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CHAPTER 1 

General Introduction 

1.1 Aim of This Thesis 

Development of chemical technology gives us a huge impact on our life. Chemistry makes 

new materials and we can’t live in comfort without chemical products. The key scientific challenges 

of the 21st century are likely to lie in the areas of computational capacity, sustainable energy, human 

health, and global warming. Advances in chemistry will underpin the solutions to these problems. As 

the miniaturization of transistor and microchip technology approaches its limit, the concept of 

molecular electronics – that is, the development of molecules that can potentially be employed as 

the switchable components in information storage and calculation technologies – is proposed. 

On-off switching molecules have the potential to enhance the performance of computers by 

increasing the density of information storage, and thus are highly attractive materials, both from 

fundamental and applied perspectives. In reality, however, the integration of switchable molecules 

into addressable arrays is a major challenge, and remains a huge target in nanodevice fabrication. 

To solve these problems, metal complexes can be useful materials. Metal complexes are inorganic 

(metal ion) and organic (ligand) hybrid systems and the physical properties of metal ions can be 

changed by tuning the ligand design. In particular, transition metal complexes are a key target in 

molecular switch studies due to their cheapness, the abundance of first row transition metals, and 

their interesting and varied functions (control of magnetism, tuning of multi-redox and catalytic 

behavior). The potential combinations of metal ions and ligands are innumerable, and their 

structures and functionalities are probably equally so, making them exciting targets in both 

fundamental and applied research streams. 

In the research field of nanoscience, next-generation intelligent molecular devices will rely 

on simple, nanoscale species that can exist in multiple distinct electronic states between which the 

molecule can be reversible interconverted under the application of external stimuli.1 Switchable 

molecules such as bistable complexes that can exist in more than one state under identical 

conditions are excellent candidate systems for real life applications.2 Obviously, flexible control of 

the electronic state of metal complexes is an important proposition in basic coordination chemistry.  

In accordance with these fundamental requirements, the purpose of this research is to employ a 

molecular design approach to the isolation of transition metal complexes that can exist in multiple 

stable electronic states. We will adopt ligands that can be reversibly protonated/deprotonated to 
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tune the local environment around the complexed transition metal ion, with the expectation that 

modification of the ligand protonation state will translate directly to the tuning of the electronic state 

of the transition metal ion.  In this study, a novel ligand design strategy employing an asymmetric 

‘Brønsted ligand‘, which has acidic protons, can be used to isolate complexes with multiple 

independently accessible electronic states. According to this research purpose, two important 

factors were key: (1) the existence of acidic protons on the capping ligands; and (2) the use of iron 

ions that are known to form bistable (spin-crossover) systems, and can be relatively easily 

converted between oxidation states (Fe(II) and Fe(III)). Protonation/deprotonation of the ligand can 

directly affect the ligand field. Furthermore, iron ions can have various electronic states, such as 

divalent low-spin (S = 0), divalent high-spin (S = 2), trivalent low spin (S = 1/2) and trivalent 

high-spin (S = 5/2) in the octahedral hexa-coordinate geometry.  This characteristic allows us to 

‘unlock’ multiple electronic states in one molecule.  Below is a more detailed explanation about the 

topics that underpin this research, including; bistable molecules (1.2), multi-bistable materials (1.3), 

electronic state conversion of complexes by protonation/deprotonation (1.4), and the manipulation 

of specific physical properties based on hydrogen bonding network (1.5). 

 

1.2 Bistable Molecules 

Bistable materials, which can be converted between two unique states by temperature, 

pressure, and light irradiation, have attracted continuous research interest due to their potential 

applications as components of future molecular memory and switching devices.3   

Some organic molecules can exhibit changes in their molecular framework upon light 

irradiation, and when this conversion is reversible these systems can be considered examples of 

bistable materials. Representative molecules are diarylethene, spiropyran, and azobenzene. These 

molecules can be switched between open and closed frameworks (or cis and trans) by light. The 

transformation time is in the order of picoseconds, well within the timeframe form to be considered 

promising candidate components for future information processing or storage devices. Some metal 

complexes show drastic spin state conversion upon exposure to external stimuli such as light, 

temperature and pressure. Representative examples include spin crossover (SCO) complexes, 

electron transfer-coupled spin transition (ETSCT) clusters, and species that exhibit valence 

tautomerism (VT).4 These systems can show magnetic hysteresis in their switching behavior, and 

are therefore attractive target components for memory storage systems. Herein SCO and ETCST 

complexes are discussed in detail. 
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1.2.1 Spin Crossover (SCO) Complexes 

Transition metal ions have quintuply-degenerate d-orbitals in isolation, but when held in a 

six-coordinate octahedral coordination mode, the two d-orbitals that are orientated towards the 

ligands (eg) are destabilized, causing them to split from the remaining three d-orbitals (t2g), which are 

stabilized. The splitting of the d-orbitals (Δo, 10 Dq) is based on the electric repulsions between the 

d-electrons and the ligands. The electronic arrangements of six-coordinate octahedral complexes 

with dn (n = 4 - 7) electrons depend on the relative strengths of Δo and the spin pairing energy P. 

When Δo is smaller than P, the electrons are arranged to maximize the sum of their spin angular 

momentum following Hund’s rule (high spin (HS) state, Figure 1.1 (right)).  In the reverse situation, 

Hund’s rule is broken, and the electrons make pairs and occupy the t2g orbitals, preferentially (low 

spin (LS) state, Figure 1.1 (left)). When Δo and P are close, some first row transition metal ions with 

d4 to d7 electronic configurations may show reversible spin-crossover (SCO) behavior between their 

HS and LS states upon exposure to external stimuli. 

Iron (II) complexes are the most commonly reported thermal SCO materials and show 

dramatic magnetic changes between their paramagnetic HS state (S = 2) and diamagnetic LS state 

(S = 0) upon the application of external stimuli. In 1964, Bobonich reported the mononuclear Fe(II) 

complex [FeII(phen)2(NCE)2] (phen = 1, 10-phenanthroline, E = S, Se), and three years later, its 

SCO properties were studied by magnetic measurements (Figure 1.2).5 SCO phenomena can be 

observed from changes in the magnetic moment and coordination bond lengths between the iron 

ion and its coordinating donor atoms. In the HS state, the iron d-electrons occupy the anti-bonding 

eg orbitals, thus the coordination bond distances between the iron ion and donor atoms are usually 

longer than those observed in the LS state. When temperature is used as an external stimuli, SCO 

complexes exist in their HS state at high temperatures and undergo spin conversion to their LS 

state upon decreasing temperature. In recent times the range of external stimuli employed to effect 

spin transition has significantly increased to include light, pressure, magnetic field, and guest 

absorption/desorption.6  
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Figure 1.1: Low and high spin states of six-coordinate octahedral metal ions with d6 

electron configuration. 

              

      Figure 1.2: The structure of [FeII(phen)2(NCE)2] and its thermal SCO behavior. 
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1.2.2 Electron-transfer-coupled Spin Transition (ETCST) Complexes 

In 1996, Hashimoto et al. reported a Prussian blue analog 3D network complex 

K0.2CoIII
1.4[FeII(CN)6]・9H2O.7 This complex shows an increase in magnetic susceptibility upon 

irradiation with red light at low temperature (Figure1.3). This phenomenon is derived from excitation 

of the FeII→CoIII intervalence charge-transfer (IVCT) band and phase transition from a diamagnetic 

low temperature phase ([FeIILS-CN-CoIIILS]) to a ferrimagnetic high temperature phase 

([FeIIILS-CN-CoIIHS]). The reversible photomagnetism originates from the light-induced electron 

transfer between metal centers and the associated spin transition of the cobalt ions, which is 

described as Electron-Transfer-Coupled Spin Transition (ETSCT). More recently, 

thermally-responsive ETCST clusters and chain-like complexes have been reported, some of which 

have been found to exhibit multi bistable ETCST behavior, both under thermal and light excitation.8 

In 2011, Oshio et al. reported the Fe-Co tetranuclear complex [Co2Fe2(CN)6(tp*)2(dtbbpy)4](PF6)2・

2MeOH (tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate, dtbbpy = 4,4’-di- tert-butyl-2,2’-bipyridine). 

This compound showed thermally induced multi-step ETCST and light induced ETCST at low 

temperature (Figure 1.4).9   

 

      

 Figure 1.3: Diamagnetic and ferromagnetic spin state switching behavior of a cyanide-bridged 

Fe-Co ETCST complex (top). Framework and photomagnetism of K0.2CoIII
1.4[FeII(CN)6]・9H2O 

(bottom). 
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Figure 1.4: Structure (left) and magnetic data (right) of [Co2Fe2(CN)6(tp*)2(dtbbpy)4](PF6)2・2MeOH 

 

1.3 Multi-bistable Materials 

Multi-bistable materials can be converted between more than three states (often with 

hysteresis) upon exposure to external stimuli. These materials have stable intermediate states, thus 

information storage capacity may be higher than can be achieved with simply bistable materials, 

and smaller, more information-dense data storage systems may be accessible. Multinuclear SCO 

complexes lend themselves to exhibiting multi-bistability. In 2005, Real et al. reported 

{[Fe(bztpen)]2[-N(CN)2]}(PF6)3 (bztpen = N-benzyl-N,N’,N’-tris(2-pyridylmethyl)ethylenediamine) 

which has two iron (II) SCO active sites.10 It showed two-step thermal SCO behaviour, with the 

steps corresponding to transitions on the different iron centres (Figure 1.5). The fabrication of 

multinuclear complexes in which multiple switching centres are held in close proximity is a rational 

approach to the development of multi-bistable systems. 11  
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Figure 1.5: Structure of {[Fe(bztpen)]2[-N(CN)2]}(PF6)3 (left) and its magnetic data (right). 

 

Another rational approach is through the co-crystallization of different bistable molecules. 

In 2010, Oshio et al. reported a co-crystallized compound [FeII(dpp)2][Ni(mnt)2]2・CH3NO2 (dpp = 

2,6-di(1H-pyrazol-1-yl)pyridine, mnt = maleonitriledithiolate).12 This is a co-crystallized compound 

containing an SCO-active complex cation [FeII(dpp)2]2+ and planar anion [Ni(mnt)2]-, which can 

switch between a diamagnetic dimer state and a paramagnetic monomer state. Both [FeII(dpp)2]2+ 

and [Ni(mnt)2]- ions showed spin state conversion and five thermodynamically stable states were 

observed in the magnetic susceptibility measurements (Figure 1.6). The multi-step magnetic 

changes occurred due to SCO and [Ni(mnt)2]- dimerization, as confirmed by X-ray structural 

analysis, Mössbauer spectra and heat capacity measurements. 

           

Figure 1.6: Structure of [FeII(dpp)2][Ni(mnt)2]2・CH3NO2 (left) and magnetic data (right). 

 

To make multi-bistable systems using mulitinuclear complexes, complicated ligand design 

can often be a key aspect of the research. In contrast, while co-crystallization can remove the need 

for laborious ligand synthesis, optimization of the synthetic method can be difficult. It is therefore a 

key goal in molecular switching chemistry to isolate multi-bistable materials using only simple or 

cheap materials. Mononuclear complexes are typically amongst the easiest complexes to fabricate, 
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but almost all examples have a maximum of only two accessible states (for example, high spin and 

low spin). The development of mononuclear multi-bistable systems is therefore very challenging 

and important research. To this end, we proposed to employ Brønsted acid/base ligands as the 

capping groups for transition metal complexes. The fact that they can be adjusted between multiple 

protonation states means that their electronic state, and therefore the nature of their ligand field, 

can be modified by simple acid/base addition to the system. We proposed therefore that the 

combination of metal ion and Brønsted acid/base ligand will have the potential to display multistep 

spin state conversion.  
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1.4 Electronic State Conversions of Coordination Compounds by 

Protonation/deprotonation 

 

The physical properties of metal complexes which have Brønsted acid/base ligands can be 

changed by controlling the pH of the environment. Ligand deprotonation causes drastic electronic 

state conversion derived from the increased basicity of the electron-rich ligand and the associated 

increase in ligand field strength.13 In addition, deprotonation results in new intermolecular 

interactions originating from the loss of a hydrogen bond donor, gain of a hydrogen bond acceptor 

and possible inclusion of charge balancing counter ion(s).14 There are a few reports of this 

approach being employed to fabricate bistable materials which can be triggered by chemical 

external stimuli. In 1986, Haga et al. reported a new Ru(II) complex [RuII(bpy)2(BiBzimH2)]2+ 

(BiBzimH2 = 2.2’-bibenzimidazole), which had benzimidazole moieties as Brønsted acid/base 

(Figure 1.7).15 The complex exhibited stepwise deprotonation in acetonitrile/buffer  mixture solution, 

and the redox potential shifted negatively as the ligand basicity increased. From differential-pulse 

voltammetric data and UV absorption spectra, the Ru(II) / Ru(III) (or Ru(III) / Ru(IV)) redox and 

protonated states were reversible. Therefore, this complex can exist in seven states in solution. The 

result is an example of multistep electronic state conversion by using both deprotonation and redox 

reactions. 

                   

Figure 1.7: Structure of [RuII(bpy)2(BiBzimH2)]2+ and electric state conversion by deprotonation and 

oxidation. 
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Deprotonation of ligands affect the spin states of metal cations. In 2004, Schikora et al. 

reported the iron (II) mononuclear complex [FeII(bzimpy)2](ClO4)2 ・ 0.25H2O (bzimpy = 

2,6-bis(benzimidazol-2-yl)pyridine) and the observation of spin state switching by the deprotonation 

of benzimidazole.16 Both this complex and the deprotonated complex [FeII(bzimpy-1H)2] showed 

SCO behavior above room temperature, but the SCO temperature was different (Figure 1.8) due to 

the changing ligand field upon deprotonation. The deprotonation of complex [FeII(bzimpy-1H)2] 

stabilizes the low spin state compared to [FeII(bzimpy)2]2+, causing an increase in SCO temperature.  

 

              

Figure 1.8: Structure of [FeII(bzimpy)2](ClO4)2 and deprotonated [FeII(bzimpy-1H)2], (top) 

and magnetic data (bottom). 

Multistep-deprotonation of metal complexes has been reported. In 2018, Clérac et al. 

synthesized a tetranuclear iron (II) grid [FeII
4(H2L)4](BF4)8, (H2L = Pyridine-2-carboxaldehyde 

[2-(3,4,5-Trimethoxyphenyl)pyrimidine-4,6-diyl]dihydrazone) with hydrazone moieties as Brønsted 

acid/base (Figure 1.9 (a)).17 The complex could be deprotonated using triethylamine, and two 

intermediate states [Fe4(H2L)2(HL)2](BF4)6 and [Fe4(HL)4](BF4)4 were isolated. SQUID 

magnetometry indicated incomplete SCO behavior at different temperatures. In addition, from the 

UV-visible absorption measurements, a stepwise color change and red shift was observed upon 

deprotonation (Figure 1.9 (b)). There are also some reports on electronic state changes of grid-like 

complexes, and increases in the multistep SCO temperature were observed upon deprotonation.18 
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(a) 

           

(b) 

         

Figure 1.9: (a) Structure of ligand H2L and [FeII
4(H2L)4](BF4)8. (Red circles mean     

Brønsted acid/base parts.) (b) Magnetic data of [Fe4(H2L)4](BF4)8, [Fe4(H2L)2(HL)2](BF4)6 

and [Fe4(HL)4](BF4)4 and base titration UV of [FeII
4(H2L)4](BF4)8. 
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1.5 Specific Physical Properties Based on Hydrogen Bonding Network 

 

Intermolecular hydrogen bonding is a useful means to control supramolecular 

dimensionality. In recent times, proton transfer between neighboring molecules in the solid state 

has been employed to identify new switchable physical properties in crystalline materials. In 2005, 

Horiuchi et al. reported a eutectic compound containing both phenazine (proton donor) and 

chloranilic acid (proton acceptor).19 The material is based on a hydrogen bonding network between 

donors and acceptors and showed ferroelectric behavior derived from proton transfer (Figure 1.10). 

This is the first example of the phenomenon and the high dielectric constant and Curie temperature 

near room temperature hint a new generation of molecular memory device. In the crystal, protons 

between donors and acceptors are disordered and show no polarization at high temperature. 

However, close to the phase transition temperature, the protons move and become ordered at the 

acceptor sites, causing an increase of ionicity and the appearance of polarization. Phase transition 

is not observed when the pKa difference between proton donor and acceptor is too big. This type of 

ferroelectric effect has been reported for systems based on croconic acid and imidazole derivatives, 

among others.20  

 

 

Figure 1.10: Structure of phenazine and chloranilic acid hydrogen bonding  

          network (left) and its ferroelectric behavior (right). 
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In 2017, Tadokoro et al. reported the deprotonated Ru(III) complex 

{[RuIII(Hbim)3](MeOBn)m}n (H2bim = biimidazole, MeOBn = methyl benzoate). This complex was 

synthesized by the deprotonation of [RuII(H2bim)3](PF6)2.21 Single crystal X-ray measurement 

showed the complex to form a 2D honeycomb network through hydrogen bonding network (Figure 

1.11). In addition, solid-state cyclic voltammetry measurements showed two-step RuIII/RuII redox 

processes. The potential difference originated from the number of ordered protons between 

complexes. In other words, this is an example of Proton Coupled Electron Transfer (PCET) complex 

in the solid state. In addition, the authors succeeded in synthesizing the mixed-valence complex 

{[RuII(H2bim)(Hbim)2][RuIII(bim)(Hbim)2][K(MeOBz)6]}n as single crystals. The material was found to 

exhibit high proton conductivity in the solid-state.  

In 2003, Matsumoto et al. reported the mixed-valence network [FeII(H3L)][FeIII(L)](NO3)2 

consisting of the Fe(II) mononuclear complex [FeII(H3L)]2+ (H3L = 

tris{[2-{(imidazole-4-yl)methylidene}amino]ethyl} amine) and its deprotonated Fe(III) complex 

[FeIII(L)]. The material formed 2D sheets through a hydrogen bonded network through the ligand 

pyrazole moieties.22 The homochiral structure contains both Λ and Δ enantiomers. Temperature 

dependent magnetic susceptibility measurement showed multi-step SCO behavior (Figure 1.12). In 

the solid state, both Fe(II) and Fe(III) sites were SCO active, leading to three stable states, 

FeIILS-FeIIILS, FeIIHS-FeIIILS, and FeIIHS-FeIIIHS. In addition, the Fe(II) sites showed Light-Induced 

Excited Spin State Trapping (LIESST) at very low temperature (λ = 514.5 nm). 

 

  

 

Figure 1.11: Hydrogen bonding network of {[RuIII(Hbim)3](MeOBn)m}n and solid  

state CV.  
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(a) 

 

(b) 

 

    Figure 1.12: (a) Structure of H2L, [FeII(H3L)]2+ and [FeIII(L)] (b) 2D network and  

    magnetic data of [FeII(H3L)][FeIII(L)](NO3)2. 

 

 

1.6 Contents 

In this thesis, the syntheses, structures and physical properties of iron complexes with 

Brønsted ligands and Cu-Fe clusters are presented. In CHAPTER 1 (this chapter), the outline of the 

thesis and background of the important topics relating to the thesis are introduced. Molecular design 

of mononuclear iron complexes and the differences in the electronic states of the obtained 

complexes are presented in CHAPTER 2. In order to synthesize a mononuclear iron complex with 

N6 coordination geometry, four asymmetric tridentate ligands (H2L1-4 Figure 1.13) were designed 

and their complexes were prepared and their physical properties investigated. In CHAPTER 3, the 

electronic state conversions of mononuclear iron complexes, [FeII(H2L1) 2]2+, with Brønsted ligands 

were investigated. Five iron complexes with different electronic states were synthesized by trial and 

error of synthetic conditions. Their structural, magnetic, optical and electrochemical properties are 

presented. In CHAPTER 4, the protonation/deprotonation properties of a heptanuclear 

heterometallic cluster molecule, [CuII
6FeIII(HL5)6] with a multidentate pyrrole-based ligand are 

introduced. 
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Figure 1. 13: List of ligands H2L1-5. 
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CHAPTER 2 

Effect of Ligand Modification in Iron Complexes 

 

 

2.1 Introduction 

 Bistable molecules attract significant interest due to their potential applications as 

components in molecular electronic and nanoscale devices.1 Spin crossover (SCO) 

molecules are one such class of bistable material that lend themselves to potential 

molecular switching applications.2 SCO behaviour can be tuned by modifying ligand field 

strength, complex nuclearity and intermolecular interactions. Many systematic studies on 

the SCO behaviour of molecular species have shown dependence of the bistability on 

anions, guest molecules, solvent molecules and substituent groups.3 Anions affect the 

crystal packing and intermolecular electrostatic interactions, while solvent molecules can 

interact with spin crossover complexes through hydrogen bonds or CH-π interactions, 

resulting in perturbation of the electronic states of SCO-active iron complexes. Matsumoto et 

al. reported a series of two-dimensional SCO complexes, [FeIIH3LMe][FeIILMe]X (H3LMe = 

tris-[2-(((2-methylimidazol-4-yl)methylidene)aminoethyl)amine], X- = ClO4
-, BF4

-, PF6
-, AsF6

-, 

SbF6
-), which show different SCO behaviour depending on the nature of the interlayer elastic 

interactions mediated by the anions.4 The influence of counter ions and solvent molecules in 

cobalt SCO systems has been discussed in detail by Real et al.5 However, the origin of the 

effects on the SCO behaviour mediated by anion and solvent molecules can be difficult to 

precisely define due to the complex nature of supramolecular systems. In contrast, ligand 

substituent groups directly affect the electlon-donating nature of the ligand, and the ligand 

field strength can be controlled based on precise molecular design. For example, tridentate 

2,6-bis(pyrazol-1-yl)pyridine (bpp) ligands can be readily modified, and the nature of the 

substituent effect on the SCO properties of their complexes with iron is well understood,6 

and can be predicted by Hammett’s rule.7 Distinct differences in the SCO properties of 

[Fe(bpp)]2+ analogues with different substitution groups were observed in solid and solution 

states.8 Substituent groups also exert a secondary influence on complex SCO behaviour via 

their effect on complex topology and supramolecular packing structure. For example, 

[FeII(qsal-X)2] (qsal-X = 5-X-N-(8-quinolyl)salicylaldimines), X = F, Cl, Br, I) complexes 

exhibit different SCO behaviour, dependent on the nature of the supramolecular interactions 
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of their halogen substituents.9 In order to obtain fine-tuned SCO systems, systematic studies 

on substituent effects on complex structure and magnetic properties remain a key approach.  

In this work, new asymmetric tridentate ligands H2L1-4 

((2-[5-(R-phenyl)-1H-pyrazole-3-yl] 6-benzimidazole pyridine) H2L1: R = phenyl, H2L2: R = 

4-methylphenyl, H2L3: R = 2,4,6-trimethylphenyl, H2L4: R = 2,3,4,5,6-pentamethylphenyl, 

Scheme 2.1) were designed as supports for SCO materials. Four bis-chelate type iron 

complexes, [FeII(H2Ln)2](BF4)2 (1, n = 1; 2, n = 2; 3, n = 3; 4, n = 4), were synthesized, and 

their structures and magnetic properties were investigated.   

 

 

Scheme 2.1: Structures of ligands and complexes.  
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2.2 Experiments 

 

Materials 

All solvents and chemicals were reagent-grade, purchased commercially, and used 

without further purification unless otherwise noted.  

X-ray Crystallography 

Crystals were mounted on a glass capillary or a MiTeGen Dual-Thickness MicroMount, 

and data were collected at 100 K (Bruker SMART APEXII diffractometer coupled with a CCD area 

detector with graphite monochromated Mo-K ( = 0.71073 Å) radiation). The structure was solved 

using direct methods and expanded using Fourier techniques within the SHELXTL program. 

Empirical absorption corrections by SADABS were carried out.10 In the structure analyses, 

non-hydrogen atoms were refined with anisotropic thermal parameters.  Hydrogen atoms were 

included in calculated positions and refined with isotropic thermal parameters riding on those of the 

parent atoms. X-ray diffraction experiments at 20 K for complex 2’ after light irradiation using green 

laser (532 nm) were performed by using the synchrotron radiation source ( = 1.0 Å) at Photon 

Factory BL-8A in High Energy Accelerator Research Organization (KEK), Japan. 

Magnetic measurements 

Variable-temperature magnetic susceptibility measurements were carried out on 

polycrystalline samples using a Quantum Design MPMS-XL SQUID magnetometer. Pascal’s 

constants were used to determine the diamagnetic corrections.  

Mössbauer spectra 

Mössbauer experiments were carried out using a 57Co/Rh source in a 

constant-acceleration transmission spectrometer (Topologic Systems) equipped with an Iwatani 

HE05/CW404 cryostat. The spectrometer was calibrated using standard α-Fe foil.   

NMR measurements 

  1H-NMR spectra were measured on a Bruker AVANCE400 spectrometer at room 

temperature. Chemical shifts in NMR were reported in ppm (δ), relative to the internal standard of 

tetramethylsilane (TMS). The signals observed were described as s (singlet), d (doublet), t (triplet), 

m (multiplets). The number of protons (n) for a given resonance is indicated as nH. Coupling 

constants are reported as J in Hz. 

Elemental analysis   

Elemental analyses were performed using a Perkin Elmer 2400 element analyzer. 
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The non-substituted tridentate ligand, H2L1, was synthesized by the following procedure 

described in Scheme 2.2. Ligands H2L2-4 were synthesized following a protocol adapted from H2L1. 

Recrystallization methods, yield and characterization data were described as follows. 

 

 

Scheme 2.2: Synthetic pathway of H2L1 

 

Synthesis of 6-[1,3-dioxo-3-(2-phenyl)propionyl]pyridine-2-carboxylic acid ethyl ester (HLa) 

  A solution of Na (3.18 g, 138 mmol) in 150 ml ethanol was stirred at room temperature.  

After stirring, sodium ethoxide was obtained as white solid by evaporation. To this solid, a solution 

of acetophenone (13.46 g, 112 mmol) and diethyl-2,6-pyridinedicarboxylate (25.00 g, 112 mmol) in 

diethyl ether were then added. Yellow solid was obtained after 2 h reflux. The solid was separated 

by filtration, and carefully washed with ether. After drying, the solid was added to 200 ml water and 

20 ml of acetic acid was added with stirring. After 24 h stirring, yellow solid was obtained by filtration.  

Last, the white solid HLa was obtained by recrystallization from ethanol (31.68 g, yield 95 %). 1H 

NMR (400 MHz, CDCl3): δ 1.51 (t, 3H), 4.54 (q, 2H), 7.28 (s, 1H), 7.53 (t, 2H), 7.60 (t, 1H), 7.71 (s, 

1H), 8.04 (t, 1H), 8.11 (d, 2H), 8.26 (d, 2H), 8.35 (d, 2H). 

 

Synthesis of 6-[5-phenyl-1H-pyrazol-3-yl-]-pyridine-2-carboxylic acid ethyl ester (HLb) 

  A solution of hydrazine monohdrate (1.798 mL, 37.0 mmol) in 100 mL of ethanol was 

slowly added in a solution of HLa (10 g, 33.6 mmol) in 300 mL of ethanol. The mixture was refluxed 
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for 1 h. After refluxing, the yellow solution was obtained. The solution was evaporated to remove 

ethanol and brown oil was obtained. Brown oil was dissolved in dichloromethane, and washed by 

water to remove impurities. After extraction, a pale yellow powder of HLb was obtained by 

evaporation (6.61 g, yield 67 %). Anal. (calc.) for C17.4H16.4N3O0.3 (C17H15N3O2 ∙0.2C2H5OH∙0.1 H2O): 

C,68.57 (68.67); H,5.33 (5.43); N,14.07 (13.81) %. 1H NMR (400 MHz, CDCl3):  8.35 (d, 2H), 8.26 

(d, 2H), 8.11 (d, 2H), 8.04 (t, 1H), 7.71 (s, 1H), 7.60 (t, 1H), 7.53 (t, 2H), 7.28 (s, 1H), 4.54 (q, 2H), 

1.51 (t, 3H). FT-IR (KBr, cm-1): 3470 (s, νN-H) 1713 (s, νC=O). 

 

Synthesis of 6-[5-phenyl-1H-pyrazol-3-yl-]-pyridine-2-carboxylic acid (HLc) 

 A solution of 2 M NaOH in 100 mL of water was added in a solution of HLb (3.01 g, 10.3 

mmol) in 65 mL ethanol. After addition, the mixture was refluxed at 80 min and evaporated to 

remove ethanol. The white precipitate was solved in 300 mL H2O and washed by dichloromethane 

to remove impurities. After extraction, the water layer was adjusted pH 8 by 12 M HCl, and stir 2 h at 

room temperature. White solid of HLc was obtained by filtration and drying. The crude compound 

was used for synthesis of H2L1 (2.25 g, yield 82 %). Anal. (calc.) for C15H16N3O4.5 (C15H11N3O2 

∙2.5H2O): C,58.21 (58.06); H,4.80 (5.20); N,13.61 (13.54) %. FT-IR (KBr, cm-1): 3334 (s, νN-H) 1701 

(s, νC=O).   

 

Synthesis of 2-[6-[5-(phenyl)-1H-pyrazol-3-yl]-2-pyridinyl]-1H-benzimidazole (H2L1) 

 HLc (2.10 g, 7.9 mmol) was added in polyphosphoric acid (25 g) at 180 oC and stirred 15 

min. After stirring, o-phenylenediamine (0.854 g, 7.9 mmol) was added and stirred 7 h. The resulting 

dark green oil was added to water and a pale gray/green suspension was obtained. This mixture 

was adjusted to pH 10 by using 28 % ammonia solution. A dark beige solid was then obtained by 

filtration. The filtered solid was then re-dissolved in hot acetone and filtered once more to remove 

impurities. A beige microcrystalline powder of H2L1 was then obtained by evaporation of acetone.  

(1.68 g, yield 63 %) Anal. (calc.) for H2L・2H2O (C21H19N5O2): C,67.55 (67.85); H,5.13 (5.16); 

N,18.75 (18.78) %. 1H NMR (400 MHz, CDCl3):  12.96 (s, 1H), 8.22 (d, 1H), 8.10 (t, 1H), 8.02 (d, 

1H), 7.92 (d, 2H), 7.76 (d, 1H), 7.67 (d, 1H), 7.63 (s, 1H), 7.51 (t, 2H), 7.39 (t, 1H), 7.34 (t, 1H), 7.29 

(t, 1H). FT-IR (KBr, cm-1): 3201.8 (s, νN-H) 1602.9 (s, νC-H).  

 

Synthesis of H2L2 

 A beige powder of H2L2 was obtained by evaporation of acetone. (yield 79.2 %) Anal. 

(calc.) for H2L2・H2O (C22H19N5O): C,71.60 (71.53); H,5.36 (5.18); N,18.88 (18.96) %. 1H NMR (400 

MHz, DMSO): 8.22 (d, 1H), 8.09 (t, 1H), 8.01 (d, 1H), 7.80 (d, 2H), 7.76 (d, 1H), 7.67 (d, 1H), 7.58 

(s, 1H), 7.31 (m, 4H), 2.37 (s, 3H). FT-IR (KBr, cm-1): 3142.0 (s, νN-H) 1600.9 (s, νC-H). 
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Synthesis of H2L3 

 A beige powder of H2L3 was obtained by evaporation of acetone. (yield 37.0 %) Anal. 

(calc.) for H2L3・0.5H2O (C24H22N5O0.5): C,74,21 (74.20); H,5.65 (5.71); N,18.22 (18.03) %. 1H NMR 

(400 MHz, CDCl3): 10.9 (s, 1H), 8.38 (d, 1H), 7.93 (t, 1H), 7.85 (t, 1H), 7.47 (t, 1H), 7.28 (m, 2H), 

7.26 (s, 1H), 6.97 (s, 2H), 6.90 (s, 1H), 2.32 (s, 3H), 2.16 (s, 6H).4  FT-IR (KBr, cm-1): 3203.8 (s, 

νN-H) 1604.8 (s, νC-H). 

 

Synthesis of H2L4 

 A brown powder of H2L4 was obtained by evaporation of acetone. (yield 41.2 %) Anal. 

(calc.) for (H2L4・H2O・0.8(CH3)2CO) C28.4H31.8N5O1.8: C,72.18 (72.27); H,6.70 (6.79); N,14.97 

(14.84) %. 1H NMR (400 MHz, DMSO):  12.89 (s, 1H), 8.21 (d, 1H), 8.05 (d, 2H), 7.74 (d, 1H), 7.60 

(d, 1H), 7.27 (m, 2H), 2.26 (s, 3H), 2.22 (s, 6H). 2.01 (s, 6H), FT-IR (KBr, cm-1): 3172.9 (s, νN-H) 

1599.0 (s, νC-H). 

 

Synthesis of [FeII(H2L1)2](BF4)2∙1.5(C3H7CN) (1) 

 Fe(BF4)2∙6H2O (100 mg, 0.297 mmol) in butyronitrile (5 ml) was added to H2L1 (201 mg, 

0.598 mmol) in butyronitrile (30 ml) and stirred for 5 min at room temperature. After stirring, the red 

solution was filtered to remove impurities. The red block crystals of [FeII(H2L1)2](BF4)2
.3(C3H7CN) 

(1’) were obtained by slow evaporation for 2 days. Crystals were collected by vacuum filtration, 

affording [FeII(H2L)2](BF4)2
.1.5(C3H7CN) (1) for physical measurements. (177 mg, yield 56.2 %)  

Anal. (calc.) for C48H40.5N11.5B2F8Fe (1∙1.5C3H7CN): C,57.20 (57.19); H,4.05 (4.19); N,15.98 

(15.94) %.  FT-IR (KBr, cm-1) 3284.8 (s, νN-H) , 1047.3 (s, νB-F). 

 

Synthesis of [FeII(H2L2)2](BF4)2
.0.5(i-Pr2O).2(H2O).2(CH3OH) (2)   

  Methanol solution (5 mL) of Fe(BF4)2∙6H2O (30.0 mg, 0.09 mmol) was added to a 

solution of H2L2 (63.2 mg, 0.18 mmol) in methanol (10 mL). The resulting red solution was 

filtered and allowed to diffuse with i-Pr2O. After a few days, red plates of 

[FeII(H2L1)2](BF4)2∙(i-Pr2O)∙2(CH3OH) (2’) had formed. The crystals were collected by suction 

and air-dried, affording [FeII(H2L1)2](BF4)2
.0.5(i-Pr2O).2(H2O).2(CH3OH) (2). Yield 55.9 mg 

(66.4 %). Anal. (calc.) for C49H53N10O4.6B2F8Fe1: C, 54.41 (54.32); H, 4.76 (4.93); N, 13.18 

(12.93) %. FT-IR (KBr, cm–1): 3277.1 (s, νN-H), 1084 (s, νB-F). 
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Synthesis of [FeII(H2L3)2](BF4)2∙0.5(AcOEt)∙0.5(H2O).1.5(CH3OH) (3).   

  Methanol solution (5 mL) of Fe(BF4)2∙6H2O (34 mg, 0.10 mmol) was added to a 

solution of H2L3 (75.8 mg, 0.20 mmol) in methanol (10 mL). The resulting red solution was 

filtered and allowed to diffuse with AcOEt. After a few days, red plates of 

[FeII(H2L3)2](BF4)2∙(AcOEt)∙1.5(CH3OH) (3’) were obtained. The crystals were collected by 

suction and air-dried, affording [FeII(H2L2)2](BF4)2∙0.5(AcOEt)∙0.5(H2O).1.5(CH3OH) (3). Yield 

55.4 mg (56.1 %). Anal. (calc.) for C49.5H49N10O2B2F8Fe1: C, 56.51 (56.87); H, 5.01 (4.72); N, 

13.30 (13.40) %. FT-IR (KBr, cm–1): 3280.9 (s, νN-H), 1051.2 (s, νB-F). 

 

Synthesis of [FeII(H2L4)2](BF4)2
.2.5(H2O).(i-Pr2O) (4).   

  Methanol solution (5 mL) of Fe(BF4)2∙6H2O (34 mg, 0.10 mmol) was added to a 

solution of H2L4 (1.0 mg, 0.20 mmol) in methanol (10 mL). The resulting red solution was 

filtered and allowed to diffuse with i-Pr2O. After a few days, red plates of 

[FeII(H2L4)2](BF4)2∙2(i-Pr2O) (4’) were obtained. The crystals were collected by suction and 

air-dried, affording [FeII(H2L4)2](BF4)2
.2.5(H2O).(i-Pr2O) (4). Yield 33.4 mg (32 %). Anal. (calc.) 

for C52H55N10O2.5B2F8Fe1: C, 57.51 (57.32); H, 5.20 (5.09); N, 12.55 (12.86) %. IR (KBr, cm–

1): 3280.8 (s, νN-H), 1057.0 (s, νB-F). 
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Table 2.1: Crystal parameters of 1’ 

 100 K 270 K 

Formula C42H30B2F8FeN10 C42H30B2F8FeN10 

M / g mol-1 904.23 904.23 

Crystal system Monoclinic Monoclinic 

Space Group C2/c C2/c 

a / Å 23.06 (4) 23.590 (5) 

b / Å 12.49 (2) 12.299 (2) 

c / Å 19.42 (4) 19.719 (4) 

/ ° 90 90 

 / ° 118.659 (18) 116.05 (3) 

/ ° 90 90 

V / Å3 4908 (15) 5140 (2) 

Z 4 4 

d / g cm-3 1.224 1.168 

 / mm-1 0.376 0.359 

/ Å 0.71073 0.71073 

R1 (I > 2(I)) 0.0660 0.0643 

wR2 (I > 2(I)) 0.1382 0.1410 
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Table 2.2: Crystal parameters of 2’.  

 20 K 100 K 270 K LIESST 

Formula C51.5H58N10 C52H56N10 C52H56N10 C52H57N10 

 O4B2F8Fe O3B2F8Fe O3B2F8Fe O3.5B2F8Fe 

M / g mol-1 1110.55 1098.53 1098.53 1107.54 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space group C2/c C2/c C2/c C2/c 

a / Å 31.8358 (9) 32.019 (3) 32.372 (12)        32.0647 (13) 

b / Å 16.2318 (6) 16.3126 (14) 16.452 (6)         16.2520 (5) 

c / Å 24.1500 (13) 24.246 (2) 24.557 (16)        24.1773 (17) 

 / o - - - - 

 / o 121.0380 (10) 121.2070 (10) 121.401 (4)       121.5440 (10) 

γ / o - - - - 

V / Å3 10692.8 (8) 10831.7 (16) 11164 (9)         10737.5 (9) 

Z 8 8 8 8 

d / g cm-3 1.380 1.347 1.307 1.370 

 / mm-1 0.889 0.358 0.347 0.883 

R1 (I > 2(I)) 0.0920 0.0860 0.0689 0.1078 

Rw2 (I > 2(I)) 0.2535 0.2231 0.1892 0.2970     
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Table 2.3: Crystal parameters of 3’ and 4’.  

 Comp. 3’ (100 K) Comp. 4’ (100 K) 

Formula C53.5H56N10 C64H78N10 

 O3.5N10B2F8Fe O2B2F8Fe 

M / g mol-1 1124.55 1248.83 

Crystal system Triclinic Monoclinic 

Space group P1̄  P21/n 

a / Å 12.496 (10) 18.389 (3) 

b / Å 12.836 (10) 16.551 (3) 

c / Å 17.661 (14) 22.333 (3) 

/ o 85.769 (8) - 

/ o 73.318 (11) 112.772 (2) 

γ / o 84.140 (11) - 

V / Å3 2696 (4) 6267.2 (16) 

Z 2 4 

d / g cm-3 1.385 1.324 

 / mm-1 0.362 0.317 

R1 (I > 2(I)) 0.1422 0.1335 

Rw2 (I > 2(I)) 0.3343 0.2993                                      
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2.3 Results and discussion 

Crystal structures  

All complexes were determined by single-crystal X-ray measurement. The 

crystallographically determined structures of complexes are shown in Figure 2.1-4.  

1’ was synthesized as red block crystals in the mixture of H2L1 and Fe(II) tetrafluoroborate. 

1’ crystallized in the C2/c space group and temperature dependent structural data were collected at 

100 K and 270 K (Table 2.1). This is a mononuclear complex which is constructed from two ligands 

and one iron ion (Figure 2.1 (a)). The iron ion is coordinated by two tridentate binding sites of H2L1 

(pyrazole, pyridine, benzimidazole), resulting in an N6 coordination environments. Four Brønsted 

moieties (pyrazoles and benzimidazoles) are all protonated, and there are two tetrafluoroborate 

ions per complex. Thus, the iron ion is divalent. The average bond length between the iron ion and 

the nitrogen atoms is 1.96 Å at 100 K, with a Σ value of 96.4o, it means the iron ion is low spin. As for 

the intermolecular interactions, there are weak hydrogen bonds between complex cations and 

counter anions (Figure 2.1 (b)). In addition, π-π-stacking interactions are observed between phenyl 

moieties. These interactions form 3D networks and are likely to result in a strong cooperative effect 

in the crystals. Increasing the measurement temperature from 100 K to 270 K, resulted in changes 

to the structure and the color of the solid. The space group is still same, C2/c, but the Fe-N average 

bond length and Σ-value increased to, 2.15 Å and 142.1o respectively. These values are 

characteristic for Fe(II) in its high spin state, so 1’ was spin crossover complex. 

  Complex 2’ crystallizes in the monoclinic space group C2/c (Figure 2.2). The cationic part 

of the complex consists of two H2L2 ligands and one Fe(II) ion, forming a bis-chelate type 

mononuclear structure. The Fe(II) ion exists in an octahedral coordination environment, coordinated 

by six nitrogen atoms from two H2L2 ligands. At 100 K, the average Fe-N distance is 2.097 Å, and 

the Σ value is 124.1o, which suggests a mixture of high and low spin states (Figure 2.2 top). The 

thermal ellipsoids of the benzimidazole group are elongated towards the direction of the 

benzimidazole plane, which implies a mixture of two coordination modes. From the data collected at 

20 K with the synchrotron X-ray source, the coordinated benzimidazole group was solved in two 

positions, the occupancies of which were equal (Figure 2.2 center). The average Fe-N distances 

are 2.063 Å and 2.097 Å, and the Σ values are 110.6o and 138.3o for the low and high spin parts, 

respectively. The average dihedral angle between the pyrazole and trimethylphenyl moieties is 

12.30o. Structural analysis of 2’ at 270 K was also performed, and confirmed that the iron ion has a 

high spin state based on coordination bond length (2.173 Å) and Σ value (140.0o). These data are 

consistent with partial spin crossover behavior. 

  Complex 3’ crystallizes in the triclinic space group P1̄ (Figure 2.3). The structure of 3’ is 

similar to 2’, but the solvent molecules and intermolecular interactions are different. At 100 K, the 
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average Fe-N distance is 2.129 Å, and the Σ value is 136.5o, indicating a mixture of low and high 

spin complexes. The lattice contains disordered trimethyl phenyl groups and BF4
- anions. The 

average dihedral angle between the pyrazole and trimethylphenyl moieties is 70.39o. Hydrogen 

bonded interactions are operative between two pyrazole groups and methanol molecules, and two 

benzimidazole groups and BF4
- anions respectively, forming a one-dimensional chain structure 

along the b axis (Figure 2.3). There are π-π stacking interactions between benzimidazole moieties, 

forming a dimer of iron complexes.  

  Complex 4’ crystallizes in the monoclinic space group P21/n (Figure 2.4). The structure of 

4’ is also similar to that of 2’, but again, the solvent molecules and interactions with counter anions 

are different. The Fe (II) ion exists in an octahedral coordination environment, coordinated by six 

nitrogen atoms from two H2L4 ligands. At 100 K, the average Fe-N distance is 2.178 Å, and the Σ 

value is 142.3o, indicative of a Fe (II) ion in the high spin state. The average dihedral angle between 

pyrazole and trimethylphenyl moieties is 73.61o. Disordered BF4
- anions are present in the lattice. 

One pyrazole moiety interacts with a solvent iPr2O molecule, while the other pyrazole group 

interacts with a BF4
- anion. Two benzimidazole groups interact with BF4

- anions. In the lattice, BF4
- 

anions link mononuclear iron moieties, forming a one-dimensional network structure. There are two 

kinds of π-π stacking interactions; one between pentamethylphenyl and benzimidazole groups, and 

the other between two benzimidazole groups.   
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Figure 2.1: Molecular structure (top) and three-dimensional hydrogen bond network (bottom) of 1’ 

at 100 K. Hydrogen bonds were formed between complex cation and counter anion BF4
- chain 

through network structure of 1’. Colour code: C, black; N, blue; Fe(II), red. 
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100 K 

 

20 K 

   

 

 

 

Figure 2.2: Molecular structure (top: 100 K, center: 20 K) and one-dimensional chain network 

structure (bottom) of 2’. Carbon atoms of phenyl and pyridyl rings were omitted for clarity. Lattice 

solvents and non-interacting BF4
- anions have been omitted. Color code: C, grey; N, light blue; 

Fe(II), brown. 
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Figure 2.3: Molecular structure and one-dimensional chain network structure of 3’. Carbon atoms 

of the phenyl and pyridyl rings were omitted for clarity. Lattice solvents and non-interacting BF4
- 

anions have been omitted. Color code: C, grey; N, light blue; Fe(II), brown. 

 

 



 34 

 

 

 

 

 

Figure 2.4: Molecular structure one-dimensional chain network structure of 4’. Carbon atoms of 

phenyl and pyridyl rings were omitted for clarity. Lattice solvents and non-interacting BF4
- anions 

have been omitted. Color code: C, grey; N, light blue; Fe(II), brown. 
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Magnetic properties of 1 

  DC magnetic susceptibilities of the crystalline sample of 1 were measured under an 

applied magnetic field of 10000 Oe. [FeII(H2L1)2](BF4)2 displays rapid spin conversion at T1/2 = 260.5 

K. From 300 K to 260 K, the χmT of [FeII(H2L1)2](BF4)2 was constant at 3.33 emu mol-1 K, which is 

close to the spin only value expected for four unpaired electrons, S = 2 (3.0 emu mol-1 K), 

suggesting that all Fe(II) centres were in the HS state (Figure 2.5). High temperature single-crystal 

X-ray structural analysis of 1’ 270 K supports this assignment. At low temperatures 1 is essentially 

diamagnetic, however it was also demonstrated that 1 shows a low-temperature photo-magnetic 

response based on conversion to the HS state through light-induced excited spin state trapping 

(LIESST) on irradiation with both green and red laser light (Figure 2.6). Temperature dependent 

Mössbauer spectroscopy of 1 at 270 K and 100 K are listed in Figure 2.7. At high temperature, the 

spectrum showed a quadrupole doublet, and parameters of isomer shift (δ) and quadrupole splitting 

(ΔEQ) are δ = 0.96 mm s-1 with ΔEQ = 1.80 mm s-1, suggesting that all iron ions are in the Fe(II) HS 

state. At low temperature, however, the spectrum shifted and was fitted to give δ = 0.435 mm s-1 

and ΔEQ = 0.670 mm s-1. These parameters are typical values of the Fe(II) LS state and suggest 

spin transition of complex 1. 

             

Figure 2.5: The thermal magnetic susceptibility data of 1.
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Figure 2.6: Light induced magnetic susceptibility data collected for 1. (Left; 532 nm laser, Right; 808 

nm laser). Red circle: heating, blue circle: cooling, solid line: bulk data. 
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Figure 2.7: Mössbauer spectra of 1 at 270 K (top) and 100 K (bottom). 

 

Table 2.4: Mössbauer parameters for 1. 

T / K δIS (mm / s) ΔEQ (mm / s) Spin state 

270 1.119 2.870 Fe(II) HS 

100 0.435 0.670 Fe(II) LS 
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Magnetic properties of 2-4 

The magnetic susceptibilities of 2-4 were studied by SQUID magnetometor. The 

χmT vs. T plots for all complexes are shown in Figure 2.8. Complexes 2 and 3 show gradual 

SCO behavior, while complex 4 has a high spin state (S = 2) in the whole temperature range. 

The χmT values for 2 and 3 at room temperature are 3.11 and 3.37 emu mol-1 K, values 

consistent with magnetically isolated high-spin Fe(II) ions (S = 2). Spin crossover 

temperatures for 2 and 3 were determined by maxima on the dχ/dT plots, affording 200 K 

and 250 K, respectively. Below 100 K, the χmT values for 2 and 3 were almost constant (1.46 

and 1.59 emu mol-1 K, respectively). The paramagnetic state indicates partial spin transition 

of the iron ions, in agreement with the structural data discussed above. Complexes 2-4 

exhibit different magnetic behavior originating from the steric and packing effects of the 

ligands.  

The densities of the crystals are 1.347, 1.385, and 1.324 g cm-3 for complexes 2’, 3’ 

and 4’ respectively. One can also speculate that this may influence the magnetic behavior 

and that the lower density exhibited by 3’ may stabilize a high spin state in the lower 

temperature region. A detailed consideration of packing effects will require estimation of 

precise thermodynamic parameters and DFT calculations.11 In order to elucidate this partial 

spin transition, Mössbauer spectra were measured for complex 2 at 20 K and 300 K (Figure 

2.9-10). At 20 K, the data can be analysed as a mixture of high- and low spin iron(II) species. 

On the other hand, the data collected at 300 K reveals only high spin iron(II) species. These 

facts indicate the occurrence of partial spin crossover in 2. The obtained fitting parameters 

for Fe(II) high- or low-spin species are reasonable values for low symmetry SCO 

complexes.1  

LIESST experiments were conducted on complex 2, and the magnetic data is 

shown in Figure 2.11. An increase in χmT values was observed after light irradiation with a 

green. Structural analyses after light irradiation were also performed at the KEK synchrotron 

and the high spin state of Fe(II) ion was confirmed based on average coordination bond 

lengths (2.127 Å) and Σ values (129.1o).   
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Figure 2.8: The thermal magnetic susceptibility data of 2, 3, and 4. 
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Figure 2.9: Mössbauer spectra of 2 at 300 K. 

 

 

     

Figure 2.10: Mössbauer spectra of 2 at 20 K. 

 

 

Table 2.5: Mössbauer parameters for 2 at 300 K. 
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Table 2.6: Mössbauer parameters for 2 at 20 K. 

 

 

         

 

 

    

Figure 2.11: Green light induced magnetic susceptibility data collected for 2. (Blue circle: before 

light irradiation, Red circle: after light irradiation)  
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2.4 Conclusion 

Three Fe(II) complexes of the general formula [FeII(H2L1-4)2](BF4)2∙x(solv.), with different 

substituent groups, were synthesized and their electronic states were investigated. Complexes 1, 2 

and 3 show spin crossover behaviour, while 4 has a high-spin state in the temperature range of 1.8 - 

300 K. The substituent groups affect the supramolecular packing of the molecular species.  These 

structural perturbations are passed on to the coordination geometries of the iron ions, significantly 

influencing the spin states of the complexes. This insight into the design of modified asymmetric 

mononuclear SCO complexes will aid in the future fine design of bistable molecular systems. 
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CHAPTER 3  
 

Electronic State Conversions of  
Iron Complexes with Brønsted Acid and Base 

 

3.1 Introduction 

Next-generation intelligent molecular devices will rely on simple, nanoscale species 

possessing multiple distinct electronic states which can be reversibly switched under the application of 

external stimuli.1 Amongst the most promising candidates capable of fulfilling these criteria are 

coordination complexes based on cheap, readily-available 1st row transition metals.2 These have long 

been shown to exhibit an attractive variety of switchable magnetic, electronic and optical properties in 

response to temperature, light, pressure or guest absorption/desorption.3 A key advantage of employing 

such species is their amenability to novel molecular design approaches which allows control over both 

their structure and composition, but also presents the potential for fine tuning of their electronic 

properties by modification of both the inner- (via ligand design).4 and outer- (via hydrogen-bonding, 

anion or solvent interactions) coordination spheres.5 

The modification of capping ligands allows manipulation of their binding strength and thus the 

tuning of reversible high-spin (HS) to low-spin (LS) state conversion in FeII or FeIII spin crossover (SCO) 

complexes under thermal- or photo-excitation. Likewise, valence conversion – where an external 

stimulus is used to trigger an electron-transfer-coupled spin transition (ETCST) – can be achieved in 

poly-nuclear systems where strong electronic interactions between neighbouring metal centres are 

engineered by careful (or serendipitous) ligand selection/design.6 

Outer-sphere coordination effects can be used to modify complex spin states upon exposure 

to chemical stimuli. For example, Coronado and Kepert have shown how the interaction of guest 

molecules with responsive coordination systems can be used to achieve spin state switching.7 More 

recently, the development of pH-responsive systems has shown that multi-dentate ligands which retain 

an acidic proton – such as those containing free imidazole or pyrazole N-H moieties – allow the design 

of a new class of switchable complexes.8 These “Brønsted ligands”, which can act simultaneously as 

both Brønsted acids and bases, strongly couple the properties of the complex to its environment, where 

protonation/deprotonation of the ligand dramatically modifies the redox behaviour and the ligand field of 

the coordinated metal cation(s). In addition, Brønsted ligand complexes typically form hydrogen-bonded 

networks through -N-H···N- donor-acceptor interactions, which can be influenced by the inclusion of 

complementary proton donors/acceptors.9 The resultant formation of dynamic, supramolecular 

high-dimensional networks of SCO species can lead to enhancement of spin transition phenomena 

through cooperative interactions. Very few examples of direct, protonation-controlled state-switching in 

molecular species have been reported. Most recently, Lehn and co-workers showed how the SCO 
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behaviour of a polynuclear Fe4 grid-type complex can be modified in response to pH by using protic, 

hydrazine-based ditopic ligand groups.10 A more common approach has been to develop mononuclear 

FeII-complexes which reversibly respond to protonation/deprotonation, however in all cases, these 

systems show a binary response where the physical properties can be switched between just two 

discrete states.  

In this work, a novel ligand design strategy employing an asymmetric Brønsted ligand can be 

used to isolate a mononuclear Fe-complex with five independently accessible physical states. To 

achieve multi-state switching in a structurally simple mononuclear complex, a new ligand design 

approach, obtaining the asymmetric tridentate ligand H2L (this ligand is written as H2L1 in CHAPTER 2. 

In this CHAPTER 3, the ligand is described as H2L for clarity.) was performed. H2L possesses two 

distinct acidic protons on the benzimidazole and pyrazole moieties where the dissociation constants of 

each proton is different (imidazole pKa = 19.8, pyrazole pKa = 16.4). Considering the complex 

[FeII(H2L)2]2+ (1 in CHAPTER 2. In this CHAPTER 3, the complex is written as 1A), the complexes have 

four Brønsted acid/base moieties. In addition, the iron ion is stabilized in two valence states, divalent 

and trivalent. Therefore it is considered that this complex can potentially stabilize 10 types of iron 

complexes by deprotonation/protonation and oxidation/reduction (Scheme 3.1). In this CHAPTER, five 

types of iron complexes 1A-E were isolated by stepwise deprotonation (Scheme 3.2) and their electronic 

states were determined.  

                 

 

Scheme 3.1: 10 types of iron complexes. 

 

                   
 

Scheme 3.2: The five isolated complexes presented in this chapter. 
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3.2 Experiments 
Materials 

All chemicals were used without further purification except when noted. Solvents and 

reagents were used as received from commercial suppliers. 

SQUID Magnetometer Measurements 

Variable-temperature magnetic susceptibility measurements were carried out on 

polycrystalline samples using a Quantum Design MPMS-XL SQUID magnetometer. Pascal’s 

constants were used to determine the diamagnetic corrections.  

X-ray Crystallography 

Crystals were mounted on a glass capillary or a MiTeGen Dual-Thickness MicroMount, 

and data were collected at 100 K and 270 K (Bruker SMART APEXII diffractometer coupled with a 

CCD area detector with graphite monochromated Mo-K ( = 0.71073 Å) radiation). The structure 

was solved using direct methods and expanded using Fourier techniques within the SHELXTL 

program.  Empirical absorption corrections by SADABS were carried out.11 In the structure 

analyses, non-hydrogen atoms were refined with anisotropic thermal parameters.  Hydrogen 

atoms were included in calculated positions and refined with isotropic thermal parameters riding on 

those of the parent atoms.   

Mössbauer spectra 

Mössbauer experiments were carried out using a 57Co/Rh source in a 

constant-acceleration transmission spectrometer (Topologic Systems) equipped with an Iwatani 

HE05/CW404 cryostat. The spectrometer was calibrated using standard α-Fe foil.   

Electrochemical measurements 

Electrochemical measurements were carried out using a BAS 620A electrochemical 

analyzer. Cyclic voltammetry and differential pulse voltammetry measurements were carried out in 

a standard one-compartment cell under N2 at 20 °C equipped with a platinum-wire counter 

electrode, a saturated calomel electrode (SCE) as the reference electrode, and a glassy carbon 

(GC) working electrode.  

UV-Vis-NIR spectroscopy 

  UV-Vis-NIR absorption spectra were recorded on Agilent Technologies Cary 8454 

UV-Vis spectrometer. The solid-state UV was measured on KBr pellet samples using the Shimadzu 

UV-3150 spectrometer equipped with a Unisoku USP-203-A cryostat.   

Elemental analysis 

 Elemental analyses were performed using a Perkin Elmer 2400 element analyzer. 
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Synthetic Procedures   

Syntheses of ligand H2L and complex [FeII(H2L)](BF4)2 (1A) are listed in CHAPTER 2. 

 

Synthesis of [FeII(HL)2]∙0.5(C2H4Cl2)∙0.2(C2H5OH)∙0.3H2O (1B) 

1A (100 mg, 0.111 mmol) was dissolved into a mixed solution of ethanol and 

1,2-dichroloethane (50 mL, v/v 1:2).  Diluted NH3 aq. solution (one drop of 28% ammonia solution 

in 50 mL of ethanol) was allowed to diffuse into the filtered red solution. After a few days, purple 

columnar crystals of [FeII(HL)2]∙5(C2H2Cl2) (1B’) suitable for single crystal X-ray structural analysis 

were obtained. Crystals were filtered, and air-dried samples of [FeII(HL)2]∙x(solv.) (1B) were used for 

physical measurements. (29.0 mg, yield 36 %) Anal. (calc.) for C43.4H31.8N10O0.5ClFe 

(1B∙0.5(C2H4Cl2)∙0.2(C2H5OH)∙0.3H2O) C: C,65.51 (65.76); H,3.78 (4.04); N,17.89 (17.67) %.  

FT-IR (KBr, cm-1): 3201.8 (s, νN-H) 1602.9 (s, νC-H). 

 

Synthesis of [FeIII(HL)(H2L)](BF4)Cl∙0.5CH3OH∙1.8H2O (1C) 

  FeCl3∙6H2O (26.0 mg, 0.1 mmol) in methanol (3 ml) was added to H2L (66 mg, 0.2 mmol ) 

in methanol (20 ml), and the mixture was stirred for 5 minutes at room temperature. The resulting 

orange solution was filtered and excess tetraethylammonium tetrafluoroborate was added to the 

filtrate. Orange block crystals of [FeIII(HL)(H2L)](BF4)Cl∙3(CH3OH) (1C’) suitable for structural 

analysis were obtained after diffusion of diisopropyl ether 3 days. (50 mg, yield 55 %) Orange 

crystals were collected by vacuo and air-dried affording [FeIII(HL)(H2L)](BF4)Cl∙0.5CH3OH∙1.8H2O 

(1C) Anal. (calc.) for C42.5H34.6N10O2.3BF4ClFe (1C∙0.5CH3OH∙1.8H2O): C,56.89 (56.70); H,4.12 

(3.87); N,15.40 (15.56) %. FT-IR (KBr, cm-1) 1610.6 (s, νC-H) , 1024.2 (s, νB-F). 
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Synthesis of complex [FeIII(L)(HL)]∙4CH3OH∙3H2O (1D) 

  FeCl3∙6H2O (26.0 mg, 0.1 mmol ) in methanol (5 ml) was added to H2L (66 mg, 0.2 mmol ) 

in methanol (10 ml), and the reaction mixture was stirred for 5 minutes at room temperature.  After 

stirring, triethylamine (27.3 μl,  0.2 mmol) was added to the solution and color changed from 

orange to green. After 3 minutes stirring, the green solution was filtered and allowed to stand 

without disturbing. The green plate crystals of [FeIII(L)(HL)]∙4(CH3OH) (1D’) were obtained by slow 

evaporation for 1 day. Crystals were collected by vacuo and air-dried, affording 

[FeIII(L)(HL)]∙CH3OH∙3(H2O) (1D), which were used for physical measurements. (63 mg, yield 86 %)  

Anal. (calc.) for C43H37N10O4Fe (1D∙CH3OH∙3H2O): C, 63.47 (63.29); H, 4.58 (4.35); N, 17.21 

(17.51) %. FT-IR (KBr, cm-1) 1608.6 (s, νC=N). 

 

Synthesis of complex (TEA)[FeIII(L)2]∙CH3OH∙3H2O (1E) 

Fe(BF4)2∙6H2O (49 mg, 0.150 mmol ) in methanol (5 ml) was added to H2L (99 mg, 0.300 

mmol ) in methanol (20 ml), and the solution was stirred for 5 minutes at room temperature.  After 

stirring, 1 M NaOH water (600 μl) was added to the solution and the color changed from red to blue. 

The blue solution was filtered and excess tetraethylammonium tetrafluoroborate (TEABF4), was 

added. The blue plate crystals of (TEA)[FeIII(L)2]∙3(CH3OH)∙2(H2O) (1E’) were obtained by slow 

evaporation for 1 day. Crystals were collected by vacuo and air-dried, affording 

(TEA)[FeIII(L)2]∙CH3OH∙3(H2O) (1E) for physical measurements. (78 mg, yield 59 %) Anal. (calc.) for 

C51H56N11O4Fe  (1E∙CH3OH∙3H2O): C, 64.94 (64.78); H, 5.99 (5.92); N, 16.34 (16.20) %. FT-IR 

(KBr, cm-1) 1600.4 (s, νC-N). 
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Table 3.1: Crystal parameters of 1A’ and 1B’. 

 1A’ (HS)      1A’ (LS) 1B’ 

T / K 270 100 100 

Instrument APEX2 APEX2 APEX2 

Formula C42H30B2F8FeN10 C42H30B2F8FeN10 C42H28FeN10 

F.W. 904.23 904.23 728.59 

Space Group C2/c C2/c P1
—

 

a / Å 23.590 (5) 23.06 (4) 12.6735 (14) 

b / Å 12.299 (2) 12.49 (2) 13.3243 (15) 

c / Å 19.719 (4) 19.42 (4) 14.0506 (16) 

/ ° 90 90 92.132 (2) 

 / ° 116.05 (3) 118.659 (18) 103.294 (2) 

/ ° 90 90 103.6380 (10) 

V / Å3 5140 (2) 4908 (15) 2233.5 (4) 

Z 4 4 2 

 / mm-1 0.359 0.376 0.375 

/ Å 0.71073 0.71073 0.71073 

R1 (> 2) 0.0643 0.0660 0.0515 

wR2 (> 2) 0.1410 0.1382 0.1361 
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Table 3.2: Crystal parameters of 1C’, 1D’, and1E’ 

 1C’ 1D’         1E’ 

T / K 100 100 100 

Instrument APEX2 APEX2 APEX2 

Formula C45H41BClF4FeN10O3 C46H43FeN10O4 C53H62FeN11O5 

F.W. 947.99 855.75 988.98 

Space Group P21/n P21/c Pna21 

a / Å 15.446 (2) 12.1625 (16) 27.7460 (17) 

b / Å 17.895 (3) 24.788 (3) 13.0276 (8) 

c / Å 17.455 (3) 15.112 (2) 13.5959 (8) 

/ ° 90 90 90 

 / ° 115.311 (2) 108.274 (2) 90 

/ ° 90 90 90 

V / Å3 4361.5 (12) 4326.3 (10) 13.5959 (8) 

Z 4 4 4 

 / mm-1 0.478 0.404 0.368 

/ Å 0.71073 0.71073 0.71073 

R1 (> 2) 0.0743 0.0690 0.0401 

wR2 (> 2) 0.1714 0.1846 0.0935 
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Table 3.3: Table of bond lengths (Å) and Σ values (O) for five complexes. 

1A’ (270 K) 1A’(100 K) 1B’ (100 K) 

Fe-N1 2.134 (3) Fe-N1 1.987 (5) Fe-N1 1.972 (2)  

Fe-N2 2.143 (3) Fe-N2 1.911 (5)  Fe-N2 1.912 (3)  

Fe-N3 2.182 (3) Fe-N3 1.974 (5)  Fe-N3 1.977 (2)  

Fe-N1 2.134 (3) Fe-N4 1.987 (5) Fe-N4 1.964 (2)  

Fe-N2 2.143 (3) Fe-N5 1.911 (5)  Fe-N5 1.921 (2)  

Fe-N3 2.182 (3) Fe-N6 1.974 (5)  Fe-N6 1.957 (3)  

Ave. 2.150(3) Ave. 1.957 (5)  Ave. 1.949 (3)  

Σ( o)  142.1 Σ( o) 96.4 Σ( o) 90.1 

 

1C’ (100 K) 1D’ (100 K)         1E’ (100 K) 

Fe-N1 2.237 (4) Fe-N1 1.986 (3) Fe-N1 1.953 (3) 

Fe-N2 2.134 (4) Fe-N2 1.911 (3) Fe-N2 1.915 (3) 

Fe-N3 2.172 (4) Fe-N3 1.941 (3) Fe-N3 1.969 (3) 

Fe-N4 2.197 (4) Fe-N4 1.923 (3) Fe-N4 1.908 (3) 

Fe-N5 2.123 (4) Fe-N5 1.918 (3) Fe-N5 1.914 (3) 

Fe-N6 2.200 (4) Fe-N6 1.947 (3) Fe-N6 1.951 (3) 

Ave. 2.18 Ave. 1.94 Ave. 1.94 

Σ( o) 140.0 Σ( o) 80.9 Σ( o) 78.7 
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3.3. Results and Discussion 
 

Structure of 1A’  

1A’ is a mononuclear complex which is constructed from two ligands and one iron ion. At 100 K, the 

spin state is Fe(II) low spin. On the other hand, the spin state is Fe(II) high spin at 270 K. These 

results mean 1A’ is a spin crossover complex. (Details of 1A’ is written in CHAPTER 2.) 

 

Cyclic voltammetry of 1A 

Cyclic voltammetry measurements of 1A, carried out in acetonitrile at 293 K (Figure 3.1). 

The cyclic voltammogram showed one quasi-reversible redox process at E1/2 = 0.86 V 

corresponding to the one-electron oxidation/reduction of the iron centres. This result suggested that 

the oxidized species was relatively stable in acetonitrile.  

 

Figure 3.1: Cyclic voltammogram of 1A in acetonitrile / 0.1 M n-Bu4NPF6.

1.2 1.0 0.8 0.6 0.4 0.2 0.0

 E / vs. SCE
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Base addition cyclic voltammogram 

 Cyclic voltammograms were measured in an acetonitrile solution of 1A, before and after 

addition of 4 equivalents of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) under air. It is important to 

note that addition of fewer than four equivalents of base produced poor/uninterpretable data due to 

the insolubility of the partially deprotonated homologues whereas four equivalents of strong base 

was expected to lead to the complete deprotonation of the complex. Figure 3.2 shows the 

voltammogram of 1A in which a quasi-reversible Fe(II) / Fe(III) redox couple appears, centred at 

+0.84 V vs. SCE. Subsequent addition of 4 equivalents of DBU causes the Fe-centred redox 

process to shift to –0.68 V vs. SCE, suggesting that the Fe(II) ion has been destabilized by ligand 

deprotonation and spontaneously oxidised to Fe(III).  

 

Figure 3.2: DBU titration cyclic voltammogram of 1A in acetonitrile/ 0.1 M n-Bu4NPF6. 
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Base addition UV spectra 

Figure 3.4 shows the effect on the UV-vis absorption spectrum of 1A in acetonitrile upon 

the addition of 4 eq. DBU. At first, MLCT bands derived from 1A were observed at 477 and 512 nm 

(Table 3.3). After DBU titration however, the band was red shifted and new peaks appeared at 586 

and 720 nm. The new peaks can be identified as the LMCT bands of the deprotonated and oxidized 

1A. From the CV and UV experiments, the stability of partially deprotonated complexes was 

suggested. 

 

               

Figure 3.3: UV spectra of 1A (red line: DBU 0 eq. blue line: DBU 4.0 eq.). 

 

 

Table 3.4. Assignment of UV spectra. 
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Wavelength (nm) 477 512 586 720 
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Synthesis of partially deprotonated complexes 

To demonstrate the utility of the Brønsted ligands, isolation of partially (or totally) 

deprotonated complexes were performed. Synthesis methods are written in the Experimental 

section (CHAPTER 3.2). 

The neutral divalent complex [FeII(HL)2] (1B’) was isolated as purple crystals by the 

diffusion of ammonia to a solution of 1A’. Complex 1B’ crystallizes in the triclinic space group P1̄ 

(measured at 100 K). The structure is almost identical to that of 1A’, but the two deprotonated 

benzimidazole N atoms are no longer involved in hydrogen bonded interactions. In addition, there 

are no BF4
– anions in the crystal lattice, supporting the assignment that 1B’ is neutral. The average 

Fe-N bond length of 1.95 Å and value of 90.1o are typical of a LS Fe(II) ion. π-π-stacking 

interactions and N-H···N hydrogen bonds between the protonated pyrazole and deprotonated 

benzimidazole moieties of neighbouring 1B units form a one-dimensional chain-like structure 

between complexes (Figure 3.4). 

Complex [FeIII(HL)(H2L)](BF4)Cl (1C’) was synthesized as orange needle crystals in the 

mixture of H2L, FeCl3・6H2O and tetraethylammoniumtetrafluoroborate. 1C’ crystallized in the P21/n 

space group, and contained one BF4
- and one Cl- anion (Figure 3.5). Moreover, the average bond 

length between iron and nitrogen is 2.18 Å and the  value is 142.1o. This information indicated that 

the iron ion was in the ferric high spin state. 

 Complex [FeIII(L)(HL)] (1D’) was synthesized as green block crystals from a mixture of H2L, 

FeCl3・6H2O and triethylamine in methanol. 1D’ crystallized in the P21/c space group, and there were 

no counter ions. In addition, from the average bond length between iron ions and nitrogen atoms 

(1.94 Å) and the  value (80.9o), the Fe(III) LS state was indicated. This result was consistent with 

Mössbauer data. This complex is neutral, and three brønsted acid/base moieties are deprotonated 

(two benzimidazoles and pyrazole). As for the intermolecular interactions, the complex formed 

dimers through N-H···N hydrogen bonds between pyrazole and benzimidazole (Figure 3.6). The 

other Brønsted moieties form hydrogen bonds with methanol. 

 Complex (TEA)[FeIII(L)2] (1E’) was synthesized as blue-plate crystals from a mixture of 

H2L, Fe(II) tetrafluoroborate and NaOH in methanol (Figure 3.7). 1E’ crystallized in the Pna21 space 

group, and contained one tetraethylammonium cation. It means that 1E’ is a totally deprotonated 

anionic complex. From the average bond length between the iron ion and nitrogen atoms (1.94 Å) 

and the  value (78.7o), the metal center was identified to be trivalent, in its low spin state.  
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Figure 3.4: The molecular structure of 1B’, showing: intermolecular interactions between discrete 

molecules (top) and extended network structure (bottom). 
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Figure 3.5: Ball and stick diagram showing the dimeric structure of 1C’. 

 

 

Figure 3.6: Ball and stick diagram showing the dimeric structure of 1D’.
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Figure 3.7: The molecular structure of 1E, showing: the discrete anion (top) the b-axis projection 

(bottom). 
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DC magnetic susceptibility and Mössbauer spectra 

DC magnetic susceptibilities of crystalline samples of Fe complexes 1A-1E were 

measured under an applied magnetic field of 10000 Oe. Data are shown in Figure 3.8. 1A displays 

rapid spin conversion at T1/2 = 260.5 K. From 300 K to 260 K, the χmT of 1A was constant at 3.33 

emu mol-1 K, which is close to the spin only value expected for four unpaired electrons, S = 2 (3.0 

emu mol-1 K), suggesting that all Fe(II) centres were in the HS state. High temperature single-crystal 

X-ray structural analysis and Mössbauer spectroscopy of 1A support this assignment (CHAPTER 2, 

Figure2. 7).  

1B, on the other hand, appeared to be in the LS Fe(II) state below 350 K. At higher 

temperatures, however, the χmT value gradually changed from 0.140 emu mol-1 K at 320 K to 0.355 

emu mol-1 K at 400 K, behaviour consistent with the partial HS-LS transition of Fe(II) ions. 

Mössbauer spectroscopy at 20 K, 1B is all Fe(II) LS state (Figure 3.10). These differences suggest 

that the spin transition temperature of SCO complexes can be raised by ligand deprotonation, due 

to the stabilization of the LS state in response to the increased ligand strength of the deprotonated 

moieties (arising through the increased negative charge on the coordinating N-atoms).  

Temperature dependent magnetic data for 1C, 1D and 1E are shown in Figure 3.9. At 300 K, 

the χmT value of 1C is 4.38 emu mol-1 K, which is close to 4.375 emu mol-1 K, the expected value for 

a high-spin Fe(III) species. On the other hand, 1D and 1E exhibit χmT values of 0.407 and 0.365 emu 

mol-1 K at 400 K respectively, consistent with low-spin Fe(III) ions. The spin states were also 

elucidated by Mössbauer spectra (Figure 3.11-13). As before, switching of the spin states of 1C (HS, 

S = 5/2) and 1D and 1E (LS, S = 1/2) arises from the increased ligand field strength upon 

deprotonation, due to greater -donation of the pyrazole and imidazole nitrogen atoms upon 

deprotonation. 
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Figure 3.8: The thermal magnetic susceptibility data collected for 1A (red) and 1B (purple). 

 

     

 

Figure 3.9: The thermal magnetic susceptibility data collected for 1C (orange), 1D (green) and 1E 

(blue). 
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Figure 3.10: Mössbauer spectra of 1B at 20 K. 

 

 

     

Figure 3.11: Mössbauer spectra of 1C at 20 K. 

  

1.00

0.99

0.98

tr
a

n
s
m

is
s
io

n

-4 -2 0 2 4

v / mm s
-1

d IS = 0.365 mm s
-1

DE Q = 0.469 mm s
-1

 20 K

1.00

0.99

0.98

0.97

tr
a

n
s
m

is
s
io

n

-4 -2 0 2 4

v / mm s
-1

20 K

d IS = 0.483 mm s
-1

DE Q = 0.501 mm s
-1



 63 

   

     

Figure 3.12: Mössbauer spectra of 1D at 100 K. 

 

     

Figure 3.13: Mössbauer spectra of 1E at 100 K. 
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Table 3.5: Summary of Mössbauer spectra. 

 T (K) δIS (mm / s) ΔEQ (mm / s) Spin state 

1A 100 0.415 0.646 Fe(II) LS 

1A 270 0.970 2.100 Fe(II) HS 

1B 20 0.366 0.469 Fe(II) LS 

1C 20 0.483 0.501 Fe(III) HS 

1D 100 0.097 3.004 Fe(III) LS 

1E 100 0.099 2.931 Fe(III) LS 

 

 

Electrochemical properties 

Cyclic voltammetry measurements of 1C and 1E were carried out in acetonitrile at 293 K. 

1C showed one quasi-reversible redox process at E1/2 = 0.44 V (Figure 3.14). The E1/2 value is more 

negative than 1A, suggesting that deprotonation stabilizes the higher oxidation state. The CV of 1E 

on the other hand, gave a single quasi-reversible redox process centred at E1/2 = -0.68 V (Figure 

3.15). The E1/2 matches exactly with the base titration experiments conducted on 1A (+4.0 eq. DBU; 

Figure 3.2). This data revealed the conversion from 1A to 1E by ligand deprotonation. 

 

 

        

Figure 3.14: Cyclic voltammogram of 1C in acetonitrile/ 0.1 M n-Bu4NPF6. 
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Figure 3.15: Cyclic voltammogram of 1E in acetonitrile/ 0.1 M n-Bu4NPF6. 
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Solid State UV spectra 

 Solid state UV spectra were measured at room temperature. All samples were prepared 

as KBr discs from single crystalline samples (Figure 3.16). The MLCT bands of 1A were observed at 

487 and 534 nm, however, the MLCT band of 1B was red-shifted to 581 nm. It means that 

deprotonation of the ligand increased the energy level of both the iron ion d-orbitals and the ligand. 

As for the Fe(III) complexes, the LMCT band of 1C (540 nm) was red-shifted to 1D (632 nm) and 1E 

(598 nm), in the same manner as the Fe(II) complexes.  

 

 
 

Figure 3.16: Solid state UV spectra of complexes 1A-E. All spectra were collected on solid samples 

compressed into KBr pellets. 
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Base titration UV spectra of 1A (acetonitrile solution) 

To obtain detailed information on the stepwise deprotonation in solution state, DBU 

titration UV data for 1A were measured in acetonitrile solution (Figure 3.17). From DBU 0 eq to 4.0 

eq., MLCT band derived from 1A decreased and new peaks were observed at 586 and 720 nm. This 

spectrum is exactly the same as that collected for 1E (Figure 3. 3). This indicates that deprotonation 

and oxidation of 1A was were simultaneously effected upon addition of the strong base under air. No 

isobestic point was observed, however, due to the insolubility of the neutral complex 1B in 

acetonitrile. To observe the conversion from 1A to 1B with accuracy, UV measurement in mixed 

solution was performed.  

 

 

 Figure 3.17: DBU titration UV spectra of 1A in acetonitrile solution  
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Base titration UV spectra of 1A (mixture solution) 

DBU titration UV data for 1A were measured in acetonitrile / N,N-dimethyformamide = 9 / 

1 mixture solution (Figure 3.18). From DBU 0 eq. to 0.9 eq., the MLCT band was red-shifted with an 

isobestic point at 527 nm. The spectrum of 1A + 0.9 eq DBU (Figure 3.18 (left)) is almost the same 

as that of the solid-state spectrum of 1B (Figure 3.19). This suggests that stepwise deprotonation of 

1A occurred in solution state. From DBU 0.9 eq. to 2.0 eq., the spectrum changes with no isobestic 

point (Figure 3.18 (center)). This process can be understood to involve deprotonation and iron 

oxidation reactions simultaneously. From DBU 2.0 eq. to 3.0 eq., the spectra were shifted with an 

isobestic point at 534 nm, and saturated (Figure 3.18 (right)). This process can be suggested to be 

conversion from 1D to 1E. These results indicate that complex 1A was deprotonated in a stepwise 

manner, and converted to 1E via intermediate states.  

 

   
Figure 3.18: DBU titration UV spectra of 1A. in mixture solution (left: DBU 0 eq. to 0.9 eq., middle: 

DBU 0.9 eq. to 2.0 eq., right: 2.0 eq. to 3.0 eq.). 

                          

Figure 3.19: Comparison solid state UV of 1B and 1A with 0.9 eq. DBU. 

 

Acid titration UV spectra of 1E 

1.0

0.8

0.6

0.4

0.2

A
b
s
.

1000800600400

Wavelength (nm)

 DBU 0 eq.

 DBU 0.9 eq.

1.0

0.8

0.6

0.4

0.2

A
b

s
.

1000800600400

Wavelength (nm)

 DBU 0.9 eq.
 

 DBU 2.0 eq.

1.0

0.8

0.6

0.4

0.2

A
b
s
.

1000800600400

Wavelength (nm)

 DBU 3.0 eq.

 DBU 2.0 eq.

1.0

0.8

0.6

0.4

0.2

A
b

s
.

1000800600400

Wavelength (nm)

 1B with KBr pellet

 1A and DBU 0.9 eq.



 69 

Trifluoroacetic acid (TFA) titration UV data were measured for 1E in order to investigate 

protonation reactions. In acetonitrile solution, from TFA 0 eq. to 1.0 eq., the LMCT band decreased 

in intensity and a new peak appeared at longer wavelength (708 ~ 940 nm, Figure 3.20 (left)). This 

spectrum is almost same as that of the 1D solid state spectrum (Figure 3.21 (light)), suggesting that 

a single protonation has occurred. The solubility of 1D is not good, so no isobestic point was 

observed. From TFA 1.0 eq. to 2.0 eq., the peaks decreased in intensity with no isobestic point 

(Figure 3.20 (center)). This process corresponds to the protonation of complex 1D. From TFA 2.0 eq. 

to 3.3 eq., a new peak was observed at 445 nm (Figure 3.20 (right)). From the comparison with the 

solid state UV, this spectrum is derived from the triply-protonated 1C or the quadruply-protonated 

complex (Figure 3.21 (right)). These results suggested that complex 1E was protonated in a 

stepwise manner in solution with no reduction. 

 

Figure 3.20: TFA titration UV spectra of 1E. (left: TFA 0 eq. to 1.0 eq., middle: TFA 1.0 eq. to 2.0 eq., 

right: TFA 2.0 eq. to 3.3 eq.              

 

 

 

 

 

 

 

 

 

 

Figure 3.21: 

Comparison between solid state and solution-state TFA titration absorption spectra (left: 1D and 1E 

with 1.0 eq. TFA. right: 1C and 1E with 3.3 eq. TFA)
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Vapor absorption induced electronic state conversion of 1E 

 

To explore the potential to effect protonation/deprotonation driven electronic state 

conversion in the solid-state, acid (or base) vapor absorption experiments were performed on 

complex 1E. A powder sample of 1E was exposed to trifluoroacetic acid (TFA) vapor for 30 seconds 

and the color of the solid changed from blue to red (Figure 3.22 bottom). In addition, an increase in 

the magnetic moment was observed after exposure to acid. From comparing the normalized χmT 

values before and after exposure (Figure 3.22 top), that of the red powder (χmT = 3.830 emu K 

mol-1) was about ten times as large as that of 1E (χmT = 0.366 emu K mol-1). The difference 

corresponds to the conversion from Fe(III) LS state (calculated value of 0.375 emu K mol-1) to HS 

state (calculated value of 4.375 emu K mol-1). Namely, 1E converted to 1C’ by protonation and its 

spin state was changed. Moreover, exposure of the resultant HS sample 1C’ to ammonia vapor for 

one minute led a color change from red to green (Figure 3.22 bottom). The normalized χmT value 

decreased from 3.830 to 0.175 emu K mol-1. This indicates that 1C’ (Fe(III) HS) was converted to 1D’ 

(Fe(III) LS). These results suggest that the Brønsted ligands allow the spin states of the iron 

complexes to be switched upon protonation/deprotonation even the solid-state. 

                     

Figure 3.22: Normalized χmT values of vapor deposition experiment 1E (top) and color 

change of powder sample 1E.   



 71 

Electronic state conversion scheme of 1A-E 

 

Scheme 3.3 is a summary of the electronic state conversions achievable in a single 

mononuclear iron complex with Brønsted ligands. 1A can be deprotonated and converted to 1B by 

base. Both complexes showed SCO behavior, but the T1/2 are different due to the modification of the 

ligand field upon deprotonation. The ferric complex 1C can be deprotonated with base in a stepwise 

manner, and converted to 1D or 1E. 1C exists in the Fe(III) HS state at all temperature, while 1D and 

1E exist only in the LS state. The interconversion between Fe(III) complexes is reversible in solution, 

and moreover, even in the solid-state, 1E was converted to 1C by exposure to acid vapor. When 

strong base was added in 1A solution, both oxidation and deprotonation occurred and caused 

conversion to 1E, indicating that ligand deprotonation stabilized the high oxidation state of iron. 

 

  

Scheme 3.3: Summary of electronic state conversions.  
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3.4 Conclusion 

  We have demonstrated that a novel ligand design strategy employing an asymmetric, 

tridentate, Brønsted ligand permits multi-state switching behaviour in a simple mononuclear 

coordination complex. Unlike in the handful of previous examples of protonation-triggered switching 

in mononuclear metal complexes, which show exclusively binary switching responses, we have 

demonstrated that five distinct electronic states can be accessed, all of which show differing 

colorimetric, electrochemical and/or magnetic properties. This unique multi-step switching response 

is due to the asymmetric design of the Brønsted ligand groups, allowing the ligand field of the 

central Fe ion to be carefully tuned by sequential deprotonation steps as a result of the different pKa 

values of the incorporated pyrazole and benzimidazole moieties. The asymmetric ligand design 

strategy employed here should be broadly applicable across a wide range of different coordination 

complexes and could also be used in the design of novel supramolecular assemblies or sensors 

based on molecular recognition through dynamic H-bonding interactions. Multi-responsive, 

proton-coupled systems based on this strategy will represent an important next-step in the 

development of smart molecular devices with switchable physical and electronic states. 
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CHAPTER 4 

 

An Antiferromagnetically Coupled Heterometal Cu6Fe Wheel 

 

4.1 Introduction 
Polynuclear complexes exhibit physical properties and functions derived from the 

electronic and magnetic interactions between their constituent transition metal ions, and the search 

for new compounds with novel properties and functions continues to be an important area of 

research.1 In the field of biomolecular chemistry, several enzyme models with polynuclear active 

sites have been investigated.2 It is thus critical to find effective synthetic methods for polynuclear 

clusters in order to better understand the reaction mechanisms of these active sites.  

A range of alkoxo bridged polynuclear metal clusters, such as homometal [Mn13] clusters,3 

[Fe7]4 and [Mn7]5 wheels, and heterometal [Mn8Cu12]6 and [Mn5Ln6] species7 were investigated. In 

addition, various self-assembled clusters, rings, grids, and helices were synthesized by using 

polypyridine-type ligands.8 The archetypical polynuclear complexes based on β-diketone-type 

ligands are antiferromagnetic rings. Caneschi et al. reported a [Fe10] ring, which shows stepwise 

magnetization originating from the level-crossing of spin ground states at low temperature.9 

[NaFe6]10 and [LiFe6],11 wheel-type complexes also show quantum magnetization steps. Note that 

research into heterometal rings and wheel complexes has been limited due to the difficulty of their 

syntheses.  

In addition, some polynuclear complexes have acidic N-H parts as Brønsted acid/base 

moieties. These parts enable tuning of the physical properties of complexes by deprotonation (or 

protonation). Physical property conversion has two types, one is spin state conversion, and the 

other is arrangement conversion by deprotonation. In 2018, Clérac et al. synthesized tetranuclear 

iron (II) grid [FeII
4(H2L)4](BF4)8, (H2L = Pyridine-2-carboxaldehyde 

[2-(3,4,5-Trimethoxyphenyl)pyrimidine-4,6-diyl]dihydrazone), and it showed both stepwise 

deprotonation and SCO behavior conversion.12 Ligand deprotonation is a useful method to change 

complex spin state, not only in mononuclear complexes but also in polynuclear cluster. At present, 

however, examples of this are very rare. The synthesis of multinuclear complexes with has 

Brønsted acid/base moieties is therefore important research from the viewpoint of catalyst design 

and the fabrication of new switchable materials. 
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In this work, we focus on the asymmetric multidentate bridging ligand, 

1-(2-pyridine)-3-(2-pyrrole)acetylacetone (H2L
5, scheme 4.1), and its complexation reactions with 

copper and iron sources have been investigated. This ligand has one pyrrole moiety which has 

acidic proton (pKa = 23.0). This part can act as a metal coordination site when deprotonated. So 

H2L5 is a useful building block for the synthesis of metal clusters.13 In addition, the pyrrole moiety 

part can act as a Brønsted acid/base too. Hydrogen bonded interaction between clusters can 

therefore be considered very likely. Herein, the synthesis, structure, magnetic properties, and 

proton response in solution of the obtained heptanuclear Cu6Fe wheel complex are reported. 

 

Scheme 4.1 Structure of H2Lpy and ORTEP diagrams of Cu6Fe wheel complex. 
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4.2 Experiments 

Materials 

All chemicals were used without further purification except when noted. Solvents and 

reagents were used as received from commercial suppliers. 

SQUID Magnetometer Measurements 

Variable-temperature magnetic susceptibility measurements were carried out on 

polycrystalline samples using a Quantum Design MPMS-XL SQUID magnetometer. Pascal’s 

constants were used to determine the diamagnetic corrections.  

X-ray Crystallography 

Crystals were mounted on a glass capillary or a MiTeGen Dual-Thickness MicroMount, 

and data were collected at 100 K (Bruker SMART APEXII diffractometer coupled with a CCD area 

detector with graphite monochromated Mo-K ( = 0.71073 Å) radiation). The structure was solved 

using direct methods and expanded using Fourier techniques within the SHELXTL program.  

Empirical absorption corrections by SADABS14 were carried out. In the structure analyses, 

non-hydrogen atoms were refined with anisotropic thermal parameters.  Hydrogen atoms were 

included in calculated positions and refined with isotropic thermal parameters riding on those of the 

parent atoms.   

Mössbauer spectra 

Mössbauer experiments were carried out using a 57Co/Rh source in a 

constant-acceleration transmission spectrometer (Topologic Systems) equipped with an Iwatani 

HE05/CW404 cryostat. The spectrometer was calibrated using standard α-Fe foil.   

Electrochemical measurements 

Electrochemical measurements were carried out using a BAS 620A electrochemical 

analyzer.  Cyclic voltammetry and differential pulse voltammetry measurements were carried out 

in a standard one-compartment cell under N2 at 20 °C equipped with a platinum-wire counter 

electrode, a saturated calomel electrode (SCE) as the reference electrode, and a glassy carbon 

(GC) working electrode.  

UV-Vis-NIR spectroscopy 

  UV-Vis-NIR absorption spectra were recorded on Agilent Technologies Cary 8454 

UV-Vis spectrometer.  

Elemental analysis 

 Elemental analyses were performed using a Perkin Elmer 2400 element analyzer. 
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Synthesis Procedures 

 

Synthesis of 1-(2-pyridine)-3-(2-pyrrole)acetylacetone (H2L5) 

A solution of sodium ethoxide prepared by sodium (2.46 g, 107 mmol), 2-acetylpyrrole 

(12.5 g, 82.7 mmol) and picolinic acid ethyl ester (9.025 g, 82.7 mmol) in 150 ml of diethylether was 

refluxed for 4 hours under a nitrogen atmosphere. The resulting yellow solid was filtered and 

aqueous acetic acid (15 % (v/v)) was added to the residue. The resulting light-yellow solid was 

filtered, and dried in a vacuum desiccator. Recrystallization from methanol yielded light yellow 

microcrystals (3.48 g). Yield 20 %. 1H NMR (400 MHz, CDCl3):δ9.25 (s, 1H, pyrrole NH), 8.69 (d, 

1H, py), 8.05 (d, 1H, py), 7.83 (t, 1H, py), 7.39 (t, 1H, py), 7.24 (d, 1H, pyrrole), 7.10 (d, 1H, pyrrole), 

6.35 (s, 1H, pyrrole). Selected IR (KBr): 1628(s), 1580(s), 1566(s), 1541(s), 1441(s), 1138(s), 

1124(s), 787(s), 746(s) cm-1. Anal. (Calc). for C12H10N2O2: C, 67.28 (67.37); H, 4.71 (4.87); N, 13.08 

(13.06).  

 

Synthesis of [CuII
6FeIII(HL5)6(OH)2(OCH3)4](NO3)3・6H2O ([Cu6Fe]・6H2O)  

To a methanol solution (15 mL) of Cu(NO3)2・3H2O (24.2 mg, 0.1 mmol) was added a 

methanol solution (10 mL) of H2L5 (21.4 mg, 0.1 mmol) with trimethylamine (27.6 μL, 0.2 mmol). 

The resulting brown solution was stirred and a methanol solution (5 mL) of Fe(NO3)3・H2O (6.7 mg, 

0.0167 mmol) was added. The reaction mixture was slowly evaporated for one week allowing 

yellow plates of the heptanuclear Cu6Fe complex, [CuII
6FeIII(HL5)6(OH)2(OCH3)4](NO3)3・6H2O 

([Cu6Fe]・6H2O), to be obtained. The crystals were filtered and air dried, affording [Cu6Fe]・6H2O 

(12.1mg, yield 34%) C, 42.09 (42.25); H, 3.72 (3.78); N, 9.69% (9.88). ICP data suggests ratio of 

Cu:Fe is 6:0.93. IR (KBr): 1385, 1472, 1528, 1595, 1609 cm-1. Anal. Calcd. (found) for 

C76H80N15O33Cu6Fe: C, 42.09 (42.25); H, 3.72 (3.78); N, 9.69 (9.88).  
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Table 4.1: Crystal parameters of [Cu6Fe]. 

 [Cu6Fe] 

T / K 100 

Instrument APEX2 

Formula C76H84N15O35Cu6Fe 

F.W. 2204.68 

Space Group C2/c 

a / Å 18.487 (2) 

b / Å 18.231 (3) 

c / Å 29.363 (4) 

 / ° 90 

 / ° 108.090 (2) 

 / ° 90 

V / Å3 9467 (2) 

Z 4 

R1 (> 2) 0.0711 

wR2 (> 2) 0.1121 
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4.3 Results and Discussion 

Structure 

X-ray structural analyses reveal that the heptanuclear complex consists of six 

singly-protonated ligands HL5, six copper ions on the rim of the wheel and one iron ion at the centre 

of the wheel, bridged by four alkoxo and two hydroxo ions (Figure 4.1). Each ligand acts as a 

bridging ligand between two metal centers on the rim, with the β-diketone and the pyridine-enol 

sites acting as bidentate chelating ligands. The copper ions have N1O5 octahedral coordination 

environments and are coordinated by both β-diketone and pyridine-enol sites. All copper ions 

exhibit Jahn­Teller distortions toward oxygen atoms belonging to methoxo/hydroxo and ketone 

moiety (represented in Figure 4.2: O2­Cu1­O9, O4­Cu2­O7, and O6­Cu3­O8). The iron ion located 

at the centre of the wheel molecule has an O6 octahedral coordination geometry with four methoxo 

and two hydroxo groups. Considering charge balance and bond valence sum calculations, the 

valence of the iron ion was estimated as trivalent. The wheel molecule has an inversion centre on 

the iron ion and there are three nitrate ions in the crystal lattice per wheel molecule. 

Mössbuer spectra 

To determine the spin state of the iron ion, Mössbauer spectra was collected (Figure 4.3). 

Parameters are listed in table 4.2. This data indicates that the compound included an Fe(III) high 

spin species, of which the doublet has Mössbauer parameters δIS = 0.20 mm s -1 and ΔEQ = 0.40 

mm s-1, typical for a high spin Fe(III) ion.  
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Figure 4.1; Molecular structure of [Cu6Fe] determined at 100K. (a) top view and (b) side view. 

Hydrogen atoms, solvent molecules, and counter anions are omitted for clarity.   
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Figure 4.2: Core structure of [Cu6Fe] and selected geometrical information. This figure represents 

details of the core structure of the Cu6Fe wheel. Atomic bonds depicted as capped sticks represent 

Jahn-Teller axes. Selected intermetallic separations and bridging angles related to effective 

magnetic paths are shown in green text.  

 

  

 

3. Description of cluster core structure. 

Figure S1 represents details of the core structure of the 

Cu6Fe wheel.  Atomic bonds depicted as capped sticks represent 

Jahn-Teller axes.  Selected intermetallic separations and 

bridging angles related to effective magnetic paths are shown in 

green text. 

 

Figure S1 Core structure of 1 and selected geometrical 

information. 

 

 

4. Mössbauer spectroscopy. 

Mössbauer experiments were carried out using a 57Co/Rh 

source in a constant acceleration transmission spectrometer 

(Topologic Systems) equipped with an Iwatani HE05/CW404 
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Figure 4.3: Mössbauer spectra of [Cu6Fe] at 20 K. 

 

 

Table 4.2: Mössbauer parameters of [Cu6Fe] at 20 K. 

δIS (mm / s) ΔEQ (mm / s) Spin state 

0.20 0.40 Fe(II) HS 

 

 

 

 

 

 

 

 

 

 

DC magnetic susceptibility. 
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Cryomagnetic studies reveal that antiferromagnetic interactions are operative between 

metal ions (Figure 4.4). The χmT value at 300 K is 5.34 emu mol-1 K, which is smaller than the 

expected value, 6.625 emu mol-1 K, for six magnetically isolated Cu(II) ions (S = 1/2) and one high 

spin Fe(III) ion (S = 5/2). As temperature decreased, so did the χmT values, reaching 0.800 emu 

mol-1 K at 1.8 K. In field dependent magnetization measurements, the magnetization saturation 

value at 1.8 K is 1.5 Nβ, indicating an S = 1/2 spin ground state. According to the molecular 

structure, a spin model with two kinds of magnetic exchange pathways can be applied to the 

magnetic analyses (Figure 4.4 inset), corresponding to the following spin Hamiltonian.   

 

 

 

 

Using the PHI program, the following parameters were obtained, gCu = 2.15, gFe = 2.00, 

JCu­Cu = -12.0 cm-1, and JFe­Cu = -116.0 cm-1. The dx2-y2 magnetic orbitals on the Jahn­Teller axis of 

the peripheral copper ions can overlap through enolate oxygen atoms (O1, O3, and O5) and the 

bridging angles were found to be between 107.03­109.69 degrees, mediating antiferromagnetic 

interactions. On the other hand, magnetic interactions between iron and copper ions will operate 

through the μ3-methoxo/hydroxo bridges (O7, O8, and O9), in which the bridging angles range from 

107.15 to 108.16 degrees. As the intermetallic separations are not especially long (as represented 

in Figure 4.2), these bridging conditions will likewise favor antiferromagnetic interactions due to the 

significant overlap of magnetic orbitals between the iron and copper ions.  

Field-dependent magnetization data is shown in Figure 4.5. The data was compared with 

the theoretical curve simulated by the same parameters for temperature-dependent magnetic 

susceptibilities, suggesting an S = 1/2 spin ground state in the low temperature region. If strong 

antiferromagnetic interactions between copper ions are assumed, a spin ground state of S = 5/2 

originating from the high spin Fe(III) ion can be justified in this spin model. However, saturated 

magnetization is close to S =1/2 ground state, which is derived from strong antiferromagnetic 

interactions between copper and iron ions. This situation is consistent with analysis of magnetic 

susceptibilities by the above mentioned spin model. The generation of fully reliable fitting 

parameters would necessitate synthesis of an isostructural Cu6Zn wheel with a diamagnetic central 

zinc ion.   
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Figure 4.4: The χmT versus T plot for [Cu6Fe]. The solid line represents the best fit (see text). 

Shown inset are the coupling interactions modeled in the magnetic analysis.  

         

Figure 4.5: Magnetization curve of [Cu6Fe] at 1.8 K. Solid line indicates theoretical magnetization 

curve analyzed by spin model described inset.   

 

Figure S3 Magnetization curve at 1.8 K. 

 

6. UV/Vis spectroscopy 

UV-vis-NIR absorption spectra were recorded on a 

SHIMADZU UV-3150 spectrometer.  Absorption spectra (Figure 

S4) were collected at room temperature for acetonitrile solution 

(conc. 5.81 × 10-6 M).   
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 Base titration electrochemical properties 

Electrochemical data obtained in acetonitrile are shown in Figure 4.6. At first, reduction 

waves were observed at -0.75, -1.13, and -1.57 V versus SCE but each of these waves were 

irreversible. The data suggest that the complex [Cu6Fe] is not stable during redox processes. After 

1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) addition, a new peak appeared at -0.87 V, however, 

stepwise change was not observed. This peak was likely derived from decomposed [Cu6Fe]. 

        

Figure 4.6: DBU titration cyclic voltammogram of [Cu6Fe] in acetonitrile / 0.1M n-Bu4NPF6   

-2.0-1.5-1.0-0.50.00.5

E / V vs. SCE

50 mA

 DBU 0 eq.

 DBU 2.0 eq.
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Base titration UV absorption spectra 

Absorption spectra of [Cu6Fe] in acetonitrile at room temperature were shown in figure 

4.7. The complex shows an absorption maximum at 378 nm, which is assigned to the LMCT band 

from bridging μ3-methoxo/hydroxo groups to the Fe(III) ion. Upon addition of 1,8-Diazabicyclo 

[5.4.0] undec-7-ene (DBU), the LMCT band shifted to 412 nm and saturated at 3.0 eq. DBU. It 

suggests that ligand deprotonation caused some change of [Cu6Fe]. [Cu6Fe] has six protonated 

parts, so it is reasonable to suggest that that half of the Brønsted acid/base parts were 

deprotonated. In basic solution, [Cu6Fe] may exist as the deprotonated cluster, or undergo 

dimerization, or decomposition. In order to determine the nature of the deprotonated species, 

crystallization and ESI-MS measurements after base titration will be required. 

 

Figure 4.7: DBU titration UV spectra of [Cu6Fe] in acetonitrile. 
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4.4 Conclusion 
A heterometal wheel complex [Cu6Fe] with Brønsted acid/base ligands was synthesized 

by the one-pot reaction of an asymmetric β-diketone-type ligand H2L5 with copper and iron sources. 

The magnetic properties and physical properties in solution were investigated. From measurement 

of UV and CV, [Cu6Fe] was shown to convert to another cluster in basic solution. These results 

suggested that [Cu6Fe] showed proton response. The synthesis proton responsive multinuclear 

clusters is an important research goal from the viewpoint of catalyst development and responsive 

magnetic material fabrication. These results will provide useful information to aid in the 

development of new functional materials. 
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CHAPTER 5 

 

General Conclusion 

 
Multi-bistable materials are useful for next generation memory devices, 

because these compounds can be converted between more than three states upon 

exposure to external stimuli. To make multi-bistable materials, synthesis of multinuclear 

complex or co-crystallization of bistable molecules are common methods. However, 

these can rely on complicated synthetic pathways. It is therefore an important goal to 

develop multi-step state switchable systems based on simple materials. The use of 

Brønsted acid/base groups as capping ligands for metal complexes is one method that 

stimuli-responsiveness can be introduced without the need for particularly challenging 

synthesis. Brønsted acid/base ligand can allow multiple states to exist in the same 

system upon deprotonation. Therefore, the combination of metal ions and Brønsted 

acid/base ligand has the potential to facilitate multistep spin state conversion. In this 

thesis, the author developed new iron complexes that have Brønsted acid/base ligands 

and investigated their electronic state conversions. These complexes exhibit spin states 

that can be switched upon ligand deprotonation (or protonation),  

In CHAPTER 2, four types of Brønsted acid/base ligand were prepared: H2L1-4 

((2-[5-(R-phenyl)-1H-pyrazole-3-yl] 6-benzimidazole pyridine); H2L1: R =phenyl; H2L2: R 

= 4-methylphenyl; H2L3: R = 2,4,6-trimethylphenyl; H2L4: R = 

2,3,4,5,6-pentamethylphenyl), and used to form iron complexes [FeII(H2L1-4)2](BF4)2, the 

magnetic properties of which were investigated. From the SQUID measurements, 

[FeII(H2L1)2](BF4)2, [FeII(H2L2)2](BF4)2, and  [FeII(H2L3)2](BF4)2, showed SCO behavior, 

while [FeII(H2L4)2](BF4)2, has a high-spin state at all studied temperatures. 

In CHAPTER 3, stepwise deprotonation of complex [FeII(H2L)2](BF4)2 was 

performed, and its partially or totally deprotonated analogs were isolated. [FeII(H2L)2]2+ 

converted to [FeIII(L)2]- by DBU addition and the deprotonated species [FeIII(L)2]- was 

isolated and characterized. This result means deprotonation stabilizes the high 

oxidation state. Three partially deprotonated complexes were also isolated, [FeII(HL)2], 

[FeIII(HL)(H2L)]2+ and [FeIII(L)(HL)], by controlled base addition. SQUID measurements 

revealed that deprotonation caused an increase of ligand strength, shifting the SCO 
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temperature of the Fe(II) complexes to higher temperature. In addition, the conversion 

between high spin state and low spin state was observed for the Fe(III) complexes in 

the solution- and solid state. 

In CHAPTER 4, a new heterometal wheel type complex 

[CuII
6FeIII(HL5)6(OH)2(OCH3)4](NO3)3 was synthesized by using 

1-(2-pyridine)-3-(2-pyrrole)acetylacetone (H2L5), which includes one pyrrole moiety. The 

pyrrole group can act as both coordination site and a Brønsted acid/base part. From the 

SQUID measurement, strong antiferromagnetic interactions between copper ions are 

observed. In addition, base titration UV measurements reveal conversion of cluster 

molecules by deprotonation of the pyrrole moieties. 
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