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Chapter 1

Introduction

　 A quark is fundamental constituent of matter, and a gluon carries strong force which is one of

the four known forces. A Hadron is the composite particle which is made from two or more quarks

stuck together by the gluon. There are two kind of hadron. The first is baryon, which is consist of

odd numbers of quarks. The most known baryons are proton and neutron. The two baryons and are

consist of up quark and down quark stuck together by strong force. The second is meson, which is

consist of even numbers of quarks. The most known meson are pion, and the existence of the particle

and its mass are predicted by H. Yukawa.

The physics of strong interaction is described by Quantum chromodynamics (QCD) since the

hadron is consist of quark and gluon. In the small energy level, the strong decay constant becomes

large, this is one of the property of QCD. Thus the analysis in this region with perturbative calculation

fails. In order to solve the QCD in small energy scale with some mathematically well-defined way,

lattice QCD is formulated as its regularized non-perturbative approach. Lattice QCD is the formulated

QCD in a discretized Euclidian space-time by lattice spacing a corresponding to ultraviolet cut-off.

Thus the theory is defined in a precise mathematical sense, and in finite space-time volume, the QCD

could be considered as the field theory which is regularized by lattice spacing and finite volume.

Lattice QCD could revert QCD in continuum space-time by the continuum limit of lattice spacing

and the infinite space-time volume. Study of physical quantity with lattice QCD approach have a

lots of success in hadronic measurements in small energy level. As one of the example of the physical

quantity by Lattice QCD calculation, there is the study of mass spectra of hadrons [1]. Not just the

success of the static quantity, Lattice QCD method is one of the most useful tool of the analyses of

dynamical quark’s physics. Form factor is the one of these quantities, which represents the correction

derived from hadronic structure.

In the Standard Model of particle physics, quark is considered as a particle which has no spatial

distribution, although hadron has some spatial distribution including quarks and gluon. The form

factor of hadron is the dynamical quantity of deviation from point particle, and we could check the

information of hadron’s spatial distribution through the quantity. For example, the electromagnetic

form factor of hadron is the quantity of deviation from charged point particle. We could check the

quantity and obtain the information of the electromagnetic distribution of hadron and the regarding

physical quantity, the mean square charge radius of hadron and the curvature. Form factor calculations

with lattice QCD is the most precise theoretical approach in present [2]. Although the charge radius of

pion is measured by 1% error in π− e scattering experiment, present lattice QCD analyses determine

the radius of pion from pion vector form factor by more than 4% error [2].
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The uncertainties of the form factor in lattice QCD calculations come from the difference between

the simulation and the reality. There are some origins of the uncertainties when lattice QCD result is

reconciled with the reality. The first is the chiral extrapolation to the physical quark mass. Most of

lattice QCD calculations are performed at heavier point than physical light quark masses and the result

should be taken the physical limit. The second is the finite volume of the system. We could take into

account the two kind of the origin of uncertainty from the finite volume. One is infinite volume. The

actual calculations is finite, hence the result should be taken the limit. The other is the momentum

interpolation (or extrapolation) to the target momentum transfer, usually zero momentum transfer.

The accessible momentum in lattice calculation is the proportional to inverse the spatial extent of the

system. The third is the the continuum extrapolation a → 0. The system is discretized by a thus

as we decrease a we have to increase the number of lattice point. Due to the two later reasons, the

degree of propagators’ matrix increases in proportional to the number of lattice point of the system

in lattice QCD calculation. In other words, the calculation cost is the proportional to the system

size, negative power of the masses, and therefore we need to compare and to contrast computational

resource or suitable numerical result, in lattice QCD calculation. It is not readily to consider that the

numerical result is reasonable, if the systematical uncertainties of lattice QCD calculations could not

be suppressed substantially.

The Standard Model has some defectivenesses. One is that the Standard Model could not explain

some phenomena, such as the oscillations of neutrino, the origin of masses, the imbalance of matter-

antimatter, the strong CP problem, and the dark matter and dark energy. Other is that the Standard

Model is inconsistent with general relativity in the condition like the space-time singularity such as

the Big Bang and black hole event horizons. Theories of beyond the Standard Model include the

extension of the Standard Model within supersymmetry or the explanations which are completely

different from the Standard Model such as string theory and M theory. There are some probes for the

detection of the signature of beyond the Standard Model, such as proton radius measurements and

anomalous magnetic dipole moment of muon. The measurements of beyond the Standard Model need

high precision , which provide stringent constraints of scenarios beyond the Standard Model.

The studies of weak semileptonic and leptonic decays of kaon have a long time and the measure-

ments have provided. The ”leptonic decay” means a decay caused by the weak interaction in which

some pure pairs of lepton-neutrino are produced. The ”semileptonic decay” means a decay in which

some pairs of lepton-neutrino are produced in addition to some hadrons.

The semileptonic decay is related to that down-type quarks, down and strange quarks, decay into

up quarks via charge current of weak interaction. The decay could be described by a superposition of

down-type quarks’ mass eigenstates. The Cabbibo-Kobayashi-Maskawa (CKM) matrix elements [4] is

the unitary matrix which describes the coefficients of mixture of the mass eigenstates between up-type

and down-type quarks.

Semileptonic decays of kaon decay into some pion(s) play an important role to determine Vus,

which is one of the Cabbibo-Kobayashi-Maskawa (CKM) matrix elements to describe the mixing of

the mass eigenstates between up and strange quarks. From the unitary condition of the up quark part

in the CKM matrix, ∆u ≡ |Vub|2 + |Vus|2 + |Vub|2 − 1 must be vanished in the standard model. Thus

we could examine the existence of physics beyond the standard model by checking whether the ∆u is

vanished or remains.

We could determine the value of |Vus| in the two different ways. One uses the form factor of the

kaon semileptonic (Kl3) decay at zero momentum transfer. The other is the ratio of the meson decay

4



constants, fK/fπ, which is related to the pure leptonic kaon (Kl2) decay It is not possible to determine

|Vus| only from the experiments, because in experimental results, for instance a branching ratio, |Vus|
is multiplied to the form factor or the decay constants. Thus some theoretical evaluations for the

form factor and decay constants are necessary. The lattice QCD calculation is the most precise way

to determine these quantities.

One phenomenological study for determination is the article by H. Leutwyler and M. Roos [5].

This approach is based on chiral perturbation theory (ChPT) [8–10] as an effective theory of strong

interaction in low energy region. This effective theory relies on the property that QCD has chiral

symmetry U(Nf )L × U(Nf )R in the massless limit of Nf flavor quarks. Spontaneous breaking of the

chiral symmetry is bestowed by non-perturbative dynamics of QCD to the vector subgroup SU(Nf )V .

In ChPT, the singularity relating to Goldstone bosons’ degrees of freedom occurred by spontaneous

breaking of the chiral symmetry is considered. The expansion of ChPT is ordered in terms of quark

masses or momentum square of Goldstone bosons. Most of previous studies of lattice calculations

are performed at heavier than physical light quark masses, ChPT is generally invoked in the check of

momentum transfer dependance of form factors and the chiral extrapolation to physical point.

The recent results of |Vus| in PDG [3] are given by

|Vus| =


0.2231(8) (form factor)

0.2253(7) (decay constant)

0.2256(8) (unitarity condition).

The result from the form factor is estimated by combining the experimental value |Vus|f+(q2 = 0) =

0.2165(4) in Ref. [28], and f+(0) in the FLAG’s value [2]. The result from the decay constant ratio is

estimated by using the experimental value of the Kl2 decay [29], and fK/fπ in the FLAG’s value [2].

Another one is estimated by the unitarity condition ∆u = 0 using the most precise result of |Vud| [30]
and ignoring |Vub| due to the small effect (|Vub| ≈ O(10−3)) in this estimation. In the |Vus| estimations,

there is difference between the value from the unitarity condition and that from the form factor by

about 2σ.

The explorations of new physics require with highly precision. However, the |Vus| values of the

above from form factor and decay constant are the result of combinations experimental results and

lattice calculations. and there are some uncertainties derived from lattice calculations in these values.

It is still premature to conclude, however, that it is significant signal of new physics or not.

The enhances of computational power and improvements of simulation algorithms in recent years

make it possible to perform large-scale dynamical simulations at physical masses of pion and kaon.

In this work, to recognize the signature beyond the Standard Model we aim to determine of the

semileptonic decay form factor by reducing the uncertainties of the chiral extrapolation and finite size

effect in dynamical lattice QCD calculation with two light quarks and strange quark.

The details are as follows. First, meson three-point correlation functions with weak vector current

and meson two-point functions on the four dimension hyper cube lattice whose number of grid point

on the temporal and spatial extent is 128 are calculated by high performance computing system. The

physical size of the lattice is 10.8 fm. Second, hadron matrix elements of semileptonic decay with

the vector current are constructed by these correlation functions and then semileptonic decay form

factors are defined by these matrix elements. Although the form factors are function of the momentum

transfer, the accesible momenta are discrete and propotional to the inverse of the spatial extent on
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the lattice. Third, we estimate the semileptonic form factor at zero momentum transfer by using

monopole ansatz which is commonly used to measure in experiment and using the formulae of chiral

perturbation theory. Fourth, |Vus| is estimated by the combination of the semileptonic form factor at

zero momentum transfer and experimental result and compared with other lattice QCD calculations

and other results. Finally we find that our results are consistent with unitary condition of CKM, and

the signals are unfavorable for new physics.

This article is composed as follows. The Cabbibo-Kobayashi-Maskawa (CKM) matrix elements as

the fundamental parameters of the SM and their current status and the determination for one of the

magnitude of the matrix elements are represented in chapter 2. Chapter 3 contains general structure

of form factor and construction of form factor. In chapter 4, actual calculation methods of two-point

and three-point function to obtain meson form factors, and some improvements for discretization effect

will be represented in this chapter. In chapter 5, we present the brief of chiral perturbation theory

(ChPT), and introduce of representation of the form factors on ChPT. In chapter 6, several results of

the meson form factors and corresponding physical quantities by Lattice QCD calculations are shown

and in chapter 7, we discuss about the result and future work to do for precise estimation.
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Chapter 2

Cabbibo-Kobayashi-Maskawa Matrix

In this chapter, we present the Cabbibo-Kobayashi-Maskawa (CKM) matrix elements which are the

fundamental parameters of the SM, the their current status and the determination for one of the

magnitude of the matrix element of Vus.

2.1 Leptonic and semileptonic decay

The Cabbibo-Kobayashi-Maskawa (CKM) matrix [4, 6] is the unitary matrix which describes the

matrix of the coefficients of mixture of the mass eigenstates between up-type and down-type quarks. d′

s′

b′

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s

b

 = VCKM

 d

s

b

 , (2.1.1)

where (d′, s′, b′) represents weak eigenstate corresponding to up-type quarks in participate decay, (d,

s, b) represents down-type quark mass eigenstate. The indices of the matrix element represent the

mixture between up-type quarks (up, charm, top) and down-type quarks (down, strange, bottom).

They appear from Yukawa interactions with Higgs condensate. The Lagrangian is given by

L = −Y d
ijQ̄

I
L,iϕd

I
R,j − Y u

ij Q̄
I
L,iϵϕu

I
R,j + h.c., (2.1.2)

where Y u,d
ij are 3×3 complex matrices with quarks’ generation labels i, j, QI

L are left-handed quark

doublets, ϕ is the Higgs field and ϵ is the 2×2 antisymmetric tensor and dIR and uIR are right-handed

down-type and up-type quark singlets, respectively. When ϕ acquires a vacuum expectation value

(VEV), < ϕ >= (0, v√
2
), and then the equation (2.1.2) yields these quarks’ mass terms.

The physical states are obtained by diagonalizing Y u,d
ij by combination unitary matrices and the

VEV, Uu,d
L,R, as M

u,d = Uu,d
L Y u,d(Uu,d

R )† v√
2
. As a result, we obtain the charged weak current of W±

boson to the physical uiL, d
j
L quarks with couplings, and then CKM matrix is given by the product of

Uu,d
L,R; VCKM = Uu

LU
d†
R .

The CKM matrix could be parametrized by three quark mixing angles and KM complex phase [4]
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(so-called standard parametrization). It is given by c12c13 s12c23 s12e
−iδ

−s12c23 − c12s23s13eiδ c12s23 − s12s23s13e−iδ s23c13

s12c23 − c12c23s13eiδ c12s23 − s12c23s13e−iδ c23c13

 , (2.1.3)

where quark mixing angles sij = sinθij , cij = cosθij(0 ≤ θij ≤ π
2 ). The pathfinder of its idea

was introduced by N. Cabibbo in two quarks’ generations [6] and the extension to the three quarks’

generations together KM complex phase eiδ. The development was introduced by M. Kobayashi and T.

Maskawa [4]. The mechanism represents CP -violation in the quark mixture with flavor-changing weak

interactions and it dominates CP -violation at electroweak scale, which is proved by the B-factories.

(The other mechanisms of CP -violation, for example PMNS mechanism in the lepton mixture and the

strong CP problem in the flavor-conserving strong interaction, will not be explained in this thesis )

In the frameworks of the SM, VCKM must have unitarity VCKMV
†
CKM = 1. In this work, the target

is |Vus|. Thus, in next section, we present the brief of up quark parts of the CKM matrix element,

|Vud|, |Vub| and |Vus| in this review [3].

2.2 Brief of current status of the CKM matrix of up quark parts

The estimation of Vus requires the decay rates (or the combination ) of the leptonic or semileptonic

decay which are the decay emitting some pairs of lepton-neutrino. The ”leptonic decay” means a

decay caused by the weak interaction in which some pure pairs of lepton-neutrino are produced. The

”semileptonic decay” means a decay in which some pairs of lepton-neutrino are produced in addition

to some hadrons. (The ”hadronic decay” means a decay in which some hadrons are purely produced,

although the decay is not described in detail.) The analysis of these decay modes could provide

the restriction of new physics scenarios : while within the Standard Model, all down-type quark

transitions to up-type quarks with pair of lepton-neutrino (di → ujlν) are dominated by the same

CKM coupling Vjk which is satisfied the unitarity condition Σk|Vjk|2 = 1, and GF is the same coupling

that dominates muon decay, this is not necessarily true beyond the Standard Model. New bounds on

violations of CKM unitarity and lepton universality and deviations from the V −A structure translate

into significant signals on various new physics scenarios. In other words, such tests may eventually

turn up evidence of beyond the Standard Model.

In this work, the target is one of the Kaon semileptonic decay, K → πlν ( so-called Kl3), and the

matrix element corresponding to Kl3 is calculated by lattice QCD. In this section, we present some

determinations of |Vus| in recent.

2.2.1 |Vus|

In this subsection, we present the determination of |Vus| without the unitary condition of VCKM .

Leptonic and semileptonic kaon decays are used to obtain the determination of the magnitude of the

element Vus in present. There are several reasons why the checks are particularly significant given as

follows.

• There are the large amount of data of the leptonic and semileptonic kaon decays collected by

several experiments.
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• The hadronic matrix elements corresponding to the kaon decay could be calculated by Lattice

QCD as nonperturbative approach.

• The detailed analyses of radiative corrections and isospin breaking effects perform within chiral

perturbation theory (ChPT) (Chapter 5 in detail) as one of the QCD effective theory at low

energy.

There are two traditional determinations of |Vus| which are needed for some hadronic constants. One

is from the ratio of leptonic decay rates of pion and of kaon. The ratio is written as

Γ(K → lν)

Γ(π → lν)
=
|Vus|2

|Vud|2
f2K
f2π

mK(1−m2
l /m

2
K)2

mπ(1−m2
l /m

2
π)

2
(1 + δEM ), (2.2.1)

where l = e, µ are the leptons, the neutrino ν is correspond to the leptons, ml is the lepton mass,

δEM is the effect of long-distance electromagnetic corrections, and fK , fπ are the decay constant of

kaon and pion, respectively. δEM depends only on the particle masses and this main uncertainty rely

on models of the hadron structure. The masses and the decay rate could be obtained by experiments

[27,29] and δEM could be obtained by phenomenological approaches. Combining the equation (2.2.1)

with values, the result is given by

|Vus|
|Vud|

fK
fπ

= 0.2760(4). (2.2.2)

The |Vud| could be estimated by experiment (subsection 2.2.2). However, the ratio of decay constant

should be restricted by other approach in order to obtain |Vus|. The ratio could be evaluated by lattice

QCD simulations [2]. The average of these result is fK/fπ = 1.1933(29), and the combination |Vud|
and the fK/fπ reads to

|Vus| = 0.2253(7), (2.2.3)

where the accuracy is restricted by the study of the ratio.

The other is from the semileptonic decay rates of kaon (Kl3). In this work, the corresponding

hadronic matrix elements are calculated by lattice QCD. (The detail of form factor are to be mentioned

latter 3) The Kl3 decay rate is given by

Γ(K → πlν) =
G2

Fm
5
K

192π3
CSEW (1 + δEM + δSU(2))

2I|Vus|2f+(q2 = 0)2, (2.2.4)

where f+(q
2 = 0) is the vector form factor, as the function of momentum transfer, at the momentum

transfer q2 = 0, this is the same value the scalar form factor f0(q
2 = 0) at the momentum transfer

q2 = 0 (the momentum dependence is different from the vector form factor), SEW is effect of short-

distance electromagnetic corrections, δEM is the effect of long-distance electromagnetic corrections,

δSU(2) is the effect of isospin breaking corrections, C is the square of Clebsch-Gordan coefficient which

is given by C = 1/2 (K± → π0), 1 (K0 → π−), I is a phase space integral which depends on the
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momentum transfer dependence of the form factors. The integral is given by

I =
1

m8
K

∫ (m2
K−m2

π)

m2
l

dq2λ3/2
(
1 +

m2
l

2q2

)(
1−

m2
l

2q2

)2

×
(
f̃+(q

2)2 + f̃0(q
2)2
(
3m2

l (m
2
K −m2

π)
2

(2q2 +m2
l )λ

))
, (2.2.5)

λ = (q2 −m2
k −m2

π)
2 − 4m2

km
2
π,

where f̃+(q
2) = f+(q

2)/f+(0), f̃0(q
2)/f0(0) is the normalized vector form factor and the normalized

scalar form factor, respectively. The normalized form factors have the information of momentum

dependence, for example slope of the form factors and these curvature, and the informations could be

obtained as assumption of some parameterizations in experiment [29].

In the similar way as the decay constant ratio, combining the equation (2.2.1) with values, the

result is given by

|Vus|f+(q2 = 0) = 0.2165(4). (2.2.6)

In this estimation, the average of decay mode of the five decay mode K0
L → πeν, K0

L → πeµν, K± →
π0e±ν, K± → π0µ±ν, and K0

L → πeν is used. Similarly, the value of form factor should be restricted

by other approach in order to obtain |Vus|. The value could be evaluated by lattice QCD simulations

[2]. By using the average f+(q
2 = 0) = 0.9704(32) and |Vus|f+(q2 = 0) = 0.2165(4), the result is given

by

|Vus| = 0.2231(8), (2.2.7)

and the value from phenomenological approach [5] is in agreement with this value.

2.2.2 |Vud|

In this subsection and next subsection, we present current status of the other parts of VCKM corre-

sponding to the determination of |Vus| with the unitary condition. The most precise determination

of |Vud| comes from the study of superallowed JP = 0+ → 0+ nuclear beta decays, which are pure

vector transitions. Taking the average the superallowed beta decays of the fourteen nuclei most precise

determinations [30] yields |Vud| = 0.97420(21). The error is dominated by theoretical uncertainties

from nuclear Coulomb distortion effect and radiative corrections. A precise determination of |Vud| is
also obtained from the measurement of the neutron lifetime. The interest in this measurement is that

the determination of |Vud| is very clean theoretically, because it is a pure vector transition (without

axial vector transition) and is free from nuclear’s structure uncertainties.

2.2.3 |Vub|

To obtain |Vub| from exclusive decays which are the semileptonic decays with specific hadronic final

state, the form factors have to be known. The B → πlν− branching ratio is now known to 5%. Lattice

QCD calculations of the B → πlν− form factor are available for the high momentum transfer q2 region

(q2 > 16 or 18GeV2). A fit to the experimental partial rates and lattice QCD results versus q2 yields

|Vub| = (3.70± 0.10± 0.12)× 10−3.
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The determination of |Vub| from inclusive decays which are the semileptonic decays with hadronic

final states including up quark B → Xulν
− (Xi : hadron including i flavor quark) is complicated due

to large B → Xclν
− backgrounds. In most regions of phase space in which the charm background is

kinematically forbidden, the hadronic physics enters via unknown nonperturbative functions, so-called

shape functions. The inclusive decay shape functions need to calculate not only leading order but also

model-dependent subleading order, to obtain |Vub| The large and pure pairs of B meson samples at

the B factories permit the selection of B → Xulν
− decays in events where the other B meson is fully

reconstructed. With this full reconstruction tag method, the four-momenta of both the leptonic and

the signals of hadronic final states can be measured. The signals could give access to a wider kinematic

region, because of improved purity of signal. The result estimated from inclusive B → Xulν
− decay is

given by |Vub| = (4.49± 0.16+0.16
−0.17± 0.17)× 10−3, where the first error is experimental, the second one

comes from the model dependence quoted by the individual measurements, and the third one is an

additional one estimated. The uncertainties in extracting |Vub| from inclusive and exclusive decays have

a large deviation. The result combined the two determinations is given by |Vub| = (3.94±0.36)×10−3

The combination of the unitary condition of VCKM and the two magnitudes of the matrix element,

|Vud|, |Vub| yields |Vus|. However |Vub| is too small to affect the |Vus| and could be ignored |Vub| in the

estimation (although including the value, the |Vus| varies by O(10−5)). Thus the result is given by

|Vus| = 0.2256(8). (2.2.8)

The result of unitary condition lies in the framework of the SM, thus checking the deviation from

the result of the SM could provide signals of beyond the SM. Comparing the results among three

determinations of |Vus|, the results of decay constant ratio and from unitary condition are consistent

and the difference about 2σ between the determinations without unitary condition occurs.
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Chapter 3

Meson form factors

In this chapter, we represent general structure of form factor and construction of form factor by using

the meson two-point functions and the three-point functions with vector current.

3.1 General strcuture of form factors

The matrix element of the vector current operator Vµ between two spin-0 particles could be written,

by imposing Lorentz invariance, in the most general form as

⟨Y (p⃗′) |Vµ|X(p⃗)⟩ = (p′ + p)µf + (p′ − p)µg, (3.1.1)

where p′, p are the four-momenta of initial state and final state of particle X, Y , respectively and f, g

are form factors as scalar functions. The form factors is the functions of the combination of kinematic

variables, p2, p′2, p, p′, (p+ p′)2, (p− p′)2. Only three of the variables are linearly independent and

we choose p′2, p2 and momentum transfer q2 = −(p′ − p)2 as the arguments of the functions.

The hermiticity of the current, which provides restrictions of f and g.

⟨Y (p⃗′) |Vµ|X(p⃗)⟩ = ⟨Y (p⃗′)
∣∣∣(Vµ)†∣∣∣X(p⃗)⟩ = (⟨X(p⃗) |Vµ|Y (p⃗′)⟩)∗

= (p′ + p)µf(p
′2, p2, q2) + (p′ − p)µg(p′2, p2, q2)

= (p′ + p)µf
∗(p2, p′2, q2)− (p′ − p)µg∗(p2, p′2, q2), (3.1.2)

and the ward identity of vector current, which provides more restrictions by usingX meson propagators

∆X(p2),

∆−1
Y (p′2)−∆−1

X (p2) = qµ⟨Y (p⃗′) |Vµ|X(p⃗)⟩ = (p′
2 − p2)f − q2g. (3.1.3)

In particular, the relation apply to on-shell meson with X = Y , for example pion electromagnetic

form factor, and show that g vanishes. In on-shell mesons with X ̸= Y and q2 is small, the relation

yields

∆−1
Y (p′2)−∆−1

X (p2) = (m2
Y −m2

X)

(
f − q2

m2
Y −m2

X

g

)
, (3.1.4)

the new form factor is defined by h = f − q2

m2
Y −m2

X
g, and at q2 = 0 f equals h. The above discussions
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are general. And the ”exact” conservation of the vector current, for example electromagnetic current,

in on-shell condition of both state of X = Y boson yields

0 = qµ⟨X(p⃗′) |Vµ|X(p⃗)⟩ = (p′
2 − p2)f − q2g, (3.1.5)

thus for general q2 and on-shell condition p2 = p′2 = m2
X , g must vanish.

However, in this work (and in actual fact), the strange mass is different from the light quark (up

or down) mass, and the vector current with strangeness violating is used in the works of semileptonic

form factors

The ”partial” conservation of the vector current with strangeness violating Vµ = s̄γµu with the

deviation between strange mass ms and light quark (up or down) mass ml is given by,

∂µs̄γµu = i(ms −ml)s̄u, (3.1.6)

where, s̄u (= S) is scalar current with strangeness violating.

Combining the ”partial conservation” and the relations,

qµ⟨Y (p⃗′) |Vµ|X(p⃗)⟩ = (ms −ml)⟨Y (p⃗′) |S|X(p⃗)⟩

→ (m2
Y −m2

X)h = (ms −ml)⟨Y (p⃗′) |S|X(p⃗)⟩, (3.1.7)

and the relation shows that the form factor h is given by scalar current in proportion to the mass

deviations.

In the following discussions of semileptonic form factors, ”vector form factors” are defined by the

functions of q2, f = f+(q
2), g = f−(q

2) from the vector current, and ”scalar form factor” is defined

by the functions of q2, h = f0(q
2). The scalar form factor could be rewritten by linear combination of

vector form factors,

f+(q
2) +

−q2

m2
Y −m2

X

f−(q
2) = f0(q

2). (3.1.8)

3.2 Construction of form factor

In order to obtain the form factors, we calculate the meson three-point functions C
′XY
µ (p⃗′, p⃗, t; tf , ti)

with the vector current Vµ and X meson interpolator OX given by

C̃XY
µ (p⃗′, p⃗, t; tf , ti) = ⟨0|OY (p⃗′, tf )Vµ(q⃗, t)O

†
X(p⃗, ti)|0⟩ (3.2.1)

=
ZY (p⃗′)ZX(p⃗)

4EY (p⃗′)EX(p⃗)

1

ZV
⟨Y (p⃗′) |Vµ|X(p⃗)⟩e−EY (p⃗′)(tf−t)e−EX(p⃗)(t−ti) + · · · , (3.2.2)

where ZV is the renormalization factor of the vector current (detailed in the section t4.1), p⃗, ti are the

momentum and the time of the source operator, respectively, and p⃗′, tf are the momentum and the

time of the sink operator, respectively, X,Y = π,K, and ti < t < tf . EX(p⃗) and ZX(p⃗) are evaluated

from the meson two-point functions given by

CX(p⃗, t, ti) = ⟨0|OX(p⃗, t)O†
X(p⃗, ti)|0⟩ =

|ZX(p⃗)|2

2EX(p⃗)
(e−EX(p⃗)|t−ti| + e−EX(p⃗)(T−|t−ti|)) + · · · , (3.2.3)
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with the periodic boundary condition in the temporal direction. The terms of the dots (· · · ) are

contributions of excited states. The meson masses, mπ andmK , are obtained from a single exponential

fit to each two-point function. Their energies are determined by the equation EX(p⃗) =
√
m2

X + p⃗2

using the fit result of mX .

To simplify in our calculation, we fix p⃗′ = 0⃗, tf − ti =constant (in actual tf − ti = 36), the

three-point function in the temporal region ti < t < tf is written as

CXY
µ (p⃗, t) ≡ C̃XY

µ (⃗0, p⃗, t; tf , ti) = ⟨0|OY (⃗0, tf )Vµ(q⃗, t)O
†
X(p⃗, ti)|0⟩

=
ZY (⃗0)ZX(p⃗)

4EY (⃗0)EX(p⃗)

1

ZV
⟨Y (⃗0) |Vµ|X(p⃗)⟩e−mY (tf−t)e−EX(p⃗)(t−ti) + · · · , (3.2.4)

in the following. When pion and kaon electromagnetic form factor are extracted, we construct the

ratio R(q, t) by using the meson three-point function and the two-point function

RX(q, t) =
2mXZV C

XX
4 (p⃗, t)

(mX + EX(p⃗))ZX (⃗0)ZX(p⃗)
eEX(p⃗)(t−ti) → fX(q2), (X = π, K). (3.2.5)

When semileptonic form factors are extracted, we construct the ratio di(q, t) (i=1,2,3) by using the

meson three-point function whose source meson has non zero momentum and the two-point function.

d1(q, t) =
CXY
4 (⃗0, t)CY X

4 (⃗0, t)

CY Y
4 (⃗0, t)CXX

4 (⃗0, t)
→ (mY +mX)2

4mYmX
(f0(q

2
max))

2, (3.2.6)

d2(q, t) =
CXY
4 (p⃗, t)CX(p⃗, t, ti)

CXY
4 (⃗0, t)CX(p⃗, t, ti)

→
(
EX(p⃗) +mY

mX +mY
+
EX(p⃗)−mY

mX +mY
ξ(q2)

)
f+(q

2)

f0(q2max)
, (3.2.7)

d3(q, t) =
CXY
i (p⃗, t)CY Y

4 (p⃗, t)

CY Y
i (p⃗, t)CXY

4 (p⃗, t)
→ (EY (p⃗) +mY )(1− ξ(q2))

EX(p) +mY + (mY − EX(p))ξ(q2)
, (3.2.8)

where ξ(q2) is given by the ratio of vector form factors,

ξ(q2) =
f−(q

2)

f+(q2)
. (3.2.9)
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Chapter 4

Calculation of correlation functions

In this chapter, we present calculation methods of two-point and three-point function to obtain meson

form factors, and some improvements for discretization effect in the calculations.

4.1 Calculation of meson three-point functions

We compute two-point and three-point function to obtain meson form factors. The meson two-point

function and three-point function which obtains bare vector current with periodic boundary condition

in temporal direction are the below formulae. When ti ≤ t ≤ tf ,

C̃XY
µ (p⃗′, p⃗, t; tf , ti) = ⟨0|OY (p⃗′, tf )Vµ(q⃗, t)O

†
X(p⃗, ti)|0⟩

=
ZY (P⃗ ′)ZX(P⃗ )

4EY (P⃗ ′)EX(p⃗)

1

ZV
⟨Y (p⃗′) |Vµ|X(p⃗)⟩e−EY (p⃗′)(tf−t)e−EX(p⃗)(t−ti) + · · · ,

OX = q̄γ5q is a local pseudoscalar operator of X = π, K meson (pion or kaon). ZX is given

as Zπ(p⃗) = ⟨0|OX (⃗0, 0) |X(p⃗)⟩. The term of (· · · ) is contribution of excited states. The vector

current is defined by weak vector current Vµ = s̄γµu when X ̸= Y , and by electromagnetic current

Vµ =
∑

f=u,d,sQf q̄fγµqf when X = Y We assume that the correlation functions is dominated by the

lightest state, and contribution of excited states is not estimated. We make the quantities R(q, t)

and d1,2,3(q, t) which is combined of three-point function, two-point function and definition of meson

form factors (in Chapter 3). Fixing the source time slice ti = 0, the quantities R(q, t) and d1,2,3(q, t)

have current time t dependence, though we can extract meson form factors without t dependance

from R(q, t) and d1,2,3(q, t) when current-sink temporal separation is large enough and current-source

temporal separation is large enough too (0≪ t≪ tf ). When p⃗′ = 0⃗, is the matching factor by which

the bare lattice current needs to be multiplied in order to obtain the renormalized current.

The connected three-point function with vector current could be written by using quark propagator

D−1

C̃XY, conn
µ (⃗0, p⃗, t; tf , ti) =

∑
x⃗,y⃗,z⃗

eip⃗i·x⃗+iq⃗·z⃗tr
[
γ5D

−1(z, x)γµD
−1(x, y)γ5D

−1(y, z)
]
, (4.1.1)

where is x⃗, y⃗ are the spatial position of the source operator of meson, the sink operator of meson,

respectively and z⃗ the position of vector current.

The connected three-point function is consist of three quark propagators. In actual calculation,
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the connected three-point function is calculated in the follow steps

1. quark propagator with source momentum p⃗i = 0⃗ which is correspond to red (number 1) line in

the Fig. 4.1 is calculated by using random wall source.

2. quark propagator with sink 3 momentum p⃗f = 0⃗ which is correspond to green (number 2) line

in the Fig. 4.1 is calculated by using sequential source Σ, which is given by

Σ(x, z) =
∑
y⃗

D−1(x, y)γ5D
−1(y, z), (4.1.2)

and then CXY, conn
µ is rewritten as

C̃XY, conn
µ (⃗0, p⃗, t; tf , ti) =

∑
x⃗,y⃗,z⃗

eip⃗·x⃗+iq⃗·z⃗tr
[
γ5D

−1(z, x)γµΣ(x, z)
]
. (4.1.3)

3. quark propagator with source 3 momentum p⃗i ̸= 0⃗which is correspond to blue (number 3) line

in the Fig. 4.1.

The three quark propagators are calculated in periodic boundary condition of temporal direction, in

addition, the quark propagator with source momentum p⃗i = 0⃗ is calculated in anti periodic boundary

condition. This is because the wrapping around effect as described latter could be suppressed.

Figure 4.1: Diagram of connected three-point function

In actual calculation of quark propagator with source momentum of this work, we use the random

source as described latter.

4.2 Random wall source

Quark propagator is given by using external source ηAB and Dirac operator matrix D−1
AB

SAC(x; ti) ≡
∑
−→y

∑
B

D−1
AB(x; ti,

−→y )ηBC(
−→y , ti), (4.2.1)
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where, A,B,C represent the indices of color and spinor.

Introducing point source ηBC(
−→y , ti) = δ(−→y −−→x 0)δBC , quark propagator can be solved

SAC(x; ti) =
∑
−→y

∑
B

D−1
AB(x; ti,

−→y )δ(−→y −−→x 0)δBC

= D−1
AC(x; ti,

−→x 0). (4.2.2)

However, the propagators need to be solved at some point in space-time for all the indices, and the

numbers of the index are 12 (number of color and spinor 3 × 4). In other words, The equation of

propagator represents 12 equations of the indices of color and spinor at certain point.

In this work, the order of the propagator matrix is about 3.2 billions (12× 1284), and to solve the

propagator by using point source is spent the expensive computational cost (budget and time). Thus

we need to reduce the computational cost, random wall source DBASAC = ηBC(
−→y , ti)ηBC(

−→y , ti) ∈
Z(2) ⊗ Z(2), is introduced. Doing not fail to discriminate color indices from spinor indices by using

the source is able to compute by 1/12 cost of the point source [14].

There are some kinds of random source, for instance

ηB0(
−→y , ti) =

{
±1± i√

2

}
∈ Z(2)⊗ Z(2), (4.2.3)

and

ηB0(
−→y , ti) = {± 1,±i} ∈ Z(4). (4.2.4)

When N →∞, the source η is satisfied

1

N

N∑
j=0

ηjA0(
−→x , ti)η†j0B(

−→y , ti)→ δ(−→x −−→y )δAB. (4.2.5)

The quark propagator is written by

SAC(x; ti) =
1

N

N∑
j=1

∑
−→y

∑
B

D−1
AB(x; ti,

−→y )η†jBC(
−→y , ti),

(4.2.6)
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and therefore the propagator of pion is given by using the quark propagators

Cπ(p⃗, t, ti = 0)

=
∑
−→x

e−ip⃗·x⃗tr
[
γ5S(x;−→y , t)γ5(γ5S(x;−→y , t)γ5)†

]

=
N∑
j=0

∑
−→x

e−ip⃗·x⃗
∑
−→z

∑
B,B′

[
γ5D−1

AB(x; t,
−→y )ηjBC(

−→y , t)γ5(γ5D−1
AB′(x; t,

−→z )ηjB′C(
−→z , t)γ5)†

]

=
∑
−→x

e−ip⃗·x⃗
∑
−→z

∑
B,B′

 N∑
j=1

1

N
ηjBC(

−→y , t)η†jCB′(
−→z , t)γ5D−1

AB(x; t,
−→y )γ5(γ5D−1

AB′(x; t,
−→z )γ5)†


→

∑
−→x

e−ip⃗·x⃗
∑
−→z

∑
B,B′

[
δ(−→y −−→z )δBB′γ5D−1(x;−→y , t)γ5(γ5D−1

AB′(x;
−→y , t)γ5)†

]
=

∑
−→x

e−ip⃗·x⃗
∑
B

[
γ5D−1

AB(x;
−→y , t)γ5(γ5D−1

AB(x;
−→y , t)γ5)†

]
. (4.2.7)

the three-point functions could be calculated as the same procedure.

4.3 O(a) improvement

Introducing the QCD action on lattice we have to discretize derivative terms in the continuum action.

It is point out that some discretization effect must appear. After calculation by lattice QCD, the result

have to be take the continuum limit a → 0 due to the adjustment to reality. However, performing

the continuum limit is the nontrivial task. Thus we have to deal with the discretization effects, for

example, by including them in the extrapolation a→ 0

In particular, Adding some extra terms to the Wilson fermion action and matching their coefficients

appropriately, which could reduce the discretization error from O(a) to O(a2).

4.3.1 In a toy model

Let us begin the discussion with the improvement of action. We consider the central difference f ′(x)

for some dimensionless function f of single variable.

f ′(x)→ f(x+ a)− f(x− a)
2a

(≡ ∂̂f(x)) = f ′(x) + a2C(2)(x) + a4C(4)(x) +O(a6), (4.3.1)

where, C(n) is the correction terms of O(an), and ∂̂µ is central difference operator. only even power

of a and odd derivative of f(x) could appear on the right-hand side. Combining the Taylor expansion

f(x± a) = f(x)± af ′(x) + a2

2
f ′′(x)± a3

6
f ′′′(x) +O(a4), (4.3.2)

we can identify the leading correction coefficient C(2)(x)

C(2)(x) =
1

6
f ′′′(x). (4.3.3)

The strategy for improvement is to add to the left-hand side of the central derivative an extra

discretized term such that the correction terms on the right-hand side are canceled up to the required
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order.

For improvement of O(a2) we use the ansatz with an extra discretized term D(3)[f ](x) = f ′′′(x) +

O(a2).

f(x+ a)− f(x− a)
2a

+ ca2D(3)[f ](x) = f ′(x) +O(a4). (4.3.4)

Combining the Taylor expansion (4.3.2) again, we can identify

D(3)[f ](x) =
f(x+ 2a)− f(x+ a) + f(x− a)− f(x− 2a)

2a3
, c =

1

6
, (4.3.5)

and O(a2) improvement is done. In lattice QCD, the determination of coefficients is complicated and

more involved, this is why QCD has the nonlinear property and need to be renormalized. Thus the

determination must be done by perturbative or nonperturbative approach.

The approach to improve is known as Symanzik improvement program [15–18].

4.3.2 Improvement of lattice QCD Lagrangian

Let us apply the strategy to improvement of the action of lattice QCD. We start on the lattice with

the gauge action and Wilson fermion action

Swilson = −
∑

n,µ ̸=ν

βtr
[
U †
n,µUn+µ̂,νU

†
n+ν̂,µU

†
n,ν

]

+ a4
∑
n

ψ̄n

[∑
µ

γµ

(
Un,µψn+µ̂ − U †

n,µψn−µ̂

2a

)
+mψn

]
, (4.3.6)

where β = 6/g2. Typically, the gauge part of discretization effects is O(a) and the fermion part of

discretization effects is O(a2). The correction terms should be ordered according to their dimension

and have the symmetries of the QCD action. We could write the effective action in the form with

correction terms of Lagrangian

Seff =

∫
d4x

(
L(0)(x) + aL(1)(x) + a2L(2)(x) +O(a3)

)
, (4.3.7)

where,
∫
d4xL(0)(x) is the usual QCD action and the mass dimension of the correction terms L(k)(x), k ≥

1 is k + 4. Requiring the symmetries of the lattice action, one may show that the leading correction

term L(1)(x) could be written as a linear combination of the following five-dimensional operators

L
(1)
1 = ψ̄σµνFµνψ,

L
(1)
2 = ψ̄(

←−
Dµ
←−
Dµ +

−→
Dµ
−→
Dµ)ψ,

L
(1)
3 = mtr[FµνFµν ],

L
(1)
4 = mψ̄γµ(

−→
Dµ −

←−
Dµ)ψ,

L
(1)
5 = m2ψ̄ψ, (4.3.8)

where, σµν = [σµ, σµ]/2i andm is quark mass. By using the equation of motion of field (γµDµ+m)ψ =

0 gives rise to the two relations, L
(1)
1 − L

(1)
2 + 2L

(1)
5 = L

(1)
4 + 2L

(1)
5 = 0, to reduce the terms. The

relations may be used to vanish the terms L
(1)
2 and L

(1)
4 , and some factors of the terms L

(1)
3 and L

(1)
5
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are already present in original action, such that they can be accounted for by a redefinition of the

bare parameters m,β. Thus for O(a) improvement of the Wilson lattice action, L
(1)
1 might be added

to the original action

Simp = Swilson +
csw
2
a5
∑
n∈Λ

∑
µ<ν

ψ̄σµνF̂µνψ, (4.3.9)

where discretized field tensor as a combination terms of plaquettes F̂ (it is conventional but not unique

choice) is given by

F̂µν =
−i
8a2

(Qµν −Qµν), (4.3.10)

Qµν = Uµν + Uνµ + U−µ−ν + U−νµ, (4.3.11)

Uµν = exp(−ia2Fµν +O(a3)), (4.3.12)

and csw is the real coefficient as Sheikholeslami−Wohlert coefficient [19].

Figure 4.2: Illustration of Qµν(n). This is the sum of plaquettes Uµν(n) on µ-ν plane

The visualization of the plaquettes’ sum Qµν(n) on µ-ν plane in Fig.4.2 is the shape like a clover

leaf. The correction term is often referred to as clover term or clover improvement.

4.3.3 Improvement of interpolators

In this work, the vector current is needed to calculate the hadronic matrix elements which are necessary

to obtain the meson form factors. Thus, in order to achieve a full O(a) improvement, it is necessary

not just for Lagrangian on lattice also for the interpolator to be improved. We start with isovector
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current V a
µ and isoaxialvector current Aa

µ

V a
µ (n) =

1

2
ψ̄(n)γµτ

aψ(n), (4.3.13)

Aa
µ(n) =

1

2
ψ̄(n)γ5γµτ

aψ(n), (4.3.14)

where τa is the a-th components of Pauli matrix, and the current with correction term could be written

by

V a
µ (n) = V a,(0)

µ (n) + aV a,(1)
µ (n) +O(a2), Aa

µ(n) = Aa,(0)
µ (n) + aAa,(1)

µ (n) +O(a2). (4.3.15)

After the continuum limit, the currents with the corrections (4.3.15) become the original current

(4.3.13) Ones may show that the leading correction term V
a,(1)
µ (x) or A

a,(1)
µ (x) could be written as a

linear combination of the following four-dimensional operators of the vector current

V
a,(1)
µ,1 =

1

2
ψ̄σµν(

←−
Dν −

−→
Dν)τ

aψ,

V
a,(1)
µ,2 =

m

2
ψ̄γµτ

aψ,

V
a,(1)
µ,3 =

1

2
∂ν(ψ̄σµντ

aψ), (4.3.16)

and the following four-dimensional operators of the axialvector current

A
a,(1)
µ,1 =

1

2
ψ̄γ5σµν(

←−
Dν −

−→
Dν)τ

aψ,

A
a,(1)
µ,2 =

m

2
ψ̄γ5γµτ

aψ,

A
a,(1)
µ,3 =

1

2
∂µ(ψ̄γ5τ

aψ), (4.3.17)

although, as for the improvement of the lattice action we could apply the equation of motion of field

(γµDµ+m)ψ = 0 , V
a,(1)
1 (A

a,(1)
1 ) could be rewritten by linear combination of V

a,(1)
2 and V

a,(1)
3 ( A

a,(1)
2

and A
a,(1)
3 ), and then the part of V

a,(1)
2 ( A

a,(1)
2 ) is included in the original vector current. Thus for

O(a) improvement of the (axial)vector current, V
a,(1)
3 (A

a,(1)
3 ) might be added to the original current

V a, imp
µ (n) = V a,(0)

µ (n) + acV ∂̂νT
a
µν(n) +O(a2), (4.3.18)

Aa, imp
µ (n) = Aa,(0)

µ (n) + acA∂̂µP
a(n) +O(a2), (4.3.19)

where, tensor current T a
µν = ψ̄σµντ

aψ and pseudoscalar current P a = ψ̄γµτ
aψ.

For the full O(a) improvement of correlation functions, we need to determine the csw, cV and cA.

There are several determinations of the coefficients [19–22], and the value of cA is very small [23]

under the same parameters and ways of improvement with the ones of the configuration in this work

(see [32] and Chapter 6 ). Thus cV in this work is considered small thanks to the similar improvement.

4.4 Gauge field smearing

When aiming for correlation functions, one is mainly interested in long-distance behaviors. On the

other hand, The short-distance behaviors of the gauge field are violent. In order to improve the signal

of the correlation functions in short-distance, the techniques smoothing or smearing the gauge field
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are often used either only in the time slices or even in space and time. When smoothing or smearing

the gauge field, the traditional technique is updating the link valuables by local average over short

path connection of the link end points. The technique is a gauge covariant procedure and not needed

to fix the gauge.

When operators or propagators in the correlations are constructed by using the smeared config-

urations, the signals of the correlation functions in long-distance behaviors should not be affected

in the continuum limit. Smearing algorithms are all averaging products of links along certain paths

connecting the endpoints of the link. In SU(3) case, the updated links have to be the projection of

average to an SU(3) matrix.

The two combined methods of smearing the gauge field is used in this work. One is the ”APE

smearing” [24], which is averaging over the original link Uµ and over six ”staples” in four dimensional

space Cµν(n) connecting its endpoints in four dimensional space,

Vµ(n) = (1− α)Uµ +
α

6

∑
ν ̸=µ

Cµν(n), (4.4.1)

Cµν(n) = Uν(n)Uµ(n+ ν̂)Uν(n+ µ̂)† + Uν(n− ν̂)Uµ(n− ν̂)†Uν(n− ν̂ + µ̂)), (4.4.2)

where the real parameter α is tuned depending on the gauge coupling constant. The projection of

sum to SU(3) is done by maximizing of real part of tr[XV †
µ ] and by using X as updated link.

Figure 4.3: Illustration of APE smearing of gauge field. Solid oriented line presents original link
variable Uµ, and dashed line staples represent Cµν . After the projection, the new link X = U ′

ν(n)
(heavier oriented line) could be obtained.

The other is ”stout smearing” [25]. The method is the perpendicular way to project, updating

the new link after a smearing algorithm by

U ′
µ(n) = exp(iQµ(n))Uµ(n), (4.4.3)
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where, Qµ is constructed from staples Cµν

Qµ(n) =
i

2

(
Ωµ(n)

† − Ωµ(n)−
1

3
tr[Ωµ(n)

† − Ωµ(n)]13×3

)
, (4.4.4)

Ωµ(n) =

∑
ν ̸=µ

ρµνCµν(n)

Uµ(n)
†, (4.4.5)

where ρµν is the tunable real parameter. The advantage of stout smearing is that the new link U ′
µ(n)

is differentiable with respect to the link, which is a benefit in applications in the hybrid Monte Carlo

method for dynamical fermions in this works.

The process such gauge field smearing could be iterated. The smearing involve not just neighboring

links but also extends over larger distance, and we should pay to attention smearing effect in asymptotic

behaviors with strong interactions of the propagators.

4.5 Wrapping around effect

When pion mass is heavy, the pion electromagnetic form factor is extracted by fitting plateau of

R(q, t) as constant. We could obtain the form factors when one pion from source to current and the

other pion from sink to current (left side of the Fig. 4.4 ). While pion mass is light, current time

dependence appears in R(q, t). We should not only take usual form factor but also other effect into

account; this is“ pion wrapping around effect (2 pions effect)”. This effect is derived from periodic

boundary condition in temporal direction (this is similar to the situation of Ref. [35]). If pion mass

is light, pion which goes beyond the temporal boundary from sink (source) is not damped enough by

exp (−Eπ × t), Therefore pion remains on source (sink), and the propagation to the current could be

considered 2 pions propagation after merging other pion (right side of the Fig. 4.4 ). The effect does

not appear in Dirichlet boundary condition.

Figure 4.4: Diagrams of pion propagation in periodic boundary condition. Red arrow is the pion
which propagates from source (ti). Blue arrow is the pion which propagates from sink (tf ). The left
panel is the diagram of usual form factor. Each pion goes to current without 2-pion propagation. The
right panel is the diagram of pion wrapping around effect.

Thus, we assume this fit form of R(q, t),

f0 + f1 ×
e−E2π×te−Eπ×(T−tf ) − e−E2π×(tf−t)e−mπ×(T−tf )

e−Eπ×te−mπ×(tf−t)
, (4.5.1)
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if (ti =)0 < t < tf . E2π = Eπ +mπ + ∆E. ∆E is finite size effect of 2 pions. There are 2 free fit

parameters; f0 is the quantity of form factor and f1 is the quantity which is derived from the matrix

element ⟨ππ|Vµ |0⟩. The relative minus sign in the second term of (6.3.2) is derived from the switching

local pion operator across gamma matrix γµ of current from other local pion operator in three-point

function. However thanks to large box calculation, we assume that the finite size effect is negligible.

In the calculations of three-point functions, not only the calculations with two quark propagators

in the same (anti)periodic boundary conditions of temporal direction, but also the calculations with

quark propagator with source momentum p⃗i = 0⃗ (number 1 propagator corresponding the red line in

the Fig.4.1) in anti-periodic boundary conditions of temporal direction is performed. And then the

result of these two calculations combined for suppressing the wrapping around effect.

The discussion could be extended not only effect of two other mesons, for example kaon, but

two alternating mesons, for example combination of kaon and pion, such as semileptonic form factor

analysis. However other meson mass is heavier than pion mass, thus the wrapping around effects might

be small due to the meson temporal propagation damping by exp(−mXt), where mX is X meson.
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Chapter 5

Chiral perturbation theory

In this chapter, we present the brief of chiral perturbation theory (ChPT), which is effective theory of

low energy QCD formulated by S. Weinberg [8] and developed by J. Gassor and H. Leutwyler [9–11].

The idea of ChPT is to expand by some energy parameter i.e. quark mass and momentum of Goldstone

boson in the low energy level. In this work, we use the idea to obtain the form factors as functions of

momentum transfer.

5.1 The ideas of ChPT

The QCD Lagrangian for the number Nf of quarks, is given by

LQCD = Σf ψ̄f (i /D −M)ψf −
1

4
Tr(FµνF

µν), f = (u, d, s · · · ), (5.1.1)

where /D is the covariant derivative (Dµ = ∂µ − igT a/2Aa
µ) dotted Dirac matrix γµ with the strong

coupling constant g, the generator of color SU(3) T a, (a = 1, . . . , 8) and gluon field Aa. M is the

quark mass matrixM = diag(mu,md,ms, · · · ) and gluon field strength is given by F a
µν = ∂µA

a
ν∂νA

a
µ+

gfabcA
b
µA

c
ν with the structure constant of SU(3) fabc. Low energy experiments are performed with

states of hadron while LQCD describes the quark and gluon dynamics. In addition, the coupling

constant g at low energy, in the covariant derivative and the field strength, is not appropriate for a

perturbative expansion. Thus, some effective field theory is helpful.

The chirality is defined by the eigenvalue ±1 of γ5. The γ5 is described by chiral representation,

γ5 =

(
1 0

0 −1

)
= iγ0γ1γ2γ3, (5.1.2)

and the eigenstate is defined by two-component spinors ξ, ζ,

ψ =

(
ξ

ζ

)
=

(
ξ

0

)
+

(
0

ζ

)
≡ ψR + ψL, (5.1.3)

where ψL is the left-handed spinor and ψR is the right-handed spinor. The projection operators are

defined by using γ5,

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5), (5.1.4)
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The operators PL, PR could decompose the eigenstate into ψL, ψR, respectively. The hermitian eigen-

state of ψL, ψR

ψ̄L = ψ†PLγ0 = ψ̄PR, ψ̄R = ψ†PRγ0 = ψ̄PL, (5.1.5)

The mass term ψ̄ψ and the kinetic term ψ̄γµψ of the QCD Lagrangian (5.1.1 ) could be rewritten

by those spinors.

ψ̄ψ = ψ̄RψR + ψ̄RψL + ψ̄LψR + ψ̄LψL,

= ψ̄PLPRψ + ψ̄PLPLψ + ψ̄PRPRψ + ψ̄PRPLψ,

= ψ̄RψL + ψ̄LψR, (5.1.6)

ψ̄γµψ = ψ̄RγµψR + ψ̄LγµψL. (5.1.7)

Thus, the QCD Lagrangian could be described as follow.

LQCD = Σf

(
ψ̄R,f i /DψR,f + ψ̄L,f i /D +mf (ψL,f ψ̄R,fψL,f + ψ̄L,fψR,f )

)
− 1

4
Tr(FµνF

µν). (5.1.8)

The kinetic terms in (5.1.8) are decomposed into left-handed components and right-handed compo-

nents. However, The mass terms in (5.1.8) are mixed these components. In the massless limit of quarks,

the Lagrangian is invariant under a global U(Nf )L×U(Nf )R = SU(Nf )L×SU(Nf )R×U(1)L×U(1)R

transformation.

(ψL, ψR)→ (VLψL, VRψR), (VL ∈ U(Nf )L, VR ∈ U(Nf )R), (5.1.9)

and more specifically, the massless limit of quarks under SU(Nf )L × SU(Nf )R transformation is so

called chiral limit. The transformations could be described as follows

(ψL, ψR)→ (ULψL, URψR), (5.1.10)

UL = exp

[
i
∑
a=1

θaL
ta

2

]
∈ SU(Nf )L, UR = exp

[
i
∑
a=1

θaR
ta

2

]
∈ SU(Nf )R, (5.1.11)

where ta is the generator of SU(Nf ) and habc is structure constant, which satisfy

[ta, tb] = ihabctc, T r(tatb) = 2δab. (5.1.12)

In chiral limit, a Lagrangian is invariant under the transformations, this Lagrangian has chiralsymmetry.

Considering the QCD Lagrangian is in chiral limit,

LQCD0 = Σf

(
ψ̄R,f i /DψR,f + ψ̄L,f i /D)

)
− 1

4
Tr(FµνF

µν). (5.1.13)

the noethor currents and charges which have SU(Nf )L × SU(Nf )R symmetry is as follows

La
µ = ψ̄Liγµ

ta

2
ψL, Q

a
L =

∫
d3xLa

0, (5.1.14)

Ra
µ = ψ̄Riγµ

ta

2
ψR, Q

a
R =

∫
d3xRa

0. (5.1.15)
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These charges satisfies SU(Nf )L × SU(Nf )R algebra,

[Qa
L, Q

b
L] = ihabcQ

c
L, [Q

a
R, Q

b
R] = ihabcQ

c
R, [Q

a
L, Q

b
R] = 0. (5.1.16)

These chiral transformation could be rewritten by introducing vector transformation V = L + R

and axial vector transformation A = L − R. The symmetry group could be rewritten as U(Nf )L ×
U(Nf )R → SU(Nf )V ×SU(Nf )A×U(1)V ×U(1)A. The baryon number conservation is introduced by

the U(1)V symmetry. The U(1)A is not a symmetry of quantum theory in full order due to anomaly

of vector current divergence. SU(Nf )V × SU(Nf )A transformations are described as follows

ψ → V ψ, ψ → Aψ, (5.1.17)

UV = exp

[
i
∑
a=1

θaV
ta

2

]
, UA = exp

[
i
∑
a=1

γ5θ
a
A

ta

2

]
. (5.1.18)

The vector current V a
µ and axial vector current Aa

µ are presented as

V a
µ = Ra

µ + La
µ = ψ̄iγµ

ta

2
ψ, (5.1.19)

Ra
µ = Ra

µ − La
µ = ψ̄iγ5γµ

ta

2
ψ, (5.1.20)

and then the corresponding noether charges are rewritten by (5.1.14)

Qa
V = Qa

R +Qa
L, Q

a
A = Qa

R −Qa
L. (5.1.21)

The commutative relations are presented as follows

[Qa
V , Q

b
V ] = ihabcQ

c
V , [Q

a
A, Q

b
A] = ihabcQ

c
V , [Q

a
V , Q

b
A] = ihabcQ

c
A. (5.1.22)

The relations shows that the vector transformation is closed, However the axial vector transformation

is not algebraic closed. In other words the axial vector transformation is not group.

For Heisenberg equations of QCD hamiltonian HQCD,

[HQCD, Qb
V ] = 0, [HQCD, Qb

A] = 0. (5.1.23)

The hamiltonian has some symmetries under the vector transformation and the axial vector trans-

formation, thus spectra of some hadron mass might have some effects of the symmetry. Considering

the isospin symmetry (SU(2)V ), in the case of meson, the charged pion mass mπ± = 0.13957 GeV

and neutral pion mass mπ0 = 0.134977 GeV are degenerated approximately. Similarly, in the case of

baryon, the proton mass mp = 0.93827 GeV and the neutron mass mn = 0.93957 GeV are degenerated

approximately too. However, Considering the axial transformation ( like parity transformation ), in

the case of meson, the nearest partner of pion (JP = 0−) is a0 (J
P = 0+). the mass of the ma0 = 0.980

GeV. Thus, we consider that the experimental results is not reflected the symmetry under the axial

vector transformation. The fact indicates that the symmetry under the axial vector transformation

breaks.

The N2
f − 1 axial charge generate N2

f − 1 massless Goldstone boson, which could be considered

the three pions for Nf = 2 and, the three pions, the four kaons and single eta meson for Nf = 3. The
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quark mass is performed as perturbation of ChPT, and therefore the quark masses clearly break the

symmetry, these Goldstone boson are not massless. The effective Lagrangian is built so that it respects

the symmetries of the QCD Lagrangian, for instance SU(Nf )L×SU(Nf )R, charge conjugation, parity,

time reversal and Lorentz invariance, and describes the dynamics of the Goldstone bosons at low

energy.

The Goldstone bosons are written in terms of a unitary matrix of fields U (specific form in later)

that transforms under the chiral symmetry group transformation SU(Nf )L × SU(Nf )R as

U → ULUU
†
R. (5.1.24)

The effective Lagrangian LCh is introduced so that it has SU(Nf )L × SU(Nf )R symmetry and is

expanded in terms of powers of derivatives of the goldstone bosons’ field matrix U

Leff (U, ∂U, ∂2U, · · · ) =
∑
n=1

L2n. (5.1.25)

The index 2i in L2i stands for the number of derivatives of U. Only even powers of derivatives could

occur in the Lagrangian. This is because the Lagrangian has Lorentz invariance in other words the

Lagrangian is supporsed to be a Lorentz scalar. The quark masses which clearly break the symmetry

are introduced in such a method, that the mass term in the effective Lagrangian has chiral symmetry.

The behavior under SU(Nf )L×SU(Nf )R chiral transformation of the quark mass matrixM is assumed

to be

M → ULMU †
R. (5.1.26)

The mass terms in( 5.1.1) is SU(Nf )L×SU(Nf )R chiral transformation and then the chiral symmetry

in the effective theory is broken in the same mechanism as in QCD.

More general form of the QCD Lagrangian in the assumption of external sources is given by

LQCD,ext = Σf ψ̄f (i /D)ψf −
1

4
Tr(FµνF

µν) + Σf ψ̄f (i/v +
/v(s)

3
+ γ5/a)ψf +Σf ψ̄f (s− iγ5p)ψf ,(5.1.27)

where the v
(s)
µ is singlet vector current, the vµ = vaµ

λa

2 are vector currents, the aµ = aaµ
λa

2 are axial

vector currents, the sµ = sa λa

2 are scalar currents, the pµ = pa λa

2 are pseudoscalar currents, and

λa, (a = 1, . . . , 8) are the 3×3 matrices . The QCD Lagrangian ( 5.1.1) in Nf = 3 is reconstructed

from (5.1.27) by fixing v
(s)
µ = vµ = aµ = p = 0, s = M . The global chiral symmetry group is

SU(Nf )L×SU(Nf )R×U(1)V , which could be promoted to a local one by introducing the appropriate

transformation behavior of the external sources. LQCD,ext in terms of left-handed and right-handed

currents with the help of

vµ =
(rµ + lµ)

2
, aµ =

(rµ − lµ)
2

, (5.1.28)

ψ̄(s− iγ5p)ψ = ψ̄L(s− iγ5p)ψR + ψ̄R(s− iγ5p)ψL, (5.1.29)
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is rewritten as without flavor index

LQCD,ext = ψ̄(i /D)ψ − 1

4
Tr(FµνF

µν)

+ ψ̄L(/l +
/v(s)

3
)ψR + ψ̄R(/r +

/v(s)

3
)ψL

+ ψ̄L(s− iγ5p)ψR + ψ̄R(s− iγ5p)ψL. (5.1.30)

The quarks and external fields locally transform as

ψL → exp(−iα(x))VL(x)ψL,

ψR → exp(−iα(x))VR(x)ψR,

lµ → VL(x)lµV
†
L(x) + iVL(x)∂µV

†
L(x),

rµ → VR(x)rµV
†
R(x) + iVR(x)∂µV

†
R(x),

v(s)µ → v(s)µ − ∂µα(x),

s+ ip→ VR(x)(s+ ip)V †
L(x),

s− ip→ VL(x)(s− ip)V †
R(x),

where VR(x), VL(x) are the matrices which represent local SU(3) transformations, α(x) is a parameter.

(5.1.30) is invariant under these local transformations. In order to embed the local symmetry into

the effective Lagrangian Leff (U, ∂U, ∂2U, · · · ; v, a, s, p), a covariant derivative Dµ, left-handed field

strength tensor fLµν , right-handed field strength tensor fRµν will be introduced

∂µU → DµU = ∂µU − i(rµU − Ulµ),

fLµν = ∂µlν − ∂ν lµ − i[lµ, lν ],

fRµν = ∂µrν − ∂νrµ − i[rµ, rν ]. (5.1.31)

According to the power counting scheme,

U : O(p0),

∂µ, DµU, rµ, lµ : O(p1),

s, p, fLµν , f
R
µν : O(p2), (5.1.32)

the Lagrangian could be expanded. The generating functional with the QCD Lagrangian ZQCD(v, a, s, p)

in the low energy regime is defined by

eiZ
QCD(v,a,s,p) =

∫
DψDψ̄DAa

µexp

(
i

∫
d4xLQCD(ψ, ψ̄, Aa

µ, v, a, s, p)

)
. (5.1.33)

It could be approximated by a sequence of effective generating functionals Zeff (v, a, s, p).

Zeff (v, a, s, p) = Zeff
2 + Zeff

4 + · · · , (5.1.34)

which is expanded corresponding to (5.1.25)
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Introducing ξ with the (pseudo)scalar external fields

χ = 2B0(s+ ip), (5.1.35)

the lowest order of chiral effective Lagrangian L2 could be constructed including an explicit symmetry

breaking mass term and the components (5.1.32), and then this is given as

L2 =
F 2
0

4
tr[DµU(DµU)†] +

F 2
0

4
tr[χU † + Uχ†], (5.1.36)

with the field matrix U . The parameters F0, B0 should be determined by other approaches. And the

higher order of chiral effective Lagrangian L2n could be constructed too.

5.2 Higher order Lagrangian

The Goldstone bosons’ field matrix of U ∈ SU(3) and quark mass matrix M are defined by

U(x) = exp

(√
2i

F0
ϕ(x)

)
, ϕ(x) =


1√
2
π0 + 1√

6
η π+ K+

π− −1√
2
π0 + 1√

6
η K0

K− K̄0 −2√
6
η

 ,

M = diag(mu,md,ms). (5.2.1)

The masses of meson in the isospin limit mu = md to the lowest order in the quark mass are given by

m2
π = 2B0mu,m

2
K = B0(mu +ms),m

2
η =

2B0

3
(mu + 2ms). (5.2.2)

In the reality, we know that isospin symmetry slightly breaks in the strong interaction. The neutral

and charged pion mass are equal up to the leading order in the quark mass

m2
π0 = m2

π± = B0(mu +md). (5.2.3)

And, the isospin symmetry breaking effect is occured by electromagnetic interactions being of the

order O((mu +md)
2).

The SU(3) chiral effective Lagrangian could be expanded until O(p6) without pure external field

terms

LSU(3) = L2 + L4 + L6 + · · · = L2 +
10∑
n=1

OiLi +
94∑
n=1

PiCi + · · · . (5.2.4)

There are coefficients which are scale-dependent values Li, Ci in the Lagrangian of the higher orders as

effective coupling constants. These are so-called Low Energy Constants (LEC) of NLO and NNLO,

respectively (Discussion about the LECs of NNLO in Ref. [12, 13]). The O(p4) order of SU(3) chiral
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effective Lagrangian L4 could be constructed the components (5.1.32),

LSU(3)
4 = L1(tr[DµU(DµU)†])2 + L2tr[DµU(DνU)†]tr[DµU(DνU)†]

+ L3tr[DµU(DµU)†DνU(DνU)†] + L4tr[DµU(DµU)†]tr[DνU(DνU)†]

+ L5tr[DµU(DµU)†(χU † + Uχ†)] + L6(tr[(χU
† + Uχ†)])2

+ L7(tr[(χU
† − Uχ†)])2 + L8tr[χU

†χU † + Uχ†Uχ†]

+ −iL9(tr[f
R
µνD

µU(DνU)† + fLµν(D
µU)†DνU ]) + L10tr[Uf

L
µνU

†fR,µν ]

+ H1tr[f
R
µνf

R,µν + fLµνf
L,µν ] +H2tr[χχ

†]. (5.2.5)

The LECs Li, (i = 1, · · · , 10) could be obtained phenomenologically. H1 and H2 are effective cou-

pling constants for pure external fields (no Goldstone boson fields), and therefore they are physically

irrelevant.

If we use the SU(2) representation of U which represents the fields of Goldstone bosons. The

SU(2) chiral effective Lagrangian could be expanded until O(p6) without pure external field terms

LSU(2) = L2 + L4 + L6 + · · · = L2 +
7∑

n=1

Oili +

57∑
n=1

Pici + · · · . (5.2.6)

The O(p4) order of SU(2) chiral effective Lagrangian L4 could be constructed by the components

(5.1.32). The Lagrangian was formulated by Gassor and Leutwyler [9].

LGL,SU(2)
4 =

l1
4
(tr[DµU(DµU)†])2 +

l2
2
tr[DµU(DνU)†]tr[DµU(DνU)†]

+
l3
16

(tr[(χU † + Uχ†)])2 +
l4
4
tr[DµU(Dµχ)† +Dµχ(D

µU)†]

+ l5

(
tr[UfLµνU

†fR,µν ]− 1

2
tr[fRµνf

R,µν + fLµνf
L,µν ]

)
+ i

l6
2
(tr[fRµνD

µU(DνU)† − fLµν(DµU)†DνU ])

− l7
16

(tr[(χU † − Uχ†)])2 +
h1 + h3

4
tr[χχ†]− 2h2tr[f

R
µνf

R,µν + fLµνf
L,µν ]

+
h1 − h3

16

(
(tr[(χU † − Uχ†)])2 + (tr[(χU † + Uχ†)])2 − 2tr[χU †χU † + Uχ†Uχ†]

)
, (5.2.7)

where

U(x) = exp

(√
2i

F0
ϕ(x)

)
, ϕ(x) =

(
1√
2
π0 π+

π− −1√
2
π0

)
,

M = diag(mu,md). (5.2.8)

The LECs li, (i = 1, · · · , 7) could be obtained phenomenologically. The constants h1, h2 and h3 are

contact terms which depend on the conventions used to specify the time ordered product, they do not

appear in observable quantities.
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5.3 Meson form factors

In this work, it is sufficient for construction semileptonic form factors to set

lµ =
g2√
2

 0 VudW
+
µ VusW

+
µ

V ∗
udW

−
µ 0 0

V ∗
usW

−
µ 0 0

 , rµ = 0, s = diag(ml,ml,ms), (5.3.1)

where g2 is the weak coupling constant, corresponding to the Fermi decay constant g2/8m2
W = GF /

√
2.

and for construction electromagnetic form factors to set

lµ = rµ = eAµdiag

(
2

3
,−1

3
,−1

3

)
, s = diag(ml,ml,ms). (5.3.2)

where e is the electric charge, Aµ is classical photon field.

The result of the form factors could be separable by chiral order.

f(q2) = f (2)(q2) + f (4)(q2) + · · · . (5.3.3)

The O(p2) of the semileptonic form factors are given by the current conservation.

f
(2)
+ (q2) = f

(2)
0 (q2) = 1, f

(2)
0 (q2). (5.3.4)

After calculation of tree level and one loop corrections which contribute to the semileptonic form

factors (The diagrams of 5.1 ), the O(p4) of the semileptonic form factors are given by,

f
(4)
+ (q2) = −2 q

2

f20
L9 +

3

8f20
(Ā(m2

η) + Ā(m2
π) + 2Ā(m2

K))

+
3

2f20
(B̄22(m

2
π,m

2
K , q

2) + B̄22(m
2
K ,m

2
η, q

2)), (5.3.5)

f
(4)
− (q2) = −2

(m2
K −m2

π)

f20
L9 + 4

(m2
K −m2

π)

f20
L5 +

+
1

f20
(1/2Ā(m2

η)− 5/12Ā(m2
π) + 7/12Ā(m2

K)

+ B̄(m2
π,m

2
K , q

2, µ)(−m2
π/12− 5m2

K/12− 5q2/12)

+ B̄(m2
K ,m

2
η, q

2, µ)(m2
π/12− 7m2

K/12− q2/4)

+ B̄1(m
2
π,m

2
K , q

2, µ)(−7m2
π/12− 19m2

K/12− 5q2/12)

+ B̄1(m
2
K ,m

2
η, q

2, µ)(−1m2
π/12 + 23m2

K/12 + q2/4)

+ B̄21(m
2
π,m

2
K , q

2, µ)(3m2
π/2− 3m2

K/2 + 5q2/6)

+ B̄21(m
2
K ,m

2
η, q

2, µ)(3m2
π/2− 3m2

K/2 + q2/2)

+ B̄22(m
2
π,m

2
K , q

2, µ)(−5/6)

+ B̄22(m
2
K ,m

2
η, q

2, µ)(−1/2)), (5.3.6)

where, A, Bij are loop integrals in appendix A, f0 is decay constant in the chiral limit and m2
x is the

square of X meson (X = π,K, η).
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Figure 5.1: Diagrams of of tree level (the left panel) and one loop correction (the two right panels)
which contribute to the semileptonic form factors. The circle with cross represents a vertex inserting
weak vector current from L2 and, the square with cross represents a vertex inserting weak vector
current from L4.

The result of f+,0(q
2 = 0) in O(p4) analysis is trivial (because of loop integrals of the O(p4) forms),

and therefore we must introduce the some terms of NNLO.

The contribution on O(p6) of ChPT is given by

f
(6)
+,0(q

2) = f
Ci,(6)
+,0 (t) + f

Li,(6)
+,0 (t) + (loop contribution), (5.3.7)

where the term fCi,(6) is the contribution of LEC of L6, Ci, the terms fLi,(6) is the contribution of

LEC of L4, Li and the term ”loop contribution” depends on the irreducible two-loop integrals and

reducible ones.

The terms of O(p6) which depend on only LECs of L6, Ci is given by

f
C,(6)
+ (q2) =

1

f40

[
−8(m2

π −m2
K)2(C12 + C34)

+ (−q2){−4m2
π(2C12 + 4C13 + C64 + C65 + C90)

+ −4m2
K(2C12 + 4C13 + 2C63 + 2C64 + C90)}

+ 4(−q2)2(C88 + C90) ] , (5.3.8)

f
C,(6)
− (q2) = −

(m2
π −m2

K)

f40
× [ 4m2

π(6C12 − 4C13 + 2C15 + 4C17 + 2C34 + C64 + C65 + C90)

+ 4m2
K(6C12 + 8C13 + 2C14 + 4C15 + 2C34 + C63 + 2C64 + C90)

+ 4(−q2)(−2C12 + C88 − C90) ] . (5.3.9)

At q2 = 0, the parts proportional to (m2
π−m2

K)2 in f+,0(0) represent the effect of strangeness violating

and the breakdown of chiral symmetry, and the linear contribution of (m2
K−m2

π) ∝ (ms−ml) (see the

Eq.(5.2.2)) vanishes, which is known as ”Ademollo-Gatto thorem” (see Appendix B and Ref. [5,50]).

However, it is unstable for using the forms as it is to analyze the momentum dependence of form

factors, and the mixture the linear term of −q2 in the NLO form and the one in the NNLO contribution

complicates to determine the LECs. Thus we will introduce the analytic term as follows in this work

f
(6)
+,0(q

2) = c+,0
0 + c+,0

2 (−q2)2. (5.3.10)
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Chapter 6

Results

In this chapter, the results of lattice calculations are shown.

6.1 Set up

We use the configuration generated at the physical point, mπ = 0.135 GeV, on the large volume

corresponding to La = Ta = 10.8 fm (L = T = 128, a = 0.084fm), which is a part of the PACS10 con-

figuration [32]. The configurations were generated by using Nf = 2+1 non-perturbative Wilson clover

quark action with six stout smearing link [33] (smearing parameter ρµν = ρ = 0.1) and the improve-

ment coefficient cSW = 1.11, and the Iwasaki gauge action [34] at β = 1.82. The hopping parameters

of degenerated light quarks and strange quark are (κud, κs) = (0.126117, 0.124902), respectively.

In our form factor calculation, we use 20 configurations in total. We adopt 8 positions of the source

time ti = 0, 16, 32, 48, 64, 72, 96, 112 per configuration, and 4 choices of the temporal axis thanks to

the hypercube lattice. In the calculation of meson two-point functions and three-point functions, we

use Z(2)⊗Z(2) random wall source spread in the spatial sites, and also color and spin spaces [37]. The

number of the random source is one in each ti. The three-point function is calculated by the sequence

described in Chapter 4.1 at the sink time slice tf , where the sink meson momentum is fixed to zero.

We choose the temporal separation between the source and sink as |tf − ti| = 36 (≈ 3.0 fm).

For the constant fits of the quantities RX(q, t) and d1,2,3(q, t) explained in the above, we use the

fit range of t = 15 − 21 when ti = 0. We calculate the three-point function of X,Y (= π,K) mesons

CXY
µ (p⃗, t) with vector currents Vµ, when X ̸= Y , Vµ is weak vector current of strangeness violating, or

when X = Y , Vµ is electromagnetic current. We also calculate two-point function of X(= π,K) meson

CX(p⃗, t) with the momentum p⃗ = (2π/L)n⃗ of |n⃗|2 ≤ 6 without the twisted boundary condition which

is used to obtain arbitrary momentum of valence quarks (of quark propagators) in previous studies,

where n⃗ is an integer vector. And the number of direction of n⃗ and the components (of permutations

or flipping sign ) are chosen as follows (Table 6.1).
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|n⃗2| = n # of direction n⃗= . . .

n = 0 1 (full) n⃗ = (0, 0, 0)

n = 1 6 (full) n⃗ = (1, 0, 0)

n = 2 12 (full) n⃗ = (1, 1, 0)

n = 3 8 (full) n⃗ = (1, 1, 1)

n = 4 6 (full) n⃗ = (2, 0, 0)

n = 5 9 n⃗ = (2, 1, 0)

n = 6 9 n⃗ = (2, 1, 1)

Table 6.1: the integer vector which we choose in this work. ”(full)” means the full directions which
we can take by permutations or flipping sign.

The one elimination jackknife method is employed to estimate the statistical errors.

6.2 Meson two-point and three-point functions

The two-point and three-point functions of mesons we calculate are as follows

CX(p⃗, t) = ⟨0|OX(p⃗, t)O†
X(p⃗, 0)|0⟩,

CXY
µ (p⃗, t) = ⟨0|OY (⃗0, 36)Vµ(q⃗, t)O

†
X(p⃗, 0)|0⟩,

where the interpolators O†
X , Vµ(q⃗, t) are

O†
π = d̄γ5u,

O†
K = s̄γ5u,

Vµ =

s̄γµu X ̸= Y,∑
f=u,d,sQf ψ̄fγµψf X = Y.

These functions are needed to construct meson form factors. Because of calculation in Nf = 2+1, up

and down quarks are degenerated.

In the section, the lines in the figures of the results which are colored and the fit forms for effective

mass are following the patterns below.

• Periodic Boundary Condition (PBC)(black line) effective mass :fit by f(t) = A(e−m×t+e−m×(T−t)).
• Anti-PBC(APBC)(red line) effective mass : fit by f(t) = A(e−m×t − e−m×(T−t)).
• PBC+APBC(P+AP)(green line) effective mass :fit by f(t) = A(e−m×t + e−m×(2T−t)).

where, A is the parameter as an amplitude of two-point functions. In the result of two-point functions,

the PBC means the results in the calculation with two quark propagators in the same (anti)periodic

boundary conditions of temporal direction, the APBC means the results of the calculation with quark

propagators of two alternating periodic boundary conditions of temporal direction, and the P+AP

means the result in the combination of the two calculations.

In the result of three-point functions, the PBC means the results of calculation with two quark

propagators in the same (anti)periodic boundary conditions of temporal direction, the APBC means

the results of calculation with quark propagator with source momentum p⃗i = 0⃗ (number 1 propagator
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corresponding the red line in the Figure 4.1) in anti-periodic boundary conditions of temporal direction,

and the P+AP means the result of the combination these two calculations.

The effective mass m(t) is defined by

m(t) = ln
CX (⃗0, t, ti = 0)

CX (⃗0, t+ 1, ti = 0)
. (6.2.1)

The two-point function is dominated by the energy of ground state. The effective masses become

constant and its curves flatten at the energy of ground state or its mass. In order to obtain the mass

of ground state, we solve the equation for m at each time

CX (⃗0, t, ti = 0)

CX (⃗0, t+ 1, ti = 0)
=

f(t)

f(t+ 1)
. (6.2.2)

For example, in PBC, the equation is given by

CX (⃗0, t, ti = 0)

CX (⃗0, t+ 1, ti = 0)
=

cosh(m(t− T
2 ))

cosh(m(t+ 1− T
2 ))

, (6.2.3)

and then the mass is extracted from the effective mass plateau.
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6.2.1 Two-point functions

Pion two-point functions : Cπ(p⃗, t, ti = 0)
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Figure 6.1: pion two-point function of n = 0
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Figure 6.2: time dependence of pion effective mass m by lattice unit

The table of pion masses are as follows

mπ mπ(GeV) χ2/d.o.f

PBC(t = 20− 64) 0.058289(350) 0.13598(82) 6.75× 10−4

APBC(t = 20− 63) 0.058322(347) 0.13607(81) 2.21× 10−3

P +AP (t = 20− 110) 0.058294(328) 0.13600(76) 7.82× 10−4

mπ0(PDG2018) 0.1349770(5) GeV mπ±(PDG2018) 0.13957061(24) GeV

Table 6.2: comparison with pion masses of various conditions and experimental values from PDG [3].
(t = · · · ) means the fit range of the effective mass
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Figure 6.3: pion two-point function of n = 1
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Figure 6.4: pion two-point function of n = 2
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Figure 6.5: pion two-point function of n = 3
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Figure 6.6: pion two-point function of n = 4
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Figure 6.7: pion two-point function of n = 5
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Figure 6.8: pion two-point function of n = 6
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Kaon two-point functions : CK(p⃗, t)

The analysis of Kaon two-point functions could be done in the same way as the pion’s one.
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Figure 6.9: kaon two-point function of n = 0
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Figure 6.10: time dependence of kaon effective mass m(t) by lattice unit

mK mK(GeV) χ2/d.o.f

PBC(t = 16− 64) 0.21449(110) 0.50041(26) 0.11

APBC(t = 16− 63) 0.21448(109) 0.50038(25) 0.12

P +AP (t = 16− 80) 0.21449(132) 0.50040(31) 0.10

mK0(PDG2018) 0.497611(13) GeV mK±(PDG2018) 0.493677(16) GeV

Table 6.3: comparison with kaon masses of various conditions and experimental values from PDG [3].
(t = · · · ) means the fit range of the effective mass
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Figure 6.11: kaon two-point function of n = 1
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Figure 6.12: kaon two-point function of n = 2
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Figure 6.13: kaon two-point function of n = 3
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Figure 6.14: kaon two-point function of n = 4
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Figure 6.15: kaon two-point function of n = 5
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Figure 6.16: kaon two-point function of n = 6

The Fig.6.1 and the Fig.6.9 show that the periodicity of the two-point function in P+AP might be

twice larger than PBC’s one and the plateau in effective mass curve might be extended in the Fig. 6.2

and the Fig. 6.10. However effective mass curve of kaon is noisy in the region t ≥ 80. The tendency

of the two-point function is similar to the two-point functions with non zero momenta and kaon’s one.

From this effective mass analysis, The pion mass in this work is consistent with experimental value.

The kaon mass in this work is slightly higher than experimental value. In the analysis of form factors

as follows, we will use the mass of P+AP obtained from these analyses and input energies of mesons

are constructed by EX =
√
m2

X + (2πL )2 and the masses.
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6.2.2 Three-point functions

Pion three-point functions : Cππ
4 (p⃗, t)
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Figure 6.17: pion three-point function of n = 0
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Figure 6.18: pion three-point function of n = 1
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Figure 6.19: pion three-point function of n = 2
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Figure 6.20: pion three-point function of n = 3
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Figure 6.21: pion three-point function of n = 4
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Figure 6.22: pion three-point function of n = 5
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Figure 6.23: pion three-point function of n = 6
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Pion three-point functions : Cππ
i (p⃗, t)

Three-point function of Vi is normalized by i-th component of source momentum
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Figure 6.24: pion three-point function of n = 1
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Figure 6.25: pion three-point function of n = 2
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Figure 6.26: pion three-point function of n = 3
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Figure 6.27: pion three-point function of n = 4
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Figure 6.28: pion three-point function of n = 5
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Figure 6.29: pion three-point function of n = 6
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Kaon three-point functions : CKK
4 (p⃗, t)
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Figure 6.30: kaon three-point function of n = 0
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Figure 6.31: kaon three-point function of n = 1
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Figure 6.32: kaon three-point function of n = 2
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Figure 6.33: kaon three-point function of n = 3
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Figure 6.34: kaon three-point function of n = 4
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Figure 6.35: kaon three-point function of n = 5
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Figure 6.36: kaon three-point function of n = 6
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Kaon three-point functions : CKK
i (p⃗, t)

Three-point function of Vi is normalized by i-th component of source momentum
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Figure 6.37: kaon three-point function of n = 1
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Figure 6.38: kaon three-point function of n = 2
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Figure 6.39: kaon three-point function of n = 3
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Figure 6.40: kaon three-point function of n = 4
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Figure 6.41: kaon three-point function of n = 5
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Figure 6.42: kaon three-point function of n = 6
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Three-point functions : CπK
4 (p⃗, t)
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Figure 6.43: kaon three-point function of n = 0

0 10 20 30
t

0

50000

1e+05

1.5e+05

2e+05

C
3 K

V
4π

Figure 6.44: three-point function of n = 1
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Figure 6.45: three-point function of n = 2
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Figure 6.46: three-point function of n = 3
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Figure 6.47: three-point function of n = 4
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Figure 6.48: three-point function of n = 5
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Figure 6.49: three-point function of n = 6
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Three-point functions : CπK
i (p⃗, t)

Three-point function of Vi is normalized by i-th component of source momentum
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Figure 6.50: three-point function of n = 1
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Figure 6.51: three-point function of n = 2
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Figure 6.52: three-point function of n = 3
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Figure 6.53: three-point function of n = 4
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Figure 6.54: three-point function of n = 5
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Figure 6.55: three-point function of n = 6
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6.3 Ratios for electromagnetic form factors

After calculations of two-point functions and three-point functions with vector current of mesons, the

hadronic matrix element ⟨Y |Vµ|X⟩ including form factor(s) has to be extracted from ratio(s) with these

functions. in this section, the results of ratios with these functions, as the current-time dependent

quantities, are shown. When the current time is in the middle region of source-sink time separation

(0 = ti ≪ t ≪ tf ), the ratio for electromagnetic form factors RX(q, t) with the vector current of

temporal component (V4) is given as

RX(q, t) =
2mXZV C

XX
4 (p⃗, t)

(mX + EX(p⃗))ZX (⃗0)ZX(p⃗)
eEX(p⃗)(t−ti) → fX(q2) (X = π, K), (6.3.1)

where mX is X meson mass, ZX is defined by ZX(p⃗) = ⟨0|Oπ|X(p⃗)⟩, ZV is the current renormalization

factors. The mX and ZX are estimated by fitting two-point functions.

When pion mass is heavy, for example Ref. [14], the form factor is extracted as plateau of the

quantity RX on the middle region in source-sink time separation. However when pion mass is light

and the temporal periodicity is not large enough, RX in the middle region has current-time dependence

due to the wrapping around effect [36].

Thus extraction including the effect should be done by the following form

f0 + f1 ×
e−E2X×te−Eπ×(T−tf ) − e−E2X×(tf−t)e−mπ×(T−tf )

e−EX×te−mπ×(tf−t)
, (6.3.2)

where the source time slice is fixed ti = 0, E2X is the energy of propagating two X mesons. After the

fit form is employed, the f0 in the form is obtained as form factor.

The ratio could be constructed by the vector current of spatial components (Vi (i = 1, 2, 3)).

However the data of Vi are noisier than data of V4, hence the data of Vi are rejected.
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6.3.1 Ratio for pion electromagnetic form factors Rπ(q, t)

The figures show the current-time dependence of Rπ(q, t) in source-sink time separation |tf − ti| =
36 ≈ 3.0 fm. The region between vertical dashed lines represents the fit range t = 15−21 for extracting

form factor. the figures show that the wrapping around effect in P+AP might be suppressed from the

results in other conditions.
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Figure 6.56: Rπ(q, t) of n = 1
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Figure 6.57: Rπ(q, t) of n = 2

0 10 20 30
t

0.94

0.95

0.96

0.97

R
π(q

,t)

Figure 6.58: Rπ(q, t) of n = 3
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Figure 6.59: Rπ(q, t) of n = 4
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Figure 6.60: Rπ(q, t) of n = 5
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Figure 6.61: Rπ(q, t) of n = 6
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6.3.2 Ratio for kaon electromagnetic form factors RK(q, t)

The figures show the current-time dependence of RK(q, t) in source-sink time separation |tf − ti| =
36 ≈ 3.0 fm The region between vertical dashed lines represents the fit range t = 15−21 for extracting

form factor. The figures show that the wrapping around effect in all conditions might be suppressed.

This is because kaon mass is heavier than pion mass and then the propagation of kaon is damped by

exp(−mKt).
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Figure 6.62: RK(q, t) of n = 1
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Figure 6.63: RK(q, t) of n = 2
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Figure 6.64: RK(q, t) of n = 3
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Figure 6.65: RK(q, t) of n = 4
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Figure 6.66: RK(q, t) of n = 5
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Figure 6.67: RK(q, t) of n = 6
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6.4 Electromagnetic form factors of pion and kaon

In this section, we discuss about electromagnetic form factors of charged pion and kaon. The form

factors have the information of hadronic structure and L9 which is one of the LEC of SU(3) ChPT.

The informations are convenient to check the consistency with experiment and semleptonic vector

form factor f+(q
2), respectively.

The electromagnetic form factors fX(q2) of X meson could be expanded by chiral order

fX(q2) = f
(2)
X (q2) + f

(4)
X (q2) + · · · . (6.4.1)

The leading order f
(2)
X (q2) is given as

f
(2)
X (q2) = 1, (6.4.2)

due to the current conservation, and the next-to-leading order f
(4)
X (q2) are given as

f (4),SU(3)
π (q2) =

1

f20

[
−2L9(µ)q

2 + 2H(m2
π, q

2, µ) +H(m2
K , q

2, µ)
]
, (6.4.3)

f
(4),SU(3)
K (q2) =

1

f20

[
−2L9(µ)q

2 +H(m2
π, q

2, µ) + 2H(m2
K , q

2, µ)
]
. (6.4.4)

where

H(m2
1, q

2, µ) =
1

2
Ā(m2

1, µ)− B̄22(m
2
1,m

2
1, q

2, µ),

with the finite part of one-loop integral of ChPT in Appendix A, and the mean square of charge radius,

as the first coefficient of form factor are given by

⟨
r2
⟩
π

= −6dfπ(q
2)

dq2

∣∣∣∣
q2=0

,

=
12L9(µ)

f20
− 1

16π2f20

(
log

(
m2

π

µ2

)
+ 1

)
− 1

32π2f20

(
log

(
m2

K

µ2

)
+ 1

)
, (6.4.5)

⟨
r2
⟩
K

= −6dfK(q2)

dq2

∣∣∣∣
q2=0

,

=
12L9(µ)

f20
− 1

32π2f20

(
log

(
m2

π

µ2

)
+ 1

)
− 1

16π2f20

(
log

(
m2

K

µ2

)
+ 1

)
. (6.4.6)

The summary of the difference of parameters between 964 simulations and this work is as follows.

• (κud, κs) = (0.126117, 0.124790)→ (mπ,mK) ≈ (145, 525) GeV.

• spatial extent of physical unit : 8.1fm.

• 3200 measurements (100 configuration × 4 source times × 2 random source × 4 temporal axes).

• bin size : every 100 trajectories.

• 3 integer vectors each momentum of n ≤6 .

• Within strange mass reweighting factor for κs =0.124812, 0.124768.

The results of pion electromagnetic form factors with PBC in 964 simulations and 1284 simulations

are given as follows.
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q2(GeV 2) fπ (with 2π) fπ (w.o. 2π)

n = 1 0.01908(2) 0.9662(11) 0.9716(6)

n = 2 0.03353(6) 0.9412(34) 0.9506(21)

n = 3 0.04566(10) 0.9196(44) 0.9318(32)

n = 4 0.05631(14) 0.9051(65) 0.9204(34)

n = 5 0.06593(17) 0.8936(92) 0.9093(58)

n = 6 0.07476(20) 0.8774(141) 0.9042(91)

Table 6.4: Comparison the results pion electromag-
netic form factors in PBC with 2pion fit and with-
out 2pion fit in 964 simulation

q2(GeV 2) fπ (with 2π) fπ (w.o. 2π)

n = 1 0.01136(2) 0.9781(10) 0.9789(10)

n = 2 0.02053(4) 0.9627(17) 0.9635(14)

n = 3 0.02842(8) 0.9478(23) 0.9484(20)

n = 4 0.03546(11) 0.9318(45) 0.9367(33)

n = 5 0.04187(14) 0.9217(56) 0.9262(34)

n = 6 0.04779(16) 0.9124(54) 0.9196(36)

Table 6.5: Comparison the results pion electromag-
netic form factors in PBC with 2pion fit and with-
out 2pion fit in 1284 simulation

The results of pion electromagnetic form factors with P+AP simulations and 1284 simulations are

given as follows.

q2(GeV 2) fπ (with 2π) fπ (w.o. 2π)

n = 1 0.01136(2) 0.9779(12) 0.9782(12)

n = 2 0.02053(4) 0.9628(21) 0.9626(18)

n = 3 0.02842(7) 0.9493(23) 0.9484(20)

n = 4 0.03546(9) 0.9315(45) 0.9349(34)

n = 5 0.04187(13) 0.9222(55) 0.9246(33)

n = 6 0.04780(15) 0.9150(54) 0.9190(37)

Table 6.6: Comparison the results of pion electromagnetic form factors in P+AP with 2pion fit and
without 2pion fit in 1284 simulation

Comparing the results in the table 6.4 and the table 6.5, in spite of that the calculations in the

same PBC are done, the deviations of the results between two fit forms of 1284 simulations are tend

to be smaller than 964 ones. Comparing the results in the table 6.5 and the table 6.6, the deviations

of the results in P+AP between two fit forms simulations are tend to be smaller than ones in PBC.

Thus, we consider that pion wrapping around effect could be suppressed by P+AP calculations,

accordingly wrapping around effects of other mesons might be more suppressed. In the following of

electromagnetic form factor analysis, the ones of P+AP calculations with two-meson fit are adopted

in 1284 simulations.
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6.4.1 Pion charge radius and L9

The momentum transfer dependence of the form factors and the curves by Eq. (6.4.4) present in

Fig.6.68.
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Figure 6.68: momentum dependance of pion electromagnetic form factors. Red filled symbols represent
the pion electromagnetic form factors in 1284 simulations. Black diamond symbols represent the form
factors in 964 simulations including strange mass reweighted ones. Red solid line represents the NLO
SU(3) correlated fit with Eq. (6.4.4) of 1284 form factors whose fit range is n = 1− 6. Black dashed
line represents the NLO SU(3) correlated fit with Eq. (6.4.4) of 964 form factors including strange
mass reweighted ones whose fit range is n = 1− 3.

In this fit, f0 = 0.074 GeV is the decay constant of SU(3) chiral limit which is estimated by the

combination the decay constant of SU(2) chiral limit f [26,36] and the ratio f/f0 = 1.23 [2,14], and

normalized by
√
2. In this analysis, we obtain

1000L9(µ) = 3.801(185), (6.4.7)

and by using Eq. ( 6.4.6) and this value, pion mean square charge radius is given as

⟨
r2
⟩
π
= 0.426(15)(fm2), (6.4.8)

whose correlated χ2/d.o.f=0.91(0.80). In 964 simulations, the results with SU(3) whose fit range is n =

1−3 (this result of the range has the smallest χ2/d.o.f in this simulation) with only statistical error are

given by 1000L9(µ) = 3.659(127) and
⟨
r2
⟩
π
= 0.407(11)(fm2) whose correlated χ2/d.o.f=0.75(0.51).

And the experimental charge radius of pion is
⟨
r2
⟩
π
= 0.452(11)(fm2). Results in 1284 simulation are

consistent with 964 simulations and experiment and statistical errors of the results are lesser than 964

results.

In correlated NLO SU(2) ChPT fit analysis (fit form is from the Appendix D) 1284 simulation,
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we also obtain

100l6(µ) = −1.267(55), (6.4.9)

and by using NLO SU(2) ChPT fit and this value, pion mean square charge radius is also given as

⟨
r2
⟩
π
= 0.426(16)(fm2). (6.4.10)

The radius in NLO SU(3) ChPT is consistent with one in NLO SU(2) ChPT.
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6.4.2 Kaon charge radius and L9

Similar to the analysis of pion form factor, the momentum transfer dependence of the kaon electro-

magnetic form factors and the curves by Eq. (6.4.4) present in Fig.6.69 (There is no data of kaon in

964 calculations).
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Figure 6.69: momentum dependance of pion electromagnetic form factors. Red filled symbols represent
the pion electromagnetic form factors in 1284 simulations. Red solid line represents the NLO SU(3)
correlated fit with Eq. (6.4.4 )of 1284 form factors whose fit range is n = 1− 6.

In this analysis, we obtain

1000L9(µ) = 3.545(38), (6.4.11)

and by using 6.4.6 and this value, kaon mean square charge radius is given as

⟨
r2
⟩
K

= 0.348(3)(fm2), (6.4.12)

whose correlated χ2/d.o.f=1.86(1.22). And the experimental charge radius of pion is
⟨
r2
⟩
K

=

0.314(34)(fm2). Our result are consistent with experiment.
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6.5 Ratio for semileptonic form factors d1,2,3(q, t)

When the current time is in the middle region of source-sink time separation (0 = ti ≪ t≪ tf ), the

ratios for semileptonic form factors d1,2,3(q, t) with the vector current are defined by the combination

of the meson two-point functions and the three-point functions. The ratio d1 is needed to extract

the scalar form factor at n = 0 (q2max = −(mK −mπ)
2) and constructed by three-point functions of

temporal component of the vector current V4 with zero momentum.

d1 =
CπK
4 (⃗0, t)CKπ

4 (⃗0, t)

CKK
4 (⃗0, t)Cππ

4 (⃗0, t)
→ (mK +mπ)

2

4mKmπ
(f0(q

2
max))

2 (6.5.1)
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Figure 6.70: d1(q, t) of n = 0

The Fig.?? shows that the plateau appears on the middle region of source-sink separation (0 =

ti ≪ t≪ tf ) in all boundary conditions. And the current-time independent quantities is extracted by

constant fit whose range is t = 15−21, in this work, the extraction are done about the other ratios. The

ratio d2 is related to f+(q
2) and the ratio of components of vector form factors ξ(q2) = f−(q

2)/f+(q
2)

and constructed by two-point functions corresponding to moving meson and three-point functions of

two alternating meson interpolators with temporal component of the vector current V4.

d2(q, t) =
CXY
4 (p⃗, t)CX(p⃗, t, ti)

CXY
4 (⃗0, t)CX(p⃗, t, ti)

→
(
EX(p⃗) +mY

mX +mY
+
EX(p⃗)−mY

mX +mY
ξ(q2)

)
f+(q

2)

f0(q2max)
, (6.5.2)

The ratio d3 for extraction ξ(q
2) is constructed by kaon three-point functions and three-point functions

of two alternating meson interpolators with spatial component of the vector current Vi.

d3(q, t) =
CXY
i (p⃗, t)CY Y

4 (p⃗, t)

CY Y
i (p⃗, t)CXY

4 (p⃗, t)
→ (EY (p⃗) +mY )(1− ξ(q2))

EX(p) +mY + (mY − EX(p))ξ(q2)
, (6.5.3)

In this work, there are two construction patterns of d2,3 by the choice of source meson. One is the

”moving pion”, which is the result of source pion with non zero momentum and sink kaon with zero

momentum, in other words, the two or three-point functions’ labels of meson in the ratios are fixed

by X = π, Y = K. The other is the ”moving kaon”, which is the result of switching the source and
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sink mesons (the labels are fixed by X = π, Y = K).

6.5.1 Ratios of moving pion

d2(q, t) of moving pion

When q2 = −(m2
K +m2

π − 2Eπ(p)mK), d2 is given as

d2 =
CπK
4 (p⃗, t)Cπ (⃗0, t)

CπK
4 (⃗0, t)Cπ(p⃗, t)

→
(
Eπ(p⃗) +mK

mπ +mK
+
Eπ(p⃗)−mK

mπ +mK
ξ(q2)

)
f+(q

2)

f0(q2max)
. (6.5.4)
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Figure 6.71: d2(q, t) of n = 1
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Figure 6.72: d2(q, t) of n = 2
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Figure 6.73: d2(q, t) of n = 3
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Figure 6.74: d2(q, t) of n = 4
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Figure 6.75: d2(q, t) of n = 5

0 10 20 30
t

1.04

1.05

1.06

1.07

1.08

d 2(q
,t)

Figure 6.76: d2(q, t) of n = 6
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d3(q, t) of moving pion

When q2 = −(m2
K +m2

π − 2Eπ(p)mK), d3 is given as

d3 =
CπK
i (p⃗, t)CKK

4 (p⃗, t)

CKK
i (p⃗, t)CπK

4 (p⃗, t)
→
(
Eπ(p⃗) +mK

pi

pi + piξ(q
2)

Eπ(p) +mK + (mK − Eπ(p))ξ(q2)

)
. (6.5.5)
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Figure 6.77: d3(q, t) of n = 1
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Figure 6.78: d3(q, t) of n = 2
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Figure 6.79: d3(q, t) of n = 3
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Figure 6.80: d3(q, t) of n = 4
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Figure 6.81: d3(q, t) of n = 5

0 10 20 30
t

1.4

1.5

1.6

d 3(q
,t)

Figure 6.82: d3(q, t) of n = 6
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6.5.2 Ratios of moving kaon

d2(q, t) of moving kaon

When q2 = −(m2
K +m2

π − 2EK(p)mπ), d2 is given as

d2 =
CKπ
4 (p⃗, t)CK (⃗0, t)

CKπ
4 (⃗0, t)CK(p⃗, t)

→
(
EK(p⃗) +mπ

mπ +mK
+
mπ − EK(p⃗)

mπ +mK
ξ(q2)

)
f+(q

2)

f0(q2max)
. (6.5.6)
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Figure 6.83: d2(q, t) of n = 1
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Figure 6.84: d2(q, t) of n = 2
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Figure 6.85: d2(q, t) of n = 3
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Figure 6.86: d2(q, t) of n = 4
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Figure 6.87: d2(q, t) of n = 5
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Figure 6.88: d2(q, t) of n = 6
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d3(q, t) of moving kaon

When q2 = −(m2
K +m2

π − 2EK(p)mπ), d3 is given as

d3 =
CKπ
i (p⃗, t)CKK

4 (p⃗, t)

CKK
i (p⃗, t)CKπ

4 (p⃗, t)
→
(
EK(p⃗) +mK

pi

pi + piξ(q
2)

EK(p) +mπ + (mπ − EK(p))ξ(q2)

)
. (6.5.7)
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Figure 6.89: d3(q, t) of n = 1
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Figure 6.90: d3(q, t) of n = 2
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Figure 6.91: d3(q, t) of n = 3
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Figure 6.92: d3(q, t) of n = 4
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Figure 6.93: d3(q, t) of n = 5
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Figure 6.94: d3(q, t) of n = 6

From the current-time dependent quantities, the current-time independent quantities are extracted

and combined, and then the form factor as functions of momentum transfer is obtained.
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6.6 Semileptonic form factors

After the extraction of current-time independent quantities from the ratios d1,2,3(q, t), the semileptonic

form factors f+,0 are constructed from the quantities. In this section, momentum dependence of

semileptonic form factors in various periodic boundary conditions are shown.

6.6.1 Momentum dependence of semileptonic form factors

Momentum dependence of semileptonic form factors in PBC

q2(GeV 2) f0 f+

n = 0 -0.1328(6) 1.0601(19)

n = 1 -0.0910(3) 1.0261(17) 1.0821(26)

n = 2 -0.0573(3) 1.0004(19) 1.0337(23)

n = 3 -0.0282(2) 0.9786(26) 0.9940(28)

n = 4 -0.0023(2) 0.9617(24) 0.9630(25)

n = 5 0.0213(2) 0.9459(37) 0.9339(33)

n = 6 0.0431(1) 0.9315(50) 0.9094(41)

Table 6.7: The results of f0, f+ with source pion
which moves only (p⃗π = 2π

L n⃗ and p⃗K = 0⃗)

q2(GeV 2) f0 f+

n = 0 -0.1328(6) 1.0601(19)

n = 1 -0.1293(6) 1.0555(22) 1.1230(121)

n = 2 -0.1259(6) 1.0516(24) 1.1153(88)

n = 3 -0.1225(6) 1.0475(27) 1.1113(84)

n = 4 -0.1192(6) 1.0448(30) 1.1083(97)

n = 5 -0.1160(7) 1.0382(44) 1.0895(173)

n = 6 -0.1129(7) 1.0354(66) 1.0848(239)

Table 6.8: The results of f0, f+ with source kaon
which moves only (p⃗K = 2π

L n⃗ and p⃗π = 0⃗)
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Figure 6.95: momentum dependance of semileptonic form factors in PBC. Right triangle symbols
represent the result of f0 of moving source pion and left triangle symbols represent the result of f+
of moving source pion (in table 6.7). Up triangle symbols represent the result of f0 of moving source
kaon and down triangle symbols represent the result of f+ of moving source kaon (in table 6.8). The
far left orange circle symbol represents f0(q

2
max) from d1.
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Momentum dependence of semileptonic form factors in APBC

q2(GeV 2) f0 f+

n = 0 -0.1327(6) 1.0533(19)

n = 1 -0.0909(4) 1.0173(18) 1.0722(24)

n = 2 -0.0572(3) 0.9916(20) 1.0243(22)

n = 3 -0.0282(2) 0.9701(27) 0.9853(28)

n = 4 -0.0023(2) 0.9530(27) 0.9542(25)

n = 5 0.0213(2) 0.9368(38) 0.9252(34)

n = 6 0.0431(1) 0.9240(52) 0.9021(43)

Table 6.9: The results of f0, f+ with source pion
which moves only (p⃗π = 2π

L n⃗ and p⃗K = 0⃗)

q2(GeV 2) f0 f+

n = 0 -0.1327(6) 1.0533(19)

n = 1 -0.1292(6) 1.0491(24) 1.1283(128)

n = 2 -0.1258(6) 1.0454(27) 1.1207(98)

n = 3 -0.1224(6) 1.0417(30) 1.1168(93)

n = 4 -0.1191(6) 1.0395(34) 1.1148(108)

n = 5 -0.1159(7) 1.0333(49) 1.0964(184)

n = 6 -0.1128(7) 1.0309(71) 1.0914(244)

Table 6.10: The results of f0, f+ with source kaon
which moves only (p⃗K = 2π

L n⃗ and p⃗π = 0⃗)
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Figure 6.96: momentum dependance of semileptonic form factors in APBC. Right triangle symbols
represent the result of f0 of moving source pion and left triangle symbols represent the result of f+
of moving source pion (in table 6.9). Up triangle symbols represent the result of f0 of moving source
kaon and down triangle symbols represent the result of f+ of moving source kaon (in table 6.10). The
far left orange circle symbol represents f0(q

2
max) from d1.
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Momentum dependence of semileptonic form factors in P+AP

q2(GeV 2) f0 f+

n = 0 -0.1328(6) 1.0566(20)

n = 1 -0.0910(3) 1.0216(18) 1.0722(24)

n = 2 -0.0573(3) 0.9959(20) 1.0289(22)

n = 3 -0.0283(2) 0.9742(26) 0.9894(27)

n = 4 -0.0024(2) 0.9571(25) 0.9585(25)

n = 5 0.0212(2) 0.9412(36) 0.9294(31)

n = 6 0.0431(1) 0.9276(50) 0.9056(41)

Table 6.11: The results of f0, f+ with source pion
which moves only (p⃗π = 2π

L n⃗ and p⃗K = 0⃗)

q2(GeV 2) f0 f+

n = 0 -0.1328(6) 1.0566(20)

n = 1 -0.1293(6) 1.0522(23) 1.1230(124)

n = 2 -0.1259(6) 1.0484(25) 1.1181(93)

n = 3 -0.1226(6) 1.0445(28) 1.1141(88)

n = 4 -0.1193(6) 1.0420(32) 1.1116(102)

n = 5 -0.1161(6) 1.0357(47) 1.0930(178)

n = 6 -0.1129(7) 1.0331(69) 1.0881(241)

Table 6.12: The results of f0, f+ with source kaon
which moves only (p⃗K = 2π

L n⃗ and p⃗π = 0⃗)
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Figure 6.97: momentum dependance of semileptonic form factors in P+AP. Right triangle symbols
represent the result of f0 of moving source pion and left triangle symbols represent the result of f+ of
moving source pion (in table 6.11). Up triangle symbols represent the result of f0 of moving source
kaon and down triangle symbols represent the result of f+ of moving source kaon (in table 6.12). The
far left orange circle symbol represents f0(q

2
max) from d1.

The wrapping around effect might be suppressed as above results, and therefore the results of the form

factors in P+AP are applied from the next analyses. And the data of moving kaon are not utilized.

This is because the data are noisier than moving pion’s one and too far to extrapolate to the target

momentum transfer q2 = 0 in all boundary conditions.
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6.6.2 Monopole fit

We first employ the monopole ansatz which is based on vector meson dominance hypothesis as inter-

polation form given by

f+(q
2) =

F

1 + q2/M2
V

and f0(q
2) =

F

1 + q2/M2
S

, (6.6.1)

where the fit parameters are F , MV , and MS , and F = f+(0) = f0(0).

Using the fit forms we perform the uncorrelated simultaneous fit with the data for f+(q
2) and

f0(q
2).

The left panel of Fig. 6.98 shows the simultaneous fit result of f+(q
2) and f0(q

2) using the monopole

forms in equation (6.6.1). The f0(q
2
max) is not included in the fit. The value of χ2/d.o.f. = 0.03(0.08)

in the uncorrelated fit. The right panel of Fig. 6.98 shows the fit result of the form factor at q2 = 0.

The monopole ansatz gives a similar result, whose uncorrelated χ2/d.o.f. ≈ 0.03.

From the two interpolations we obtain the results of the semileptonic from factor at q2 = 0 given

by

f+(0) = f0(0) = 0.9552(36) (monopole) (6.6.2)

The systematic error of the fit form dependence is much smaller than the statistical error as expected.

And the result by not using the constraint f+(0) = f0(0) are similar to one by using the constraint.
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Figure 6.98: (a) momentum transfer dependence of semileptonic form factors. The blue right triangle
and red left triangle symbols denote f+(q

2) and f0(q
2), respectively. The violet dashed and magenta

two-dot-dashed curves represent the simultaneous fit result of f+(q
2) and f0(q

2), respectively. The
diamond symbol denotes the fit result of f+(0) = f0(0). (b) The same figure as (a), but near q2 = 0
region between the momentum n = 4 and n = 5.

69



6.6.3 NLO ChPT + NNLO analytic

The momentum transfer dependencde of semileptonic form factors could be sprit by chiral order [43].

f+,0(q
2) = f

(2)
+,0(q

2) + f
(4)
+,0(q

2) + f
(6)
+,0(q

2), (6.6.3)

where f
(2)
+,0(q

2), f
(4)
+,0(q

2) and f
(6)
+,0(q

2), represent LO, NLO, NNLO part, respectively. The current

conservation determines the normalization of vector form factor and scalar form factor in the chiral

limit, This is

f
(2)
+,0(q

2) = 1. (6.6.4)

The formulae of semileptonic form factors of NLO (chiral order of O(p4)) was first calculated within

the SU(3) ChPT framework by Gasser and Leutwyler in this work [11]

f+(q
2) = f

(2)
+ (q2) + f

(4)
+ (q2)

= 1− 2
q2

f20
L9(µ) +

3

8f20
(Ā(m2

η, µ) + Ā(m2
π, µ) + 2Ā(m2

K , µ))

+
3

2f20
(B̄22(m

2
π,m

2
K , q

2, µ) + B̄22(m
2
K ,m

2
η, q

2, µ)), (6.6.5)

and

f0(q
2) = f

(2)
0 (q2) + f

(4)
0 (q2)

= 1− 4
q2

f20
L5(µ) +

3

8f20
(Ā(m2

η, µ) + Ā(m2
π, µ) + 2Ā(m2

K , µ))

+
3

2f20
(B̄22(m

2
π,m

2
K , q

2, µ) + B̄22(m
2
K ,m

2
η, q

2, µ))

+
1

f20
(1/2Ā(m2

η, µ)− 5/12Ā(m2
π, µ) + 7/12Ā(m2

K , µ)

+ B̄(m2
π,m

2
K , q

2, µ)(−m2
π/12− 5m2

K/12− 5q2/12)

+ B̄(m2
K ,m

2
η, q

2, µ)(m2
π/12− 7m2

K/12− q2/4)

+ B̄1(m
2
π,m

2
K , q

2, µ)(−7m2
π/12− 19m2

K/12− 5q2/12)

+ B̄1(m
2
K ,m

2
η, q

2, µ)(−1m2
π/12 + 23m2

K/12 + q2/4)

+ B̄21(m
2
π,m

2
K , q

2, µ)(3m2
π/2− 3m2

K/2 + 5q2/6)

+ B̄21(m
2
K ,m

2
η, q

2, µ)(3m2
π/2− 3m2

K/2 + q2/2)

+ B̄22(m
2
π,m

2
K , q

2, µ)(−5/6)

+ B̄22(m
2
K ,m

2
η, q

2, µ)(−1/2)). (6.6.6)

where Ā and B̄ij represent one-loop integrals and mη is obtained by using Gell-Mann-Okubo relation

3m2
η = 4m2

K−m2
π. Definitions of the integrals are in Appendix A. µ = 0.77 GeV is the renormalization

scale and f0 = 0.074 GeV is the decay constant of SU(3) chiral limit which is estimated by the

combination the decay constant of SU(2) chiral limit f [26,36] and the ratio f/f0 = 1.23 [2,14], and

normalized by
√
2.

In addition, the analytic terms are introduced as the formulae of NNLO for obtaining nontrivial
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value f+,0(0)

f
(6)
+,0(q

2) = c+,0
0 + c+,0

2 (−q2)2. (6.6.7)

In specific, including the chiral symmetry breaking effect, the parameter c0 could be rewritten,

c+,0
0 =

−8
f40

(m2
π −m2

K)2C+,0
0 , (6.6.8)

In this work, Using the constraint f+(0) = f0(0), the one parameter c+0 is reduced and the simultaneous

fit is done.

The Fig. 6.99 shows the result of the interpolation to zero momentum transfer with NLO ChPT

with NNLO analytic term by uncorrelated fit and the table 6.13 show the result of LEC in NLO ChPT

as fit parameters. The ChPT form gives the result, whose uncorrelated χ2/d.o.f. = 0.03(0.06) and the

result by not using the constraint f+(0) = f0(0) are similar to one by using the constraint.
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Figure 6.99: (a) momentum transfer dependence of semileptonic form factors. The blue right triangle
and red left triangle symbols denote f+(q

2) and f0(q
2), respectively. The blue dashed and red dashed

curves represent the simultaneous fit result of f+(q
2) and f0(q

2), respectively. The magenta diamond
symbol denotes the fit result of f+(0) = f0(0). (b) The same figure as (a), but near q2 = 0 region
between the momentum n = 4 and n = 5.
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1000L9

Kl3 (this work) 3.190(110)(2)(144)

pion EM (this work) 3.801(185)(2)(171)

kaon EM (this work) 3.545(38)(2)(160)

964 pion ff 3.659(127)(9)(165)

JLQCD(15A) [45] 4.6(1.1)(+0.1
−0.5)(0.4)

JLQCD(14) [46] 2.4(0.8)(1.0)

RBC/UKQCD(08A) [14] 3.08(23)(51)

Gasser [10] 6.9(7)

1000L5

Kl3 (this work) 0.566(55)(0)(25)

fK/fπ [32] 0.547(10)

Nf=2+1+1 [2] 1.19(25)

Nf=2+1 [2] 0.98(16)(+28
−41)

Gasser [10] 1.4(5)

Table 6.13: Comparison the results of this work and other previous studies of LECs in NLO ChPT
L5, L9 at µ = 0.77 GeV. Reweighted 964 pion electromagnetic form factor is in Ref. [42] and the
assignment of errors is the same as in this work (O(e−mπL) ≈ 0.2% in 964 simulation). The L5 from
decay constant ratio is the result of estimation from the decay constant ratio fK/fπ = 1.1914(16) in
Ref. [32] and the relation within NLO ChPT in Ref. [10].

The second error of the LECs with ChPT fit in the table 6.13 is estimated by the finite size

effect of O(e−mπL) ≈ 0.06% in 1284 simulation. and the third error is assigned discretization error by

O((aΛQCD)
2) ≈ 4.5% with ΛQCD = 0.5 GeV.

From the two interpolations to q2 = 0, we obtain the results of the semileptonic from factor at

q2 = 0 with statistical error given by

f+(0) = f0(0) = 0.9555(27)(uncorrelated NLO ChPT +NNLO analytic) (6.6.9)

and the table 6.13 shows that the fit in this work is consistent with previous studies of lattice QCD and

phenomenological approach. The result is similar to the result by not using the constraint f+(0) =

f0(0)

f+(0) = 0.9555(26), f0(0) = 0.9554(27). (6.6.10)

The figure 6.100 shows the result of the interpolation to zero momentum transfer with NLO ChPT

with NNLO analytic term by correlated fit with 6× 6 (number of full accessible momenta) covariance

matrices for each form factor and not using the constraint f+(0) = f0(0). The figure 6.101 shows the

result of the interpolation to zero momentum transfer with NLO ChPT with NNLO analytic term by

correlated simultaneous fit with 12×12 covariance matrix for all form factors and using the constraint

f+(0) = f0(0).
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Figure 6.100: momentum transfer dependence of semileptonic form factors with correlated fit by NOT
using constraint f+(0) = f0(0). The blue filled right triangle and red filled left triangle symbols denote
f+(q

2) and f0(q
2) at q2 = 0, respectively. The other symbols and lines represent the same in the figure

6.99.
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Figure 6.101: momentum transfer dependence of semileptonic form factors. The magenta diamond
symbol denote f+(0) = f0(0). The other symbols and lines represent the same in the figure 6.99.

After the analysis, we obtain the LECs

1000L9(µ) = 3.230(63)(2)(145), 1000L5(µ) = 0.607(39)(0)(26) (6.6.11)

The assignments of the errors is the same as the uncorrelated analyses.

From the two interpolations to q2 = 0, we obtain the results of the semileptonic from factor at

q2 = 0 with statistical error given by

f+(0) = 0.9551(24), f0(0) = 0.9555(24). (6.6.12)

The ChPT forms give the result without the constraint, whose correlated χ2/d.o.f. ≈ 0.3. However

the result of correlated simultaneous fit with 12× 12 covariance matrix for all form factor is obtained

as

f+(0) = f0(0) = 0.9536(23)(correlated NLO ChPT + NNLO analytic) (6.6.13)

whose correlated χ2/d.o.f. = 2.03(1.03).
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The result of the correlated simultaneous fit in Eq.(6.5.12) is smaller than the ones without the

constraint in Eq.(6.5.11). Furthermore, χ2/d.o.f. of correlated simultaneous fit is considerably higher

than the one without the constraint. These tendencies do not exist in the uncorrelated analyses. We

consider that it is caused by inadequate measurements or configurations for the fit to obtain the 12×12
covariance matrix. Thus, the results of the uncorrelated fit are adopted in the following analysis.

After the interpolation to the zero momentum transfer, f+(0) = f0(0) is obtained, and the contri-

butions of chiral order are explicitly given as

f+,0(0) = f
(2)
+,0(0) + f

(4)
+,0(0) + f

(6)
+,0(0)

= 1 + (Loop contribution term of NLO) +
−8
f40

(m2
π −m2

K)2C+,0
0 . (6.6.14)

where C+,0
0 is in the NNLO analytic term and it is obtained by uncorrelated analyses.

C+,0
0 = 5.376(1.914)(0.003)(0.242)× 10−7. (6.6.15)

The assignments of the errors is the same as LEC in NLO ChPT (see in the table 6.13), and then f(0)

of uncorrelated fit with systematic errors is given as

f+,0(0) = f+(0) = f0(0) = 0.955523(2727)(10)(424). (6.6.16)

The error from finite size effect is quite small, and therefore the error from finite size effect could be

ignored

f+,0(0) = f+(0) = f0(0) = 0.9555(27)(4), (6.6.17)

and then the value is utilized in the next analyses.

6.7 |Vus|

From 2.2.1 in Chapter 2,the result of combination of semileptonic decay measurements with isospin

correlation is |Vus|f+(q2 = 0) = 0.2165(4) [3] the result of |Vus| from the ChPT analyses lead to

|Vus| = 0.22658(65)(41)(10). (6.7.1)

The first error is statistical, the second one is estimated by the error propagation from experiment

values and the third one is derived from discretization effect.

The result of |Vus| from the monopole ansatz lead to

|Vus| = 0.22664(86)(41). (6.7.2)

The first error is statistical, the second one is estimated by the error propagation from experiment

values excluding the error from discretization effect due to the overestimation.
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Figure 6.102: Comparison with our results and other previous form factor studies. The red filled circle
and red filled square symbols represent the result in this work by monopole ansatz with total error and
one by ChPT analyses with total error, respectively. The brown band represents the estimation by
combination unitary condition of CKM matrix |Vub|2+ |Vus|2+ |Vub|2 = 1 and |Vud| = 0.97420(21) [30]
ignoring |Vub| due to the small values. The symbols between horizontal dashed line and horizontal
dot-dashed line in the figure are the results of form factor calculations by lattice QCD [31, 37–41].
The symbols below horizontal dot-dashed line in the figure are the results from the combination the
experiment the decay constant ratio calculations by lattice QCD. PDG results are quoted from Ref. [3].

The result from decay constant ratio of PACS (the filled diamond symbol in the Fig. 6.102) is

estimated by the combination fK/fπ = 1.1914(16) [32] and |Vus|
|Vud|

fK
fπ

= 0.2760(4) [3].

The Fig.6.102 shows that the results in this work is consistent with the result from unitary condition

and the ones from decay constant ratio and higher than the PDG’s result of form factor and most of

lattice calculations. In other words, the results in this work are unfavorable signature beyond the SM

and the unitarity may have sensitivity to new physics at the TeV scale [47].

6.8 Slope of form factor

The test of slope of form factor is useful for consistency check with experiment [49]. The slope of form

factors is defined by

λ′(+,0) = −
m2

π±

f(+,0)(0)

f(+,0)(q
2)

dq2

∣∣∣∣∣
q2=0

. (6.8.1)
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The results of JLQCD are quote from [31], and these are

λ′(+) = 3.08(14)(+12
−4 )(25)× 10−2, λ′(0) = 1.98(15)(+12

−4 )(16)× 10−2. (6.8.2)

The first error is statistical, the second one is from the chiral extrapolation and the third one is derived

from discretization effect.

The results of ChPT analyses in this work is obtained

λ′(+) = 2.44(8)(11)× 10−2, λ′(0) = 1.37(8)(6)× 10−2, (6.8.3)

and the results of monopole ansatz with statistical error and discretization effect in this work is

obtained

λ′(+) = 2.54(6)(12)× 10−2, λ′(0) = 1.46(5)(7)× 10−2. (6.8.4)

These slope of form factors of this work show that the our calculations of form factor are consistent

with results of JLQCD and experimental results.
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Chapter 7

Conclusion

We present results of the semileptonic form factors f+(q
2) and f0(q

2) in Nf = 2+1 Wilson fermion and

Iwasaki gauge action with stout smeared link Wilson clover action at the physical point (mπ = 0.135

GeV) on a large volume, whose physical spatial extent is 10.8 fm. Thanks to the physical point

calculation, the uncertainty from chiral extrapolation could be suppressed. Thanks to the large extent

of the lattice, the order of finite size effect is O(e−mπL) ≈ 0.06%. This is quite small value. The

two meson wrapping around effect could be suppressed enough by the large extent of the lattice with

the combination of calculation in periodic boundary condition and anti periodic boundary condition.

And this work is truly unquenched simulation hence the difference between valence quark masses with

quark propagator and sea quark masses with quark determinant does not have to be considered.

The accessible momentum has high resolution because of the spatial extent, therefore the inter-

polations to zero momentum transfer of semileptonic form factors are carried out stably by using the

NLO SU(3) ChPT with NNLO analytic terms and monopole forms. NLO SU(3) ChPT with NNLO

analytic terms yields

f+(0) = f+(0) = 0.9555(27)(4). (7.0.1)

The first error is statistical, the second one is derived from discretization effect.

The results of f+,0(0) could be determined by the sub-percent (0.3%) accuracy for these forms.

Using the result of the form factors at the zero momentum transfer and the experimental value

|Vus|f+,0(0) = 0.2165(4), |Vus| is given by

|Vus| = 0.22658(65)(41)(10). (7.0.2)

The first error is statistical, the second one is estimated by the error propagation from experiment

values and the third one is derived from discretization effect.

Our value is relatively higher than the PDG’s value and other lattice calculations, while it agrees

with the values estimated from the decay constants and the one from the unitarity condition ∆u = 0.

In other words, the signal in this work is unfavorable signal of beyond the SM. From the interpolations

we evaluate the slope of the form factors, and find that our results are consistent with the experimental

values.

However the systematics estimation of this work might not be fully done. At first, the discretization

effect is considered. In this works the error from this effect is estimated by using the product of lattice

spacing and 0.5 GeV as QCD scale. This is because the calculation is done in single lattice spacing
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thus the continuum limit a→ 0 could not be taken by some functions of lattice spacing. Probably, the

uncertainty from correct estimation might be smaller than one from the rough estimation in this work

thanks to the O(a) improvement in our configurations. Thus the other lattice spacing calculations

are need to be done (if possible, the lattice spacing is finer than one in this work). The second

systematic error to be considered is the effect of isospin breaking and electromagnetic correction. The

uncertainties are typically 0.1 − 0.2%, and as the accuracy of form factor calculation becomes this

level. The some excellent control of these effect will be progressively important. In this work, The

”continuum” ChPT form is used. However the deviation between ”continuum” ChPT and ”discrete”

ChPT might exist as the the origin of systematic errors. In recent study [41], the NLO form of ChPT

for partially quenched staggered quarks was used. There are some studies of the Wilson fermion type

ChPT [51, 52]. However the form factor analysis with the Wilson fermion type ChPT still has not

been carried out. The analysis probably should be done.
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Appendix A

One loop integral in ChPT

This section is the review of the article [48]. Through the calculation one has to use one-loop integrals.

We only have to deal with the following set of functions in the remainder we use d = 4− 2ϵ.

A(m2
1, µ) =

∫
ddq

(2π)d
1

q2 −m2
1

,

B(m2
1,m

2
2, p

2, µ) =

∫
ddq

(2π)d
1

(q2 −m2
1)((q − p)2 −m2

2)
,

Bµ(m
2
1,m

2
2, p

2, µ) =

∫
ddq

(2π)d
qµ

(q2 −m2
1)((q − p)2 −m2

2)

= pµB1(m
2
1,m

2
2, p

2, µ),

Bµν(m
2
1,m

2
2, p

2, µ) =

∫
ddq

(2π)d
qµqν

(q2 −m2
1)((q − p)2 −m2

2)

= pµpνB21(m
2
1,m

2
2, p

2, µ) + gµνB22(m
2
1,m

2
2, p

2, µ). (A.0.1)

The functions could be expanded by the series of ϵ as follows

A(m2
1, µ) =

m2
1

16π2
λ0 + Ā(m2

1, µ) + ϵĀϵ(m2
1, µ) + . . . ,

Bij(m
2
1,m

2
2, p

2, µ) =
1

16π2
pole(Bij) + B̄ij(m

2
1,m

2
2, p

2, µ) + ϵB̄ϵ(m2
1,m

2
2, p

2, µ) + . . . , (A.0.2)

with Ā, B̄ij defining finite quantities. The terms of ”λ0 =
1
ϵ + ln(4π)+1−γ” and ”pole(Bij)” represent

the divergent part of Bij where γ is Eular-Mascheroni constant.

The ”pole(Bij)” are given as

pole(B) = λ0, pole(B1) =
λ0
2
, pole(B21) =

λ0
3
,

pole(B22) =
λ0
4
(m2

1 +m2
2 −

p2

3
). (A.0.3)

After some calculation, the functions defined in equation ( A.0.1 ) could be rewritten by the
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identities of the Ā(m2
1) and B̄(m2

1,m
2
2, p

2) and integrals Bij ,

Ā(m2
1, µ) = − m2

1

16π2
ln(

m2
1

µ2
),

B̄(m2
1,m

2
2, p

2, µ) =
Ā(m2

1, µ)− Ā(m2
2, µ)

∆

+
1

32π2

{
2 +

(
−∆

p2
+

Σ

∆

)
ln

(
m2

1

m2
2

)
− ν

p2
ln

(
(p2 + ν)2 −∆2

(p2 − ν)2 −∆2

)}
,

B1(m
2
1,m

2
2, p

2, µ) =
1

2p2
(
A(m2

2, µ)−A(m2
1, µ) + (∆ + p2)B(m2

1,m
2
2, p

2, µ)
)
,

B22(m
2
1,m

2
2, p

2, µ) =
1

2(d− 1)

(
A(m2

2) + 2m2
1B(m2

1,m
2
2, p

2, µ)− (∆ + p2)B1(m
2
1,m

2
2, p

2, µ)
)
,

B21(m
2
1,m

2
2, p

2, µ) =
1

p2
(
A(m2

1, µ) +m2
1B(m2

1,m
2
2, p

2, µ)− dB22(m
2
1,m

2
2, p

2, µ)
)
, (A.0.4)

where Σ = (m2
1 +m2

2), ∆ = (m2
1 −m2

2) and ν =
√

(p2 − (m1 −m2)2)(p2 − (m1 +m2)2).

The calculation for B̄22 takes note of the cancelation of divergent part, B̄22 could be given as

B̄22(m
2
1,m

2
2, p

2, µ) =
1

6

(
Ā(m2

2, µ) + 2m2
1B̄(m2

1,m
2
2, p

2, µ)− (∆ + p2)B̄1(m
2
1,m

2
2, p

2, µ)
)

+
1

9

(
3Σ− p2

32π2

)
. (A.0.5)

For convenience in calculation for B̄21 at p2 = 0, the B̄(p2)/p2 at p2 = 0 could be given as [10]

B̄(m2
1,m

2
2, p

2, µ)

p2
−→p2→0 lim

p2→0

B(m2
1,m

2
2, p

2, µ)−B(m2
1,m

2
2, 0, µ)

p2

=
m2

1

32π2

(
Σ

∆2
− 2

m2
1m

2
2

∆3
ln

(
m2

1

m2
2

))
. (A.0.6)
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Appendix B

Ademollo-Gatto Theorem

In this chapter we present that the semileptonic form factors could be expand by the deviation between

strange quark mass and light (up or down) quarks’ mass around the symmetry limit (mu = md =

ms ̸= 0) and the linear term of the deviation vanishes [11,50].

On the assumption that the vector currents and electromagnetic currents are components of the

same unitary octet and that the breaking of the unitary symmetry behaves as the eighth component

of an octet, an important theorem on the non-renormalization of the strangeness violating vector

currents was proved by M. Ademollo and R. Gatto [50]. In the AG formalizm, the a-th component

of the current Ja to first-order in symmetry breaking term could be expanded by using the parameter

ϵ, which is reminder of the symmetry breaking as

Ja + ϵδJa = a0tr(B̄Bλa) + b0tr(B̄λaB)

+ ϵa

[
tr(B̄B{λa, λ8})−

δa8
8
tr(B̄B{λb, λb})

]
+ ϵb

[
tr(B̄{λa, λ8}B)− δa8

8
tr(B̄{λb, λb}B)

]
+ ϵc

[
tr(B̄λaBλ8)− tr(B̄λ8Bλa)

]
+ ϵgtr(B̄B)tr(λ8λa)

+ ϵh

[
tr(B̄λaBλ8) + tr(B̄λ8Bλa)−

δa8
8
tr(B̄λbBλb)−

6

5
fa8bfcdetr(B̄λdBλe)

]
, (B.0.1)

where B(B̄) represents the baryon matrix. However in this work, B(B̄) is correspond to the meson

matrix (5.2.1) in Chapter 5, λa represent the Gell-mann matrices (a = 1 · · · 8) and a0, b0 · · · h are

coupling constants.

Considering the electromagnetic current, defined as JEM = J3 + 1/
√
3J8, the expansion becomes

(a0 +
2aϵ√
3
)tr(B̄Bλ3) + (b0 +

2bϵ√
3
)tr(B̄λ3B)

+
1√
3
(a0 −

2aϵ√
3
)tr(B̄Bλ8) +

1√
3
(b0 −

2bϵ√
3
)tr(B̄λ8B)

+
2√
3
(g +

2(a+ b)ϵ

3
)tr(B̄Bλ8)

+ ϵc
[
tr(B̄λ3Bλ8)− tr(B̄λ8Bλ3)

]
+ ϵh

[
tr(B̄λ3Bλ8) + tr(B̄λ8Bλ3)

]
, (B.0.2)

and the in the limit to zero momentum transfer, due to that the current is not renormalized, the
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expansion becomes

−1

2
(tr(B̄Bλ3)− tr(B̄λ3B))− 1

2
√
3
(tr(B̄Bλ8)− tr(B̄λ8B)) (B.0.3)

Thus we have the relations among the coupling constant,

a0 = −
1

2
, b0 =

1

2
a = b = c = g = h = 0. (B.0.4)

The relation present that the electromagnetic charge do not need to require any corrections to first-

order of the symmetry breaking, and as the similar discussion about strangeness violating vector

current, the terms of first-order of the unitary symmetry breaking vanish.
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Appendix C

Other results of semileptonic form factors

In this section, the tables of results by some fit ansatz, for instance uncorrelated fit parameters, are

shown. the range of momentum transfer is the same as monopole and SU(3)ChPT (n=1-6).

Polynominal fit

f+,0(q
2) = f+,0(0)(1 + Σl

k=1an(q
2)k)

z expansion fit

The fit form is the function of regular function of momentum transfer by using the nature of conformal

transformation.

tcut = (mK +mπ)
2, t0 = (mK +mπ)(

√
mK −

√
mπ)

2

z(q2) =

√
tcut + q2 −

√
tcut − t0√

tcut + q2 +
√
tcut − t0

z(q2 = 0) = z0

f+,0(q
2) = f+,0(0)(1 + Σl

k=1an(z − z0)k)

SU(2) ChPT fit

The fit form is the NLO SU(2) ChPT ansatz without eta meson mass [38].

f+(q
2) = F+

(
1 + (C+

0 + C+
1 s)x+

m2
K

(4πf)2

(
−3

4
xlogx− xT+

1 (s)− T+
2 (s)

))
f0(q

2) = F0

(
1 + (C0

0 + C0
1s)x+

m2
K

(4πf)2

(
−3

4
xlogx+ xT 0

1 (s)− T 0
2 (s)

))
s = − q2

m2
K

, x =
m2

π

m2
K

T+
1 (s) = [(1− s)log(1− s) + s(1− s/2)]3(1 + s)/4s2

T+
2 (s) = [(1− s)log(1− s) + s(1− s/2)](1− s)2/4s2

T 0
1 (s) = [log(1− s) + s(1 + s/2)](9 + 7s2)/4s2

T 0
2 (s) = [(1− s)log(1− s) + s(1− s/2)](1− s)(3 + 5s)/4s2
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Results of polynominal fit

PBC f+(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9606(26) -7.36(18) 1.19(42)

l = 2 0.9593(27) -6.90(19) 45.2(8.8) 0.07(0.17)

l = 3 0.9595(25) -6.87(17) 36,7(25.3) -577(1486) 0.08(0.18)

l = 4 0.9595(25) -6.81(27) 38.5(27.1) -1514(4269) −0.51(2, 04)× 105 0.16(0.39)

PBC f0(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9600(27) -4.06(14) 0.27(22)

l = 2 0.9597(26) -3.81(23) 19.4(9.3) 0.04(9)

l = 3 0.9598(25) -3.80(22) 15.3(28.3) -244(1314) 0.05(0.1)

l = 4 0.9599(25) -3.65(31) 17.1(27.6) -2945(4534) −1.3(2.0)× 105 0.049(0.17)

Table C.1: uncorrelated polynominal fit in PBC without the f+(0) = f0(0)

APBC f+(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9520(28) -7.37(18) 1.26(41)

l = 2 0.9509(28) -6.86(19) 46.2(8.6) 0.06(0.14)

l = 3 0.9508(26) -6.87(17) 44.2(23.8) -116(1421) 0.09(0.20)

l = 4 0.9508(26) -6.94(30) 43.6(25.6) 556(4384) 0.36(2.2)× 105 0.17(40)

APBC f0(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9515(28) -4.04(15) 0.28(23)

l = 2 0.9511(28) -3.81(23) 21.7(9.8) 0.03(8)

l = 3 0.9511(26) -3.82(23) 23.0(27.5) 121.3(1342) 0.04(0.11)

l = 4 0.9511(26) -3.76(32) 23.0(26.7) -88(4785) −0.11(2.12)× 104 0.07(0.24)

Table C.2: uncorrelated polynominal fit in APBC without the f+(0) = f0(0)

P+AP f+(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9562(27) -7.30(18) 1.21(41)

l = 2 0.9548(26) -6.88(21) 46.0(8.7) 0.07(0.16)

l = 3 0.9549(25) -6.86(17) 41.2(25.5) -329(1472) 0.09(0.20)

l = 4 0.9550(25) -6.89(32) 41.3(26.7) -391(4268) −0.03(2.1)× 104 0.17(0.41)

P+AP f0(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9562(27) -4.03(15) 0.28(23)

l = 2 0.9552(26) -3.81(25) 20.5(10.7) 0.03(8)

l = 3 0.9553(25) -3.81(23) 19.5(27.3) -50(1318) 0.04(0.10)

l = 4 0.9553(25) -3.72(32) 20.3(27.7) -1513(4688) −4.8(22)× 104 0.06(0.21)

Table C.3: uncorrelated polynominal fit in P+AP without the f+(0) = f0(0)
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Results of z expansion fit

PBC f+(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9738(25) 0.45(1) 47.2(3.3)

l = 2 0.9577(26) 0.44(1) 1.04(3) 3.13(0.93)

l = 3 0.9589(26) 0.37(1) 1.06(3) 2.21(32) 0.29(0.45)

l = 4 0.9598(25) 0.38(1) 0.80(2) 2.14(33) 5.73(4.54) 0.10(0.23)

PBC f0(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9663(26) 0.28(1) 15.7(1.5)

l = 2 0.9584(26) 0.24(1) 0.59(5) 1.03(0.44)

l = 3 0.9596(25) 0.20(1) 0.56(3) 1.23(24) 0.06(0.17)

l = 4 0.9598(25) 0.20(2) 0.48(19) 1.16(28) 1.63(3.83) 0.06(0.19)

Table C.4: uncorrelated polynominal fit in PBC without the f+(0) = f0(0)

APBC f+(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9652(26) 0.40(1) 47.5(3.1)

l = 2 0.9489(27) 0.44(1) 1.07(5) 2.96(0.91)

l = 3 0.9502(26) 0.36(1) 1.06(3) 2.12(32) 0.30(0.45)

l = 4 0.9511(25) 0.38(1) 0.80(2) 2.01(33) 6.09(4.35) 0.08(0.20)

APBC f0(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9577(27) 0.28(1) 14.7(1.1)

l = 2 0.9497(27) 0.24(1) 0.60(5) 0.81(0.40)

l = 3 0.9508(26) 0.20(1) 0.57(3) 2.12(32) 0.08(0.21)

l = 4 0.9512(25) 0.21(2) 0.45(18) 1.02(29) 2.72(3.85) 0.04(0.16)

Table C.5: uncorrelated polynominal fit in APBC without the f+(0) = f0(0)

P+AP f+(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9692(25) 0.45(1) 45.5(3.1)

l = 2 0.9533(26) 0.44(1) 1.05(3) 2.96(0.91)

l = 3 0.9543(25) 0.37(1) 1.60(3) 2.14(32) 0.30(0.46)

l = 4 0.9553(25) 0.38(1) 0.79(2) 2.07(32) 5.97(4.53) 0.09(0.22)

P+AP f0(0) a1 a2 a3 a4 χ2/d.o.f

l = 1 0.9618(27) 0.28(1) 15.5(1.4)

l = 2 0.9539(25) 0.24(1) 0.59(3) 0.94(43)

l = 3 0.9550(25) 0.20(1) 0.57(3) 1.16(25) 0.07(0.20)

l = 4 0.9553(25) 0.21(2) 0.46(18) 1.09(28) 2.1(3.8) 0.06(0.18)

Table C.6: uncorrelated polynominal fit in P+AP without the f+(0) = f0(0)
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Results of SU(2) ChPT fit

PBC f0(0) F0 c00 c01 χ2/d.o.f

f0 0.9603(35) -1.05(63) -22.3(3.7) -1.14(0.72) 0.45

PBC f+(0) F+ c+0 c+1 χ2/d.o.f

f+ 0.9598(37) 16.2(2.8) -13.0(0.2) 0.35(4) 0.47

APBC f0(0) F0 c00 c01 χ2/d.o.f

f0 0.9508(37) -1.05(66) -22.3(3.4) -1.05(0.67) 0.32

APBC f+(0) F+ c+0 c+1 χ2/d.o.f

f+ 0.9505(37) 17.0(2.8) -13.0(0.2) 0.33(4) 0.33

P+AP f0(0) F0 c00 c01 χ2/d.o.f

f0 0.9556(34) -1.05(66) -22.1(3.5) -1.05(0.70) 0.33

P+AP f+(0) F+ c+0 c+1 χ2/d.o.f

f+ 0.9553(33) 16.6(2.8) -13.0(0.2) 0.34(4) 0.36

Table C.7: uncorrelated SU(2) ChPT fit in various PBCs without the
f+(0) = f0(0)
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Appendix D

SU(2) ChPT for pion form factor

The pion electromagnetic form factor of NLO SU(2) ChPT given by

fSU(2)
ππ (q2) = 1 +

2

f2

[
2lr6q

2 + 4H̃(m2
π, q

2, µ2)
]
, (D.0.1)

⟨
r2π
⟩

=
−24lr6
f2

− 1

4π2f2

(
log

(
m2

π

µ2

)
+ 1

)
, (D.0.2)

(D.0.3)

where,

H̃(m2
π, q

2, µ2) =
m2H(x)

32π2
− q2

192π2
log

m2

µ2
, (D.0.4)

H(x) = −4

3
+

5

18
x− x− 4

6

√
x− 4

x
log


√

x−4
x + 1√

x−4
x − 1

 (x = − q2

m2
). (D.0.5)

The pion electromagnetic form factor of NNLO SU(2) ChPT given by

fSU(2),NNLO
ππ (Q2) = 1 + 2x2

[
s− 4

6
J̄(s) + s

(
−lr6 −

L

6
− 1

18N

)]
+ 4x22(P

(2)
V + U

(2)
V ) +O(x32), (D.0.6)

where

x2 =
M2

π

f2π
, fπ = f

[
1 + 2

M2
π

f2
(lr4 − L)

]
, (D.0.7)
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and

P
(2)
V = s

[
−k1
2

+
k2
4

+
−k4
12

+
k6
2
− lr4

(
2lr6 +

1

9N

)
+

23L

36N
+

5

576N
+

37

864N2
+ rrV 1

]
+ s2

[
k1
12

+
−k2
24

+
k6
24

+
1

9N

(
lr1 −

lr2
2
− lr6

2
− L

12
− 1

384
− 47

192N

)
+ rrV 2

]
(D.0.8)

U
(2)
V = J̄

[−(s2 − 4s)lr1
3

+
(s2 − 4s)lr2

6
+

(s− 4)lr4
3

+
−(s2 − 4s)lr6

6
+

− L

36

(
s2 + 8s− 48

)
+

1

N

(
7s2

108
+
−97s
108

+
3

4

)]
+

K1(s)

9
+
K1(s)

9

(
s2

8
− s+ 4

)
+
K3(s)

6

(
s− 1

3

)
+
−5K4(s)

3
(D.0.9)

The definitions ofJ̄ ,K1,K2,K3,K4 is as follows
J̄

K1

K2

K3

 =


0 0 z −4N
0 z 0 0

0 z2 0 8

Nzs−1 0 π2(Ns)−1 π2




h3

h2

h

−(2N2)−1

 (D.0.10)

K4 =
1

sz

(
K1

2
+
K3

3
+
J̄

N
+

(π2 − 6)s

12N2

)
(D.0.11)

h =
1

N
√
z
ln

√
z − 1√
z + 1

, z = 1− 4/s, (D.0.12)

where,

ki = (4lri − γiL)L, γ1 = 1/3, γ2 = 2/3, γ4 = 2, γ6 = −1/3. (D.0.13)

Charge radius of pion in NNLO SU(2) ChPT is described

⟨
r2π
⟩SU(2),NNLO

= − 2

f2π

(
6lr6 +

1

N
+ L

)
+

4m2
π

f2π

[
−3k1 +

3k2
2

+
−k4
2

+ 3k6 − 12lr4l
r
6

+
1

N

(
−2lr4 +

31L

6
+

13

192
− 181

48N

)
+ 6rrV 1

]
. (D.0.14)

In this work, it is too many parameters to fit stably by the NNLO SU(2) ChPT form, and therefore

the NNLO SU(2) ChPT analysis is not done.
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