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Chapter	1	General	Introduction	

 

1.1	Protein	aggregation	processes	

Proteins undergo diverse states depending on the chemical and physical environment. Protein aggregation is 

an important process in pathology [1], pharmaceutics [2], bioengineering [3], and food engineering [4]. 

Intracellular protein aggregation is related to quality control and disease [5, 6]. For example, transient 

appearance of aggresomes in cytoplasm protects proteins against harsh environments [7]. Beside, aggregates 

of fragments of amyloid β, α-synuclein, and proteins produced by the FUS gene are known to cause 

Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, respectively [8]. Not only is 

protein aggregation related to disease, it is also relevant to industry. Protein aggregation is often observed 

during purification and processing in vitro. As a result, there is abundant and diverse research on the control 

of protein aggregation [9, 10]. 

Protein aggregation is a complicated phenomenon compared to small molecules and simple colloids. 

Since proteins are polypeptides composed of 20 kinds of amino acids, the aggregation reaction is driven by 

complex interactions derived from various chemical structures, such as hydrogen bonds of the molecular 

backbone or electrostatic and hydrophobic interactions between side chains. There are inherent problems in 

proteins because (i) each protein forms a unique three-dimensional structure with charge and hydrophobicity 

on the surface [11]; (ii) the three-dimensional structure takes various states with significantly different 

aggregation tendencies, such as a native, unfolded, and oligomeric states [12]; (iii) degradation occurs due to 

chemical modification that results in molecular species with various aggregation tendencies [13]; and 

(iv) various types of aggregates are formed due to complex intermolecular interactions [14, 15].  

Protein aggregation is characterized by complex chain reactions and state changes. However, 

experimental protein aggregation behavior is similar regardless of the type of protein and physicochemical 

stress [16]. Protein aggregation generally involves a process in which protein unfolds to expose hydrophobic 

regions inside the molecules, then forms small aggregates as nuclei that grow into large aggregates and form 

networks [17]. Various interactions contribute to the stabilization of protein structure, including intermolecular 

hydrogen bonding, hydrophobic interactions, and salt bridges [18]. Protein unfolding can be explained by a 
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two-state equilibrium model of native and unfolded states that determines the structural stability as the Gibbs 

free energy difference [19]. Aggregates are formed by irreversible hydrophobic interactions and disulfide 

bonds between unfolded proteins [20, 21]. The size of the aggregate ranges from soluble particles with tens of 

nanometer to dispersed particles with hundreds of nanometers to insoluble precipitates with several 

millimeters [22]. 

The understanding of protein aggregation started at the end of the 19th century [23]. Currently, protein 

aggregation has developed into a crucial field in bioengineering and disease research. Our fundamental 

understanding of molecular mechanisms and control methods has been elucidated using a system comprising 

a single protein. However, in real biological environments, numerous types of protein with different molecular 

weights, isoelectric points, unfolding temperatures, and content coexist. 

 

 

1.2	Protein	aggregation	in	heterogeneous	environments	

Most proteins coexist in various microenvironments and intracellular compartments through protein–protein 

interactions and the formation of protein complexes [24]. Therefore, it is essential that the aggregation 

properties of a specific protein affect the aggregation processes of other proteins in its vicinity. 

Amyloid plaques have revealed the co-localization of complex composition proteins to the amyloid 

structure [25, 26]. The nuclei of the amyloid structure induce cross-seeding and coaggregation with other 

globular proteins during its growth [27]. The onset of amyloid coaggregation is dependent on amyloid-prone 

intermediate species of the participating proteins [28]. Several reports have shown that the amyloid structure 

induces an aggregation process involving other globular proteins and amino acids [29]. Interestingly, both 

Alzheimer’s disease and Huntington’s disease have been observed in the same patient [30]. In recent 

clinicopathological studies, the coexistence of Huntington’s disease and amyotrophic lateral sclerosis within 

patients has been reported [31]. Although amyloid diseases are associated with the aggregation of various 

proteins or peptides, the heterogeneous component entities of amyloid plaques and inclusions remain unclear. 

Besides pathology, coaggregation of proteins is of interest in food engineering. Foodstuffs such as 

casein [32], whey [33], muscle [34], soy [35], and egg white, which are important protein sources in the 

modern human diet, are composed of hundreds of proteins. The coaggregation behavior of these constituent 
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proteins has been well studied. In soy proteins, β-conglycinin solubilizes glycinin aggregates by inhibition of 

hydrophobic interactions between surfaces of the aggregates [36]. In whey proteins, β-lactoglobulin facilitates 

the aggregation of α-lactalbumin by inducing the formation of disulfide bonds [37]. 

It has been found that a certain protein can involve other nonspecific proteins during aggregation. 

However, there are few reports on the molecular mechanisms concerning aggregation in terms of the 

characteristics and structural changes of each protein interacting with the heterogeneous proteins. The study 

of aggregation in heterogeneous protein systems has made little progress compared to that in purified protein 

systems. Therefore, it is indispensable to greater understand aggregation in heterogeneous protein systems 

beyond the single system in conventional protein science. 

 

 

1.3	Hen	egg	white	proteins	as	a	model	system	

In the present work, hen egg white protein (EWP) was selected as a convenient heterogeneous model system 

for examining coaggregation. More than 40 kinds of proteins have been identified in hen egg white [38]. 

Ovalbumin is the most abundant protein, accounting for 54% of the dry weight, and is responsible for the 

gelling properties of egg white. Ovalbumin is a globular protein with a denaturation temperature of around 

70°C, a molecular mass of 45.5 kDa, and an isoelectric point of 4.5 [39]. The inside of an ovalbumin molecule 

has four free sulfhydryl groups, making it the only EWP with a free sulfhydryl group [40]. Ovotransferrin is 

one of the most thermolabile proteins and has a denaturation temperature of 55°C. It accounts for 12% of dry 

EWP, has a molecular mass of 76 kDa, an isoelectric point of 6.0, and contains 15 intramolecular disulfide 

bonds [41]. Lysozyme has a high isoelectric point of 11.4, that is a specific basic protein among EWPs. It has 

been well studied as a model protein with a denaturation temperature of 71°C and a molecular mass of 14.3 kDa. 

Due to its high isoelectric point. Lysozyme is known to bind to acidic proteins such as ovalbumin [42] and 

ovotransferrin [43]. Hen egg white also contains minor proteins such as ovomucoid, G2 and G3 ovoglobulin, 

ovomucin, ovostatin, ovoflavoprotein, and avidin [38].  

Hen egg white is a common material in the food industry due to its excellent nutritional value and 

distinctive functional properties [44]. Due to its high protein content, egg white offers diverse functional 

properties for food processing, such as foaming, emulsification, and gelation, which are based on the 
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physicochemical mechanism of protein aggregation. Thermal treatment is the most common physical process 

in food processing. Each protein in egg white can form an aggregate upon heating, the nature of which depends 

on the protein concentration, pH, and ionic strength [45, 46]. The aggregation properties and structural changes 

of EWPs resulting from these factors have been extensively studied in relation to the functional properties of 

egg white products. To optimize the function of the final products of egg whites, it is necessary to understand 

the aggregation process—particularly its heterogeneous protein composition. 

 

 

1.4	Objectives	

This thesis aims to shed light on protein aggregation behavior in a heterogeneous protein system using egg 

whites. Chapter 2 reports the thermal aggregation behavior of whole EWP at a high concentration. Chapter 3 

describes cooperative thermal aggregation in a binary protein system in which two kinds of proteins coexist, 

i.e., coaggregation. Chapter 4 discusses the molecular mechanism of the onset of coaggregation. Lastly, 

Chapters 5 and 6 summarize the thermal aggregation process of heterogeneous proteins compared to an ideal 

protein solution system and describe future prospects. 
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Chapter	 2	 Aggregation	 of	 Heteroproteins	 at	 High	

Concentration	

 

Thermal	aggregation	of	hen	egg	white	proteins	in	the	presence	of	

salts	

 

2.1	Introduction	

Physiologic fluids in living systems are so crowded with biomacromolecules that a significant fraction of the 

intracellular space is not available to other macromolecules [1–3]. This crowded environment is known to 

greatly affect protein stability and aggregation by altering the kinetics and the equilibrium parameters 

compared to dilute solution [4, 5]. The effect of a crowded environment on protein stability has mainly been 

described from an excluded volume perspective, in which a solution contains only one kind of protein with a 

high concentration of inert macromolecules, typically polyethyleneglycol, dextran, or Ficoll as crowders to 

mimic crowded conditions [6, 7]. However, the environment in living systems is, in fact, highly crowded with 

the heterogeneous macromolecules, i.e., proteins, nucleic acids, lipids, and polysaccharides [8]. This 

heterogeneous and highly concentrated condition is also relevant to the food industry [9]. Protein stability and 

aggregation in this crude environment will be investigated by protein biophysics to understand the intrinsic 

behaviors in living organisms. 

The crowded environment affects protein stability and aggregation by specific interactions between 

cosolutes and proteins, as well as the excluded volume effect. The specific effect of cosolutes on protein 

stability has been classically described by Yancey as osmolytic [10]. Such small-molecular-weight cosolutes 

have been extensively investigated with regard to protein aggregation, such as amino acids [11, 12] and their 

derivatives [13], arginine [14–17] and its derivatives [18, 19], and amine compounds [20–22]. These data 

revealed that small organic additives decrease the aggregation rate of protein and increase the solubility of the 

aggregation-prone unfolded protein. The design rule of aggregation suppressors remained obscure: 



 9 

(i) multivalent amines decrease the aggregation rate to suppress chemical modification; (ii) the amino acid 

backbone is an indispensable structure as an additive for heat-induced aggregation; and (iii) the guanidine 

group increases the solubility of aromatic compounds. However, inorganic salts have comparatively simple 

rules in terms of their effect on protein aggregation. For example, the surface tension of various kinds of saline 

describes the thermal aggregation of egg white lysozyme [23].  

The Hofmeister series is a well-known index for additive effects on protein aggregation; the propensity 

of aggregation is as follows [24, 25]: 

CO3
2− > SO4

2− > S2O3
2− > H2PO4

− > F− > Cl− > Br− ≈ NO3
− > I− > ClO4

− > SCN− 

In general, chaotropes (typically SCN− and I−) show the so-called “salting-in” effect that destabilizes protein 

tertiary structure, leading to a decrease in the denaturation temperature. In contrast, kosmotropes (typically 

CO3
2− and SO4

2−) show a “salting-out” effect that stabilizes protein structure [26]. Hofmeister series have been 

applied in various protein industries and research fields for purification and stabilization in fundamental 

research, such as the strength of ionic hydration [27, 28], different density of water molecules [29, 30], and 

accumulation or exclusion of ions from the surface [31, 32]. 

In this study, I have investigated the thermal aggregation of high and low concentrations of hen egg 

white proteins with several types of inorganic salts. The egg white proteins were chosen because of the existing 

protein systems [33]. Egg white from the domestic chicken is one of the most prominent protein source foods. 

The biophysical structure of egg white plays an important role in the functional properties of food, such as 

water-holding, emulsifying, foaming, and gelation due to high protein concentration (100 mg/mL) [34–36]. In 

addition, egg white contains various kinds of proteins with various molecular weights, isoelectric points, and 

concentrations [37–40]. Ovalbumin, with a molecular weight of 45 kDa, is the most abundant protein, 

accounting for half the content of egg white proteins. Ovotransferrin and ovomucoid are the next most 

abundant proteins, with molecular weights of 76 kDa and 28 kDa, respectively. Small amounts of dozens other 

proteins have been identified, although egg white has the favorable property of no lipid content. This type of 

crude condition with heterogeneous proteins is common in daily life. Several papers have been reported about 

the egg white proteins, such as thermal aggregation of egg white proteins [41] and NMR structure of a model 

protein in the presence of egg white as crowding agent [42]. By contrast, this study provides the first attempt 

to understand the biophysical aspects of the aggregation highly concentrated protein with Hofmeister salts. 
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This study provides the first attempt to understand the biophysical aspects of highly concentrated protein 

aggregation with Hofmeister salts.  

 

 

2.2	Materials	and	methods	

Materials	

Sodium thiocyanate (NaSCN), sodium chloride (NaCl), sodium sulfate (Na2SO4), and magnesium chloride 

(MgCl2) were obtained from Wako Pure Chemical Industries Ltd. (Osaka Japan). 2-[4-(2-Hydroxyethyl)-1-

piperazinyl]ethanesulfonic acid (HEPES) was obtained from Nacalai Tesque (Kyoto, Japan). Ficoll 70 with an 

average molecular weight of 70 kDa and egg white ovalbumin (grade V) were obtained from Sigma Chemical 

Co. (St. Louis, MO). 

 

Preparation	of	hen	egg	white	proteins	

Hen egg white proteins were prepared by the following procedure to obtain samples for reproducible 

experiments. Hen egg white protein (EWP) was diluted with an equal volume of distilled water, stirred gently 

with a magnetic stirrer for 1 hour at 4°C, and then dialyzed using a 1000 MW cut-off dialyzed tube against 

distilled water with four changes at 4°C to remove small-molecular-weight compounds and salts. The samples 

were then centrifuged at 10000 × g for 30 min to remove undesirable large aggregates for the spectroscopic 

analysis of the following experiments. It is noted that the protein contents of EWP after the centrifugation is 

almost identical to that of pristine sample. The supernatant was freeze-dried and then used for further 

experiments.  

 

Thermal	aggregation	of	hen	egg	white	proteins	

The freeze-dried EWP was dissolved in 0.5 M sodium salts (NaSCN, NaCl, and Na2SO4), 10 mM MgCl2, and 

20 mM HEPES and adjusted to the appropriate protein concentration at pH 7.4. The small amount of divalent 

ion (MgCl2) was added in all conditions due to the understanding of the structural change of protein under 

physiological condition. Samples in the presence of 150 mg/mL Ficoll 70 containing 1 mg/mL EWP with 

0.5 M sodium salts, 10 mM MgCl2, and 20 mM HEPES were also prepared and adjusted to pH 7.4. Aliquots 
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of 80 μL of the solutions were added to microfuge tubes. The EWP solutions were heated at various 

temperatures for 30 min using a temperature control system (GeneAtlasG; Astec, Fukuoka, Japan). After the 

heat treatment, the samples were stirred with a spatula and centrifuged at 15000 × g for 20 min at 25°C. The 

supernatant concentration of proteins was then analyzed by measuring the absorbance at 280 nm (A) using a 

spectrophotometer (ND-1000, NanoDrop Technologies, Inc., Wilmington, Del, USA). The soluble protein 

concentration (A/A0 × 100) was plotted in the figures; A and A0 show the absorbance of the sample in the 

presence of salt after and before the heat treatment, respectively. 

 

Sodium	dodecyl	sulfate-polyacrylamide	gel	electrophoresis	

The supernatants of the protein solutions after the heat treatment were dissolved in 62.5 mM Tris-HCl (pH 6.8) 

loading buffer containing 2% (w/v) SDS, 5% sucrose, 5% β-mercaptoethanol, and 0.01% bromophenol blue. 

The samples were heated for 5 min in boiling water and then subjected to sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) using a 5% – 20% gradient gel (e-PAGEL, ATTO Co., Tokyo, 

Japan) with a molecular weight marker (Precision Plus Protein Dual Xtra Standards; BIO-RAD, Hercules, CA, 

USA). The gels were then stained using silver nitrate. 

 

 

2.3	Results	

Thermal	aggregation	of	egg	white	proteins	

I investigated the concentration-dependent thermal aggregation of EWP in the presence of the inorganic salts 

NaSCN, NaCl, and Na2SO4. It is noted that NaSCN and Na2SO4 are chaotrope and kosmotrope, respectively, 

with the propensities of salting-in and salting-out at the high salt concentration of 0.5 M. As shown in 

Figure 2.1, high-concentration EWP was easily gelled by heat treatment. The samples of 100 mg/mL EWPs 

without salts were visually similar, with white turbidity, after the heat treatment at 60°C – 90°C (Fig. 2.1A). 

The centrifuged samples were separated from the protein pellet with a clear supernatant in the absence of salts 

(Fig. 2.1B). It should be noted that MgCl2 slightly accelerates the protein aggregation by the heat treatment. 
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Figure 2.1 Gelation of the EWP solution at 100 mg/mL in the absence of sodium salts. (A) After heat treatment 
for 30 min. (B) After centrifugation at 15000 × g for 20 min. 

 

Figure 2.2 shows the concentration of soluble proteins after heat treatment for 30 min at the respective 

temperatures. EWP without salt additive began to aggregate at approximately 55°C at all protein concentrations 

examined (1, 10, and 100 mg/mL). These data were unexpected because highly concentrated proteins are also 

prone to form aggregates due to the increased probability of protein–protein interaction. However, this 

independence of protein concentration implies the possibility that the rate-limiting step of aggregation is an 

unfolding reaction rather than protein–protein interaction, similar to the reaction-limited cluster–cluster 

aggregation of protein [43]. 

The addition of 0.5 M salts to 1 mg/mL EWP led to a change in aggregation temperature (Fig. 2.2A). 

As expected, NaSCN completely inhibited the thermal aggregation of 1 mg/mL EWP even at 90°C. NaCl and 

Na2SO4 resulted in the aggregation of 1 mg/mL EWP above 65°C, and the absorbance decreased to 10% at 

90°C. The starting point temperatures of aggregation increased in the order Na2SO4 ~ NaCl < NaSCN, which 

corresponds to the sequence of these salts in the Hofmeister series. 

The aggregation tendency of 10 mg/mL EWP with the addition of salt (Fig. 2.2B) was different from 

the aggregation tendency of 1 mg/mL EWP, especially with NaSCN. EWP at 10 mg/mL with NaSCN showed 

marked aggregation at 62°C, whereas 1 mg/mL EWP with NaSCN did not aggregate even at 90°C. The 

aggregation temperature of 10 mg/mL EWP with NaCl was decreased by 8°C compared to 1 mg/mL EWP 

Thermal Aggregation of Hen Egg White Proteins to Understand the Crude Condition

Kazuki Iwashita, Naoto Inoue, Akihiro Handa, and Kentaro Shiraki
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with NaCl. However, the results for 10 mg/mL EWP with Na2SO4 were almost identical to the results for 

1 mg/mL EWP with Na2SO4. 

The aggregation curves of 100 mg/mL EWP without salt and with NaCl and Na2SO4 (Fig. 2.2C) were 

similar to the aggregation curves of 10 mg/mL EWP with each salt (Fig. 2.2B). However, the aggregation 

temperature of 100 mg/mL EWP with NaSCN decreased compared to the aggregation temperature for 

10 mg/mL EWP with NaSCN. Interestingly, the start point temperatures of aggregation increased in the order 

NaSCN < NaCl < Na2SO4, which was the inverse sequence of the Hofmeister series. 

The data shown in Figure 2.2 can be summarized as follows. (i) EWP without salt showed the same 

aggregation curves regardless of protein concentration from 1 to 100 mg/mL. (ii) EWP with Na2SO4 showed 

similar aggregation curves regardless of protein concentration from 1 to 100 mg/mL. However, EWP with 

NaSCN showed a decrease in aggregation temperature depending on EWP concentration. (iii) The order of 

aggregation temperatures was Na2SO4 < NaCl < NaSCN at the low concentration (1 mg/mL) of EWP. (iv) In 

contrast, the order of aggregation temperatures was NaSCN < NaCl < Na2SO4 at the high concentration 

(100 mg/mL) of EWP. 

 

 

Figure 2.2 Supernatant protein concentration of EWP after heat treatment. The samples containing 0.5 M NaSCN 
(red), NaCl (green), Na2SO4 (blue), and no additive (black) were heat treated for 30 min at the respective 

temperatures. (A) 1 mg/ mL. (B) 10 mg/mL. (C) 100 mg/mL. 
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Sodium	dodecyl	sulfate-polyacrylamide	gel	electrophoresis	of	egg	white	proteins	

Table 2.1 shows the properties of the major proteins in EWP, ovalbumin (OVA), ovotransferrin (OVT), 

ovomucoid, and lysozyme (LYZ). To determine the aggregation propensities of the individual proteins, I 

performed SDS-PAGE analysis of the EWP after heat treatment. Samples containing 1, 10, and 100 mg/mL 

EWP in 500 mM salts were prepared and subjected to heat treatment for 30 min at different temperatures; the 

samples were then centrifuged and the supernatant analyzed by SDS-PAGE (Fig. 2.3). The bands of OVA, 

OVT, and LYZ were successfully separated at approximately 45, 76, and 14 kDa, respectively. The SDS-PAGE 

patterns of NaSCN samples at 1 mg/mL EWP did not change even at 90°C for 30 min, while the bands of OVA 

and OVT in the NaCl and Na2SO4 samples decreased with increasing temperature of the heat treatment. To 

more clearly see this behavior, the aggregation temperatures of OVA, OVT, and LYZ in 1 mg/mL EWP 

appeared to be in the order Na2SO4 ~ NaCl < NaSCN (Table 2.2). EWP at 10 mg/mL sample in the presence 

of NaSCN decreased the all bands, which was similar pattern to the presence of NaCl and Na2SO4. Further 

increasing concentration of EWP (100 mg/mL) in the presence of NaSCN decreased the overall bands 

comparing to Na2SO4 and NaCl. The aggregation temperatures of OVA, OVT, and LYZ in 10 and 100 mg/mL 

EWP were in the order NaSCN < NaCl < Na2SO4 (Table 2.2). These data can be summarized as follows: the 

low concentration of EWP was aggregated by the kosmotrope, while the high concentration of EWP was 

aggregated by the chaotrope, regardless of the kind of protein in EWP. 

 

 

 

 

Table 2.1 Major proteins of EWP 

Protein % of 
egg white proteina Isoelectric pointa ,b, c Molecular weight 

(kDa)a, b, c 
Denaturation temperature 

(°C) a 

Ovalbumin (OVA) 54.0 4.5 (5.19) 45.0 (42.9) 84.0 

Ovotransferrin (OVT) 12.0 6.1 (6.30) 76.0 (77.8) 61.0 

Ovomucoid 11.0 4.1 [4.82] 28.0 [20.0] 79.0 

Lysozyme (LYZ) 3.4 10.7 14.3 75.0 

aData are from Qinchun Rao [44]. 
bData shown in parentheses are from Ning Qiu [40]. 
cData shown in square brackets are from Catherine Guérin-Dubiard [9]. 
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Figure 2.3 SDS-PAGE analyses of heat-induced aggregation of EWP with 0.5 M sodium salts. (A) 1 mg/mL. 
(B) 10 mg/mL. (C) 100 mg/mL. The numbers in the figures show the temperature of heat treatment (°C). OVT, 
OVA, and LYZ indicate ovotransferrin, ovalbumin, and lysozyme, respectively. 

 

 

Table 2.2 Apparent order of the thermal aggregation propensity analyzed by SDS-PAGE 

Protein 1 mg/mL 10 mg/mL 100 mg/mL 

OVT Na2SO4 ~ NaCl < NaSCN NaSCN ~ NaCl < Na2SO4 NaSCN < NaCl < Na2SO4 

OVA Na2SO4 ~ NaCl < NaSCN NaSCN < NaCl < Na2SO4 NaSCN < NaCl < Na2SO4 

LYZ Na2SO4 ~ NaCl < NaSCN NaSCN < NaCl < Na2SO4 NaSCN < NaCl < Na2SO4 
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Excluded	volume	effect	of	Ficoll	70	

The concentration-dependent behavior of the thermal aggregation of EWP by salts was investigated from the 

perspective of the excluded volume effect. Ficoll 70 has been used as a hydrophilic polysaccharide for its 

excluded volume effect with the non-specific steric repulsion of protein molecules [45, 46]. Samples 

containing 1 mg/mL EWP with 150 mg/mL Ficoll 70 in the presence or absence of salts were prepared and 

heated for 30 min. Figure 2.4 shows the supernatant concentration of centrifuged protein solutions after the 

heat treatment. The aggregation curve of 1 mg/mL EWP with 150 mg/mL Ficoll 70 without salt (Fig. 2.4) was 

similar to 1 mg/mL EWP without Ficoll 70 and salt (Fig. 2.2A). By contrast, the aggregation curve of 1 mg/mL 

EWP with 150 mg/mL Ficoll 70 with NaSCN (Fig. 2.4) was different from 1 mg/mL EWP without Ficoll 70 

and salt (Fig. 2.2A). Accordingly, Ficoll 70 promoted EWP aggregation in the presence of NaSCN. In the 

presence of NaCl, Ficoll 70 slightly enhanced the aggregation of EWP compared to 1 mg/mL EWP (Figs. 2.2A 

and 2.4). Interestingly, Ficoll 70 did not affect the thermal aggregation profiles of EWP in the presence of 

Na2SO4 (Figs. 2.2A and 2.4). Thus, the excluded volume effect enhanced aggregation only in the presence of 

NaSCN. 

 

Figure 2.4 Supernatant protein concentration of 1 mg/mL EWP with 150 mg/mL Ficoll 70 after heat treatment. 

The samples containing 0.5 M NaSCN (red), NaCl (green), Na2SO4 (blue), and no additive (black) were heat 
treated for 30 min at the respective temperatures. 

 

To clarify the crowding effect, I investigated the thermal aggregation of purified OVA alone. Figure 2.5 

shows the supernatant concentrations of 1 and 100 mg/mL OVA after heat treatment for 30 min at different 

temperatures. The sample of OVA without salt aggregated at 60°C – 70°C. In the presence of NaSCN, 1 mg/mL 
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OVA did not aggregate at 90°C (Fig. 2.5A), which is a similar pattern to the EWP shown in Figure 2A. In 

contrast, 100 mg/mL OVA was prone to form aggregates (Fig. 2.5B), which was different from the patterns in 

the presence of NaCl and Na2SO4. These data support the hypothesis that chaotropes actually promote protein 

aggregation by the excluded volume effect. 

 

 

Figure 2.5 Soluble OVA concentration after heat treatment. The samples containing 0.5 M NaSCN (red), NaCl 
(green), Na2SO4 (blue), and no additive (black) were heat treated for 30 min at the respective temperatures. (A) 
1 mg/mL. (B) 100 mg/mL. 

 

 

2.4	Discussion	

This study was performed to investigate the thermal aggregation of crude EWP at 100 mg/mL in comparison 

to 1 mg/mL in the presence of different types of salts. The results can be summarized as follows. (i) The order 

of the Hofmeister series on thermal aggregation was altered by protein concentration. (ii) The chaotrope 

NaSCN was unexpectedly the most aggregation-prone additive for the high protein concentration. (iii) The 

inverse Hofmeister effect was attributed to the macromolecular excluded volume effect. 

The most interesting finding of this study is the data regarding the effects of NaSCN on the thermal 

aggregation of EWP. NaSCN suppressed thermal aggregation at a low concentration of EWP, but not a high 

concentration (Fig. 2.2). This concentration-dependent aggregation of protein can be discussed in terms of 

cluster-aggregation theory as follows. Thermal aggregation generally occurs with the initial formation of start 
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aggregates with a diameter of approximately 50 nm at the initial stage, followed by the growth of the aggregates 

to large size through association of the start aggregates [43]. This growth of aggregates is classified into 

diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA); the rate-

limiting step of DLCA is the encounter rate of start aggregates, and the rate-limiting step of RLCA is the 

association and reaction rate of start aggregates [47, 48]. In this situation, it is naturally thought that the 

crowded environment decreases the diffusion rate, while at the same time, the crowded environment increases 

the probability of protein-protein interaction [49–51]. Thus, it may be that a chaotrope increases the RLCA-

type aggregation in the crowded environment. 

Finally, it should be noted that the Hofmeister inverse series has been reported for the cloud-point 

temperature of lysozyme [52–54]. At a high concentration of salts above 0.5 M, a kosmotrope increases the 

surface tension of the solution compared to a chaotrope [55], leading to salting-out of protein molecules, which 

is the direct Hofmeister series effect. At a low concentration of salts, anions bind to the positively-charged 

surface of lysozyme, leading to increased solubility regardless of the type of ions, which is the inverse 

Hofmeister series effect. These data show the electrostatic interaction between protein and ions, which affects 

the solubility of the protein. However, our data describe protein-protein interaction with thermally-unfolded 

proteins at high ion concentrations. At a high protein concentration, small aggregates are prone to form further 

aggregates in the presence of a chaotrope, as discussed above. This inverse Hofmeister effect described by 

RLCA-type aggregation will be found for various proteins at high concentration, as similar data were obtained 

for both the crude mixture of EWP (Fig. 2.2) and a model crowded environment with albumin and Ficoll 70 

(Figs. 2.4 and 2.5).  

The thermal aggregation of protein is an important phenomenon in the food industry. However, the 

control of aggregation is difficult even for pure protein in typical biophysical studies. I believe that this study 

provides important information on aggregation in high-concentration protein mixtures. Similar data are not 

expected for biophysical experiments at diluted concentrations of pure protein in vitro. In conclusion, the 

crowded environment unexpectedly increased the probability of protein aggregation in the presence of a 

chaotrope. The thermal aggregation of highly concentrated protein mixtures is a notable issue in both the food 

industry and the intercellular environment. 
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Chapter	 3	 Coaggregation	 of	 Heteroproteins	 in	 a	

Binary	System	

 

3.1	Coaggregation	of	ovotransferrin	and	lysozyme	

 

3.1.1	Introduction	

Hen egg white is an excellent source of high-quality proteins that can be used as ingredients in protein-enriched 

foods [1–3]. Food industrial egg white undergoes many aggregation processing such as heating, alkali 

treatment, and pulsed electric field [4]. Heat pasteurization of raw liquid egg white is required to eliminate 

pathogenic bacteria and reduce the spoilage bacteria, which cause food poisoning in humans. However, due to 

the susceptibility of egg white proteins to aggregation upon heating, the physicochemical properties of proteins 

are perturbed leading to changes in the functional properties of foods, such as gelling and foaming [5]. 

Therefore, control of thermal aggregation is important for pasteurization and processing of egg white [6]. 

The aggregation of egg white proteins has been studied extensively [7, 8]. Thermal aggregation of egg 

white proteins is mediated by disulfide bonds, hydrophobic interactions, and electrostatic interactions [9]. 

Disulfide bonds, which involve crosslinkage of sulfhydryl groups, play a crucial role in stabilizing the gel 

structure [10, 11]. Non-covalent hydrophobic and electrostatic interactions initiate gel network formation after 

the heat-induced denaturation of proteins. The precise measurement of egg white thermal aggregation showed 

a step-wise behavior as a function of temperature [12, 13]. Decreases in protein solubility occur in two steps 

with increasing temperature at around 55°C and 70°C due to denaturation and aggregation of ovotransferrin 

and ovalbumin, respectively, which are the main components of egg white proteins [14].  

The apo- (iron-free) form of ovotransferrin (OVT) is the most thermolabile protein in egg [15]. OVT is 

the second most abundant component accounting for 12% of the total egg white protein with a molecular mass 

of 76 kDa. Therefore, OVT plays a major role in the initiation of egg white protein aggregation. In addition to 

its inherent thermodynamic properties, the thermal aggregation behavior of OVT depends on the presence of 

other proteins. Ovalbumin has an inhibitory effect on the thermal aggregation of OVT by suppressing the 
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interaction between OVT molecules at temperatures higher than the denaturation temperature of OVT but 

lower than that of ovalbumin [16]. Some combinations of proteins have been shown to promote aggregation 

with each other. Specifically, in egg white, OVT tends to aggregate with lysozyme (LYZ) during heating at 

moderate temperatures [17–19]. LYZ is the most alkaline protein in egg white and has high thermal stability. 

It has been reported that the aggregation of OVT with LYZ occurs through electrostatic attraction and disulfide 

bond formation [20]. Although the interactions occurring in coaggregation have been reported, the processes 

underlying coaggregate formation remain unclear. Determination of the coaggregation mechanism of OVT 

and LYZ would provide information central to understand the thermal aggregation of egg white proteins by 

moderate heat treatment for pasteurization. 

Here, I investigated the mechanism of thermal aggregation in an OVT–LYZ binary system in terms of 

protein structures, aggregation rates, aggregation forces, and aggregate morphology. The heat-induced 

interaction between OVT and LYZ is influenced by the presence of salts and the solution pH [20]. Therefore, 

I adopted condition without co-solute at weak basic pH when processing egg white to clarify the fundamental 

tendencies of aggregation. Natural egg white releases dissolved carbon dioxide resulting in an increase in pH 

up to 8.5–9.2 depending on the temperature during storage [21, 22]. Moreover, total protein concentration in 

hen egg white is close to 10%. Thus, the aggregation experiment in this paper was investigated under the 10-

fold diluted condition of pristine egg white proteins. It is worth investigating the aggregation at a diluted 

condition for understanding gelation of egg white, although the crowding effect is involved in the aggregation 

behavior at high protein concentration of the pristine egg white [12]. Establishing the mechanisms to describe 

this will allow control of heat treatment for pasteurization more precisely and facilitate the development of 

food processing methods suitable to obtain the desired product properties. 

 

 

3.1.2	Materials	and	methods	

Materials	

Hen egg white ovotransferrin (iron-free) and lysozyme (six times crystallized and lyophilized) were obtained 

from Sigma Chemical Co. (St. Louis, MO), and were used without further purification. Glycine, Na-phosphate, 

Na-hydroxide, and guanidine hydrochloride were obtained from Wako Pure Chemical Inc. Ltd. (Osaka, Japan). 
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Preparation	and	thermal	treatment	of	hen	egg	white	proteins	

A solution of hen egg white proteins was prepared according to the following procedure at ambient temperature. 

Hen egg white was diluted with an equal volume of 100 mM glycine buffer (pH 9.0), stirred gently with a 

magnetic stirrer for 1 hour, and then dialyzed using a 3000 MW cut-off dialyzed tube against 50 mM glycine 

buffer (pH 9.0) with four changes to remove small-molecular-weight compounds and salts. The samples were 

then centrifuged at 10000 × g for 20 min to remove undesirable large aggregates. The egg white protein 

contents after centrifugation were almost identical to those of the pristine sample. The supernatant diluted 5-

fold with the same buffer was heated at various temperatures for 20 min. The samples were centrifuged at 

15000 × g for 20 min, and then the supernatant was analyzed by electrophoresis. 

 

Preparation	for	thermal	aggregation	of	ovotransferrin	and	lysozyme	mixtures	

Ovotransferrin (OVT) and lysozyme (LYZ) were dissolved individually at 40 μM in 50 mM glycine buffer 

(pH 9.0). The protein concentration was determined by measuring the absorbance at 280 nm based on the 

following extinction coefficients: E280 nm
1% = 12.3 cm–1 for OVT and 26.4 cm–1 for LYZ calculated from those 

amino acid sequences [23]. The following experiments were conducted by mixing these solutions. 

To investigate the aggregation temperature depending on the presence of the opposite protein, a mixture 

of 20 μM OVT and 20 μM LYZ was heated at various temperatures for 30 min. To investigate the aggregation 

rate depending on the co-existing opposite protein concentration, the solutions of 20 μM OVT with 0 – 20 μM 

LYZ, and those of 20 μM LYZ with 0 – 20 μM OVT were heated at 55°C for various periods. To investigate 

the amount of aggregate and morphology depending on the mixing ratio, a mixture of OVT and LYZ with a 

total protein concentration of 40 μM in molar fractions of 0 – 1 was heated at 55°C for various periods. After 

heat treatment, the samples were centrifuged at 15000 × g for 20 min, and then the soluble protein 

concentration in the supernatant was determined by size exclusion chromatography. The sample solution 

before centrifugation was imaged by electron microscopy. 

The affinities of OVT and LYZ were investigated as follows. Individual solutions of 40 μM OVT and 

LYZ were heated at 55°C for 30 min. The sample solutions were diluted 2-fold with buffer solution or mixed 

with the other protein solution at a ratio of 1:1 at room temperature. After 30 min, the samples were centrifuged 

at 15000 × g for 20 min, and then 80% of supernatant was replaced with 50 mM glycine buffer solution 

(pH 9.0). The soluble protein concentration in the supernatant was determined by size exclusion 



 26 

chromatography. These centrifugation and supernatant-exchange processes were repeated three times. Finally, 

the precipitate was suspended in the same amount of buffer solution as before centrifugation. 

 

Determination	of	soluble	protein	concentration	using	size	exclusion	chromatography	

Soluble protein concentration was determined by high-performance liquid chromatography (HPLC) 

(Shimadzu, Kyoto, Japan) using a system consisting of a degasser (DGU-20A3), a pump (LC-10AT), an auto 

injector (SIL-10AXL), a column oven (CTO-10A), a UV–vis detector (SPD-10AV), and a system controller 

(SCL-10Avp) with a size exclusion column (3 μm, 300 mm × 7.8 mm i.d., Yarra SEC 3000; Phenomenex, 

Torrance, CA). Isocratic HPLC was performed with a flow rate of 1.0 mL/min at 30°C using 150 mM Na-

phosphate buffer (pH 7.0). Aliquots of 40 μL of samples were loaded into the column. The absorbance was 

monitored at 280 nm. Three independent experiments were performed to determine soluble protein 

concentration; that was calculated from the chromatogram peak area. 

 

Circular	dichroism	

Circular dichroism (CD) measurements were performed on a spectropolarimeter (J-720W; Japan 

Spectroscopic Co. Ltd., Tokyo, Japan) using a Peltier cell holder with a temperature controller (PTC-348W; 

Japan Spectroscopic Co. Ltd.). A solution of 0.5 mg/mL ovotransferrin (OVT) and lysozyme (LYZ) dissolved 

in 50 mM glycine buffer (pH 9.0) was prepared. The CD spectra of solutions were measured using a 1-mm 

path-length quartz cell for far-UV in the wavelength range of 205 – 250 nm or a 10-mm path-length quartz cell 

for near-UV in the wavelength range of 250 – 320 nm at room temperature. Thermal unfolding of OVT and 

LYZ was monitored by CD intensity change with an increasing temperature rate of 1.0°C/min. 

 

Sodium	dodecyl	sulfate-polyacrylamide	gel	electrophoresis	

The protein solutions were subjected to heat treatment and mixing, and were then mixed with 125 mM Tris-

HCl (pH 6.8) loading buffer solution containing 4% (w/v) sodium dodecyl sulfate (SDS), 10% (w/v) sucrose, 

and 0.01% (w/v) bromophenol blue with or without 10% (v/v) β-mercaptoethanol at a ratio of 1:1. The samples 

were incubated for 24 hours at 25°C and then subjected to SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) using a 5% – 20% gradient gel (e-PAGEL; ATTO Co., Tokyo, Japan) with molecular weight marker 
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(Precision Plus Protein Dual Xtra Standards; Bio-Rad, Hercules, CA). The gels were then stained using 

Coomassie Brilliant Blue R-250. 

 

Imaging	of	aggregates	by	transmission	electron	microscopy	 	

Aliquots of 4 μL of protein solution was placed on a 150-mesh copper grid covered with a carbon-coated 

hydrophilic film, then the grid was dipped into pure water to wash non-adsorbed protein. Subsequently, 

1% (w/v) tungstosilicic acid solution was placed on a grid in order to stain adsorbed aggregates, and then the 

grid was dipped in pure water again. Finally, the grid was dried for a few minutes. The samples were observed 

by transmission electron microscopy (TEM) (H7650; Hitachi, Tokyo, Japan) with an acceleration voltage of 

80 keV. 

 

Imaging	of	aggregates	by	optical	microscopy	

Aliquots of 20 μL of the heated OVT–LYZ mixtures containing 50 mM glycine (pH 9.0) were placed on a 96-

well plate (Costar, Corning Inc., Lowell, MA, USA). The samples were observed using an optical microscope 

(BZ-X710; Keyence, Osaka, Japan). 

 

Measurement	of	ζ-potential	

Samples of 1 mg/mL OVT or LYZ diluted in 50 mM glycine buffer (pH 9.0) were heated at 55°C for 30 min. 

The surface charges of proteins before and after heating were measured at 25°C using a Zetasizer Nano Z 

(Malvern Instruments, Worcestershire, UK). Three runs were performed for each measurement. 

 

GdnHCl	titration	and	stability	curve	data	analysis	

Guanidine hydrochloride (GdnHCl) induced unfolding was described previously [24]. A solution of 0.5 mg/mL 

LYZ containing guanidine hydrochloride (GdnHCl) at various concentrations in 50 mM glycine buffer (pH 

9.0) was prepared. GdnHCl-induced unfolding was monitored by CD at 222 nm using a 1-mm path-length 

quartz cell at 55°C. The conformational free energy change (ΔG) at 55°C was determined by a two-state folding 

mechanism. A two-state unfolding model can assume a linear dependence between ΔG and the denaturant 

concentration as shown in equation, 
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ΔG = ΔGH2O − m[denaturant] 

where m value represents the dependence of the ΔG on denaturant. 

 

 

3.1.3	Results	

Thermal	susceptibility	to	aggregation	of	OVT	and	LYZ	in	egg	white	

First, I clarified the thermal susceptibility of proteins in egg white by SDS-PAGE. Briefly, egg white protein 

dialyzed against 50 mM glycine buffer (pH 9.0) was heated at various temperatures for 20 min. The heated 

samples were analyzed by SDS-PAGE under reducing and non-reducing conditions (Fig. 3.1.1). Under 

reducing conditions, the gel patterns showed clear bands of OVT at 76 kDa, ovalbumin at 45 kDa, and LYZ at 

14 kDa with minor bands of ovoinhibitor and ovoglobulin at approximately 50 kDa under reducing conditions. 

With the exception of these proteins, bands of minor proteins in egg white were not observed under these 

conditions. OVT and LYZ bands were faint in the samples heated at temperatures above 60°C. Even with 

heating to 80°C, there were no changes in the compositions of other proteins. Under non-reducing conditions, 

another band was observed at 90 kDa corresponding to dimeric ovalbumin. The band of aggregates appeared 

in samples heated at 55°C, and those of OVT and LYZ disappeared at 60°C. The bands of ovoinhibitor and 

ovoglobulin became obscure with heating to temperatures above 60°C. At an even higher temperature of 75°C, 

the monomeric ovalbumin band decreased, and a smear band appeared that was assumed to be comprised of 

multimeric ovalbumin. These results indicated that OVT and LYZ were heat-susceptible to aggregation 

compared to the other major egg white proteins, consistent with many previous reports [17, 25, 26]. Liu et al. 

have demonstrated that OVT and LYZ mainly aggregate by heating at above 60°C not 55°C at pH 9 [17, 25]. 

Their results have a slight difference from the results presented here. The differences are derived from 

coexisting low-molecular-weight compounds. They did not remove low-molecular-weight compounds 

originally included in egg white and excessive ions for pH adjustment by dialysis. The protein aggregation 

also depends on pH and salt concentration [12]. The solution used in this study was at weak basic pH, without 

any other salts except for a buffer-agent. Thus, differences in the preparation of egg white proteins can lead to 

different behavior of the aggregation.  
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Figure 3.1.1 SDS-PAGE analyses of heat-induced aggregation of egg white proteins under reducing and non-
reducing conditions. The numbers in the upper part of the figures indicate the temperatures of heat treatment (°C). 
OVT, OVI, OVG, OVA, and LYZ indicate ovotransferrin, ovoinhibitor, ovoglobulin, ovalbumin, and lysozyme, 

respectively. Lane M, Standard molecular weight marker. 

 

Inclusion	of	LYZ	in	aggregates	of	OVT	

To understand the cooperative aggregation between OVT and LYZ, a simple system was prepared using 

purified OVT and LYZ. Three types of samples were prepared (20 μM OVT, 20 μM LYZ, and 20 μM 

OVT + 20 μM LYZ), and heated at various temperatures for 30 min. The supernatant concentrations of OVT 

and LYZ were measured by size exclusion chromatography. Figure 3.1.2 shows the soluble concentrations of 

OVT (Fig. 3.1.2A) and LYZ (Fig. 3.1.2B). OVT formed aggregates at temperatures above 50°C regardless of 

the presence or absence of LYZ, and completely formed aggregates at temperatures of 60°C or higher 

(Fig. 3.1.2A). In contrast, LYZ alone required a temperature higher than 65°C for aggregation. However, LYZ 

formed aggregates in the presence of OVT even at 50°C (Fig. 3.1.2B). The aggregation ability of LYZ was 

remarkably enhanced by the presence of OVT, while that of OVT was not altered by the presence of LYZ as a 

function of temperature. 

Protein unfolding is responsible for the first step of thermal aggregation. Therefore, protein unfolding 

was monitored by circular dichroism spectroscopy (Fig. 3.1.3). The melting temperature of OVT was defined 

as 64.0°C for far-UV and 59.8°C for near-UV, indicating that the tertiary structure monitored by near-UV was 

more susceptible than the secondary structure monitored by far-UV. The melting temperature of LYZ was 

defined as 72.7°C for far-UV and 73.5°C for near-UV. The secondary and tertiary structures of LYZ were 

perturbed at a similar temperature. These data indicated that OVT is partially unfolded by heat treatment, while 
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LYZ retains the native structure at ~55°C. Therefore, the aggregation of LYZ at 50°C – 60°C, as shown in 

Figure 3.1.2B, was suggested to be caused by the unfolding and/or aggregation of OVT. That is, LYZ 

molecules were included in the aggregates of OVT. Therefore, I focused on the coaggregation of OVT and 

LYZ at 55°C for further analyses. 

 

 

Figure 3.1.2 Soluble protein concentration of OVT–LYZ mixture after heating at various temperatures for 30 min. 
(A) Samples contained 20 μM OVT in the presence (closed circles) or absence (open circles) of 20 μM LYZ. 
(B) Samples contained 20 μM LYZ in the presence (closed triangles) or absence (open triangles) of 20 μM OVT. 

 

 

Figure 3.1.3 Thermal unfolding curves of OVT (A) and LYZ (B) monitored by far-UV CD (left axis, solid line) 

and near-UV CD (right axis, broken line). The dotted lines at 55°C indicate the temperature of heat treatment in 
this study. 
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To elucidate the dependence of OVT and LYZ aggregation rate on the opposite protein concentration 

(i.e., LYZ and OVT, respectively), the heat-induced aggregation of protein mixtures was measured by size 

exclusion chromatography. Briefly, solutions containing 20 μM OVT with 0 – 20 μM LYZ, and vice versa, 

were heated at 55°C for various periods. The concentrations of the soluble protein are plotted in Figure 3.1.4. 

OVT was prone to form aggregates without LYZ; 52% of OVT molecules formed aggregates during heating 

for 30 min (Fig. 3.1.4A). With increasing concentration of LYZ, the aggregation rate of OVT increased for the 

initial several min. This tendency suggested that the unfolded but not yet aggregated OVT molecules were 

promoted to undergo aggregation by the interaction with native LYZ molecules. Soluble OVT concentration 

decreased by 61% when mixed with an equimolar amount of LYZ after heating for 30 min. On the other hand, 

LYZ did not form aggregates by heat treatment at 55°C for 30 min. However, LYZ was prone to form 

aggregates depending on the increase in OVT concentration (Fig. 3.1.4B). These data indicate that the 

aggregation of OVT and LYZ affected each other. Based on these results, it is important to track the time course 

of changes in protein concentration during heating to gain an understanding of the overall picture of the 

phenomenon. 

 

Figure 3.1.4 Soluble protein concentration of OVT–LYZ mixture after heating at 55°C for various periods. (A) 

Samples contained 20 μM OVT and 0 (closed circles), 10 (closed squares), or 20 (closed triangles) μM LYZ. (B) 
Samples contained 20 μM LYZ and 0 (open circles), 10 (open squares), or 20 (open triangles) μM OVT. 

 

Subsequently, I investigated the protein compositions of OVT and LYZ for collaborative aggregation. 

Briefly, mixtures of OVT and LYZ with a total protein concentration of 40 μM in molar ratios of 2:8, 4:6, 5:5, 

6:4, and 8:2 were heated at 55°C for various periods, and the residual soluble protein concentration was then 
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determined by size exclusion chromatography (Fig. 3.1.5). The amount of aggregate was calculated from the 

difference between initial and residual soluble concentrations after heating. Figure 3.1.5A shows the profiles 

of the samples [OVT:LYZ = 2:8] of soluble LYZ, aggregated LYZ, aggregated OVT, and soluble OVT during 

heat treatment. The amount of aggregated LYZ increased during heat treatment, while that of soluble LYZ 

decreased. Similarly, the amount of aggregated OVT increased during heat treatment, while the amount of 

soluble OVT decreased. The amount of OVT aggregate increased with increasing fraction of OVT, and the 

profiles were similar at all mixing ratios of the samples from [OVT:LYZ = 2:8] to [OVT:LYZ = 8:2]. In 

contrast, the amount of LYZ aggregate increased proportionally with the OVT fraction. The aggregated ratio 

of OVT and LYZ was constantly 5:6 throughout heating at mixing molar ratios from [OVT:LYZ = 2:8] to 

[OVT:LYZ = 6:4] (Figs. 3.1.5A – 3.1.5D). The sample of [OVT:LYZ = 8:2] was depleted of soluble LYZ 

during heating, and then OVT alone formed aggregates (Fig. 3.1.5E). The amount of aggregated LYZ was 

dependent on the amount of aggregated OVT.  

 

Figure 3.1.5 Time course of changes in protein composition in OVT–LYZ coaggregation at 55°C with various 
mixture ratios. Mixtures of OVT and LYZ with total protein concentration of 40 μM in molar ratios of 2:8 (A), 
4:6 (B), 5:5 (C), 6:4 (D), and 8:2 (E) were heated at 55°C for various periods. 
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To summarize these results, coaggregation of OVT and LYZ occurs with thermal unfolded OVT as a 

trigger. OVT forms aggregate spontaneously at 55°C, which is accelerated with increasing LYZ concentration. 

In contrast, LYZ is passively aggregated by inclusion in OVT aggregates. Before depletion of soluble LYZ, 

the coaggregation reaction occurs uniformly throughout the heating process regardless of the initial mixing 

molar ratio. 

 

Morphology	of	coaggregates	of	OVT	and	LYZ	

The morphology of protein aggregates is thought to depend on the aggregated protein composition. Mixtures 

of OVT and LYZ with a total protein concentration of 40 μM in various mixing molar ratios were heated at 

55°C for 30 min, and the morphologies of the aggregates were then imaged by optical microscopy (Fig. 3.1.6) 

and TEM (inset in Fig. 3.1.6). No aggregate observed in the samples of LYZ alone (Fig. 3.1.6A) and OVT 

alone (Fig. 3.1.6K). OVT and LYZ have negative and positive charges, respectively, at pH 9. Thus, the sample 

of OVT and LYZ alone did not form large aggregates due to the electrostatic repulsion (Figs. 3.1.6A and 

3.1.6K). 

In contrast, the samples of OVT–LYZ mixtures formed aggregates in all mixture ratios. The aggregates 

have a hierarchical structure with a macroscopic network observed by optical microscope composed of 

submicron colloids with a microscopic network observed by TEM. More specifically, the network structures 

of the aggregates differed according to the mixing ratio. The aggregates in [OVT:LYZ = 1:9] to 

[OVT:LYZ = 7:3] showed a similar micro-network structure composed of small submicron colloids 

(Figs. 3.1.6B – 3.1.6H inset). The colloids in [OVT:LYZ = 1:9] to [OVT:LYZ = 7:3] formed a coarse macro-

network structure (Figs. 3.1.6B – 3.1.6G). Although the submicron colloids in [OVT:LYZ = 7:3] showed a 

micro-network structure, the aggregates were dispersed macroscopically (Fig. 3.1.6H). The aggregates of 

[OVT:LYZ = 8:2] was similar to that of [OVT:LYZ = 7:3] (Fig. 3.1.6I). The aggregates of [OVT:LYZ = 9:1] 

decreased comparing to that of [OVT:LYZ = 8:2] (Fig. 3.1.6J). The difference of the aggregate structure results 

from the electrostatic repulsion between small colloids. The insufficient amount of positively LYZ against 

negatively OVT in the solution increases the proportion of OVT in the coaggregates, leading to the inhibition 

of large network due to the electrostatic repulsion between negatively-charged colloids. 
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Figure 3.1.6 Morphology of OVT–LYZ aggregates by optical microscopy and TEM (inset). Mixtures of OVT and 
LYZ with total protein concentration of 40 μM in molar ratios of 0:10 (A), 1:9 (B), 2:8 (C), 3:4 (D), 4:6 (E), 5:5 (F), 
6:4 (G), 7:3 (H), 8:2 (I), 9:1 (J), and 10:0 (K) were heated at 55°C for 30 min. The scale bars represent 100 μm for 
optical microscopy and 2 μm for TEM image. 

 

 

Association	of	native	LYZ	with	OVT	aggregates	

To evaluate the association of OVT and LYZ during the growth of coaggregates, I prepared proteins in both 

native and heated states and analyzed the affinity between native OVT (nOVT), native LYZ (nLYZ), heated 

OVT (hOVT), and heated LYZ (hLYZ). Briefly, solutions of 40 μM OVT and LYZ were individually heated 

at 55°C for 30 min. Subsequently, the native or heated OVT and LYZ solutions were mixed with each other at 

a ratio of 1:1 at 25°C. In addition, nOVT and nLYZ were mixed and then heated at 55°C for 30 min, which 

was designated as “co-hOVT–LYZ.” Then, soluble proteins in the samples were analyzed by size exclusion 

chromatography (Fig. 3.1.7 A).  

2 μm2 μm

100 μm100 μm

A C D

E F G H

I J

B

K

A C D

E F G H

I J

B

K

OVT : LYZ
= 0 : 10
OVT : LYZ
= 0 : 10

2 : 82 : 8 3 : 73 : 7

4 : 64 : 6 5 : 55 : 5 6 : 46 : 4 7 : 37 : 3

8 : 28 : 2 9 : 19 : 1

1 : 91 : 9

10 : 010 : 0



 35 

 

Figure 3.1.7 Size exclusion chromatograms (A) and soluble protein concentrations (B) of the supernatants of 

OVT–LYZ mixtures. nOVT, native OVT. hOVT, OVT heated at 55°C for 30 min nLYZ, native LYZ. hLYZ, LYZ 
heated at 55°C for 30 min. The + symbols indicate mixtures of native protein or heat-treated protein. “co-hOVT–
LYZ” indicates the sample in which nOVT and nLYZ mixture was heated at 55°C for 30 min. 

 

 

Figure 3.1.8 Circular dichroism spectra. Samples of OVT (A and B) and LYZ (C and D) were heated at 55°C for 
30 min. The protein structure was monitored by far-UV (A and C) and near-UV (B and D) before (solid lines) and 
after (broken lines) heating. 

A B

-10

-5

0

5

10

[θ
 ] (

de
g 

cm
²/d

m
ol

)

320300280260

Wavelength (nm)

D LYZ
Near-UV

-60

-40

-20

0

[θ
 ]×

10
¯³

 (d
eg

 c
m
²/d

m
ol

)

250240230220210

Wavelength (nm)

C LYZ
Far-UV

-15

-10

-5

0

5

10

[θ
 ] (

de
g 

cm
²/d

m
ol

)

320300280260

Wavelength (nm)

B OVT
Near-UV

-80

-60

-40

-20

0

[θ
 ]×

10
¯³

 (d
eg

 c
m
²/d

m
ol

)

250240230220210

Wavelength (nm)

A OVT
Far-UV



 36 

The sample of nOVT showed two peaks at elution times of around 8 min and 9 min, which corresponded 

to dimer and monomer, respectively. In contrast, the sample of hOVT showed a further peak at around 6 min 

corresponding to soluble aggregates. Circular dichroism spectroscopy showed that hOVT had a partially 

denatured conformation (Figs. 3.1.8A and 3.1.8B). Thus, the soluble aggregates contained in the sample of 

hOVT were considered to be composed of denatured OVT. The sample of nLYZ showed only one peak at 

12 min as a monomeric form. On the other hand, the peak of hLYZ on the chromatogram was identical to that 

of nLYZ. Circular dichroism spectra indicated that LYZ retained the native three-dimensional structure even 

after heating at 55°C (Figs. 3.1.8C and 3.1.8D). 

The peaks of “nOVT + nLYZ” and “nOVT + hLYZ” samples on the chromatogram showed the addition 

of those of nOVT and nLYZ or nOVT and hLYZ, respectively. These results indicated that native OVT did not 

interact with LYZ. In contrast, the “hOVT + nLYZ” and “hOVT + hLYZ” samples showed two peaks of 

monomeric OVT and LYZ, rather than the soluble aggregates of hOVT. The native LYZ peak area of 

“hOVT + hLYZ” was simultaneously lower than that of “nOVT + hLYZ.” These results suggest that the 

soluble aggregates of OVT formed insoluble precipitates with LYZ molecules. Note that the chromatograms 

of “co-hOVT–LYZ” showed two peaks of monomeric OVT and LYZ, which was similar to the sample of 

“hOVT + hLYZ.” 

For quantitative comparison, I calculated the protein concentrations from the chromatograms 

(Fig. 3.1.7B). After heat treatment, the concentration of soluble OVT decreased to 40%, while that of LYZ 

remained at 100%. The soluble protein concentrations of OVT and LYZ in “nOVT + nLYZ” and 

“nOVT + hLYZ” samples remained constant corresponding to the control samples. On the other hand, the 

soluble LYZ concentrations in “hOVT + nLYZ” and “hOVT + hLYZ” samples decreased to 40%, while the 

soluble OVT concentration was identical regardless of nLYZ and hLYZ. These results indicated that 

monomeric LYZ has affinity for soluble aggregates composed of unfolded OVT rather than native OVT. 

Furthermore, the identical concentrations of soluble OVT and LYZ indicated that the precipitates formed 

in “hOVT + nLYZ” and “hOVT + hLYZ” samples were composed of equimolar amounts of OVT and LYZ. 

Importantly, the ratio of the amount of precipitated LYZ and OVT was not dependent on the mixing ratio in 

the “hOVT + nLYZ” samples (Fig. 3.1.9), indicating that the association reaction of native LYZ onto the 

aggregates of OVT reached saturation. However, the precipitates formed by mixing after heating did not 

correspond to the aggregates formed by co-heating in terms of protein composition, i.e., the coaggregates 
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formed in “co-hOVT–LYZ” samples were composed of OVT and LYZ at a molar ratio of 5:6 as shown in 

Figure 3.1.5. Assuming that the amount of LYZ involved in aggregation of OVT was dependent on the 

accessible surface area of OVT aggregates, due to the lack of possibility for LYZ to come into contact with 

internal OVT molecules, the amount of LYZ contained in the precipitates of the “hOVT + nLYZ” samples was 

less than that in the coaggregates of “co-hOVT–LYZ” samples. 

 

 

Figure 3.1.9 Protein compositions in “hOVT + nLYZ” samples at various mixture ratios. The soluble protein 
concentration was determined by size exclusion chromatography. The amounts of aggregates were calculated from 

the difference between initial and residual soluble concentrations after heating. 

 

 

Neutralization	of	surface	charge	of	OVT	aggregates	with	LYZ	

As electrostatic interaction between OVT and LYZ is thought to play an important role in coaggregation, I 

investigated the ζ-potentials of OVT and LYZ in 50 mM glycine buffer (pH 9.0) and then examined the 

relationship between the charged state and the aggregation ratio of OVT and LYZ (Table 3.1.1). The ζ-potential 

was –12 mV for nOVT, while that for hOVT was more negative at –16 mV. This difference in ζ-potential 

before and after heating may have been due to thermal unfolding and misfolding during heating and cooling. 

The ζ-potentials of nLYZ and hLYZ showed the same value of +7 mV, indicating that the native structure was 

retained even after heat treatment. 
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Table 3.1.1 ζ-Potentials of OVT and LYZ in 50 mM glycine (pH 9). 

Sample ζ-Potential (mV) 

Native OVT (nOVT) –11.9 ± 0.4 

55°C-heated OVT (hOVT) –16.3 ± 0.3 

Native LYZ (nLYZ) +7.1 ± 0.3 

55°C-heated LYZ (hLYZ) +7.0 ± 0.6 

 

 

To evaluate the contribution of electrostatic interaction between OVT and LYZ to coaggregation, it is 

reasonable to compare the ζ-potentials of unfolded OVT and native LYZ. The absolute value of the ζ-potential 

of nLYZ was less than half that of hOVT (Table 3.1.1). The soluble protein concentration as shown in 

Figure 3.1.7B indicated that the coaggregates in the “co-hOVT–LYZ” sample and the precipitates in the 

“hOVT + nLYZ” and “hOVT + hLYZ” samples consisted of OVT and LYZ at molar ratios of 5:6 and 5:5, 

respectively. These results suggested that the net charges of the coaggregates and precipitates were negative. 

Nevertheless, LYZ molecules included in the coaggregates were sufficient to suppress the electrostatic 

repulsion between OVT soluble aggregates due to neutralization of charge on the surface. That is, LYZ 

molecules decreased the colloidal stability of the OVT soluble aggregates, leading to growth into large 

precipitates by hydrophobic attraction. Therefore, the interaction of native LYZ with OVT aggregates is 

thought to facilitate the formation of their insoluble aggregates. 

 

Non-covalent	and	covalent	bonding	between	native	LYZ	and	aggregated	OVT	

Disulfide bond exchange is generally one of the most important reactions in the thermal aggregates of proteins. 

To investigate the disulfide bond exchange reaction, I performed SDS-PAGE analyses of reduced or non-

reduced samples of OVT–LYZ aggregates (Fig. 3.1.10). Solutions of nOVT, hOVT, nLYZ, and hLYZ were 

loaded as controls. Under reducing conditions, nOVT and hOVT solutions showed a clear band corresponding 

to monomer with numerous smaller molecular weight bands. As these minor bands were not observed in 

pristine egg white proteins, it was assumed that they were derived from peptide fragments of OVT. Under non-

reducing conditions, the aggregates were observed in hOVT in addition to the monomer, which corresponded 

to the results of size exclusion chromatography (Fig. 3.1.7A). These results indicated that OVT soluble 
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aggregates were formed by covalent bonds. The nLYZ and hLYZ solutions showed a monomer band under 

reducing and non-reducing conditions. 

 

 

Figure 3.1.10 SDS-PAGE analysis of precipitate formed in OVT–LYZ mixtures. The entire solutions of nOVT 

(Lane 1), hOVT (Lane 2), nLYZ (Lane 3), and hLYZ (Lane 4) were loaded as controls. The precipitates of 
“hOVT + nLYZ” (Lane 7), “hOVT + hLYZ” (Lane 8), and “co-hOVT–LYZ” (Lane 9) were washed and then 
loaded on the gel. Lane M, Standard molecular weight marker. 

 

The precipitates of the samples of “hOVT + nLYZ,” “hOVT + hLYZ,” and “co-hOVT–LYZ” were 

analyzed by SDS-PAGE (Fig. 3.1.10). The protein compositions of the precipitates formed in the three samples 

showed similar patterns. No monomeric OVT band was observed in the precipitates under non-reducing 

conditions, caused by the interaction between OVT aggregates and native LYZ for the formation of precipitates. 

The intensities of the LYZ band observed in “hOVT + nLYZ” and “hOVT + hLYZ” were similar under 

reducing and non-reducing conditions, indicating that the soluble aggregates of OVT and monomers of LYZ 

formed precipitates via non-covalent interactions. In contrast, the intensity of the LYZ band in the “co-hOVT–

LYZ” sample was weaker under non-reducing than reducing conditions, indicating that LYZ partially formed 

aggregates via formation of both covalent bonds and non-covalent interactions with unfolded OVT. Therefore, 

intermolecular disulfide bond exchange plays a key role in the interactions involved in the formation of 

insoluble aggregates of “co-hOVT–LYZ” samples during heat treatment. 
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3.1.4	Discussion	

Egg white is a complex mixture containing various kinds of proteins. This heterogeneous mixture of proteins 

is common in foods. Protein aggregation increases in complexity with increasing heterogeneity of protein 

composition. The results presented here suggest the coaggregation of OVT and LYZ with heating at low 

temperatures for pasteurization. 

 

Initiation	of	OVT–LYZ	coaggregation	by	aggregation	of	OVT	

The simple process of thermal aggregation of a protein generally follows three steps: the initial unfolding, the 

formation of aggregates via hydrophobic interactions, and crosslinking between aggregates through disulfide 

exchange reaction [2]. The coaggregation of egg white proteins is thought to be initiated by OVT aggregates 

according to the above process. OVT was unfolded into the molten globule state by heat treatment at 55°C, 

which perturbed the tertiary structure, resulting in the formation of soluble aggregates [27]. However, 

Matsudomi et al. reported that OVT did not form aggregates at 65°C at pH 9 [20]. This discrepancy may be 

explained by differences between the experimental methods used in these studies; the aggregates were detected 

only by turbidity measurement rather than chromatography in these previous studies. In contrast, we showed 

here that OVT formed soluble aggregates while the solution remained transparent. The coaggregation was then 

promoted by binding between OVT aggregates and LYZ molecules. 

 

Association	of	native	LYZ	with	OVT	aggregates	

The presence of proteins with the opposite net charge promotes protein–protein interactions, which impacts 

the aggregate networks [28]. The electrostatic interaction between OVT and LYZ plays an important role in 

the coaggregation observed in this study. In fact, the coaggregation of OVT and LYZ in egg white has been 

confirmed only at pH between the isoelectric points of the proteins [17]. The association of proteins with 

opposite net charges via electrostatic interaction, called coacervation, is often seen in extremely low ionic 

strength environments [29]. Positively charged LYZ has reported to undergo coacervation with negatively 

charged proteins, such as ovalbumin, β-lactoglobulin, and bovine serum albumin in the native state [30–32]. 

In addition, protein–poly(amino acid) complexes involve similar aggregative associations mainly by 

electrostatic interactions [33, 34]. These coacervates and aggregative complexes are stabilized mainly by 
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electrostatic attraction under conditions of low ionic strength. Association of ovalbumin and LYZ via non-

covalent interaction is reported in Chapter 4 [35]. Native ovalbumin and native LYZ associate via mainly 

electrostatic attraction; hence, the association is easily inhibited in the presence of 25 mM NaCl. In contrast, 

partially unfolded ovalbumin and native LYZ associate via hydrophobic interaction in addition to electrostatic 

attraction. In the presence study, OVT–LYZ coaggregates are stabilized by an electrostatic attraction and other 

processes, including hydrophobic and covalent interactions. It has been reported that LYZ is not involved in 

thermal aggregation of OVT as ion concentrations increased [20]. The electrostatic interactions between 

proteins are weakened by the electrostatic shielding by the addition of ions [36]. From another perspective, 

coaggregation can be controlled by the choice of solution additives, typically arginine, for thermal aggregation 

of egg white proteins [6]. 

 

Crosslinkage	of	disulfide	bonds	

The sulfhydryl–disulfide exchange reaction occurs between proteins after they come into contact via non-

covalent bonds. A previous study of the coaggregation of ovalbumin and LYZ at 70°C indicated that LYZ 

completely aggregated with equimolar ovalbumin due to crosslinking between disulfide bonds of LYZ and 

sulfhydryl groups of ovalbumin [28]. As LYZ partially unfolded at 70°C, the four intramolecular disulfide 

bonds of LYZ would have a probability of coming into contact with the exposed free sulfhydryl groups of 

unfolded ovalbumin. In contrast, a heating temperature of 55°C was selected in this study, which is markedly 

lower than the melting temperature of LYZ at 73°C (Fig. 3.1.11). The guanidine hydrochloride titration 

experiment showed that the stability (ΔG) of LYZ at 55°C was approximately 20 kJ/mol, indicating that almost 

all of the LYZ molecules retained the native folded state (Fig. 3.1.11 and Table 3.1.2) [37]. However, the one 

disulfide bridge, C6–C127, which combines the C-terminus with the N-terminus, is partially exposed to the 

solvent [38]. Native LYZ associated with the OVT aggregates via electrostatic and hydrophobic interactions 

may crosslink with the aggregates via the C6–C127 disulfide bond. Some LYZ molecules heated with OVT 

were observed to form covalent bonds within the aggregates (Fig. 3.1.10). The formation of disulfide bonds is 

attributed to the aggregate network. However, it was not plausible that a single disulfide bond in the LYZ 

molecule contributed significantly to the structure of the aggregate network. 

The network of protein aggregates and gels formed by thermal treatment exhibits a fractal microstructure 

stiffened with disulfide bonds [39, 40]. This study showed a similar fractal network structure of coaggregates 
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formed by OVT and LYZ (Fig. 3.1.6). LYZ binds to the soluble aggregates of OVT, leading to insolubilization, 

followed by the formation of disulfide bonds of OVT–LYZ aggregates between themselves, which contributes 

to the formation of a rigid network structure. 

 

 

Figure 3.1.11 GdnHCl titration curve of LYZ with 50 mM glycine (pH 9.0) at 55°C. The solid line shows the two-
state theoretical curve of LYZ. 

 

 

Table 3.1.2 ΔG values of LYZ in 50 mM glycine (pH 9.0). 

ΔGH2O at 55°C (kJ/mol) m (kJ/mol/M) [GdnHCl]50% (M) 

20.1 ± 0.7 10.1 ± 0.4 1.98 ± 0.01 

 

 

Coaggregation	process	of	OVT	and	LYZ	

Here, I propose a molecular mechanism of coaggregation between OVT and LYZ considering the results of 

this study (Fig. 3.1.12). The process of coaggregation can be divided into the following steps: (i) unfolding, 

and then aggregation of OVT itself via hydrophobic interactions and disulfide bond formation; (ii) the 

association of native LYZ with the aggregates of OVT via electrostatic and hydrophobic interactions; (iii) the 

insolubilization of the aggregates of OVT with native LYZ due to colloidal instability; (iv) the crosslinking of 

disulfide bonds between adjacent aggregates of OVT, and secondarily across native LYZ and aggregated OVT 

in the inside; and finally (v) growth of the aggregates with a fractal structure. OVT alone formed stable soluble 

-10

-8

-6

-4

-2
[θ

 ]×
10

¯³
 (d

eg
 c

m
²/d

m
ol

)

43210

[GdnHCl] (M)



 43 

aggregates due to the dominance of long-range electrostatic repulsion over short-range attraction [41]. The 

association of LYZ suppressed the electrostatic repulsion between soluble aggregates of OVT leading to 

insolubilization. Since electrostatic interaction is a considerable driving force in the coaggregation, the protein 

composition ratio is thought to be influenced by the protein charge state depended on the solution pH and the 

presence of ions. Subsequently, OVT aggregates could come into contact with each other, with further 

crosslinking of disulfide bonds resulting in the formation of a large network. 

 

 

Figure 3.1.12 Schematic diagram of coaggregation process of OVT and LYZ. 

 

 

3.1.5	Conclusion	

Here, I elucidated the coaggregation process of OVT and LYZ at pH 9 at a moderate temperature, which was 

higher than the melting temperature of OVT but lower than that of LYZ. Thermally unfolded OVT aggregated 

with the inclusion of native LYZ. Native LYZ promoted the aggregation of unfolded OVT, and the precipitation 

of soluble OVT aggregates by association via non-covalent interactions. Some of the LYZ included in the 

aggregates formed intermolecular disulfide bonds, although it was considered to be in the native state. The 

association of native LYZ with OVT aggregates decreased the colloidal stability due to the suppression of 

electrostatic repulsion, which allowed the formation of crosslinking by disulfide bonds between OVT 

aggregates, leading to growth to a large network with a fractal structure. These results represent valuable 

information to allow optimal heat treatment for pasteurization and gelation of egg white. For example, egg 

white contains almost the same molar amounts of OVT and LYZ. Accordingly, the removal of LYZ from egg 

white may inhibit the overgrowth of aggregates by coaggregation, which would affect the value of final 
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marketable egg products. In the actual processing of food in general, interactions with unexpected ingredients 

play key roles in the behavior of protein aggregation. 
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3.2	Coaggregation	of	ovalbumin	and	lysozyme	

 

3.2.1	Introduction	

Hen egg white is one of the most prominent protein source foods used as an ingredient by many food industries 

because of its functional properties: emulsification, foaming, and gelation. Heat coagulation is an especially 

important functional property of egg white protein [1, 2]. The physical attributes of a heat-induced gel are 

highly dependent on the microstructure [3]. The network in the microstructure determines the appearance and 

texture of egg white gels by entrapping water [4, 5] and modulating viscoelasticity [6]. 

The protein network is mainly mediated by crosslinkage of disulfide bonds, and non-covalent 

hydrophobic and electrostatic interactions [7]. The disulfide bonds and sulfhydryl groups play a crucial role in 

covalent crosslinking and stabilizing the gel structure of proteins [8]. In addition, the hydrophobic and 

electrostatic interactions control the physical characteristics of protein gels [9]. These intermolecular forces 

are attributed to solution pH, ionic strength, and co-solvents leading to promotion of protein unfolding, 

enhancement of hydrophobic interactions, decrease in number of ionic bonds, and destruction of disulfide 

bonds [3, 10]. The mechanisms underlying thermal gelation and aggregation of egg white proteins have been 

investigated using isolated components, such as ovalbumin [4, 11–13], ovotransferrin [14, 15], lysozyme [16–

18], and ovomucin [19]. However, analysis of a single protein alone isolated from egg white is too simple to 

gain an understanding of the molecular mechanisms occurring in egg white aggregation. On the other hand, 

whole egg white is too complex to understand the aggregation process of respective proteins [20, 21] because 

it contains various kinds of proteins with various molecular weights, isoelectric points, and concentrations [22]. 

To understand the structural changes occurring in egg white by heat treatment, it is necessary to elucidate the 

intermolecular interactions between heterogeneous proteins. 

Ovalbumin (OVA) is a major protein comprising 54% of total egg white proteins. OVA is a globular 

protein with molecular mass of 45.5 kDa containing one disulfide bond, four sulfhydryl groups, and zero to 

two phosphoryl groups with a carbohydrate chain [23]. OVA is a dominant factor in the heat-induced gel 

formation of egg white that forms amorphous or linear aggregates [15, 24]. Lysozyme (LYZ) is one of the most 

abundant basic proteins in egg white with molecular mass of 14.3 kDa comprising 3.5% of total egg white 

proteins; Another basic protein is avidin of 0.05%. The tertiary structure of LYZ is stabilized by four disulfide 
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bonds [25]. LYZ has a melting temperature of around 80°C at neutral pH and forms aggregates irreversibly 

with a single exponential process during heat treatment [26]. Thus, the thermal aggregation of LYZ has been 

used as a model system to develop suppressors of protein aggregation, such as amino acid derivatives [27, 28], 

amine compounds [29], and ammonium ions [30]. LYZ is a basic protein, and therefore it tends to associate 

electrostatically with other acidic proteins, such as α-lactalbumin [31], ovomucin [32], ovotransferrin [33], and 

OVA [34, 35]. 

Here, I investigated the coaggregation reaction steps of an OVA–LYZ binary system. Egg white is 

composed of many complex constituents, containing hundreds of proteins [36, 37]. Thus, heat-induced gel 

formation of egg white is quite difficult to understand, although the boiled egg is a familiar food. OVA and 

LYZ are known to spontaneously associate with each other at extremely low ionic strength even at room 

temperature [34, 35]. In response to this fact, I selected two important proteins, OVA that is the main 

component of egg white and LYZ that is the most studied protein in the aggregation process. Bouhallab and 

Croguennec reported an overview of the induced aggregation and spontaneous reversible assembly of food 

proteins [38]. By contrast, I investigated irreversible thermal aggregation of OVA–LYZ binary system by 

focused dynamics in the aggregation process. The coaggregation of OVA and LYZ was reported 30 years 

ago [39, 40], and the results showed that the heat-induced aggregation between OVA and LYZ is due to 

electrostatic interaction and disulfide bond exchange. However, the dynamics in the coaggregation processes 

is still not revealed in detail. Inspired by the pioneering work of Matsudomi and coworkers, I analyzed the 

quantitative compositions of proteins to explore the role played by each protein during the hierarchical 

processes of thermal aggregation using the combination of current techniques. The interactions of proteins 

during heat treatment should let us control network formation of heat-induced egg white gels and aggregates. 

The aggregation process of OVA and LYZ was identified in terms of aggregation rates, aggregation forces, and 

aggregate morphology. 
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3.2.2	Materials	and	methods	

Materials	

Hen egg white ovalbumin (grade V), lysozyme (six times crystallized and lyophilized), and bovine serum 

albumin were obtained from Sigma Chemical Co. (St. Louis, MO). The proteins were used without further 

purification. Na-phosphate, Na-hydroxide, and Micrococcus luteus were obtained from Wako Pure Chemical 

Inc. Ltd. (Osaka, Japan). 

 

Sample	preparation	for	thermal	aggregation	of	ovalbumin	and	lysozyme	mixtures	

Sample preparation for investigation of the aggregation rate depending on the co-existing opposite protein 

concentration was as follows. A solution of 50 μM ovalbumin (OVA) and lysozyme (LYZ) with 0 – 50 μM 

LYZ and OVA, respectively, in 50 mM Na-phosphate buffer (pH 7.0) was heated at 70°C for various periods. 

The samples were centrifuged at 15000 × g for 20 min, and then the soluble protein concentration in the 

supernatant was determined by size exclusion chromatography. 

The sample preparation for investigation of the affinity of OVA and LYZ was performed as follows. A 

solution of 100 μM OVA and LYZ containing 50 mM Na-phosphate buffer (pH 7.0) was heated at 70°C for 

30 min. The sample solution was diluted 2-fold with buffer solution or mixed with another protein solution at 

a ratio of 1:1 at room temperature. Immediately, the sample was centrifuged at 15000 × g for 20 min, and then 

the soluble protein concentration in the supernatant was determined by size exclusion chromatography. The 

sample solution before centrifugation was analyzed by electrophoresis and enzyme assay. 

The sample preparation for investigation of the protein composition and morphology of aggregates was 

performed as follows. A mixture of OVA and LYZ with total protein concentration of 100 μM in the molar 

fraction of 0 – 1 in 50 mM Na-phosphate buffer (pH 7.0) was heated at 70°C for 30 min. The samples were 

centrifuged at 15000 × g for 20 min for determination of protein concentration by size exclusion 

chromatography. The sample solution before centrifugation was diluted 10-fold with pure water for imaging 

by electron microscopy. 

A solution of 100 μM OVA, LYZ, and bovine serum albumin (BSA) containing 50 mM Na-phosphate 

buffer (pH 7.0) was heated at 70°C for 30 min. The sample solution was diluted 2-fold with buffer solution or 

mixed with another protein solution at a ratio of 1:1 at room temperature. The sample was immediately 
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centrifuged at 15000 × g for 20 min, and then soluble protein concentration in the supernatant was determined 

by size exclusion chromatography. The sample solution before centrifugation was analyzed by electrophoresis. 

 

Circular	dichroism	

Circular dichroism (CD) measurements were performed on a spectropolarimeter (J-720W; Japan 

Spectroscopic Co. Ltd., Tokyo, Japan) using a Peltier cell holder with a temperature controller (PTC-348W; 

Japan Spectroscopic Co. Ltd.). A solution of 0.5 mg/mL OVA, LYZ, and BSA dissolved in 50 mM Na-

phosphate buffer (pH 7.0) was measured by CD 222 nm intensity change with an increasing temperature rate 

of 1.0°C/min using a 1-mm path-length quartz cell. 

 

Determination	of	soluble	protein	concentration	using	size	exclusion	chromatography	

Soluble protein concentration was determined by high-performance liquid chromatography (HPLC) 

(Shimadzu, Kyoto, Japan) using a system comprised of a degasser (DGU-20A3), a pump (LC-10AT), an auto 

injector (SIL-10AXL), a column oven (CTO-10A), a UV–vis detector (SPD-10AV), and a system controller 

(SCL-10Avp) with a size exclusion column (3 μm, 300 mm × 7.8 mm i.d., Yarra SEC 3000; Phenomenex, 

Torrance, CA). Isocratic HPLC was conducted with a flow rate of 1.0 mg/mL at 30°C using 150 mM Na-

phosphate buffer (pH 7.0). Aliquots of 30 μL of samples were loaded into the column. The absorbance was 

monitored at 280 nm. All soluble protein concentrations were determined as the averages of three experiments. 

 

Sodium	dodecyl	sulfate-polyacrylamide	gel	electrophoresis	

The protein solutions were subjected to heat treatment and mixing, and were then mixed with 125 mM Tris-

HCl (pH 6.8) loading buffer solution containing 4% (w/v) sodium dodecyl sulfate (SDS), 10% (w/v) sucrose, 

and 0.01% (w/v) bromophenol blue with or without 10% (v/v) β-mercaptoethanol at a ratio of 1:1. The samples 

were incubated for 20 hours at 25°C and then subjected to SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) using a 5% – 20% gradient gel (e-PAGEL; ATTO Co., Tokyo, Japan) with a molecular weight marker 

(Precision Plus Protein Dual Xtra Standards; Bio-Rad, Hercules, CA). The gels were then stained using 

Coomassie Brilliant Blue R-250. 
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Lysozyme	enzyme	assay	

Lysozyme activities catalyze the cleavage of the β-1,4-glycosidic linkages between N-acetylmuramic acid and 

N-acetyl-D-glucosamine, which are in peptidoglycan cell wall of Gram-positive bacteria. A substrate solution 

of 1990 μL containing 0.3 mg/mL M. luteus in 50 mM Na-phosphate buffer (pH 7.0) was mixed with 10 μL of 

protein solution. The enzymatic reaction rate was estimated from the slope of the initial decrease in the 

absorbance at 600 nm using a spectrophotometer (V-630; Japan Spectroscopic Co. Ltd., Tokyo, Japan) 

 

Imaging	of	aggregates	by	transmission	electron	microscopy	 	

Aliquots of 4 μL of protein solution were negatively stained with 4 μL of 1% (w/v) tungstosilicic acid solution. 

Then, 4 μL of the stained solution was placed on a 150-mesh copper grid covered with a carbon-coated 

hydrophilic film. The solution on the grid was dried for a few minutes. The samples were observed using a 

transmission microscope (H7650; Hitachi, Tokyo, Japan) with an acceleration voltage of 80 keV. 

 

Distribution	of	aggregate	size	

The size distributions were analyzed using a laser diffraction particle sizer (SALD-2300; Shimadzu, Kyoto, 

Japan). 

 

 

3.2.3	Results	

Condition	of	OVA	and	LYZ	

Before the main experiment, I confirmed the solution structure of OVA dissolved in 50 mM Na-phosphate 

buffer solution at pH 7.0 where is the pH of fresh egg white. Size exclusion chromatography showed that the 

OVA solution contained mainly the monomeric form with small amounts of dimers, trimers, and tetramers at 

the elution point around 10 min (Fig. 3.2.1). In addition, soluble aggregates were observed at an elution time 

of around 5 min. The amount of soluble aggregates was about 14%, as calculated from the chromatogram peak 

area. The polydispersed OVA molecules were observed as expected in the crude state of egg white proteins, as 

described previously [41]. According to the data, it is estimated that 50 μM OVA solution contains 43.2 ± 1.0% 

soluble molecules in monomeric to tetrameric forms. 
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Protein unfolding was monitored by the ellipticity at 222 nm that indicates a content of α-helix structure. 

Far-UV CD analysis showed that the secondary structures of OVA and LYZ were slightly perturbed at 70°C 

(Fig. 3.2.2). Accordingly, a small amount of heat-induced unfolded molecules was thought to be present during 

heat treatment at 70°C. Heat treatment at 70°C was adopted in this investigation because aggregation reaction 

is not too fast to analyze coaggregation of OVA and LYZ. 

 

 

Figure 3.2.1 Size exclusion chromatogram of OVA solution before heat treatment. 

 

 

Figure 3.2.2 Thermal unfolding curves of OVA (A), LYZ (B), and BSA (C). 
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Coaggregation	of	OVA	and	LYZ	

To understand the coaggregation of OVA and LYZ, I investigated the heat-induced aggregation of protein 

mixtures measured by size exclusion chromatography. Briefly, solutions containing 50 μM OVA with 0–50 μM 

LYZ, and vice versa, were heated at 70°C for various periods. The concentrations of soluble protein are plotted 

in Figure 3.2.3. The soluble OVA concentration decreased from 100% to 50% during heat treatment for 30 min 

in the presence or absence of LYZ at any concentration (Fig. 3.2.3A). As shown in the figure, the aggregation 

of OVA was not affected by the presence of LYZ. In contrast, the soluble concentration of LYZ depended on 

the concentration of OVA (Fig. 3.2.3B). In the absence of OVA, almost all of the LYZ remained in the soluble 

fraction after heat treatment for 30 min. In contrast, the aggregation rate of LYZ increased with increasing 

concentration of mixed OVA (Fig. 3.2.3B). For example, 50 μM LYZ added over 30 μM OVA showed complete 

aggregation with heat treatment for 30 min. For quantitative comparison, the rate constants of aggregation 

were determined by fitting to the exponential function. Figure 3.2.4 shows the rate constant of the aggregation 

processes of OVA mixed with LYZ, and vice versa. The aggregation-rate constants of OVA remained constant 

at about 0.12 min–1 regardless of the co-existence of LYZ (Fig. 3.2.4A). In contrast, the aggregation-rate 

constants of LYZ increased monotonically from 0.01 min–1 to 0.64 min–1 with increasing amount of coexisting 

OVA (Fig. 3.2.4B). The aggregation rate constant of LYZ with equimolar OVA was 64-fold higher than that of 

LYZ alone.  

 

Figure 3.2.3 Soluble protein concentration of OVA–LYZ mixture after heating at 70°C for various periods. 
(A) Samples contained 50 μM OVA and 0 (closed circles), 10 (open circles), 20 (closed squares), 30 (open squares), 
40 (closed triangles), and 50 (open triangles) μM LYZ. (B) Samples contained 50 μM LYZ with 0 (closed circles), 

10 (open circles), 20 (closed squares), 30 (open squares), 40 (closed triangles), and 50 (open triangles) μM OVA. 
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Figure 3.2.4 Aggregation rate constants of OVA and LYZ. (A) The aggregation rate constants of OVA in the 

presence of various ratios of LYZ. (B) The aggregation rate constants of LYZ in the presence of various ratios of 
OVA. 

 

Affinity	between	OVA	and	LYZ	

To understand the structures of LYZ and OVA during coaggregation, I prepared proteins in the native state and 

heated state, and analyzed the affinity between native OVA (nOVA), native LYZ (nLYZ), heated OVA (hOVA), 
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fraction was subjected to size exclusion chromatography.  
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Figure 3.2.5 Size exclusion chromatograms of the supernatant of OVA–LYZ mixture. nOVA, native OVA. hOVA, 
OVA heated at 70°C for 30 min nLYZ, native LYZ. hLYZ, LYZ heated at 70°C for 30 min. The + symbol denotes 
the mixed sample of the native protein or the heat-treated protein. “co-hOVA–LYZ” indicates the sample in which 

nOVA and nLYZ mixture was heated at 70°C for 30 min. 

 

 

Figure 3.2.6 Soluble protein concentration determined by the chromatograms in Figure 3.2.5. 
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Next, I compare the mixed samples. The sample “nOVA + nLYZ” showed simple peaks composed of 

the peaks of nOVA and nLYZ. Similar data were obtained for “nOVA + hLYZ”; i.e., the peaks of this sample 

were identical to the addition of the peaks of nOVA and hLYZ. These results indicate that native OVA did not 

interact with native LYZ or heated LYZ. In contrast, the “hOVA + nLYZ” and “hOVA + hLYZ” samples 

showed two peaks of monomeric OVA and LYZ, and the soluble aggregate peak vanished. These results 

suggest that the soluble aggregates of OVA formed insoluble precipitates with LYZ molecules. Finally, the 

chromatograms of “co-hOVA–LYZ” showed only a single peak of monomeric OVA.  

For quantitative comparison, I calculated the protein concentrations from the chromatograms (Fig. 3.2.6). 

After heat treatment, the soluble concentrations of OVA and LYZ decreased to 53% and 84%, respectively. 

The soluble protein concentrations of OVA and LYZ in “nOVA + nLYZ” and “nOVA + hLYZ” samples 

remained constant. In contrast, the soluble protein concentrations in “hOVA + nLYZ” and “hOVA + hLYZ” 

samples were clearly decreased; the concentrations of both proteins were about 50%. The identical 

concentrations of soluble LYZ and OVA indicated that the precipitates were composed of equimolar amounts 

of LYZ and OVA. This result indicated that both nLYZ and hLYZ have specific affinity for the unfolded OVA 

rather than native OVA. Note that the specific affinity of LYZ toward hOVA was not observed for bovine serum 

albumin (BSA) (Figs. 3.2.7 and 3.2.8). However, as shown in the “co-hOVA–LYZ” sample, LYZ aggregated 

completely on co-heating with OVA, forming aggregates at a ratio of 1:2 of OVA and LYZ. These results 

indicate that the specific affinity of LYZ for the heat-induced unfolded OVA could not be fully described by 

OVA–LYZ coaggregation. The mechanisms were investigated as follows. 
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Figure 3.2.7 Size exclusion chromatograms of the supernatant of BSA–LYZ mixture. nBSA, native BSA. hBSA, 
BSA heated at 70°C for 30 min. nLYZ, native LYZ. hLYZ, LYZ heated at 70°C for 30 min. The + symbol denotes 
the mixed sample of the native protein or the heat-treated protein. “co-hBSA–LYZ” indicates the sample in which 
nBSA and nLYZ mixture was heated at 70°C for 30 min. 

 

 

Figure 3.2.8 Soluble protein concentration determined by the chromatograms in Figure 3.2.7. 
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Non-covalent	and	covalent	bonding	between	LYZ	and	unfolded	OVA	

Disulfide bond exchange is one of the most important reactions in the thermal aggregation of proteins [42, 43]. 

To investigate the disulfide bond exchange reaction, I performed SDS-PAGE analyses of reduced or non-

reduced samples of OVA–LYZ mixture using β-mercaptoethanol (Fig. 3.2.9). Clear bands were obtained with 

monomeric OVA (45 kDa) and monomeric LYZ (14 kDa). Other minor bands were observed with dimeric 

(90 kDa) and trimeric (135 kDa) OVA. For the samples except for “co-hOVA–LYZ,” all bands in mixtures of 

OVA and LYZ under reducing and non-reducing conditions were identical to the control samples. The broad 

band observed in hOVA-containing sample under non-reducing condition seems to be corresponding to 

denatured multimeric OVA with disulfide crosslinkage, containing in a soluble aggregate fraction from HPLC 

(Fig. 3.2.5). The data indicated that disulfide bond exchange between OVA and LYZ does not occur under 

conditions of ambient temperature, and that binding between hOVA and nLYZ or hLYZ is stabilized by non-

covalent interactions. In contrast, the bands of the “co-hOVA–LYZ” sample under non-reducing conditions 

were different from those under reducing conditions; the monomeric LYZ band and a broad band of over 

100 kDa corresponding to soluble large aggregates disappeared. Note that similar intermolecular disulfide 

bonds were also observed between BSA and LYZ during heat treatment (Fig. 3.2.10). Therefore, intermolecular 

disulfide bond exchange is one of the key interactions to form insoluble aggregates of “co-hOVA–LYZ” 

samples during heat treatment. 
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Figure 3.2.9 SDS-PAGE analysis of reduced and non-reduced OVA–LYZ mixtures. nOVA, native OVA. hOVA, 

OVA heated at 70°C for 30 min nLYZ, native LYZ. hLYZ, LYZ heated at 70°C for 30 min. The + symbol denotes 
the mixed sample of the native protein or the heat-treated protein. “co-hOVA–LYZ” indicates the sample in which 
nOVA and nLYZ mixture was heated at 70°C for 30 min. Lane M shows standard ladder marker. 

 

 

Figure 3.2.10 SDS-PAGE analysis of reduced and non-reduced BSA–LYZ mixtures. nBSA, native BSA. hBSA, 
BSA heated at 70°C for 30 min. nLYZ, native LYZ. hLYZ, LYZ heated at 70°C for 30 min. The + symbol denotes 
the mixed sample of the native protein or the heat-treated protein. “co-hBSA–LYZ” indicates the sample in which 
nBSA and nLYZ mixture was heated at 70°C for 30 min. Lane M shows standard ladder marker. 
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Enzyme	activity	of	LYZ	associated	with	OVA	

The chromatograms and SDS-PAGE analyses showed that the native state of LYZ has the ability to associate 

with the heat-induced unfolded state of OVA. To confirm the tertiary structure of LYZ associated with OVA, 

the enzyme reaction of LYZ mixed with OVA was measured. Figure 3.2.11 shows the enzyme reaction rate of 

LYZ. As expected, the enzyme-reaction rate of “nOVA + nLYZ” did not change compared with that of LYZ 

alone. Surprisingly, the enzyme reaction rate of “hOVA + nLYZ” remained at 92%, while the soluble 

concentration of LYZ decreased to 52% (Fig. 3.2.8). Note that the enzyme reaction rate was measured by using 

the mixture solution containing the insoluble fraction, while the soluble protein concentration was determined 

from the supernatant of the mixture after centrifugation. Under conditions similar to those used for 

determination of soluble protein concentration, the enzyme-reaction rate of LYZ in the soluble fraction of 

“hOVA + nLYZ” obtained by a centrifugation was 50% corresponding to soluble protein concentration. Thus, 

the native LYZ appeared to contain insoluble aggregates in the “hOVA + nLYZ” sample. 

 

 

Figure 3.2.11 Enzyme-reaction rate of LYZ with or without OVA. nLYZ, native LYZ. nOVA + nLYZ, native LYZ 
with native OVA. hOVA + nLYZ, native LYZ with OVA heated at 70°C for 30 min hOVA + nLYZ*, soluble 
fraction of “hOVA + nLYZ” obtained by centrifugation at 15000 × g for 20 min. 
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Composition	and	morphology	of	coheated	OVA–LYZ	aggregates	

Subsequently, I investigated the protein compositions of OVA and LYZ for collaborative aggregation. Briefly, 

mixtures of OVA and LYZ with total protein concentration of 100 μM in molar fractions of 0.0 – 1.0 were 

heated at 70°C for 30 min, and the residual soluble protein concentration was then determined by size exclusion 

chromatography (Fig. 3.2.11A). The soluble OVA concentration after heating was directly proportional to the 

initial OVA concentration. In contrast, the soluble LYZ concentration decreased markedly with increasing 

molar fraction of OVA. At OVA molar fraction > 0.3, LYZ was completely aggregated. To present the data 

more clearly, the protein compositions of OVA and LYZ in aggregates are plotted (Fig. 3.2.11B). The 

composition of LYZ was abundant in aggregates under all conditions. In particular, when the overall molar 

fraction of OVA was 0.5, the protein composition in aggregates showed 30% OVA. Therefore, LYZ heated 

with OVA was prone to form aggregates due to intermolecular disulfide bonds, resulting in high proportions 

of LYZ in aggregates. 

The morphologies of the aggregates formed in OVA–LYZ mixtures at various molar ratios were 

examined by TEM (Fig. 3.2.12). The aggregates of LYZ alone (X = 0.0) were small and amorphous, ranging 

in size from 10 nm to 100 nm (Fig. 3.2.12A). At X = 0.1, large aggregates were observed in TEM images with 

a size range from 10 nm to 1 μm (Fig. 3.2.12B). With increasing molar fraction of OVA at X = 0.3, the small 

aggregates were not observed, but large aggregates of few μm in size were found in TEM images (Fig. 3.2.12C). 

In the solution containing equimolar amounts of OVA and LYZ at X = 0.5, the aggregates apparently grew to 

above several dozens μm with a large network (Fig. 3.2.12D). With further increases in the ratio of OVA, the 

smaller aggregates increased with a spherical shape (Figs. 3.2.12E – 3.2.12G). The aggregate size formed at 

X = 0.7 – 0.9, which is similar ratio to the actual egg white protein composition, was a little larger than at 

X = 1.0. Judging from the morphology, the aggregation mode of OVA–LYZ mixtures was probably dominated 

by (i) LYZ aggregate-driven amorphous shapes when X < 0.5 or (ii) OVA aggregate-driven spherical shapes 

when X > 0.5. In summary, OVA alone and LYZ alone are prone to form small aggregates due to itself 

electrostatic repulsion resulting in soluble state, while OVA and LYZ mixtures form large aggregates with a 

hierarchical network between small aggregates. As described above, the large aggregates were attributed to the 

affinity of LYZ with unfolded OVA and intermolecular disulfide bonds between LYZ and OVA molecules. 
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Figure 3.2.11 (A) Soluble protein concentration of OVA–LYZ mixture after heat treatment. (B) Composition of 
aggregates in the formed OVA–LYZ mixture. The initial concentration of total protein was 100 μM. Molar fraction 
of OVA was [OVA]/([LYZ] + [OVA]). 

 

 

 

Figure 3.2.12 Morphology of OVA–LYZ mixture aggregation in the molar fraction monitored by TEM. 
X = [OVA]/([LYZ] + [OVA]). The scale bars represent 1 μm. 
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3.2.4	Discussion	

Driving	forces	for	coaggregation	

First, I discuss the simplest case of aggregates between native OVA (nOVA) and native LYZ (nLYZ). 

Negatively charged OVA and positively charged LYZ at physiological pH are known to spontaneously 

associate with each other via electrostatic interactions at extremely low ionic strength even at room 

temperature [35]. Such aggregates, called coacervates, can be reversibly dissolved at increasing ionic 

concentration above 50 mM [44, 45]. Thus, under our experimental conditions, nOVA and nLYZ did not form 

precipitates only by mixing because the solutions contained 50 mM Na-phosphate as a buffer. 

On the other hand, aggregates were observed when nOVA and nLYZ were mixed and heated at 70°C. 

At this temperature, both OVA and LYZ were slightly unfolded (Fig. 3.2.2). Note that the mixing of OVA and 

LYZ does not influence their unfolding temperature [46]. In saline at 70°C, aggregates were formed through 

hydrophobic interactions rather than through only electrostatic interactions, followed by crosslinking between 

OVA and LYZ molecules by disulfide bond exchange. Coaggregation of OVA and LYZ was sensitive to thermal 

unfolding compared with single protein system of OVA or LYZ. Weak hydrophobic interaction induced by 

partial unfolding may be amplified by electrostatic attraction between OVA and LYZ. Therefore, the pH is an 

important property for coaggregation such as oppositely charged OVA and LYZ system. In addition, our data 

indicated that the aggregation of OVA is not affected by the presence of LYZ. Thus, OVA plays a role as a 

trigger for the start of coaggregation by unfolding itself. 

 

Binding	region	of	unfolded	OVA	and	native	LYZ	

Heated OVA (hOVA) showed affinity with native LYZ (nLYZ) via non-covalent interactions. The complex of 

hOVA with nLYZ formed insoluble precipitates. These results indicated that an internal hydrophobic region of 

OVA exposed by unfolding had affinity for the surface of nLYZ. In fact, the intramolecular hydrophobic region 

of OVA was identified as ILELPFASGT MSMLVLLPDE VSGLEQLESIINFEK (residues 229 – 263), named 

S-peptide, which is capable of binding strongly to the LYZ molecule [47]. Sugimoto et al. concluded that S-

peptide enhances the formation of LYZ aggregation. It should be noted that S-peptide has no cysteine residues, 

suggesting that non-covalent interactions between unfolded OVA and native LYZ trigger aggregate formation. 
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In addition, LYZ has a binding site with OVA [47]. The amino acid sequences of the peptides were 

identified as RNRCKGTDVQAW (residues 112 – 123), named M-peptide, which is located in the LYZ surface, 

and GILQINSRW (residues 54 – 62), named K-peptide, which is located in the inside near the active site of 

LYZ. Considering the association between OVA and LYZ at room temperature, S-peptide of the unfolded OVA 

was exposed on the protein surface, leading to binding to M-peptide of native LYZ. 

 

Residual	enzyme	reaction	rate	of	LYZ	

The enzyme-reaction rate of LYZ of “hOVA + nLYZ” remained at about 90% (Fig. 3.2.11). This raised the 

following possibilities: (i) the interaction occurred between a non-active site of LYZ and hOVA, and (ii) LYZ 

sufficiently dissolved from aggregates due to dilution for the enzyme assay. The two cases are discussed below. 

(i) The LYZ molecule mostly adopts the native conformation even at 70°C (Fig. 3.2.2). In addition, 

the active site residues of LYZ are negatively charged Glu35 and Asp52. Therefore, K-peptide of 

LYZ, which is located in the inside of the molecule near the active site, cannot approach the OVA 

surface. In fact, the binding of M-peptide to OVA is more favorable than K-peptide to OVA for the 

detection of OVA [48]. Furthermore, K-peptide of LYZ is known to be a core region of amyloid 

fibrils [49]; this peptide is prone to form aggregates itself rather than to bind to OVA due to its high 

hydrophobicity [47]. Thus, LYZ is thought to bind to OVA via the M-peptide. 

(ii) The chromatogram of “hOVA + nLYZ” solution shown in Figure 3.2.5 indicated that all of the 

soluble OVA aggregates were associated with LYZ, leading to formation of precipitates. If Case (ii) 

is correct, the precipitates dissociate immediately at the time of dilution with substrate solution 

during the enzyme assay. I investigated the particle size using a laser diffraction particle sizer, 

showing that the diameter of the “hOVA + nLYZ” sample was actually decreased by > 10-fold 

dilution (Fig. 3.2.13). The size distribution in 100-fold diluted “hOVA + nLYZ” solution was the 

same as that of “hOVA” solution. Therefore, it was concluded that the precipitates between hOVA 

and nLYZ are dissociated by dilution, resulting in reactivation of LYZ (Fig. 3.2.11). That is, the 

precipitates were in an unstable colloidal state. 
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Intermolecular	disulfide	bond	exchange	during	co-heating	

As shown in SDS-PAGE analyses (Fig. 3.2.9), the disulfide bonds were formed between OVA and LYZ 

molecules during heat treatment. The OVA molecule has four sulfhydryl groups and one disulfide bond buried 

in the intramolecular core. LYZ has four disulfide bonds in the inside. A previous study indicated that heat 

treatment at 70°C exposed free sulfhydryl groups of OVA to the solvent resulting in induction of a sulfhydryl–

disulfide exchange reaction between OVA and LYZ, which caused irreversible aggregate formation [39]. As 

shown in Figure 3.2.11, the abundant LYZ in coaggregates may be attributed to the exchange reaction between 

a sulfhydryl group of OVA and a disulfide bond of LYZ. The many disulfide bonds in LYZ play a key role in 

connection of soluble OVA aggregates. Sulfhydryl–disulfide exchange reaction between OVA and LYZ 

propagates new sulfhydryl group of LYZ, leading to formation of large aggregates with crosslinked network. 

 

 

Figure 3.2.13 Size distribution of particles dissolved in the 1-, 10-, and 100-fold diluted “hOVA + nLYZ” and 1-

fold “hOVA” solution. 

 

Process	of	coaggregation	

Figure 3.2.14 shows the molecular mechanism of coaggregation between OVA and LYZ. The process of 

coaggregation includes the following steps: (i) the unfolding of OVA, (ii) the association of unfolded OVA and 

LYZ via non-covalent interaction, (iii) the insolubilization of the complexes due to the colloidal instability, 

(iv) the additional binding of LYZ induced by exchange reaction between sulfhydryl groups of unfolded OVA 
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and disulfide bonds of LYZ, and (v) the growth of aggregates due to the formation of intermolecular disulfide 

bonds across the OVA–LYZ colloids. Sulfhydryl–disulfide exchange reaction between OVA and LYZ in the 

step (iv) generated new sulfhydryl groups of LYZ. Sulfhydryl groups were propagated by the exchange reaction 

and contributed to the growth of the aggregate by the formation of intermolecular disulfide bonds in the step (v). 

The hierarchical aggregation was important for understanding of coaggregation by OVA and LYZ. For example, 

if the solution contained LYZ or OVA alone, small aggregates were observed. These small aggregates cannot 

grow due to the balance between short-range attraction and long-range electrostatic repulsion [50, 51]. It is 

important to note that the thermal unfolding of OVA itself does not influence the mixture with LYZ, while that 

of LYZ markedly facilitates mixture with OVA. This is because aggregation occurs by both sulfhydryl–

disulfide exchange reaction and affinity via non-covalent interactions with unfolded OVA. 

 

 

Figure 3.2.14 Schematic diagram of coaggregation process of OVA and LYZ. 
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3.2.5	Conclusion	

The thermal aggregation rate of OVA was not dependent on coexisting LYZ concentration. In contrast, the 

thermal aggregation rate of LYZ was enhanced by increases in the co-existing OVA concentration. Native LYZ 

formed precipitates with unfolded OVA by non-covalent interactions even at room temperature. The 

precipitates were labile and unstable, and could be dissociated by 10-fold dilution. In addition to the affinity 

of unfolded OVA for native LYZ, intermolecular disulfide bonds were formed between OVA and LYZ during 

co-heating. These results indicated that the unfolding of OVA triggered the collaborative aggregation of OVA 

and LYZ via the affinity of unfolded OVA for LYZ and sulfhydryl–disulfide exchange reaction between OVA 

and LYZ. The unfolded OVA plays a crucial role in the nucleus of LYZ aggregation before the growth of large 

aggregates. The precise mechanism of coaggregation provides information on control of aggregation and 

gelation of egg white proteins. It will be future issues to clarify relations of this coaggregation phenomenon 

and gel properties of egg white protein. Finally, I would like to emphasize that the molecular mechanism of 

coaggregation between heterogeneous proteins cannot be extrapolated by investigation of the aggregation of a 

single protein. 
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Chapter	4	Onset	Process	of	Coaggregation	

 

Coacervates	 and	 coaggregates:	 Liquid–liquid	 and	 liquid–solid	

phase	transitions	by	native	and	unfolded	protein	complexes	

 

4.1	Introduction	

Self-assemblies of macromolecules have attracted attention as new materials with potential applications as 

functional foods and drug delivery carriers because of their suitability for the delivery and sustained release of 

active substances, promoting progress in food science and pharmacology [1]. Food proteins are particularly 

interesting biocompatible and biodegradable matrices beyond their nutritional value [2]. They can encapsulate 

and protect bioactive ingredients during storage and passage through digestive organs [3]. Additionally, protein 

particles influence the perception of sensations within the mouth [4]. Since the assembly from food proteins 

was first proposed by Howell [5], numerous efforts have been devoted to understanding the formation 

mechanisms [6, 7]. The heterogeneous interactions behind the mechanisms lead to a diversity of 

supramolecular structures, such as particles, fibers, ribbons, and hydrogels [8]. Coacervate is an assembly with 

a dense protein-rich phase in which a dilute phase coexists, and this assembly is driven by liquid–liquid phase 

separation throughout the electrostatic attraction between oppositely charged biomacromolecules [1, 7]. 

Coacervates generally have a well-defined spherical shape with fluidity. However, the morphology of 

coacervates often becomes irregular similarly as that of aggregates depending on the composition of the 

coacervate and solution conditions [9, 10]. Consequently, the desired functions and characteristics of the 

unexpected structures are impaired. Precise information about protein structures plays an important role in 

controlling the structure of coacervates. 

The mechanism and shape of spontaneous protein assembly depend on the mode and balance of 

interactions between proteins, e.g., electrostatic interactions, hydrogen bonding, van der Waals forces, and 

hydrophobic interactions [11]. The interactions between protein molecules are also strongly influenced by the 

protein structure, such as native, unfolded, oligomer, and various types of aggregated states. This diversity of 
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protein structure differs markedly from that of synthetic polymers. Changes in the three-dimensional structure 

of protein is probable to perturb the interactions that play indispensable roles in the association between protein 

molecules. One of the main obstacles to predicting such associations is the absence of knowledge regarding 

the protein structure, molecular interactions, and structural hierarchy of complexes. 

In this report, I aim to clarify the differences in molecular mechanisms between the liquid–liquid phase 

separation of coacervates and liquid–solid precipitation of coaggregates. Ovalbumin (OVA) and hen egg-white 

lysozyme (LYZ), which are the major components of egg white, were selected as the model proteins. OVA is 

known as the most advanced protein material for food applications because of its abundance and 

versatility [12]. OVA, with a molecular weight of 45 kDa, isoelectric point of 4.5, denaturation temperature of 

77.5°C, also comprises 54% of egg white proteins [13, 14]. LYZ is a basic protein that is rare among food 

proteins, and it has a molecular weight of 14.3 kDa and isoelectric point of 10.7. LYZ is a stable protein with 

a denaturation temperature of 75.0°C [15, 16]. The investigation of coacervates and aggregates of OVA and 

LYZ will provide important information for managing the large diversity of supramolecular structures derived 

from globular proteins for the food industry as well as biophysical science. 

 

 

4.2	Materials	and	methods	

Materials	

Hen egg white OVA (grade VI) and LYZ (six times crystallized and lyophilized) were obtained from Sigma 

Chemical Co. (St. Louis, MO, USA). The proteins were used without further purification. Sodium fluoride 

(NaF), sodium chloride (NaCl), arginine hydrochloride (ArgHCl), urea, sodium phosphate, sodium hydroxide, 

and hydrochloric acid were obtained from Wako Pure Chemical Inc. Ltd. (Osaka, Japan). 

 

Preparation	for	unfolded	state	and	complexation	of	OVA	and	LYZ	

OVA and LYZ were dissolved at 1.5 mg/mL in pure water, and then the solution pH was adjusted to 8.0 using 

NaOH. Unfolded proteins were prepared as follows. Each solution was heated at 80°C for 30 min using a water 

bath, immediately cooled to 4°C, and finally incubated at room temperature. The unheated and heated OVA 

solutions were denoted pristine OVA (pOVA) and heated OVA (hOVA) solution, respectively. In the same 
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manner, the unheated and heated LYZ solutions were denoted pristine LYZ (pLYZ) and heated LYZ (hLYZ) 

solution, respectively. Aliquots of 200 μL of the OVA and LYZ solutions were mixed with water or additive 

solution (NaF, NaCl, ArgHCl, and urea) adjusted to pH 8 at the equivalent volume ratio at ambient temperature. 

Instantly, the pH of the mixture was adjusted to 3 – 12 for pH-dependent experiments or 8 for additive 

concentration-dependent experiments by dropping 0.01 – 0.1 M HCl or 0.01 – 1 M NaOH, followed by 

incubation for 30 min. 

 

Circular	dichroism	

Circular dichroism (CD) spectra of 3-fold diluted solutions of pOVA, hOVA, pLYZ, and hLYZ were measured 

using a 1-mm path-length quartz cell for far-UV in the wavelength range of 200 – 250 nm and a 10-mm path-

length quartz cell for near-UV in the wavelength range of 250 – 320 nm at room temperature using a 

spectropolarimeter (J-720W; Japan Spectroscopic Co. Ltd., Tokyo, Japan). 

 

Sodium	dodecyl	sulfate-polyacrylamide	gel	electrophoresis	

The OVA/LYZ mixtures were centrifuged at 10000 × g for 20 min. Subsequently, 500 μL of supernatant were 

replaced with pure water. Centrifugation and supernatant exchange were repeated three times. Finally, 500-μL 

aliquots of supernatant were replaced with loading buffer solution (pH 6.8) containing 75 mM Tris-HCl, 

2.4% (w/v) sodium dodecyl sulfate (SDS), 6% (w/v) sucrose, and 0.01% (w/v) bromophenol blue. The samples 

were incubated for 24 h at room temperature and then subjected to SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE) using a 5% – 20% gradient gel (e-PAGEL; ATTO Co., Tokyo, Japan) with the entire solutions of 

pOVA, hOVA, pLYZ, and hLYZ as controls. The gels were then stained using Coomassie Brilliant Blue R-250. 

 

Fluorescence	assay	

To measure intrinsic fluorescence spectra, the pOVA, hOVA, pLYZ, and hLYZ solutions were diluted 10-fold 

with pure water. To measure ANS fluorescence spectra, the solutions were diluted 10-fold with pure water 

containing 10 μM ANS, and then each sample was incubated for 30 min at room temperature in the dark. The 

fluorescence spectra were determined at 25°C using a spectrofluorometer (FP-6500; Japan Spectroscopic) with 

a 1-cm path-length quartz cuvette. The emission spectra were recorded with excitation at 280 nm for intrinsic 
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and 380 nm for ANS fluorescence. The slit width was 3 nm for intrinsic fluorescence and 5 nm for ANS 

fluorescence on both emission and excitation sides. 

 

Size	exclusion	chromatography	

pOVA, hOVA, pLYZ, hLYZ, and mixtures of these solutions were centrifuged at 10000 × g for 20 min, and 

then the soluble protein concentrations in the supernatant were determined via high-performance liquid 

chromatography (Shimadzu, Kyoto, Japan) using a system consisting of a degasser (DGU-20A3), pump (LC-

10AT), auto injector (SIL-10AXL), column oven (CTO-10A), UV–vis detector (SPD-10AV), and system 

controller (SCL-10Avp) with a size exclusion column (3 μm, 300 mm × 7.8 mm i.d., Yarra SEC 3000; 

Phenomenex, Torrance, CA, USA). Isocratic HPLC was performed with a flow rate of 1.0 mL/min at 30°C 

using 150 mM sodium phosphate buffer (pH 7.0). Sample aliquots of 40 μL were loaded into the column. The 

absorbance was monitored at 280 nm. All soluble protein concentrations were determined as the averages of 

three experiments. 

 

ζ-potential	

The pH value of the pOVA, hOVA, pLYZ, and hLYZ solutions at protein concentrations of 1.5 mg/mL was 

adjusted to 3 – 12 by dropping 0.01 – 0.1 M HC1 or 0.01 – 1 M NaOH. The surface charges of proteins were 

measured at 25°C using a Zetasizer Nano Z (Malvern Instruments, Worcestershire, UK). Three runs were 

performed for each measurement. 

 

Turbidity	measurement	

The solutions of OVA/LYZ mixtures were added into a 1-cm path-length disposable PMMA cell. The turbidity 

at 600 nm was measured using a Jasco spectrophotometer model V-630 (Japan Spectroscopic).  

 

Imaging	of	complexes	via	phase	contrast	microscopy	

Aliquots of 1 μL of the OVA/LYZ mixtures were placed on a 96-well plate (Costar, Corning Inc., Lowell, MA, 

USA). The samples were observed using a phase contrast microscope (BZ-X710; Keyence, Osaka, Japan). 
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4.3	Results	and	discussion	

Physicochemical	properties	of	native	and	heated	OVA	and	LYZ	

Figure 4.1A shows the far-UV CD spectra of OVA and LYZ before and after heating. The far-UV CD spectrum 

of pOVA had an α-helix–rich shape with minima at 208 and 222 nm, which is typical of the native form of 

OVA. On the contrary, the far-UV CD spectrum of hOVA exhibited decreased intensity compared with that of 

pOVA, indicating a markedly decreased amount of the α-helix. Likewise, the far-UV CD spectrum of hLYZ 

had decreased intensity compared with that of pLYZ. The near-UV CD spectra of OVA and LYZ also 

represented the different spectral shapes between before and after heating (Fig. 4.2). These data showed that 

heat treatment disrupted the secondary and tertiary structures of the proteins. The structures of hOVA and 

hLYZ did not undergo additional changes at ambient temperature for one day. 

Figure 4.1B shows the SDS-PAGE data of pOVA, hOVA, pLYZ, and hLYZ under non-reducing 

conditions. The pOVA solution contained a monomeric form divided into two bands, and a small amount of 

dimer was observed on SDS-PAGE, which is similar to previous findings that OVA has multiple molecular 

species due to phosphorylation and glycosylation [14]. Levels of the multimers of hOVA were increased 

compared with those of pOVA. pLYZ solution contained only a monomer observed by SDS-PAGE. By contrast, 

the hLYZ solution contained multimers as observed via SDS-PAGE.  

Figure 4.1C and 4.1D shows the size exclusion chromatograms (SEC) of the soluble fractions of pOVA, 

hOVA, pLYZ, and hLYZ. Similar to SDS-PAGE, monomers and multimers were observed in both pOVA and 

hOVA via SEC. The chromatogram for hOVA revealed a broad peak at 7–11 min for unfolded OVA and a sharp 

peak around 10 min for native OVA. An analysis of the peak area of the chromatogram showed that the hOVA 

solution consisted of the native, soluble unfolded, and aggregated states at 10, 75, and 15%, respectively. In 

the chromatogram for hLYZ, the monomer peak dramatically decreased to 5% compared with that of pLYZ. 

The monomer was clearly observed via SDS-PAGE (Fig. 4.1B). This inconsistency is not surprising because 

the unfolded LYZ molecules adsorb onto the matrices in the column due to surface hydrophobicity, making 

them undetectable by SEC. 
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Figure 4.1 Physicochemical properties of the solutions of pristine ovalbumin (pOVA), heated ovalbumin (hOVA), 
pristine lysozyme (pLYZ), and heated lysozyme (hLYZ). (A) The far-UV circular dichroism spectra. (B) Sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing conditions. (C and D) Size exclusion 
chromatograms of the soluble fractions of the samples. (E) Intrinsic fluorescence. (F) ANS fluorescence. (G) ζ-

potential. (H) Turbidity. The hOVA (broken red line or open squares) and hLYZ (broken blue line or open circles) 
solutions were generated by heating the pOVA (solid red line or closed squares) and pLYZ solutions (solid blue 
line or closed circles), respectively, at 80°C for 30 min. 
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Figure 4.2 The near-UV CD spectra of pOVA, hOVA, pLYZ and hLYZ at pH 8. The samples contain 0.5 mg/mL 

protein. 

 

Next, the differences of the physicochemical properties of OVA and LYZ before and after heating were 

evaluated using intrinsic (Fig. 4.1E) and ANS fluorescence spectra (Fig. 4.1F). Upon heat treatment, the peak 

wavelength of the intrinsic fluorescence of OVA and LYZ shifted toward the long wavelength side. The 

intensity of ANS fluorescence was significantly increased following heat treatment of both OVA and LYZ, and 

the peak wavelength shifted toward the short wavelength side. These fluorescence data show that the 

hydrophobicity of the protein surface was increased by heat treatment.  

Figure 4.1G shows the pH dependence of the ζ-potential of pOVA, hOVA, pLYZ, and hLYZ. The 

absolute values of the ζ-potential of proteins increased at pH values away from the isoelectric point. However, 

heat treatment did not strongly affect the isoelectric point of the proteins. It is considered that an increase in 

the density of charged residues on the protein surface is due to thermal unfolding and misfolding during heating 

and cooling, resulting in the redistribution of counterions on the protein surface [17, 18]. 

Finally, the colloidal stability of OVA and LYZ before and after heating was investigated by turbidity. 

Figure 4.1H shows the pH dependence of the turbidity of the protein solutions as monitored by transmittance. 

The pOVA and pLYZ solutions were also transparent over the pH range of 3–12. hOVA and hLYZ were 

transparent at neutral pH but cloudy near their respective isoelectric points, as hOVA and hLYZ have 

hydrophobic patches on their surfaces following heat treatment, resulting in the aggregation-prone state. 

Taken together, the protein molecules contained in the hOVA and hLYZ solutions are soluble at neutral 

pH with increased surface hydrophobicity and electrostatic potential. These results indicate that OVA and LYZ 
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molecules in the hOVA and hLYZ solutions have different surface properties from these in the pOVA and pLYZ 

solutions, which probably promoted the spontaneous assembly of complexes by the mixture of OVA and LYZ. 

 

pH	sensitivity	of	spontaneous	OVA/LYZ	association	

Coacervation occurs over the pH range between the isoelectric points of macromolecules [6, 11]. The 

secondary and tertiary structures of pOVA, hOVA, pLYZ, and hLYZ were maintained over a wide pH range 

except for pH 12 (Fig. 4.3); Thus, the effect of pH shift on protein structure was neglectable. The turbidity of 

the pOVA/pLYZ solution increased at pH 6–10 with decreases in the soluble concentrations of OVA and LYZ 

(Fig. 4.4A). The greatest turbidity was observed at pH 10, and the soluble concentrations of OVA and LYZ 

reached their nadirs of 45% at pH 9 and 55% at pH 10, respectively. With further increase of the pH above 11, 

LYZ slightly precipitated due to the decrease in the electrostatic repulsion between LYZ molecules.  

The mixture of hOVA/pLYZ displayed increased turbidity at pH 4–11 (Fig. 4.4B). Its turbidity was 

higher than that of the pOVA/pLYZ solution, indicating that more complexes were formed. At pH 4, the soluble 

concentration of LYZ remained at 100% despite the increased turbidity, indicating that the unfolded OVA itself 

precipitates due to its isoelectric point (Fig. 4.1E). The soluble concentration of hOVA in the hOVA/pLYZ 

sample reached its nadir at pH values between 4 and 10, which was different from the findings for the 

pOVA/pLYZ sample. By contrast, the pH dependence of the soluble LYZ concentration in the hOVA/pLYZ 

solution was similar to that for the pOVA/pLYZ solution, although the concentration decreased to 8% at pH 

10. These data indicate that both soluble unfolded and aggregated OVA are more prone to form complexes 

with native LYZ than native OVA. 

The turbidity of the pOVA/hLYZ mixture (Fig. 4.4C) was similar to that of hOVA/pLYZ (Fig. 4.4B). 

However, the soluble concentrations of LYZ in the pOVA/hLYZ mixture displayed a different pattern from 

that in hOVA/pLYZ mixture. The soluble concentrations of LYZ in the pOVA/hLYZ mixture were nearly zero 

over the pH range of 3–11 because of undetectability of unfolded LYZ according to SEC.  

From these results, two features were found regarding the association between OVA and LYZ. (i) OVA 

and LYZ spontaneously associated and precipitated at pH values between the isoelectric points of the 

respective proteins, indicating that electrostatic interactions play an essential role in the spontaneous 

association. It is well known that protein–protein charge compensation and electroneutrality are general trends 

of these associations [19]. (ii) Unfolded proteins have greater ability to form complexes with opposite proteins 
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than native proteins, indicating that hydrophobic interactions also play an important role in the spontaneous 

association of unfolded proteins with opposite native proteins. Subsequently, these driving forces were 

analyzed using additives. 

 

 

Figure 4.3 The far-UV and near-UV CD spectra of pOVA, hOVA, pLYZ and hLYZ at various pH values. The 
samples contain 0.5 mg/mL protein and adjusted by small amount of NaOH or HCl at pH 3 (red), pH 5 (orange), 
pH 8 (green), pH 10 (blue), and pH 12 (purple). 

 

 

Figure 4.4 pH dependence of the complex. Turbidity (left axis, black circles) and solubility (right axis) of OVA 
(red squares) and LYZ (blue triangles) as a function of pH value were plotted in the figures. (A) pOVA/pLYZ; 
(B) hOVA/pLYZ; (C) pOVA/hLYZ. 
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Electrostatic	interactions	evaluated	using	the	electrostatic	shielding	effect	of	salts	

An electrostatic interaction between protein molecules is attenuated by the electrostatic shielding effect of ions. 

By contrast, the specific binding of ions to a protein is known as the Hofmeister series [20]. The 

physicochemical properties of the protein surface generally influence the binding of ions with proteins, 

resulting in the electrostatic shielding effect; i.e., kosmotropes are prone to be excluded on the protein surface, 

whereas chaotropes are prone to bind to the protein surface [21]. In this experiment, I selected NaCl as the 

standard ion, NaF as the kosmotrope, and ArgHCl as the chaotrope. It is noted that the addition of salts did not 

affect the secondary and tertiary structures of proteins (Fig. 4.5). 

 

 

Figure 4.5 The far-UV and near-UV CD spectra of pOVA, hOVA, pLYZ and hLYZ at pH 8 in the presence of 

additives. The samples contain 0.5 mg/mL protein without (black) or with 200 mM NaF (blue), NaCl (green), 
ArgHCl (red) or 3 M urea (orange). 

 

 

The complexes formed in the pOVA/pLYZ solution were composed mainly of monomeric OVA and 

LYZ as observed by SDS-PAGE (Fig. 4.6A). No complexes were formed in pOVA/pLYZ solution in the 

presence of NaCl at concentrations of 25 mM or more. The pOVA/pLYZ solutions were apparently transparent 

even in the presence of 25 mM of any additives (Fig. 4.6B), and the soluble concentration of OVA and LYZ 

reached 100% (Fig. 4.6C). These results indicate that electrostatic interactions are responsible for the 
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association of native OVA and native LYZ because all salts at 25 mM prevented complex formation. 

Furthermore, ArgHCl had a slightly stronger inhibitory effect on complex formation than NaCl and NaF. This 

is natural because ArgHCl is a chaotrope that suppresses protein aggregation. 

The complexes formed in the hOVA/pLYZ solution consisted of various sizes of unfolded OVA and 

native LYZ (Fig. 4.6D). The whole bands of OVA were faint in the presence of 100 mM NaCl, and the bands 

of both OVA and LYZ disappeared in the presence of 200 mM NaCl. hOVA/pLYZ solutions containing at least 

125 mM NaCl were transparent (Fig. 4.6E). The turbidities of hOVA/pLYZ were in the order of 

ArgHCl > NaCl > NaF. Corresponding to the turbidity, the soluble protein concentration of the hOVA/pLYZ 

solution reached 100% at 100 mM ArgHCl and 150 mM NaCl (Fig. 4.6F). The addition of NaF did not 

sufficiently inhibit the association even at 200 mM despite the absence of turbidity. 

The SDS-PAGE pattern of the hOVA/pLYZ solution was clearly different from that of the pOVA/pLYZ 

solution (Fig. 4.6G). Almost all of the OVA and some of the LYZ were present in the complexes formed in the 

hOVA/pLYZ solution. The amount of proteins in the complexes decreased with increasing concentrations of 

NaCl over the range of 0–100 mM (Figs. 4.6G and 4.6H). Further increases of the NaCl concentration resulted 

in slight increases in the turbidity of the pOVA/hLYZ solution (Fig. 4.6H). Conversely, in the presence of NaF 

or ArgHCl, the turbidity decreased monotonously with increasing concentrations of the additives (Fig. 4.6H). 

ArgHCl most effectively decreased the turbidity of the hOVA/pLYZ solution among the additives tested. It has 

been reported that chaotropic anions at several hundred millimolar concentrations tend to precipitate LYZ [22]. 

In fact, the turbidity of the hLYZ solution corresponded to that of the pOVA/hLYZ solution in the presence of 

200 mM NaCl, indicating that the unfolded LYZ alone was insolubilized by the salts. By contrast, the soluble 

OVA concentration monotonically increased with increases of the salt concentration (Fig. 4.6I). As the salt 

concentration increased, the unfolded LYZ tended to form precipitates via the salting-out effect with dissolving 

native OVA. 

As shown in Fig. 4.6, a higher salt concentration was required to inhibit the association containing either 

unfolded OVA or LYZ than needed for both native OVA and LYZ. This tendency indicates that electrostatic 

interactions play an important role in the higher stability of complexes of unfolded proteins with opposite 

native proteins. The enhanced electrostatic interaction resulted from the increase in the surface potential of 

OVA and LYZ following heat treatment (Fig. 4.1G). Furthermore, considering that a higher salt concentration 

was required to inhibit complex formation in the hOVA/pLYZ and pOVA/hLYZ solutions than in the 
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pOVA/pLYZ solution, another strong electrostatic interaction may contribute to the association of unfolded 

OVA or LYZ with native LYZ or OVA. One of the candidates is the cation–π interaction, a type of electrostatic 

interaction between conjugated electrons in aromatic moieties and positive charges that is stronger than salt 

bridge charge–charge interactions [23]. In fact, it has been reported that complexes stabilized via cation–π 

interactions exhibit resistance to high salt concentrations [24, 25]. Thus, it is believed that the cation–π 

interaction between aromatic amino acid residues of the unfolded protein molecule and basic amino acid 

residues on the opposite protein molecule contribute to the formation of complexes consisting of unfolded 

OVA or LYZ. 

The difference in the effect of electrostatic shielding depending on the type of salt can be explained by 

the binding ability between the ions and the protein surface [26]. NaF less effectively inhibited the association 

between OVA and LYZ than NaCl in the hOVA/pLYZ and pOVA/hLYZ solutions (Fig. 4.6). By contrast, OVA 

and LYZ tended to be dissolved in the presence of ArgHCl (Fig. 4.6). These data are expected for the 

kosmotropic and chaotropic theories because (i) F− ions as kosmotropes are more strongly excluded from the 

hydrophobic surface than Cl− ions [27] and (ii) Arg molecules as chaotropes are more likely to bind to 

hydrophobic surfaces, especially aromatic moieties, than Na+ ions, resulting in the suppressive effects on 

protein aggregation and adsorption [28–32]. More specifically, the proteins in hOVA and hLYZ have higher 

surface hydrophobicity than those in pOVA and pLYZ, and hence, Cl− and Arg more effectively bind to heated 

proteins than F− and Na+ to cover the hydrophobic surface. Thus, the salts tend to shield the intermolecular 

electrostatic interactions between protein molecules in the order of ArgHCl > NaCl > NaF. 
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Figure 4.6 Complex of OVA and LYZ in the presence of salts. (A–C) pOVA/pLYZ; (D–F) hOVA/pLYZ; (G–I) 
pOVA/hLYZ. The precipitates obtained in the OVA/LYZ solution in the presence of 0–200 mM NaCl analyzed by 
SDS-PAGE with the entire OVA or LYZ solution as controls (A, D, and G), and the turbidity (B, E, and H) and 
soluble concentrations (C, F, and I) of OVA (squares) and LYZ (triangles) as a function of NaF (green), NaCl 
(black), and ArgHCl (red) concentration. 
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Hydrogen	bonding	and	hydrophobic	interaction	evaluated	upon	the	addition	of	urea	

In addition to electrostatic interactions, hydrogen bonding and hydrophobic interactions have been reported to 

contribute to the formation of oppositely charged macromolecule complexes [33, 34]. As heat-treated proteins 

display surface hydrophobicity due to unfolding, hydrophobic interactions are expected to contribute to the 

formation of complexes composed of unfolded proteins (Figs. 4.1E and 4.1F). Urea is a disruptor of hydrogen 

bonding at low concentrations and a suppressor of hydrophobic interaction between protein molecules at high 

concentrations, although whether bonding occurs dominantly via hydrogen bonds or van der Waals interactions 

remains controversial [35–37]. The formation of OVA/LYZ complexes was also assessed according to turbidity 

and soluble protein concentration measurements in the presence of urea. Because urea perturbs protein 

structures at high concentrations, it was added to a concentration of 3 M, which does not affect the structures 

of OVA and LYZ (Fig. 4.5). 

The turbidity of pOVA/pLYZ solution decreased with increasing urea concentrations (Fig. 4.7A). 

Almost all of the OVA and LYZ were steeply dissolved in 1 M urea, which does not influence the tertiary 

structures of OVA and LYZ (data not shown). This result suggests that hydrogen bonding contributes to the 

association of native OVA with native LYZ. Similarly, it was concluded that hydrogen bonding also contributes 

to the formation of complexes between protein and polyelectrolyte using urea in the hundred millimolar range 

[38]. A previous report revealed using Fourier transform infrared spectroscopy that hydrogen bonding 

influenced the formation of complexes consisting of native OVA and LYZ [39].  

The addition of urea to a concentration of no more than 3 M slightly decreased the turbidity and 

increased the soluble protein concentration in the hOVA/pLYZ solution (Fig. 4.7B). The effect of urea on the 

hOVA/pLYZ solution appeared at high concentrations of 1–3 M, as the behavior was distinct from that in the 

pOVA/pLYZ solution (Fig. 4.7A). Similarly, the addition of urea to the pOVA/hLYZ solution gradually 

decreased the turbidity and increased the soluble OVA concentration (Fig. 4.7C). These results indicate that 

both hydrogen bonding and hydrophobic interactions contribute to intermolecular interactions between native 

OVA or LYZ and unfolded LYZ or OVA.  

Several molars of urea both disrupt hydrogen bonds and suppress hydrophobic interactions [40]. These 

data indicate that hydrogen bonding and hydrophobic interactions contribute to the stability of complexes 

consisting of either unfolded OVA or LYZ. This change of dependence on the urea concentration may arise 

from the exposure of a buried hydrophobic region of proteins. The increase in protein surface hydrophobicity 
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stabilized the complexes against urea exposure. These results suggest that intermolecular hydrogen bonding 

and hydrophobic interactions between OVA and LYZ became stronger in the unfolded state than in the native 

state. 

 

Figure 4.7 Complex of OVA and LYZ in the presence of urea. (A) pOVA/pLYZ; (B) hOVA/pLYZ; (C) 
pOVA/hLYZ (C). The figure shows the turbidity (left axis, black circles) and soluble concentrations (right axis) of 

OVA (red squares) and LYZ (blue triangles). 

 

Morphology	of	complexes	consisting	OVA	and	LYZ	

The difference of interactions between the aforementioned proteins affects their microscopic morphology. The 

complexes formed in OVA/LYZ solutions were imaged via phase contrast microscopy, which can be used to 

observe proteins in situ without drying. The observed structures in the pOVA/pLYZ solution were spherical 

droplets with a size of several micrometers (Fig. 4.8A), which is an important feature of coacervates [6]. On 

the contrary, amorphous aggregates with sizes of several tens of micrometers were observed in both the 

hOVA/pLYZ and pOVA/hLYZ solutions (Figs. 4.8B and 4.8C). They were solid-like coaggregates with 

irregular shapes that featured a fractal network structure. It was noted that the observed particles are building 

blocks with a primary microstructure formed in a small amount of solution volume of 1 μL. Therefore, it may 

be expected that large network structures will be observed in a large-scale experimental system. 

Complexes in the solution were observed via microscopy in the distinguishable forms of either 

coacervate or coaggregate. The distinction between coacervate and coaggregate is shown in Figure 4.9. The 

formation of liquid-like coacervates obtained in the pOVA/pLYZ solution has been explained to be driven by 

liquid–liquid phase separation followed by growth via fusion. The complexes consisting of native proteins 

have fluidity due to highly multivalent and reversible electrostatic interactions and hydrogen bonding. 
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Conversely, the solid-like coaggregates obtained in the hOVA/pLYZ and pOVA/hLYZ solutions appeared to 

grow hierarchically via collision and adsorption, suggesting a diffusion-limited reaction. Amorphous 

aggregates of OVA and LYZ have been observed to be formed instantly during co-heating [41, 42]. The 

complexes containing unfolded proteins lost their fluidity due to low-reversibility hydrophobic interactions, 

resulting in an irregular structure. In the same principle, it is thought that the complexes consisting of both 

unfolded proteins (e.g., hOVA/hLYZ system) insolubilize by the additional intermolecular hydrophobic 

interactions, resulting in the formation of amorphous coaggregates. 

 

 

Figure 4.8 Images of OVA/LYZ complexes observed using phase contrast optical micrographs. (A) pOVA/pLYZ; 

(B) hOVA/pLYZ; (C) pOVA/hLYZ. The scale bars represent 50 μm. 

 

 

Figure 4.9 The conceptual diagram of the formation of coacervates vs. coaggregates. 
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Interaction	mode	between	OVA	and	LYZ	

The formation of protein complexes is generally determined by the balance of the enthalpy and entropy of the 

interactions. The enthalpy is related to Coulomb forces, hydrogen bonding, and van der Waals forces, and the 

entropy is related to the release of counterions and hydrophobic effects derived from water structure 

ordering [1]. It has been reported that the coacervate formed by native OVA and native LYZ occurred with 

enthalpically favorable and entropically unfavorable contributions according to calorimetric analysis [39]. 

Native OVA and native LYZ formed coacervates via electrostatic interactions including Coulomb forces and 

counterion release, and hydrogen bonding. In this study, unfolded OVA or LYZ and native LYZ or OVA formed 

complexes throughout hydrophobic interactions. Moreover, heat treatment increased the ζ-potential of proteins, 

leading to enhancement of the electrostatic interactions. 

Sugimoto et al. has reported the binding region between unfolded OVA and native LYZ [43]. In this 

report, a peptide fragment (229 ILELPFASGT MSMLVLLPDE VSGLEQLESIINFEK 263) of the sequence 

in the core region inside the OVA molecule bound strongly to the native LYZ. On the contrary, the peptide 

fragments (112 RNRCKGTDVQAW 123) located on the LYZ surface bind to the native OVA molecule. 

Considering the sequences of the fragments, it is believed that both electrostatic and hydrophobic interactions 

occurred between unfolded OVA and native LYZ. In addition, a peptide fragment (54 GILQINSRW 62) of the 

sequence inside LYZ tended to bind to native OVA. As the peptide has high hydrophobicity, it is supported the 

assumption that hydrophobic interactions occurred between native OVA and unfolded LYZ. 

 

Fate	of	liquid-like	coacervate	and	solid-like	coaggregate	

Similar to the coacervation of native proteins, it is believed that unfolded proteins naturally assemble into 

liquid-like coacervates and/or solid-like coaggregates. Under the association process, the morphology of 

complexes as coacervates or coaggregates depends on the strength and mode of the interaction between two 

macromolecules. Polyelectrolytes usually form coacervates with a liquid-like spherical structure, but densely-

charged polyelectrolytes form aggregates with a random structure [44]. Coacervates of poly-Glu and poly-Lys 

transform into aggregates depending on the degree of hydrophobic modification of poly-Glu [25]. LYZ and 

apo α-lactalbumin formed amorphous precipitates at low temperature (5°C), whereas they formed coacervates 

at 45°C, at which the apo α-lactalbumin adopts a molten globule state with a more flexible structure [9, 45, 46]. 

The uptake of small reactive molecules into complexes favored the formation of amorphous aggregates rather 
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than coacervates due to the induction of charge reduction and self-aggregation [47, 48]. Consequently, 

excessively strong electrostatic and hydrophobic interactions lead to the irregular structure of coaggregates 

that can not undergo subsequent structural rearrangements. Contrarily, the flexibility of macromolecules plays 

an important role in coacervate structures with liquid-like spherical shapes. However, it is not fully understood 

about the properties of unfolded proteins that govern the stoichiometry of protein composition and the stability 

of coaggregates. Furthermore, because the solution containing the complexes of OVA and LYZ becomes cloudy, 

it is difficult to analyze the protein structure in the complexes by spectroscopic experiments. It is a fundamental 

challenge to clarify the three-dimensional structure of proteins constituting the complex, compared with that 

in the dispersed state. These issues should be clarified in the future. 

 

 

4.4	Conclusion	

The spontaneous association of oppositely charged proteins was predominantly driven by electrostatic 

interactions in low ionic strength solutions, regardless of the degree of unfolding. Hydrogen bonding played a 

secondary role in the complexes of OVA and LYZ in the native state. Hydrophobic interactions influenced 

complex formation between OVA and LYZ in the unfolded state. It is noted that coacervation or aggregation 

by many types of unfolded proteins is generally well suppressed by a chaotropic salt of ArgHCl. The 

coacervate in the pOVA/pLYZ solution was sensitive to ionic strength, whereas the coaggregates in the 

hOVA/pLYZ and pOVA/hLYZ solutions had amorphous shapes due to the hydrophobic interactions. The 

simple system using OVA and LYZ has improved our understanding of the difference between reversible 

coacervates caused by the liquid–liquid phase separation of proteins and irreversible aggregates caused by 

insolubilization. In addition, this paper also proposes the value of small molecular additives that can be used 

to understand the interactions between protein molecules. Adequate control of the state of protein structures is 

needed to construct the building blocks of protein-based biomaterials for food industrial and pharmacological 

fields. 
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Chapter	5	General	Discussion	

As heteroprotein systems, whole egg white proteins (EWPs) and binary systems with oppositely charged 

proteins were selected. This chapter describes the features of protein aggregation at a high concentration and 

in a multicomponent protein system compared to the diluted single component ideal protein solution system 

typically used in conventional protein aggregation studies. 

Hen egg whites contain more than 40 kinds of protein with concentrations reaching 100 mg/mL. 

Although highly concentrated protein mixtures are common in the food industry, the effects of a crowded 

environment containing salts on protein stability and aggregation have only been investigated using pure 

protein solutions. In Chapter 2, I investigated the thermal aggregation of EWP at various concentrations in the 

presence of inorganic salts by solubility measurements and SDS-PAGE. EWP at 1 mg/mL formed aggregates 

with increasing temperature above 55°C; the aggregation temperatures increased in the presence of inorganic 

salt with the Hofmeister series. Namely, the chaotrope 0.5 M NaSCN completely suppressed the thermal 

aggregation of 1 mg/mL EWP. As the protein concentration increased, NaSCN unexpectedly enhanced the 

protein aggregation; the aggregation temperatures of 10 and 100 mg/mL EWP solutions dramatically decreased 

at 62°C and 47°C, respectively. This decrease in aggregation temperatures due to the chaotrope was described 

by the excluded volume effect, based on a comparative experiment using Ficoll 70 as a neutral crowder. By 

contrast, the kosmotrope Na2SO4 did not affect the aggregation temperature at concentrations from 1 to 

100 mg/mL EWPs. 

Ovotransferrin (OVT) is the main protein component of egg white responsible for initial gelation due to 

its high thermal susceptibility. Coaggregation of lysozyme (LYZ) is involved in OVT aggregate formation at 

low temperatures during pasteurization. Undesirable formation of aggregates limits the degree of thermal 

processing that can be applied to egg white products. However, the characteristics of coaggregates of OVT and 

LYZ have not been elucidated. In Chapter 3.1, I determined the thermal coaggregation process of OVT and 

LYZ in terms of protein composition, structure, intermolecular forces, and morphology. The amount of LYZ 

involved in coaggregates was dependent on the amount of aggregated OVT regardless of the mixing ratio. 

Native LYZ had the capability to precipitate soluble OVT aggregates by non-covalent association. The 

coaggregates of OVT and LYZ formed colloidal particles with a large network, which was not observed in 

systems consisting of either protein individually. The hierarchical coaggregation of OVT and LYZ started with 
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the aggregation of OVT involving LYZ non-covalently, which suppressed electrostatic repulsion between 

soluble OVT aggregates, followed by the growth of insoluble aggregates by disulfide bond crosslinkage 

between the soluble aggregates. 

Hen egg white has excellent heat-induced gelation properties. However, the molecular mechanisms 

underlying the aggregation of EWPs remain unclear due to their complex composition. In Chapter 3.2, I 

focused on thermal coaggregation of the main EWP component, namely ovalbumin (OVA), with well studied 

LYZ in terms of protein composition, aggregation rate, intermolecular forces, and morphology. Size exclusion 

chromatographic analysis of an OVA–LYZ mixture by heat treatment at 70°C indicated that the aggregation 

rate constant of LYZ increased 64-fold in the presence of equimolar OVA. By contrast, the aggregation rate of 

OVA was not dependent on the presence of LYZ. Enzyme assay and SDS-PAGE analysis showed that LYZ 

forms precipitates with unfolded OVA via reversible non-covalent interactions and irreversible disulfide bonds. 

The unfolding of OVA triggers coaggregation by exposure of the aggregation-prone region, followed by 

disulfide bond exchange between OVA and LYZ. LYZ links covalently to small OVA aggregates through 

disulfide bonds, leading to the hierarchical growth of OVA–LYZ aggregates with larger networks.  

Coacervates are self-assemblies formed by oppositely charged macromolecules in aqueous solution. 

Although coacervates usually take a homogeneous spherical shape with flowability, they have the potential to 

adopt unexpected macroscopic structures. In Chapter 4, I investigated the influence of the interaction mode 

and morphology on unfolded proteins constituting coacervates and coaggregates using OVA and LYZ as model 

systems. The unfolded proteins were prepared via heating at 80°C and then incubated at ambient temperature. 

OVA and LYZ formed complexes at pH values between their respective isoelectric points in both their native 

and unfolded states. Unfolded proteins were more prone to form complexes than native proteins due to 

hydrophobic interactions, rather than electrostatic attraction. Interestingly, native OVA and LYZ formed liquid-

like coacervates with spherical shapes, whereas unfolded OVA and LYZ formed solid-like coaggregates with 

amorphous structures. Understanding the difference between coacervates and coaggregates can provide 

fundamental information on the differences between amorphous aggregation and liquid–liquid phase 

separation of proteins. 

Here, I describe the differences in protein aggregation between single and binary systems. A protein has 

a positive or negative net charge at a specific pH determined by its intrinsic isoelectric point. Therefore, protein 

molecules are generally repulsed in solution. By contrast, some proteins attract each other in solution at a pH 
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between their respective isoelectric points. Thus, aggregation in a single protein system is caused by 

hydrophobic attraction and electrostatic, whereas coaggregation of two types of proteins occurs via 

hydrophobic and electrostatic attraction. 

Coaggregation of OVA and LYZ was contributed by the effect of electrostatic attraction with 

hydrophobic interaction. OVA was more unstable than LYZ when treated with heat. The onset of coaggregation 

of OVA and LYZ occurred via the formation of small aggregates of OVA that associated with native LYZ. 

Similar coaggregation was shown to occur with OVT and LYZ. It should be emphasized that coaggregate 

nucleation occurs via electrostatic attraction of oppositely charged proteins, which is quite different from 

aggregation in a single protein system. It was noted that native OVA and native OVT are not capable of 

association with native LYZ at ambient temperatures in 50 mM buffer solution at neutral pH. Thus, the 

unfolding of protein is indispensable for coaggregation. Interestingly, (i) native OVA and native LYZ did not 

form a complex in more than 25 mM NaCl, (ii) unfolded OVA and native LYZ formed a complex under the 

same conditions and in buffer solution, and (iii) more than 150 mM NaCl or 100 mM Arg was necessary for 

dissociation between unfolded OVA and native LYZ, suggesting that both electrostatic attraction and 

hydrophobic interactions between proteins play indispensable roles in the formation of the OVA–LYZ complex. 

Thus, it was concluded that nucleation of coaggregation drives both electrostatic and hydrophobic interactions. 

As mentioned above, coaggregation of two oppositely charged proteins is markedly different from 

aggregation of a single protein. Relatively unstable proteins unfold, even if the structures are slightly perturbed, 

followed by rapid formation of aggregation nuclei via the combination of electrostatic attraction and 

hydrophobic interaction, even when the opposite protein is in its native state. During this process, electrostatic 

attraction plays an important role in coaggregation of different proteins in solution. Coaggregate nuclei are 

composed of oppositely charged proteins associated with other coaggregates. Protein–protein charge 

compensation and electroneutrality result in colloidal instability of coaggregates, leading to rapid growth of 

the coarse fractal structure network via additional disulfide crosslinkage. 
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Chapter	6	Concluding	Remarks	

This thesis describes thermal coaggregation processes and their driving forces in a heterogeneous protein 

system. Chapter 2 showed that the rate-limiting step of thermal aggregation is changed from the association of 

unfolded protein molecules at a low protein concentration to the unfolding of the protein molecules to a high 

protein concentration. This protein concentration dependent behavior was similar in heterogeneous and single 

protein systems. The unexpected finding that a chaotrope enhanced protein aggregation at a high concentration 

provides new insight into the aggregation phenomenon with the Hofmeister effect, as well as the crude state 

of highly concentrated proteins. Chapter 3 described the thermal coaggregation processes of the OVT–LYZ 

and OVA–LYZ systems. Thermal unfolding of OVT and OVA, which are more thermolabile than LYZ, 

triggered the coaggregation. The unfolded OVT and OVA had a capability for native LYZ; this reaction is the 

distinguishing step of coaggregation not observed in a single protein system. Chapter 4 clarified the driving 

forces of association of unfolded OVA with native LYZ. Coaggregation was facilitated by electrostatic 

attractions between OVA and LYZ surface net charge and hydrophobic interactions via surfaces exposed from 

inside the OVA molecule. 

One advantage of using EWPs as the model system in these researches was that the results are relevant 

to efficient pasteurization and thermal processing of hen egg whites in food engineering. In recent years, EWP 

has attracted growing attention for its nutritional content as well as an ingredient with desirable textural 

characteristics and health-promoting effects. The coaggregation mechanisms of OVA, OVT, and LYZ can be 

applied to support processing methods of EWPs based on protein science. 

Coaggregation reported in this thesis is an important process across interdisciplinary fields; for example, 

therapy of neurodegenerative diseases caused by protein aggregation in pharmaceutics, the formation of 

aggresomes and granules for protein quality control in cell biology, rigorous purification in biotechnology, and 

optimization of processing in food engineering. This work reviewed interactions driving coaggregation with 

nonspecific protein components in heterogeneous systems that have been previously overlooked. In these 

researches, binary systems composed of globular proteins were adopted. However, intrinsically disordered 

proteins, DNA, and RNA are also representative biomacromolecules. Further elucidation of the interaction 

between nonspecific heterogeneous biomacromolecules will shed light on the mechanisms of coaggregation 

observed in various scenes from fundamental phenomena to industrial problems. 
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