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Establishment of a Novel iRFP-Incorporated in vivo 

Murine Atherosclerosis Imaging System 

 
Abstract 

By using near-infrared fluorescent protein (iRFP)-expressing hematopoietic 

cells, we established a novel, quantitative, in vivo, noninvasive atherosclerosis 

imaging system. This murine atherosclerosis imaging approach targets macrophages 

expressing iRFP in plaques. Low-density lipoprotein receptor-deficient (LDLR-/-) 

mice transplanted with beta-actin promoter-derived iRFP transgenic (TG) mouse bone 

marrow (BM) cells (iRFP→LDLR-/-) were used. Atherosclerosis was induced by a 

non-fluorescent 1.25% cholesterol diet (HCD). Atherosclerosis was compared among 

the three differently induced mouse groups. iRFP→LDLR-/- mice fed a normal diet 

(ND) and LDLR-/- mice transplanted with wild-type (WT) BM cells were used as 

controls. The in vivo imaging system (IVIS) detected an enhanced iRFP signal in the 

thoracic aorta of HCD-fed iRFP→LDLR-/- mice, whereas iRFP signals were not 

observed in the control mice. Time-course imaging showed a gradual increase in the 

signal area, which was correlated with atherosclerotic plaque progression. Oil red O 

(ORO) staining of aortas and histological analysis of plaques confirmed that the 

detected signal was strictly emitted from plaque-positive areas of the aorta. Our new 

murine atherosclerosis imaging system can noninvasively image atherosclerotic 

plaques in the aorta and generate longitudinal data, validating the ability of the system 

to monitor lesion progression. 
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Chapter 1: General Introduction 
 
 

1.1 Atherosclerosis  

Atherosclerosis is a pathological condition that plaque builds up inside the 

arteries. Unhealthy blood cholesterol levels, High blood pressure, Smoking, Insulin 

resistance, overweight and obesity, old age and inheritance is considered as the risk 

factors for the onset.1 Plaque is made of cholesterol, fatty substances, cellular 

components, calcium and fibrin. It is initiated by lipid retention, oxidation, and 

chronic inflammation, ultimately causing thrombosis or stenosis.2 Recently 

inflammation and plaque vulnerability have drawn major attention. 

Atherosclerosis is the underlying condition that causes coronary heart disease 

and other cardio vascular diseases (CVD). Despite considerable therapeutic advances 

over the past 50 years, atherosclerosis-related cardiovascular diseases (CVD) remain 

the leading cause of death worldwide3. Conventional structural and functional 

imaging methods play increasingly important roles in better understanding such 

diseases and can be used to validate current therapeutic measures and to develop 

novel drug therapies4. Improved imaging technologies hold promise for accelerating 

drug development3. 

 

1.2 Role of Macrophages in Atherosclerosis 

 Macrophages play essential roles in all phases of atherosclerosis, from the 

development of a fatty streak to processes that ultimately contribute to plaque rupture 

and myocardial infarction5. Leukocytes are central components of the inflammatory 

response, and plaque macrophages account for the majority of leukocytes in 

atherosclerotic plaques6-8. There is extensive evidence linking local macrophage 
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infiltration with plaque characteristics and vulnerability9, and plaque macrophages 

have emerged as key imaging targets for inflammatory atheroma in animal models10-14. 

Consequently, techniques that can detect macrophages in vivo are useful for 

monitoring the development of atherosclerotic lesions. However, to our knowledge, 

there are few reports on direct methods that can be used to noninvasively measure the 

accumulation of macrophages without injecting imaging reagents. Therefore, user-

friendly direct methods to noninvasively detect macrophage-rich plaques are in high 

demand in preclinical settings. 

  

1.3 iRFP and in vivo Imaging of Atherosclerosis 

Bioluminescent proteins and visible light fluorescent proteins are powerful 

technologies that have been extensively used to further our understanding of complex 

biological processes. However, such proteins have limited utility in vivo because of 

their poor deep tissue penetration and high autofluorescence. In contrast, imaging 

with near-infrared fluorescence proteins within the 700-900 nm range of spectral 

wavelengths offers several advantages, including its high-sensitivity, nonionizing 

radiation and relatively simple operation13, 15. A new near-infrared fluorescent protein 

(iRFP), a fluorescent mutant of RpBphP2 bacteriophytochrome, was generated by 

Filonov et al.14. iRFP is a nontoxic, stable protein with excitation and emission 

wavelengths of 690 nm and 713 nm, respectively. iRFP is brighter, stronger and more 

stable than previous generations of similar fluorescent proteins14. These qualities 

make iRFP useful for in vivo imaging with great deep tissue penetration and minimal 

autofluorescence. Previously, Tran et al. generated transgenic (TG) iRFP mice with 

ubiquitous iRFP expression16. The expression of iRFP in hematopoietic cells was also 

observed even in bone marrow-transplanted mice. 
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1.4 Overview and Objectives 

We hypothesized that high iRFP fluorescence could be observed with the 

accumulation of macrophages within the atherosclerotic plaque area after 

transplantation of iRFP TG born marrow cells into X-ray-irradiated low-density 

lipoprotein receptor knockout (LDLR-/-) mice under hyperlipidemia conditions. 

 In this study, we established a noninvasive, in vivo atherosclerosis imaging 

system using iRFP hematopoietic cell-transplanted LDLR-/- mice. To our knowledge, 

this is the first reported use of the endogenous iRFP fluorescence expression to image 

atherosclerotic lesions from 0 to 8 weeks without an invasive method or injection of 

imaging reagents. We believe that this novel noninvasive imaging approach will 

prove to be very helpful for monitoring disease progression in drug intervention 

studies with animal models.  
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Chapter 2: Materials and Methods 

 

2.1 Animals 

All the mice were maintained under specific pathogen-free conditions in 

laboratory animal resource center at the University of Tsukuba. All experiments were 

performed in compliance with relevant Japanese and institutional laws and guidelines 

and were approved by the University of Tsukuba animal ethics committee 

(authorization number 17-156). Previously generated iRFP transgenic mice 

expressing iRFP fluorescence protein under Beta actine promoter and LDLR-/- mice 

were bread and maintained in laboratory animal resource center.  

 

2.2 Mouse Model Generation 

 iRFP TG mice that ubiquitously expressed iRFP by using a beta-actin 

promoter were used16. BM cells were collected from iRFP TG mice. BM cells (1×107) 

were transplanted into 10-12-week-old, lethally X-ray-irradiated (7 Gy) female 

LDLR-/- mice by tail vein injection (3). Eight weeks after transplantation, 

establishment of the transplanted hematopoietic systems in the recipient mice was 

confirmed by testing the peripheral blood chimerism using iRFP fluorescence. Mice 

with chimeras nearly 90% and high were used for further experiments. WT BM cell-

transplanted LDLR-/- mice were used as a negative control (Fig 4). Moreover, 

reconstituted mouse blood parameters were checked before inducing atherosclerosis. 

The iRFP-expressing BM-transplanted mice are abbreviated as iRFP→LDLR-/-, and 

the WT mice, as WT→LDLR-/-. 
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2.3 Chimerism Analysis 

Approximately 300 µl of blood was collected in EDTA-coated tubes from the 

transplanted mice by facial venous puncture. The cells were prepared according to a 

previously published method16. The cells were stained with antigen-presenting cell 

(APC)-conjugated anti-mouse CD 45 antibody (BioLegend, USA) for 30 min, washed, 

and suspended in phosphate-buffered saline (PBS) for analysis with a Gallios flow 

cytometer (Beckman coulter, USA). iRFP fluorescence was detected by the FL7 

(725/20) channel. Chimerism was determined by the percentage of cells that were 

positive for both iRFP and CD 45. 

 

2.4 Atherosclerosis Induction and in vivo Imaging 

 Eight weeks after transplantation, atherosclerosis development was initiated 

by feeding the mice an atherogenic HCD with 1.25% cholesterol (Oriental Yeast Co. 

Ltd, Japan). The diet was especially designed to express no fluorescence (HCD). 

Control groups were fed with a made-to-order non-fluorescent normal diet (ND). The 

live in vivo imaging system (IVIS; Perkin Elmer, USA) was used as the imaging 

device. Live imaging was conducted from day 0 of atherosclerosis induction and 

monitored every 2 weeks. Mice were anesthetized by inhalation anesthesia (Perkin 

Elmer, USA) with isoflurane for induction and anesthesia maintenance during 

imaging. The ventral surface of the body was shaved and subjected to imaging. All 

the IVIS images were acquired with excitation/emission wavelengths of 625/720 nm 

and 710/760 nm and with an exposure time of 1 second (1 s).  
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2.5 Atherosclerotic Area Calculation 

Acquired IVIS images were adjusted to the same minimum and maximum 

values of the color scale by Living Image Software (Perkin Elmer, USA) for 

comparison. The values of the negative controls, which did not show any 

autofluorescence, were selected and set as the minimum (268 counts) and maximum 

(992 counts) values. All the images were normalized to the selected values. In the 

present study, we were only focused on imaging atherosclerotic lesions in the thoracic 

aorta. The region of interest (ROI) was manually traced via Living Image Software. 

Photoshop software (Adobe System, USA) was used to separate the ROIs. The 

specific signal area pixel sizes were measured by the edge detection function of 

ImageJ software (National Institutes of Health, USA). The pixel size was converted to 

area comparing to a pixel size of a known area (Fig. 12). 

 

2.6 Aortic Digestion and Plaque Cell FACS Analysis 

 After 8 weeks of atherosclerosis induction, the iRFP→LDLR-/- and 

WT→LDLR-/- mice were sacrificed by CO2 inhalation. Sacrificed mice were fully 

infused with a slow injection of 20 ml of PBS. Four percent paraformaldehyde (PFA) 

was not used for the perfusion. The aortas were carefully dissected and cleaned. Aorta 

digestion and collection of a single-cell suspension were performed as previously 

published19. The collected cells were washed with PBS and incubated with a 

fluorescein isothiocyanate (FITC)-conjugated anti-mouse F4/80 antibody (Bio-Rad, 

USA) and a phycoerythrin (PE)-conjugated anti-mouse CD11b antibody (Biolegend, 

USA) on ice for 30 min. Cells were washed and resuspended in PBS. FACS analysis 

was carried out using a Gallios flow cytometer (Beckman coulter, USA). Initially, 

F4/80-positive, CD11b-positive cells (macrophages) were gated, and iRFP expression 
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of the double-positive macrophages was detected by the FL7 (725/20) channel. The 

FACS results were analyzed by Kaluza software (Beckman coulter, USA) and FlowJo 

software (FlowJo LLC, USA).  

 

2.7 Ex vivo Macroscopic Analysis of the Aortic Plaque Area 

 We sacrificed mice after 8 weeks of acquiring IVIS images. The aortas were 

carefully dissected and cleaned after slow perfusion with PBS. Ex vivo IVIS images 

of each aorta were acquired shortly after dissection (excitation/emission of 710/760 

nm). We followed a previous method to identify the aortic plaque areas by ORO 

(Wako, Japan) staining32. Briefly, after further cleaning and removal of the adventitia, 

the aortas were fixed overnight in 4% PFA. The aortas were longitudinally opened 

and stained with ORO. Immediately after staining, opened aortas were carefully 

mounted on a black paper and photographed. ORO-positive areas were measured by 

analyzing the images via Photoshop and ImageJ software (Fig. 13).  

 

2.8 Histological Analysis of Atherosclerotic Plaques 

 For the histological analysis of atherosclerosis plaques, dissected hearts were 

fixed in 4% PFA for 4-5 hours and incubated in 30% sucrose at 4°C overnight. Fixed 

hearts were horizontally cut, and the half containing the apex was frozen in optimal 

cutting temperature (O.T.C.) embedding medium (Sakura Finetek, Japan). Serial 

sectioning was performed in the area of the aortic root by cryotome (Leica, Germany). 

Each section was 6 µm thick. Hematoxylin and eosin staining and ORO staining were 

performed as described in established protocols5,16. For immunohistochemical 

analysis of Mac2 expression in the plaque macrophages, frozen sections were 

incubated with a 1:200 dilution of rat anti-mouse Mac2 antibody (Cedarlane, Canada). 
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For secondary fluorescent staining, a 1:500 dilution of Alexa Fluor 488-conjugated 

chicken anti-rat IgG secondary antibody was used (Invitrogen, USA). Stained 

histological sections were observed with a BioRevo fluorescence microscope 

(Keyence, Japan). iRFP fluorescence expression was observed in consecutive, 

unstained sections under a Cy5.5 filter using a fluorescence microscope (Olympus, 

Japan).  

 

2.9 Assessing Macrophage iRFP Expression and Intensity  

 Healthy 2-3-month-old iRFP TG and WT B6 mice were intraperitoneally 

injected with 3 ml of thioglycolate (Becton Dickinson, USA). Three days after the 

injection, the mice were sacrificed, and the accumulated peritoneal macrophages were 

collected in PBS. Serial dilutions of iRFP TG macrophages were made ranging from 

1×103 cells/sample to 1×107 cells/sample. The dilutions were centrifuged, and cell 

pellets were obtained. The fluorescence of the samples was imaged by the IVIS under 

710 nm and 760 nm excitation and emission wavelengths, respectively. WT 

macrophages (1×107) were used as a negative control. The fluorescence intensities of 

different numbers of cells were measured by the Living Image Software and plotted 

against the cell number. Another sample of collected iRFP and WT macrophages 

were washed with PBS, and 1×106 cells were cultured for more than one hour at 37°C 

with DMEM (Life Technologies, USA) containing 10% fetal bovine serum (FBS) 

(Sigma-Aldrich, USA) and 1% penicillin. After incubation, the used medium was 

carefully removed with floating cells, and the adhered macrophages were isolated. 

iRFP expression in the cultured cells were observed under a Cy5.5 filter by a 

fluorescence microscope. (Olympus, Japan) 
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2.10 Statistical Analysis 

All the quantified data are presented as the mean ± s.e.m. The data are from 

one representative experiment of at least two independent experiments. Probability 

values were calculated by Welch’s t-test.  Nonparametric test Spearman's correlation 

coefficient was used for correlation analysis. P values less than 0.05 considered 

significant. 
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Chapter 3: Results 

 

3.1 In vitro Fluorescence Expression of iRFP TG Macrophages 

 Initially, to validate the fluorescence intensity of iRFP TG mouse 

macrophages, we collected peritoneal macrophages from both iRFP TG and wild-type 

(WT) mice 3 days after injection of thioglycolate. Then, the cultured macrophages 

were observed by fluorescence microscope under a Cy5.5 filter. Clear, bright iRFP 

fluorescence signals were observed in the iRFP TG mouse macrophages, while no 

iRFP signal was observed in the WT macrophages (Fig. 1A). Next, we conducted an 

experiment to determine the minimum iRFP TG macrophage number that was 

required to produce a detectable fluorescent signal by IVIS in the in vitro conditions. 

iRFP TG peritoneal macrophages were collected in 0.2 ml tubes at amounts ranging 

from 1×103 cells to 1×107 cells. Clear fluorescence signals were detected even with 

1×105 iRFP TG macrophages, while no fluorescence signal was observed from the 

WT peritoneal macrophages, even at 1×107 cells (Fig. 1B). The signal intensity 

increased exponentially with an augmented number of cells (Fig. 1C). The 

fluorescence signal intensity of 1×107 iRFP TG macrophages was even higher than 

that of indocyanine green, which was used as a positive control. These results 

demonstrate that the iRFP TG macrophages display a bright iRFP signal and that the 

fluorescence intensity increased in a cell number-dependent manner. Moreover, the 

IVIS system was capable of capturing the cellular iRFP signal, and under our imaging 

conditions, a minimum of 1×105 iRFP TG macrophages was required to detect a 

fluorescence signal in vitro. 
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3.2 iRFP TG Macrophage Signal to Noise Ratio 

To evaluate the sensitivity of our imaging system signal to noise ratio of iRFP 

TG macrophages and WT macrophages was measured under the IVIS system. IVIS 

image of 1×107 WT and 1×107 iRFP TG mouse peritoneal macrophages was captured 

under 710 nm and 760 nm excitation and emission wavelengths. Indocyanine Green 

was used as the positive control.  Total Radiant Efficiency [p/s/cm²/sr] / [µW/cm²] 

and Avg Radiant Efficiency [p/s/cm²/sr] / [µW/cm²] was measured by Living Image 

software in WT cell pellet signal area and iRFP cell pellet signal area. Signal-to-

background ratio was calculated as (ROI 2 – ROI 1) / ROI 1, where ROI 1 or ROI 2 

were average radiant efficiencies of the WT macrophages and iRFP macrophages 

respectively (Fig. 2). It was observed that iRFP macrophages shows more than 20 

times high signal to noise ratio compared to WT macrophages. It was measured that 

fluorescent signal of iRFP TG macrophages have mare than 50 times high signal to 

noise ratio compared to background (Data not shown). Theses high signal to noise 

ratio of iRFP TG macrophages suggest that iRFP TG macrophages are a sensitive 

imaging target for our imaging system.  

 

3.3 iRFP→LDLR-/- Mouse Model Hematopoietic System Comprised of iRFP 

Expressing Nucleated Cells 

Because iRFP fluorescence is known to display excellent tissue penetration in 

vivo compared with its previous generations and other fluorescence proteins, we 

hypothesized that iRFP could be used for the in vivo imaging of atherosclerotic 

lesions. First, we transplanted bone marrow (BM) cells of iRFP TG mice into X-ray-

irradiated LDLR-/- mice, which were utilized as an inducible atherosclerosis model17, 

18 (Fig. 3). Two months after transplantation, the reconstitution efficiency of the 
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hematopoietic system was verified by fluorescence-activated cell sorting (FACS) 

analysis of peripheral blood. As shown in Fig. 4, iRFP BM cells transplanted mice 

hematopoietic system was successfully reconstituted with donor derived cells 

showing majority of CD45 + iRFP+ population. WT BM transplanted mice peripheral 

cell exhibit negligible amounts of iRFP expression with CD 45+ iRFP– cell 

population.  Mice showing nearly over 90% chimerism were selected for all further 

experiments.  

 

3.4 Special Non-fluorescent Diets Show Negligible Abdominal Near Infrared 

Autofluorescence 

Next, to induce atherosclerosis in iRFP→LDLR-/- and WT→LDLR-/- mice, we 

fed mice a commercially available normal high-cholesterol diet (N-HCD) and control 

groups were fed with normal mouse chow diet (N-ND).  When the mice were imaged 

under IVIS system after feeding, it was observed that the mouse abdominal area 

shows high intensity strong near infrared fluorescence signals (Fig. 6A-a). Mice were 

sacrificed and dissected to identify the source of the observed fluorescence signal. 

Open abdomen IVIS imaging showed that ingested food in the intestines emits strong 

levels of near infrared autofluorescence (Fig. 6A-b). This high intensity 

autofluorescent abdominal signal could masks the expected thoracic atherosclerosis 

signals. To overcome this problem, high cholesterol diet with 1.25% cholesterol and 

express a negligible level of near-infrared auto fluorescence (HCD) was specially 

formulated (Oriental Yeast Co. Ltd, Japan). Control groups were fed with a made-to-

order non-fluorescent normal diet (ND).  The new non-fluorescent HCD and ND was 

fed to mice and imaged under IVIS system to evaluate the auto fluorescence levels of 

new food. It was observed that new HCD and ND show negligible levels of near 
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infrared autofluorescence compared to N-HCD and N-ND under our imaging 

conditions (Fig. 6B). The use of non-fluorescence diets cut off the food born auto 

fluorescence in the abdominal region.  This prevented the masking of thoracic signal 

by non-specific signals. Finally, adopting to feed non- fluorescence diet facilitated the 

clear detection of thoracic signal and highly enhanced the quality of the imaging 

methodology. 

 

3.5 Atherosclerosis Induced iRFP→LDLR-/- Thoracic Aorta Showed iRFP 

Signals In situ  

Before studying ability of our system to capture signals in vivo, initial studies 

were carried out to observe whether atherosclerosis induction could create any iRFP 

fluorescence signals in mouse aorta and the ability of the IVIS system to capture 

signals in situ.  iRFP→LDLR-/-  mice were fed with HCD to induce atherosclerosis. 

iRFP→LDLR-/-  mice fed with ND and  WT→LDLR-/-  mice fed with HCD were used 

as controls. After 8 weeks of feeding mice were sacrificed and carefully dissected to 

expose thoracic aorta. Mice were then imaged under IVIS system. As shown in Fig. 

7A-a, atherosclerosis induced iRFP→LDLR-/- mouse aorta showed a clear fluorescent 

signal but the control groups aortas were comply negative for any signal. To elucidate 

that the observed signal is essentially from the aorta, but not from the vertebral 

column, aorta was carefully dissected out and mice were imaged. No signal was 

observed after removal of aorta (Fig. 7A-b). The dissected aortas IVIS images showed 

a clear fluorescence signal in atherosclerotic iRFP→LDLR-/- aorta, resembling the 

signal observed in the aorta in situ (Fig. 7B). These results suggest that atherosclerosis 

induction in iRFP→LDLR-/- mice create a specific aortic iRFP signal, which IVIS 

system could detect in situ. 
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3.6 The iRFP Signal is Specific to Atherosclerotic Plaques 

Next the IVIS imaging was carried out to evaluate the imaging systems ability 

to capture the expected thoracic atherosclerosis signal in vivo. IVIS images showed a 

clear iRFP fluorescence signal in the thoracic areas of iRFP→LDLR-/- mice that were 

fed an HCD for 8 weeks (Fig. 8A, right panel). On the other hand, no thoracic iRFP 

fluorescence was observed in iRFP→LDLR-/- mice that were fed a normal diet (ND) 

or in the HCD-fed WT→LDLR-/- mice (Fig. 8A, middle and left panels).  

To confirm that the signal originated from the HCD-induced atherosclerotic 

plaques, we verified the iRFP signals in dissected aortas by the IVIS. Then, the aortas 

were stained with oil red O (ORO) to locate atherosclerosis plaque-positive areas. As 

expected, ex vivo iRFP signals and ORO-positive areas were observed in the aortas of 

the HCD-fed iRFP→LDLR-/- mice. Moreover, the pattern of ORO staining seemed to 

very similar to the iRFP signal in the aorta (Fig. 8B, right panel). Importantly, we 

detected no iRFP signals in the aortas of the HCD-fed WT→LDLR-/- mice or the ND-

fed iRFP→LDLR-/- mice. These results suggested that the iRFP signal was 

specifically emitted from the plaque area (Fig. 8B, left and middle panels). Because 

iRFP signals originate from hematopoietic cells from the BM, we speculated that the 

accumulation of primarily iRFP-baring macrophages and other immune cells in the 

plaques generated the signal. Altogether, these results suggest that our imaging 

system can capture murine atherosclerotic plaque areas in vivo in a noninvasive 

fashion. 
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3.7 Fluorescence Expression Co-localizes with Macrophage-Rich Plaques in 

iRFP-Positive BM-Transplanted Mice 

 To unequivocally demonstrate that the observed fluorescence signals 

originated from macrophage-rich plaque areas, we carried out a histological analysis 

of the atherosclerotic plaques using 16-18-week-old iRFP→LDLR-/- and WT→LDLR-/-

mice fed a HCD for 8 weeks. To determine whether iRFP expression could be 

observed after fixation in the plaques, unstained plaque sections were directly imaged 

under an iRFP-specific 720-nm filter (Fig. 9A). Accumulation of iRFP-positive cells 

(marked with arrows) was clearly observed in the iRFP→LDLR-/- mouse 

atherosclerosis plaques. To determine whether the iRFP-expressing cells were plaque 

macrophages, consecutive sections of aortic root plaques were stained with ORO to 

localize the lipid-rich plaque areas and with an anti-Mac2 antibody to label the 

accumulated plaque macrophages. WT→LDLR-/- mouse plaques were used as the 

negative control. As shown in Fig. 9B, a clear iRFP signal was observed in the Mac2-

positive atherosclerotic lesions, as indicated by ORO staining in the iRFP→LDLR-/- 

mice, whereas a negligibly low signal was observed in the WT-transplanted mouse 

plaques.  

 FACS analysis using adventitia-removed aortas can be used to identify 

immune cells of plaques19. We employed this FACS analysis to determine whether 

macrophages in the plaques express iRFP. CD11b and F4/80 double-positive cells 

(macrophages) were gated in both iRFP→LDLR-/- and iRFP→LDLR-/- digested mouse 

atherosclerotic aorta samples (Fig. 10A). The gating strategy and compensation 

control data are presented in Fig. 11. FACS analysis results showed that the mean 

fluorescence intensity of the iRFP-incorporated plaque macrophages was 

approximately six-fold higher than that of the WT macrophages, whereas compared 
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with the iRFP-expressing plaque macrophages, almost all WT macrophages showed a 

negligibly low level of auto fluorescence (Fig. 10B and C). These results indicated 

high co-localization of plaque macrophages and iRFP signals, implying that our 

imaging system specifically detects macrophage-filled plaques in vivo.  

 

3.8 In vivo Thoracic Signal Calculation in IVIS Images 

In this study, only atherosclerotic lesions in the thoracic aorta were focused. 

The IVIS images were acquired in 710nm/ 760nm excitation and emission 

wavelengths. All the images were normalized to the minimum (268 counts) and 

maximum (992 counts) values. The region of interest (ROI) was manually traced in 

IVIS images via Living Image Software. Clavicle bone and the end of the rib cage 

were used as guides to mark the ROI.  Photoshop software was used to create a gray 

scale images and to crop the ROIs with black signal. The specific signal area was 

mapped by the find edges function of Image J software. Pixels inside the edges were 

measured and converted to area size by comparing to pixels of a known area. The 

quantification method is graphically presented in Fig. 12.    

 

3.9 Thoracic Aorta Oil Red O Staining Positive Area Calculation   

The dissected and cleaned aortas were longitudinally opened and stained with 

ORO. Immediately after staining, opened aortas were carefully mounted on a black 

paper with a use of a clear sticky tape. Special care was given not to roll the aorta and 

to prevent air bubbles accumulation. Perfectly mounted aortas were photographed 

under good light. The captured photograph was used for calculation. Thoracic aorta 

ROI was determined from the beginning of ascending aorta up to the celiac trunk. Red 

color only image was generated by change color function of Photoshop software. 
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Then the red only image was converted to 8 bit black and white image by ImageJ 

software. The specific signal area margins were mapped by the find edges function of 

ImageJ. Pixels inside the edges were measured by measure function in ImageJ and 

converted to area size by comparing to pixels of a known area. The quantification 

steps are graphically presented in Fig. 13.    

 

3.10 The HCD Feeding Amount Positively Correlate with Atherosclerosis Plaque 

Burden  

 Few studies have been published that were able to image the plaque burden in 

animal models in vivo. Most of the time, in vivo imaging of atherosclerosis is limited 

to qualitative rather than quantitative imaging. We therefore assessed the ability of 

our imaging system to visualize differences in the macrophage-rich plaque burden in 

vivo. To induce different quantities of plaques, we adopted a strategy to feed the mice 

different amounts of the HCD, and consequently, the iRFP→LDLR-/- mice were 

divided into three groups. One group was fed with the HCD for the entire 

experimental period and was called the “HCD” group. The second group was fed with 

the HCD and ND on alternating weeks and was named the “HCD/ND” group. The 

third group was fed only the ND, and thus, there was no atherosclerosis induction; 

this group was called the “ND” group (Fig. 5A). After 8 weeks of feeding, the mice in 

the three groups were imaged for atherosclerotic lesions. Then, the mice were 

sacrificed, and ex vivo imaging of the aortas was performed, followed by ORO 

staining. Body weights of mice were measured every two weeks (Table 1). The mean 

body weight distribution in all groups did not showed a significant fluctuation during 

the study period and remained in normal range. These results suggested generally 

equal food intake in all groups and normal physiological weight gain. Blood 
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parameters were checked after 8 weeks of feeding to evaluate the physiological 

condition of mice (Table 2). All the important parameters in all groups were in normal 

physiological range conforming our experimental conditions didn't provoked extreme 

disturbances mouse normal physiological conditions.  

To asses whether our feeding strategy actually generated different levels of 

atherosclerosis induction and plaque burden according to the amount of HCD intake, 

a correlation analysis between the actual plaque positive area (ORO staining area) and 

feeding group was carried out.  As figured in Fig. 14A, aortic ORO-positive areas 

were significantly correlated with the amount of HCD that was fed to the mice, i.e., 

induction percentage (Spearman’s rank correlation = 0.865, (ND) group: n = 3, 

(HCD/ND) group: n = 8, (HCD) group: n = 4, P = 0.01), confirming that the different 

plaque burdens resulted from differences in atherosclerosis induction by the HCD.  

 

3.11 The iRFP Imaging System Visualizes the Macrophage-Rich Plaque Burden 

In vivo 

As shown in Fig. 15A, the highest in vivo thoracic signals were clearly 

observed in the HCD group. Corresponding aortic ex vivo signal areas and ORO-

positive areas could also be detected in this group. Negligible levels of in vivo 

fluorescent signals were observed in the ND group with no ex vivo aortic signals and 

ORO-negative staining. In the HCD/ND group, the observed signal area values were 

between those of the HCD and ND groups. ORO staining of the aortas and aortic 

valves showed that the different HCD feeding patterns induced different extents of 

atherosclerosis in each group, and the observed in vivo iRFP signal areas 

demonstrated a signal distribution corresponding to the actual plaque-positive areas.  



 25 

 As shown in Fig. 15A, the ORO-positive areas and in vivo iRFP signal areas 

were not identical, but closely related.  This minute deviation is resulted from the 

adopted experimental technique that cut and opened aorta was used in   ORO staining, 

while ex vivo IVIS images were taken before cutting and opening the aorta. We 

quantified the actual thoracic plaque area in all groups by measuring the ORO-

positive areas (Fig. 16A). In vivo thoracic iRFP signal-positive areas were also 

quantified (Fig. 16B). The Notably, a significant correlation was observed between 

the iRFP in vivo signal area and the ex vivo ORO-positive plaque area of the aortas 

(Spearman’s rank correlation = 0.782, n = 10, P = 0.01, Fig. 16C). Collectively, these 

results suggest that our iRFP-based imaging system can be used to visualize 

macrophage-rich plaque burden in vivo via IVIS, taking advantage of the thoracic 

iRFP fluorescence signal without any invasive procedures. 

 

3.12 In vivo Thoracic iRFP Fluorescence Signal is Related to Plaque Progression 

 To continuously monitor iRFP fluorescence, IVIS images were acquired every 

two weeks to observe the thoracic signal in the three groups fed different amounts of 

HCD. Fig. 17A shows the disease progression imaging up to 8 weeks after 

atherosclerosis induction. We used ND-fed iRFP→LDLR-/- mice as the negative 

control in each imaging session (denoted by * in Fig. 17A). From the fourth week of 

induction, we observed thoracic signals in the HCD/ND and HCD groups, whereas 

only negligible signals were detected in the ND group. The thoracic iRFP signals 

were clearly observed in the same mice at week 6 and week 8 after induction. As 

expected, the HCD group mice showed the highest signal area, followed by the 

HCD/ND group mice (Fig. 17A). Moreover, we quantified the signal area from weeks 

2 to 8 in the three groups. These data showed that the area of the iRFP signals clearly 
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differed among the HCD group, the HCD/ND group, and the ND group (Fig 17B). 

Overall, these results indicate that our imaging system can clearly capture the time 

course of disease progression in individual mice in a relatively straightforward 

fashion. This system also allows differences in plaque burden to be quantified among 

mice in the same group. 
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Chapter 4: Discussion 
 

 

For the first time, this study showed here that endogenous iRFP fluorescence 

as a sensitive marker for imaging deep tissue pathologies, such as aortic 

atherosclerotic lesions. Previously, Min Htun et al. took advantage of the near-

infrared autofluorescence emitted by intra plaque hemorrhage to image vulnerable 

plaques in carotid arteries in vivo20. Though this approach has greatly advanced, it still 

possesses some limitations, as it can only image hemorrhagic plaques and may have 

limited ability for deep tissue imaging due to its dependence on autofluorescence. 

Here, we demonstrate the advanced use of endogenous iRFP fluorescence expression 

in macrophages to visualize plaque development in deep tissues, such as the thoracic 

aorta.  

 The accumulation of iRFP-incorporated macrophages and other immune cells 

in plaques produces a signal that is strong enough to be detected by the IVIS and to 

distinguish lesions from normal tissue. Recent reports show that while 

monocytes/macrophages play a major role in plaque development, the infiltration of 

other cells, such as neutrophils, dendritic cells, B cells and T cells, is also responsible 

for plaque development21. On the other hand, as white blood cells and erythrocyte 

express iRFP in iRFP TG, iRFP signals were detected in capillary-dense regions with 

no hair, such as the paws and the mandible. These signals were suspected to be caused 

by the formation of HCD feeding induced xanthomas, where lipids accumulate in 

large foam cells within the skin. Moreover, either minor fluorescence of red blood 

cells in capillary beds or increased white blood cells derived from inflammation after 

HCD could also partially contribute to this signal (Fig.6, Fig.7A, Fig.8A, Fig.15 and 

Fig.17A)16. However, our FACS analysis data showed that iRFP was predominantly 
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expressed in the F4/80+CD11b+ plaque macrophage population, whereas a very small 

population of F4/80-CD11b- cells express iRFP at negligible intensities (Data not 

shown). Based on these data, it is reasonable to consider that the majority of iRFP 

fluorescence in atherosclerotic plaque originates from macrophages.  

 As monocyte infiltration is the initial event in plaque development22,23, 

incorporating iRFP into the monocyte lineage cells enables plaque detection and the 

observation of plaque-prone areas from a very early stage. Moreover, it has been 

shown that infiltrated macrophages can locally proliferate to increase their number in 

the lesion, and self-proliferation dominates in the advanced stages24,25. In our BMT 

system, iRFP-expressing macrophages from the transplanted hematopoietic system 

infiltrate the initial lesion and initiate a signal. In the event of local proliferation of 

infiltrated macrophages, our system benefits from the fact that locally proliferated 

macrophages also express iRFP fluorescence and contribute to the signal, as iRFP is 

genetically incorporated and can be genetically carried to subsequent generations. 

Thus, a continuous signal is ensured throughout plaque progression.  

  In this study time course iRFP expression of iRFP TG macrophages were not 

tested. There are also not published data on the iRFP expression in macrophages. But, 

Filonov et al showed that iRFP-sorted HeLa cell populations remained mostly within 

the original sorting gates even more than 40 days after transfection. Filonov also 

assess the degradation kinetics of iRFP in HEC 293 cells treated with puromycin to 

inhibit protein translation, and reported that the fluorescence of iRFP protein was 

stable in cells and only around 30% degradation was observed in a period of 20 hours. 

These reports suggest the stable fluorescence expression in iRFP proteins in cells, 

facilitating continuous cellular endogenous fluorescent expression14.  
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Continuous endogenous fluorescent expression enables time course 

monitoring of plaques with real-time longitudinal data generated by the same mice. 

This is greatly beneficial, as it reduces the number of research animals used in a study 

and facilitates data interpretation, as experimental variations are less. Furthermore, 

long-term in vivo observation allows individual differences in disease patterns and 

drug therapy to be studied. As an example, it was reported that the aortic root, the 

lower curvature of the aortic arch, and branch points of the aortic arch are frequent 

predilection sites for initial plaque development26. Though an initial signal is expected 

to be visible in the aortic arch, we found that some mice also showed initial signal 

development in the descending aorta, which may due to individual differences in mice 

with slight differences in predilection sites. In this scenario, our imaging system has 

the advantage allowing plaque formation to be observed in real time. This imaging 

system can be used to observe the general patterns and individual differences in 

predilection sites for atherosclerosis in the thoracic aorta.  

 Most recently, Calcagno et al. successfully demonstrated integrated 18F-FDG 

PET and a dynamic contrast-enhanced (DCE) MRI imaging protocol for 

quantification of several plaque parameters, including plaque inflammation and 

plaque burden, in rabbits27. Though the clinical use of this method is promising, its 

requirements of highly skilled professionals, time, and frequent injections of 

radioactive imaging agents could be unfavorable for preclinical animal study settings. 

Here, we successfully showed that our new imaging system has the capability to 

generate in vivo data on macrophage-rich plaque burden via a comparatively simple 

and feasible approach. However, it must be noted that the observed signal is from 

plaque macrophages and may not represent the whole plaque burden depending on the 

stage of atherosclerosis. Early lesions are rich in macrophages, and severe lesions can 

https://www.sciencedirect.com/topics/neuroscience/aortic-arches
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show partly non-cellular areas. Our observations confirmed that necrotic core is 

negative for iRFP signals and cellular iRFP expression might be diminishing with cell 

necrosis process. This idea was supported by the published data that majority of the 

sorted mKate2 (cytotoxic standard) treated HeLa cells lost their fluorescence14. 

Therefore, the macrophage-rich plaque area may closely represent the whole plaque 

in the early stages, as shown in our 8-week study, but could be a limitation in 

interpreting the burden in advance plaques. 

 The significant positive correlation observed between the ORO-stained area 

and the in vivo IVIS signal area is advantageous for commenting on the actual plaque 

area based on the IVIS signal. However, the observed correlation coefficient seems 

slightly low, which could be explained by the fact that ORO stains both the foam cell 

lipid accumulations and extracellular lipid deposits, while the fluorescence signal is 

from macrophage foam cells. Moreover, a cut and opened aorta was used in   ORO 

staining, while ex vivo IVIS images were taken before cutting and opening the aorta. 

This can also contribute to configuration changes and may lead to differences in the 

plaque area measurements between the two conditions. Despite of analyzing 

correlation of aortic lesions in whole aorta, comparing exact areas of the aortic lesions 

with the exact comparative in vivo signal would also increase the correlation 

efficiency and the real plaque area prediction precision. 

 In human atherosclerosis, plaque rupture and subsequent thrombosis are the 

main underlying cause of acute cardiovascular outcomes varying from unstable 

angina to sudden death28. It has been reported that plaque vulnerability increases with 

the plaque macrophage population9,29-31. Here, we showed that the number of iRFP 

TG macrophages relates to the iRFP signal intensity. Therefore, with a proper 
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translational approach, we believe that iRFP-based imaging systems could be 

developed to predict human atherosclerosis plaque vulnerability in vivo. 

 From a practical, preclinical point of view, our system is less invasive and less 

hazardous than other existing models that require the injection of imaging 

fluorescent/radioactive dyes at every imaging session. This system can be easily 

modified to acquire greater sensitivity and specificity by using a more sensitive 

detection system, such as photoacoustic imaging. In addition, greater signal 

specificity on the biological side could be achieved by limiting iRFP expression 

specifically in macrophages or, more specifically, in atherosclerotic plaque 

macrophages. Using a macrophage-specific “cre” driver or specifically targeting up 

regulated genes during plaque foam cell formation to incorporate iRFP may be 

successful approaches. Studies evaluating further advancements of the system are 

underway. 
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Chapter 5: Figures and Legends 
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Chapter 6: Tables 
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Chapter 7: Summery and Conclusion 

In conclusion, a method for visualizing atherosclerotic lesions by using iRFP 

fluorescence was developed. The atherosclerotic lesion areas of at least 5 mice were 

evaluated via a one-time detection approach by using an IVIS system noninvasively 

and without any injection reagent. Therefore, this method may be a good system for 

drug discovery or for easily determining the atherosclerosis phenotype of gene-

targeting mice. 
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