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Abstract 

Thin-film solar cell materials such as CdTe, CIGS, and organic-inorganic perovskite are attracting 

increasing attention owing to their high energy conversion efficiency . However, many of these materials 

contain rare and/or toxic elements. Thus, exploring thin-film solar cell materials that are environmentally 

friendly is of great significance. Among such materials, we focus on semiconducting barium disilicide BaSi2, 

owing to its safe, stable, and abundant element and superior fabrication processes. BaSi2 is a new kind of 

semiconducting material for thin-film solar cell applications, which has a lot of advantages over other solar 

cell materials. BaSi2 has a suitable band gap Eg of 1.3 eV, matching the solar spectrum, and a high optical 

absorption coefficient  of 3  10
4
 cm

1
 at 1.5 eV, which is comparable to CIGS. A long minority-carrier 

lifetime  of approximately 10 s results in a large minority-carrier diffusion length L of approximately 10 

m, which is much larger than the grain size of BaSi2 because of inactive grain boundaries. Moreover, BaSi2 

can be grown epitaxially both on Si(111) and Si(001) substrates by molecular beam epitaxy due to the small 

lattice mismatch. The unique feature of BaSi2 is that large  and L can be utilized simultaneously, indicating 

great potential of BaSi2 as a light absorber layer for thin-film solar cell applications. This thesis aims to 

clarify the transport properties of electron and hole in BaSi2 films and structure design of BaSi2 solar cells.  

These results will benefit the future improvement of BaSi2-based solar cells.  

There are some investigations devoted to the study of BaSi2 basic electronic and optical properties. 

However, at the same time, there is almost the lack of information on its transport properties, which is very 

important for us to get a deeper understanding of BaSi2. Owing to this reason, temperature dependence of 

electron mobility in undoped n-BaSi2 and hole mobility in B-doped p-BaSi2 have been systematically studied 

both experimentally and theoretically. The experimentally obtained temperature dependence of electron 

mobility in the range of 160300 K was found to have a maximum value of 1230 cm
2
/Vs at 218 K, while it 

dropped down to 816 cm
2
/Vs at room temperature RT. This behavior is determined by the delicate balance 

between intergrain boundary scattering and scattering on the phonons, the latter defines the high temperature 

part. The value of 816 cm
2
/Vs at RT is larger than in the other semiconducting silicides. The analysis of the 

experimental temperature dependence of the mobility in the BaSi2 films shows that the hole mobility in 

p-BaSi2 at RT is about one order or four times smaller with respect to the electron mobility in n-BaSi2. The 

hole mobility versus temperature behavior is mainly defined by scattering on phonons and partly by 

scattering on neutral impurity centers. For device applications, where higher hole mobility values are 

desirable, we can suggest using BaSi2 grown on Si(001) substrates rather than Si(111) ones. 

We have achieved p-BaSi2/n-Si heterojunction solar cells on Si(111) substrate, wherein photogenerated 

carriers can be separated effectively according to the band alignment. Associated with the result that p-BaSi2 

films on Si(001) possess better transport properties than that on Si(111), so we try to use Si(001) substrate to 

explore the potential of p-BaSi2/n-Si(001) heterojunction solar cells. Meanwhile, Si(001) substrates are far 

more abundant than Si(111) ones. To attain the favorable features of Si(001) substrates, we first adopted a 

textured Si(001) substrate with {111} facets to server for p-BaSi2/n-Si(001) heterojunction solar cells. The 

reflectance of BaSi2 on the textured substrate was lower than that on the flat substrate, indicating that 

light-trapping took place. After confirming this, p-BaSi2/n-Si heterojunction solar cells were fabricated with 

varying BaSi2 layer thickness d and hole concentration p. These cells exhibited a maximum  of 4.6% with 

an open-circuit voltage VOC of 0.3 V and a short-circuit current density JSC of 27.6 mA/cm
2
 when the p-BaSi2 

layer was 75 nm-thick. The values of VOC and JSC were approximately half of those observed for the devices 

fabricated on the flat Si(111) substrate, which indicated that the BaSi2/Si interfaces was defective. By 



 

II 

performing the high-resolution transmission electron microscopy, dislocations were observed, which may 

form defective centers for minority-carriers. So improved etching technique will be necessary to avoid such 

defects.  

Next, we used a flat n-Si(001) substrate to investigate the potential of Si(001) substrates for the 

p-BaSi2/n-Si heterojunction solar cells because of recent achievements in systems of BaSi2 on Si(001). We 

examined the influence of d and p on the solar cells properties. The p-BaSi2 films were found to be under 

compressive strain in the normal direction and compressive stress in the in-plane direction when d < 60 nm. 

The  reached a maximum value of 9.8% with a JSC of 37.0 mA/cm
2
, a VOC of 0.44V, and a FF of 59.7% with 

d = 40 nm and a p of 1.1  10
18

 cm
3

 for p-BaSi2. These values were comparable to those obtained for devices 

fabricated on Si(111), indicating that Si(001) substrates can also be used for BaSi2 solar cells. 

Our goal is the fabrication of high- BaSi2/c-Si tandem solar cells. Prior to the formation of a BaSi2/c-Si 

tandem solar cell, we aimed to form a p
+
-BaSi2/p

+
-Si tunnel junction (TJ), which is necessary to make the 

electrical contact between BaSi2 and c-Si solar cells sufficiently small. The tunnel properties of the 

p
+
-BaSi2/p

+
-Si junction were confirmed, and the tunnel current density reached 18.3 A/cm

2
 at a Vbias = 1.0 V, 

indicating a sufficient small tunnel resistance. Large photoresponsivity reaching 0.35 A/W at 850 nm at Vbias 

= 1.0 V, which corresponds to an EQE value of 54%, show great promise of BaSi2 on TJ for use in 

BaSi2-homojunction and Si-based tandem solar cells. 

As device simulation software helps us understand and depict the physical processes, and make reliable 

predictions of the device behavior. In order to explore the potential of BaSi2 for solar cell applications, 

n
+
pp

+
-BaSi2 homojunction and BaCxSi2x/c-Si tandem solar cells were proposed and simulated using a 

2-dimensional Silvaco Atlas simulation package. We first present the architecture of the solar cells, 

afterwards, set the d of p-BaSi2 light absorber in a homojunction structure between 0.2 and 10 m to 

investigate its effect on the solar cell performance. The  almost saturated when d  2 m, with a value of 

23.3%. When the Eg of BaCxSi2x was increased up to 1.7 eV, the tandem solar cell showed a maximum  of 

30.3% with a large VOC of 1.94 V.
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Chapter 1 Introduction 

1.1 Introduction of solar cells 

1.1.1 Application of solar cells 

 To meet the continuous increase of human’s energy demand, exploring renewable energy sources, such as 

solar, wind, biomass, hydropower, tides, and geothermal energies, alternative to commonly used fossil fuels, is 

of great importance.[1] Fossil fuels not only constitute a limited energy source, but are also the main reason of 

increased air pollution and global warming. Photovoltaic (PV) technology, which is known for converting 

solar energy into electricity through a semiconducting material, plays a key component of decarbonizing 

electricity.  

The first solar cell, which was created by Charles Fritts in 1883, achieved a power conversion efficiency  

of 12% by covering selenium with a thin layer of gold. In 1954, physicists at Bell Laboratories discovered 

that crystalline silicon c-Si is more efficient than selenium, and created the first practical solar cell with 

improved  of 6%.[2] This discovery led to solar cells capable of powering electrical equipment. After that, the 

PV market is rapidly increasing, especially in recent years. Figure 1.1 presents the global installed capacity of 

solar PV system from 2007 to 2017. In 2017, the total PV global capacity increased to over 400 GW, rose by 

almost 33% compared with the year 2016. The market expansion was mainly due to the increasing 

competitiveness of solar PV combined with the rising demand for electricity in developing countries, as well 

as to the increasing awareness of solar PV’s potential to alleviate pollution, reduce CO2 emissions and 

provide energy access.[3] 

 

 

Fig. 1.1 Global renewable power capacity, 2007-2017.[3] 

 

Si PV modules, consisting of monocrystalline silicon (mono-Si) and polycrystalline silicon (poly-Si) 

technologies, share over 90% of the total commercial market from the satellites to the resident families. The 

rest of the market are composed of the third generation PV technologies which use advanced thin-film solar 

cells modules including cadmium-telluride (CdTe) modules, amorphous Silicon (a-Si) modules, and copper 

indium gallium selenide sulfide Cu(In,Ga)(S,Se)2 (CIGS) modules.[4] They produce a relatively high- for a 

low cost compared to other solar technologies. However, some of them consist of toxic and/or rare elements. 
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So exploring environmental friendly light absorber materials is very essential. There are many researches in 

the field of solar PVs in universities, companies, and research agencies all over the world, who focus on 

making current technology PVs cheaper and more efficient, developing new technologies based on new solar 

cell architectural designs, and exploring new materials for light absorbing. 

1.1.2 Solar cell conversion efficiency 

Solar cell efficiency refers to the portion of energy in the form of sunlight that can be converted via PVs 

into electricity. The  of a solar cell is considered the most important criterion when assessing a solar cell’s 

quality. The most efficient commercially available solar PV module on the market has an  of 22.5%, 

whereas the majority are from 15% to 17% efficiency rating. Most relevant for solar energy conversion is the 

terrestrial solar spectral irradiance on the surface that differs from the extraterrestrial irradiation (AM0) due 

to the effect of filtering by the atmosphere. Air Mass 1.5 Global (AM1.5G) describes the radiation arriving at 

earth’s surface after passing through 1.5 times a standard air mass, with the sun at 48.2 from zenith with 

integrated power density of 100 mW/cm
2
, including both direct and diffuse radiation. This is the power 

density that is usually referred to as "one sun". The AM also depends on the position of the sun and can be 

defined as follows: 

   
 

       
           (1.1) 

where   is the elevation angle of the Sun as shown in Fig. 1.2.[5] AM1.5G is used as the standard spectral 

distribution of light to measure a solar cell's efficiency. Generally, 99% of the light that reaches the Earth's 

surface is at wavelengths of less than 2500 nm in the AM1.5G spectrum, and 88% is less than 1350 nm. To 

be efficient, a solar cell should be able to absorb the largest number of photons possible. Figure 1.3 compares 

the AM0 and AM1.5G spectra.[6]  

 

 

Fig. 1.2 Illustration of the air mass concept.[6] 

 

Fig. 1.3 AM0 and AM1.5G solar irradiance spectra. 
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Figure 1.4 shows recent best research-cell efficiencies in the world, measured under standard AM1.5G 

illumination, which is summarized by national renewable energy laboratory (NREL). Single gallium arsenide 

(GaAs) junction solar cells ( = 28.9%) are approaching the theoretical limiting power efficiency of 33.7%, 

noted as the Shockley-Queisser limit.[7] The maximum  of single c-Si solar cells is 27.6% with 

concentrated area. As for thin-film solar cells, CIGS solar cells reach a maximum  of 23.3%, showing great 

potential compared with c-Si solar cells. Besides, organic-inorganic hybrid perovskite CH3NH3PbI3 solar cell 

is a rising star in solar cell family. Its efficiency increased dramatically from 3.8% to 23.3% in a few years, 

catching up with CIGS solar cells. 

 

 

Fig. 1.4 Recent best research-cell efficiencies in the world. 

 

1.1.3 Solar cell materials 

Many solar cell materials show varying efficiencies and costs. Materials that are widely investigated for 

solar cell applications include silicon (mono-Si, and poly-Si), CdTe, CIGS, a-Si, GaAs, perovskite, and 

organic materials. Each of them has its own merits, so it is important to make their properties clear. 

a) c-Si solar cells 

c-Si has an indirect band gap of 1.12 eV with an absorption coefficient () of ~ 10
3
 cm

1
 at 1.5 eV.[8] 

The minority-carrier diffusion length (L) is over 100 m in intrinsic Si wafer. Since the first c-Si panel was 

created in 1954 with an  of 6%, it became the most popular material for solar cell applications. According 

to the type of wafer, it can be divided into mono-Si and poly-Si solar cells. Mono-Si is often made through 

Czochralski process, and the solar cells possess higher efficiency associated with higher cost. Poly-Si is 

made from cast square ingots, which are made from large molten silicon with carefully cooled and solidified. 

Poly-Si solar cells are cheaper than mono-Si solar cells, but less efficient.  

As shown in Fig. 1.5, the structure of c-Si solar cells developed from simple Si-homojunction to more 

efficient structures such as tunnel oxide passivated contact (TOPCon), interdigitated back contact (IBC), 

interdigitated back contact silicon heterojunction (IBC-SHJ), and passivated emitter and rear cell (PERC). 

Recently, an  of 26.3% IBC-SHJ c-Si solar cell was obtained by Kaneka corporation, Japan.[9] In this 

structure, Si heterojunctions rather than homojunctions at back side were used for effectively extracting 
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photogenerated carriers. Meanwhile, carrier recombination was maximally avoided and minority-carrier 

lifetime () of Si wafer was preserved. This result confirms strong potential of silicon PVs to exceed 

27%.[10] 

 

 

Fig 1.5. Structures of (A) TOPCon c-Si, (B) IBC c-Si, (C) IBC-SHJ c-Si, and (D) PERC mc-Si solar 

cells.[10] 

 

b) CdTe solar cells 

CdTe is a binary semiconductor with a cubic zinc blende crystal structure and a near-ideal Eg of 1.43 eV 

that the steep absorption coefficient versus energy enables very good light collection.[11] It is a stable 

compound material that can be produced from a wide variety of methods, including evaporation, sputtering, 

closed-space sublimation and so on. A thin-film of CdTe is adequate for producing high efficiency cells if 

both bulk and surface recombination are curbed. The structure of a conventional CdTe solar cell is shown in 

Fig. 1.6. Cells are typically grown in a superstrate configuration starting from a glass substrate coated with 

fluorine-doped tin oxide (FTO). The subsequent layer stack usually consists of chemical bath deposited 

cadmium sulfide (CdS), followed by evaporated 23 m-thick CdTe and a metal back contact such as Al or 

Ti, in some cases with a copper zinc telluride (CuZnTe) interfacial layer between the metal and the CdTe. 

 

 

Fig. 1.6 Typical structure of a CdTe solar cell. 

 

The first significant laboratory CdTe solar cell was reported in 1972 by Bonnet and Rabnehorst who 

developed a thin-film graded gap CdTe-CdS p-n heterojunction solar cell with 6% efficiency. This cell was 
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created in a three-step process including high temperature vapor phase deposition of CdTe and high vacuum 

evaporation of CdS.[12] By inserting a cadmium sulfur telluride (CdSTe) film between CdTe and metal 

contact and controlling the growth condition of CdTe films with an effective acceptor doping concentration 

of 10
17

 cm
-3

, the interface recombination velocity was significantly minimized. In 2016, the highest reported 

certified efficiency for CdTe reached 22.1%, fabricated by First Solar Inc.[13,14] 

CdTe solar panel is the first thin-film PV technology to exceed c-Si PVs in cheapness. There are some 

advantages over conventional c-Si technology, including an ideal band gap for light absorbing and easier 

fabrication process on glass. CdTe absorbs light close to the ideal wavelength, capturing energy at shorter 

wavelength. And the  of CdTe is greater than c-Si. CdTe solar panel can be fabricated through a continuous 

manufacturing process, creating a complete solar module in less than 2.5 h. Certainly, attention should be 

paid to its drawbacks. CdTe solar cells have comparatively low open-circuit voltage (VOC) (maximum of 0.9 

V) compared with its band gap. Recombination losses in the crystal grains and at the interfaces result in high 

voltage loss of about 37%.[15] In addition, the use of the toxic element Cd and the scarcity of Te is also a 

concern. So recycling systems should be set up for commercial CdTe modules. 

 

c) CIGS solar cells 

CIGS is a compound semiconductor with a chalcopyrite structure and tunable band gaps between 1.0 to 

2.4 eV by varying the In/Ga and Se/S ratios. The adjustable Eg of 1.4~1.6 eV is suitable for light absorbing. 

CIGS is one of the three mainstream thin-film PV technologies associated with CdTe, and a-Si PVs. The 

direct Eg and the large  reaching about 10
4
 cm

1
 at 1.5 eV make it much thinner for solar cell applications 

compared with c-Si solar cells.[16] So it is thin enough to be flexible, allowing it to be deposited on flexible 

substrates. The other attractive feature is that the polycrystalline films of CIGS have the same optical 

properties with the single crystal ones, and higher  can be obtained, where grain boundaries (GBs) are 

self-passivated by considering the segregation of an insulating material that prevents the recombination of the 

photogenerated carriers in CIGS.[17] In general, GBs act as recombination centers for polycrystalline 

materials, however, the recombination of minority-carriers at the GBs in CIGS is not strong.[18] This 

property makes the voltage loss of 16% for record-CIGS solar cell which is the minimum among various 

solar cells.  

An  of 4.5% was achieved for the first thin-film CIGS solar cells by L. Kazmerski.[19] The structure is 

given in Fig. 1.7. Polycrystalline CIGS films were formed by sputtering or evaporation from the constituent 

elements and were typically deposited onto a molybdenum (Mo) film which was sputtered on a soda lime 

glass substrate. The typical active layer thickness d was about 23 m. Sodium diffusing from the glass 

substrate into the CIGS layer has been found to play a key role in passivating defects in the CIGS layer.[20] 

Then it was covered by a chemical-bath deposition of CdS film to form a heterojunction, followed by an 

intrinsic ZnO buffer layer, and a transparent ZnO:Al conducting layer. In some recent high- devices, the 

CdS layer was replaced by the more transparent ZnOxS1–x layer.[21] The record  has steadily increased over 

the past decade, with the present record value of 22.9%.[22] 

The tunable band gap makes CIGS an interesting candidate for tandem solar cells, acting as top-cell in 

CIGS/c-Si tandem solar cell or bottom-cell in perovskite/CIGS tandem solar cells.[23,24] However, large 

band gap (Ga-rich) CIGS solar cells have not yielded sufficient efficiency for a CIGS/Si tandem solar cell to 

beat the record c-Si solar cell. The composition of rare metals In and Ga limits the utilization of CIGS. And 

substituting In and Ga by abundant Zn and Sn, respectively, for Cu(Zn,Sn)(S,Se)2 (CZTS) solar cells is a hot 

research topic with the highest  of 12.6%.[25]  
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Fig. 1.7 Typical structure of a CIGS solar cell. 

 

d) a-Si solar cells 

An a-Si solar cell is made of amorphous or microcrystalline Si and its basic electronic structure is the p-i-n 

junction. One of the attractive features of a-Si is that it has a direct Eg with a value of 1.7 eV, which allows a 

significant fraction of sunlight to be absorbed within a thin layer of a few micrometers.[11] One disadvantage 

of a-Si is the short orders and the dangling bonds, which result in short L, limiting the performance of solar cell. 

The role of hydrogen in reducing dangling bonds by several orders of magnitude was verified by W. Paul in 

1980s.[26] Due to the improved properties of a-Si:H, it is widely used for solar cells.  

The first a-Si:H solar cell, with an  of 2.4%, was fabricated by Clarlson and Wronski in 1976 at RCA 

laboratory.[27] After introducing a-Si:H and light trapping features, the achievement of 9.3% efficiency was 

confirmed in 1982.[28] In the early of 1990s, researchers placed efforts on the development of multi-junction 

cells and modules, that solar spectrum can be used as much as possible. The most successful one for a-Si solar 

cells is the heterojunction with intrinsic thin-layer (HIT) solar cell fabricated by Sanyo Electric Co., Ltd, with 

an  of 25.6%. Figure 1.8 shows the structure of HIT solar cells. An intrinsic a-Si layer, a doped a-Si layer, and 

a TCO layer are deposited on both sides of a mono-Si substrate. After that, metal grid electrodes are fabricated 

using a screen printing method on both sides of the doped a-Si layer. By inserting the high-quality intrinsic a-Si 

layer, the defects on the c-Si surface can be effectively passivated, resulting in a low voltage loss.  

 

 

 

Fig. 1.8 Structure of HIT solar cells made by Sanyo. 
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e) GaAs solar cells 

GaAs has a small charge carrier effective mass and a direct Eg of 1.42 eV, close to the optimum value for 

solar cell applications. Because of the large , the cell thickness can be kept relatively small (∼2 m) to 

harvest the solar spectrum up to the band gap.[29] The wide Eg and low-defect crystal structure also result in a 

lower leakage current and more rapid voltage buildup under illumination.[30] 

The first known operational use of GaAs solar cells in space was for the Venera 3 mission, launched in 

1965. The GaAs solar cells, manufactured by Kvant, were chosen because of their higher performance in high 

temperature environments. New technologies have led to improvements in the solar cell structure parameters. 

In the 1990s, GaAs solar cells took over from c-Si as the cell type most commonly used for photovoltaic arrays 

for satellite applications. Later, dual- and triple-junction solar cells based on GaAs with germanium and 

indium gallium phosphide layers were developed as the basis of a triple-junction solar cell, which held a record 

 of over 32% and can operate also with light as concentrated as 2,000 suns.[31] The record  of 28.9% for a 

single-junction solar cell under standard AM1.5G illumination has been achieved, with a 

n-GaAs/p-Al0.3Ga0.7As junction geometry with large-Eg window layers that serve to retain minority carriers in 

the GaAs active layer as shown in Fig. 1.9.[10,14] The GaAs heterostructure is epitaxially grown using 

chemical vapor deposition (CVD), which is a relatively energy-intensive process. The VOC of the 

record-efficiency cell is very high.[10] 

 

 

Fig. 1.9 Structure of state-of-the-art GaAs solar cells.[10] 

 

Whereas III-V solar cells have traditionally been used in niche markets requiring high efficiency on a 

small area, such as space technology, the newly developed layer-transfer technology enables fabrication of 

large-area flexible GaAs technology at reduced cost for a much broader range of applications. Encapsulation 

and recycling of commercial GaAs modules is very important because of the use of the toxic element As.[32] 

 

f) Perovskite solar cells 

Perovskite solar cell is a rising star in PV family and it is a type of solar cell including a perovskite 

structured compound, most commonly a hybrid organic-inorganic lead halide-based material, as the 

light-harvesting active layer.[33] These materials have the general formula ABX3, where A is an organic cation 

(most often methylammonium, CH3NH3), B is an inorganic cation (usually Pb), and X is a halide (typically I, 

often with a small fraction of Cl or Br: CH3NH3Pb(I,Cl,Br)3). Depending on the halide used, the band gap can 

be continuously tuned from 1.5 eV (pure I) to 3.2 eV (pure Cl), with the smaller-Eg materials providing better 

solar cell efficiencies.[10] This material also displays a diffusion length for both holes and electrons of over 1 

m.[34] The long diffusion length means that these materials can function effectively in a thin-film structure, 

and that charges can transport in the perovskite itself over long distances. It has recently been reported that 

charges are predominantly present as free electrons and holes, rather than as bound excitons, since the exciton 
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binding energy is low enough to enable charge separation at room temperature (RT).[35,36] 

First attempt of perovskite solar cell led to an  of 3.8% with a thin layer of perovskite on mesoporous 

TiO2 as electron-collector.[37] Because a liquid corrosive electrolyte was used, the cell was only stable for a 

matter of minutes. Park et al. improved upon this in 2011, using the same dye-sensitized concept, achieving an 

 of 6.5%.[38] In 2017, Seok et al. showed that the introduction of additional iodide ions into the organic 

cation solution, which is used to form the perovskite layers through an intramolecular exchanging process, 

decreases the concentration of deep-level defects. The defect-engineered thin perovskite layers enable the 

fabrication of perovskite solar cells with a certified  of 22.1% in small cells and 19.7% in 1 cm
2
 cells.[39]  

Despite their excellent performance, perovskite solar cells are known to degrade within a few hours to 

days under standard operating conditions. At present this is the greatest obstacle for commercial applications. 

Besides, measurements of the current-voltage characteristics can suffer from hysteresis, making efficiency 

analysis complex. The origin of this hysteresis is still unclear, but the leading hypothesis involves ion or 

vacancy migration under operating conditions.[40] The perovskite salts are partially soluble in water, so the 

cells are sensitive to humidity. Because of Pb toxicity, encapsulation and recycling is important for this 

technology to become viable for large-scale application. The toxicity challenge is greater for this material than 

for CdTe and GaAs because the much higher water solubility and lower vaporization temperature make 

environmental exposure during module encapsulation failure more dangerous.[41] 

1.2 Introduction of BaSi2 

1.2.1 Fundamental properties of BaSi2 

As discussed above, although c-Si PV technology is dominant in PV market, thin-film solar cells are 

gradually increasing their share in recent years. However, the application of CdTe and CIGS is limited due to 

the toxic and/or rare elements associated with the high cost and poor long-term stability. So exploring suitable 

material for thin-film solar cells is very important. 

In this thesis, we focus on orthorhombic semiconducting material barium disilicide (BaSi2), which 

possesses a lot of advantages over other materials. BaSi2 has an orthorhombic structure as shown in Fig. 1.10, 

which contains 16 Si atoms and 8 barium atoms, and every 4 Si atoms compose to a small tetrahedral structure. 

The length of three axis are 0.892 nm, 0.680 nm, 1.158 nm, respectively. It is composed with earth abundant 

elements Ba and Si, making the cost of BaSi2 cheaper than CIGS and CdTe. The band structure of BaSi2 is 

shown in Fig. 1.11 (a). BaSi2 has an indirect band gap and both large Eg and L can be expected due to its 

unique band structure.[42] The atomically resolved and orbital projected density of states (DOS) of BaSi2 is 

displayed in Fig. 1.11 (b).[42] The valance band (VB) of BaSi2 is dominated by the Si-p states, which is 

derived mainly from the Si tetrahedra, whereas the conduction band (CB) mainly consists of localized Ba-d 

states. One can observe, from the band structure and the DOS, that the topmost VB has a flat energy dispersion. 

Also, the band curvature of the lowest CB is flat because of the localized Ba-d states. These flat energy 

dispersions imply high optical activity in BaSi2.[43] The experimental absorption spectrum of BaSi2 was 

performed using a silicon-on-insulator (SOI) substrate, on which a BaSi2 film was grown. The result is shown 

in Fig. 1.12, that BaSi2 has a Eg of 1.3 eV and  reaches 3  10
4
 cm

-1
 at 1.5 eV, which is roughly 40 times larger 

than that of c-Si.[44] The ideal Eg for single junction solar cell applications is 1.4 to 1.6 eV. By replacing some 

Ba atoms with Sr atoms to form Ba1-xSrxSi2, the Eg can be enlarged to 1.4 eV.[45] Meanwhile, by substituting 

part of Si with isoelectric C, the Eg of BaSi2-xCx can be continuously increased from 1.3 to 3.0 eV.[46] Figures 

1.13(a) and 1.13(b) show calculated absorption spectra of several solar cell materials such as BaSi2, Si, CIGS, 

CZTS and GaAs. The absorption spectrum of BaSi2 rises more steeply than that of the other materials. As a 

result, BaSi2 has a much stronger absorption than other materials at the same photon energy. Hence, the results 
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confirm the experimental finding that  of BaSi2 reaches 3  10
4
 cm

-1
 at 1.5 eV.[43] According to the 

calculation based on the absorption spectrum of BaSi2, 95% of the solar spectrum can be absorbed within a 4 

m-thick BaSi2 absorber layer. These results demonstrate that BaSi2 has a large  even though it is an indirect 

band gap semiconductor. 

 

 

Fig. 1.10 Cell structure of BaSi2.[47] 

 

 

Fig. 1.11 (a) Band structure [42] and (b) atomical resolved and orbital projected DOS of BaSi2.[43] 
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Fig. 1.12 (a) Absorption spectrum and (b) (dh)
1/2

 versus photon energy plotted for BaSi2.[44] 

 

 

Fig. 1.13 (a) and (b) absorption coefficient of several solar cell materials.[43] 

 

Another promising feature of BaSi2 is its excellent minority carrier properties. For the formation of solar 

cells, material should have not only suitable Eg and large , but also large L and . Undoped-BaSi2 shows 

n-type conductivity with an electron concentration (n) of about 10
16

 cm
3

. Figures 1.14(a)(b) and 1.14(c)(d) 

show secondary-electron (SE) and electron beam induced current (EBIC) results, respectively, with 

acceleration voltage Vac = 5 kV. Front-side Schottky contacts were formed with Al on the BaSi2 surface via 

wire bonding, and the back-side ohmic contact was made with sputtered Al. In the EBIC method, carriers 

generated within the diffusion length in the n-type BaSi2 are collected by the electric field under the Al contact 

and sensed as a current in the external circuit. In Figs. 1.14(c) and 1.14(d), the brighter regions show higher 

collection of electron-beam-induced carriers in the BaSi2. Figure 1.14(e) shows the EBIC line-scan data along 

dotted line AA’ in Fig. 1.14 (c). The EBIC profile shows an exponential dependence of the distance from the 

Al contact. The L was roughly estimated to be approximately 10 μm, assuming that the EBIC profile varies as 

exp(x/L), where x is the distance from the Al edge (point A) along the dotted line, and L is the diffusion length 
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of holes for BaSi2. The obtained L is much larger than the grain size of the BaSi2, implying that the GBs do not 

work as defect centers for minority carriers in undoped n-BaSi2.[48,49] Moreover,  of undoped n-BaSi2 was 

measured using microwave detected photoconductive decay (-PCD), where carriers were generated by a 5 ns 

laser pulse with a wavelength of 349 nm. Photoconductivity decay was monitored by the reflectivity of 

microwave with the frequency of 26 GHz. High-sensitivity measurement was realized by the differential 

detection of the reflected microwave intensity between the areas with and without laser irradiation. Then,  can 

be calculated by analyzing the photoconductivity decay curves. Figure 1.15 shows film-thickness dependence 

of lifetime in undoped n-BaSi2. The bulk lifetime is 14 s, which is long enough for thin-film solar cell 

applications. Hence, both large L and  were confirmed in BaSi2, demonstrating its great potential for solar cell 

applications.[50,51]  

 

 

Fig. 1.14 (a), (b) SE and (c), (d) EBIC images around Al contact. (e) EBIC line-scan data along dotted line 

AA’.[48] 

 

 

Fig. 1.15 Film-thickness dependence of lifetime in undoped n-BaSi2.[50] 

 

Our goal is the fabrication of high- BaSi2 homojunction solar cells which consist of a p-n or p-i-n 
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configuration. So control of the conduction type and carrier concentration is of great importance. The valence 

band of BaSi2 is mainly composed of Si 3s, 3p orbital, indicating that Si site is much easier to be substituted 

than Ba site.[42,52] Based on this result, the conduction type of BaSi2 is similar to that of Si, where p-type can 

be achieved by group-Ⅲ atoms doping, and n-type can be obtained through group-V atoms doping. Table 1.1 

lists the conduction types and carrier concentrations by different dopants in BaSi2. In particular, B-doped 

BaSi2 shows p-type conductivity, and the hole concentration p can be continuously controlled in the range of 

10
16

~10
20

 cm
3

. Also, Sb-doped BaSi2 shows n-type conductivity with n controlled between 10
16

 and 10
20

 cm
3

. 

Therefore, by utilizing these two dopants, the BaSi2 homojunction diode can be formed.  

 

Table 1.1 Conduction types and carrier concentrations by different dopants in BaSi2. 

Dopant Conduction type 
Carrier concentration 

[cm
-3

] 
Notes Reference 

undoped n or p 10
16

 Strongly depend on RBa/RSi. [53] 

B p 10
16

~10
20

 Continuously control up to p
+
. [54] 

Al p 10
16

~10
17

 Diffusion is too strong. [55] 

Ga n 10
15

, 10
20

 Can’t be controlled properly. [56] 

In p 10
16

~10
17

 Can’t be up to p
+
. [56] 

N p 10
16

~10
17

 Plasma source. [57] 

P n 10
16

~10
18

 GaP source. [58] 

As n ~10
19

 As ion implantation. [59] 

Sb n 10
16

~10
20

 Continuously control up to n
+
. [60] 

 

1.2.2 Growth methods of BaSi2 

There are three main methods for the growth of BaSi2: molecular beam epitaxy (MBE), magnetron 

sputtering, and vacuum evaporation.  

BaSi2 can be grown epitaxially on Si (111) and Si (001) substrates by MBE.[61-64] The growth processes 

are as follows. First, the Si substrate, which is cleaned by RCA process, is heated to 900°C for thermal cleaning 

for 30 min so that a very clean Si 7×7 surface reconstruction reflection high-energy electron diffraction 

(RHEED) patter can be observed. Afterwards, substrate temperature decreases to 500°C, and Ba atoms are 

deposited on the hot Si substrate for reactive deposition epitaxy (RDE) to form a 5 nm-thick BaSi2 template 

layer. This template layer is used for controlling the crystal orientation of the subsequent BaSi2 epitaxial layers. 

After RDE, Ba and Si atoms associated with dopants are co-evaporated to the substrate at 500~650°C for MBE 

growth. Both after RDE and MBE growth, streaky RHEED patterns can be observed, indicating the good 

surface condition of the epitaxial BaSi2 films. Then, a 3 nm-thick a-Si layer is grown to passivate BaSi2 films. 

Figures 1.16(a) and 1.16(b) show the epitaxial relationship of BaSi2 on Si(111) and Si(001), respectively. It 

has a three-fold symmetric domain rotated to 120° on Si (111), and it forms a twice symmetric domain rotated 

to 90° on Si (001). These domains are randomly formed on the Si substrate.[62-64] As a result, BaSi2 is not a 

uniform film like a single crystal, but epitaxially grown while forming crystal grains. Therefore, there are 

many GBs in the BaSi2 film as shown in Fig. 1.17, which list electron backscatter diffraction (EBSD) maps of 

BaSi2 films on Si(111) and Si(001) substrates, respectively. Different from the BaSi2 grown on Si(111) 

substrate, the grain size of BaSi2 grown on Si(001) substrate seems to be much larger than that on Si(111) 

substrate.  
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Fig. 1.16 Epitaxial relationship of BaSi2 on (a) Si(111) and (b) Si(001).[63,64] 

 

 

Fig. 1.17 EBSD maps of BaSi2 films on (a) Si(111) and (b) Si(001).[64,65] 

 

Another way to fabricate BaSi2 film is magnetron sputtering, which is a practical method to form large 

area devices. In 2013, we employed a BaSi2 sputtering target with a diameter of 2 inches, and fabricated 600 

nm-thick BaSi2 films by radio-frequency (RF) magnetron sputtering at RT and subsequent post-annealing at 

600 °C in an ultrahigh vacuum (UHV). However, the photoresponsivity of the BaSi2 film was as small as 0.5 

mA/W at a photon energy of 1.5 eV when the bias voltage Vbias was 0.5 V, corresponding to an external 

quantum efficiency (EQE) value of approximately 0.08%. The grown layer exhibited n-type conductivity with 

a large electron concentration of n = 7 × 10
19

 cm
−3

.[66] Recently, Matsuno et al. formed single phase 

polycrystalline BaSi2 films on Si(111) by helicon-wave excited plasma (HWP) sputtering, using a 

stoichiometric BaSi2 target.[67] As the HWP has a higher plasma density, uniform in a large volume,[68] and 

lower ion energy than those of usual capacitive-coupled plasmas, substrate damage can be greatly reduced. A 

typical value of n = 2 × 10
16

 cm
-3

 was obtained at RT. The photoresponsivity rapidly increased for photon 

energies larger than the band gap of BaSi2, and reached 0.19A/W at a photon energy of 2.0 eV and Vbias = 

−0.5V applied to the indium-tin-oxide (ITO) electrode with respect to the Al electrode. This value was larger 

by more than two orders of magnitude than that reported previously.[67] However, the crystalline quality of 

sputtered BaSi2 film is not so good compared with the one grown by MBE. 

 Vacuum evaporation is another feasible method than MBE. An UHV is not a prerequisite; therefore, the 

equipment can be simple and inexpensive. Trinh et al. used BaSi2 granules to form BaSi2 films by vacuum 
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evaporation, and achieved a large  of 4.8 μs in the films grown at 500 °C. Evaporated undoped-BaSi2 films 

show n-type conductivity with n varies from 10
17

 to 10
22

 cm
3

 at different substrate temperature. The maximum 

value of photocurrent was obtained at a photon energy of 1.9 eV, corresponding to an EQE of 22% at a reverse 

applied voltage of 2.0 V.[69] One problem of the evaporated films is cracking due to the mismatch in thermal 

expansion coefficient between BaSi2 and c-Si. Moreover, the grown films contained metallic phases such as 

Ba2Si and Ba5Si3.[70,71] In addition, a chemical reaction between the source and boat materials may take place. 

Both these issues would lead to an inhomogeneous vaporization, and thin-films resulting from such an 

inhomogeneous vapor are not necessarily comprised of the same compound as the source material. The 

possible chemical processes during the deposition of BaSi2 on Si by vacuum evaporation using a BaSi2 source 

are illustrated in Fig. 1.18.[72] 

 

 

Fig. 1.18 Possible chemical reactions during the deposition process of BaSi2 on Si by vacuum evaporation of 

BaSi2 granules.[72] 

1.2.3 Research progress of BaSi2-based solar cells 

The attracting features suggest that BaSi2 is a very promising material for thin-film solar cell applications. 

BaSi2 can be epitaxially grown on Si substrates and the electron affinity is 3.2 eV,[73] which is about 0.8 eV 

smaller than that of c-Si (4.05 eV). Design of BaSi2 solar cells on Si and the transport of photogenerated 

carriers will not be blocked are very important. Some investigations have already been performed towards 

high efficient BaSi2 solar cells. Here, we discuss about several structures of BaSi2-based solar cells. 

(a) n-BaSi2/p-Si heterojunction 

Figures 1.19(a) and 1.19(b) show the band alignment of BaSi2 and Si with respect to the vacuum level and 

Sb-doped n
+
-BaSi2 (300 nm, n = 1  10

19
 cm

-3
)/p-Si (resistivity   0.1 cm) diode, respectively. Due to the 

small electron affinity of BaSi2, band offsets exist at the BaSi2/Si interface, that is, 0.8 eV for CB, and 0.6 eV 

for VB. These band offsets block the photocurrent flowing across the BaSi2/Si interface. Figures 1.19(c) and 

1.19(d) show typical examples of rectifying current–density versus voltage J–V characteristics under AM1.5G 

illumination and internal quantum efficiency (IQE) spectrum for the n
+
-BaSi2/p-Si diode. A short-circuit 

current density JSC of 11.8mA/cm
2
, VOC = 0.22 V, and η = 1.5% were obtained. These values are much smaller 

than those obtained in B-doped p-BaSi2/n-Si heterojunction solar cell.[74] This is because the band offsets at 

the n
+
-BaSi2/p-Si interface hinder the transport of photogenerated carriers, promoting the recombination of 

accumulated electrons and holes via defects at the heterointerface. In Fig. 1.19(d), the IQE values were high in 

the wavelength λ range between 600 and 1200 nm. The λ of approximately 1200 nm is close to the band gap of 

Si. This means that the IQE spectrum was ascribed to the photogenerated carriers originating from the p-Si 

substrate. On the other hand, the IQE was negligibly small at λ < 600 nm, showing that the photogenerated 
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holes in the 300-nm-thick n
+
-BaSi2 did not contribute to the photocurrent.[75,76] 

(b) p-BaSi2/n-Si heterojunction 

Figure 1.20(a) shows the expected band alignment of a p-BaSi2/n-Si(111) junction diode when p is 2.2 × 

10
18

 cm
−3

 for p-BaSi2 and n is 2.0 × 10
15

 cm
−3

 for n-Si. Hence, the depletion region stretches into the n-Si 

region. There is a CB offset ΔEC = 4.05 − 3.2  0.9 eV and a VB offset ΔEV = (4.05 + 1.1) − (3.2 + 1.3)  0.7 

eV at the heterointerface. The band offsets ΔEC and ΔEV in Fig. 1.20(a) promote the separation of 

photogenerated electrons and holes in p-BaSi2, as well as those in n-Si, leading to the operation of a solar cell. 

 of approaching 10% are achieved based on this structure.[74,77] Figure 1.20(b) shows J–V curves of the 

samples with different p-BaSi2 layer thickness under AM1.5G illumination. All the samples performed as solar 

cells. This result clearly demonstrates that the p-BaSi2/n-Si heterointerface does not hinder the transport of 

photogenerated electrons in p-BaSi2 to the n-Si side, and photogenerated holes in n-Si migrate to the p-BaSi2 

side, as expected in Fig. 1.20(a). The JSC reaches a maximum of 36.2 mA/cm
2
, and VOC increases with the 

thickness of p-BaSi2 and reaches a maximum of 0.47 V at 20 nm.[78] 

 

 

Fig. 1.19 Band alignment of (a) BaSi2 and Si with respect to the vacuum level. (b) n
+
-BaSi2/p-Si diode. (c) JV 

characteristics under AM1.5G illumination and (d) IQE spectrum for n
+
-BaSi2/p-Si diode.[76] 

 

Fig. 1.20 (a) Band alignment and (b) JV characteristics of p-BaSi2/n-Si heterojunction solar cell.[77,78] 
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(c) BaSi2 homojunction on a tunnel junction 

Due to large conduction and valence band discontinuities at the BaSi2/Si heterointerface, forming a tunnel 

junction (TJ) is necessary to assist current flow in a BaSi2 pn junction diode on a Si substrate. In the previous 

work, an Sb-doped n
+
-BaSi2/p

+
-Si TJ and clear photoresponsivities in undoped n-BaSi2 overlayers formed on 

the TJ were achieved.[79-81] In 2012, Du et al. formed 400 nm thick undoped n-type BaSi2 epitaxial layers on 

a n
+
-BaSi2/p

+
-Si junction on Si(111) by MBE. The photoresponsivity reached a maximum value at 1.55 eV. 

The photoresponsivity (IQE) was increased from 0.17 A/W (33%) to 0.37 A/W (71%) at 1.55 eV when Vbias 

was increased from 0.5 to 2.0 V. These values are the highest ever reported for semiconducting silicides at that 

time, owing to the effective suppression of Sb atom diffusion by the intermediate c-Si layer grown using the 

solid phase epitaxy (SPE) technique.[82] Recently, Kodama et al. first demonstrated the operation of BaSi2 

homojunction solar cells. Figure 1.21(a) shows the band alignment of proposed n
+
-BaSi2 (20 nm, n = 1 × 10

19
 

cm
−3

)/p-BaSi2 (500 nm, p = 1 × 10
17 

cm
−3

)/p
+
-BaSi2 (50 nm, p = 1 × 10

19
 cm

−3
)/p

+
-Si(111) (ρ < 0.01Ωcm) 

diodes. The influence of a large ΔEV at the p
+
-BaSi2/p

+
-Si interface was diminished by using the heavily doped 

p
+
-Si substrate. Figures 1.21(b) and 1.21(c) are J–V characteristics under AM1.5G illumination and IQE 

spectra for the n
+
-BaSi2 (20 nm)/p-BaSi2 (500 nm)/p

+
-BaSi2 (50 nm) diodes. The J–V curve in Fig. 1.21(b) is 

for the sample with p = 1 × 10
16

 cm
−3

. As shown in the figure, leakage current was large in the homojunction 

diode as expected. The IQE became pronounced at λ < 800 nm in Fig. 1.21(c), while the IQE was very small at 

λ > 800 nm because the photogenerated electrons in the p
+
-Si recombined with holes before reaching the 

built-in field region. On the other hand, the IQE exceeded 30% at λ = 500 nm. Considering that the absorption 

length (3/α) at λ = 500 nm is approximately 100 nm in BaSi2,[44] so the IQE spectrum in Fig. 1.21(c) was 

attributed to the photogenerated carriers originating from the p-BaSi2 layer and then they were separated by the 

built-in electric field in the BaSi2 pn junction diode. The IQE value distinctly increased as the p of the p-BaSi2 

layer decreased from 1 × 10
17

 to 1 × 10
16

 cm
−3

, while the JSC values were 1.3 and 3.6 mA/cm
2
, respectively. On 

the basis of these results, the operation of a BaSi2 homojunction solar cell was achieved for the first time.[76] η 

is as small as ∼0.1% because of large leakage currents caused by defects resulting from step bunching at the 

p
+
-BaSi2/p

+
-Si interface.[83] 

 

 

Fig. 1.21 (a) Band alignment; (b) J–V characteristics under AM1.5G illumination and (c) IQE spectrum for 

n
+
-BaSi2/p-BaSi2/p

+
-BaSi2/p

+
-Si diodes.[76] 

1.3 Aim of this thesis 

 As we discussed above, BaSi2 has great potential as a new material for thin-film solar cell applications. On 

our way to the fabrication of high- BaSi2/c-Si tandem solar cells, a lot of research items need to be done to 

clarify the physical properties of n- and p-type BaSi2 films, and optimal structure of BaSi2-based solar cells. 

The aims of this thesis are list as follows: 
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1) Clarifying the transport properties of n- and p-type BaSi2 films. There are some investigations 

devoted to the study of BaSi2 basic electronic and optical properties, but at the same time there is almost the 

lack of information on its transport properties. So in chapter 2, we formed undoped n-BaSi2 and B-doped 

p-BaSi2 films, and presented extended experimental data on the mobility of electrons and holes in n- and 

p-BaSi2 films in the temperature range of 50300 K along with their theoretical interpretation. 

2) Investigation of p-BaSi2/n-Si solar cells formed on textured n-Si(001) with a pyramid structure 

consisting of {111} facets. In chapter 3, in order to improve solar cell performance of p-BaSi2/n-Si 

heterojunction solar cells, a Si(001) substrate is textured with Si{111} facets by etching. These textured 

structures have been used to trap incident light, which improves solar cell performance. 

3) Fabrication of p-BaSi2/n-Si solar cells on flat Si(001). In chapter 4, we investigate the potential of 

Si(001) substrates for p-BaSi2/n-Si heterojunction and BaSi2 homojunction solar cells. We formed p-BaSi2 

films on Si(001) substrates with thicknesses in the range of 20–60 nm and found its effects on the solar cell 

performances. 

4) Exploring the potential of BaSi2 homojunction solar cells on a p
+
-BaSi2/p

+
-Si TJ. In chapter 5, to 

explore the potential of a Si(001) surface for BaSi2/c-Si tandem solar cells, we fabricated p
+
-BaSi2/p

+
-Si TJ 

serving for BaSi2 homojunction solar cells.  

5) Simulation of BaSi2 homojunction and BaCxSi2x/c-Si tandem solar cells. In chapter 6, some 

simulations and theoretical calculations have been done using Silvaco Atlas simulation package to point out 

the best parameters of the solar cell, so as to guide the experiment. 
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Chapter 2 Transport properties of BaSi2 

2.1 Scattering mechanisms in semiconductors 

 There are several standard and well-known scattering mechanisms such as ionized impurity, polar optical 

phonon, non-polar optical phonon, acoustic phonon, neutral impurity, and GB scatterings, that affect the 

carrier mobility of materials. Many investigations have been done to make carriers’ transport properties clear. 

For poly-Si films, the electrical properties have been interpreted in terms of two distinct models: the 

segregation theory, according to which impurity atoms tend to segregate at the GB where they are electrically 

inactive,[84] and the GB trapping theory assuming the presence of a large amount of trapping states at the grain 

boundary able to capture, and therefore immobilize free carriers. As a result, the mobility of the carriers is 

restricted, affecting the performance of devices based on poly-Si films.[85,86] GaAs is a polar semiconductor, 

which is widely used as PVs in space. The theoretical and experimental result of temperature dependent 

mobility is shown in Fig. 2.1. It can be seen that at low, intermediate, and higher temperatures, the mobility is 

dominated by ionized impurity, piezoelectric, and polar optical scattering, respectively.[87]  

 

 

Fig. 2.1 Temperature dependent mobility of n-type GaAs.[88] 

 

 -FeSi2, another semiconducting silicide, has been attracting significant attention due to its large 

absorption coefficient of over 10
5
 cm

−1
 at 1 eV.[89] Reports on light-emitting diodes operating at the 

wavelength corresponding to optical fiber communication have renewed interest in -FeSi2.[90] Therefore, 

-FeSi2 is considered to be promising as an infrared light emitter and a detector on Si substrates. However, the 

scattering mechanisms affecting the measured mobility of -FeSi2 have not been clarified. Furthermore, the 

highest mobility that could be obtained in -FeSi2 at RT, which is very important for device applications, has 

not been clarified. In 2005, K. Takakura et al. found that for undoped p-type -FeSi2 thin-films, the hole 

mobility increased to approximately 450 cm
2
/Vs at RT with increasing annealing temperature and time. The 

observed hole mobility was analyzed by considering various carrier scatterings such as acoustic-phonon and 

polar-optical-phonon scatterings, intervalley scattering, ionized impurity scattering, and GB scattering. The 

nice fit of the mobility to the experimental results reveals that the polar-optical-phonon scattering determines 

the hole mobility at RT.[91] 

As we discussed in chapter 1, BaSi2 is attractive for solar cell applications, and there are some 
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investigations devoted to the study of BaSi2 basic electronic and optical properties.[42,92] However, at the 

same time, there is almost the lack of information on its transport properties, which is very important for us to 

get a deeper understanding of BaSi2. In this chapter, electron and hole mobilities versus temperature in 

semiconducting BaSi2 have been systematically studied both experimentally and theoretically. The 

experiments were performed with undoped 250 nm-thick BaSi2 polycrystalline films grown by MBE. The 

grain size of films ranged from 0.2 to 5 μm with the n of 5.0 × 10
15

 cm
-3

. To investigate the hole mobility, 

B-doped p-BaSi2 films with various dopant concentrations were fabricated and studied.  

2.2 Experiments 

In this experiment, 11 samples have been formed. For the fabrication of undoped n-BaSi2 films, an SOI 

substrate with a 1 μm-thick n-Si(111) topmost layer (ρ > 1000 Ωcm) was used. This substrate was formed by 

bonding 500 μm-thick high resistive floating-zone (FZ) n-Si(111) and SiO2-capped Si(001) handle wafers. 

Then, the FZ-Si wafer was mechanically ground and polished by chemical mechanical polishing down to about 

1 μm thickness. On the other hand, for B-doped p-BaSi2 films, we used 500 μm-thick high-resistivity (ρ > 1000 

Ωcm) FZ n-Si(111) and n-Si(001) substrates. For all the samples, after cleaning the substrate by heating at 900 

ºC for 30 min in ultrahigh vacuum, a 5 nm-thick BaSi2 template layer was grown on the Si substrate 

synthesized by RDE at 500 ºC using only the Ba source. This template layer works as a kind of seed crystals for 

the subsequent BaSi2 layer. Then a 250 nm-thick undoped BaSi2 film was formed on top of the template at 

600 ºC in the MBE mode using both Ba and Si sources. For B-doped p-BaSi2 films, Ba, Si, and B were 

evaporated on the template layer at 600 ºC. The B concentration was controlled by the crucible temperature of 

the B K-cell (TB) which was varied as 1000, 1100, 1170, 1230, and 1300 ºC. Afterwards, a 3 nm-thick a-Si 

layer was deposited to prevent oxidation of the BaSi2 films. The deposition rates of Si and Ba were controlled 

using an electron impact emission spectroscopy (EIES; INFICON) feedback system. The growth conditions 

were summarized in Table 2.1. 

 

Table 2.1 Growth conditions of samples. 

Sample 

No. 
Substrate 

RDE MBE 

Tsub 

[C] 

RBa 

[nm/min] 

Time 

[min] 

Tsub 

[C] 

RBa 

[nm/min] 

RSi 

[nm/min] 

TB 

[C] 

Time 

[min] 

Thickness 

[nm] 

A SOI 500 1 20 600 2.0 1.2 - 120 250 

B1 
FZ 

n-Si(111) 

  

1000cm 

500 1 5 600 2.56 0.9 

1000 240 320 

B2 1100 240 340 

B3 1170 390 600 

B4 1230 300 580 

B5 1300 360 700 

C1 
FZ 

n-Si(001) 

  

1000cm 

500 1 5 600 2.2 0.9 

1000 

300 

450 

C2 1100 490 

C3 1170 440 

C4 1230 460 

C5 1300 440 

 

The crystal structure of the films was characterized by X-ray diffraction (XRD) using Cu Kα radiation and 

plan-view transmission electron microscopy (TEM) in TOPCON EM-002 device operated at 120 kV. EBSD 

analyses were performed to analyze the grain size of BaSi2. Concentration and mobility of electrons and holes, 
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which were main charge carriers in the fabricated undoped and B-doped films, respectively, were measured by 

the Hall technique at temperatures between 50 and 300 K using a closed-cycle He cryostat on the van der Pauw 

structures with ohmic contacts made by sputtered Al. The applied magnetic field was 0.2 T. The measurement 

temperature was limited down to 145 K for undoped n-BaSi2, because of the difficulty in assuring ohmic 

contacts at such low temperatures. 

2.3 Results and discussions 

The n of undoped BaSi2 extracted from the Hall measurements occurred to be 5.0 × 10
15

 cm
-3

 at RT. This 

value has been cross-checked by another method using the slope of the 1/C
2
 versus voltage plot, where C is the 

capacitance.[75] The activation energy of donor levels was approximately 30 meV, and the electron 

concentration did not change a lot in the measurement temperature range of 150300 K.[93] The p of B-doped 

p-BaSi2 on Si(111) also did not show any significant change in the measurement temperature range of 50300 

K, but depended on TB thereby the B concentration and it was varied from 5.0 × 10
16

 to 5.3 × 10
18

 cm
-3 

at RT. 

The activation energy of acceptor levels was in the range between 20and30 meV.[94] The fact that the BaSi2 

is a semiconducting material in the above temperature range has been confirmed by the temperature 

dependence of spectral response.[95] B concentration (NB) was determined by secondary ion mass 

spectrometry (SIMS) using CS ions. Figure 2.2 shows Arrhenius plots of NB in B-doped BaSi2 films. SIMS 

measurements revealed that as TB increases, NB increases exponentially with an activation energy of 6.2 eV. 

 

 

Fig. 2.2 Arrhenius plot of B concentration NB. 

 

Figure 2.3 shows examples of θ-2θ XRD patterns, taken for samples B3 and C3. Their RHEED patterns of 

p-BaSi2 films, observed along the Si[11-2] azimuth on Si(111) and Si[1-10] azimuth on Si(001) are also 

presented. As shown in Fig. 2.3, intense (100)-oriented diffraction peaks in the XRD patterns and sharp streaky 

RHEED patterns can be observed. These results indicate the epitaxial growth of B-doped BaSi2 films on both 

Si(111) and Si(001) substrates. Similar a-axis-oriented BaSi2 films were obtained for all the samples regardless 

of B concentration and substrate orientation. (*) indicate in the figures correspond to the diffraction peak 

attributed from Si substrate. 
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Fig. 2.3 θ-2θ XRD and RHEED patterns of sample B3 and C3. (*) represent the diffraction peak attributed 

from Si substrate. 

 

Figures 2.4(a) and 2.4 (b) show typical examples of bright-field (BF) and dark-field (DF) TEM images, 

respectively, along the BaSi2 [100] azimuth for sample A. The incident electron beam was slightly tilted for the 

GBs to be seen clearly. The dark-field image was taken under a two-beam diffraction condition to clarify the 

grain size of BaSi2. The a-axis-oriented BaSi2 epitaxial layer has grains with three BaSi2 epitaxial variants 

rotated by 120 deg to each other in the surface normal direction related to the three fold symmetry of 

Si(111).[63] One of them is bright in Fig. 2.4 (b). The grain size of sample A was distributed in the range of 

0.2–5 μm in the lateral dimensions with the simple orthorhombic crystal structure. The average diameter is 

approximately 2.7 μm as shown later. The grain size in the MBE-grown BaSi2 is dependent on the RDE growth 

conditions and can be varied from approximately 0.2 to more than 4 μm on Si(111).[65,96] 

 

 

Fig. 2.4 (a) Bright-field and (b) dark-field plan-view TEM images of sample A observed along BaSi2 [100]. 
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Figures 2.5(a) and 2.5(b) are the counterparts of Figs. 2.4(a) and 2.4(b), respectively, for B-doped 

p-BaSi2 film grown at TB=1100 ºC (sample B2). In comparison with the undoped BaSi2 film in Figs. 2.4(a) and 

2.4(b), the grain size of B-doped BaSi2 decreased and the GBs became a little dim and roundish, indicating the 

crystalline quality was degraded with doping. The decrease in the grain size of B-doped BaSi2 is probably 

attributed to the suppressed migration of Ba and Si atoms during MBE. The dislocations, shown by small red 

circles, apparently observed in the TEM images of Figs. 2.4(a) and 2.5(a) are characterized by the density of 

about 3.5 × 10
9
 cm

-2
 in undoped BaSi2 (sample A) and of 5.4 × 10

9
 cm

-2
 in B-doped p-BaSi2 at TB=1100 ºC 

(sample B2), indicating that the dislocation concentration increased by the doping of B. These values can be 

underestimated. Hence, more dislocations are likely to be present in the grown films. With increasing B 

concentration, B atoms tend to precipitate in BaSi2,[94] and hence those precipitates may act as nuclei for 

dislocations. 

 

 

Fig. 2.5 (a) BF and (b) DF plan-view TEM images of sample B2 with TB=1100 ºC, observed along BaSi2 [100]. 

 

To provide an overview of how the grain size of BaSi2 film depends on NB, we have conducted EBSD 

measurements. Figures 2.6(a)–2.6(g) show EBSD crystal orientation maps of BaSi2 epitaxial films and 

distribution histograms of BaSi2 grain size for samples (a) undoped n-BaSi2 (sample A), with TB = (b) 1000 ºC 

(sample B1), (c) 1170 ºC (sample B3), and (d) 1300 ºC (sample B5) on Si(111), and with TB = (e) 1000 ºC 

(sample C1), (f) 1170 ºC (sample C3), and (g) 1300 ºC (sample C5) on Si(001). Three colors in the orientation 

maps in Figs. 2.6(a)2.6(d), those are red, green, and blue, denote three epitaxial variants in the a-axis-oriented 

BaSi2 films on Si(111) substrate. While in Figs. 2.6(e)2.6(g), the colors are red and blue, denote two epitaxial 

variants in the a-axis-oriented BaSi2 films on Si(001) substrate. The calculated average sizes of grains are also 

presented. Although the precise grain size can be obtained by plan-view TEM as presented in Figs. 2.4 and 2.5, 

the EBSD results revealed that the grain size of BaSi2 decreased with NB. Completely the same analysis was 

performed for the BaSi2 epitaxial films on Si(001) substrates and the average grain sizes calculated from the 

histograms was estimated to be 7.8, 5.7 and 4.7 μm for the appropriate samples, respectively. Note that the 

grain size of BaSi2 films on Si(001) was much larger than that on Si(111), and also decreased when NB was 

increased. 
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Fig. 2.6 EBSD crystal orientation maps of BaSi2 epitaxial films and distribution histograms of BaSi2 grain size 

for samples (a) undoped n-BaSi2 (sample A), with TB = (b) 1000 ºC (sample B1), (c) 1170 ºC (sample B3), and 

(d) 1300 ºC (sample B5) on Si(111), and with TB = (e) 1000 ºC (sample C1), (f) 1170 ºC (sample C3), and (g) 

1300 ºC (sample C5) on Si(001). 

 

(e)

(g)

(f)

(a) (b)

(c)
(d)
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Fig. 2.7 The experimentally measured carrier mobility versus temperature in BaSi2 films: (a) Hall mobility of 

electrons in sample A; (b) and (c) mobility of holes in p-doped films grown on Si(111) and Si(001) substrates, 

respectively. 

 

The electron mobility of sample A measured as a function of temperature is shown in Fig. 2.7(a) and 

such dependence can be conventionally divided into three main regions. The region I (160 ≤ T ≤ 218 K) 

displays a sharp mobility raise with temperature till it reaches the maximum. The main scattering mechanism 

here is possibly defined by electron scattering on charge centers since the slope of the mobility curve closely 

follows the T
 3/2

 law.[72] The region II (218 ≤ T ≤ 243 K) represents the region of the mobility maximum, while 

the region III (243 ≤ T ≤ 298 K) is characterized by the fast mobility drop due to electron scattering on phonons 

with the almost T
 -3/2

 dependence. In addition to that the position of the mobility maximum (1230 cm
2
/V∙s at 

218 K) is shifted to the high temperature region as compared to other semiconducting silicides as well as the 

mobility itself has rather high values.[97-101] Meanwhile, the mobility decreases to 816 cm
2
/V∙s at RT. 

Hole mobility in B-doped p-BaSi2 measured as a function of temperature is shown in Figs. 2.7 (b) and 

(c). The following features can easily be traced: (1) The mobility (in p-BaSi2) at RT is about one order or 

four times smaller than the electron mobility (in n-BaSi2) for the films grown on (111) or (001) Si substrates, 
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respectively. Also the hole mobility at appropriate temperatures has a tendency to decrease considerably 

from sample to sample when the dopant concentration increases. (2) The effect of scattering on charge 

centers or at the GBs was traced only at low temperatures (at T < 100 K) for the two cases (samples B4 and 

B5 in Fig. 2.7 (b)) with the highest dopant concentrations (and also for the smallest average grain sizes). That 

means such an effect should be noticeable within a more extended temperature range in films with grains 

smaller than 1 μm. (3) Contrary to n-BaSi2 (Fig. 2.7 (a)), the mobility maximum is located at temperatures 

lower than 100 K and for all the cases of p-BaSi2 (Figs. 2.7 (b) and (c)) at T > 100 K the charge carrier 

mobility is defined mainly by scattering on phonons plus possible contribution by scattering on neutral 

impurity centers (as far the latter to be temperature independent). 

 

2.4 Calculation 

Several standard and well-known scattering mechanisms are usually considered in 

semiconductors.[88,102] Each mechanism can be described by the complex function of meaningful physical 

values which can be treated as an appropriate set of parameters. In our case if one accounts for all the possible 

scattering mechanisms the resulting relaxation time according to the Mathiessen’s formula is 

1/ = 1/AC + 1/NPO + 1/PO + 1/CIC + 1/NIC,                      (2.1)   

where AC, NPO, PO, CIC, NIC, are partial relaxation times defined by carrier scattering on acoustic phonons, 

nonpolar and polar optical phonons, and charge and neutral impurity centers, respectively. Previously this 

approach was used for a number of semiconducting silicides.[97-101] 

In the case of parabolic bands and nondegenerate charge carriers for each separate mechanism one has 

[88,102] 
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where    is the carrier effective mass (for electrons in bulk BaSi2 it is 0.42 with mxx=0.6; myy=0.37; mzz=0.3 

and for holes it is 0.57 since mxx=0.31; myy=0.73; mzz=0.67 in units of free-electron mass[42]), q is the electron 

charge, T is the absolute temperature, k is the Boltzmann constant, and    is the momentum relaxation time of 

the i-th mechanism. 

For acoustic phonon scattering, the relaxation time is [88,102] 
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where ħ is the reduced Plank constant, ρ is the material density (3.66 g/cm
3 

for BaSi2 [97]), vs is the mean 

longitudinal sound velocity (4.1 × 10
5
 cm/s for BaSi2 [103]) , and D is a constant defined by the components of 

the deformation potential tensor. Usually it varies from 5 to 15 eV in semiconductors.[88,102] 

For optical nonpolar phonon scattering, the relaxation time is [88,102] 
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where T0 is the Debye temperature,      (
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 . The latter ratio 

of the nonpolar optical deformation potential to the acoustic one is a parameter of the model. 

Recently the thermoelectric properties of BaSi2 were studied as well as the longitudinal sound velocity 
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was experimentally measured and the Debye temperature was estimated to be as low as 260 K for the 

acoustical mode of the phonon spectrum.[103] On the other hand, the lattice dynamic properties were 

estimated from the first principal calculations pointing out from the presented phonon band structure that there 

are several optical modes and the highest frequency of the optical modes is 493 cm
-1 

which corresponds to the 

Debye temperature to be about 700 K.[104] Moreover it should be noted that for acoustic phonons the Debye 

temperature has been estimated to be 240 K which correlates well with experimental data.[103] 

The momentum relaxation time due to polar optical phonon scattering is [88,102] 
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(2.5)    

where ω0 is the optical phonon frequency (ω0 = kT/ħ), n(ω0)=(exp(ħω0/kT)  1)
1

, εp = (1/εin 1/ε0)
1

, εin and ε0 

are the high-frequency and the static dielectric constants (ε0 = 14.6 and εin = 3.2 for BaSi2 [42]), respectively.  

Currently, there are some models describing scattering by charge centers, such as the Brooks–Herring or 

Conwell–Weisskopf models [88,102] or recently proposed modified model by N. A. Poklonski et al.[105] 

However, they all give qualitatively the same results. For the scattering by charge centers, the relaxation time 

is given by [88,102] 
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where Ni is the charge centers concentration, Z is the charge value of the center, x = 8mEr0
2
/ћ

2
,    

          
      is the Debye screening radius, n is the self-carrier concentration (n = 5.0 × 10

15
 cm

-3
 for 

BaSi2). And finally the Erginsoy’s formula can be used [88,102] for the neutral impurity scattering mechanism 
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where N0 is the neutral center concentration. 

Summarizing for the theoretical simulation we accounted for carrier scattering by the different kinds of 

phonons and by charge and neutral impurity centers. Generally, there are other possible scattering 

mechanisms,[88,102] but they do not play a noticeable role for our particular cases. As far as the dislocation 

density was estimated to be of the order of less than 10
10

 cm
-2

 in all our studied samples of BaSi2 and the 

mentioned mechanism would influence the resulted mobility for the density to be at least of the order of 10
11

 

cm
-2

, we have excluded the carrier scattering by the dislocations from the analysis. Thus, in our theoretical 

modeling we have only 4 unknown parameters: D (constant defined by the components of the deformation 

potential tensor), η (ratio of polar optical phonons to acoustic phonons deformation potential tensors) and the 

charge (Ni) and neutral (N0) impurity center concentrations as far as we know nothing a priori or from the 

experimental data about their possible values. All the other parameters for the scattering mechanisms 

considered were experimentally measured or reliably estimated. 

2.4.1 Calculation of the electron mobility in n-BaSi2 films 

All the above mentioned mechanisms of electron scattering represented by formula (2.3) through (2.7) 

were accounted for the numerical simulation of the electron mobility in BaSi2 as a function of temperature. The 

main results are shown in Fig. 2.8. We have found a lot of reasonable sets of realistic parameters to reproduce 

only the region I or III of the experimental curve in addition to a few reasonable sets of realistic parameters to 

reproduce at least qualitatively e.g. the regions II and III of the experimental curve simultaneously as shown in 
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Fig. 2.8(a). The latter results were obtained for the following set of parameters: D = 4 eV; η = 5; Ni = 2.0 × 10
16

 

cm
-3

 and N0 = 5.0 × 10
15

 cm
-3

 or less. Also we need to emphasize that the Debye temperature is one of the key 

parameters to reproduce the experimental data correctly. In our case the Debye temperature of 850–900 K is 

considerably higher than the possible experimental one of 700 K. And finally we stress out that one can 

correctly reproduce either the mobility rise with temperature due to scattering on charge impurity centers as 

well as the presence of the mobility maximum (to be about 1230 cm
2
/V·s) at the appropriate temperature (at 

218 K) or the mobility drop with temperature due to scattering on phonons along with the correct position of 

the mobility maximum. But there is no any reasonable set of realistic parameters that allows one to reproduce, 

at the same time, all the regions of the experimental mobility data within the standard theoretical approach. In 

fact, in the theoretical modeling the region II is always rather broad as clearly seen in Fig. 2.8(a).  

 

 

Fig. 2.8 Electron mobility versus temperature in n-BaSi2 films: (a) comparison of the experimental data and 

theoretical results within the standard approach (experiment–black squares, simulation–solid and dashed 

curves: the upper solid curve at T0 = 900 K and lower dashed one at T0 = 850 K); (b) comparison of the 

experimental data and theoretical results within the modified model (experiment–black squares, simulation–

solid and dashed curves: the upper solid curve at T0 = 700 K and the lower dashed one at T0 = 540 K). 

 

It is evident that for an adequate description of the observed experimental data the theoretical approach 

requires some modifications. We make the following assumptions. The first one is the grained nature of the 

studied samples. Thus, the intergrain boundaries can be treated as small potential barriers preventing charge 

carriers to escape from a grain at low temperatures and specific activation energy is necessary to overcome the 

barrier. And the second assumption takes into consideration the fact that in general experimentally obtained 

Hall mobility is 1.13 or 1.98 times larger than the drift one, depending on the scattering mechanism.[102] Thus 

the resulting mobility can be written as μ
* 
= γ·μ·exp(EGB/kT), where EGB is the potential barrier height at GBs 

and γ is the Hall factor. Figure 2.8(b) represents the results of the simulation by implementing this modified 
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approach with the following set of parameters: D = 4 eV; η = 2; Ni = 8 × 10
15

 cm
3

, N0 = 5.0 × 10
15

 cm
3

 or less 

and EGB = 62 meV; γ = 1.8 and 1.2  for scatterings on charge centers and phonons, respectively. Here we note 

that the obtained value of the barrier height correlates well with the experimentally estimated one of 50 

meV,[106] while the relative lowering of the Debye temperature results in nonadequate reproducing of the 

experimental data. However, it is also important to account for scattering on the charge impurity centers even 

at their relatively low concentrations (Ni of order of 10
16

 cm
-3

). Moreover, recently it was proposed that Si 

vacancies in BaSi2 are responsible for the presence of such centers [107] and their estimated concentration is in 

very good agreement with the results of our study. Such a simple approach allows one to understand the 

physics of the processes as well as it shows the importance to include the carrier tunneling through the 

intergrain potential barriers into consideration. 

Another possible more strict and rigorous approach is to include directly in Eq. (2.1) one additional term 

which describes charge carrier scattering by the GBs,[88] namely 

    
   

√      
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where LD is the average grain size. Practically the same results as presented in Fig. 2.8(b) was reproduced by 

using this approach with the following set of parameters which summarized in Table 2.2 (the other parameter 

values were used as mentioned above) for the structures with three various grain size values. Here we 

emphasize that the most crucial parameter is the intergrain potential barrier height. The more the average grain 

size, the higher the intergrain barrier. For the structures with large grains the barrier height value could be 

twice or even more higher than that preliminary estimated from the experiment.[106] Also note that the 

concentration of the charge centers should be also substantially higher than 10
16

 cm
3 

which was estimated 

before.[107] So the adequate values of the intergrain potential barrier height as well as the concentrations and 

the nature of various point defects in the material need to be investigated more thoroughly both from the 

experimental and theoretical point of view.  

 

Table 2.2 Parameters used in the simulation of carrier mobility: D (constant defined by the components of the 

deformation potential tensor), Ni (charged impurity center concentration), EGB (potential barrier height) and LD 

(average grain size). 

LD [μm] EGB [meV] Ni [cm
3

] D [eV] 

0.25 100 9 × 10
15

 4 

2.5 131 10     12   10
16

 3.5 

5.0 141 14     15   10
16

 3.4 

 

2.4.2 Calculation of the hole mobility in p-BaSi2 films 

We have also performed the theoretical simulation (hole scattering mechanisms represented by Eq. 

(2.3) through (2.8)) of the hole mobility according to the experimental data for B-doped BaSi2 grown on 

Si(111) and our best theoretical fits are presented in Fig. 2.9. The data on the parameter values used in 

calculations are summarized in Table 2.3. To correctly reproduce the main features in the experimental 

temperature dependence of the hole mobility one should assume first of all that the D parameter value (which 

is characterized by the strength of the carrier-phonon interaction) is significantly different for the n- and 

p-type BaSi2. This is due to the fact that in spite of the effective masses of electrons and holes are of the 

same order, the energy band extrema for the corresponding carriers are located in different k-points of the 

Brillouine zone, where the maximum of the valence band is in the 0.7 × -Y point, and the minimum of the 

conduction band is in the T point.[42] It results in different values of the deformation potential tensors (as 
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shown for some other materials such as Si, Ge, Bi [108]). Thus, the specific features of electron-phonon and 

hole-phonon coupling are mainly responsible for such a great difference in the corresponding values of 

electron and hole mobilities. 

 

 

Fig. 2.9 Hole mobility versus temperature in p-BaSi2 films on Si(111): (a) comparison of the experimental 

data and theoretical results for samples B1B3; (b) comparison of the experimental data and theoretical 

results for the samples B4B5. 

 

Then it should be emphasized that the grain effect in mobility properties is negligible for the samples 

B1B3 with the average grain size of more than 1.5 μm (Fig. 2.9(a)). In this case one should assume the 

appropriate intergrain potential barrier height to be less than 10 meV. Also it is interesting to note that for an 

adequate description of low temperatures behavior of hole mobility (at T < 100 K) for the rest of the samples 

B4B5 with the highest dopant concentration (Fig. 2.9(b)), more pronounced potential barrier associated 

with the GBs should be introduced. Our estimates of the barrier heights to be 45 to 48 meV are consistent with 

the experimental data, that the barrier heights at the GBs in p-BaSi2 were estimated to be a few tens of 

meV.[109] Also it should be emphasized here that the value of the intergrain potential barrier is rather different 

for the electron and the hole subsystems. On the whole it can be treated as an analogous of different band offset 

for the conduction and valence bands in heterojunctions. Moreover, there is one more feature for B-doped 

p-BaSi2, namely, scattering on the neutral impurity centers has a great influence on the carrier mobility 

versus temperature behavior. One could note a strong increase of the concentration of neutral impurity 

centers with the dopant concentration. We think that this issue can be originated from the formation of a 

relatively deep donor/acceptor + vacancy level, which is initially in a charged state while after thermal 

activation it becomes neutral. The same tendency is valid for the charge impurity center concentration. Also 

it is interesting to note that MBE-grown BaSi2 films can contain rather high concentration of oxygen 
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atoms.[110] In more detail, the possible mechanisms contributing to the Hall concentration, the concentration 

of neutral and charged centers are considered below. 

 

Table 2.3 Parameters used in the simulation of carrier mobility: D (constant defined by the components of 

the deformation potential tensor), η (ratio of polar optical phonons to acoustic phonons deformation potential 

tensors), the charged (Ni) and neutral (N0) impurity center concentrations, EGB (potential barrier height) and 

LD (average grain size). 

 Ni [cm
3

] N0 [cm
3

] D [eV] η EGB [meV] LD [μm] 

Si(111) 

n-type 

Sample A 

8 × 10
15 

or higher 

5 × 10
15

 

or less 
4 2 

62 

or higher 

0.25 

or higher 

p-type 

Sample B1
 

 

1 × 10
16

 

5 × 10
16

 

or less 

 

12.5 

 

1 
10 or less 

 

2.4 

Sample B2 4 × 10
16

 3.5 × 10
17

 12.5 3 2.0 

Sample B3 8 × 10
16

 3.3 × 10
18

 12.5 5 1.7 

Sample B4 2 × 10
17

 5.5 × 10
18

 14 5 45 1.3 

Sample B5 8 × 10
17

 9.5 × 10
18

 14 5 48 1.2 

Si(001) 

p-type 

Sample C1
 

 

3 × 10
16

 

 

5 × 10
16

 

 

9 

 

1 

10 or less 

 

7.8 

Sample C2 7 × 10
16

 7.2 × 10
17

 12 3 6.0 

Sample C3 7 × 10
16

 6 × 10
18

 12.5 3 5.7 

Sample C4 2 × 10
17

 9 × 10
18

 12.5 3 5.2 

Sample C5 2 × 10
17

 1 × 10
19

 12.5 3 4.7 

 

One should note that unlike the situation with n-doped or p-doped BaSi2 on Si(111) substrate the grain 

effect in mobility properties of the samples grown on Si(001) substrates is negligible for all the samples 

C1C5 in this case. This is due to the fact that, on one hand, here we deal with the structures that consist of 

much larger grains and, on the other hand, it seems the appropriate intergrain potential barrier height to be less 

than 10 meV for such of the grains. All the above mentioned mechanisms of hole scattering represented by 

formulas (2.3) through (2.7) were accounted for in the numerical simulation of the hole mobility in BaSi2 as a 

function of temperature. The main results are shown in Fig. 2.10. The data on the parameter values used in 

calculations are summarized in Table 2.3. On the whole, the experimental results show the mobility values for 

the samples with low dopant concentration to be noticeably higher in our case as compared to ones obtained for 

the films fabricated on Si(111) substrates. From our point of view this fact could be connected first of all with 

the significant difference in the sizes of the grains in the polycrystalline films generated on different Si 

substrates. And as a consequence this leads to the changes in the values of deformation potential which 

characterize the intense of the phonon-hole interaction. Thus we can suggest that there is some weak D and η 

dependence on the reciprocal effective grain size. Generally the same tendency was observed for the p-doped 

BaSi2 samples on Si(111) substrates as well. Unfortunately, any theoretical quantitative estimates of this 

function, a priori, could not be done. Moreover any precise empirical attempt to establish such the function is 

also problematic due to the fact that the grain size distribution in our cases have a non-central character, i.e. a 

whole ensemble of the grains with rather close but different sizes almost equally make contributions to the 

resulting value of the mobility. 
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Fig. 2.10 Hole mobility versus temperature in p-BaSi2 films on Si(001): (a) comparison of the experimental 

data and theoretical results for samples C1C3; (b) comparison of the experimental data and theoretical 

results for samples C4C5. 

 

Like the situation with the B-doped p-BaSi2 films on Si(111) substrates there is one more feature for 

the films on Si(001) substrates, namely, scattering on the neutral impurity centers has a great influence on the 

carrier mobility versus temperature behavior. One could note in Table 2.3, a strong increase of the 

concentration of neutral impurity centers with the dopant concentration (not only non-activated boron atoms 

contribute to the values but it is known that MBE-grown BaSi2 films can contain rather high concentration of 

oxygen atoms [110]). Also such the trend can be noticed for the concentration of ionized impurity centers. It 

is interesting to trace how these values are related to the Hall carrier concentration (Fig. 2.11(a)). As seen, 

the charged center concentration is significantly less than the Hall carrier concentration whereas the neutral 

impurity center concentration has higher values as compared with the last one. Moreover the same tendency 

can be traced for the samples obtained on Si(111) substrates (Fig. 2.11(b)). Accounting for this discrepancy 

of the values one can conclude there are some other hole activation mechanisms in this compound as 

compared with the traditional boron activation in silicon. It is known that in complex semiconducting 

compounds with mixed chemical bonding, there are some carrier activation mechanisms connected with 

different lattice defects, deep levels, stoichiometry disorder etc.[88] Thus, the additional p in the systems 

under consideration can be defined by the following possible reasons: (1) if there are interstitial boron and/or 

oxygen atoms in BaSi2 grains and they provide the additional impurity energy levels which are located not 

far from the top of the valence band;[111] (2) if there are silicon vacancies in BaSi2 grains (e.g. it is a 

common situation for silicon and germanium where such the defects can be treated as acceptor centers); (3) it 

is interesting to note that the so-called E-centers (boron + vacancy) and A-centers (oxygen + vacancy) can be 

treated as the accepter centers as well.[111] Moreover after the thermal activation (annealing) such the 

centers become neutral. But one need to emphasize that to clarify this issue in details the additional 
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experimental and theoretical investigations should be performed. 

 

 

Fig. 2.11 Experimental Hall carrier concentration (PHall) for different samples of p-BaSi2 films on (a) Si(001) 

and (b) Si(111) at RT and theoretically estimated both neutral (N0) and charged (Ni) impurity center 

concentrations. 

 

Comparison of the data on boron concentration from the SIMS analysis to the data on the charge impurity 

centers and the Hall carrier concentrations (Fig. 2.11(b)) for the samples B1B5 indicates two issues. First of 

all, it is evident that not all the boron atoms are activated in traditional sense of a word and, secondly, there are 

some additional mechanisms of carrier activation which should be involved to reproduce the general tendency 

of the Hall carrier concentration increase. For the extremely low value of boron concentration (4.4  10
14

 cm
3

, 

the sample B1), the role of other point defects or defect complexes in BaSi2 for the carrier activation is crucial. 

For the highest value of boron concentration (2.1  10
19

 cm
3

, the sample B5), it seems the effects of significant 

boron precipitations occur. Moreover, accounting for high oxygen concentration in the material under 

consideration,[110] the questions connected with preferable oxygen atom distribution (e.g. oxygen 

precipitations along the intergrain boundaries) also should be studied more in details. 

Indeed, the inter-valley scattering can play a definite role in indirect semiconductors. Moreover, for BaSi2 

we can count several valleys for the electrons and holes. So some numerical estimations of the significance of 

the effect for BaSi2 can be made. The relaxation time for the inter-valley carrier scattering is defined as [112] 
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where          x is the number which in a common case is not obligatory an integer number, and ω1 is 

expressed by [112]  
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in its turn Ti defines the inter-valley phonon energy as E = kTi, while l is the mean free path of phonons and 

expressed by         
           [112] Usually the Ti value is within the Debye temperature difference 

for the optical and the acoustic phonon branches. Then we introduce this additional carrier scattering 
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mechanism to the calculation scheme used in our paper devoted to the BaSi2 mobility calculation. As could 

be expected the total mobility values was slightly decreased as shown in Figs. 2.12(a) and 2.12(b). But using 

the reasonable values of the new two parameters one has insignificant changes in the total mobility versus 

temperature behavior (within about 5%). That means to make qualitative estimations of the mobility for 

BaSi2, it is not necessary to introduce inter-valley scattering with some new unknown parameters into 

consideration. 

 

 

Fig. 2.12 (a) Total mobility versus temperature. Not inter-valley means the corresponding scattering 

mechanism was not included into consideration. The x value was equal to 1.5 for all the subsequent cases. (b) 

Same as in (a). The Ti value was equal to 500 K for all the subsequent cases. 

2.5 Conclusion 

The performed analysis of the experimental temperature dependence of the electron mobility in the 

grained polycrystalline BaSi2 films with very low impurity concentrations (~ 5.0 × 10
15

 cm
-3

) shows that the 

low temperature part i.e. the sharp raise of the mobility (the region I in Fig. 2.7(a)) is mainly defined by 

intergrain boundaries (~ 60 meV or up to twice higher) to be surpassed by the electrons. The delicate balance 

between intergrain boundary scattering and scattering on the phonons, the latter defines the high temperature 

part (the region III in Fig. 2.7(a)), results in the narrow electron mobility maximum (the region II in Fig. 2.7(a)) 

shifted to higher temperatures as compared with the case of monocrystalline BaSi2 (which is associated with 

the traditional mechanisms), when intergrain boundaries are absent and scattering at low temperatures is solely 

defined by charge centers (Fig. 2.8(a)). To this end, the electron mobility in polycrystalline BaSi2 at 300 K (to 

be 816 cm
2
/V∙s) is larger than in the other semiconducting silicides. The analysis of the experimental 

temperature dependence of the mobility in the BaSi2 films shows that the hole mobility in p-BaSi2 at RT is 

about one order or four times smaller (depending on the Si substrate) with respect to the electron mobility in 

n-BaSi2. Also the hole mobility values have a tendency to considerably decrease from sample to sample with 

increasing the dopant concentration. Such a great difference in the corresponding values of electron and hole 

mobility is primarily due to the specific features of electron-phonon and hole-phonon coupling. On the whole, 

the hole mobility versus temperature behavior is mainly defined by scattering on phonons and partly by 

scattering on neutral impurity centers. For device applications, where higher hole mobility values are 

desirable, we can suggest using BaSi2 grown on Si(001) substrates rather than Si(111) ones. 
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Chapter 3 p-BaSi2/n-Si solar cells on textured n-Si(001) with a pyramid 

structure consisting of {111} facets 

3.1 Influence of textured structure 

Surface texturing, either in combination with an anti-reflection coating or by itself, can be used to 

minimize reflection. Roughening of the surface reduces reflection by increasing the chances of reflected light 

bouncing back onto the surface, rather than out to the surrounding air. Surface texturing can be accomplished 

in a number of ways. A single crystalline substrate can be textured by etching along the faces of the crystal 

planes. The crystalline structure of silicon results in a surface made up of pyramids if the surface is 

appropriately aligned with respect to the internal atoms. A scanning electron microscope (SEM) photograph of 

a textured silicon surface is shown in Fig. 3.1(a). This type of texturing is called "random pyramid" texture, and 

is commonly used in industry for single crystalline wafers.[113] The textured structures have been used to trap 

incident light, which improves solar cell performance,[114-116] with reports of their use in thin-film silicon 

solar cells with a high JSC of 32.9 mA/cm
2
 in a single-junction c-Si:H solar cell.[117] 

 

 

Fig. 3.1 Scanning electron microscope photograph of a textured silicon surface.[113] 

 

We have demonstrated in chapter 1 that BaSi2 shows great potential for solar cell applications. In most 

cases, BaSi2 are grown on Si(111) substrates because the orientated a-axis led to a significantly smaller lattice 

mismatch (approximately 1%),[61] they have inactive GBs,[47,106] and a much longer L.[49] However, 

Si(001) substrates are more favorable because they are produced much more than Si(111) substrates and higher 

hole mobility values can be obtained using BaSi2 grown on Si(001) substrates rather than Si(111) ones as we 

proved in chapter 2. One way to attain the above features of BaSi2 even on a Si(001) substrate is to form a 

textured structure consisting of Si{111} facets by etching. So in this chapter, we investigated the solar cell 

performance of p-BaSi2/n-Si heterojunction solar cells on textured n-Si(001) substrate with a pyramid structure 

consisting of {111} facets.  
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3.2 Experiments 

In this experiment, the samples were prepared as follows: first, the (001) surface of a CZ n-Si(001) 

substrate ( = 15 cm) was cleaned by acetone and methanol to eliminate organics,  followed by dipping in 

HF/HNO3 mixed acid. Then, the substrate was immersed into SUN-X 600 (Wako) at 75 C for 30 min to form 

a pyramid structure consisting of {111} facets,[118] and cleaned by sulfuric acid at 120 C for 15 min. After 

thermal cleaning of the substrate, Ba was deposited at 500 C to form a 5 nm-thick BaSi2 epitaxial template by 

RDE. This template acted as a seed crystal for the growth of the subsequent layer. Then, Ba and Si were 

co-deposited on the template at 580 C using MBE to form a BaSi2 epitaxial film that was approximately 400 

nm-thick (sample D1). For comparison, another 400 nm-thick BaSi2 epitaxial film was prepared on a flat 

Si(111) substrate (sample D2). The reflectance spectra of samples D1 and D2 were compared. 

B-doped p-BaSi2/n-Si solar cells with d ranging from 20−125 nm were grown with different sets of B 

K-cell temperature (TB) and substrate temperature (TS). (TB, TS) were set at (1230ºC, 600 ºC), (1230 ºC, 650 ºC), 

and (1300 ºC, 650 ºC). After that, a 3 nm-thick a-Si capping layer was prepared at TS = 180 ºC over the BaSi2 

layers for all the samples to prevent oxidation of BaSi2. The detailed parameters are shown in Table 3.1. 

 

Table 3.1 Growth conditions of samples. 

Sample 

No. 
Substrate 

RDE MBE 

Tsub 

[C] 

RBa 

[nm/min] 

Time 

[min] 

Tsub 

[C] 

RBa 

[nm/min] 

RSi 

[nm/min] 

TB 

[C] 

Time 

[min] 

Thickness 

[nm] 

D1 

Textured CZ 

n-Si(001) 

 = 1  5 cm 

500 1 5 

600 2.56 0.9 - 300 400 

D2 

Flat CZ 

n-Si(111)  

 = 1  5 cm 

E1 

Textured CZ 

n-Si(001) 

 = 1  5 cm 

600 2.56 0.9 1230 

12 20 

E2 30 50 

E3 45 75 

E4 60 100 

E5 75 125 

E6 300 400 

F1 

650 2.56 0.9 1230 

12 20 

F2 30 50 

F3 45 75 

F4 60 100 

F5 75 125 

G1 

650 2.56 0.9 1300 

12 20 

G2 30 50 

G3 45 75 

G4 60 100 

G5 75 125 
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Pole-figure X-ray diffraction (XRD; RIGAKU, Smart Lab) measurements were performed on sample D1 

at 2θ = 62.42º to determine whether the a-axis was normal to the {111} facets. The diffraction angle 2θ = 

62.42º allowed for the detection of x-ray diffraction caused by a BaSi2 600 plane. We also derived the a-axis 

lattice constant (a) of BaSi2 in sample D2 by using the Nelson-Riely relationship [119] with the angle of the 

sample surface χ fixed at 54.7º with respect to the horizontal plane. The angle χ = 54.7º corresponds to the 

angle between Si(001) and (111) faces. For optical characterizations, 80 nm-thick ITO electrodes with a 

diameter of 1 mm were sputtered at the front side and 150 nm-thick Al was sputtered at the back side. The J–

V characteristics under standard AM1.5G illumination and the photoresponse spectra were measured using a 

xenon lamp with a 25-cm focal-length single monochromator (Bunko Keiki, SM-1700A and RU-60N). The 

reflectance spectra were evaluated using an integrating sphere. Light intensity was calibrated using a 

pyroelectric sensor (Melles Griot 13PEM001/J). The morphology of undoped-BaSi2 surface was observed by 

field-emission scanning electron microscopy (FE-SEM; HITACHI). Cross-sectional TEM (FEI, Tecnai Osiris) 

with an acceleration voltage of 200 kV was used to examine cross sections of BaSi2 layers on the textured 

substrate. Thin foils for TEM observation were prepared with an ion beam micro-sampling system. The carrier 

concentrations of the samples were analyzed at RT by Hall measurements using the van der Pauw method. 

3.3 Results and discussions 

 Figure 3.2(a) shows the schematic diagram of textured Si(001) substrate with {111} facets. SEM images 

of sample D1 before and after the growth of BaSi2 are shown in Figs. 3.2(b)3.2(d). Four {111} facets were 

observed in each pyramid (Fig. 3.2(c)), with each pyramid width being approximately 7 μm. The faces of the 

BaSi2 were very smooth even after growing a 400 nm-thick BaSi2 film (Fig. 3.2(d)). However, the four 

ridgelines of each pyramid and the boundaries between the pyramids were rough, which may have been caused 

by the coalescence of BaSi2 grains grown on the adjacent Si{111} facets.  

 The pole-figure XRD pattern of sample D1 is shown in Fig. 3.3(b). In this measurement, we set 2θ = 

62.42º so that the BaSi2(600) diffraction can be detected, and performed -scan around the Si[111] for 

different  values (90    90). Here,  is the angle of the sample surface as shown in Fig. 3.3(a). Four 

diffraction peaks appear at χ = 54.7º as indicated by four dotted circles. This was confirmed by the φ–scan 

XRD pattern at χ = 54.7º, as shown in Fig. 3.3(c). These results showed that the a-axis of the BaSi2 was 

oriented normal to the textured {111} surfaces of the Si (001) substrate 

 The reflection spectra of samples D1 and D2 are shown in Fig. 3.4. The reflectance of sample D1 (BaSi2 

film on textured Si(001) substrate) was significantly lower than that of sample D2 (BaSi2 film on flat Si(111) 

substrate) over a wide wavelength range, which indicated that light trapping was occurring. On the basis of 

these promising results, we fabricated and characterized a series of p-BaSi2/n-Si heterojunction solar cells. 
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Fig. 3.2 (a) Schematic diagram of textured Si(001) with {111} facets. SEM surface images of sample D1. (b) 

bird’s-eye view substrate, (c) top-view of the substrate, and (d) 400 nm-thick BaSi2. 

 

 

Fig. 3.3 (a) Schematic diagram of pole-figure XRD measurement. (b) Pole-figure XRD pattern of sample D1 

using BaSi2(600) diffraction with 2θ = 62.42º. (c) -Scan XRD pattern with  = 54.7. 
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Fig. 3.4 Reflectance spectra of sample D1 (400 nm-thick undoped-BaSi2 on the textured Si(001) substrate) and 

of sample D2 (400 nm-thick undoped-BaSi2 on the flat Si(111) substrate). 

 

Before going into the solar cells, we investigated the strain induced in the p-BaSi2 layers with different d 

values prepared under the same growth condition with (TB, TS) set at (1230ºC, 600 ºC). Fig. 3.5(a) shows the 

θ-2θ scan XRD patterns obtained at χ = 54.7º. It is hard to observe any diffraction peaks of BaSi2 at d = 20 nm; 

however, diffraction peaks of only (100)-oriented BaSi2 planes, such as (200), (400), and (600) planes were 

obtained when d was 50 nm and above, suggesting the successful growth of highly a-axis-oriented BaSi2 

epitaxial films. By using these three peaks in each sample, the a-axis lattice constants were calculated. Fig. 

3.5(b) is the normalized strain Δa/a using sample D2 with the largest d. For comparison, the values of Δa/a for 

BaSi2 on a flat substrate were plotted. As the value of d increased from 50 to 100 nm, a decreases by 

approximately 0.3%, followed by a slight decrease up to d = 400 nm. This indicated that BaSi2 was under 

compressive strain along the a axis when d < 100 nm, and the critical thickness over which BaSi2 became 

relaxed was approximately 100 nm. Interestingly, the critical thickness increases from approximately 50 nm 

for BaSi2 on a flat Si(111) to approximately 100 nm for BaSi2 on the textured substrate. We speculate that the 

elastic strain energy containing in BaSi2 film on the textured substrate was smaller than that on a flat substrate 

because the domain size of the BaSi2 was limited to the area of each {111} facet. Further studies are required to 

gain a greater understanding of this phenomenon. 

The surface morphology of a 50 nm-thick B-doped p-BaSi2 on the textured Si(001) substrate, sample E2, 

was observed using SEM at different magnifications, as shown in Figs 3.6. The surfaces of BaSi2, both on the 

{111} facets and on the ridgelines of the pyramids, were rough (Fig. 3.6(a)), while the magnified image (Fig. 

3.6(b)) showed that BaSi2 had layered growth on the facets. 

 A BF cross-sectional TEM image of sample E2 with a d value of 50 nm is shown in Fig. 3.7(a). Selected 

area electron diffraction (SAED) pattern obtained around the BaSi2/Si interface area, as indicated by the red 

dash circle in Fig. 3.7(a), is shown in Fig. 3.7(b). The electron beam was incident along Si[110]. The 

(100)-oriented diffraction spots of BaSi2, including (200), (400), and (600), were aligned with the 

(111)-oriented diffraction spots of Si, which indicated that the a-axis of the p-BaSi2 was grown epitaxially on 

the {111} facet of the Si. A high-resolution TEM image near the BaSi2/Si interface showed that the BaSi2 film 

was oriented well and had formed uniformly on the Si substrate with a sharp interface (Fig. 3.7(c)). However, 

several steps were observed at the positions marked by the white arrows in Fig. 3.7(d) with a step height in the 

Si facet of approximately 6 nm. A magnified TEM image around this step is shown in Fig. 3.7(e). Defects at 

the steps, shown by dash red circle in Fig. 3.7(e), were observed, which may form defective centers for 

minority carriers. Improved etching techniques will be necessary to avoid these step structures. 
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Fig. 3.5 (a) θ-2θ scan XRD spectra of B-doped p-BaSi2 films with d values from 20 to 400 nm. (*) represent 

the diffraction peak attributed from Si substrate. (b) Normalized strain (Δa/a) as a function of d for the 

B-doped p-BaSi2 layer on the textured Si(001) and flat Si(111) substrates. 

 

Fig. 3.6 SEM surface images of (a) 50 nm-thick B-doped p-BaSi2 on the textured substrate, sample E2, and (b) 

a magnified image of the area marked by the red dash circle in (a). 

 

JV curves and internal quantum efficiency (IQE) spectra for samples E1E6, F1F5, and G1G5 with 

different d values are shown in Figs. 3.8(a)3.8(f). Their values of p were found to be 2.0  10
18

, 4.6  10
18

, and 

3.6  10
18

 cm
3

, respectively. The best properties for each solar cell are summarized in Table 3.2. p-BaSi2 (20 

nm)/n-Si solar cells that were fabricated on a flat n-Si (111) substrate with an  of 9.9% [74] are shown for 

comparison. To accurately obtain the reverse-bias saturation current density (J0), the shunt resistance (RSH), the 

series resistance (RS), and the ideality factor () of the diode, we adopted a technique described in the 

literature.[120] Using the photodiode equation, these parameters can be given as 
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where S is the device area, kB is the Boltzmann constant, T is the absolute temperature, and q is the elemental 

charge. We can see from Figs. 3.8(a) and 3.8(b) that as the d increases from 20 to 125 nm, the solar cell 
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performance initially improved and then degraded with a significant decrease in JSC from 28.4 to 18.8 mA/cm
2
. 

The value of p was 2.0  10
18

 cm
3

 in samples E1E6. Thus, the JSC reached a maximum at d = 50 nm and then 

decreased. The IQE spectra shown in Fig. 3.8(b) confirmed this. 

 

 

Fig. 3.7 (a) BF TEM cross sections of sample E2 near the top of the Si pyramid. (b) SAED pattern near the 

p-BaSi2/Si interface area indicated by the red dash circle in (a). (c) High-resolution TEM image near the 

p-BaSi2/Si interface. (d) BF TEM cross section of a step with a height of approximately 6 nm, as indicated by 

yellow arrows. (e) High-resolution TEM image of the area marked by a yellow dash circle in (d). 

 

The contribution of photogenerated carriers in the p-BaSi2 layer became smaller as d increased, especially 

in the short wavelength range. Similar results were observed for samples F1F5 (Fig. 3.8(d)) and G1G5 (Fig. 

3.8 (f)), which indicated that as d increased, the photogenerated minority carriers (electrons) within the p-BaSi2 

layer were not able to efficiently reach the junction before recombination. Hence, a lower p in the p-BaSi2 layer 

increased the contribution of p-BaSi2 to the photocurrent. The value of p in samples F1F5 was 4.6  10
18

 cm
3

. 

As d increased the  increased to a maximum of 2.7% at d = 125 nm (Fig. 3.8(c) and (d)). The IQE spectrum of 

the 75 nm-thick sample had the largest IQE over the whole wavelength range. Sample G1G5 (p = 3.6  10
18

 

cm
3

) exhibited a maximum  of 4.6% at d = 75 nm (Fig. 3.8(e) and (f)). Although the reflectance for the BaSi2 

film on the textured substrate was smaller (Fig. 3.4), the highest JSC was limited to 28.5 mA/cm
2
 in samples 

G1G5. This value was significantly lower than that obtained for the p-BaSi2/n-Si solar cells fabricated on the 

flat Si(111) substrate (35.2 mA/cm
2
).[74] This result suggested that the minority-carrier diffusion length 

within the p-BaSi2 and/or textured n-Si(001) had degraded. Furthermore, the values of VOC in all these samples 

were approximately half of those observed for the devices fabricated on the flat substrate, which indicating that 
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the BaSi2/Si interfaces was defective. We speculate that BaSi2 grown around the ridgelines of each Si pyramid 

(Fig. 3.2(c)) and around the Si steps on the {111} facets (Fig. 3.7(e)) might be the cause of the lower JSC and 

VOC parameters. Hence, improvements in  are probable through optimization of the Si surface treatment and 

growth conditions of the BaSi2 layer. 

 

 

Fig. 3.8 JV curves under AM1.5G illumination and IQE spectra of samples E1E6 ((a) and (b)), samples 

F1F5 ((c) and (d)), and samples G1G5 ((e) and (f)). 

 

Table 3.2 Solar cell properties of the best solar cell in each set of temperature are specified.  

For comparison, those of p-BaSi2/n-Si solar cells on a flat Si(111) are shown. 

Sample 
d 

[nm] 

JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

η 

[%] 

RS 

[Ω] 

RSH 

[Ω] 
γ 

J0 

[mA/cm
2
] 

E2 50 28.5 0.20 44.3 2.6 209 30476 1.16 2.42 ×10
-4

 

F5 125 21.8 0.26 46.4 2.7 256 43182 2.65 3.15 ×10
-3

 

G3 75 27.6 0.30 54.9 4.6 208 61839 1.23 1.68 ×10
-5

 

Reference [74] 20 35.2 0.47 60.0 9.9 128 10046 1.17 1.49 ×10
-5

 

3.4 Conclusion 

 In this chapter, we successfully fabricated BaSi2 films on the textured Si(001) substrate with {111} facets. 
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Epitaxial growth of the BaSi2 layers was confirmed using XRD and TEM. The critical thickness of BaSi2 was 

approximately 100 nm, which is much larger than that for BaSi2 on a flat Si(111) substrate (50 nm). The 

reflectance of BaSi2 on the textured substrate was lower than that on the flat substrate, which indicated that 

light-trapping took place. p-BaSi2/n-Si solar cells with d values between 20 and 125 nm and p values between 

2.0 × 10
18

 and 4.6 × 10
18

 cm
-3

 were fabricated. A maximum η of 4.6% was observed at d = 75 nm. 
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Chapter 4 p-BaSi2/n-Si solar cells on flat n-Si(001) substrate 

4.1 Background 

 We have reported the utilization of B-doped p-BaSi2 as an emitter layer in p-BaSi2/n-Si heterojunction 

solar cells, and achieved  of 9.9% and 4.6% on a flat n-Si(111) substrate and a textured n-Si(001) substrate, 

respectively.[74,77,78,121] The 9.9% is the highest  ever recorded for solar cells fabricated with 

semiconducting silicides. And we have found that η was improved significantly by capping the p-BaSi2 surface 

with an approximately a 3 nm-thick a-Si layer. These findings led to the recent success of BaSi2 homojunction 

solar cells.[76] BaSi2 containing solar cells are usually fabricated on Si(111) surfaces, even though the 

production of Si(001) substrates is far more abundant. Si(111) substrates are used because BaSi2 epitaxial films 

on Si(111) have exhibited large  of ~10 s, a large L of ~10 m, and inactive GBs.[48,50,51] BaSi2 that is 

a-axis-oriented can be grown epitaxially on both Si(111) and Si(001) surfaces, although there is a significant 

lattice mismatch of approximately 1 and 12% between them, respectively.[61,122] However, the density of 

interface states at SiO2/Si(001) surface is one order of magnitude smaller than that at SiO2/Si(111), which 

makes Si(001) substrate more favorable for device fabrication. And as we discussed in chapter 2 that BaSi2 

films possess better transport properties than that on Si(111). Recent achievements in BaSi2 on Si(001) such as 

large photoresponsivity and p-BaSi2/n-Si solar cells have also renewed interest in BaSi2 on 

Si(001).[69,123,124] As reported previously, the activation rate of B atoms strongly depends on TB for 

B-doped p-BaSi2 and affects the performance of p-BaSi2/n-Si(111) solar cells. So in this chapter, to explore the 

potential of Si(001) substrates for p-BaSi2/n-Si heterojunction and BaSi2 homojunction solar cells, we 

fabricated p-BaSi2 films with different p and d on flat Si(001) substrates to form p-BaSi2/n-Si heterojunction 

solar cells. 

4.2 Experiments 

In this experiment, a CZ n-Si(001) substrate ( = 110 cm) was used. In order to check the effect of p on 

the performances of p-BaSi2/n-Si heterojunction solar cells, TB was set at 1110 ºC (samples H1H6, p = 2.1  

10
17

 cm
3

), 1170 ºC (samples I1I7, p = 1.1  10
18

 cm
3

), and 1230 ºC (samples J1J8, p = 4.6  10
18

 cm
3

). 

After that, a 3 nm-thick a-Si capping layer was prepared at TS = 180 ºC over the BaSi2 layers for all the samples 

to prevent oxidation of BaSi2. The detailed parameters are shown in Table 4.1.  

The crystalline quality of the samples was characterized using RHEED and XRD. The out-of-plane and 

in-plane XRD measurements gave the a, b, and c-axis lattice constants (a, b, and c) using the Nelson-Riely 

relationship.[119] Sample I7 was used as a reference. Raman spectra were measured with a laser Raman 

spectrometer (JASCO, NRS-5100) with a frequency doubled Nd:YAG laser (532 nm). Surface morphologies 

were investigated using atomic force microscopy (AFM; Shimadzu SPM-9600). For optical characterization, 

the details have been specified in chapter 3. 
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Table 4.1 Growth conditions of samples H, I, and J. 

Sample 

No. 
Substrate 

RDE MBE 

Tsub 

[C] 

RBa 

[nm/min] 

Time 

[min] 

Tsub 

[C] 

RBa 

[nm/min] 

RSi 

[nm/min] 

TB 

[C] 

Time 

[min] 

Thickness 

[nm] 

H1 

CZ 

n-Si(001) 

 = 110 

cm 

580 1 5 600 2.2 0.9 

1100 

30 30 

H2 40 40 

H3 50 50 

H4 60 60 

H5 70 70 

H6 80 80 

I1 

1170 

20 20 

I2 30 30 

I3 35 35 

I4 40 40 

I5 50 50 

I6 60 60 

I7 300 440 

J1 

1230 

12 12 

J2 20 20 

J3 25 25 

J4 30 30 

J5 35 35 

J6 40 40 

J7 50 50 

J8 60 60 

 

4.3 Results and discussions 

Figure 4.1 shows the θ-2θ XRD patterns, taken for samples H2, I4, and J6, for which d values were 

typically 40 nm. Their RHEED patterns of p-BaSi2 films, observed along the Si[1-10] azimuth on Si(001) are 

also presented. Intense (100)-oriented diffraction peaks in the XRD patterns and sharp streaky RHEED 

patterns can be observed from the figure. These results indicate the epitaxial growth of B-doped BaSi2 films 

Si(001) substrates. Similar a-axis-oriented BaSi2 films were obtained for all the samples regardless of TB. 
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Fig. 4.1  2  XRD results of typical 40 nm-thick samples H2, I4, and J6. RHEED patterns are inserted, 

observed along Si [1-10]. (*) represent the diffraction peak attributed from Si substrate. 

 

The JV curves under AM1.5G illumination and EQE spectra of samples H, I, and J with different values 

of d are shown in Figs. 4.2(a)(f). Their values of p were found to be 2.1  10
17

, 1.1  10
18

, and 4.6  10
18

 cm
3

, 

respectively. Solar cell behavior was observed for the devices fabricated on the Si(001) substrates in spite of 

the large lattice mismatch (~12%). The valence and conduction band offsets at the BaSi2/Si interface, which is 

approximately 0.6 and 0.8 eV, respectively, promote the separation of photogenerated electrons and holes, as 

well as those in n-Si.[77] Equivalent data for p-BaSi2/n-Si solar cells fabricated on Si(111) is shown in Figs. 

4.2(g) and 4.2(h).[78] We can see from Figs. 4.2(a) that as the d increases from 30 to 80 nm, the solar cell 

performance initially improved and then degraded with significant decrease both in JSC from 28.4 to 18.8 

mA/cm
2 
and

 
VOC from 0.18 to 0.36 V. The value of p was 2.1  10

17
 cm

3
 in samples H. Thus, the JSC reached a 

maximum at d = 50 nm and then decreased. The EQE spectra shown in Fig. 4.2(b) confirmed this. When TB 

was increased to 1170 C, with p = 1.1  10
18

 cm
3

, the solar cell performance of the devices (samples I) 

changed depending on the value of d, with the largest  (9.8%) being obtained for sample I4 (d = 40 nm). This 

device exhibited a JSC of 37.0 mA/cm
2
, a VOC of 0.44 V, and a FF of 59.7%. The J-V curves (Fig. 4.2(c)) 

showed that the  improved for larger values of d initially, and then decreased because of a significant decrease 

in the JSC. In addition, the VOC almost saturated when d 30 nm. The optimum d value for the p-BaSi2/n-Si(111) 

solar cell was 20 nm (Fig. 4.2(g)). The contribution of photogenerated carriers in the p-BaSi2 layer decreased, 

especially in the short wavelength range, with increasing values of d (Figs. 4.2(d) and 4.2(h)). This indicated 

that it was difficult for the photogenerated minority carriers (electrons) in the p-BaSi2 layer to reach the 

junction before recombination as d increased. The same phenomenon was observed from Fig. 4.2(f) as well. 

This is attributed to a reduced L in the p-BaSi2 films. Figure 4.3(a) presents the EQE spectra of p-BaSi2/n-Si 

samples at d = 50 nm. Because  reaches 4  10
5
 cm

1
 at a wavelength of 500 nm in BaSi2, a large fraction 
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of photons (>85%) at this wavelength are absorbed as they travel as far as 50 nm (1/  2 = 50 nm) through 

the p-BaSi2 layer. The EQE values for sample on Si(001) are smaller than those on Si(111) especially in the 

short wavelength range, meaning that the L of the p-BaSi2 on Si(001) is smaller than that on Si(111). We 

have already measured L values of undoped BaSi2 films on Si(111) and Si(001) by an 

electron-beam-induced-current (EBIC) technique, and they are 10 and 1.5 μm, respectively.[125] This 

difference in L comes from inactive GBs of BaSi2 on Si(111).[47] Although we have not evaluated L values 

of p-BaSi2 films by EBIC, it is reasonable to consider that they are smaller for p-BaSi2 on Si(001) than those 

on Si(111). Figure 4.3(b) shows the schematics of the band alignment of the diode simulated by automat for 

simulation of heterostructures (AFORS-HET).[126] The band bending occurs in the region close to the 

interface under illumination, marked by broken circles, and acts to disturb the transport of photogenerated 

electrons in the p-BaSi2 to the n-Si region and photogenerated holes in the n-Si to the p-BaSi2 region. This is 

caused by a small built-in potential of the diode (~ 0.2 V) because of a small electron affinity of BaSi2 (3.2 

eV).[83]
 
Since such a band bending may limit the  of a p-BaSi2/n-Si solar cell, we need to work on BaSi2 

homojunction solar cells to achieve much a higher . 

To accurately determine the parameters of each samples, we adopted Eq. 3.1. The solar cell properties for 

each solar cell are summarized in Table 4.2. For samples H, maximum  (6.2%) was obtained at 60 nm 

(sample H4). This value was smaller than that of samples I and J. This is due to the small B activation ratio in 

the BaSi2 films with TB = 1100 C. Samples I and J have similar tendency as d increased. So we focused on 

samples I because an  of 9.8% was obtained for sample I4. The J0 of samples I decreased from 0.20 mA/cm
2
 

at d = 20 nm to 9.04  10
−6

 mA/cm
2
 at d = 40 nm, which was comparable to the J0 obtained for the p-BaSi2/n-Si 

solar cell fabricated on Si(111) (J0 = 1.39  10
−5

 mA/cm
2
) with the highest .[78] This result highlights the 

promise of BaSi2 solar cells fabricated on Si(001) substrates. The decrease in the  at low values of d (20 and 

30 nm) was primarily caused by small FFs because of large RS and small RSH.  

To understand this decreased  at low d we examined the surface morphologies (5 m  5 m) and 

cross-sectional profiles of p-BaSi2 layers using AFM for samples I with d = 20, 40, and 60 nm, as shown in Fig. 

4.4. These morphologies were examined before the deposition of the ITO surface electrode. The sample with d 

= 20 nm exhibited GBs with gaps with depths of approximately 14 nm (Fig. 4.4), showing that the entire Si 

surface was not covered by the film. The small RSH calculated for this film likely originated from current 

leakage paths introduced as a consequence of direct contact between the ITO and the n-Si(001) substrate. At d 

= 40 and 60 nm, the n-Si(001) substrate was entirely covered with p-BaSi2, resulting in the smaller J0 and 

larger RSH values. These results clearly demonstrated that contact of ITO and p-BaSi2 and contact of p-BaSi2 

and n-Si have significant impacts on the values of RSH and J0. Conversely, a d of 20 nm was sufficient to cover 

the entire n-Si(111) surface, while d = 10 nm was not enough. 
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Fig. 4.2 J-V curves and EQE spectra of the samples H ((a) and (b), respectively), samples I ((c) and (d), 

respectively), samples J ((e) and (f), respectively), and p-BaSi2/n-Si solar cells on Si(111) substrates ((g) and 

(h), respectively). 
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Fig. 4.3 (a) EQE spectra of the p-BaSi2/n-Si solar cells on Si(001) and Si(111) substrates at d =50 nm in Fig. 

4.2(d) and 4.2(h). (b) Schematics of calculated band alignments of a p-BaSi2 (50 nm)/n-Si solar cell during 

short-circuit condition (left) and open-circuit condition (right) by AFORS-HET. 

 

Table 4.2 Solar cell properties of the p-BaSi2/n-Si solar cell for samples H, I, J, and those on Si(111). 

Sample 
p 

[cm
-3

] 

d 

[nm] 

JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

η 

[%] 

RS 

[Ω] 

RSH 

[Ω] 
γ 

J0 

[mA/cm
2
] 

H1 

2.1  10
17

 

30 30.2 0.18 37.7 2.0 283 20414 1.40 1.65  10
-3

 

H2 40 30.8 0.29 44.7 4.0 327 82719 1.32 3.72  10
-5

 

H3 50 29.8 0.22 43.3 2.8 212 37031 1.59 4.2  10
-4

 

H4 60 29.9 0.36 56.7 6.2 285 113739 1.39 1.06  10
-5

 

H5 70 24.2 0.18 39.3 1.7 347 106157 1.12 4.60  10
-4

 

H6 80 20.7 0.23 28.3 1.3 890 57328 1.03 3.40  10
-4

 

 

I1 

1.1  10
18

 

20 11.85 0.12 25 0.4 1247 1385 0.89 0.2045 

I2 30 33.2 0.35 39.8 4.6 420 15801 1.36 1.83  10
-4

 

I3 35 37.98 0.44 57.0 9.5 289 34244 1.73 1.58  10
-5

 

I4 40 37.01 0.44 59.7 9.8 207 14778 1.67 9.04  10
-6

 

I5 50 33.14 0.46 53.9 8.28 379 13288 1.80 1.64  10
-5

 

I6 60 33.3 0.45 51.8 7.79 393 17450 1.96 3.61  10
-5

 

 

J1 

4.6  10
18

 

12 16.1 0.07 25.1 0.3 312 582 0.85 2.1  10
-4

 

J2 20 36.7 0.31 37.3 4.2 424 50351 1.25 2.95  10
-5

 

J3 25 38.34 0.43 51.1 8.4 221 10615 1.69 5.08  10
-6

 

J4 30 35.2 0.48 54.3 9.2 210 11126 1.86 2.23  10
-6

 

J5 35 38.27 0.46 46.3 8.3 336 5541 1.52 3.06  10
-6

 

J6 40 33.0 0.43 47.9 6.8 217 4664 1.96 3.96  10
-5

 

J7 50 31.5 0.47 41.1 6.0 395 4197 1.82 1.45  10
-5

 

J8 60 29.9 0.47 41.7 5.8 427 9284 1.86 1.62  10
-5

 

 

Reference 

[78] 
2.0  10

18
 

10 28.9 0.09 0.29 0.7 154 2900 1.63 9.65 

15 32.8 0.35 0.51 5.9 264 17471 2.0 1.28×10
−1

 

20 35.8 0.47 0.6 9.9 163 17717 1.11 1.39×10
−5

 

30 32.3 0.45 0.6 8.7 159 13523 1.38 3.55×10
−4

 

50 29.8 0.45 0.51 7 314 11394 1.31 9.12×10
−4
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Fig. 4.4 AFM images (5 μm×5 μm) and cross-sectional profiles (along the white line) of p-BaSi2 layers from 

samples I1 (20 nm), I4 (40 nm), and I6 (60 nm). 

 

The strains (a/a, b/b, and c/c), normalized using those of a reference sample with d = 440 nm, as 

functions of d on the Si(001) substrate are shown in Fig. 4.5(a). The equivalent graphs obtained on Si(111) 

substrates are presented in Fig. 4.5(b).[83] Surprisingly, the values of a/a, b/b, and c/c were all negative 

when d was equal to or smaller than 60 nm. Their magnitude decreased monotonically and approached 0, 

which indicated that the BaSi2 films were under compressive strain. In contrast, a/a on the Si(111) substrate 

was positive and the dependence of the strain on d was more complicated (Fig. 4.5(b)). It is plausible that these 

differences in strain caused the different thicknesses of the p-BaSi2 layer required to cover the entire n-Si 

surface when comparing Si(111) and Si(001) substrates. Raman spectra of the p-BaSi2 films on the Si(001) 

substrate with different d values are shown in Fig. 4.5(c). Five Raman peaks were observed at wavenumbers 

below 500 cm
−1

,[104] denoted by Fg, Eg, Eg + Fg, Fg, and Ag, in addition to an intense peak (520.2 cm
−1

) caused 

by the transverse optical phonon of Si (SiTO) from the substrate. The Raman peaks Fg, Eg, and Ag originated 

from tetrahedral Si with Th symmetry in the lattice of BaSi2.[127] The peak positions in the Raman spectra as 

functions of d are shown in Fig. 4.5(d). As d increased, all peaks shifted to a smaller wavenumbers, which 

indicated that the films were under compressive stress in the in-plane direction.[128] This compressive stress 

was consistent with the strains (b/b < 0 and c/c < 0) when considering the elastic stiffness constants of BaSi2 

using the elastic stress-strain relationship described by M. Grundmann.[129] As the Si p state appears 

dominant in the valence band maximum of BaSi2 in both theory [42,43,130]and experiment,[131] it is possible 

that the stress introduced in the tetrahedral Si within the lattice modified the band structure of BaSi2, leading to 

differences in its optical properties. Although further studies are required to verify the relationship between the 

induced stress and optical properties of BaSi2, this work shows that Si(001) substrates are useful for BaSi2 solar 

cells.  
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Fig. 4.5 Normalized strains (a/a, b/b, and c/c) as functions of p-BaSi2 thickness grown on (a) Si(001) 

(samples I) and (b) Si(111).[83] (c) Raman spectra of samples I. (d) Raman peak positions as functions of 

thickness for the p-BaSi2 films. 

 

4.4 Conclusion 

In this chapter, we fabricated B-doped p-BaSi2/n-Si heterojunction solar cells on Si(001) substrates with 

different p-BaSi2 layer thicknesses. We then examined the influence of the p-BaSi2 layer thickness and p on the 

solar cells properties. The p-BaSi2 films were found to be under compressive strain in the normal direction and 

compressive stress in the in-plane direction when d < 60 nm. The  reached a maximum value of 9.8% with a 

JSC of 37.0 mA/cm
2
, a VOC of 0.44V, and a FF of 59.7% with a thickness of 40 nm and a p of 1.1  10

18
 cm

3
 for 

p-BaSi2. These values were comparable to those obtained for devices fabricated on Si(111), indicating that 

Si(001) substrates can also be used for BaSi2 solar cells.  
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Chapter 5 Characterization of BaSi2 films on a p
+
-BaSi2/p

+
-Si tunnel 

junction 

5.1 Background 

 In chapter 4, we demonstrated the potential of BaSi2 films for solar cell applications. One of the critical 

steps in the fabrication of BaSi2 films on Si is to produce an electrical contact between the Si and BaSi2. There 

are large conduction and valence band discontinuities at the BaSi2/Si heterointerface, due to the much smaller 

electron affinity of BaSi2 (3.2 eV) compared to that of Si.[73] Therefore, even when light is incident on the 

BaSi2/Si structure, and photoexcited carriers are generated in the BaSi2 layer, they will be blocked at the 

BaSi2/Si interface, thereby significantly decreasing the photocurrent. There are some investigations on 

employing a TJ to overcome this problem.[79,132] Saito et al. used an Sb-doped n
+
-BaSi2/p

+
-Si TJ to serve 

BaSi2 epitaxial films, and a current density of 21.9 A/cm
2
 was achieved at 0.5 V.[80] Du et al. fabricated 400 

nm-thick undoped-BaSi2 epitaxial layers on a n
+
-BaSi2/p

+
-Si TJ, and an IQE exceeding 70% at 1.55 eV were 

achieved.[82] The most proper dopant to form n
+
-BaSi2 is Sb, however, the diffusion of Sb atoms within 

BaSi2 films may decrease their crystal qualities and affect the transport of carriers.[133] Our final goal is the 

fabrication of high- BaSi2/c-Si tandem solar cells. In this chapter, prior to the formation of a BaSi2/c-Si 

tandem solar cell, we aimed to form a p
+
-BaSi2/p

+
-Si TJ, which is necessary to make the electrical contact 

between BaSi2 and c-Si solar cells sufficiently small. 

5.2 Experiments 

The solar cell characteristics and key parameters such as band alignment, J-V characteristics and 

suitable thickness of each layer were determined using the AFORS-HET simulation. To make a 

p
+
-BaSi2/p

+
-Si TJ, p values should be set to exceed the effective density of states in the valence band for BaSi2 

(2.0 × 10
19 

cm
-3

) and Si (1.04 × 10
19

 cm
-3

). First, we fabricated B-doped p-Si layers, named K1K6, as details 

specified in Table 5.1. The p values were confirmed by Hall measurement. After confirming the growth 

condition of p
+
-Si, we formed the TJ on two different substrates with  values of 25 cm and 0.07 cm, 

named L1 and L2, respectively, as list in Table 5.2, and checked their TJ properties by JV characteristics. 

Afterwards, BaSi2 films were grown on the TJ, and the crystalline quality, surface morphology and 

photoresponse spectra were measured. Table 5.3 shows the growth conditions of samples M1 and M2. For 

AFM measurement, optical and electrical characterization, the details have been specified in Chapter 3. 

 

Table 5.1 Growth conditions of samples K1K6. 

Sample Substrate 
MBE 

Tsub [C] RSi [nm/min] TB [C] Time [min] Thickness [nm] 

K1 

FZ n-Si(001)  

 1000 cm 

400 

0.9 1300 120 

98 

K2 450 111 

K3 500 111 

K4 550 99 

K5 600 112 

K6 700 98 
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Table 5.2 Growth conditions of samples L1 and L2. 

Sample Substrate 
MBE (p

+
-Si) 

Tsub [C] RSi [nm/min] TB [C] Time [min] Thickness [nm] 

L1 CZ p-Si(001)  = 25 cm 
500 0.9 1300 48 40 

L2 CZ p-Si(001)  = 0.07 cm 

 

RDE MBE (p
+
-BaSi2) a-Si 

capping 

layer [nm] 

Tsub 

[C] 

RBa 

[nm/min] 

Time 

[min] 

Tsub 

[C] 

RSi 

[nm/min] 

RBa 

[nm/min] 

TB 

[C] 

Time 

[min] 

Thicknes

s [nm] 

580 1 5 650 0.9 2.56 1300 7 10 3 

 

Table 5.3 Growth conditions of samples M1 and M2. 

Sample Substrate 

MBE (p
+
-Si) RDE 

Tsub 

[C] 

RSi 

[nm/min] 

TB 

[C] 

Time 

[min] 

Thickness 

[nm] 

Tsub 

[C] 

RBa 

[nm/min] 

Time 

[min] 

M1 
CZ p-Si(001)  

 = 25 cm 
500 0.9 1300 48 40 580 1 5 

M2 
CZ p-Si(001)  

 = 0.07 cm 

 

MBE (p
+
-BaSi2) MBE (p-BaSi2) 

Tsub 

[C] 

RSi 

[nm/min] 

RBa 

[nm/min] 

TB 

[C] 

Time 

[min] 

Thickness 

[nm] 

Tsub 

[C] 

RSi 

[nm/min] 

RBa 

[nm/min] 

TB 

[C] 

Time 

[min] 

Thickness 

[nm] 

650 0.9 2.56 1300 7 10 600 0.9 2.2 1200 300 500 

 

MBE (n- BaSi2) a-Si capping layer 

[nm] Tsub [C] RSi [nm/min] RBa [nm/min] TSb [C] Time [min] Thickness [nm] 

500 0.9 2.2 350 1 10 3 

 

5.3 Results and discussions 

First we did some work on simulation. Figures 5.1(a) and 5.1(b) show the schematic diagram and the 

band alignment of an optimized n-BaSi2(10 nm, n = 2  10
19

 cm
-3

)/p-BaSi2(500 nm, p = 1  10
17

 

cm
-3

)/p
+
-BaSi2(10 nm, p = 2  10

19
 cm

-3
)/p

+
-Si (40 nm, p = 4.3  10

19
 cm

-3
)/p-Si(500 m,  = 25 cm) solar 

cell, respectively. From Fig. 5.1(b), the electron-hole pairs generate in the absorber p-BaSi2 region, 

afterwards, electrons transport toward the n-BaSi2 side by the build-in electric field and holes transport to the 

p-Si side across the p
+
-BaSi2/p

+
-Si TJ, leading to the operation of the solar cell. 
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Fig. 5.1 (a) Schematic diagram and (b) band alignment of BaSi2 films on a p
+
-BaSi2/ p

+
-Si TJ. 

 

Figure 5.2 shows the simulated J-V characteristics of the optimized solar cell in the dark and under 

standard AM1.5G illumination. Good rectifying properties were achieved and an  of 16.5% was obtained 

with a VOC of 0.76 V, JSC of 25.8 mA/cm
2
 and FF of 83.9%. 

 

 

Fig. 5.2 J-V characteristics of the optimal solar cell in the dark (black) and under standard AM1.5G 

illumination (red). 

 

Figures 5.3(a)(f) show the RHEED patterns and surface morphologies, measured by AFM, of samples 

K1K6, respectively. As we can see that when Tsub was 400 C, halo RHEED pattern appeared, indicating that 

amorphous Si was formed at such low Tsub. When Tsub was increased to  450 C, streaky and/or spots in 

RHEED patterns were observed. For samples K5 and K6, the surfaces were quite rough from AFM results, and 

spots in RHEED patterns confirmed it. Such rough surfaces were not good for the subsequent growth of BaSi2 

epitaxial films. For samples K2 and K4, streak and spots in RHEED patterns proved that the surfaces were 

rougher than that of sample K3 (Fig. 5.3(c)).  

Despite the surface morphology, the p is another key parameter that we need to consider. Figures 5.4(a) 

and 5.4(b) show substrate temperature dependence of (a) hole concentration and (b) hole mobility, respectively. 

B-doped Si layer showed n-type conductivity for sample K1 with an n value of 1.8  10
16

 cm
3

 at Tsub = 400 C. 

This was due to the inactive doping of B atoms in a-Si layer.[134] For samples K2K6, p-type conductivity 

was confirmed for B-doped Si films. The p decreased with increasing Tsub. In order to form p
+
-Si layer, the 

obtained p should be larger than the effective density of states in the valence band for Si (1.04 × 10
19

 cm
-3

). So 

Tsub should be set below 700 C. Associating with the RHEED and AFM results as shown in Figs. 5.3(a)5.3(f), 

and sample K3 had the best surface morphology and suitable p values of 4.6  10
19

 cm
3

 to serve as p
+
 layer. 
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Fig. 5.3 RHEED patterns and AFM results of samples K1K6. 

 

 

Fig. 5.4 Substrate temperature dependence of (a) hole concentration and (b) hole mobility. 

 

After confirming the growth of p
+
-Si, we next moved to the characterization of p

+
-BaSi2/p

+
-Si TJ. Figures 

5.5(a) shows the schematic diagram of JV measurement, Vbias was applied to the p
+
-BaSi2 layer with respect 

to the bottom p-Si substrate. According to the AFM results shown in Fig. 5.5(b), both of the 2 samples had 

smooth surfaces, which were good for the subsequent growth of BaSi2 epitaxial films. Figure 5.5(c) shows the 
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J-V characteristics of samples L1 and L2. The nearly linear behavior of samples L1 and L2, indicates that the 

sample works like a constant resistance under the Vbias. Even under a very small Vbias, the carriers could still 

tunnel through the p
+
-BaSi2/ p

+
-Si TJ without being blocked. And the tunnel current density reached 18.3 

A/cm
2
 at a Vbias = 1.0 V for sample L2. Sufficiently small TJ resistance of 0.081 Ωcm

2
 was achieved. 

Moreover, sample L1, grown on a medium resistive p-Si substrate, also showed sufficient small TJ resistance 

around 0 V. 

 

 

Fig 5.5 (a) Schematic diagram of JV measurement for sample L1. (b) Surface morphology and (c) JV 

characteristics of samples L1 and L2. 

 

BaSi2 films were formed on the TJ and first their crystalline quality was checked. Figures 5.6(a) and 5.6(c) 

show the RHEED patterns after each growth step for sample M1 and M2, respectively. With incident X-ray 

along Si[1-10], for sample M1, streaky patterns were observed after the growth of the top n+-BaSi2 layer. 

However, for sample M2, RHEED patterns with spots appeared after the growth of p
+
-Si and RDE process, 

indicating a rough surface was introduced, which was not good for subsequent growth of BaSi2 epitaxial 

layers. And after grew a 500 nm-thick p-BaSi2 absorber layer, RHEED pattern turned to be halo. From Figs. 

5.6(b) and 5.6(d), both of these 2 samples have similar XRD results with a-axis-orientated BaSi2 films, 

however, the intensity of a-axis-orientated peaks 200, 400, and 600 are much smaller for sample M2. The 

full width at half maxima (FWHM) values of BaSi2 600 diffraction peaks are different, those are 0.78 and 

1.12 for samples M1 and M2, respectively. This means that the crystalline quality of the BaSi2 films starts 

to deteriorate when they are grown on a low- substrate. According to Yamashita et al., step bunching 

occurred when thermal cleaning of the substrate at 900 C was performed, to a far greater extent when a 

low- substrate was used.[83] 

Figures 5.7(a) and 5.7(b) show the surface morphologies, measured by AFM, of samples M1 and M2, 

respectively. Sample M1, which is formed on a medium resistive Si(001) substrate, shows smoother surface 

than sample M2, with a root-mean-square roughness value of 1.19 nm. Figure 5.7(c) shows the JV 

characteristics of samples M1 and M2 under AM1.5G illumination. It is a pity that rectifying properties of 

these 2 samples have not been obtained, which is supposed to the diffusion of Sb atoms within BaSi2 

layers.[135] So we will try to inhibit the diffusion of Sb atoms in the future work. 
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Fig 5.6 (a) and (c) RHEED patterns after each growth step of samples M1 and M2, respectively. (b) and (d) 

 2  XRD results of sample M1 and M2, respectively. Inserted figures are the rocking-curve spectrum of 

BaSi2 600 peak. (*) represent the diffraction peak attributed from Si substrate. 

 

 

Fig. 5.7 Surface morphologies, measured by AFM, of (a) sample M1, and (b) sample M2. (c) JV 

characteristics of samples M1 and M2 under AM1.5G illumination. 
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for solar cell applications by measuring the photoresponsivity. Figures 5.8(a) and 5.8(b) show the 

photoresponsivity under various forward and reverse Vbias for samples M1 and M2. The direction of the 

current flow changed between the reverse and forward bias conditions. Light absorption produces 

electron-hole pairs that are separated by the electric field between the electrodes, which leads to current flow 

in the external circuit as the photoexcited carriers drift before recombination. Photocurrents were increased at 

around 1000 nm, corresponding to the absorption edge of BaSi2. The photoresponsivity reached 0.35 A/W at 

850 nm at Vbias = 1.0 V, corresponding to an EQE value of 54% for sample M1. Sample M2 shows worse 

photoresponsivity than sample M1, which is supposed due to the larger defect state originated from thermal 

cleaning.[83] 

 

 

Fig. 5.8 Photoresponse properties of samples (a) M1 and (b) M2 under bias voltages. 

5.4 Conclusion 

In this chapter, an efficiency of 16.5% was obtained by simulating using AFORS-HET, with a 0.5 

m-thick BaSi2 absorber layer on a p
+
-BaSi2/p

+
-Si tunnel junction. The tunnel properties of the 

p
+
-BaSi2/p

+
-Si junction were confirmed, and the tunnel current density reached 18.3 A/cm

2
 at a Vbias = 1.0 V, 

indicating a sufficient tunnel resistance. Large photoresponsivity reaching 0.35 A/W at 850 nm at Vbias = 1.0 

V, which corresponds to an EQE value of 54%, showing great promise of BaSi2 on TJ for use in 

BaSi2-homojunction and Si-based tandem solar cells.
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Chapter 6 Simulation of BaSi2-based homojunction and tandem solar 

cells 

6.1 Background 

The unique feature of BaSi2 is that large  and L can be utilized simultaneously, indicating great potential 

of BaSi2 as a light absorber layer for thin-film solar cell applications.[136] The  approached 10% without any 

special treatment for passivation in p-BaSi2/n-Si heterojunction solar cells formed on both Si(111) and Si(001) 

substrates.[74,77,137] This value is the highest ever reported for solar cells fabricated with semiconducting 

silicide. Furthermore, several BaSi2-based solar cells have been proposed; those are BaSi2 nanowires, 

back-contacted BaSi2, and perovskite/BaSi2 dual-junction solar cells.[138-140] The carrier conductivity type 

and concentration of BaSi2 can be effectively controlled by impurity doping, in particular, the electron and hole 

concentrations can reach ~10
20

 cm
3

 through Sb and B doping, respectively.[54,60,72] Such high electron and 

hole density ensure that they can work as electron and hole transport layers in a homojunction solar cell, 

respectively. Recently, the operation of a BaSi2 homojunction solar cell has been firstly demonstrated that the 

photo-generated carriers in the BaSi2 layer can be separated by the build-in electric field in the homojunction 

diode.[76] However, the band offsets at the p
+
-BaSi2/p

+
-Si interface hindered the transport of photo-generated 

carriers, resulting in a comparatively low . This problem can be solved by optimizing the tunnel effect of the 

p
+
-BaSi2/p

+
-Si diode in the near future. Another way to realize high- is to form a tandem solar cell, where a 

wide Eg absorber layer for the top-cell is a necessity. BaSi2 can be grown epitaxially on Si substrate;[63,64] its 

Eg can be increased to 2.0 eV by partly substituting Si with isoelectric C.[46] Therefore, BaSi2 is a material of 

choice aiming for high- tandem solar cells in a BaCXSi2X/c-Si tandem-structure solar cell.  

The most widely used free of charge softwares for solar cells are PC-1D, SCAPS-1D, wxAMPS, and 

AFORS-HET. PC1D is a computer program written for IBM-compatible personal computers that solves the 

fully coupled nonlinear equations for the quasi-one-dimensional transport of electrons and holes in 

crystalline semiconductor devices, with emphasis on photovoltaic devices.[141] It is designed for Si PVs and 

most widely used for its simple processes and calculation speed. SCAPS-1D is a one dimensional solar cell 

simulation program developed at the Department of Electronics and Information Systems (ELIS) of the 

University of Gent, Belgium. This original program is developed for cell structures of the CIS and the CdTe 

family, considering ion injection conditions which are not uniform distributed.[142] Kim et al. succeeded in 

simulating of CIGS/c-Si tandem solar cells using SCAPS-1D.[143] The wxAMPS program is a 1D solar cell 

simulation program designed at the University of Illinois at Urbana Champaign, in collaboration with Nankai 

University of China. It follows the physical principle of AMPS, adds the portion of tunneling currents, 

improves convergence and speed, and provides an improved visualization.[144] It is originally designed for 

Si PVs with considering the effect of tails states, defects and etc. AFORS-HET is a numerical simulation tool, 

which allows to model homo- as well as heterojunction devices.[126] And it is reported to be able for the 

simulation of perovskite/c-Si tandem solar cells.[145] The above mentioned 4 softwares are useful, however, 

they all address individual solar cell viewpoints, without providing a complete coverage of the complex 

combination of phenomena that actually take place. And we found that simulating BaSi2-based tandem solar 

cell is not appropriate using these softwares. So in this chapter, a commercial software, that is Silvaco-Atlas, 

has been used.  



Chapter 6 Simulation of BaSi2-based homojunction and tandem solar cells 

62 

6.2 Introduction to Silvaco-Atlas 

Silvaco-Atlas software is a device simulator that performs DC, AC, and transient analysis for silicon, 

binary, ternary, and quaternary material-based devices. It enables the characterization and optimization of 

semiconductor devices for a wide range of technologies. Device simulation helps us understand and depict 

the physical processes and make reliable predictions of the device behavior. 2D device simulations with 

properly selected calibrated models and a very well-defined appropriate mesh structure are very useful for 

predictive parametric analysis of novel device structures. 2D modeling and simulation processes help us to 

obtain a better understanding of the properties and behavior of new and current devices. This helps provide 

improved reliability and scalability, while also helping to increase development speed and reduce risks and 

uncertainties.[146] Unlike the four solar cell simulation models mentioned above, which are based on a 

combination of discrete electrical components, this novel model extracts the electrical characteristics of a 

solar cell based on virtual fabrication of its physical structure, allowing for direct manipulation of materials, 

dimensions, and dopings. Atlas provides a comprehensive set of physical models as shown in Fig. 6.1. Based 

on these physical models, it is best used with the technology-based computer aided design tool (TCAD) tools. 

These include DeckBuild, TonyPlot, DevEdit, MaskViews, and Optimizer. DeckBuild provides an 

interactive run time environment. TonyPlot supplies scientific visualization capabilities. DevEdit is an 

interactive tool for structure and mesh specification and refinement. MaskViews is an IC Layout Editor. The 

Optimizer supports black box optimization across multiple simulators. Silvaco-Atlas receives input files 

through DeckBuild. The code entered in the input file calls Atlas to run with the following command: go 

atlas. Following that command, the input file needs to follow a pattern. The command groups are listed in 

Fig. 6.2. Atlas follows the following format for statements and parameters: 

<STATEMENT> <PARAMETER>=<VALUE> 

The following line of code serves as an example: 

DOPING REGION=1 UNIFORM N.TYPE CONC=2e19 

The statement is DOPING. The parameters are REGION, UNIFORM, N.TYPE, and CONCENTRATION. 

The input codes for simulating BaSi2-based solar cells are displayed in Appendix A. 

 

 

Fig. 6.1 Silvaco-Atlas physical models 
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Fig. 6.2 Atlas command groups and primary statements 

 

In 2008, Baudrit et al. succeeded in simulating a Dual-Junction (DJ) GaInP/GaAs solar cell for the first 

time, including a complete TJ model and the resonant cavity effect occurring in the bottom cell. They 

demonstrated that solar cells simulation using Silvaco-Atlas software is possible and can be predictive for 

single junction solar cells as well as for DJ solar cells with assuming a non-local band to band transition.[147] 

One year later, Tsutagawa et al. reported a triple junction InGaP/GaAS/Ge solar cell with a 36.2% efficiency 

using Silvaco-Atlas modeling and simulation. And a new method was introduced, that was defining a lumped 

resistance between the top and bottom cells, so that current can flow through without significant 

limitation.[148] In 2015, Elbar et al. presented numerical simulations to analyze the performance of a DJ 

CGS/CIGS tandem solar cell. They considered the thickness of the top-cell as a key parameter to further 

improve the performance of the CGS/CIGS tandem cell. With fixed thickness of the bottom-cell at 3.5 m, 

maximization of the CGS/CIGS tandem cell efficiency of 26.21% was achieved at an optimal thickness of 

the top-cell of 0.19 m. Thickness dependent top-cell light absorption was essentially behind such 

CGS/CIGS tandem cell photovoltaic behavior.[149] So Silvaco-Atlas is a powerful software for simulating 

BaSi2 homojunction and tandem solar cells. In this chapter, we first go for the structure design for BaSi2 

homojunction solar cells, and then move to the optimization of BaSi2/Si DJ solar cells by adjusting the d of 

top-cell BaSi2 absorber layer. 

6.3 Simulation method 

Silvaco Atlas presents solar cell performance according to Poisson’s equation, electrons and holes 

continuity equations through a 2-D grid by considering a wide variety of semiconductor physics models for 

drift-diffusion transport, Shockley-Read-Hall (SRH) recombination, Auger recombination, carrier 

concentration dependent mobility (CONMOB), carrier generation, Fermi-Dirac statistics, tunneling effect, 

etc.[146,149,150] The accuracy of the material parameters defined in the solar cell model such as Eg, n, p, 

carrier mobility (n and p), permittivity, affinity, carrier lifetime (n and p), and effective density of states in 

the conduction and valence bands (NC and NV), determines the accuracy of the simulated results. In this study, 

SRH recombination, which is the main recombination mechanism in BaSi2,[51] as well as the Fermi-Dirac 

statistics were taken into consideration. The values of carrier mobility and carrier lifetime were specified for 

each BaSi2 layer according to the experimental values.[151,152] Regarding the carrier mobility of silicon, 

default values which were embedded in the CONMOB model in the software, were used. The input parameters 

for simulation are given in Table 6.1.[42,44,73,151] One of the most important parameters for advanced solar 

cell modeling is the optical properties containing refractive index n’ and extinction coefficient k against 
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wavelength, which decide the transmission and attenuation of light passing through the semiconductor. The n’ 

and k values of BaSi2 were extracted from the experimental results as shown in Fig. 6.3(a),[44,140] where k is 

calculated from the relationship  = 4  /λ. There is, however, no experimental data on the  of BaCxSi2x 

absorber layers (Eg,top = 1.4, 1.5, 1.6, and 1.7 eV). In this paper, we therefore assume them from those of BaSi2 

by shifting the energy by an increment of Eg. The obtained  values are shown in Fig. 6.3(b). 

 

Fig. 6.3 (a) The n’ and k values of BaSi2 against wavelength. (b)  of BaCxSi2x (Eg,top = 1.4, 1.5, 1.6, and 1.7 

eV) against wavelength. 

 

Table 6.1 Input parameters for simulation. 

Material n
+
-BaSi2 p-BaSi2 p

+
-BaSi2 

p
+
-BaSi2 

Tunnel 

n
+
-Si 

Tunnel 
n

+
-Si p-Si p

+
-Si 

d [nm] 20 variable 20 15 15 100 2e5 1e3 

Eg [eV] 1.3 1.3 1.3 1.3 1.1 1.1 1.1 1.1 

n [cm
3

] 1e20    1e20 1e19   

p [cm
3

]  1e17 1e20 2e20   7e16 1e19 

Permittivity 14.0 14.0 14.0 14.0 11.7 11.7 11.7 11.7 

Affinity [eV] 3.2 3.2 3.2 3.2 4.05 4.05 4.05 4.05 

NC [cm
3

] 2.6e19 2.6e19 2.6e19 2.6e19 2.8e19 2.8e19 2.8e19 2.8e19 

NV [cm
3

] 2.0e19 2.0e19 2.0e19 2.0e19 1.0e19 1.0e19 1.0e19 1.0e19 

n [s] 3 8 2 

Lumped resistance  Default values 
p [s] 3 8 2 

n [cm
2
/Vs] 500 850 600 

p [cm
2
/Vs] 20 100 30 

 

Due to the structure of practical BaSi2 homojunction solar cell,[76] a solar cell in the p-i-n architecture was 

proposed. Figure 6.4 displays the schematic diagram of a BaSi2/c-Si tandem solar cell, consisting of an 

n
+
pp

+
-BaSi2 homojunction top-cell and a c-Si bottom-cell. The d of heavily doped n

+
- and p

+
-BaSi2 layers were 

set to be 20 nm, which is the minimum d required to sufficiently cover the whole surface by experiment.[78] 

The d of lightly doped p-BaSi2 absorber layer (p = 5×10
17

 cm
-3

) was set a value between 0.2 and 10 m to 

examine its effect on solar cell performance. Meanwhile, the c-Si bottom-cell was simulated with insignificant 

difference from those obtained from Ref. [153]. When stacking the top BaSi2 solar cell with a bottom c-Si solar 

cell, a lumped resistance was defined for the tunnel junction so that the current can flow within the tandem 
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solar cell without significant limitation.[149] We also assumed no optical loss or electrical loss at every 

interface throughout the device. The simulation was performed under 1 sun of standard AM1.5G spectrum. A 

wide variety of outputs such as JV characteristics, EQE spectrum, photogeneration rate, and potential across 

the device, were available using Silvaco Atlas simulation package. By changing the d of the top p-BaSi2 

absorber layer, the current matching point between the two cells was examined. 

 

 

Fig. 6.4 Schematic diagram of a BaSi2/c-Si tandem solar cell consisting of an n
+
pp

+
-BaSi2 top-cell and a c-Si 

bottom-cell. 

6.4 Results and discussion 

6.4.1 Top-cell simulation 

In order to form the homojunction solar cell, we placed high-n and -p BaSi2 layers at opposite sides of 

low-p BaSi2 absorber layer as electron and hole transport layers, respectively, so that photogenerated 

electron-hole pairs can be extracted.[76] The structure is shown in Fig. 6.5. After assuming the structure, 

parameters of each layer are also be specified in Table 6.1.  

 

Fig. 6.5 Structure of the BaSi2 homojunction solar cell. 
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Figures 6.6(a) and 6.6(b) show the simulated results of short-circuit current density JSC, , VOC, and fill 

factor FF against the d of p-BaSi2 absorber layer. All these values initially increased with d, and then almost 

saturated at d  2 m. This is due to the large  of BaSi2 that only a 2 m-thick film can effectively absorb 

visible light according to Beer-Lambert law.[154] Figures  6.6(c) and 6.6(d) show the JV curves and EQE 

spectrum of a 2 m-thick BaSi2 solar cell with an  of 23.3%, JSC of 30.3 mA/cm
2
, VOC of 0.88 V, and FF of 

86.9%. The attenuation of EQE in the short wavelength range was attributed to the large n’ thus reflectance, 

which can be greatly reduced by adopting a pyramid-like textured structure.[155] The comparison of simulated 

BaSi2 homojunction solar cell with state-of-the-art single junction solar cells is shown in Table 6.2. The 

simulated BaSi2 homojunction solar cell provided higher  compared with CIGS and CdTe solar cells due to 

the high JSC and FF. The VOC loss was 32%, which was smaller than CIGS (34%) and CdTe (38%) solar cells, 

but larger than perovskite (22%) solar cells. Such a loss was caused by the recombination of minority carriers 

in BaSi2. Supplying atomic H during the growth of BaSi2 films to increase a minority-carrier lifetime can help 

to overcome this problem.[156] So further study can be conducted to reduce the reflectance and increase the 

minority-carrier lifetime towards higher . Thus, it is safe to state that BaSi2 is promising for thin-film solar 

cell applications. 

 

Fig. 6.6 (a) JSC and ; (b) VOC and FF of BaSi2 solar cells against the d of p-BaSi2 light absorber layer. (c) JV 

curves and (d) EQE spectrum of a BaSi2 homojunction solar cell with a 2 m-thick absorber layer. 

 

The JSC, , and VOC against d of BaCxSi2x solar cells (Eg,top = 1.4, 1.5, 1.6, and 1.7 eV) are shown in Figs. 

6.7(a)6.7(c). The JSC and  increase with d of absorber layer, indicating that incomplete light absorption 

occurs when d of BaCxSi2x is less than 2 m. The VOC remains almost unchanged as the d of absorber layer 

increases. This is due to the assumption that the d of BaCxSi2x absorber does not affect any of recombination 

mechanisms or interfaces. As a consequence, the BaCxSi2x solar cells with thinner d retain the device behavior 

compared to the cells with d  2 m. Due to the fact that BaSi2 as well as BaCxSi2x have quite large , the 

thinning of top-cell is essential to ensure the current matching condition when stacked with the bottom c-Si 
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solar cell. Figure 6.7(d) shows the EQE spectra of 2 m-thick BaCxSi2x solar cells for various values of Eg,top in 

the range 1.41.7 eV. There is no significant change of EQE in the short wavelength range. Only the cutoff 

wavelength of the EQE spectra shifted to a short wavelength range in accordance with the increase of Eg,top. 

Table 6.2  Comparison of simulated BaSi2 solar cell with state-of-the-art single junction solar cells. 

Material 

η 

[%] 

JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

Eg 

[eV] 

d 

[m] 

Reference 

Si(HJ-IBC) 26.7 42.6 0.783 84.9 1.12 165 [9] 

GaAs 27.6 29.6 1.107 84.1 1.43 ~2 [157] 

CIGS 22.9 38.5 0.746 79.7 1.13 2~3 [22] 

CdTe 22.1 30.2 0.876 79.4 1.43 3~5 [14] 

Perovskite 22.7 24.9 1.144 79.6 1.47 ~0.5 [158] 

BaSi2 (simulation) 23.3 30.3 0.88 86.9 1.30 2 This work 

 

 

Fig. 6.7 (a) JSC; (b) VOC; (c)  of BaCxSi2x (Eg,top = 1.4, 1.5, 1.6, and 1.7 eV) solar cells against the d of 

absorber layer. (d) EQE spectra of the BaCxSi2x solar cells with a 2 m-thick absorber layer. 
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6.4.2 Bottom-cell simulation 

The bottom c-Si solar cell with a typical performance was used in the tandem solar cell. The structure is 

shown in Fig. 6.8(a). This simulation is modeled after the example of a high- c-Si solar cell, which shows an 

 of 19.3% with JSC = 34.0 mA/cm
2
, VOC = 0.67 V, and FF = 84.0%.[153] Basically, the parameters, carrier 

mobility and carrier lifetime, used to simulate a c-Si solar cell are based on default values embedded in the 

Silvaco Atlas. CONMOB statement enables the concentration dependent mobility model in the simulation. It is 

a table consisting of doping versus mobility for Si. Fig. 6.8(b) presents the simulated JV curve of the c-Si 

solar cell, which exhibits an  of 18.9% with JSC = 34.0 mA/cm
2
, VOC = 0.66 V, and FF = 83.7%, indicating 

insignificant simulation difference between ours and Ref. [153]. 

 

Fig. 6.8 (a) The structure and (b) simulated JV curve of the c-Si solar cell. 

6.4.3 Tandem-cell simulation 

The current of a tandem solar cell is determined by a lower current flowing through either a top-cell or a 

bottom-cell. One important thing when stacking two solar cells is to assume the current matching condition, so 

that the current loss can be controlled as small as possible. A wide Eg,top absorber layer is necessary in the 

top-cell so that near-infrared and part of visible light can pass through the top-cell and be absorbed by the 

bottom-cell. Here we adopted BaCxSi2x solar cells with Eg,top = 1.6 and 1.7 eV as a top cell. In the present work, 

the d of the top absorber layer was varied from 50 nm to 1 m, while the bottom c-Si remained the same. Fig. 

6.9(a) and 6.9(b) show the JSC values of the top and bottom-cells versus d of BaCxSi2x absorb layer (Eg,top = 1.6 

and 1.7 eV) in the top-cell, where significant d dependences are shown for both values of Eg,top. As d increases, 
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that the thicker the top-cell became the more photos were absorbed in the top-cell, leaving less light 
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2
 was fulfilled at d = 215 nm for 

BaCxSi2x absorb layer with Eg,top = 1.6 eV. In the same way, the current matching condition was confirmed at 

d = 500 nm with JSC = 17.6 mA/cm
2
 for BaCxSi2x with Eg,top = 1.7 eV. As shown in Figs. 6.9(c) and 6.9(d), the 
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2
 with an 

VOC = 1.94 eV and  = 30.3% for the tandem cell with a Eg = 1.7 eV top-cell. The values of VOC = 1.94 eV and 

 = 30.3% are equal to the sum of those of the top-cell (VOC = 1.27 eV and  = 20.4%) and bottom-cell (VOC = 

0.67 eV and  = 9.9%), indicating almost no energy loss. The EQE of both top- and bottom-cells under the 

current matching point are shown in Figs. 6.9(g) and 6.9(h). The EQE of the bottom c-Si cell exceeds 80% at a 

p+-Si 1 m 1e19 cm-3

p-Si 200 m 7e16 cm-3

n+-Si 100 nm 1e19 cm-3

Al

ITO

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

Voltage [V]

C
u

rr
en

t 
d

en
si

ty
 [

m
A

/c
m

2
]

 

 



Chapter 6 Simulation of BaSi2-based homojunction and tandem solar cells 

69 

wavelength around 900 nm.  

 

 

Fig. 6.9 JSC of top- and bottom-cells against d of top-cell absorber layer (a) Eg,top = 1.6 eV; (b) Eg,top = 1.7 eV.  

of tandem-, top-, and bottom-cells against d of top-cell absorber layer (c) Eg,top = 1.6 eV; (d) Eg,top = 1.7 eV. JV 

curves of tandem-, top-, and bottom-cells at current matching point (e) Eg,top = 1.6 eV; (f) Eg,top = 1.7 eV. EQE 

spectra of top- and bottom-cell (g) Eg,top = 1.6 eV; (h) Eg,top = 1.7 eV. 
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Figure 6.10(a) shows the structure of the highest- (30.3%) tandem solar cell generated by Silvaco Atlas. 

As the bottom c-Si solar cell has a much larger d than the top-cell, the expanded view of red dash area in Fig. 

6.10(a) is shown in Fig. 6.10(b). Figure 6.10(c) displays the potential distribution developed throughout the 

tandem solar cell. Due to the presence of built-in potential at the tunnel junction, it shows a higher potential in 

this region and the potential goes on lowering as we move in both directions from the tunnel junction. The 

photogeneration rate in each layer is shown in Fig. 6.10(d). The photogeneration rate indicates the number of 

photons generated across the layers of the cell under sunlight, and the graph shows that the top BaCxSi2x solar 

cell has a higher rate of photogeneration than that of the bottom-Si solar cell. In the tunnel junction region, 

recombination of photogenerated carriers occurs. Due to this recombination, a low photogeneration rate is 

observed. 

 

 

Fig. 6.10 (a) Structure of the tandem solar cell generated by Silvaco Atlas. (b) Expanded view of red dash area 

in (a). (c) Potential distribution and (d) photogeneration rate developed in the tandem solar cell with expanded 

top view. 

 

Table 6.3 summaries a comparison of simulated BaCxSi2x/c-Si tandem solar cell with other practical 

state-of-the-art dual-junction solar cells. Our simulated tandem solar cell shows great properties with a large  

and VOC. As BaSi2 can be grown epitaxially on a Si substrate with very good crystal quality,[53,83] and a good 

tunnel effect associated with a small tunnel resistance can be achieved based on a BaSi2/c-Si tunnel 

junction,[80,82] a high- tandem solar cell can be expected with a thin top BaCxSi2x solar cell. 
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Table 6.3 Comparison of simulated BaCxSi2x/c-Si solar cell with 

state-of-the-art dual junction solar cells. 

Material 

η 

[%] 

JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

Reference 

a-Si:H/nc-Si:H 12.7 13.5 1.342 70.2 [159] 

Al0.15Ga0.85As/c-Si 21.2 23.6 1.57 77.2 [160] 

Perovskite/CIGS 22.4 17.3 1.77 73.1 [161] 

Perovskite/c-Si 23.6 18.1 1.65 79.0 [162] 

BaCxSi2x/c-Si (simulation) 30.3 17.6 1.94 88.4 This work 

 

6.5 Conclusion 

In this chapter, design and simulation of BaSi2 homojunction and BaCxSi2x/c-si tandem solar cells were 

performed using Silvaco Atlas simulation package. With input the optical and electrical parameters, an 

efficiency of 23.3% under AM1.5G 1 sun illumination for an n
+
pp

+
-BaSi2 homojunction solar cell was 

obtained with only a 2 m-thick absorber layer. This result is comparable to other state-of-the-art single 

junction solar cells. When stacking a 1.7-eV-Eg BaCxSi2x top-cell with a c-Si bottom-cell for a tandem solar 

cell, the current matching point was found with JSC = 17.6 mA/cm
2
 at d = 500 nm for top absorber layer. At this 

point, the  reached a maximum value of 30.3% with an VOC = 1.94 V. On the basis of these promising results, 

we can state that BaSi2 may be a very good candidate to be used in thin-film and tandem solar cell applications 

in recent future. 
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Chapter 7 Summaries 

The works in this thesis can be summarized as follows: 

Electron and hole mobilities versus temperature in BaSi2 have been systematically studied both 

experimentally and theoretically. The experiments were performed with undoped 250 nm-thick BaSi2 

polycrystalline films grown by molecular beam epitaxy. The grain size of films ranged from 0.2 to 5 μm with 

the n of 5.0 × 10
15

 cm
-3

. To investigate the hole mobility, B-doped p-BaSi2 films with various dopant 

concentrations were fabricated and studied. The experimental temperature dependence of the electron mobility 

in the range of 160 – 300 K was found to have a maximum of 1230 cm
2
/V∙s at 218 K, while at RT it dropped 

down to 816 cm
2
/V∙s. We demonstrate that the temperature dependence of the electron mobility cannot be 

adequately reproduced by involving standard scattering mechanisms. A modified approach accounting for the 

grained nature of the films has been proposed for the correct description of the mobility behavior. The highest 

hole mobility in p-BaSi2 films reaching ~ 80 or 200 cm
2
/V∙s (for the films grown on (111) or (001) Si 

substrates, respectively) at RT is about an order or four times of magnitude smaller than that in n-BaSi2 films. 

Such a great difference we ascribe to the specific features of electron-phonon and hole-phonon coupling in 

BaSi2. For device applications, where higher hole mobility values are desirable, we can suggest using BaSi2 

grown on Si(100) substrates rather than Si(111) ones. 

After explaining the transport properties of BaSi2 films, we started to form p-BaSi2/n-Si solar cells on 

Si(001) substrates. First, we used a textured Si(001) substrates which consisted of {111} facets. The 

light-trapping effect of these films and their performance when incorporated into solar cells were measured. 

X-ray diffraction and reflectivity measurements showed that the BaSi2 films were grown epitaxially on the 

textured Si(001) substrate and confirmed the light-trapping effect. p-BaSi2/n-Si solar cells were fabricated with 

varying BaSi2 layer thickness and with hole concentrations in the range between 2.0  10
18

 and 4.6  10
18

 cm
3

. 

These cells exhibited a maximum energy conversion efficiency of 4.6% with an VOC of 0.30 V and a 

short-circuit current density of 27.6 mA/cm
2
 when the p-BaSi2 layer was 75 nm-thick. The film grown around 

the ridge lines of each Si pyramid and the Si steps on the {111} facets resulted in the lower JSC and VOC 

parameters. 

Owing to the existence of defects at the interface of p-BaSi2 and textured Si(001), we then moved to form 

p-BaSi2/n-Si solar cells on a flat n-Si(001) substrates. The influence of the BaSi2 thickness and hole 

concentration on the solar cells properties were examined. The  reached a maximum value of 9.8% with a JSC 

of 37.0 mA/cm
2
, a VOC of 0.44V, and a FF of 59.7% with a thickness of 40 nm and a hole concentration of 1.1 

 10
18

 cm
3

 for p-BaSi2. These values were comparable to those obtained for devices fabricated on Si(111), 

indicating that Si(001) substrates can also be used for BaSi2 solar cells. 

Our goal is the fabrication of high- BaSi2/c-Si tandem solar cells. Prior to the formation of a BaSi2/c-Si 

tandem solar cell, we aimed to form a p
+
-BaSi2/p

+
-Si TJ, which is necessary to make the electrical contact 

between BaSi2 and c-Si solar cells sufficiently small. The tunnel properties of the p
+
-BaSi2/p

+
-Si junction 

were confirmed, and the tunnel current density reached 18.3 A/cm
2
 at a Vbias = 1.0 V, indicating a sufficient 

tunnel resistance. Large photoresponsivity reaching 0.35 A/W at 850 nm at Vbias=1V, which corresponds to 

an EQE value of 54%, showing great promise of BaSi2 on TJ for use in BaSi2-homojunction and Si-based 

tandem solar cells. 
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Simulation on BaSi2 homojunction and BaCxSi2x/c-Si tandem solar cells have been done to check their 

performance so as to help us understand and depict the physical processes and make reliable predictions of 

the device behavior. By using experimentally obtained optical and electrical parameters, an  of 23.3% under 

AM1.5G 1 sun illumination for an n
+
pp

+
-BaSi2 homojunction solar cell was obtained with only a 2 m-thick 

absorber layer. This result is comparable to other state-of-the-art single junction solar cells. When stacking a 

1.7-eV-Eg BaCxSi2x top-cell with a c-Si bottom-cell for a tandem solar cell, the current matching point was 

found with JSC = 17.6 mA/cm
2
 at d = 500 nm for top absorber layer. At this point, the  reached a maximum 

value of 30.3% with an VOC = 1.94 V. On the basis of these promising results, we can state that BaSi2 may be a 

very good candidate to be used in thin-film and tandem solar cell applications in recent future. 
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Appendix A. Input codes for simulating BaSi2-based solar cells 

1. Example Silvaco Atlas code for finding  for a BaSi2 homojunction solar cell 

 

go atlas 

 

#top n+-BaSi2 

set top1thick=0.02 

set top1con=1e20 

 

#top p-BaSi2 

set top2thick=0.2 

set top2con=5e17 

 

#top p+-BaSi2 

set top3thick=0.02 

set top3con=1e20 

 

set topcellthick=$top1thick+$top2thick+$top3thick 

 

#mesh auto 

mesh auto 

x.mesh loc=0.0 spac=0.1 

x.mesh loc=1.0 spac=0.1 

 

#mesh.y 

y.mesh loc=0.0 spac=0.1 

y.mesh loc=$top1thick spac=0.1*$top1thick 

y.mesh loc=$top1thick+$top2thick spac=0.1*$top2thick 

y.mesh loc=$topcellthick spac=0.1*$top3thick 

 

#regions 

region number=1 name="n+-BaSi2" user.material=BaSi2 y.min=0 y.max=$top1thick 

region number=2 name="p-BaSi2" user.material=BaSi2 y.min=$top1thick y.max=$top1thick+$top2thick 

region number=3 name="p+-BaSi2" user.material=BaSi2 y.min=$top1thick+$top2thick y.max=$topcellthick 

 

#electrode 

electrode num=1 name=cathode top material=ito  

electrode num=2 name=anode bottom material=Aluminum 

 

#doping 

doping region=1 uniform n.type conc=$top1con 

doping region=2 uniform p.type conc=$top2con 

doping region=3 uniform p.type conc=$top3con 
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#material 

material material=BaSi2 user.group=semiconductor user.default=silicon index.file=BaSi13.nk 

material material=BaSi2 EG300=1.3 PERMITTIVITY=14 AFFINITY=3.2 NC300=2.6e19 NV300=2.0e19 

material material=Aluminum sopra=Al.nk 

material region=1 MUN=500 MUP=20 taun0=3e-6 taup0=3e-6 

material region=2 MUN=850 MUP=100 taun0=8e-6 taup0=8e-6 

material region=3 MUN=600 MUP=30 taun0=2e-6 taup0=2e-6 

 

save outfile=basi2homo1_1.str 

 

#model 

model srh fermi conmob temp=300 print 

 

#method  

method newton maxtraps=10 dvmax=0.1 

output con.band val.band 

 

beam number=1 x.orig=0.5 y.orig=-0.02 angle=90 power.file=am15.spec back.refl wavel.start=0.28 wavel.end=4 

wavel.num=2002 

solve init 

solve previous 

solve b1=1e-2 

solve b1=1e-1 

solve b1=1e0 

 

log outfile=basi2homo1_1.log 

solve vanode=0.0 name=anode vstep=0.02 vfinal=1.0 

log off 

 

extract init infile="basi2homo1_1.log" 

extract name="Isc" y.val from curve(v."anode", i."cathode") where x.val=0.0 

extract name="JscmAcm2" $Isc*1e08*1e03 

extract name="Voc" x.val from curve(v."anode", i."cathode") where y.val=0.0 

extract name="Pm" max(curve(v."anode", (v."anode" * i."cathode")))  

extract name="Vm" x.val from curve(v."anode", (v."anode"*i."cathode") ) \ 

 where y.val=$"Pm" 

extract name="Im" $"Pm"/$"Vm" 

extract name="FF" $"Pm"/($"Isc"*$"Voc")*100 

extract name="EFF" (1e8*$Pm/0.1)*100 

extract name="iv" curve(v."anode", (i."cathode"*1e11)) outf="basi2homo1_2.log"  

 

quit 

 

2. Example Silvaco Atlas code for finding EQE for a BaSi2 homojunction solar cell 
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# Mesh, region, doping, material properties, method, and models statements all appear before this point 

 

beam number=1 x.orig=0.5 y.orig=-0.02 angle=90 back.refl 

solve init 

solve previous 

solve b1=1e-2 

solve b1=1e-1 

 

log outfile=BaSi13_EQE_1.log 

solve b1=1e-1 beam=1 lambda=0.3 wstep=0.01 wfinal=1.2 

log off 

 

extract init infile="BaSi13_EQE_1.log" 

extract name="EQE" curve(elect."optical wavelength", (-i."anode")/(elect."source photo current")) 

outf="BaSi13_EQE_2.log" 

extract name="IQE" curve(elect."optical wavelength", (-i."anode")/(elect."available photo current")) 

outf="BaSi13_EQE_3.log" 

 

tonyplot BaSi13_EQE_2.log 

 

quit 

 

3. Example Silvaco Atlas code for finding  for a BaSi2/c-Si tandem solar cell 

 

go atlas 

 

#top n+-BaSi2 

set top1thick=0.02 

set top1con=1e20 

 

#top p-BaSi2 

set top2thick=0.5 

set top2con=5e17 

 

#top p+-BaSi2 

set top3thick=0.02 

set top3con=1e20 

 

#tunnel p+-BaSi2 

set tun1topthick=0.015 

set tun1topcon=1e20 

 

#tunnel n+-Si 

set tun1botthick=0.015 
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set tun1botcon=1e20 

 

#bot n+-Si 

set bot1thick=0.1 

set bot1con=1e20 

 

#bot p-Si 

set bot2thick=200 

set bot2con=7e17 

 

#bot p+-Si 

set bot3thick=1 

set bot3con=1e20 

 

set topcellthick=$top1thick+$top2thick+$top3thick 

 

set tunthick=$tun1topthick+$tun1botthick 

 

set totcellthick=$topcellthick+$tunthick+$bot1thick+$bot2thick+$bot3thick 

 

#mesh auto 

mesh auto 

x.mesh loc=0.0 spac=0.1 

x.mesh loc=1.0 spac=0.1 

 

#mesh.y 

y.mesh loc=0.0 spac=0.1 

y.mesh loc=$top1thick spac=0.1*$top1thick 

y.mesh loc=$top1thick+$top2thick spac=0.1*$top2thick 

y.mesh loc=$topcellthick spac=0.1*$top3thick 

y.mesh loc=$topcellthick+$tun1topthick spac=$tun1topthick/15 

y.mesh loc=$topcellthick+$tun1topthick+$tun1botthick spac=$tun1botthick/15 

y.mesh loc=$topcellthick+$tunthick+$bot1thick spac=0.1*$bot1thick 

y.mesh loc=$topcellthick+$tunthick+$bot1thick+$bot2thick spac=0.1*$bot2thick 

y.mesh loc=$totcellthick spac=0.1*$bot3thick 

 

#regions 

region number=1 name="n+-BaSi2" user.material=BaSi2 y.min=0 y.max=$top1thick 

region number=2 name="p-BaSi2" user.material=BaSi2 y.min=$top1thick y.max=$top1thick+$top2thick 

region number=3 name="p+-BaSi2" user.material=BaSi2 y.min=$top1thick+$top2thick y.max=$topcellthick 

region number=4 name=anode1 user.material=BaSi2 y.min=$topcellthick y.max=$topcellthick+$tun1topthick 

region number=5 name=cathode1 material=Silicon y.min=$topcellthick+$tun1topthick 

y.max=$topcellthick+$tun1topthick+$tun1botthick 

region number=6 name="n-Si" material=Silicon y.min=$topcellthick+$tunthick 

y.max=$topcellthick+$tunthick+$bot1thick 
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region number=7 name="p-Si" material=Silicon y.min=$topcellthick+$tunthick+$bot1thick 

y.max=$topcellthick+$tunthick+$bot1thick+$bot2thick 

region number=8 name="p+-Si" material=Silicon y.min=$topcellthick+$tunthick+$bot1thick+$bot2thick 

y.max=$totcellthick 

 

#electrode 

electrode num=1 name=cathode top material=ITO 

electrode num=2 name=anode1 material=BaSi2  y.min=$topcellthick y.max=$topcellthick+$tun1topthick 

electrode num=3 name=cathode1 material=Silicon y.min=$topcellthick+$tun1topthick 

y.max=$topcellthick+$tun1topthick+$tun1botthick 

electrode num=4 name=anode bottom material=Aluminum 

 

#contact 

contact name=anode1 resist=5E16 

contact name=cathode1 resist=5E16 

 

#doping 

doping region=1 uniform n.type conc=$top1con 

doping region=2 uniform p.type conc=$top2con 

doping region=3 uniform p.type conc=$top3con 

doping region=4 uniform p.type conc=$tun1topcon 

doping region=5 uniform n.type conc=$tun1botcon 

doping region=6 uniform n.type conc=$bot1con 

doping region=7 uniform p.type conc=$bot2con 

doping region=8 uniform p.type conc=$bot3con 

 

#material 

material material=BaSi2 user.group=semiconductor user.default=silicon index.file=BaSi17.nk EG300=1.7 

PERMITTIVITY=14 AFFINITY=3.2 NC300=2.6e19 NV300=2.0e19 

material material=silicon EG300=1.12 PERMITTIVITY=11.7 AFFINITY=4.05 NC300=2.80e19 NV300=1.04e19 

sopra=Si111.nk 

material material=Aluminum sopra=Al.nk 

material region=1 MUN=500 MUP=20 taun0=3e-6 taup0=3e-6 

material region=2 MUN=850 MUP=100 taun0=8e-6 taup0=8e-6 

material region=3 MUN=600 MUP=30 taun0=2e-6 taup0=2e-6 

 

#model 

model srh fermi conmob temp=300 print 

 

#method 

method newton maxtraps=10 dvmax=0.1 

output con.band val.band 

 

beam number=1 x.orig=0.5 y.orig=-0.02 angle=90 power.file=am15.spec back.refl wavel.start=0.28 wavel.end=4 

wavel.num=2002 
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solve init 

solve previous 

solve b1=1e-2 

solve b1=1e-1 

solve b1=1e0 

 

log outfile=basi17tandem_10_tot_1.log 

solve vanode=0.0 name=anode vstep=0.02 vfinal=2.0 

log off 

 

extract init infile="basi17tandem_10_tot_1.log" 

extract name="Isc" y.val from curve(v."anode", i."cathode") where x.val=0.0 

extract name="JscmAcm2" $Isc*1e08*1e03 

extract name="Voc" x.val from curve(v."anode", i."cathode") where y.val=0.0 

extract name="Pm" max(curve(v."anode", (v."anode" * i."cathode")))  

extract name="Vm" x.val from curve(v."anode", (v."anode"*i."cathode") ) \ 

 where y.val=$"Pm" 

extract name="Im" $"Pm"/$"Vm" 

extract name="FF" $"Pm"/($"Isc"*$"Voc")*100 

extract name="EFF" (1e8*$Pm/0.1)*100 

extract name="iv" curve(v."anode", (i."cathode"*1e11)) outf="basi17tandem_10_tot_2.log"  

 

quit 

 

4. Example Silvaco Atlas code for finding EQE for a BaSi2/c-Si tandem solar cell 

 

# Mesh, region, doping, material properties, method, and models statements all appear before this point 

 

# EQE of top cell 

beam num=1 x.orig=0.5 y.orig=-0.02 angle=90 back.refl 

 

beam num=2 x.orig=0.5 y.orig=-0.02 angle=90 wavelength=0.9 back.refl 

 

solve init 

 

solve b2=1e-2 

solve b2=1e-1 

solve b2=1e0 

log outfile=tmp1.log 

solve b2=1e1 

extract init inf="tmp1.log" 

extract name="ISi" max(abs(i."anode")) 

 

log off 
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solve b1=1e-2 

log outfile=BaSi17tandem_topEQE_1.log 

solve b1=1e-1 beam=1 lambda=0.3 wstep=0.01 wfinal=1.2 

 

log off 

 

extract init infile="BaSi17tandem_topEQE_1.log" 

extract name="BaSi17tandem_topEQE_2.log" curve(elect."optical wavelength", (-i."anode"-$ISi)/(elect."source photo 

current")) outfile="BaSi17tandem_topEQE_2.log" 

 

# EQE of bottom cell 

beam num=3 x.orig=0.5 y.orig=-0.02 angle=90 back.refl 

 

beam num=4 x.orig=0.5 y.orig=-0.02 angle=90 wavelength=0.65 back.refl 

 

solve init 

 

solve b4=1e-2 

solve b4=1e-1 

solve b4=1e0 

log outfile=bottmp1.log 

solve b4=1e1 

extract init inf="bottmp1.log" 

extract name="IBaSi2" max(abs(i."anode")) 

 

log off 

 

solve b3=1e-2 

log outfile=BaSi17tandem_botEQE_1.log 

solve b3=1e-1 beam=3 lambda=0.3 wstep=0.01 wfinal=1.2 

 

log off 

 

extract init infile="BaSi17tandem_botEQE_1.log" 

extract name="BaSi17tandem_botEQE_2.log" curve(elect."optical wavelength", (-i."anode"-$IBaSi2)/(elect."source 

photo current")) outfile="BaSi17tandem_botEQE_2.log" 

 

quit 
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Appendix B. Correspondence table between sample number and 

sample name. 

 

Sample No. Name Sample No. Name 

A Ref. [92] (Morita) H3 TG25 

B1 ME03 (Emha) H4 TG26 

B2 ME04 (Emha) H5 TG27 

B3 BD10 (Takeuchi) H6 TG28 

B4 BD11 (Takeuchi) I1 TG15 

B5 BD06 (Takeuchi) I2 TG16 

C1 TG06 I3 TG20 

C2 TG04 I4 TG17 

C3 TG05 I5 TG18 

C4 TG03 I6 TG19 

C5 TG02 I7 TG05 

D1 DT05 J1 TG07 

D2 OJ01 (Takabe) J2 TG08 

E1 DT08 J3 TG09 

E2 DT10 J4 TG10 

E3 DT11 J5 TG11 

E4 DT32 J6 TG12 

E5 DT33 J7 TG13 

E6 DT29 J8 TG14 

F1 DT26 K1 KG14 

F2 DT31 K2 KG16 

F3 DT28 K3 KG13 

F4 DT30 K4 KG15 

F5 DT22 K5 KG11 

G1 DT19 K6 KG12 

G2 DT20 L1 KG19 

G3 DT21 L2 KG26 

G4 DT23 M1 KG22 

H1 TG23 M2 KG42 

H2 TG24   
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