturant by buffer 

exchange from denatured CspB50TEV-Teriparatide with 6 M Urea or Gdn-HCl. As a result, CspB50TEV-
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Teriparatide in the renatured sample completely precipitated at pH 4.0 and pH response was restored. The 

secondary structure, which had been greatly reduced in the presence of 6 M denaturant, showed a similar CD 

spectra with original CspB50TEV-Teriparatide (Fig. 4. 3). 

 

Fig. 4. 3. Comparison of pH-responsive behavior of original, denatured and renatured CspB50TEV-

Teriparatide. (A, B) Precipitation ratio at pH4.0 of the original (0 M), denatured (6.0 M) and renatured (6.0 to 

0 M) CspB50TEV-Teriparatide by urea and Gdn-HCl, respectively. (C, D) Far-UV CD spectra at pH8.0 of the 

original (0 M), denatured (6.0 M) and renatured (6.0 to 0 M) CspB50TEV-Teriparatide by urea and Gdn-HCl, 

respectively. 

 

4.4. Discussion 

For several additives that could coexist in the purification process, I examined the effect of CspB fusion 

protein on pH response. It was found that the pHresponse of the CspB fusion protein was not lost even in the 

presence of 0.5 M in the additives tested this time, so stable pH response was obtained. From the study using 
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a denaturant, the secondary structure and the pH response was lost under the high denaturant concentration. It 

was suggested that a specific secondary structure derived from CspB-tag is necessary to express the pH 

response. The pH response was restored after removal of the denaturant and its secondary structure also showed 

a far-UV CD spectra similar to the original one, suggests the importance of the specific secondary structure of 

CspB-tag. 

It is interesting to show different far-UV CD spectra when urea and Gdn-HCl are used as denaturant. 

Especially in the presence of relatively low denaturant concentration of 1 to 3 M, CD spectra are largely 

different, showing own properties of each additive more than the denaturation effect, for example, as a salt of 

Gdn-HCl. By observing the pH response, secondary and tertiary structure in the presence of additives other 

than tested in this report, it is possible to elucidate the pH responsive mechanism of CspB-tag and become a 

more versatile technique.  

 

4.5. Conclusion 

Various salts that may be present in the purification process did not inhibit the pH response of the CspB 

fusion protein. The secondary structure is important to express pH response, and removal of the denaturant 

restored the lost secondary structure and pH response. From the results, it was found that purification of CspB 

fusion protein by precipitation–redissolution utilizing pH response can be stably performed. 
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Chapter 5. 

General discussion 

 

Protein is a useful material owing to its functionality. Notably, the pharmaceutical application of protein is 

promised field. However, the complexity and high cost of purification process of protein is still an issue. In 

this thesis, I provide the knowledge of purification tag as the method of purifying the pharmaceutical protein. 

In this section, the overview, perspective and future study of this thesis are described. 

 The thermally responsive ELP-tag is known as a purification tag not requiring chromatography. I was able 

to develop a new pH-responsive CspB-tag as a first alternative of ELP-tag. It is known that native CspB forms 

an S-layer by self-organization, and covering the cell surface of microorganisms. It is quite interesting to be 

able to develop purification tags with pH response by using partial fragments of CspB. That is, it was suggested 

that it is possible to develop new purification tags from the protein which forms structures in nature, such as 

proteins of viral envelope or fragments thereof. Based on these points of view, it is expected that the research 

field of purification tags that become insoluble and solubilized in response to environmental changes will 

become more active.  

Using the CspB fusion protein as a raw material, it was shown that the target protein can be obtained non-

chromatographically through enzyme cleavage process. On the other hand, in the enzyme cleavage process, 

pretreatment with high concentration urea was necessary to improve cleavage efficiency. It is considered that 

the TEV sequence recognized by the cleavage enzyme was exposed by relaxing the structure of the entire 

CspB fusion protein. Likewise, it is conceivable that the structure of the target protein is relaxed, and the 

essential secondary structure and tertiary structure may be lost. In this report, a fusion protein (CspB50TEV-

Teriparatide) linked with CspB-tag, TEV sequence and target protein is used, but add a flexible linker (e.g. 10 

residues of Glycine) behind the CspB-tag sequence, it is thought that the TEV sequence will be exposed 

without urea pretreatment. As a result, it can be considered that it can be applied as a method for producing 

various proteins in which secondary structure or tertiary structure plays an important role. 



 

47 

The mechanism of pH responsiveness of CspB-tag developed this time has not been elucidated at the moment. 

Since it responds to pH change, it is considered to be related to the charge state of the amino acids of the CspB-

tag. High concentration electrolytes (i.e. salts) were added to the solution for the purpose of inhibiting such 

interaction due to charging, but pH response of the CspB fusion protein was not lost. On the other hand, the 

CspB fusion protein denatured by denaturant lost pH response. I hope that by clarifying changes in secondary 

structure, tertiary structure, association state and pH responsiveness in the presence of various additives, I can 

gradually elucidate the mechanism concerning pH response of CspB-tag.  
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Chapter 6. 

General Conclusion 

This thesis investigated the development of a new purification tag for protein purification. Chapter 2 

describes a newly developed CspB-tag which insolubilizes-solubilizes in response to pH. In conclusion, CspB 

fragment was investigated as a pH-responsive tag for proinsulin, Teriparatide, and Bivalirudin. The advantages 

of the CspB tag are (i) full reversibility of the aggregated-state protein, (ii) pH responsivity centered around 

neutral pH, (iii) sharp pH responsivity within 0.5 pH units, (iv) versatility of application to pharmaceutical 

proteins at various pH values, and (v) utilization by a simple concentration method. Chapter 3 describes 

development of production process for pharmaceutical protein using CspB-tag. Here, I developed a novel 

purification system for Teriparatide involving the expression of the protein with a pH-responsive CspB tag by 

C. glutamicum, an isolation of the CspB fusion protein, an enzymatic digestion of the CspB tag, and a final 

purification of the target protein from the digested components. Chapter 4 describes an effect of small additive 

on the pH response behavior of CspB fusion protein. I hope that by clarifying changes in secondary structure, 

tertiary structure, association state and pH responsiveness in the presence of various additives, I can gradually 

elucidate the mechanism concerning pH response of CspB-tag. I believe that the pH-dependent reversible 

precipitation–redissolution response can be used for the purification of various proteins. And the advantage of 

this non-chromatographic protein-purification method is its simplicity at the precipitation–redissolution cycles 

are actuated by adjusting the pH. Moreover, there is potential for this protocol to be broadly applied for protein 

preparation on laboratory and industrial scales. 
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