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Chapter 1
Introduction

In this chapter, backgrounds and a purpose of this study are explained. First, advantages of nuclear fusion
energy power generation and approaches toward realization of the nuclear fusion power generation are
introduced. Next, a role of fast ions produced by fusion reactions in the reactor is explained. Then,
backgrounds and remaining issues of research on ion cyclotron emissions are explained. Finally, the purpose

of this study is described.

1.1. Nuclear fusion energy

Baseload powers are indispensable to prosperity of modern society. However, every present baseload
power generations have not only merits, but also demerits. The present baseload powers mainly consist of 1)
thermal power generation, ii) hydroelectric power generation, and iii) nuclear power generation. i) The
thermal power generation can stably supply a large amount of energy. However, its resource amounts of the
fossil fuels such as oil, coal and natural gas are finite. In addition, the fuel burning produces carbon dioxides,
which promote the global warming. ii) The hydroelectric power generation can also supply a large amount of
energy, but its energy supply stability depends on the weather. iii) The nuclear power generation can stably
supply a large amount of energy and emit no carbon dioxides. However, it produces massive high-level
radioactive wastes. The high-level radioactive wastes must be controlled for several ten thousands years. In
addition, the fission reactions used for the reactor are chain reactions. Therefore, the nuclear power
generation has a potential risk of runaway reactions.

Nuclear fusion power generation is expected as a future baseload power generation. Nuclear fusion
reaction is a reaction where two and more atomic nucleuses fuse and become different atomic nucleuses. In
the case of relatively light atomics, the total masses of the atomic nucleuses after the fusion reaction are
lighter than those before the reaction. The atomic nucleuses produced by the fusion reaction have high
energy due to the mass defect and are utilized for heat generation of the fusion power reactor. The following
hydrogen isotope fusion reactions are going to be caused for the fusion power generation.

D+ T - a(3.52 MeV) + n(14.06 MeV) (1.1)

where, D and T are deuterium (= 3H) and tritium ions (= 3H), respectively. o is a helium ion (= 3He) and n
is a neutron. To occur the fusion reaction, the atomic nucleuses must be accelerated so as to have enough
high energy and collide with each other. The DT fusion reaction is the most easily caused fusion reaction in a
region of relatively low energy.

Advantages of the fusion power generations are as follows. The fusion power generation can stably supply
a large amount of the energy because weather is not related to the process of the power generation. An
enormous amount of D can be extracted from seawater since the seawater contains a low percentage of heavy
water (D,0). Neutrons produced by the DT fusion reaction are utilized not only for the heat generation of the

reactor, but also for the production of T ions via the following fusion reaction using lithium.
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Li+n—-T+ a+ 4.8MeV (1.2)

where, Li is a lithium ion (= §Li). The lithium is also included in the seawater. This fusion reaction is going
to be caused inside the reactor vessel. In addition, the DT fusion reaction is not a chain reaction, and carbon
dioxides and high-level radioactive wastes are not produced by the fusion reaction. Hence, the fusion power
generation has many advantages in comparison with the present baseload power generations such as thermal,

hydroelectric, and nuclear power generations.

1.2. Approach toward realization of fusion reactor

The cross section of the DT fusion reaction is peaked around high temperature of 40 keV (about 464
million K) [1]. All atoms are ionized and become plasma under such high temperature conditions. The
plasma consists of the electrically charged particles and neutral particles. In the high-temperature plasma, the
proportion of the neutral particles becomes less due to ionization. Therefore, the high-temperature plasma
can be confined by the magnetic field because the charged particles move Larmor motions in the magnetic
field and a high-temperature region can be separated from the wall of the vessel. This is a concept of
magnetic confinement fusion reactor. In this method, the high-temperature plasma is magnetically confined
and efficiently causes the fusion reactions.

Developments of torus-shaped magnetic confinement devices have been advanced toward the realization
of the fusion reactor. In the fusion reactor, the fusion power from the plasma P¢ must be sufficiently over
the external heating power Py. The energy gain factor Q is defined as Q = P¢/Py,. Tokamak device [2],
which is one of the torus magnetic confinement devices, is the most promising magnetic fusion device. High
performance plasma that is equivalentto Q > 1 has been already produced in the tokamak devices [3, 4].

The experimental devices of the tokamak have been constructed and the physics of the tokamak plasma
has been studied all over the world. Representative large- and middle-size tokamak devices are as follows:
JET (Joint European Torus) [5] in UK (the United Kingdom), TFTR (Tokamak Fusion Test Reactor) [6] in
US (the United States), ASDEX (Axisymmetric Divertor Experiment) / ASDEX Upgrade [7] in Germany,
DIII (Doublet III) -D [8] in USA, KSTAR (Korean Superconducting Tokamak Advanced Research) in Korea
[9], and JT-60 (Japan Atomic Energy Research Institute Tokamak 60) / JT-60U (JT-60 Upgrade) [10] in
Japan. In the JET and TFTR, the DT plasma experiments have been carried out and more than 10 MW fusion
powers were already achieved [11, 12]. In some tokamak devices such as JT-60U, only H and D plasma
experiments have been carried out because they are not designed to be able to treat the tritium. In
high-temperature D plasma, the following DD fusion reactions mainly occur.

D + D - T(1.01 MeV) + p(3.03 MeV) (1.3a)
D + D - 3He(0.82 MeV) + n(2.45 MeV) (1.3b)

where, p is a proton (= 1H) and 3He is a helium-3 ion. The 3He ion is simply called *He ion in this study.
The DD fusion reactions of Eq. (1.3a) and Eq. (1.3b) occur at almost same probabilities. Toward achieving
high performance plasma production with Q = 10 and steady-state plasma production with @~5 in the DT
plasma experiment, ITER is being constructed in France by collaborations with China, the European Union,
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India, Korea, Russia, US and Japan in recent years [13].

1.3. Role of fusion produced ions

To maintain the high fusion reaction rate, the plasma temperature must be kept high by heating the plasma.
The main heating source in the DT fusion reactor is high-energy a particles produced by the DT fusion
reactions. The high-energy a particles heat the bulk plasma via Coulomb collisions. The bulk electrons are
mainly heated by the a particles when the a particles have relatively high energies. Then, the a particles
mainly heat the bulk ions when their energies are decreased by the collisions and become relatively low. The
proportion of the external heating power can be reduced when the a particles efficiently heat the plasma.
Therefore, the a particle heating efficiency directly leads to the plasma performance and the economic
efficiency of the DT fusion reactor. To make the heating efficiency high, particle and energy loss of the a
particles must be reduced as small as possible until the a particles deliver their most energies to the bulk
plasma. In addition, the particle loss of the a particles also increases local heat loads on the wall [14]. Good
confinement of the a particles in the tokamak plasma is indispensable to the realization of the DT fusion

reactor. Hence, understanding their confinement and transport properties is essential to design the reactor.

1.4. Wave-particle interaction in tokamak plasma

Many types of wave-particle interactions occur in the plasma [15-17]. In some wave-particle interactions,
the high-energy ions (also called fast ions) deliver their energies to waves in the plasma and grow the waves.
Then, the fast ions are transported toward outside the plasma by the waves. Namely, some wave-particle
interactions cause the energy loss and the particle loss of the fast ions. In other words, these interactions
deteriorate the confinement properties of the fast ions. Fishbone instability [15], Alfvén eigenmodes (AEs)
[16], and energetic particle modes (EPMs) [17] are representative wave-particle interactions that lead to
serious amount of the energy and particle loss of the fast ions. Therefore, investigating such wave-particle
interactions is also important to understand the confinement property of the fast ions such as the a particles
produced by the fusion reaction and to avoid the interactions that cause the fast ion losses in the fusion

reactor.

1.5. Ion cyclotron emission (ICE)

In the tokamak plasma, ion cyclotron range of frequency (ICRF) waves considered to be driven by a kind
of the wave-particle interactions have been observed [18-30]. These emissions of the ICRF waves are called
ion cyclotron emissions (ICEs). The ICEs are often observed in several tokamak devices, e.g., JET [18-20],
TFTR [21, 22], JT-60U [23-26], ASDEX Upgrade [27], DIII-D [28, 29], and KSTAR [30]. The ICEs often
appear when the number of the fast ions increases, e.g., neutral beams (NBs) are injected into the plasma, the
fusion reactions occur, and ions are accelerated by the ICRF waves. The ICEs are thought to be a kind of the
wave-particle interactions between the fast ions and the ICRF waves. It is considered that frequencies, mode
structures, and temporal behaviors of ICEs would depend on behaviors of the fast ions. Therefore, the ICEs
are expected as fast ion diagnostics in ITER, particularly diagnostics for the DT fusion produced fast a
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particles [31, 32].

The ICEs thought to be driven by the DT fusion produced fast a particles (ICE(a)) have been observed in
the JET [18, 19] and the TFTR DT plasma experiments [21, 22]. On JT-60U, the ICEs thought to be driven
by DD fusion produced fast *He ions [ICE(*He)], fast T ions [ICE(T)] and fast H ions [ICE(H)] have been
observed [23-26]. These ICEs originating from the fusion produced fast ions are generally observed in the
frequency near the ion cyclotron frequency at the midplane edge of the plasma on low field side. The
location of the midplane edge of the plasma on low field side is shown in Fig. 1.1. The toroidal magnetic
field strength is inversely proportional to a distance from the axis of the torus device (major radius). The low
field side is the side where the toroidal magnetic field strength is lower as shown in Fig. 1.1. In addition,
correlations between the ICEs and edge-localized modes have been observed [18, 23, 27, 30]. Hence, the
ICEs are considered to be excited near the plasma edge on the low field side.

The midplane edge
of the plasma
on the low field side

/

T >
High field side  Low field side

Figure 1.1. A schematic drawing of the location of the midplane edge of the plasma on the low field side.

The fast ion velocity distribution near the plasma edge on the low field side is predicted to have a strong
pitch-angle anisotropy and a positive gradient structure in the energy direction (bump-on-tail structure) [18,
20, 22, 27, 30]. Here, a pitch angle is defined as an angle between the velocity vector of the particle and the
magnetic field line. The reasons for the formation of the distribution having the pitch-angle anisotropy and
the bump-on-tail structure near the plasma edge on the low field side are because the fast ions produced
around the plasma center can pass through the plasma edge on the low field side under limited conditions of
their energies and pitch angles. The detailed process for the formation of such fast ion velocity distribution
near the plasma edge on the low field side is explained in Section 2.2.3. In general, the ICRF waves can be
excited by ions having non-thermal velocity distribution [33-35]. Hence, it is believed that the fast ion
velocity distribution near the midplane edge of the plasma on the low field side drives the ICEs.

The magneto-acoustic cyclotron instability (MCI) and its eigenmodes have been suggested as emission
mechanisms for the ICEs from theoretical analyses [19, 20, 30, 35-44]. The MCI is destabilized by the
anisotropy and the bump-on-tail structure in the ion velocity distribution and becomes unstable under the ion
cyclotron resonance condition. It is considered that the MCI can be driven by the fast ion velocity
distribution near the plasma edge on the low field side. Drifting-ring-type ion velocity distribution functions
(see Eq. (5.7) as an example), which are the velocity distributions having only an almost single energy and
pitch angle, are often used for the fast ion velocity distribution in the theoretical analyses of the MCI [19, 20,
22,30, 35, 36, 39-42, 44].



To understand the emission mechanism for the ICE, investigations of the fast ion velocity distributions
and of wave dispersion relations are important. This is because the ICE is considered to be a kind of the
wave-particle interactions. The fast ion distributions are possible driving sources for the ICE and we can
understand the property of the interacted waves from the dispersion relations. However, there are few studies
[45] so far at which the fast ion velocity distributions near the plasma edge on the low field side are
evaluated under conditions, where plasma parameters in the experiments and collisional effects are taken into
account. Hence, it is not clear what characteristics of the evaluated fast ion distributions are formed near the
plasma edge on the low field side. Then, it is also not known whether the evaluated distribution has similar
characteristics to the drifting-ring-type distribution. In addition, it is not clear whether both frequencies and
wavenumbers of the ICE measured in the experiments are consistent with the MCI. Although the toroidal
wavenumbers of the ICEs have been quantitatively measured only on JT-60U, only first measurement results
of the wavenumbers in the toroidal direction have been reported [24-26]. Moreover, in order to identify key
characteristics of the fast ion velocity distribution driving the ICE, it has been reported so far in few works
[45] at which the distributions are compared between cases when the ICE is observed and not. These issues
are the main motivations behind this study. Elucidation of the emission mechanism for the ICE can
contribute to the application to the fast ion diagnostics with the ICE and understanding of behaviors of the

fast ions in the tokamak plasma.

1.6. Purpose of this study

As we mentioned in Section 1.5, the ICEs driven by the fusion produced fast ions such as ICE(a) are
expected as the diagnostics for the fusion products in ITER [31, 32]. On JT-60U, the DT plasma experiments
were not carried out, but the D plasma experiments have been implemented and the ICEs thought to be
driven by the DD fusion products such as ICE(*He), ICE(T) and ICE(H) have been observed [23-26]. In
addition, on JT-60U, the quantitative measurements of the toroidal wavenumbers of these ICEs have been
successful [24-26]. In general, the ICRF waves are categorized into fast Alfvén waves and slow Alfvén
waves in accordance with their phase speeds [46]. The waves of the ICE(a) are considered to belong to the
fast Alfvén waves. The waves of the ICE(*He) and ICE(H) observed on JT-60U are also on the fast Alfvén
wave branch, while those of the ICE(T) are on the slow Alfvén wave branch [24-26]. On JT-60U, the ICE(H)
is observed only under limited plasma conditions [26]. Thus, in this study, we focused on the ICE(*He) in
JT-60U as a typical ICE driven by the fusion product in the tokamak plasma.

The purpose of this study is to reveal the emission mechanism for the ICE(*He) in terms of the wave
dispersion and of the fast *He ion velocity distribution. In this study, we carried out the following analyses.
First, we evaluated the fast *He ion velocity distribution by using a fast ion orbit following Monte-Carlo code
(OFMC) [47]. Then, we confirmed that the distribution has similar characteristics to the drifting-ring-type
distribution. In addition, we newly developed the wave dispersion code to solve the dispersion of the MCI,
and compared both of the frequency and the toroidal wavenumber between the experimental observations of
the ICE(CHe) and the calculations of the MCI driven by the drifting-ring-type distribution. Next, we more
quantitatively evaluated the fast *He ion velocity distribution, and compared the distributions between the
cases when the ICE(’He) is observed and not in order to identify the key characteristics of the distribution
driving the ICE(’He). Finally, we investigated influences of the characteristics of the fast *He ion distribution
on the growth rate of the MCI.
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Chapter 2
Motions of charged particles and wave
propagations in the magnetized plasma

Both physics of the charged particles and of the ICRF waves in the magnetized plasma are important to
understand behaviors of the ICE in the tokamak plasma since the ICE is considered to be a kind of the
wave-particle interactions. In this chapter, motions of charged particles in the magnetic field and in the

tokamak plasma are explained. Then, wave equations in the magnetized plasma are introduced.

2.1. Motions of charged particles in the magnetic field

In this section, we explain motions of charged particles in the magnetic field: Larmor motions, drifts,

reflections by magnetic mirror and collisions in the magnetized plasma [1].

2.1.1. Larmor motion

Here, we explain the Larmor motion that the charged particle circles around the magnetic field line. In the
magnetic field B, the motion equation of the particle is given by,

dv
ma = q(E + vxB) (2.1)

where, m and ¢ are the mass and the electric charge of the charged particle, respectively. E is the electric
field and v is the velocity of the charged particle. If there is no electric field E, the motion equation is given

by,

dv = 9B xb (2.2)
dt m (vxb) ’
where,
B
b=— 2.3
5 (2.3)

If B is described as B = (0,0, B) in the orthogonal coordinate system (x,y, z), the velocity vectors of the
charged particle v = (vx, vy, vz) are given by,

v, = v, cos(2t + &)

vy, = —v, sin(2t + §) (2.4)

Yz = Vo

where, (2 is the cyclotron angular frequency {2 = gB/m, and § is the initial phase of the motion. v, is
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the velocity in the perpendicular direction to the magnetic field line (v, = |v2 + 173%), and v, is the initial

velocity in the parallel direction. Equation (2.4) indicates that the particle circles around the magnetic field
line with the cyclotron angular frequency (2. This motion is called Larmor motion. The radius of the Larmor
motion is called Larmor radius ry. On the orbit of the Larmor motion of Eq. (2.4), the centrifugal force and
the Lorentz force are equal. The centrifugal force F. is given by,

2
%
F,=m— (2.5)
T
and the Lorentz force F; is given by,
F, =qv,B (2.6)
Therefore, r; can be given by,
mv,
r = 2.7
"7 lqlB

The orbit of the particle is called full-gyro orbit and that of the center position of the Larmor motion is called
guiding-center orbit.

2.1.2. Drift motion

The charged particle moves across the magnetic field line if forces in the perpendicular direction to the
magnetic field line are applied and/or the magnetic field is inhomogeneous. These motions are called drift
motions. If the general force F acts on the particle in the magnetic field B, its motion equation is given by,

dv
mE = F 4+ quxB (2.8)

Here, we define a velocity v’ in the perpendicular direction to both F and B as,

, _1Fxb 20
v =—— .
" 2.9)
and define the velocity except for v’ as,
u=v-—v (2.10)
Then, the motion equation except for the motion with v’ is given by,
du
m—— = q(uxB) @.11)

dt

Equations (2.10) and (2.11) indicate that the motion of the particle (v) consists of the Larmor motion (u) and
the motion with v'. Therefore, v’ is called drift velocity vq. The direction of vq4 is perpendicular to both
F and B. Namely, the charged particle moves across the magnetic field line with the drift velocity of vg.
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a) ExB drift

Here, we explain the drift motion if the homogeneous electric field E is superimposed on the magnetic
field B and its direction is perpendicular to B, or E L B. In this situation, the drift velocity v can be
obtained by substitution of Coulomb force into the general force F in Eq. (2.9).

Exb ) 12
Vg =—— .
P (2.12)
The drift velocity vy is called ExB drift velocity. In the EXB drift motion, the velocities of the ion and

electron are equal and their directions are the same.
b) VB drift

Here, we explain the drift motion if the magnetic field strength B is inhomogeneous in the perpendicular
direction to the magnetic field line, or VB 1 B. At first, we derive a time-averaged value of the Lorentz
force F; = quxB. If B, = (0,0,By) and VB is in the y direction, the Lorentz force in the y direction
Fp, and the magnetic field strength at the guiding center B are given by,

Fy = —quyB = —qu, cos(2t) B (2.13)
0B
B = By + —1, cos(2t) (2.14)
dy
where, the signs indicate cases for ion and electron. The averaged Lorentz force during one cycle of the

Larmor motion (Fy,) is given by,

_10B
(FLy) = +§@QV¢TL (2.15)

The drift velocity by (F.,) can be obtained from Egs. (2.9) and (2.15). The drift velocity vyp under the

general condition of the inhomogeneous magnetic field is given by,

mv?/2
qB?

vop = + (bXVB) (2.16)

The drift velocity vyp are called VB drift velocity. The particle crosses the field line by the VB drift
motion. In the VB drift motion, the ion and the electron move in the opposite directions each other.

¢) Curvature drift

Here, we explain the drift motion if the magnetic field line curves. In this situation, the centrifugal force
acts on the particle moving with v, due to the curvature of the field line. The centrifugal force F is given

by,

» Rc
F.= mvj F (2.17)
c
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where, R is the curvature radius of the field line. The drift velocity v, by this centrifugal force F. can be
obtained by substitution of Eq. (2.17) into Eq. (2.9).

mv"2 R.XB
v =
qB* R?

(2.18)

v, is called curvature drift velocity. Here, we define a minute length along the magnetic field line 61,,, as

8L, = —R.6b (2.19)

The change of the magnetic field strength 6B in the distance of §1,,, is given by,

OB _ sp=_Olm (2.20)
B R,
The curvature drift velocity v, of Eq. (2.18) can be replaced by,
mv
v, = (bXVB) (2.21)

qB?

In the curvature drift motion, the ion and the electron move in the opposite directions each other.
2.1.3. Magnetic mirror

Here, we explain motions of the charged particles if the magnetic field strength B is inhomogeneous in
the parallel direction to the magnetic field line, or VB || B. In this situation, the pitch angle is changed by a
change of B.If [ isaloop currentand S is an area of the loop, the magnetic moment u,, is given by,

i = IS (2.22)

In the case of the Larmor motion, I = q2/2m and S = mrf. Then, the magnetic moment u,, can be
described by,

_mvi
Um = 2B

(2.23)

The magnetic moment p,, is conserved when |0B/dt | < |2B]. The energy conservation of the particle is
expressed as,

2
vaz_ mv”

E =
2 2

= Const. (2.24)

Substituting Eq. (2.23) into Eq. (2.24) yields,

’ 2
U" = i Uz — E‘UmB (225)

Equation (2.25) indicates that |v"| decreases (/increases) when |B| becomes higher (/lower). Namely, VB
reflects the charged particle when |B| becomes sufficiently high. This magnetic structure is called the
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magnetic mirror. The condition for the reflection of the particle by the magnetic mirror is given by,

B

- (2.26)
sin? ¢pitch

ref
where, Bref is the magnetic field strength at the reflection position and ¢piecn 1 the pitch angle of the
particle (¢pitch = sin~!(v, /v)). The charged particle is reflected when the magnetic field strength B is
higher than Bif. In the inhomogeneous magnetic field, the VB drift of Eq. (2.16), the curvature drift of Eq.
(2.21), and the magnetic mirror effect of Eq. (2.25) are superimposed on the Larmor motion of the charged
particle.

2.1.4. Collision process of fast ions in the plasma

Here, we explain the collision processes of the fast ions. The fast ions are decelerated and scattered by the
Coulomb collisions with the bulk electrons and ions. In general, the density of the fast ions n¢ is much less
than that of the bulk electrons n, and bulk ions n;. In addition, the velocity of the fast ions v is much
lower than the thermal velocity of the bulk electrons and higher than the thermal velocity of the bulk ions
since the fast ions that are of our interest in this study have hundreds keV order. Under this condition, the
time variation of the energy of the fast ions Ef can be expressed by,

d—Ef = - E - E (2.27)
dt T Tfe
where, T and 1g are the energy relaxation times for collisions with the bulk ions and the bulk electrons,
respectively. These relaxation times are given by [2-4],

_ 2mefmymevy

T (2.28)

- qfqniln A¢

_mg (2n)1/23n£§ml/2Te3/2

- (2.29)
me qu qgne In AC

Tfe

where, mj, me and my are the mass of the bulk ion, the electron and the fast ion, respectively. q;, ge and
gr are their electric charges. T, is the bulk electron temperature, &y is the permittivity of vacuum and In A¢
is the Coulomb logarithm. The fast ion critical energy E.., at which the energy flow rates of the fast ions to
the bulk electrons and the bulk ions are equal, is defined as [4]:

N\ 2/3
_ 1 ngZs
E.. = 14.8TA¢| — (2.30)
Me &

As

where, Af is the atomic weight for the fast ion. Here, the subscription of s is the ion species. ng, As and
Z are the density, the atomic weight and the electric charge number for the ions, respectively. The energy
flow rate of the fast ion to the bulk electrons is higher (/lower) than that to the bulk ions when Ef > E,
(/Ef < E). The pitch angle of the fast ion is changed little by the collisions with the bulk electrons because
of ms > me. On the other hand, the pitch angle is scattered by the collisions with the bulk ions because the
fast ion mass mg is a similar value to the bulk ion mass m;. In the case of Ef > E., a slowing-down time

of the fastion 7 is given by,
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Eg 1 T Ec\3/?
7, =f e dF =Ty (—f) 2.31)
Eer (dE/dt) 15 E.r
After the time scale of 74 elapses, the fast ions are sufficiently slowed down. The velocity distribution of the

fast ions becomes stationary (called slowing-down distribution) if the fast ions continue to be supplied and
the time scale of 74 elapses.

2.2. Plasma confinement in the tokamak device

Here, we explain the concept for the plasma confinement in the tokamak device. Forming a toroidal
structure of the magnetic field lines, a torus-shaped device magnetically confines the plasma. Figure 2.1
shows the schematic drawing of the torus device with only the toroidal magnetic field B,. The
circumferential directions of the torus device and of its cross section are called the toroidal and poloidal
direction, respectively. Distances from the axis of the torus device and from the plasma axis are called the
major radius R and the minor radius r, respectively. The vertical coordinate is called Z. The charged particles
are confined in the perpendicular direction to the magnetic field line due to the Larmor motion, and also
confined in the parallel direction because the particles loop along the closed field line. However, a drastic
diffusion of the particles occurs due to the £xB drift originating from charge separations of the plasma if the
magnetic field consists of only the toroidal field B, as shown in Fig. 2.1.

Poloidal

/ \ Plasma
7 \ cross section

7

TOI'Oida.l . \TI/
magnetic field ;0111 idal t/\-é/\) Magnetic field line
oloida i
direction S—/ :;Bw
Tormdal direction

Figure 2.1. A schematic drawing of the torus device with only toroidal magnetic fields B,,.

2.2.1. Electric charge separation in the torus device

In the torus plasma, VB in the opposite direction to R exists because the toroidal magnetic field coils are
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relatively close on the small R side than those on the large R side. Therefore, the toroidal magnetic field
strength is inversely proportional to R. Here, the sides, at which the toroidal magnetic field strengths are
higher and lower than that at the plasma center, are called high field side and low field side, respectively (see
Fig. 1.1). In addition, the toroidal magnetic field lines have curvatures. Hence, ions (/electrons) in the plasma
move in the lower (/upper) directions of the device due to the VB drift and the curvature drift as shown in
Fig. 2.2(a). As a result, the charge separation occurs and the electric field £ is formed in the upper direction
of the device. Then, the ions and the electrons move toward outside the plasma due to the ExB drift
originating from the formed electric field £ and the toroidal magnetic field B, as shown in Fig. 2.2(b).
Hence, the plasma cannot be confined by only the toroidal magnetic field B,.

(a) Charge separation
VB ! VB

\%
B(P® Cuyvature drift
‘

++++

Figure 2.2. Schematic drawings of occurrence processes of (a) the charge separation and (b) the £xB drift in
the torus plasma.

2.2.2. Tokamak

A tokamak device is one of the torus devices for the magnetic plasma confinement [5]. In the tokamak
plasma, a plasma current /, is flowed in the toroidal direction to suppress the charge separation. Figure 2.3
shows the schematic drawing of the tokamak device. The plasma current produces the magnetic field in the
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poloidal direction By. The poloidal magnetic field Bg twists the field lines and magnetic flux surfaces are
formed. The separated charges are spatially homogenized by the formation of the flux surface. Therefore, the
charge separation is suppressed. The torsion of the magnetic field line is defined as a safety factor
Gsafe = "Byp/RaxisBg, where R,yis is R at the plasma axis. The safety factor ggafe is an indicator of the
stability of the plasma.

As we mentioned in Section 1.2, the tokamak is the most promising magnetic fusion device. The high
performance plasma with Q@ > 1 has been almost produced in the tokamak device so far [6, 7]. The tokamak
method is adopted for ITER [8]. To achieve the generation of the high fusion power and sustain the high
fusion reaction rate, the fast ions, which are produced by the fusion reaction and play the role of the heating
of the plasma, must be efficiently confined in the plasma as we mentioned in Section 1.3. Orbits of the fast
ions can be different from the flux surface due to their high speeds. Hence, considering the orbits of the fast
ions is important to understand their behaviors in the plasma. In the next section, we explain orbits of the fast
ions in the tokamak.

Pla;ma,

Poloidal
Cross section

7~ = YV o _______=

Bg [\ //\ Magnetic

flux surface
5 NV

< 1

Toroidal

magnetic field coil ( Magnetic field line

Figure 2.3. A schematic drawing of the tokamak device. B, and By are the toroidal and the poloidal
magnetic fields, respectively. I, is the plasma current.

2.2.3. Orbits of fast ions in the tokamak

As we mentioned in Section 2.1.3, the magnetic mirror effect acts on the motion of the charged particles in
the tokamak plasma because of the un-uniformity of the toroidal magnetic field. The guiding-center orbits
can be categorized into the following two types: a passing orbit and a trapped orbit. Figure 2.4 shows the
schematic drawing of (a) the passing orbit and (b) the trapped orbit. The particles can circulate in both
toroidal and poloidal directions when they have sufficiently higher v than v, as shown in Fig. 2.4(a). In
this case, the particles are called passing particles. On the other hand, the particles cannot circulate in the
poloidal direction when they have relatively low v, as shown in Fig. 2.4(b). This is because the magnetic
mirror formed by VB of the toroidal magnetic field can reflect the particles. In this situation, the particles
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are trapped in the large R region and are called trapped particles. The trapped orbit is also called banana orbit
from its orbit shape on the poloidal cross section.
If the plasma is axisymmetric and |Bq,| > |Bg|, the distances of the passing and trapped orbits from the
flux surface at the midplane are given by [1],
Ap = ~TL(Gsafe
(2.32)

A = Raxis
t = ~TLYGsafe

where, 4, and A are the distances of the passing orbits and the trapped orbits from the flux surfaces,
respectively. These distances become large when the energies of the particles increase because 1, becomes
large. Namely, the orbits of the fast ions are different from the flux surface due to their high speeds. Note
that Ay is larger than A, because Rayis > 7, i.e., the fast ions can draw the trapped orbits which greatly

differ from the flux surface. On the other hand, in general, the particles having the thermal energy order can

be approximated to move on the flux surface because ry, is small.

(a) Passing orbit (b) Trapped orbit
| VB | VB

-
-

-----

Magnetic Passing orbit Magnetic Trapped orbit

flux surface I flux surface

Figure 2.4. Schematic drawings of (a) a passing orbit and (b) a trapped orbit on the poloidal cross section of
the tokamak plasma. A toroidal velocity of the passing particle is in the same directions as B, and Ij,. The
toroidal velocity of the trapped particle on an outer (/inner) part of the trapped orbit is in the same (/opposite)

direction.

Here, the formation processes for non-thermal ion velocity distribution (the bump-on-tail structure and the
pitch-angle anisotropy) near the plasma edge on the low field side in the tokamak device are explained.
Figure 2.5 shows differences of guiding-center orbits of fast *He ions (a) in the energy and (b) in the pitch
angle. These orbits are away from the magnetic flux surface. The fast *He ions can draw the large banana
orbits from the region near the plasma center to the plasma edge on the low field side. The *He ions are
produced mainly near the plasma center. Therefore, the large number of the fast *He ions produced near the
plasma center can reach the plasma edge on the low field side. The trapped-orbits scale becomes small as the
energy decreases as shown in Fig 2.5(a). The fast *He ion cannot reach the plasma edge when the scale of the
banana orbit becomes small as the energy is decreased. Then, the number of relatively high-energy fast *He
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ions is larger than that of the relatively low-energy fast *He ions near the plasma edge on the low field side.
As a result, the fast *He ion distribution can have a positive gradient in the energy direction (the bump-on-tail
structure). In addition, the orbit style strongly depends on the pitch angle as shown in Fig 2.5(b). The fast
*He ion can draw the largest banana orbit when the pitch angle is near the boundary of the passing and
banana orbits. Therefore, the number of the fast *He ions having the pitch angle near the boundary of the
passing and banana orbits is relatively large near the plasma edge on the low field side. As a result, the fast
*He ion distribution can have the strong anisotropy near the plasma edge on the low field side.

(@) — E=820keV = = E=410keV (D) ceers §5, = 46 deg. — 4, = 56 deg.
. == ¢pitch = 66 deg'7 .
t= 7(|) sec in E4|5335 2 i . t= 79 sec in E4.5335

2 Magnetic 3= o ] [ —E= o o
flux surface - ] . 3He ion birth
I TR I spatial distribution
Y 4 [10" m3-sec]
1] I} e
= = 5
E of E of 4
N N 3
1} \ 1} -. 2
L \/ 3 3¢ 1
Al |. — Al . . . 0
1.8 2.8 38 48 1.8 28 38 48
R [m] R [m]

Figure 2.5. Guiding-center orbits of fast *He ions having (a) the energy E = 820 (solid line) and 420 keV
(dashed line) and the pitch angle ¢pitcn = 56 degree, and (b) E = 820 keV and ¢piten = 46 (dotted line),
56 (solid line), and 66 (dashed line) degrees on the poloidal cross section in JT-60U. These pitch angles
shown are values at the midplane edge of the plasma on the low field side. Black closed curves indicate the
magnetic flux surfaces. Color maps are *He ion birth spatial distributions.

The toroidal magnetic field is strictly non-axisymmetric because the number of the toroidal magnetic field
coils is finite. Variations of the magnetic field strength in the toroidal direction are called toroidal magnetic
field ripples. The field ripples affect the fast ion orbits, and promote their transports as follows: 1)
ripple-trapping transport, ii) ripple-plateau transport and iii) banana-drift transport [9]. These transports
deteriorate the confinement of the fast ions and lead to damage to the wall due to the fast ion loss.

i) Some charged particles are trapped between the ripple structures. The particle trapped between the
ripple structure drifts with vgz~1,v/R in the perpendicular direction to the magnetic field line due to the
gradient of the toroidal magnetic field strength. The transport coefficient of the ripple-trapping transport D¢
is given by [10],

532

;riv?
Dy~

2.33
R, (2.33)

where, &, is the normalized ripple strength in the toroidal direction and v is the collisional frequency.
ii) The field ripple also effectively changes the reflection point of the banana orbit (called a banana tip)
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because a staying time at the banana tip is relatively long. If the collision with the bulk ion sufficiently
frequently occurs, the collision can randomly change the orbit position at the banana tip, and its change can
be regarded as random walk. The transport coefficient of the ripple-plateau transport Dy, is given by [11],

81 vg® Ny

p~ RE? (2.34)

where, N; is the number of the toroidal field coils, and €, is the normalized ripple strength in the poloidal
direction. Dy, does not depend on the collisional frequency.

iii) If the collision seldom occurs, the particle can draw a closed orbit. Its transport coefficient is in
proportional to the collisional frequency [12]. Therefore, the banana-drift transport is important rather than
the ripple-plateau transport because the collision frequency of the fast ions with the bulk ions is relatively
low due to its high speed.

2.3. Waves in the magnetized plasma

Here, we explain the wave equation in the ICRF in uniform magnetized plasma [1]. The electric flux
density D is given by,

D=g-E=cE+P (2.35)

where € is dielectric tensor, E is the electric field and P is the electric polarization. The Maxwell’s

equations are given by,

vxB = 22 (2.36)
XD = — .
at
OB
UXE = — — (2.37)
ot

Here, the electric field of the wave E is assumed to be given as E « exp{i(k-r — wt)}, where k is the
wavenumber, 1 is the space coordinates and w is the wave angular frequency. In addition, we assumed the
first-order quantities of the perturbation. Then, we can obtain the following wave equation under the linear
approximation:

2
w
kx (kxE) +— & E =0 (2.38)

The current density j is given by,

j= Z qsfw‘(v)d% = —iwP (2.39)

where, the subscription of s is the charged particle species and f(v) is the arbitrary velocity distribution
function. The general Vlasov equation is given by,

o,

q f
o tUs Vst m—S'S(E +vXB)— =0 (2.40)

v
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Here, we define the velocity distribution f; as f; = f5o + fs1 and the magnetic field B as B = By + B4,
where the subscriptions of 0 and 1 are the zero-order and the first-order (the time-perturbation) components,
respectively. The Vlasov equation can be linearized by substitution of f; = f;0 + fs1 and B = By + B,
into Eq. (2.40).

af s1 qs f s1 f NY

+vs - Vfgy + —VXB, + —(E +vXB
at S fsl m m( 1)

=0 (2.41)

From Egs. (2.35), (2.38), (2.39) and (2.41), the dielectric tensor & in the uniform plasma can be obtained as,

® [45.], 10,0fs0 . fu
s (i- D)y e ()l
£ 61’] ( ) w — k"U" v, 6UJ_ 61]" v (2 42)

12122] _ mSH, ms]z
iv, — vy —
l 1 kJ_ Ul I kJ_ l
l ! ! . 7
Ag) = —ivlk—f]l]l v}_]lz —ivyv JJ] (2.43)
10 ,
14 k—ls/zz ivyv iJ; vt

where [ is the integer, and ng is the density. wps = +/ Neq2/gome is the plasma angular frequency. k

and k; are the wavenumbers in perpendicular and parallel directions to the magnetic field line, respectively.
Ji is the Bessel function with the argument k, v, /0, and J; is its first derivative. The cyclotron resonance,
which is one of strong wave-particle interactions, occurs when the Doppler-shifted cyclotron resonance
condition is satisfied as follows.

w — k"v" - l.Qs =0 (244)
The term of kjv) is the Doppler shift. The energies are exchanged between the waves and the particles by

the cyclotron resonance under the above condition. The particles stabilize (/ destabilize) the waves when the
particles are accelerated (/decelerated) by the waves.
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Chapter 3
Experiments on JT-60U

In this chapter, experimental apparatus and an observation result of the ICEs on JT-60U are described.
First, a brief outline of JT-60U is introduced. Then, heating systems and measurement equipment used for
the experiments analyzed in this study are explained. Finally, an observation result of the ICEs in the typical
D plasma experiment on JT-60U is introduced.

3.1.JT-60 / JT-60U

JT-60 / JT-60U is the largest tokamak device in Japan [1, 2]. JT-60U is an upgraded version of JT-60 [2].
The vacuum vessel is expanded in JT-60U so as to be able to flow larger plasma currents than that in JT-60.
Figure 3.1 shows a schematic drawing of JT-60U [3]. JT-60U has several types of plasma heating and
current drive systems: NB injection [4], ion cyclotron heating (ICH) [5], electron cyclotron heating and
current drive (ECH and ECCD) [6] and lower hybrid current drive (LHCD) [7]. The ICH, ECH / ECCD and
LHCD are classified as radio frequency (RF) wave heating and current drive system. Main parameters of
JT-60U are as follows [8]: the toroidal magnetic field is 4 T, the plasma current is 3 MA, the major radius is
3.4 m, the minor radius is 1 m, the plasma volume is 90 m’, the pulse length of the discharge is 65 sec, the
heating power of the NB injection is 40 MW, and the heating power of the RF wave heating and current
drive system is 15 MW. The material of its first wall is carbon. Ferritic steel tiles are installed on the wall to
reduce the toroidal magnetic field ripples [9]. In JT-60U, the D plasma experiments have been implemented.
The high performance plasma, which is equivalent to Q~1.25, has been already produced in JT-60U [10].

Figure 3.1. A bird’s-eye view of JT-60U (cited from Ref. [3]).
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3.2. Heating system

a) Neutral beam (NB) injection

The NB injection is one of the methods to heat the plasma by injecting the fast atoms from the region
outside the plasma. A ratio of the fast ions in the bulk plasma increases as the injected fast atoms exchange
the electric charge with the bulk ions by charge exchange reactions and ionization reactions. The charge
exchange reaction between fast D atom and slow D ion is given by,

Dfoast +D;iow - Df:\st+Dglow (3.1
where, the subscriptions of “fast” and “slow” indicate the ion velocity. The superscriptions of “0” and “+”
indicate neutral atom and ion, respectively. The ionizations reaction is given by,

Dfoast+D;iow _)Df-:\st+D;iow+e_ (3.2)
where e” is electron. The number of the fast ions increases in the plasma after the charge exchange reaction
and the ionization reaction in the case of the NB injection. Then, the fast ions heat the bulk plasma via the
collisions. Therefore, the NB injection can heat the plasma. In addition, the NBs in the tangential direction to
the toroidal magnetic field are also used for the current drive in the plasma [11].

Figure 3.2 shows the schematic drawing of the NB systems on JT-60U. There are positive-ion sourced
NBs (P-NBs) and negative-ion sourced NBs (N-NBs) on JT-60U [4]. The P-NBs consist of almost tangential
beams and perpendicular beams to the toroidal magnetic field. The tangential P-NBs in co-current (CO) and
counter-current (CTR) directions are installed. The perpendicular P-NB injections are slightly tilted in CO
and CTR directions. Acceleration voltages of the P-NB and the N-NB are ~85 kV and ~350 kV, respectively.
Usually, the P-NB and the N-NB mainly heat the bulk ions and the bulk electrons, respectively. This is

because the birth energies of the fast ions originating from the P-NB and the N-NB injections are lower and
higher than E., respectively.

Perp. P-NB Perp. P-NB

(#3,#4 Tang. P-NB
(#7,#8)
Perp. P-NB
(#2)
<? Counter-current direction
Co-current direction
Tang. N-NB
(#15,#16)
Perp. P-NB
(#13,#14)

Perp. P-N Tang. P-NB
(#12) (#9,#10)

Figure 3.2. A schematic drawing of the NB systems on JT-60U. Positive-ion sourced NBs (P-NBs) and
negative-ion sourced NBs (N-NB) are installed.
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b) Ion cyclotron heating (ICH)

The ICH is one of the methods to heat the plasma. Ions in the magnetic field are resonantly accelerated
with the electric fields of the ICRF waves. Its resonance condition is the ion cyclotron resonance of Eq.
(2.44). Accelerated fast ions heat the plasma via the collisions. Usually, the ICRF waves are excited from the
antenna installed near the plasma surface. Figure 3.3 shows the schematic drawing of the ICRF antenna
straps on JT-60U [12]. These ICRF antennas are installed on the wall on the low field side. The antenna
straps are arranged in both toroidal and poloidal directions. The straps are connected to the ground potential
at the center of the straps arranged in the poloidal direction. On the other hand, both ends of the straps are
connected to the ICRF power supply system.

Antenna 1 167 cm

X7
74 cm
Poloidal #2 #3 #6 #7

A

N\

TTTA

pi Antenna 2

#1 #4 #5 #8

W\, J \ ! ! I

I 1 K_M_h
85 cm ' 25cm 19 cm

>» Toroidal

Figure 3.3. A schematic drawing of the ICRF antenna straps on JT-60U. The straps are arranged in both
toroidal and poloidal directions.
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3.3. Diagnostics

3.3.1. CO, laser interferometer

The wavelength of the wave changes when the wave is passing through the plasma because the plasma is a
kind of dielectrics. This change of the wavelength depends on the plasma density. Therefore, line-integrated
density of the plasma can be measured by using a microwave interferometer.

The dielectric of the plasma ¢ in the frequency range of the microwave is given by,

2
Wpe
Y (3.3)

e=1
w

If w > wpe, the wavelength of the microwave 4 is given by,

Ay 2mc (3.4)

Ve  we '
where, Ay is the wavelength of the microwave in the vacuum and c is the light speed in the vacuum. The
phase difference between the microwaves passing through the plasma and only through the vacuum A@, is

given by,
21 1
Ad, =21 Ll (%— Z) dx (3.5)
where, x is the space coordinate in the wave propagating direction. x; and x, are x positions where the

microwaves penetrate into the plasma and pass out the plasma, respectively. Substituting Eqgs. (3.3) and (3.4)
into Eq. (3.5) yields,

g 271 x)dx (3 )
P ‘C:O‘rneﬂ'o(‘)2 Ll e( )

Thus, the phase difference of the microwaves indicates the line-integrated electron density.
To measure the line-integrated electron density including the density at the plasma center, an
interferometer using a CO; laser is used on JT-60U [13]. Its measurement line is shown in Fig. 3.4.

3.3.2. Thomson scattering with ruby laser

The Thomson scattering is an elastic scattering with electrons. The Doppler effect due to the thermal
motion of the electrons expands the scattering spectrum. The spectrum density function Stg is given by,

Sts({) MecC” ! { mec’¢” } (1 7 () (3.7)
= expi— —-= .
e cos frs) b ) 2

2nTe \J2(1 — 2T,+/2(1 — cos Org

where, { = (Ars — 4;)/A; and 6Ops is the Thomson scattering angle. Here, Aps and 2A; are the

wavelengths of the scattered light and of the injected light, respectively. T, can be obtained from the spread
of Sts. In addition, n, can be also obtained from the intensity of the scattered light since the intensity is

proportional to 7.
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The Thomson scattering systems using ruby lasers are installed on JT-60U to simultaneously measure
spatial profiles of ne and T, with high spatial resolutions of about 8§~22 mm [14]. Its measurement
positions are shown in Fig. 3.4.

Thomson scatterings
with the ruby laser

Ef’. The CO, laser

— interferometer

Figure 3.4. A measurement line of the CO, laser interferometer for the measurement of the line-integrated
electron density including the density at the plasma center (blue line) and measurement positions of the
Thomson scattering with the ruby laser (red crosses) on the poloidal cross section on JT-60U.

3.3.3. Diamagnetic loop

A diamagnetic loop is a magnetic coil surrounded the plasma column to detect a temporal change of the
magnetic field caused by a diamagnetism of the plasma. The diamagnetism is an indicator of the stored
energy (and the pressure) of the plasma. Thus, the diamagnetic loop is often used for the diagnostic of the
stored energy.

The pressure balance equation for the magnetized plasma is given by,

_Bi() 1

(p) = +5—
210 210

(BZ(ry) — (B2)) (3.8)

where, p is the plasma pressure, r; is the plasma minor radius, and pg is the permeability of the vacuum. <

> is a volume-averaged value. The change of the magnetic flux A®,, is given by,
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APy, = Tr2(Bs — B3 (1,)) (3.9)

A plasma beta B is defined as a ratio of the plasma pressure to the magnetic pressure f = (p)/(B?/2u,).
The poloidal beta of the plasma [y is given by,

(p)
N (3.10)
:86 Bg(ra)/z.“o
Substituting Eq. (3.8) and Eq. (3.10) into Eq. (3.9) yields,
272
Holp
AP, =(1— 3.11

n= (= Fo) g (3.11)

Thus, the stored energy (and the pressure) of the plasma can be measured using the diamagnetic loop.
Four sets of the diamagnetic loops are installed on JT-60U and used for the measurement of the stored
energy of the plasma [15].

3.3.4. 23U fission chamber

A fission chamber is commonly used for a neutron detector. The fission chamber has an ionization
chamber and a little amount of fissile materials. The fission reactions occur and high-energy fission
fragments are emitted when the neutrons come into the fission chamber and collide with the fissile materials.
Then, a thin gas is ionized in the ionization chamber by the fission fragments. Therefore, the neutrons can be
detected by measuring the currents from the ionization chamber.

The neutrons having ~2.5 MeV are produced by D(d, n)’He reactions in the D plasma experiments. On
JT-60U, U fission chambers are installed to measure the total neutron emission rate [16], which is an
indicator of the fusion performance in the plasma. The absolute values of the fission chamber signals are

calibrated by using a ***Cf neutron source.

3.3.5. ICRF antenna straps

The ICRF antenna straps shown in Fig. 3.3 were also used for the measurement of the ICEs on JT-60U
[17-19]. The ICH power was not supplied to the antennas when the antennas were used for the measurements.
Signal cables were connected to the transmission cables behind the antenna straps. In this case,
antenna-matching components were not connected between the antenna and the signal cables. An
oscilloscope was used for recording the measured signals. Its sampling frequency and duration were 500
MHz and 100 psec, respectively. The signal sampling was repeated at every 50 msec. The toroidal
wavenumber of the ICE can be evaluated from the phase difference of the signals between the antenna straps
arranged in the toroidal direction. The toroidal wavenumber k, is given by,

Ao,

ky =— 3.12
o= (3.12)

where, A®,, is the phase difference of signals between the antenna straps arranged in the toroidal direction
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and AL, is the distance between the straps. Thus, three antenna straps (#1, #4 and #5) were often
simultaneously used. The distance between the centers of the #1 strap and the #4 strap is 0.44 m in the
toroidal direction and between the centers of the #4 strap and the #5 strap is 1.23 m.

3.4. Observation of ICEs

On JT-60U, the ICE(D), ICECHe), ICE(T) and ICE(H) have been observed [17-20]. Figure 3.5 shows the
time evolution of the frequency spectrum of electrostatic and/or electromagnetic fluctuations in a typical
discharge of E45334 where the ICE(D), ICE(’He) and ICE(T) were observed. These electrostatic and/or
electromagnetic fluctuations were measured with the ICRF antenna straps. Dotted, dashed and dotted-dashed
lines indicate the cyclotron frequencies for D ion f.p, *He ion fezne and T ion f.r at the midplane edge of
the plasma on the low field side, respectively. The time sequence of the N-NB, the perpendicular P-NB and
the tangential P-NB is shown at the top of the figure. Figure 3.6 shows the time evolution of (a) the plasma
current I, (b) the line-averaged density 7., (c) the stored energy of the plasma Wy and (d) the total
neutron emission rate S, in E45334. n, was measured with the CO, laser interferometer of which the
measurement line is shown in Fig. 3.4. Wy and S,, were measured with the diamagnetic loop and the Py
fission chamber, respectively. The fluctuations in the frequencies around [f.p (I = 1,2,3) are observed.
These fluctuations are the ICE(D) and its harmonics. The fluctuations in the frequencies slightly below
U'fesge (I' = 1,2) and f.r appear after S, begins to increase and becomes relatively high, respectively.
These fluctuations are interpreted as ICE(*He) and ICE(T), respectively. Time periods of the observations of
the ICE(D), ICE(*He) and ICE(T) are clearly different. This would be attributed to the differences in the
behaviors of the different fast ions. In this study, we investigated the emission mechanism for the ICE(*He)
in terms of the fast *He ion velocity distribution and the wave dispersion relation as mentioned in Section
1.6.

27



N-NBo® © ¢«<—>

Perp. P-NB ¢
Tang. P-NB €
50 ||||||||_||||||||||||||||I||||I||||||||||||||
3™ harmonic ICE(D) E45334
] L= i E -40
40_,5 el RO - 22 % ‘é"%"""“'11'1:"_-&"!-{\:—3 f(‘:D i
I~ o ™ e o -
R B oo
O ~ 7 <= 2ndharmonic ICE(*He)f e w o
2 30_:-- cvin - e s D :_ %
S‘ E .u....u.-..-..“- -llllcazﬁ'-l’-cttii;ﬁ: .-..Eyg’-'.T.-............'....--....E2];D s 9;
s 2¢harmonic ICE(D) s =
= h o s
5209~ - — ~o—agFundamental ICECHe)_ __Er Mo Z
S 7] e o S L et i e wir .:
E fan _..i .‘?.; o ; ": 'gj;_.....--.--qui;!zv'---z f;;D 65
10} omo._ _Fundamental ICE(D) _ _ _ _ k¢
] TR e :
3 ¢ Fundamental ICE(T) ¢ "
i - - O U R S
O e L RN R e

1 2 3 4 5 6 7 8 9 10
Time [sec]
Figure 3.5. Time evolution of the frequency spectrum of the electrostatic and/or electromagnetic fluctuations
measured with the ICRF antenna strap in E45334. Dotted, dashed and dotted-dashed lines indicate the
cyclotron frequency and its harmonics for D ion, *He ion and T ion at the midplane edge of the plasma on the
low field side, respectively.
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Figure 3.6. Time evolution of (a) the plasma current I, (b) the line-averaged density 7., (c) the stored

diamagnetic energy of the plasma Wy and (d) the total neutron emission rate S, in E45334.
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Chapter 4
Setup for Evaluation of Fast He Ion Velocity
Distribution

In this chapter, setups for the evaluation of the fast *He ion velocity distribution with OFMC are described.
First, a brief outline of the OFMC is introduced, and its orbit equations and its validity are explained. Then,
procedure for the evaluation of the fast *He ion velocity distribution is explained. Next, influences of a
guiding-center approximation on orbit positions are discussed under a typical plasma condition analyzed in
this study. Finally, birth energy of the fusion product in the laboratory system is explained toward the more

quantitative evaluation of the fast *He ion distribution.

4.1. OFMC code

OFMC is a fast ion orbit following Monte-Carlo simulation code that has been developed in National
Institutes for Quantum and Radiological Science and Technology, Japan [1]. The OFMC can trace the
guiding-center orbits and/or the full-gyro orbits of the fast ions in the tokamak plasma. The explicit and
implicit 4™ order Runge-Kutta methods are used for numerical calculations of the guiding-center and
full-gyro orbit equations, respectively. Changes of the orbits due to the collisions with the bulk plasma are
treated using the Monte-Carlo method. The orbit calculations can be carried out with parallel computing
methods. Three-dimensional magnetic field structure including the toroidal magnetic field ripples and the
wall structure can be taken into account. We adopted the OFMC for calculations of the fast ion orbits to
evaluate the spatial and velocity distribution of the fast ions.

4.1.1. Orbit equation

a) Guiding-center orbit

The velocity of the fast ion on the guiding-center orbit v, used in the OFMC is given by,

Vg =y b+ v+ vpp + v, 4.1)
Exb
Ve~ g
2
vy = %vgéz (bxVB)
2
v, = #(beB)

The ExB drift, the VB drift and the curvature drift are adopted for the calculation of the guiding-center orbit
in the OFMC. In the orbit calculations in this study, we assumed that there is no electric field E since the
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energies of the fast ions are sufficiently higher than the electric potential in the plasma. In addition, we
assumed that the magnetic field B does not temporally change. Then, the motion equation of the fast ion on
the guiding-center orbit in the parallel direction to the magnetic field is given by,

dvgi _ _ #m 0B

dt m al (4.2)

where, vg is the parallel velocity of the guiding-center particle. The perpendicular velocity vy, is given
by,

ob
oL,

m

B g") bx —

1
Vg1 = E(ﬂm (4.3)

The simultaneous equations in the cylindrical coordinate system (R, Z, ¢) are derived from Eqgs. (4.1)-(4.3).

dR m B,dB B, B\ By
@ = 2g it 2"")Bz<fﬁ‘ﬁa¢) i
dz m(vl Zvllz)_<B_Ra_B_B_¢a_B) ﬁv"
dt B2\B Rdp B 0R) B
Yde 1(m B,dB BpdB\ B, 4.4
E=E{z("l )5 (For~ mag) * 0]
dv, v? B
FTERTF T

Solving the above simultaneous equations with the explicit Runge-Kutta method, the OFMC can trace the
guiding-center orbits.

b) Full-gyro orbit
The motion equation of the fast ion on the full-gyro orbit used in the OFMC is the same form as Eq. (2.1).

If there is no electric field E and the magnetic field B does not temporally change, the motion equations in
the R-Z-¢ coordinate system are given by,

dv 2
T - m Bt
dv v
[ RYp
= — 4,
T (vxB), R (4.5)
dv,
—— =—(vXxB
dt (vXB)z
where,
dR
UR == E
Ve _de (4.6)
R dt
dz
V; = E

Solving these equations with the implicit Runge-Kutta method, the full-gyro orbits are traced in the OFMC.
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4.1.2. Validation

The OFMC has been validated with several tokamak experiments such as JFT-2M [2], JT-60U [3-5], and
DIII-D [6] in terms of heat loads on the wall due to fast ion loss and driven plasma currents by confined fast
ions. In addition, the calculation results of the heat loads on DIII-D have been compared between the OFMC
and a few fast-ion simulation codes [6]. As the results, it has been confirmed that the calculation results of
the OFMC agrees well with those of other codes.

These heat loads and beam driven currents strongly depend on the fast ion spatial and velocity distribution.
Namely, the evaluations of the fast ion distribution with the OFMC are considered to be reasonable, although
the OFMC is not directly validated with the experiment in terms of the fast ion distribution so far because of
the difficulty of its measurement in the experiment.

4.2. Procedure for evaluation of velocity distribution of DD fusion produced fast
3 .
He ions

4.2.1. Flowchart

Although the OFMC is usually used for the orbit calculations of the fast D ions originating from the NB
injections, the fast *He ion orbit calculations are needed in this study. Thus, we newly developed a fast *He
ion orbit calculation system with the OFMC. Birth spatial and velocity distribution of the fast *He ions is
necessary as initial conditions to calculate the fast *He ion orbits and evaluate their slowing-down
distribution. The fast *He ions are produced by the DD fusion reaction (the D(d, n)3He reaction) of Eq. (1.3b)
on JT-60U.

The fusion reaction in the plasma experiments consists of i) a beam-thermal component (fusion reaction
between a fast ion originating from the NB injection and an ion in the bulk plasma), ii) a thermal-thermal
component (fusion reaction of ions in the bulk plasma) and iii) a beam-beam component (fusion reaction of
the fast ions). i) Usually, the beam-thermal fusion reaction rate is dominant in the DD fusion reaction in the
D plasma experiments. Thus, the beam-thermal fusion reactions must be evaluated before the orbit
calculations of the fast *He ions. To evaluate the beam-thermal fusion reaction, the fast D ion spatial and
velocity distribution is needed. The fast D ion distribution can be evaluated from the orbit calculations of the
fast D ions originating from the NB injections. Namely, the fast D ion orbits must be calculated before the
fast *He ion orbit calculations. ii) The thermal-thermal fusion component can be evaluated from the plasma
parameters measured in the experiment. iii) A ratio of the beam-beam fusion reaction rate to the total fusion
reaction rate is small even near the plasma axis, where the beam-beam component is the highest. Here, we
did not take into account the beam-beam DD fusion reaction for the evaluation of the *He ion birth
distribution since the influence of the beam-beam fusion reactions is estimated to be small and the
calculation method of the beam-beam fusion component is very complicated. In this study, we took into
account the beam-thermal and thermal-thermal fusion reactions for the evaluation of the birth distribution of
the fast *He ions.

We calculated the guiding-center orbits with the OFMC. Influences of the guiding-center approximation
on orbit positions are discussed in Section 4.2.2. The orbits were calculated until test particles hit the wall or
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until their energies are decreased to around the bulk ion temperature.

Figure 4.1 shows the flowchart for the evaluation of the fast *He ion velocity distribution. At first, the orbit
calculations of the fast D ions originating from the NB injections were carried out with the OFMC. The
number of test particles for the fast D ion orbit calculations was 10°. Its initial condition for the test particles
was given based on geometries of the NB system, and the powers and the accelerated voltages of the NB
injections in the experiments. We evaluated the birth spatial and velocity distribution of the beam-thermal
fusion produced *He ions from the fast D ion orbit calculation results. The detailed evaluation method of the
*He ion birth velocity distribution is described in Section 4.2.3. In addition, we evaluated the thermal-thermal
fusion components for the *He ion birth distribution from the plasma parameters in the experiment. Next, we
calculated the fast *He ion orbits with the OFMC by using the evaluated *He ion birth distribution as the
initial condition. The number of the test particles for the fast *He ion orbit calculations was 5x10°. Then, we
evaluated the fast *He ion velocity distribution from the fast *He ion orbit calculations. We used a sampling
box for the evaluation of the fast *He ion velocity distribution (see Fig. 5.4 as examples). The sampling box
is a square on the poloidal cross section. In the orbit calculations of the fast *He ions, the velocity vectors of
the test particles that come into the sampling box are measured for the evaluation of the velocity distribution.
Its velocity distribution is averaged in the toroidal direction.

1. OFMC : fast D ion

v' fast D ions originated from NBI
v’ Test particle number : 103
v" Initial condition : NB

!

Birth spatial & velocity
distribution of DD fusion
produced fast *He ions

!

2. OFMC : fast 3He ion

v DD fusion produced *He ions

v' Test particle number : 5x10°

v' Initial condition : Birth spatial
& velocity distribution

|

Fast 3He ion velocity
distribution

Figure 4.1. A flowchart for the evaluation of the velocity distribution of the DD fusion produced fast *He
ions with the OFMC.
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4.2.2. Influence of guiding-center approximation on orbit position

Here, we confirm whether the guiding-center approximation is reasonable under a typical plasma
condition analyzed in this study. We compared orbit positions of collisionless full-gyro and guiding-center
orbits of the fast *He ions passing through the midplane edge of the plasma on the low field side. In these
calculations, the toroidal magnetic field ripples were taken into account. The plasma equilibrium used for
these calculations is a typical case analyzed in this study (see Fig. 6.7(a)). The initial position, energy and
pitch angle of the fast *He ion were set to be at the midplane edge of the plasma on the low field side, 500
keV and 54 degree, respectively. Here, the energy of 500 keV is an energy almost corresponding to the
largest population of the bump-on-tail structure in the case of the more quantitatively evaluated distributions
(see Figs. 6.3(b) and 6.10(a) as examples). Figure 4.2 shows the calculated full-gyro and guiding-center
orbits of the fast *He ions on the poloidal cross section. We can see a small gyro radius, which is about 0.03
m at the plasma edge on the low field side, and about 3% of the minor radius.
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Figure 4.2. The full-gyro (blue line) and guiding-center orbits (red line) of the fast *He ions passing through
the midplane edge of the plasma on the low field side on the poloidal cross section. The initial position,
energy and pitch angle of the fast *He ion are at the midplane edge of the plasma on the low field side, 500
keV and 54 degree, respectively.

Here, we focus on the canonical angular momentum P, since P, is an indicator of the radial position of
the orbit [7]. P, is given by,
Py = mRv, — qy 4.7

where, v, is the toroidal velocity of the fast ion and 1 is the poloidal magnetic flux. Figure 4.3 shows time
evolution of P, of the calculated orbits. We cannot take exact same initial values for the full-gyro and
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guiding-center orbit calculations since the relation of the particle positions between the full-gyro and
guiding-center orbits are complicated in the inhomogeneous magnetic field. The initial P, in the
guiding-center orbit case is set to be as close value to that in the full-gyro case. We set the initial P, to
~7.39x10™ kg m*/sec in the guiding-center orbit case and ~7.43x10™ kg m*/sec in the full-gyro case. The
field ripples cause the temporal variations of P,. There are small differences of P, between the full-gyro
and guiding-center orbits at = 1 msec, which almost corresponds to the time scale that the particle energy is
decreased by about 5 keV due to collisions with mainly bulk electrons. The collisions can “reset” the orbit
position many times on this time scale. Hence, the difference between the collisionless full-gyro and
guiding-center orbits from the results in Fig. 4.3 can be considered as the largest difference caused by the
guiding-center approximation. P, is equal to —qy since v, is zero when the trapped fast ions are located
at the banana-tip positions. Thus, the value of Yy, = —F,/q is a poloidal magnetic flux at the banana-tip
position and can be an intuitive index of the orbit position. The difference of Yy, between the full-gyro and
guiding-center orbits, Ay, is ~2.4x10° Wb at # = 1 msec. The ratio of A,/ |Ppe — Ps| is ~0.39% where
Yo and P are P at the plasma axis and at the plasma surface, respectively. From the ratio
APy /1o — Ys|, we can estimate the difference of the orbit position at the plasma edge on the low field side
between the full-gyro and guiding-center orbits. The estimated difference is ~3 mm, which can be the largest
difference as discussed above. Hence, the influences of the differences between the full-gyro and
guiding-center orbits on the fast *He ion distribution are expected to be small. Namely, it was confirmed that

the guiding-center approximation is reasonable under the conditions analyzed in this study.

— Full-gyro
— Guiding-center

P,[102° kgm?s!]

0 02 04 06 08 1 12
Time [msec]

Figure 4.3. Time evolution of the toroidal canonical angular moments P, of the full-gyro (blue line) and
guiding-center orbits (red line) of the fast *He ions passing through the midplane edge of the plasma on the
low field side.
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4.2.3. Birth energy of the fusion product in the laboratory system

The birth energy of the fusion products strictly depends on velocity vectors of fuel ions and a scattering
angle of the fusion reaction. Thus, the birth energy of beam-thermal fusion produced ions can have a spread
and anisotropy because the fast fuel ions originating from the beam have relatively high energies and their
pitch-angle distribution are anisotropic. The birth energy of the DD fusion produced *He ion in the laboratory
system E3ye is given by [8],

(Wf + Kr) (4~8)

1 m 2myMmsye
Esge = =mageV2 + ————— (Ws + K,) + V, L
3He = 5 M3He'c me +m3He( f ) cl'ts\/,mn F Mane

where, maye and m, are the mass of the *He ion and the neutron, respectively. V. is the velocity of the
center-of-mass system, Wy is the generated energy by the fusion reaction, and K, is the relative energy of
the D ions that are fuels for the DD fusion reaction. ug is the cosine of the scattering angle of the fusion
reaction. This scattering angle is defined as an angle between V. and the *He ion velocity vector in the
center-of-mass system. Figure 4.4 shows the scattering angle dependences of the *He ion birth energy in the
cases when the beam D ions with the energy Epeam 0f 350 keV (solid line) and 85 keV (dashed line) are
injected to static D ions. The *He ion birth energy distributions have anisotropy, and the anisotropy becomes
stronger as the D ion energy increases.

The scattering-angle distribution is not uniform function, but is given by the probability density based on
the differential cross section for the DD fusion reaction. The differential cross section for the neutron
produced by the DD fusion reaction do/d’ is often approximated by,

do
oo ) AR () (49)
J

where, o is the cross section of the fusion reaction, 2’ is the solid angle, A; is the reduced Legendre
coefficients and P; is the Legendre polynomials. In this study, we adopted A; for the neutron of the
D(d,n)’He reaction from the work by Drosg and Otuka (2015) [9] and calculated neutron birth velocity
distributions. Then, we calculated the *He ion birth velocity distribution from the neutron birth velocity
distribution based on the energy conservation law and the momentum conservation law.

In Chapter 5, we did not take into account the influence of the scattering angle and the fast D ion velocity
vectors on the *He ion birth velocity distribution, and assumed the birth energy and birth pitch angle
distribution of the *He ion to be 820 keV and uniform, respectively. On the other hand, we took into account
this influence in Chapter 6 to more quantitatively assess the characteristics of the fast *He ion velocity
distribution.
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Figure 4.4. Scattering-angle dependences of the *He ion birth energy in the laboratory system. Solid and
dashed lines indicate the cases when the 350 keV and 85 keV D ions are injected to the static D ions,
respectively.
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Chapter 5
Comparison of Dispersions of Observed
ICE(’He) with the MCI

In this chapter, we have evaluated the fast *He ion velocity distribution and compared the dispersions of
the observed ICE(*He) with those of the calculated MCIL. First, we explain a typical discharge where the
ICE(*He) is observed under an almost stationary plasma condition, and the evaluation results of the fast *He
ion distribution. Then, we discuss the reproducibility of the evaluated fast *He ion distribution with the
OFMC. Next, we explain wave equations in our wave dispersion code, and its calculation methods. Finally,
we explain the comparison results of the dispersions of the observed ICE(*He) with those of the calculated
MCTI, and discuss the emission mechanism for the ICECHe) in terms of the dispersion.

5.1. Evaluation of fast *He ion velocity distribution under a stationary condition

5.1.1. Observation of ICE(’He) under an almost stationary plasma condition

We evaluate the fast *He ion slowing-down velocity distribution in a discharge where the ICE(*He) is
observed under the stationary plasma condition to collect good statistics. Figure 5.1 shows the time evolution
of (a) the plasma current I, (b) the safety factor at 95% the magnetic flux qq¢5 and (¢) R at the midplane
edge of the plasma on the low field side Regge in a discharge of E48461, which is a typical discharge where
the ICECHe) is observed under the almost stationary condition. In this discharge, I, and q95 become
almost stationary after £ = ~2.5 sec. Regge 1s also almost constant after 7 = ~4.0 sec. Namely, the plasma

equilibrium is considered to be almost stationary after ¢ = ~4.0 sec.
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Figure 5.1. Time evolution of (a) the plasma current I, (b) the safety factor at 95 % the magnetic flux qqs
and (c) the major radius position R at the midplane edge of the plasma on the low field side Reqge in
E48461.
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Figure 5.2 shows the time evolution of (a) the P-NB power, (b) the line-averaged density 7, (c) the
stored energy of the plasma Wy, and (d) the neutron emission rate S, in E48461. The perpendicular and
tangential P-NBs were injected from ¢ = ~3.5 sec. The plasma parameters such as n, and Wy are almost
stationary after t = ~4.5 sec. S, drastically increases just after the NB injection and also becomes stationary
from ¢ = ~4.5 sec. The temporal behavior of S, indicates that the number of the DD fusion reactions
increases due to the NB injection. Both of the plasma equilibrium and parameters are almost stationary from

t=~4.5 sec.
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Figure 5.2. Time evolution of (a) the perpendicular (solid line) and tangential P-NB powers (dotted line)
Pyg, (b) the line-averaged electron density 7ig, (c) the stored diamagnetic energy of the plasma Wy, (d) the
total neutron emission rate S,, () the frequency spectrum of the electrostatic and/or electromagnetic
fluctuations and (f) the toroidal wavenumber k,, of the 2" harmonic ICE(3He) in E48461. (e) Dotted and
dashed lines indicate the cyclotron frequencies and its harmonics for the D ion f.p and the *He ion fape at
the midplane edge of the plasma on the low field side, respectively.
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Figure 5.2(e) shows the time evolution of the ICRF fluctuations measured with the ICRF antenna strap. A
strong fluctuation in the frequency slightly below 2f.3ye is observed just after S, begins to significantly
increase (¢ = ~3.5 sec). This fluctuation is interpreted as 2™ harmonic ICE(*He). The 2™ harmonic ICE(He)
continues to be observed under the almost stationary plasma condition. Also, a fluctuation in the frequency
around f.p appears, and is interpreted as fundamental ICE(D). Figure 5.2(f) shows the measured toroidal
wavenumber kg, of the 2" harmonic ICE(3He).

Radial profiles of ne and T, were simultaneously measured with the ruby laser Thomson scattering at ¢
= 5.1 sec in E48461. Figure 5.3 shows radial profiles of (a) gsate, and (b) ne and T, at # = 5.1 sec. Using
Eq. (2.31) and the plasma parameters of n, and T, shown in Fig. 5.3, we estimated the slowing-down time
74 of the fast *He ions having 820 keV at the plasma axis (75g) around ¢ = 5.1 sec. 759 around ¢ = 5.1 sec is
estimated to be about 0.3-0.4 sec. The 2™ harmonic ICE(*He) continues to be observed even on the time
scale longer than 74, after S,, has become almost constant. This indicates that the 2" harmonic ICE(*He)
appears even when the fast *He ion velocity distribution becomes the slowing-down distribution. Thus, we
evaluate the fast *He ion slowing-down velocity distribution at # = 5.1 sec in E48461 as a typical case for the
excitation of the ICE(*He) by using the plasma parameter shown in Fig. 5.3.

Figure 5.3. Radial profiles of (a) the safety factor gsare and (b) the electron density n. (circles) and
temperature T, (squares) at#=5.1 sec in E48461. Here, p is the normalized minor radius.

Figure 5.4 shows the plasma equilibrium and typical sampling boxes at t = 5.1 sec in E48461. Centers of
the sampling boxes shown in Fig. 5.4 are located at R = Rayis, 4.25 m and Reqge. At £ = 5.1 sec, Rayis =
~3.53 m and Rgyjs = ~4.43 m. Their Z locations are the same as that of the plasma axis. Lengths of the
sampling boxes are 0.08 m in the R direction and 0.2 m in the Z direction. The plasma equilibrium and
these sampling boxes shown in Fig. 5.4 were used for the evaluations of the fast *He ion slowing-down
velocity distributions at # = 5.1 sec in E48461.
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Figure 5.4. The plasma equilibrium (left) and typical sampling boxes (right) for the evaluation of the fast *He
ion velocity distribution at ¢ = 5.1 sec in E48461. These sampling boxes are located at R = R,4is (dashed
box), 4.25 m (dotted box) and Regge (solid box). At7=5.1 sec, Raxis and Reqge are ~3.53 m and ~4.43 m,
respectively.
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5.1.2. Evaluation results of the fast *He ion velocity distribution

As mentioned in Section 5.1.1, we firstly calculated fast D ion orbits to evaluate the *He ion birth spatial
distribution by using the plasma parameters shown in Fig. 5.3 and the equilibrium shown in Fig. 5.4 at ¢ =
5.1 sec in E48461. In these orbit calculations, the toroidal magnetic field ripples were not taken into account
and the toroidal symmetry was assumed. Figure 5.5 shows the evaluated birth spatial distribution of the *He
ion at £ = 5.1 sec in E48461. The *He ions are mainly produced near the plasma center. We used Fig. 5.5 for
the initial condition of the fast *He ion orbit calculation. As mentioned in Section 4.2.3, we assumed its birth
energy and pitch angle distribution to be 820 keV and uniform, respectively.

] " The outermost
1 magnetic surface [

-1.5 aaanEa e 0
2 3 4 5

R [m]

Figure 5.5. The evaluated *He ion birth spatial distribution on the poloidal cross section at £ = 5.1 sec in
E48461.

Figure 5.6 shows the evaluated fast *He ion energy E and pitch-angle ®pitcn slowing-down distributions
at (a) R = Rayis, (b) R =4.25m and (c) R = Reqge at t = 5.1 sec in E48461. These distributions were
evaluated at the sampling boxes shown in Fig. 5.4. Most of the fast *He ions are located in relatively low
energy region and its pitch-angle distribution structure is broad at R = R,yjs as shown in Fig. 5.6(a). The
population of the fast *He ions is relatively less in a region near ®pitecn = ~104 degrees. Figure 5.7 shows
the guiding-center orbits of the fast *He ions passing through the plasma axis and the *He ion birth spatial
distribution (same distribution as Fig. 5.5). The fast *He ion with ®pitch = 104 degree draws the large
banana orbits and passes through a region where the number of the *He ion productions is relatively small by
comparison with the fast *He ions having ¢piccn = 94 and 114 degrees. Therefore, the population of the fast
*He ions becomes relatively less in the region near ®pitch = ~104 degrees. At R = 4.25 m, a width of the

pitch-angle distribution of relatively high-energy fast *He ions is narrow as shown in Fig. 5.6(b). Namely, the
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distribution has strong anisotropy in the relatively high-energy region. The width of the pitch-angle
distribution becomes broader as the energy is decreases. This is because the probability of the pitch-angle
scatterings due to the collisions with the bulk ions increases in the relatively low-energy region. The largest
population of its pitch-angle distribution is located around ¢pitch = 60 degrees. On the other hand,
relatively low-energy fast *He ions are dominant and no bump-on-tail structure is formed in the energy
direction. In the case of R = Regge, the most of the fast *He ions are located in relatively high-energy region
and the bump-on-tail structure is formed as shown in Fig. 5.6(c). In addition, the pitch-angle distribution is
narrow there, i.e., the fast *He ion distribution at R = Reqge has both of the bump-on-tail structure and the
strong pitch-angle anisotropy. The population of the pitch-angle distribution is the largest around ¢pitch =

56 degrees.
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Figure 5.6. Evaluated energy E and pitch-angle ¢pjtcn slowing-down distributions of the fast *He ions at
(@) R = Rayis, (b) R =4.25m and (c) R = Reqge at ¢ = 5.1 sec in E48461. Here, Rayjs and Reqge are
~3.53 m and ~4.43 m, respectively. Dashed lines indicate resonant energies E..s that satisfy the
Doppler-shifted cyclotron resonance condition of Eq. (2.44) for fast *He ion. Eyes is calculated by using the
measured frequency and toroidal wave number k, of the 2" harmonic ICECHe) and the *He ion cyclotron
frequencies f.3pge averaged during 7= 5-6 sec in E48461.
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Figure 5.7. Guiding-center orbits of the fast *He ion with E = 820 keV passing through the plasma axis and
the *He ion birth spatial distribution at ¢ = 5.1 sec in E48461. Their pitch angles are 94 (solid line), 104
(dashed line) and 114 degrees (dotted line) at the plasma axis. A contour map is the evaluated He ion birth
spatial distribution.

Figure 5.8 shows the energy distributions at R = 4.25 m and Regge at ¢ = 5.1 sec in E48461. These
distributions are the distributions at ¢pjrcn = ~60 degrees in the case of R = 4.25 m shown in Fig. 5.6(b)
and at ¢pich = ~56 degrees in the case of R = Reqge shown in Fig. 5.6(c). A gradient of the energy
distribution in the relatively high-energy region is negative in the case of R = 4.25 m. On the contrary, the
gradient of the energy distribution is positive (the bump-on-tail structure) in the relatively high-energy region
in the case of R = Regge-

Figure 5.9 shows the guiding-center orbits of the fast *He ions passing through the midplane edge of
the plasma on the low field side and the *He ion birth spatial distribution (same distribution as Fig. 5.5). As
we mentioned in Section 2.2.3, the processes for the formation of the bump-on-tail structure and the strong
anisotropy of the fast *He ions near the midplane edge of the plasma on the low field side are considered as
follows. The *He ions are produced mainly near the plasma center. The large number of the fast *He ions
having the pitch angles only near the trapped-passing boundary draw the large trajectories from the region
near the plasma center to the plasma edge on the low field side. Then, the fast *He ion cannot reach the
plasma edge when the scales of the trajectories become small as E is decreased by the collisions. Therefore,
the number of relatively high-energy fast *He ions is larger than that of the relatively low-energy fast *He
ions near the plasma edge on the low field side. As a result, the fast *He ion distribution has both of a
positive gradient in the energy direction (the bump-on-tail structure) and the strong pitch-angle anisotropy
near the plasma edge on the low field side.
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We calculated resonant energies Ees satisfying the cyclotron resonance condition of Eq. (2.44) for the
*He ions by using averaged values of measured frequency and toroidal wavenumber ko of the 2" harmonic

ICE(*He) and the *He ion cyclotron frequencies f.3ye during = 5-6 sec. ELos is given by,

2
E. = lm V2. = lm Ures||
res 2 3HeYres 2 3He cos ¢pitch

1 w = 1040 \
g MeHe k) cos ¢pitcn

where, v, is a resonant velocity of the fast *He ion and Vreg 1S its parallel velocity component to the

(5.1)

magnetic field line. The 2™ harmonic ICE(*He) frequency averaged during ¢ = 5-6 sec is ~47.3 MHz . The
averaged values of 2fczpe at R = 4.25m and R = Reqge are ~51.6 MHz and ~49.5 MHz, respectively.
The averaged kg, of the 2" harmonic ICE(*He) is about -4.60 m™. ky is negative when the waves of the
2" harmonic ICE(*He) propagate in the CTR direction. Here, we assumed ky = k. The Doppler shift kv
is negative in the frequency since v; of the most fast *He ions is positive as shown in Fig. 5.6(b) and (c) and
k, < 0. The sign of the Doppler shift is consistent with the experimental observation that the frequency of
the 2™ harmonic ICE(*He) is lower than 2f.3pe. Then, we calculated Ees of Eq. (5.1) as shown in Fig.
5.6(b) and (c). At R = 4.25m, E,es is not located near the fast *He ion distribution. On the other hand,
Eres passes through the bump-on-tail structure of the fast *He ion distribution at R = Reqge, 1.€., the
bump-on-tail structure of the fast *He ion distribution can satisfy the destabilization condition for the MCI
[1-5] at R = Reqge- Hence, the evaluated fast *He ion distribution at the plasma edge on the low field side is

consistent with the destabilization condition for the MCI.
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Figure 5.8. The energy slowing-down distributions at R = 4.25 m (squares) and R = Regge (circles) at ¢ =
5.1 sec in E48461. These distributions are the energy distributions at ¢pircn = ~60 degrees in the case of
R =4.25m shown in Fig. 5.6(b), and at ¢pjch = ~56 degrees in the case of R = Regqge shown in Fig.
5.6(c).
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Figure 5.9. Guiding-center orbits of the fast *He ions passing through the midplane edge of the plasma on the
low field side and the evaluated *He ion birth spatial distribution at r = 5.1 sec in E48461. Solid and dashed
lines indicate orbits of fast *He ions having E = 820 keV and 410 keV with ®pitcn = 56 degree, respectively.
Dotted-dashed and dotted lines are the orbits of the fast *He ions having £ = 820 keV with ¢piecn = 46
degree and 56 degree, respectively. Their pitch angles are values at the plasma edge on the low field side. A
contour map is the evaluated *He ion birth spatial distribution.
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5.1.3. Reproducibility of the evaluation of the fast *He ion distribution with the

OFMC

Here, we discuss reproducibility of the evaluated fast *He ion slowing-down distribution with the OFMC.
We can confirm the reproducibility by carrying out the orbit calculations several times with different random
seeds. To confirm the reproducibility of the distribution at R = Reqge, We calculated the fast *He ion orbits
several times with the different random seeds. These orbit calculations were conducted under the same
condition as that used for the calculation of Fig. 5.6 except for the random seed. Figure 5.10 shows the
energy distributions of the fast *He ions f(E) at R = Reqge 1n the cases with the different random seeds.
Here, we calculated these energy distributions by integrating the energy and pitch-angle distributions in the
pitch-angle direction. The case 1 (thick line) is a case where the random seed is the same as that used for the
calculation of Fig. 5.6. The differences in characteristics (e.g. the shape of the bump-on-tail structure)
between the distributions in these cases are small. The small differences come from the Monte-Carlo error
and have little influence on the discussion of the distribution in this study. Hence, the orbit calculation of the
fast *He ions with the OFMC has the sufficient reproducibility.
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Figure 5.10. The energy slowing-down distributions of the fast *He ions f(E) at R = Regge 1n the cases
with the different random seeds. A thick line and thin lines indicate the case 1 and the other cases,

respectively. The case 1 is a case where the random seed is the same as that used for the calculation of Fig.
5.6.
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5.2. Calculation of MCI dispersion and comparison with experimental
observation

5.2.1. Equations in wave dispersion code

For the calculation of the dispersions of the MCI, we newly developed a wave dispersion code that can
numerically solve the linearized wave equation with both of a shifted bi-Maxwell velocity distribution
function and of a drifting-ring-type distribution function under the homogeneous plasma condition. This
wave dispersion code has been developed based on the code that was developed by Prof. Dr. T. Watanabe
and Dr. S. Kakimoto. Their code can numerically calculate the dispersion relation of the uniform plasma in
the case when its velocity distribution function is given by the shifted bi-Maxwell distribution function [6, 7].
We have improved the code so as to treat fast ions with the drifting-ring-type distribution function. In this

section, we explain equations in the wave dispersion code.
a) Shifted bi-Maxwell velocity distribution

Here, we derive the dielectric tensor elements for the shifted bi-Maxwell distribution function. The shifted
bi-Maxwell function is given by [8],

2
Z ms(vz —v0)?) mg exp)— ms(vx + vy) (52)
27TTsn 2T 2nTg T 2Ts, '

where, Tg, and T, are the temperature in the parallel and perpendicular direction to the magnetic field line,

respectively. vy is the shifted parallel velocity of the bi-Maxwell distribution function. The wave equation
of Eq. (2.38) can be expressed by,

Hxx ny sz E,
H-E = ny Hyy Hyz Ey =0 (5~3)
H H,, H,,) \E,
Eq. (5.3) has nontrivial solutions if
Hxx ny sz
D(w,K) =det|Hyy Hyy, Hy|=0 5.4)
Hzx sz sz

The matrix elements of H for the shifted-bi-Maxwell function can be obtained by substitution of Eq. (5.2)
into Eq. (2.42). If B =(0,0,B) and k = (kx, ky, kz) in the orthogonal coordinate system, the matrix
elements of H is given by,
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where, [; is the modified Bessel function with the argument 9. Here, &, Z; and Z|' are,
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The function of Z;(&;) is called the plasma dispersion function, and is defined as,
i§
2(6) = 2iexp(=£) | exp(—x?) d 5.6)

Numerically solving the determinant of Eq. (5.4), we can obtain the dispersion relation for the waves in the
homogeneous plasma with the shifted bi-Maxwell distribution.

b) Drifting-ring-type velocity distribution

In the theoretical analysis of the MCI, the distribution having the bump-on-tail structure and the strong
anisotropy at the plasma edge is often approximated by the drifting-ring-type ion velocity distribution
function. One of the drifting-ring-type distribution functions normalized by the density is given by [1],

1 (v — vyc)?
2m3/2up {_ 2 6(vy —u) (5.7)

IIs

fo=

where v)|c is the center of the fast ion parallel velocity, v)|s is the spread of the distribution in the parallel
velocity direction and u is the perpendicular velocity to the magnetic field. This distribution is expressed by a
Gaussian in the parallel velocity direction and a delta function in the perpendicular velocity direction.

We derive the dielectric tensor elements for the above drifting-ring-type distribution function if
B =(0,0,B) and k = (k;,0,k;) in the orthogonal coordinate system. The dielectric tensor & for the
drifting ring-type distribution can be obtained by substitution of Eq. (5.7) into Eq. (2.42).

(A)gs 1
& j = 6i,j 1-— F + & j (5.8)

N

where,
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where, Z; is the plasma dispersion function of Eq. (5.6) with argument of ¢;, and J; is the Bessel function
with argument of Ay. J; and J;' are the first and the second derivatives of ], respectively. &, &; and 4,
are defined as follows.

W= kyvye — 10
kyvys

~

_w =k,

kyvys
kiu
10N

AOZ

Equation (5.8) was used for calculations of the dielectric tensor component of the drifting-ring-type velocity
distribution.
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5.2.2. Numerical solving method for the wave equation

In this wave dispersion code, an initial solution for the wave equation of Eq. (5.4) is numerically
calculated by using the residue theorem. Then, the wave equation is numerically solved by using the
Newton’s method with the calculated initial solution.

a) The residue theorem

To obtain the initial solution for the wave equation of Eq. (5.4), a method using the residue theorem is
adopted in this code. If an arbitrary function f(z) with argument of a complex number z is regular except
at singular points a4, a,, ..., a; inside a simple closed contour C, the residue theorem is expressed by,

ff(z)dz = 2mi(Res[f, a;] + Res[f, a,] + - Res[f, a;]) (5.9)
c

where, Res[f, a;] is a residue of f(z) at z = a;. As we mentioned in Section 5.2.1, the solution of the wave
equation exists when det|H| = 0. Therefore, if a value of integral of 1/ det|H| over C in a complex space
of the dispersion is not zero, the solution exists inside C. Figure 5.11 shows the schematic drawing of the

residue theorem used for the calculation of the initial solution of the wave equation.

Im(w)

C __ a singular pdint
‘f
o

Re(w)

Figure 5.11. A schematic drawing of the residue theorem used for the calculation of the initial solution of the

wave equation.

b) The Newton's method

Based on the initial solution obtained from the residue theorem method, the wave equation is numerically
solved by using the Newton’s method. Here, f(x) is an arbitrary function with argument of x and we
defined its solution X as f(X) = 0. Figure 5.12 shows the schematic drawing of the general Newton’s
method. A recursion relation that converges x; = X is given by,
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df (x;)
dx

X141 =% — f(x)/ (5.10)

The initial position x, is the calculated initial solution with the residue theorem method. The solution of the
wave equation can be numerically obtained by repeating the Newton's method.

vt y=f)

Vi1

—
Figure 5.12. A schematic drawing of the Newton’s method.
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5.2.3. Measurement results of dispersions of ICE(He)

In general, the dispersion of the ICRF waves is strongly affected by the plasma density as shown in Eq.
(2.42) and the wavenumber of the ICRF wave becomes large as the density increases. Figure 5.13 shows 7o
dependences of (a) normalized wave angular frequencies w/l03e(l = 1,2) and (b) toroidal wavenumbers
ky of the measured ICE(*He). These dependences consist of the observations in several discharges where
the plasma density and S, gradually increase. Error bars of the w/lf23y, are small well and negligible.
w /103ye of the fundamental and the 2" harmonic ICE(*He) is below the unity and that of the fundamental
ICE(’He) tends to decrease as T increases. On the other hand, kg of the ICE(*He) increases in the CTR
direction with 7ig. As we mentioned in Section 5.1.2, the values of the Doppler shifts kv, are negative.
Therefore, the relation between the observed k, and w/f23ye implies that the ICE(He) is excited under a
condition which is close to the Doppler-shifted *He ion cyclotron resonance condition because w/Q3pe
tends to decrease as the Doppler shifts becomes large in the negative direction.

(a) (b)
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Figure 5.13. Line-averaged density n. dependences of (a) wave angular frequency w and (b) toroidal
wavenumber k,, of the measured fundamental (circles) and 2" harmonic ICE(*He) (squares). The angular
frequency w is normalized by the *He ion cyclotron angular frequencies at the midplane edge of the plasma
on the low field side 103y (I = 1,2).

5.2.4. Comparison of dispersions of the calculated MCI with experimental

observation

We calculate the dispersions of the MCI driven by the fast *He ions with the drifting-ring-type velocity
distribution, and compare the calculated dispersions with the experimental observations shown in Fig. 5.13.
In this section, bulk plasma parameters estimated at the plasma edge on the low field side in the experiments
were used for the calculations, and the dispersions (angular frequency w and parallel wavenumber k) of
the MCI were calculated under the maximum linear growth rate condition. Here, we assumed kj ~ k),
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Nape/Np = 1074, Tp =T, = 300 eV and vys = 0.01v3y., Where vzye = /v"ZC +u?2 = ~7.2x10° m/sec

which corresponds to the speed of the fast *He ions with E = 820 keV. The pitch angle ¢pitch =
sin~'(u/v3ye) is set to be a pitch angle where the population in the pitch-angle distribution of the fast *He
ions at the plasma edge on the low field side is the largest. A ratio of the bulk plasma density at the plasma
edge to the line-averaged density 7, is assumed to be constant in order to estimate the temporal change of
the density at the plasma edge.

Figure 5.14 shows the comparison results of (a) normalized wave angular frequencies w/234. and (b)
parallel wavenumber of the ICE(’He) between the experimental observations and the MCI calculations.
w/f3ye of the calculated MCI is close to the experimental observation. In addition, k; of the calculated
MCl is consistent in a range of +1 m™" with the observations. Hence, the comparison results suggest that the
measured dispersions of the ICE(*He) is consistent with the MCI.
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Figure 5.14. Comparisons of (a) wave angular frequency w and (b) parallel wavenumber k; between the
observations of the ICE(3He) (Exp.) and the calculations of the MCI (Calc.). The angular frequency w is
normalized by the *He ion cyclotron angular frequencies at the midplane edge of the plasma on the low field
side (l3ye. Here, ky is assumed to be k. Circles and squares are the dispersions of the fundamental and
2" harmonic ICE(*He), respectively. Dashed lines indicate values where the dispersions of the observed
ICE(*He) and of the calculated MCI are equal.

The above comparison results suggest that the emission mechanism for the ICECHe) on JT-60U is the
MCI in terms of the dispersion. However, several assumptions were used for these calculations of the
dispersions of the MCI: the drifting-ring-type velocity distribution was adopted, the dispersions of the
uniform plasma were calculated under the maximum growth rate condition, and the plasma parameters such
as the density at the plasma edge were roughly estimated. In addition, the density ratio nzye/np and the
birth energy of the fast *He ions were assumed. Further quantitative investigations of the dispersion of the
ICE using wave models, in which wave mode structures in the tokamak plasma are taken into account, would
be necessary to realize the application of the ICE to the fast ion diagnostics. These investigations of the
dispersion using the above wave models are future works.
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Chapter 6
Identification of Key Characteristics of Fast

‘He 1Ion Velocity Distribution Driving
ICE(CHe)

It is suggested in the previous chapter that the emission mechanism for the ICE(*He) is the MCI in terms
of the dispersion. In this chapter, we have investigated the characteristics of the fast *He ion velocity
distribution driving the ICE(*He) in order to reveal whether the observed ICE(‘He) is consistent with the
MCI even in terms of the fast *He ion velocity distribution. First, we describe setup for the more quantitative
evaluation of the fast *He ion velocity distribution than that in the previous chapter. Then, we explain a
typical discharge where ICE(*He) disappears in spite of a relatively high neutron emission rate, and
evaluation results of the distributions in both cases with and without the ICE(*He) excitation. Finally, we
compare the distributions between the cases with and without the ICECHe) excitation to identify the key
characteristics of the distribution driving the ICE(*He), and discuss the emission mechanism for the
ICE(*He) in terms of the fast *He ion velocity distribution.

6.1. Setup for more quantitative evaluation of the distributions

In this chapter, to more quantitatively evaluate the fast *He ion velocity distributions than those in the
previous chapter, we additionally took into account the following effects: i) the effects of the toroidal
magnetic field ripples, and ii) the influences of the scattering angle of the fusion reaction and the fast D ion
velocity vectors on the *He ion birth velocity distribution. In addition, in order to more locally evaluate the
fast *He ion velocity distribution, iii) influences of the Larmor motions of the fast *He ions near the sampling
box were also taken into account.

i) As we mentioned in Section 3.1, the ferritic steel tiles are installed on the wall on JT-60U [1]. We
considered the toroidal magnetic field ripples including the influences of the steel tiles on the wall to
calculate the fast ion orbits under the more detailed magnetic configuration. ii) The birth energy of the fusion
product strongly depends on the scattering angle of the fusion reaction and the fuel ion velocity vectors [2] as
we mentioned in Section 4.2.3. The influence of the scattering angle and the fast D ion velocity vectors were
taken into account to more quantitatively evaluate the *He ion birth velocity distribution, which affects the
fast *He ion slowing-down distribution. iii) To more locally evaluate the fast He ion velocity slowing-down
distribution, we made the sampling box smaller. Its lengths are 0.02 m in both R and Z directions. The effects
of the Larmor motions of the fast *He ions on the evaluation of the distribution must be taken into account
since some fast “He ions have larger Larmor radii than the size of the sampling box. Thus, we took into
account the influence of the Larmor motions of the fast *He ions on the evaluation of the distributions as
follows. We evenly distribute the weight of the test particle into 64 weight elements on a one-cycle full-gyro
orbit when the test particle is located near the sampling box. Here, we approximated this full-gyro orbit as a
circle with the Larmor radius on the poloidal cross section, and assumed that the center of the full-gyro orbit
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is located at the position of the guiding-center orbit. We accumulate the weight elements located inside the
sampling box to evaluate the slowing-down velocity distribution.

In this section, taking into account the above effects, we firstly evaluate the fast *He ion slowing-down
distribution at # = 5.1 sec in E48461 as a typical case. We have been already evaluated the distribution at ¢ =
5.1 sec in E48461 in the previous chapter (see Fig. 5.6) without taking into account the above effects. Figure
6.1 shows the sampling boxes at R = 4.25 m and R, used for the local evaluation of the fast He ion
distribution. The plasma parameters shown in Fig. 5.3 and the equilibrium shown in Fig 5.4 were used for
the fast ion orbit calculations.

The outermost
t= 5.1 sec, E48461 magnetic surface 0.4
T .

Figure 6.1. A schematic drawing of sampling boxes at R =4.25 m (dotted box) and R = Regge (solid box)

used for the local evaluation of the fast *He ion velocity distribution at # = 5.1 sec in E48461.

Figure 6.2 shows the *He ion birth energy and pitch-angle distribution at # = 5.1 sec in E48461. This birth
energy and pitch-angle distribution shown in Fig. 6.2 is the birth distribution integrated in the whole plasma
region. The birth distribution has a broad structure in the energy direction and a pitch-angle anisotropy due to
the influence of the scattering angle and the fast D ion velocity vectors. We used Fig. 6.2 for the initial
velocity condition of the fast *He ion orbit calculations. Figure 6.3 shows the evaluated fast *He ion
slowing-down distributions at (a) R =4.25m and (b) R = Regge at ¢ = 5.1 sec in E48461. Both
distributions have the strong anisotropies in the relatively high-energy region. At R = 4.25m, the
distribution has no bump-on-tail structure in the energy direction. On the contrary, the bump-on-tail structure
is formed in the distribution at R = Regge. These characteristics of the evaluated distributions shown in Fig.
6.3 are the same as those in Fig. 5.6. On the other hand, in the case of R = Reqge, the energy at the highest
distribution density of the bump-on-tail structure is shifted from E = 820 keV to about 500 keV. This is
because the birth energy is less than 820 keV in ¢piecn > 90 degree as shown in Fig. 6.2. In ¢pjtch > 90
degree, the fast He ions near the plasma center can draw the banana orbits and move toward the low field
side as shown in Fig. 5.9. E.¢s is passing nearer the largest population of the bump-on-tail structure than

59



that in Fig. 5.6(c). Therefore, the evaluations of the distributions shown in Fig. 6.3 can be considered as more
quantitative evaluations than those of the distributions shown in Fig. 5.6, while characteristics of these

distributions are qualitatively same.
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Figure 6.2. The evaluated birth energy E and pitch-angle ¢pitcn distributions of the *He ions at £ = 5.1 sec
in E48461.
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Figure 6.3. Evaluated energy E and pitch-angle ¢pjtcn slowing-down distributions of the fast *He ions at
(@) R =4.25m and (b) R = Reqge at ¢ = 5.1 sec in E48461. Dashed lines indicate the resonant energies
Eres. The toroidal magnetic field ripples and the influence of the scattering angle and the fast D ion velocity
vectors on the *He ion birth velocity distribution are taken into account. The sampling boxes shown in Fig.
6.2 are used for these evaluations.
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6.2. Disappearance of ICE(3He) in spite of relatively high neutron emission rate

On JT-60U, disappearances of the ICE('He) were observed in spite of relatively high neutron emission
rates. The amount of the *He ion productions by the DD fusion reactions is almost equal to the neutron
emission rate S, because neutrons and *He ions are produced by the same DD fusion reaction of Eq. (1.3b)
and the DD fusion reactions are dominant. Therefore, it is expected that the intensity of the ICE(3He)
becomes stronger as S, increases if the characteristics of the fast *He ion distribution are not changed. Thus,
we focused on a possibility that the ICE(*He) disappears due to the change of the characteristics of the fast
*He ion velocity distribution. The change of the characteristics of the distribution may decrease the growth
rate of the MCI and lead to the disappearance of the ICE('He).

Figure 6.4 shows the time evolution of (a) the plasma current I,,, (b) the safety factor at 95 % the
magnetic flux qo5 and (c) R at the plasma edge on the low field side Regge in E48473, where the ICE(He)
disappears in spite of the relatively high S,. Reqge decreases from ¢ = ~7.0 sec to ~9.2 sec, indicating that
the plasma surface on the low field side moves toward the high field side. I, qos and Regqge are
simultaneously almost constant until # = ~7.0 sec, and become almost constant again from ¢ = 9.2 sec.

Namely, the plasma equilibrium is stationary until £ =~7.0 sec and from ¢ = 9.2 sec in E48473.
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Figure 6.4. Time evolution of (a) the plasma current I, (b) gsafe at 95 % the magnetic flux qq95 and (¢) R
position at the midplane edge of the plasma on the low field side Regge in E48473.

Figure 6.5 shows the time evolution of (a) the P-NB powers Pyg, (b) the line-averaged density 7., (c) the
stored energy Wy, and (d) the neutron emission rate S,, in E48473. The plasma parameters of n, and Wy,
and S, are almost constant until # = 7.0 sec and from ¢ = 9.2 sec as well as the plasma equilibrium. The
perpendicular P-NBs are additionally injected from ¢ = 8.8 sec after its temporary stop, and S,, drastically
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increases due to the additional P-NB injections. Then, S, from ¢#= 9.2 sec is much larger than that until # =
7.0 sec. Figure 6.5(e) shows the time evolution of the ICRF fluctuations measured with the ICRF antenna
strap. Dotted and dashed lines are f.p and f.3ge atthe plasma edge on the low field side, respectively. The
2" harmonic ICE(*He) is clearly observed. However, the 2" harmonic ICE(‘He) is not observed at 7 = 9.2
sec, at which S, is relatively high. Figure 6.5(f) shows the time evolution of the toroidal wavenumber k,,

of the 2™ harmonic ICE(*He).
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Figure 6.5. Time evolution of (a) the perpendicular (solid line) and tangential P-NB powers (dotted line)
Py, (b) the line-averaged density 7, (c) the diamagnetic stored energy Wy, (d) the neutron emission rate
Sn, (e) the frequency spectrum of the fluctuations and (f) the toroidal wavenumber k, of the 2" harmonic

ICE(’He) in E48473. (e) Dotted and dashed lines are the cyclotron frequencies f.p and f.3ge at the
midplane edge of the plasma on the low field side, respectively.
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Radial profiles of the electron density n, and temperature T, were simultaneously measured at ¢ = 5.4
sec and at t = 9.4 sec in E48473. Figure 6.6 shows the radial profiles of (a) ne, (b) T, and (c) the safety
factor qgafe at t=15.4 sec and 9.4 sec. We calculated the slowing-down times of the fast *He ions with E =
820 keV at the plasma axis 75y around ¢ = 5.4 sec and ¢ = 9.4 sec by using the plasma parameters of n, and
T, shown in Fig. 6.6 and Eq. (2.31). 15 around ¢ = 5.4 sec and ¢ = 9.4 sec are estimated to be about
0.15-0.2 sec and about 0.2-0.25 sec, respectively. The 2" harmonic ICE(*He) continues to be observed until ¢
= 7.0 sec and is not observed from ¢ = 9.2 sec even on the time scale longer than 7¢y. This indicates that the
2" harmonic ICE(*He) is observed under the plasma condition around ¢ = 5.4 sec and not observed under the
plasma condition around 7 = 9.4 sec even when the fast *He ion velocity distributions become the
slowing-down distributions. Thus, we evaluated the fast *He ion slowing-down distributions around ¢ = 5.4
sec for a case with the ICE(3He) excitation, and around ¢ = 9.4 sec for a case without the excitation in
E48473. We used the plasma parameters shown in Fig. 6.6 for the fast ion orbit calculations for the cases
with and without the ICE(*He) excitation in E48473. In these orbit calculations, we took into account the
toroidal magnetic field ripples and the influence of the scattering angle and the fast D ion velocity vectors on
the birth velocity distribution to more quantitatively evaluate the fast *He ion velocity distribution as we

mentioned in Section 6.1.
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Figure 6.6. Radial profiles of (a) the electron density n., (b) the electron temperature T,, and (c) the safety
factor qgafe att= 5.4 sec (circles and solid lines) and at # = 9.4 sec (squares and dashed lines) in E48473.

Figure 6.7 shows the plasma equilibriums at (a) # = 5.4 sec and (b) ¢ = 9.4 sec in E48473. The plasma
surface on the low field side at # = 9.4 sec is located at relatively higher field side than that at = 5.4 sec.
Figure 6.7 also shows the sampling boxes used for the evaluation of the fast *He ion slowing-down
distributions in the cases with and without the ICE("He) excitation in E48473. The small sampling boxes are
located at the midplane edge of the plasma on the low field side, and were used to locally evaluate the fast
*He ion slowing-down distributions there. The influences of the Larmor motions of the fast *He ions on the

evaluation of the distributions were also taken into account.
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Figure 6.7. The plasma equilibriums (left) and sampling boxes (right) used for the evaluation of the fast *He
ion velocity distribution (a) at # = 5.4 sec and (b) at # = 9.4 sec in E48473. The sampling boxes are located at
R = Reqge-
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6.3. Evaluation results of the distributions

The *He ion birth spatial and velocity distributions in the cases with and without the ICE(*He) excitation
in E48473 were evaluated from the fast D ion orbit calculations. Figure 6.8 shows the *He ion spatial
distributions in the cases (a) with and (b) without the ICECHe) excitation in E48473. These *He ion birth
spatial distributions shown in Fig. 6.8 are the birth distributions integrated over birth energy and pitch angle
of the *He ions. The *He ions are produced mainly near the plasma core. Figure 6.9 shows the *He ion birth
energy and pitch-angle distributions in the cases (a) with and (b) without the ICE(*He) excitation in E48473.
These *He ion birth energy and pitch-angle distributions shown in Fig. 6.9 are the birth distributions
integrated in the whole plasma regions. We used these *He ion birth spatial and velocity distributions for the

initial conditions of the fast *He ion orbit calculations.
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Figure 6.8. The evaluated *He ion birth spatial distributions on the poloidal cross section in the cases (a) with
the ICE(*He) excitation and (b) without the excitation in E48473. Dotted lines are the outermost magnetic

surface.
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Figure 6.9. The evaluated birth energy E and pitch-angle ¢pjccn distributions of the *He ions in the cases
(a) with the ICE(*He) excitation and (b) without the excitation in E48473.
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Figure 6.10 shows the evaluation results of the fast *He ion energy E and pitch-angle ®pitch
slowing-down distributions at the plasma edge on the low field side in the cases (a) with and (b) without the
ICE(’He) excitation in E48473. Here, we define E.o as the critical energy E.. atthe plasma axis atz=5.4
sec and 9.4 sec in E48473. E. is calculated by using the plasma parameters in Fig. 6.6 and Eq. (2.30). The
calculated E..o is about 90 keV at ¢ = 5.4 sec and is about 130 keV at ¢ = 9.4 sec in E48473. The widths of
the pitch-angle distributions of the relatively high-energy fast *He ions (E > E.yq) are narrow in the both
cases, indicating that both distributions are strongly anisotropic in the relatively high-energy region. The
pitch-angle distribution densities are the largest around ¢piecn = 54 degrees in the case with the excitation,
and around ¢pircn = 58 degrees in the case without the excitation. In the relatively low-energy region
(E < E¢rp), both pitch-angle distributions become broader. This is because the pitch-angle scatterings due to
the collisions with the bulk ions frequently occur particularly when E < E.q. In the case with the excitation,
the bump-on-tail structure is formed in the relatively high-energy region. We calculated the resonant energy
Eres of Eq. (5.1) by using the frequency and the toroidal wavenumber k,, of the 2" harmonic ICE(*He) and
the *He ion cyclotron frequency fe3ye at the midplane edge of the plasma on the low field side during 7 =
5-7 sec in E48473. The 2" harmonic ICE(*He) frequency and 2f.3ye averaged during ¢ = 5-7 sec in E48473
are ~47.3 MHz and ~49.4 MHz, respectively. The averaged k, is about -4.75 m™. Then, we assumed
ky = kg for the calculation of Eyes. Eves 18 passing near the largest population of the bump-on-tail structure,
indicating that the evaluated distribution in the case with the excitation can satisfy the destabilization
condition for the MCI [3-7]. On the other hand, in the case without the excitation, the energy distribution is a
broad structure around ¢pircn = 58 degrees. The process of the formation of the broader energy distribution
in this case is considered as follows. The fast *He ions with relatively low energies can pass through the
plasma edge on the low field side when the plasma surface on the low field side moves toward the high field
side. As a result, the proportion of the relatively low-energy fast *He ions becomes large in the distribution at
the plasma edge on the low field side. Then, the relatively low-energy fast *He ions would make the
bump-on-tail structure in the energy distribution broader. In the next section, we compare the distributions
between the cases with and without the ICE(*He) excitation in detail.
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Figure 6.10. Evaluated energy E and pitch-angle ¢pitcn slowing-down distributions of the fast *He ions at
the midplane edge of the plasma on the low field side (see Fig. 6.7) in the cases (a) with the ICE(He)
excitation and (b) without the excitation in E48473. Dashed line is the resonant energy Eyes. Ecpo 1S the
critical energy E.. of Eq. (2.30) at the plasma axis.
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6.4. Comparisons of the distributions between the cases when ICE(CHe) is

observed and not

First, we compared the fast *He ion slowing-down distributions at the plasma edge on the low field side
between the cases with the ICE(He) excitation and without the excitation in E48473 in terms of
characteristics of the pitch-angle distribution and of the energy distribution. Figure 6.11 shows (a)
normalized pitch-angle distributions and (b) normalized energy distributions of the fast *He ions in the cases
with and without the ICE(*He) excitation in E48473. Here, the pitch-angle distributions are the distributions
averaged from E = 480 keV to 520 keV. The energy distributions are the distributions averaged around
®pitch = 54 degrees in the case with the excitation, and around ¢piccn = 58 degrees in the case without
the excitation. These distributions shown in Fig. 6.11 are normalized with the maximum distribution
densities fiax. Almost same sharply peaked structures are formed in both normalized pitch-angle
distributions. In the case with the excitation, the normalized energy distribution has the bump-on-tail
structure peaked around E = 500 keV. On the other hand, the normalized energy distribution has a relatively
flat structure in the energy region of E .o < E < ~500 keV in the case without the excitation. Therefore, the
characteristics of the energy distributions are clearly different between the cases with and without the
excitation. Thus, we focused on the bump-on-tail structure formed in the energy distribution, and
investigated the difference of its characteristics between the cases with and without the excitation.
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Figure 6.11. Normalized (a) pitch-angle ¢pitcn distributions and (b) energy E distributions of the fast *He
ions at the midplane edge of the plasma on the low field side in the cases with the ICE(*He) excitation
(circles) and without the excitation (squares) in E48473. The pitch-angle distributions are the distributions
averaged in E = 500 £ 20 keV. The energy distributions are the distributions averaged in ¢pjch = 54 £ 3
degrees in the case with the excitation, and averaged in ¢pjrcn = 58 = 3 degrees in the case without the

excitation. These averaged distributions are normalized with their largest value of the distribution densities

fmax-
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Here, we define a normalized gradient of the energy distribution as (Af/AE)/fn, where Af/AE is a
gradient of the energy distribution from E = 200 keV to 500 keV and fy is the energy distribution density
at E = 500 keV. (Af/AE)/fn becomes large in the positive direction when the sharply peaked
bump-on-tail structure is formed in the energy direction. (Af/AE)/fy is negative when no bump-on-tail
structure is formed. Figure 6.12 shows R position dependences of the normalized gradients (Af/AE)/fx
in the cases with and without the ICE(*He) excitation. The energy distributions are the distributions averaged
around the pitch angles where the distribution density is the largest. (Af/AE)/fy near the plasma edge on
the low field side in the case with the excitation is larger than that in the case without the excitation. In
addition, positive values of (Af /AE)/fy are localized near the plasma edge on the low field side in the case
with the excitation. The region near the plasma edge on the low field side is considered as the emission
region for the ICE(*He) based on the relation between the observed ICE(‘He) frequency and the *He ion
cyclotron frequency [8-10]. Hence, it is suggested that the peaked bump-on-tail structure formed in the
energy distribution contributes to the ICE(*He) excitation. Thus, we evaluated (Af/AE)/fy at the midplane
edge of the plasma on the low field side in several discharges, and compared (Af/AE)/fy between the
cases with and without the ICE(*He) excitation.

NS (U S
= 2 @ with ICE(®He)
L 0 w/o ICE(3He) @
=~ | o®
< O
Z OF-——————== H O=-
o) | Enun.ga.o
z ] oo
2

_3 --------- | I B B I 1 | I B B I 1

0.7 0.8 0.9 1

(R - Raxis) / (Redge o Raxis)

Figure 6.12. R position dependences of normalized gradients of the energy distributions (Af/AE)/fy in
the case with the ICE(CHe) excitation (circles) and without the excitation (squares) in E48473. Here, Af /AE
is the gradient of the energy distribution from E = 200 keV to 500 keV and fy is the energy distribution
density at E =500 keV.

Figure 6.13 shows the relation between (Af/AE)/fy of the evaluated fast *He ion energy distributions
and measured amplitudes of the 2" harmonic ICE(*He) in the several discharges where one or more NBs are
injected and S, > 2x10'* n/sec. The amplitudes in the case without the ICE(*He) excitation are set to be
on the horizontal axis. The ICECHe) tends to be observed in the relatively large region of (Af/AE)/fx.
Hence, the analysis results of the fast *He ion velocity distributions indicate that the formation of the
relatively peaked bump-on-tail structure in the energy distribution is necessary for the ICE(He) excitation.
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Figure 6.13. A relation between the normalized gradients of the evaluated fast *He ion energy distributions
(Af/AE)/fy and measured amplitude of the 2™ harmonic ICE(*He) in several discharges. Circles and
squares are data points in the cases with the ICE(*He) excitation and without the excitation, respectively. The
data points of the case without the excitation are set to be on the horizontal axis.
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Chapter 7
Influence of Gradient of Bump-on-Tail

Structure in the Energy Direction on Linear
Growth Rate of the MCI

The analysis results of the fast *He ion velocity distribution in the previous chapter indicate that the
formation of the relatively peaked bump-on-tail structure in the energy direction is necessary to drive the
ICE(He) and the characteristics of the bump-on-tail structure are important to understand the emission
condition for the ICE("He) on JT-60U. In this chapter, we have improved our wave dispersion code to
numerically calculate the dispersion with a fast *He ion velocity distribution function that can have the
narrow-width pitch-angle distribution and express both broad and sharply peaked bump-on-tail structures in
the energy direction. Then, we have investigated influences of the gradient of the bump-on-tail structure in
the fast *He ion velocity distribution on the linear growth rate of the MCI by using the improved code.

First, we explain improvement methods of our wave dispersion code so that the dispersion can be
numerically calculated for an arbitrary velocity distribution function. Then, we describe results of its
benchmark tests. Next, we introduce the function for the fast *He ion velocity distribution. Finally, we
explain calculation results of the growth rate of the MCI by using the improved wave dispersion code, and
discuss the influences of the gradient of the bump-on-tail structure on the growth rate.

7.1. Extension of velocity distribution function used in the wave dispersion code

to arbitrary function

The analysis result of the fast *He ion velocity distribution shows that the emission condition for the
ICE(*He) strongly depends on the gradient (or the spread) of the bump-on-tail structure in the energy
direction as shown in Fig. 6.13. In the previous theoretical studies using the drifting-ring-type distribution,
the necessity of the sharply peaked fast ion velocity distribution for the excitation of the ICE has been
suggested [1, 2]. The linear growth rate of the MCI increases as the spread of the distribution becomes
smaller. In other words, the MCI growth rate increases as the gradient of the distribution becomes steep.
These calculations were carried out with a general wave model, in which the linear theory and the
homogeneous plasma model are assumed as in our wave dispersion code. In these studies, not only the
spreads of the bump-on-tail structure in the energy direction, but also the widths of the pitch-angle
distribution were simultaneously changed. The drifting-ring-type distribution function such as Eq. (5.7),
which is adopted in our wave dispersion code, cannot express the broad bump-on-tail structure in the energy
direction while the narrow width of the pitch-angle distribution is kept. Therefore, the influences originating
from the changes in the spread of the bump-on-tail structure and in the width of the pitch-angle distribution
cannot be distinguished when the drifting-ring-type distribution function is used for the calculations. In other
studies, it has been reported that the spread of the bump-on-tail structure in the energy direction has large
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influence on the linear growth rate of the MCI [3, 4]. In these calculations, the width of the pitch-angle
distribution was assumed to be sufficiently narrow and the pitch-angle distribution was expressed by a delta
function. In addition, a wave model for compressional Alfvén eigenmodes localized at the plasma edge on
the low field side and |k;| < k, were assumed. In order to simply understand the emission mechanism for
the ICE(*He), it is important to investigate the influence of the gradient of the bump-on-tail structure on the
growth rate of the MCI under the general wave model. Thus, we extended the velocity distribution function
model used in the wave dispersion code to the arbitrary one in order to investigate the contribution of the
gradient of the bump-on-tail structure to the emission condition for the ICE(*He) in terms of the growth rate
of the MCI under the general wave model.

7.1.1. Numerical calculation methods with tent function for the analytic

continuation

An issue is known that the second term in the right side of Eq. (2.42) cannot be numerically calculated
with a simple trapezoidal integration method for the arbitrary distribution function fy, when the solution is
Im(w) < 0 [5]. This is because singular points exist at the cyclotron resonance conditions w = 1025 + kv,
in the integrand. To resolve this issue, a numerical calculation method with linear tent functions has been
often used [6, 7]. In this method, the numerator is approximated as a sum of the linear tent functions. Then,
the second term can be numerically calculated even when Im(w) < 0. We adopted the numerical calculation
method with the linear tent functions and improved the wave dispersion code used in Chapter 5 so that the
dispersion relation can be numerically solved even when f, is the arbitrary distribution function and
Im(w) < 0.

The second term in the right side of Eq. (2.42) can be expressed by,

I f _ 1)
) o=y -1 '
where,
2
wps le ast ast 1
Clo) = 2m w? fles'l (Z dv, h oy n_sdvl (72)

Here, we define meshes of the parallel velocity v, at equal velocity spaces as vy; = vj_1 + Av), where j
is the mesh number and Avj is the velocity mesh space. Then, we approximated C(v;) with the linear tent
function T; as follows:

Cvy) = Z ()T (7.3)
j
where, the linear tent function T; is given by,
1— B
Ty = Ay
0 otherwise.

iflvy — vy,| < Ay, (7.4)

Here, we define the parallel velocity vy; —at the mesh number j,, as vy; = (w — lf)/ky. Substituting
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Eq. (7.3) into Eq. (7.1) yields,

} ‘ C(vy) Z C(V1j4 )

I, = s Ki_j = TK’ (7.5)

- II - II
j j

where, K; is given by,

(7.6)

(7.7)

The dielectric tensor for the arbitrary distribution function can be numerically calculated by substitution of
I; of Eq. (7.5) into the second term in the right side of Eq. (2.42).

7.1.2. Benchmark test

We carried out benchmark tests to validate our improved wave dispersion code in which the numerical
calculation method with the tent function is adopted. In these benchmark tests, we compared analytical and
numerical solutions of the wave equations. Here, we used the model for the homogeneous D plasma
including the minority *He ions.

Two cases of the benchmark tests were carried out. i) The first one is a case when the velocity distribution
function of the minority *He ions is the isotropic Maxwell distribution and its temperature is 10 keV. ii) The
second one is a case when the *He ion velocity distribution function is the bi-Maxwell distribution. In this
case, the parallel and perpendicular temperatures are 10 keV and 300 keV to the magnetic field line,
respectively. Namely, the distribution has a strong temperature anisotropy. The velocity distribution
functions of the bulk D plasma are assumed to be the isotropic Maxwell distribution in both cases. The
dielectric components can be analytically calculated when the velocity distribution function is the (bi-)
Maxwell distribution. Thus, we calculated the dielectric components of the minority *He ion by using both of
the analytical method and the numerical method with the tent function, while we calculated the bulk plasma
component only analytically.

The common parameters used for the benchmark tests are as follows. The magnetic field strength B is 3
T, densities of the electron n, and the D ion np are 1x10" m™, their temperatures are T, = Tp =300¢eV,
and the wave propagation angle ¢, = sin~'(k,/|k|) is 80 degree. The density of the minority *He ions
Nage is 1x10" m™.

Figure 7.1 shows the calculation results of the real angular frequency Re(w/Q3y.) and the linear growth
rate Im(w/Q3ye) as a function of the wavenumber k in the cases when the *He ion velocity distribution
functions are (a) the Maxwell distribution and (b) the bi-Maxwell distribution. The values on the vertical
axes are normalized with the *He ion cyclotron angular frequency f3pe. It is clearly shown that the
numerical solution almost reproduces the analytical one even if Im(w) < 0 in both cases. It was confirmed

that our improved wave dispersion code can numerically solve the dispersion even if Im(w) < 0.
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Figure 7.1. The calculation results of Re(w/23ye) (upper) and Im(w/234e) (lower) as a function of k in
the cases when the *He ion velocity distribution functions are (a) the Maxwell distribution and (b) the
bi-Maxwell distribution. The dispersion relations on the fast Alfvén wave branch are shown. Solid lines
indicate the analytical solutions and squares are the numerical solutions. Here, the *He ion temperatures used
for the calculations are (a) 10 keV in both parallel and perpendicular directions, and (b) 10 keV in the
parallel direction and 300 keV in the perpendicular direction to the magnetic field line.

7.2. Function for fast *He ion velocity distribution

In this section, we introduce a following *He ion velocity distribution function f3pe that can have the
narrow-width pitch-angle distribution and express both broad and sharply peaked bump-on-tail structures in
the energy direction.

Fame = Cqexp |- {(v) — vop) cos py + (v — vy, ) sin ¢p}?
3He = Lg €Xp &7% 1
ex [_ {—=(v) —vg) singpg + (v, — vy, ) cos ¢0}2] (78
P 6175

where vq, and vy, are parallel and perpendicular velocities at the largest population of the velocity
distribution, respectively. ¢, is a pitch angle at the largest population and defined as ¢, = sin™(vy, /v,).
dvg and v, are velocity spreads of the distribution in the energy direction and in the pitch-angle direction,
respectively. The decrement of dvg indicates the increment of the gradient of the bump-on-tail structure in
the energy direction. C4 is a normalization constant of the velocity distribution function.

Figure 7.2 shows examples of the modeled *He ion velocity distributions with Eq. (7.8) when ngye =
3x10° m>, vy, = 5.65 x10° m/sec, ¢y = 56 degree, Vo = Vg COS g, VoL = VpSing, and v, =
0.05x10° m/sec. nape, Vo and ¢, are set to be similar values to those of the evaluated fast *He ion
velocity distribution at the midplane edge of the plasma on the low field side such as the distribution at ¢ =
5.4 sec in E48473 (see Fig. 6.10(a)). The largest population of the bump-on-tail structure in Fig. 6.10(a) is
located around E = ~500 keV and ¢piccn = ~54 degrees. v, is almost corresponding to the speed of the
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*He ion having the energy of 500 keV. The distributions with (a) dvg = 0.0lvy and (b) 0.1v, are shown.
Here, we adjusted Cq so that nzye is kept to be constant when 6vg changes. The distributions of Eq. (7.8)
can express different spreads in the energy direction while the widths in the pitch-angle distribution are

narrow.
(a) v =0.01 v, (b) ovg =0.1 v,
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Figure 7.2. The modeled *He ion velocity distributions of Eq. (7.8) in the case of (a) dvg =0.01 v, and (b)
0.1 vy. Other parameters for the distributions are as follows: v, = 5.65 x10° m/sec, ¢, = 56 degree, Vo =
Vg €OS g, Vo1 = Vg Singy, dvp = 0.05x10° m/sec and ngpe =3x10° m™.

7.3. Influence of gradient of bump-on-tail structure on linear growth rate of the

MCI

We calculated the dispersion of the MCI by using the improved wave dispersion code. The calculation
model is the uniform D plasma including the minority fast *He ions with the velocity distributions of Eq.
(7.8). The parameters used for the calculations are as follows. B =2.5T, ne = np =2x10"m>, T, = Tp
=300 eV, nape = 3x10° m>, v, = 5.65 x10° m/sec, and ¢o = 56 degree. These values are estimated
from the plasma parameters at the plasma edge on the low field side at # = 5.4 sec in E48473, and set to be
similar to the parameters of the evaluated fast He ion distribution there. Here, we assume the wave
propagation angle ¢, = 100 degree, vy = v €0S g, Vo1 = Vg Singy and dv, = 0.05x10° m/sec.

Figure 7.3 shows calculation results of Im(w/0234e) of the MCI in cases of dvg = 0.01vy, 0.015v, and
0.02v,. The horizontal axis is Re(w'/Q23ye), Where w’ = w — kyvg;. The MCI becomes unstable in the
frequency of Re(w') ~ 203pe. Im(w/03y.) decreases as Svg increases. Figure 7.4 shows Ovg
dependence of the maximum value of Im(w/Q34e). The maximum value of Im(w/03y.) drastically
increases as dvg becomes small. Namely, the linear growth rate of the MCI significantly increases as the
gradient of the bump-on-tail structure becomes steep. These calculation results of the dependences of the
growth rate of the MCI on the spread of the bump-on-tail structure are consistent with the previous
theoretical works [1-4], and qualitatively agree with the analysis results of the characteristics of the fast *He
ion velocity distribution driving ICE(He) (see Fig. 6.13). Hence, we have revealed that the growth rate of
the MCI is qualitatively consistent with the excitation condition of the ICE(*He).
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Figure 7.3. Im(w/03ye) of the MCI as a function of Re(w'/Q34e). Here, w’ is defined as w' = w —
kyvgy. Solid, dashed and dotted lines indicate the linear growth rates in the cases of dvg = 0.01vy, 0.015v,
and 0.02v,, respectively. Other parameters used for the dispersion calculations are as follows: B = 2.5 T,
Ne = np = 2x10"® m>, T, = Tp = 300 eV, nzge = 3x10° m>, vy = 5.65 x10° m/sec, ¢, = 56
degree, o) = Vg €OS ¢g, Vo1 = VpSingy and Sv, = 0.05x10° m/sec.
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Figure 7.4. Dependence of the maximum Im(w/03y.) of the MCI on the spread of the bump-on-tail
structure Svg. Parameters used for the dispersion calculation are the same as those in Fig. 7.3 except for
(SUE.

However, there are still a few quantitative discrepancies between the evaluated fast *He ion velocity
distribution and the dependence of the MCI growth rate on the gradient of the bump-on-tail structure. For
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examples, i) the absolute value of the calculated growth rate of the MCI is not high enough, and ii) the
gradient of the evaluated bump-on-tail structure is relatively small.

i) The growth rates even in the case of dvg = 0.01v, are lower than 10 order which is the least value
expected from a time scale of the observed growth of the ICECHe). One of the possibilities is that the
emission region for the ICE('He) is actually located slightly inside the plasma edge on the low field
side. n3ye inside the plasma edge is much higher than that at the plasma edge. In general, the growth rate of
the MCI increases as nzye becomes high when the characteristics of the velocity distribution do not change.
In addition, the gradient of the evaluated bump-on-tail structure of the fast *He ion velocity distribution is
still positive even slightly inside the plasma edge as shown in Fig. 6.12. In the dispersion calculations shown
in Figs. 7.3 and 7.4, the growth rates were evaluated by using the plasma parameters and the distribution
only at the plasma edge on the low field side. Therefore, there is a possibility that the growth rate of the MCI
is underestimated since nsye used for the calculation is the value at the plasma edge. Moreover, our wave
dispersion code adopts the wave model for the homogeneous plasma and does not include the wave mode
structures in the tokamak plasma. This limitation of the wave model would also deteriorate the quantitativity
of the MCI growth rate calculations.

ii) The positive gradients of the evaluated bump-on-tail structures shown Fig. 6.13 are relatively small by
comparison with the dependence of the calculated growth rate on dvg shown in Fig. 7.4. A possible reason
is the limitation of the orbit calculation model used in this study. The positive gradient of the bump-on-tail
structure is formed because the fast *He ions cannot reach the plasma edge on the low field side when their
energies are decreased. In the orbit calculations with the OFMC in this study, the loss processes of the fast
ions are only the collisions with the bulk plasma and with the wall. Therefore, the positive gradient of the
evaluated bump-on-tail structure would be larger when other fast ion loss processes are additionally taken
into account in the orbit calculations.

We discussed the quantitative discrepancies between the evaluated fast *He ion velocity distribution and
the dependence of the MCI growth rate. However, these reasons are not concluded in this study.
Understanding the cause for the above quantitative discrepancies is important toward the development of the
ICE diagnostics. Further quantitative investigations on the fast ion velocity distribution and on the MCI

growth rate are future works.
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Chapter 8
Conclusion

The purpose of this study is to reveal the emission mechanism for the ICE(*He) in JT-60U as a typical ICE
driven by the fusion product in the tokamak plasma. For the purpose, we have investigated whether the
dispersions of the observed ICE(He) is consistent with the MCI (Chapter 5), what characteristics of the fast
*He ion velocity distribution are necessary for the ICE(*He) excitation (Chapter 6) and whether these
characteristics are consistent with the growth rate of the MCI (Chapter 7).

In Chapter 5, first, we evaluated the fast *He ion velocity distributions in the almost stationary plasma with
the OFMC. As the results, it was found that the evaluated fast *He ion distribution at the plasma edge on the
low field side has both of the bump-on-tail structure and the strong pitch-angle anisotropy in the time period
of the observation of the ICE(*He). These characteristics are similar to those of the drifting-ring-type
distribution. In addition, the evaluated distribution at the plasma edge on the low field side is consistent with
the destabilization condition for the MCI in terms of the ion cyclotron resonance. Although the evaluated
distribution inside the plasma can have the strong anisotropy, no bump-on-tail structure is formed there. Next,
we developed the wave dispersion code that can numerically calculate the dispersion for the
drifting-ring-type velocity distribution function. Then, we calculated the dispersions of the MCI by using the
wave dispersion code, and compared the calculated dispersions with the measured frequency and toroidal
wavenumber of the ICE(*He) on JT-60U. As the results, the frequencies of the observed ICE(‘He) are close
to those of the calculated MCL In addition, the toroidal wave numbers of the observed ICE(*He) are
consistent with those of the MCI in the range of £ 1 m™'. Hence, the comparison results suggest that the
measured dispersions of the ICE(*He) are consistent with the MCL.

In Chapter 6, in order to identify key characteristics of the distribution driving the ICE(*He), we more
quantitatively evaluated the fast *He ion velocity distributions, and compared the distributions between the
cases when the ICE(*He) is observed and not. As the results, it was found that the evaluated fast *He ion
distributions at the plasma edge on the low field side have the relatively peaked bump-on-tail structure in the
energy direction in the case with the ICE(*He) excitation. On the other hand, the evaluated distributions in
the case without the excitation have the almost flat structure in the energy direction or no bump-on-tail
structure. Namely, these results indicate that the formation of the relatively peaked bump-on-tail structure is
necessary for the excitation of the ICE(3He).

In Chapter 7, first, we improved the wave dispersion code so that the dispersion for the arbitrary velocity
distribution function can be numerically calculated. Next, using the improved wave dispersion code, we
investigated the influence of the gradient of the bump-on-tail structure in the energy direction on the linear
growth rate of the MCI. Here, the adopted function for the *He ion velocity distribution is a function that can
have the narrow-width pitch-angle distribution and express both of the peaked and flat bump-on-tail
structures in the energy direction. The calculation results of the growth rate of the MCI show that the growth
rate drastically increases as the gradient of the bump-on-tail structure becomes steep. The analysis results of
the fast *He ion velocity distribution are qualitatively consistent with the growth rate of the MCI.

Hence, we revealed that the emission mechanism for the ICE(*He) is the MCI in terms of the dispersion
and the fast *He ion velocity distribution.
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