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Abstract

Spurred by the strong demand for scaling dimension of the transistor to nanometer region where

the quantum mechanical effects play a crucial role, the development of fast and reliable theoretical

tools to investigate and understand such systems becomes an urgent issue. At the nanometer scale,

the quantum transport calculation based on the density functional theory is promising. However,

such calculation is still computationally expensive even with the state-of-the-art supercomputer and

therefore more efficient algorithms are needed to perform the realistic device simulations. In this thesis,

new efficient formulation, implementation, and algorithm for first-principles transport calculation are

presented. In particular, the computational aspect of calculating the transport properties of Landauer-

Büttiker two-probe systems within the non-equilibrium Green’s function method is discussed. Herein,

I employ the real-space grids to construct the Kohn-Sham Hamiltonian matrix but the extension of

the developed method to the tight-binding approximation or any localized basis set is straightforward.

The most time-consuming parts of quantum transport calculation are evaluating the self-energy

matrices of electrode and solving the Kohn-Sham equation under the open boundary condition. Self-

energy matrices describe the boundary matching condition between electrodes and central region, and

a solution of the Kohn-Sham equation is obtained by matrix inversion associated with the Green’s

function. For the calculation of the self-energy matrices, the formulation and implementation with

the use of the partitioning and singular value decomposition techniques are derived. In addition, the

contour integral eigensolver based on Sakurai-Sugiura method is developed to obtain the self-energy

matrices and leads to a reduction of the computational burden by up to orders of magnitude. The

efficient formula for the retarded and lesser part of the Green’s functions is presented so as to compute

the charge density and transmission efficiently. Using the mathematically strict relationship between

the retarded and unperturbed Green’s function, the physically important quantities are obtained from

the first and last block matrix columns of the unperturbed Green’s function which is solved efficiently

by the newly developed iterative solver, modified shifted conjugate-orthogonal conjugate gradient

method. To illustrate the capability of the proposed methods, several benchmarks to measure serial

and parallel performance tests are conducted. As applications, transport properties of the SiC/SiO2

interface based on power electronic device and silicene based on the nanoscale electronic devices are

investigated.
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1||2 for a set of δSVD in the range of

(0, 10−16, 10−14, 10−12, 10−10). Note that the solutions are normalized by ||ϕl
1||2 = 1. . 55

4.3 Distribution of eigenvalues of quadratic eigenvalue problem for a set of δSVD in the range

of (0, 10−16, 10−14, 10−12, 10−10). The eigenvalues or residual norms becomes NaN are

omitted from counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Errors in the calculation of self-energy matrix as a function of δSVD. . . . . . . . . . . 59

5.1 CPU time required to obtain unperturbed Green’s functions of Na atomic wire. The

black square, red circle, and blue triangle are the results obtained by the COCG (Ta-

ble 5.1), shifted COCG (Table 5.2), and the modified shifted COCG (Table 5.3), re-

spectively. The energy points are set are chosen so as to be equidistance in the interval

ε− εF ∈ [−1, 1] eV, where εF is the Fermi level. . . . . . . . . . . . . . . . . . . . . . 72

5.2 Electronic band structures of (a) (10,10)CNT and (b) C60@(10,10)CNT. The Fermi

level is marked by the dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Conductance spectrum of C60@(10,10)CNT. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Charge density distributions of scattering wavefunctions of C60@(10,10)CNT. (a) and

(b) correspond to the energies indicated by the arrows in Fig. 5.3. The spheres represent

the positions of carbon atoms. Each contour represents twice or half the charge density

of the adjacent contour lines. The lowest-density contour represents a density of 5.0×
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Chapter 1

Introduction

Looking back on the history of the silicon integrated circuit, there is no doubt that “Moore’s law” is

the most important keyword. Moore’s law, named from Intel co-founder Gordon Moore, states that

the density of complementary metal-oxide-semiconductor (CMOS) transistor doubles every 18 to 24

months. For decades, the integrated circuit manufacturers have endeavored to remain on track of this

empirical rule by pursuing the miniaturization of the transistor. As a result, the drastic progress owed

to high speed, small, and low power consumption transistor has brought great deals of benefits for our

life, for example, laptops, smartphone, tables have become an indispensable part of our life. However,

in the mid-2000s, it became much harder to continue downsizing the transistor due to several physical

limitations, and therefore conventional scaling is no longer an effective way to improve the device

performance. Nowadays, to pursue further transistor downsizing, innovation of the transistor structure

and novel material has undergone with rapid advancement. As successful examples in this direction,

high quality native insulator SiO2 has been replaced by the so-called “high-k” insulators, which have

higher dielectric constants rather than that for SiO2, and conventional two-dimensional MOS field

effect transistors (MOSFETs) has evolved into three-dimensional FinFET. Recently, extensive efforts

have been devoted to develop the future devices such as all surrounding gate nanowire FET, carbon

nanotube FET, and tunnel FET, but none of them is decisive. The quest for novel device structure

and material can also be seen in the research field of the power electronic device. Although silicon is

currently also mainstream semiconductor in power electronic device, wide band gap semiconductors

such as silicon carbide and gallium nitride emerged for high-power and high-temperature electronics. In

this situation, researchers can no longer rely solely on their intuitions and past knowledge accumulated

on silicon technology to find the candidates of the future devices.

Driven by the fast development of new material, new structure, and new principle electronics,

atomistic-scale simulations based on the quantum mechanics become increasingly important for under-

standing and predicting transport properties. In the past, technology computer aided design (TCAD)

tool based on the drift-diffusion and Boltzsmann transport equation was frequently used to predict

the device properties with practically sufficient accuracy. However, as decreasing the dimension of

the transistor, the effects of quantum mechanical effects like quantum confinement and tunneling on
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device properties become too large to ignore. The empirical tight-binding approximation is one of the

simplest ways to include the quantum mechanical effects and it may give the reasonable results in

some cases. Although the tight-binding approximation shows a good balance between accuracy and

efficiency, there is severe problem that it is difficult to obtain the transferable parameters from the

experimental measurements. Then, the tight-binding approximation often fails in the system contain-

ing impurity, surface and interface, where the influence of the individual atoms is essential. At the

atomistic scale, the first-principles approach whose Hamiltonian matrix is constructed self-consistently

without any empirical parameter should be the ultimate solution.

The great majority of first-principles electron transport calculations have been based on the den-

sity functional theory (DFT) within the local density or generalized gradient approximations. The

first attempts to the understand electron transport were based on the Landauer formula, implemented

by the Lippmann-Schwinger method. The current-voltage curve of the nanostructure between semi-

infinite electrodes was evaluated by solving the time-independent Kohn-Sham equation under the open

boundary condition. At this stage, there were many limitations and restrictions such that crystalline

electrodes are approximated by jellium electrodes, contributions from electron-phonon and electron-

electron interactions are difficult to include, and self-consistent calculations are numerically unstable.

To overcome these difficulties, theoretical and computational improvements have been studied exten-

sively. Currently, the most successful approach at the level of DFT calculation is the non-equilibrium

Green’s function (NEGF) method often combined with the localized basis set. However, in the DFT

calculations of electron transport, a reasonable description of actual experiments involving over thou-

sands atoms is still computationally demanding, and therefore, the development of an efficient com-

putational method remains a vital task. Especially in the framework of the NEGF method, the

evaluation of the self-energy matrices of electrodes and retarded Green’s function is the hotspot of

the whole computation for large systems. A major contribution of this thesis is that the quantum

transport calculation of nanoscale conductor containing thousands of atoms makes it feasible.

In this work, I present new computational methods for quantum transport simulations based on

the real-space finite-difference scheme. In order to obtain the transmission probability and other

physical quantities, I have developed the efficient formulas and algorithms for the computationally

most expensive parts of the transport calculations. In addition, fully utilizing the sparsity of the

Hamiltonian matrix, the proposed methods are suitable for massively parallel computing. Although

all derivations in this thesis are assumed to use real-space grids, extensions to the tight-binding

approximation and localized basis set calculations are straightforward, and I believe that the efficient

algorithms presented here makes first-principles investigations of transport properties in large-scale

atomic structures feasible. My contributions to this work includes

• Derivation of the efficient formula and implementation for the self-energy matrices based on

real-space finite-difference scheme combined with partitioning and singular value decomposition

techniques.

• Implementation of the Green’s function method based on the sparsity of the self-energy matrices

2
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and Dyson equation. Implementation of the shifted conjugate-orthogonal conjugate-gradient

method for the unperturbed Green’s function to perform transmission calculations efficiently.

• Development and implementation of a contour integral method for calculation of generalized

Bloch states, complex band structure, and self-energy matrices.

• The study of transport properties of the SiC/SiO2 interface based on the power electronic device.

• The study of transport properties of the silicene interface based on the nanoscale electronic

device.

1.1 Units and notation

Unless otherwise noted, Hartree atomic units (me = ℏ = e = 1) are used throughout this thesis.

Following unit conversions are often used.

1 unit of Length = 0.5292 (Å)

1 unit of Energy = 27.2114 (eV)

1 unit of Time = 0.02418 (fs)

1 unit of Electron mass = 9.1096× 10−31 (kg)

1 unit of Electron charge = 1.6022× 10−19 (C)

1 unit of angular momentum = 1.0546× 10−34 (Js)

The following mathematical notations are used in this thesis. Scalars are written as italic charac-

ters, a, b, x, y, z, etc. Integer variables are predominantly given in i, j, k,N, etc. Vectors are denoted

by bold face characters, a, b,x,y, z, etc, and matrices are predominantly with hat, Â, B̂, X̂, Ŷ , Ẑ, etc.

To indicate the specific element of vector, I use the notation ai = [a]i and similarly Ai,j = [Â]i,j for

matrices. Finally, the particular block matrix element of vectors and matrices are denoted by ai and

Âi,j , respectively.

1.2 Outline

The thesis is composed of 7 chapters, 4 appendices, and the bibliography. In Chap. 2, I briefly

review the framework of the density functional theory and derive the Kohn-Sham equation for the

norm-conserving pseudopotential. In Chap. 3, I discuss the state-of-the-art theoretical modeling of

the quantum transport based on the Landauer picture in weakly interacting phase-coherent nanoscale

conductor. In Chap. 4, I describe the formulation and implementation of self-energy matrices evalua-

tion based on the real-space finite-difference scheme. In Chap. 5, I present the formalism for a more

efficient implementation of the retarded and non-equilibrium Green’s functions to compute the charge

density and transmission. In addition, an efficient numerical solver to obtain the reduced solution of
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the shifted linear systems arising from the unperturbed Green’s function calculation is implemented.

In Chap. 6, I describe a contour integral method for the fast evaluation of the generalized Bloch

states, complex band structure, and self-energy matrices within the formalism of the Green’s function

or wavefunction-matching method. In Chap. 7, I give a short conclusion and outlook.
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Chapter 2

Density Functional Theory

Density functional theory (DFT) is the first-principles theoretical approach to treat the many-body

electron system in the ground state. From the pioneering work by Hohenberg and Kohn [1] in 1964,

numerous efforts have been devoted to enhance the capability of the DFT calculations, for exam-

ples, proposals of the Kohn-Sham equation [2], ab initio norm-conserving pseudopotential [3], various

exchange correlation functionals [4–6], Car-Parrinello molecular dynamics method [7], and so on.

Owing to these theoretical breakthroughs and remarkable advance on the super computers, current

DFT-based simulations enable us to investigate the electronic properties of a wide range of materials

accurately as well as the structural changes and phonon spectral theoretically. Nowadays, beyond

the ground state properties, electronic excitations including electron-transport and optical properties

are tractable by combined with theories such as Landauer-Büttiker formalism [8] and time-dependent

DFT [9]. I would like to begin this thesis from the minimum review of the DFT.

2.1 Born-Oppenheimer approximation

The purpose of condensed matter physics is to understand the behavior of electrons in matter includ-

ing gas, liquid, and solids that consist of a lot of electrons and atomic nuclei. The non-relativistic

Hamiltonian for the system of electrons and atomic nuclei can be written as below:

H =
∑
i

(−1

2
∇2

i ) +
1

2

∑
i̸=j

1

|ri − rj |
−
∑
i,n

Zn

|ri −Rn|
+
∑
n

(− 1

2Mn
∇2

n) +
1

2

∑
n ̸=m

ZnZm

|Rn −Rm|
, (2.1)

where ri is the position of the i-th electron and Rn,Mn and Zn are the position, mass and charge of

the n-th nucleus, respectively.

In addition, Schrödinger equation for the Hamiltonian in Eq. (2.1) is

H Φ = EΦ. (2.2)

It is assumed that the eigenfunction of the above equation can be expressed by the product of the

wavefunction of electrons and that of nuclei

Φ(r1, ...;R1, ...) = Ψ(r1, ...;R1, ...)Λ(R1, ...). (2.3)
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Here Ψ is the eigenfunction of the electronic Hamiltonian (2.1)

HΨ(r1, ...;R1, ...) = E(R1, ...)Ψ(r1, ...;R1, ...), (2.4)

where

H =
∑
i

(−1

2
∇2

i ) +
1

2

∑
i̸=j

1

|ri − rj |
−
∑
i,n

Zn

|ri −Rn|
. (2.5)

Note that the atomic position Rn contributes to the electron system as just a parameter, and E

depends on the atomic positions. However, one might think that the vibration of the atomic nuclei

around the equilibrium position at the finite temperature will affect the electrons. To see this effect,

substituting Eq. (2.3) into Eq. (2.2) and using Eq. (2.4), one might obtain

H Φ = Ψ
[∑

n

(− 1

2Mn
∇2

n)+E(R1, ...)+
1

2

∑
n̸=m

ZnZm

|Rn −Rm|

]
Λ−

∑
n

1

2Mn

(
2∇nΨ∇nΛ+∇2

nΨΛ
)
. (2.6)

The second term in Eq. (2.6) is the electron-phonon interaction. If the electron-phonon interaction

can be ignored, the freedoms of degree for electrons and nuclei systems are separated completely, and

therefore, this approximation is called adiabatic approximation or Born-Oppenheimer approximation.

Actually, by calculating the expected values of the first and second terms of the electron-phonon

interaction in Eq. (2.6), its effect is much smaller than the kinetic energy of electrons by the order of

1/Mn = 10−3 ∼ 10−5. This approximation seems to be quite good.

Thanks to the Born-Oppenheimer approximation, electron-nuclei interactions are treated as the

external potentials, and the target problem becomes solving Eq. (2.4) instead of Eq. (2.2). However,

it is still very difficult to solve Eq. (2.4) due to the electron-electron interactions.

2.2 Hohenberg-Kohn theorem

In this section I explain the theoretical framework of DFT to obtain the ground state of Schrödinger

equation for Hamiltonian of N -electron system. As a preparation for deriving the Hohenberg-Kohn

theorem [1], I introduce the external potential Vext and electron particle number operator n̂(r) defined

as

Vext =

N∑
i

vext(ri), (2.7)

n̂(r) =

N∑
i=1

δ(r− ri), (2.8)

where vext(ri) is an external potential acting on the i-th electron:

vext(ri) =
∑
n

Zn

|ri −Rn|
. (2.9)
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The electron density is obtained as a expected value of n̂(r) for the N -electron wavefunction,

n(r) = ⟨Ψ| n̂ |Ψ⟩

=

∫
Ψ(r1, ..., rN )n̂(r)Ψ(r1, ..., rN )dr1...drN . (2.10)

In addition, potential energy for Vext is expressed using the electron density,

⟨Ψ|Vext |Ψ⟩ =

∫
Ψ(r1, ..., rN )

N∑
i

vext(ri)Ψ(r1, ..., rN )dr1...drN

=

∫
Ψ(r1, ..., rN )

N∑
i

(∫
vext(r)δ(r− ri)dr

)
Ψ(r1, ..., rN )dr1...drN

=

∫
vext(r)n(r)dr. (2.11)

Following the quantum mechanics, if Vext is given, N -electron wavefunction and electron density

are determined uniquely except for degeneration. The first Hohenberg-Kohn theorem is its reverse.

Theorem 1 For a given electron density, external potential and ground state wavefunction are deter-

mined uniquely except for degeneration.

Proof. Assume that there are two different external potentials vext(r) and v
′
ext(r) that give the same

electron density n(r). If H and H ′ denote the corresponding Hamiltonians for vext(r) and v′ext(r),

ground state wavefunctions ΨGS and Ψ′
GS are different unless vext(r) − v′ext(r) = const. From the

variational principle, ground state energy EGS must satisfy

EGS = ⟨ΨGS |H |ΨGS⟩ < ⟨Ψ′
GS |H |Ψ′

GS⟩

= ⟨Ψ′
GS | (H ′ − V ′ + V ) |Ψ′

GS⟩

= E′
GS +

∫
(vext(r)− v′ext(r))n(r)dr, (2.12)

and also for E′
GS ,

E′
GS = ⟨Ψ′

GS |H ′ |Ψ′
GS⟩ < ⟨ΨGS |H ′ |ΨGS⟩

= ⟨ΨGS | (H − V + V ′) |ΨGS⟩

= EGS +

∫
(vext(r)

′ − vext(r))n(r)dr. (2.13)

Adding Eq.(2.12) and Eq.(2.13) yields

EGS +E′
GS < EGS +E′

GS . (2.14)

The above equation is contradictory. Thus, vext(r) and v′ext(r) that give the same n(r) do not exist

(End of Proof).
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The first Hohenberg-Kohn theorem asserts the one-to-one mapping between n(r) and vext(r), that

is, all physical properties of ground state are described by the universal functional of n(r). For example,

ground state energy can be described as a functional of n(r)

EGS [n] = F [n] +

∫
vext(r)n(r)dr, (2.15)

where

F [n] = ⟨ΨGS | (T + Vee) |ΨGS⟩ . (2.16)

Here, T and Vee are the kinetic energy of electrons and electron-electron interactions, respectively.

The first Hohenberg-Kohn theorem only shows the existence and uniqueness of n(r) but says nothing

about how to obtain the true electron density. The second Hohenberg-Kohn theorem concerns this

issue.

Theorem 2 Electron density which minimizes the ground state energy is the exact electron density.

Proof. Following the first Hohenberg-Kohn theorem, for a trial electron density n′(r), there exists the

corresponding external potential v′ext(r) and ground state wavefunction Ψ′
GS . From the variational

principles, ground state energy for n′(r) is obtained as below:

EGS [n
′] = ⟨Ψ′

GS |H |Ψ′
GS⟩

=

∫
vext(r)n

′(r)dr+ F [n′]

≥ EGS [n] =

∫
vext(r)n(r)dr+ F [n]. (2.17)

(End of Proof)

Second Hohenberg-Kohn theorem asserts that the ground state energy EGS is obtained once we

know the exact electron density n(r). The second theorem is too simple but important because

it reduces the problem of finding the wavefunction Ψ(r1, ..., rN ) with 3N variables into finding the

electron density n(r) with 3 variables. Although the complexity of the problem is dramatically reduced,

the specific form of the functional F [n] in Eq. (2.16) is still unclear.

Note that the first and second Hohenberg-Kohn theorems assume the existence of the external

potentials that reproduce the ground state electron density (V -representability). In addition, the

second theorem further assumes that the ground state electron density is obtained from the anti-

symmetrized wavefunction (N -representability). Strictly speaking, these are not correct. However,

using the constrained search formulation proposed by Levy [10, 11], it is enough to consider the

N -representability only. Fortunately, N -representability is not problematic in practical calculations

because the electron density constructed by the solutions of the Kohn-Sham equation to be appeared

in the next section satisfies the N -representability.

8
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2.3 Kohn-Sham equation

In the following year of the paper by Hohenberg and Kohn, Kohn and Sham derived the single-particle

equation known as Kohn-Sham equation and opened the way of the electronic structure calculation

based on DFT. The central idea of the Kohn-Sham method is introducing the fictitious system, which

is a set of non-interacting electrons whose electron density is identical to that of the true many-body

system. The electrons of the fictitious system moves in the local effective potential veff (r), instead of

ignoring the electron-electron interaction. So the Hamiltonian operator is described by just a sum of

the one-electron operator, and we simply solve the single-particle (Kohn-Sham) equation;[
− 1

2
∇2 + veff (r)

]
ψi(r) = εiψi(r) (2.18)

for N non-interacting electrons. Here, ψi(r) and εi are known as the Kohn-Sham orbital and energy,

respectively. When the full wavefunction is expressed by the Kohn-Sham orbitals as the form of a

Slater determinant, the true electron density will be given by

n(r) =
N∑
i

|ψi(r)|2. (2.19)

In order to obtain veff (r), F [n] might be decomposed into three terms:

F [n] = Ts[n] +
1

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n], (2.20)

where Ts[n] is the kinetic energy of non-interaction electrons, and the second term is the classical

Coulomb interaction contributed from the charge density n(r), and Exc[n] is the exchange-correlation

energy which includes the kinetic energy and electron-electron interaction of interacting electrons

except for the first and second terms in Eq. (2.20). Using the Kohn-Sham orbitals ψi(r), Ts[n] can be

described as

Ts[n] =

N∑
i

∫
ψ∗
i (r)(−

1

2
∇2)ψi(r)dr

=
N∑
i

εi −
∫
veff (r)n(r)dr. (2.21)

The ground state energy EGS [n] in the true many-body system is

EGS [n] =

N∑
i

εi −
∫
veff (r)n(r)dr+

∫
vext(r)n(r)dr+

1

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n]. (2.22)

By the way, the guideline of determining the unknown veff (r) is the variational principle for EGS [n].

Under the constraint that total number of electron is constant, we can derive the variational equation

δ

δn

[
EGS [n]− µ

(∫
n(r)dr−N

)]
= −veff (r) + vext(r) +

∫
n(r′)

|r− r′|
dr′ + vxc(r)− µ = 0, (2.23)
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where µ is the Lagrange multiplier and

vxc(r) =
δExc[n]

δn
. (2.24)

The vxc(r) is called exchange-correlation potential and its analytical expression will be given in next

section. As can be seen from Eq. (2.18), because µ uniformly shift εi, we put µ = 0. The forth term

in Eq. (2.23), the Hartree potential, is

vH(r) =

∫
n(r′)

|r− r′|
dr′. (2.25)

Because the direct integration of the vH(r) is very expensive, it is usually evaluated by solving the

Poisson equation

∇2vH(r) = −4πn(r), (2.26)

under the appropriate boundary condition. Typical numerical techniques to solve the Poisson equation

are the conjugate-gradient method, multi-grid method, and fast Fourier transform method. Thus, the

veff (r) can be rewritten as below:

veff (r) = vext(r) + vH(r) + vxc(r). (2.27)

As a result, our target problem, that is, calculating the ground state of the N -electron system is

reduced to solve Eq. (2.18), Eq. (2.19), and Eq. (2.27) self-consistently. In the actual calculation, the

self-consistent solution is obtained by following iterative steps.

Step 1. Guess the trial electron density ñ(r) and Kohn-Sham orbital ψ̃i(r)

Step 2. Construct the effective local potential veff (r)

Step 3. Solve the Kohn-Sham equation (2.18) to obtain the new n(r) and ψi(r).

Step 4. if |n(r)−n′(r)| is sufficiently small, the procedure stops and evaluate the physical quantities

such as EGS . Otherwise mix the new and old densities and go to Step 2.

Fig. 2.1 illustrates the self-consistent procedure in a DFT calculation.

2.4 Exchange correlation functionals

The Kohn-Sham equation derived in the previous section is a highly efficient approach for quantum

many-body problem, but the exact exchange-correlation energy Exc[n] and its functional derivative

vxc(r) are still unclear, and unfortunately it might be quite difficult to give its exact expression.

Kohn and Sham have already pointed out in their paper that many of solids can be regarded as

a homogeneous electron gas limit. In this limit, Exc[n] can be well approximated by the local or

semi-local functional of the electron density. Although various analytical forms for Exc[n] have been

proposed so far, it is beyond the scope of this thesis to derive them. Here, I only mention typical ones,

the local density approximation and generalized gradient approximation, that are used in the current

calculations.
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Figure 2.1: Schematics of self-consistent calculation in Kohn-Sham scheme. The cycle is continued

until solution of the Kohn-Sham equation ψi(r), charge density n(r) and veff (r) become self-consistent.

2.4.1 Local density approximation

Local density approximation (LDA) is the simplest approximation which assumes Exc[n] is given by

Exc[n] =

∫
n(r)ϵLDA

xc (n(r))dr, (2.28)

where ϵLDA
xc is the exchange-correlation energy per electron for the homogeneous electron gas. Fur-

thermore, ϵLDA
xc can be divided into exchange and correlation terms

ϵLDA
xc (n(r)) = ϵLDA

x (n(r)) + ϵLDA
c (n(r)). (2.29)

ϵLDA
x is so called Slater exchange energy and given by

ϵLDA
x (n) = −3

4

( 6
π
n
)1/3

. (2.30)

For the correlation energy ϵLDA
c , several analytical forms have been proposed. The commonly used

analytical representations of ϵLDA
c were formulated by Perdew and Zunger [12], Vosko, Wilks, and

Nusair [13], and Perdew and Wang [14]. Because all these expressions were obtained by fitting the

quantum Monte Carlo calculation by Ceperley and Alder [15] for the homogeneous electron gas, their

results are qualitatively similar. For example, the analytical expression formulated by Perdew and

Wang is given by

ϵLDA
c (rs) = −2× 0.031091(1 + 0.21370rs)

× ln

(
1 +

1

2× 0.031091(7.5957r
1/2
s + 3.5876rs + 1.6382r

3/2
s + 0.49294r2s)

)
, (2.31)

where rs is the density parameter given by

rs =
( 3

4πn

)1/3
. (2.32)
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The exchange-correlation potential vxc(r) for LDA can be obtained by the functional derivative of

Exc[n] in Eq. (2.28), that is,

vxc(r) =
δExc[n]

δn(r)

=

∫ [δn(r′)
δn(r)

ϵLDA
xc (n(r′)) + n(r′)

δϵLDA
xc (n(r′))

δn(r)

]
dr′

=

∫ [
ϵLDA
xc (n(r′)) + n(r′)

δϵLDA
xc (n(r′))

δn(r′)

]δn(r′)
δn(r)

dr′

= ϵLDA
xc (n(r)) + n(r)

∂ϵLDA
xc (n(r))

∂n(r)
. (2.33)

It is known that the LDA is generally accurate enough to describe the structural properties in-

cluding atomic structure, lattice constant and bulk modulus for a wide range of materials. The reason

why the LDA is good approximation even for inhomogeneous gas can be explained by two reasons: (i)

exchange-correlation energy only depends on the angle-averaged exchange hole and the LDA result is

similar to the exact one, (ii) the LDA functional satisfies the charge sum rule [16].

2.4.2 Generalized gradient approximations

While the LDA works well beyond our expectation, it turned out that the LDA results are unsatisfac-

tory in some cases such as the overbinding of the molecules, overestimation of cohesive energies, poor

accuracy of activation energy barriers in chemical reactions, wrong orders of the structural energy

differences, descriptions for 3d-metals and its oxides, and so on.

Generalized gradient approximations (GGAs) are exchange correlation energies that involve the

first-order gradient of the electron density to improve the description of the systems where the density

changes rapidly such as in molecules. The GGA exchange-correlation energy is expressed by

Exc[n] =

∫
n(r)ϵGGA

xc (n↑, n↓, |∇n↑|, |∇n↓|)dr

=

∫
n(r)ϵLDA

xc (n↑, n↓)Fxc(n
↑, n↓, |∇n↑|, |∇n↓|)dr, (2.34)

where n↑ and n↓ are up- and down-spin electron densities. Although various successful forms of Fxc

have been proposed so far, I only introduce the GGA proposed by Perdew, Burke, and Ernzerhof

(PBE) [6], which might be the simplest and most widely used GGA functional in the field of the

solid state physics. From the scaling rule for the exchange energy, it is enough to consider the spin-

degenerated PBE exchange energy

FPBE
x (s) = 1 + κ− κ

1 + µs2/κ
, (2.35)

where κ = 0.804, µ = 0.21951 and

s =
|∇n|
2kFn

. (2.36)
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Here, kF = (3π2n)1/3. On the other hand, for the correlation energy, the spin dependencies must be

treated explicitly,

FPBE
c (n↑, n↓, |∇n↑|, |∇n↓|) = 1 +

HPBE(rs, t, ζ)

ϵLDA
c (rs, ζ)

, (2.37)

where

t =
|∇n|
2ξksn

, (2.38)

ζ =
n↑ − n↓

n
. (2.39)

Here, ks = (4kF /π)
1/2 and ξ = [(1 + ζ)2/3 + (1 − ζ)2/3]/2. The PBE correlation term H(rs, t, ζ) in

Eq. (2.37) is given by

HPBE(rs, t, ζ) = γξ3 ln

(
1 +

β

γ
t2

[
1 +At2

1 +At2 +A2t4

])
, (2.40)

where β = 0.066725, γ = 0.031091, and

A =
β

γ
[e−ϵLDA

c (rs,ζ)/(γξ3) − 1]−1. (2.41)

The GGA exchange-correlation potential vxc(r) can be obtained by the functional derivative for

Exc with respective to the n and ∇n

δExc[n] =
∑
σ

∫ [
ϵGGA
xc δnσ + n

∂ϵGGA
xc

∂nσ
δnσ + n

∂ϵGGA
xc

∂|∇nσ|
δ|∇nσ|

]
dr, (2.42)

where σ =↑ or ↓. Using δ∇n = ∇δn,

δ|∇n| = δ|∇n| |∇n|
|∇n|

= δ∇n · ∇n
|∇n|

=
∇n
|∇n|

· ∇δn. (2.43)

Substituting Eq. (2.43) into Eq. (2.42) results in

δExc[n] =
∑
σ

∫ [
ϵGGA
xc + n

∂ϵGGA
xc

∂nσ
+ n

∂ϵGGA
xc

∂|∇nσ|
∇nσ

|∇nσ|
· ∇
]
δnσdr. (2.44)

Thus, the tractable form of vxc(r) can be obtained as below

vσxc(r) =
δExc[n]

δnσ(r)
=

[
ϵGGA
xc + n

∂ϵGGA
xc

∂nσ
+ n

∂ϵGGA
xc

∂|∇nσ|
∇nσ

|∇nσ|
· ∇
]
r,σ

. (2.45)

The last term in Eq. (2.45) acts as the differential operator, resulting in vσxc(r) is the non-local potential.

For further details on how to handle the last term, we refer the reader to Ref. [17].
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2.5 Pseudopotential method

I have reviewed the minimal theoretical foundations of the DFT in the sections above. Next, I shall

consider solving the Kohn-Sham equation (2.18) numerically. In practice, the Kohn-Sham orbital

is expanded by the real-space grid, plane-wave basis set, or pseudo-atomic basis, which transforms

the Kohn-Sham (second-order differential) equation into the matrix eigenvalue problem. Because the

computational cost of solving the eigenvalue problem depends on its dimension, i.e., the number of

basis set, it is useful to discuss how many numbers of the basis set are required to describe the Kohn-

Sham orbital. Here, I choose the aluminum (Al) in bulk and plane wave basis set as a simple example.

The Al in bulk forms the face-centered cubic structure with lattice constant a = 4.05Å. Based on

the hydrogen model, the radius of the lowest 1s orbital of the Al is roughly ZAl (= 13) times smaller

than that of the hydrogen, that is, b = 0.529/13 = 0.04Å. To describe the 1s orbital, plane waves

with the wave vector kmax ≈ 2π/b will be required, and the reciprocal lattice vector of Al, which can

be considered as a minimum wave vector, is kmin ≈ 2π/a. Thus, the required number of plane-wave

basis is estimated by (kmax/kmin)
3 = (a/b)3 ≈ 106. This number is very large. On the other hand,

the eigenvalue of the 1s orbital of the Al is Z2
Al times deeper than that of the hydrogen, that is, -2300

eV. Considering that the metallic properties of the Al bulk can be well approximated by the nearly

free electron model, the deep and specially localized 1s orbital of the Al in bulk only weakly affects

on the physical property. Thus, it is reasonable and computationally efficient to ignore the inner-shell

electrons and deal with the outer-shell valence electrons explicitly. This is the basic concept of the

pseudopotential method.

The pseudopotential method has a long history. Several elementary ideas associated with pseu-

dopotentials were recognized in mid-1930s [18,19], however the practical calculations for predicting the

band structure in solids had not been achieved until the empirical pseudopotential method (EPM) was

developed. The EPM is based on the Philips-Kleinman cancellation theorem [20], which enables us

to transform the hard all-electron potential into a smooth pseudopotential. Because of this property,

plane-wave basis set can be used efficiently with the pseudopotentials. While the EPM has been used

to understand the optical and dielectric properties of semiconductors [21], this method only works

for the systems on which parameters are fitted. This problem is known as the transferability prob-

lem and finding the transferable pseudopotentials is still elusive within the empirical pseudopotential

approach. Moreover, there is no reason to believe the EPM for predicting the structural properties

of materials because the empirical parameters are fitted to the only optical excitation. To overcome

these difficulties, the DFT-based pseudopotentials have been studied extensively until now and result

in the impressive advances for understanding the electronic structure of materials. In this section, I

will introduce the norm-conserving pseudopotential method which is one of the most popular method

used in the current DFT calculations.

14
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2.5.1 Norm-conserving pseudopotentials

The pseudopotential method incorporates the inner-shell electrons into the external potentials and

handles valence electrons only, that is, external potentials for nuclei in Eq. (2.18) are replaced by

the pseudopotetials for nulcei plus inner-shell electrons. Pseudopotentials are constructed to make

the pseudo wavefunctions as smooth as possible while keeping the accuracy and transferability. Here

transferable pseudopotentials are those constructed in the isolated atom, but describe the behaviors of

valence electrons in different environments including molecules, clusters, and solids. However, pseu-

dopotentials are not determined uniquely due to its fuzzy definition. The most frequently used pseu-

dopotentials are probably the norm-conserving pseudopotenials (NCPPs) developed by the Hamann,

Schlüter and Chiang (HSC) [3], and its improvements [22–25]. According to the HSC paper, for an

atomic reference configuration, NCPPs must satisfy the following requirements:

(1) εpsl = εael ,

(2) ϕpsl (r) = ϕael (r) for r > rc,

(3) ϕpsl (rc) = ϕael (rc) and
dϕps

l (r)

dr

∣∣∣
r=rc

=
dϕae

l (r)
dr

∣∣∣
r=rc

,

(4)
∫ rc
0 |ϕpsl (r)|2r2dr =

∫ rc
0 |ϕael (r)|2r2dr = Qc,

where εpsl and εael are pseudo and all-electron valence eigenvalues for angular momentum l, and ϕpsl (r)

and ϕael (r) are the radial part of pseudo- and all-electron wavefunctions, respectively. The core radii

rc is a parameter to be chosen appropriately. Immediately from requirements (1) and (2), pseudopo-

tentials agree with the all-electron potentials outside rc because the potentials can be determined

uniquely for a given wavefunction and eigenvalue. The requirement (3), the wavefunction and its

derivative are continuous at rc, results in the smooth potential. The requirement (4) is the essence

of the NCPP. First, through the Gauss theorem, the norm-conservation condition guarantees that

the Hartree potentials outside rc are identical for pseudo and all-electron densities. Furthermore, the

norm-conservation condition guarantees that the first energy derivative of the logarithmic derivative

of pseudo and all-electron wavefunctions agree at rc,

1

2

[
(rϕpsl (r; ε))2

d

dε

d

dr
lnϕpsl (r; ε)

]
r=rc

=
1

2

[
(rϕael (r; ε))2

d

dε

d

dr
lnϕael (r; ε)

]
r=rc

= Qc. (2.46)

In general, the scattering properties for the atomic potential are determined by the logarithmic deriva-

tive of the wavefunction, and the logarithmic derivative are monotonically increasing function. Thus,

if the logarithmic derivative and its first energy derivative for pseudo wavefunction coincide with

those for all-electron wavefunction at the reference energy, it is expected that pseudopotentials give

the satisfactory results in different environments around the reference energy. Figure 2.2 shows the

pseudo and all-electron valence wavefunctions and ionic pseudopotentials for aluminum generated with

Troullier-Martins scheme [24] using OPIUM code [26].

15



2.5 Pseudopotential method CHAPTER 2 Density Functional Theory

Figure 2.2: The pseudo and all-electron valence wavefunctions and ionic pseudopotentials for aluminum

treated in LDA. Pseudofunctions are generated with Troullier-Martins scheme using OPIUM code. I

set rc = 1.6 bohr.

2.5.2 Kleinman-Bylander separable form

After removal of the valence contribution to the pseudopotential, the ionic pseudopotential vl(r) is

usually separated into the local (l-independent) and non-local parts,

vl(r) = vloc(r) + δvl(r). (2.47)

Based on the discussion in the previous section, vloc(r) = −Zion
r and δvl(r) = 0 for r > rc, where Zion

is the charge of nuclei minus inner-core electron. Because δvl(r) depends on the angular momentum

l, the pseudopotentials act on the wavefunction as a semi-local operator:

v̂ps = vloc(r) +
∑
l,m

|Ylm⟩ δvl(r) ⟨Ylm| , (2.48)

where Ylm is the spherical harmonics. However, semi-local form is inefficient from the computational

point of view. The calculation of v̂psψj(r) is

v̂psψj(r) = vloc(r)ψj(r) +
∑
l,m

Yl,m(θ, ϕ)

∫
Ylm(θ′, ϕ′)ψj(r

′, θ′, ϕ′)d(cos θ′)dϕ′. (2.49)

In the DFT calculation, we frequently compute

⟨ψi| v̂ps |ψj⟩ =
∫
ψi(r, θ, ϕ)

[
v̂psψj(r)

]
r,θ,ϕ

dr. (2.50)

The above operation requires that O(N2
basis) complexity for both computational cost and memory

consumptions, where Nbasis is the number of (real-space) basis surrounding each atom.
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Kleinman and Bylander (KB) [27] proposed the efficacious form for v̂ps:

v̂ps ≈ vloc(r) + v̂KB

= vloc(r) +
∑
l,m

|δvlϕpslm⟩ ⟨ϕpslmδvl|
⟨ϕpslm| δvl |ϕpslm⟩

= vloc(r) +
∑
l,m

|βlm⟩Dl ⟨βlm| , (2.51)

where ϕpslm = ϕpsl Ylm, |βlm⟩ = |δvlϕpslm⟩ , and Dl = ⟨ϕpslm| δvl |ϕpslm⟩. The Kleinman-Bylander form is

much more efficient than the conventional semi-local form because

⟨ψi| v̂KB |ψj⟩ =
∑
l,m

Dl ⟨ψi|βlm⟩ ⟨βlm|ψj⟩ , (2.52)

where

⟨βlm|ψj⟩ = ⟨ψj |βlm⟩∗ =
∫
β∗(r)ψj(r)dr. (2.53)

Thus, the operation in Eq. (2.52) can be executed in only O(Nbasis) calculation and memory usage.

Note that the Kleinman-Bylander form is approximation except for the atomic reference configuration,

leading the problem of the occurrence of the unphysical eigenstates (Ghost states), but can be avoided

with special care [28,29].

Consequently, the Kohn-Sham equation for the pseudopotential is defined as below:

Hps
KSψ

ps
i (r) = εiψ

ps
i (r), (2.54)

where

Hps
KS = −1

2
∇2 + vloc(r) + v̂KB + vH(r) + vxc(r). (2.55)

The formulations and calculations in the current study are based on the Kohn-Sham equation (2.54)

and Kohn-Sham Hamiltonian (2.55).

2.6 Comment on other issues

To perform the DFT calculation steadily, efficiently, and accurately, it is necessary to discuss about

the selection of the basis sets, mixing the charge density, iterative eigensolvers, sampling the k-points

in the Brillouin zone, algorithms for molecular dynamics. I also skip the recent advancements on the

development for the exchange-correlation functionals, ultrasoft pseudopotentials [30] and projector-

augmented wave method [31], and the theories beyond the DFT. For further details about the DFT,

I refer the reader to Parr and Yang [32], and Martin [17].
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Chapter 3

First-principles quantum transport

approach

This chapter presents the theoretical modeling of quantum transport through nanoscale conductors

where conduction electrons preserve the feature as a quantum mechanical wave, which gives rise to the

following transport phenomena not observed in the macroscopic conductors: (i) quantum interference

(ii) quantum tunneling (iii) quantum confinement (iv) inelastic scattering by electron-electron and

electron-phonon interaction. The (i)-(iii) phenomena can be treated within the scattering theory for

transport (Landauer-Büttiker formalism [33–35]) combined with the single-particle equations based

on the DFT, Hartree-Fock theory, empirical pseudopotential method, tight-binding approximation,

and effective mass approximation. For the fourth phenomena such as Coulomb blockade, electron-

electron and electron-phonon interactions can be handled as self-energy matrices [36] based on the

non-equilibrium Keldysh formalism which is often called the non-equilibrium Green’s function (NEGF)

method [37,38]. In this thesis, I focus on the system where inelastic scattering effects on the transport

can be neglected, that is, the system is assumed to be at low temperature and low source-drain bias

regime for simplicity.

Reminding that DFT is originally formulated for handling the ground-sate many-body problems,

there is no guarantee that Kohn-Sham equation (2.54) is applicable to the electron transport beyond

the linear response regime. In fact, the conventional LDA/GGA calculations usually underestimate

the band-gap and therefore overestimate the conductance at the Fermi level. To overcome the short-

coming of the DFT for electron transport, the self-energy correction scheme using the Hedin’s GW

approximation has been proposed, and it has been verified that GW calculations give the qualitatively

accurate conductance compared with the experimental values [39,40]. The only drawback of the GW

method is that the computational cost is prohibitively expensive for all but very small systems. Thus,

while the the use of DFT-based approach to the electron transport involves many restrictions, it has

still been the workhorse approach for obtaining the insight of the transport properties of wide rage of

materials due to its computational efficiency.

By neglecting the inelastic effects, results of Landauer-Büttiker formalism and NEGF method are
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formally same since both approaches are conceptually identical. On the other hand, their implementa-

tions are considerably different each other, and therefore appropriate choices of numerical algorithms

and basis sets are indispensable to perform large-scale transport calculations. To begin with this chap-

ter, I will present the both approaches from NEGF method to wavefunction matching (WFM) method

which is one of the theoretical method based on Landauer-Büttiker formalism. Later on that, I will

show the relationship between NEGF and WFM methods, and their advantage and disadvantage.

3.1 Phase-coherent transport

Before going to the theoretical modeling, I shall consider why unique phenomena have been observed

in nanoscale conductors at low temperature. It is well known that electrons in solids are scattered

by potentials of impurities and defects frequently. These scatterings only change the direction of the

motion (momentum), but the energy is preserved during the scattering. Another type of scattering,

inelastic scattering such as electron-phonon interaction changes both momentum and energy of elec-

trons. Roughly speaking, elastic and inelastic scatterings are distinguished by means of the mean free

path Lmfp. If the size of conductor is larger than Lmfp, the inelastic scattering process is dominant

and as a result the phase coherence of electrons is completely lost by collisions between electrons. In

this regime, the motion of electrons is described by the classical Boltzmann transport equation, and

the conductivity is proportional to its width and inversely proportional to its length (Ohm’s law). On

the other hand, if the length of the conductor is smaller than Lmfp, electrons go through the conduc-

tor while keeping the information of its phase, leading the experimental observations of the quantum

mechanical effects such as Aharonov-Bohm effect, quantization of the conductance, and quantum Hall

effect. This type of conduction is called phase-coherent transport. In metals, the relaxation time is

short as 10−13 (10−11) s at room temperature (1K), and therefore, the motion of electrons tends to

be diffusive. Thus, to see the quantum interference in metal, the size of samples must be smaller than

1 µm. In semiconductor,Lmfp is much longer than that of metal, and quantum confinement effect is

also expected due to its large fermi wavelength. Most of the theoretical works on the phase-coherent

(ballistic) transport scheme is based on the Landauer-Büttiker formalism as introduced in the next

section.

3.1.1 Two-probe system

Most of the theoretical works for phase-coherent transport have been based on the Landauer picture as

generalized by Buttiker for multi-probe system. This approach has been successful in explaining many

experimental observation qualitatively. I briefly explain the concept of the Landaur picture using the

simplest two-probe system as depicted in Fig. 3.1. Consider the conductor sandwiched by two ideal

leads that are connected with reservoirs whose chemical potentials are µL and µR for left and right

reservoirs, respectively. Suppose that the motion of electrons is one-dimensional and its lowest energy
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Figure 3.1: Illustration of one-dimensional narrow conductor to derive the Landauer formula. Con-

ductor is connected to electron reservoirs with different chemical potentials µL and µR.

level is given by ε = ℏ2k2z/2m∗. The density of states of one-dimensional system is

D1D(ε) =
dn

dε

=
1

π

√
m

2ℏ2ε

=
1

πℏvz
, (3.1)

where group velocity vz = ℏkz/m∗. Then, the current through two-prob system around zero temper-

ature is

I = (−e)
∫ ∞

∞
vz(ε)D1D(ε)T (ε)[f(ε− µL)− f(ε− µR)]dε

≈ − e

πℏ

∫ µL

µR

T (ε)dε

≈ − e

πℏ
T (εF )(µL − µR), (3.2)

where f(ε− µ) is the Fermi distribution function given by

f(ε− µ) =
1

1 + exp( ε−µ
kBTe

)
. (3.3)

Here kB and Te are Boltzman constant and electron temperature, respectively. It is assumed that the

current is carried by the single channel around the Fermi level εF at zero temperature. The transmis-

sion probability T (ε) can be computed from the Kohn-Sham equation of two-probe system. Because

the potential difference between left and right electrons is given by −eV = µL − µR, conductance

between two electrodes is

G =
I

V
=
e2

πℏ
T (εF ). (3.4)
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This is the Landauer formula for the single channel. In general, sub-bands with discretely quantized

energy levels perpendicular to the transport direction contribute to the transport. For case that total

number of channels is Nch, the Landauer formula is generalized as follows:

G =
e2

πℏ

Nch∑
m,n

|τmn|2, (3.5)

where τmn is the probability amplitude in which the n-th channel of the left electrode transfers to the

m-th channel of the right electrode. In this way, a procedure to investigate the transport properties in

a small conductor is reduced to calculating the transmission probability from the Kohn-Sham equation

of two-probe system and determining the conductivity by Landauer formula.

3.1.2 Hamiltonian in two-probe systems

The standard approach of electronic structure calculations for isolated and periodic systems is trans-

forming the Kohn-Sham equation into the matrix eigenvalue problem. This transformation is achieved

by expanding the wavefunction as a linear combination of the basis set or directly mapping on real-

space grids. In this case, the size of Hamiltonian matrix becomes finite and therefore one can easily

solve the Kohn-Sham equation and investigate the electronic structure in large-scale systems. In con-

trast, the two-probe system for transport calculation is neither isolated nor periodic system due to the

external bias between the semi-infinite electrodes, leading the size of Hamiltonian matrix in two-probe

system becomes infinite. It is numerically inaccessible to deal with the infinite but not periodic system.

Thus, I first show how to reduce the infinite size of the Hamiltonian matrix in two-probe system to

the numerically tractable form which we can deal with.

Figure 3.2 depicts the typical two-probe system where the carbon nanotube encapsulating the

fullerene (peapod) embedded by the semi-infinite metallic carbon nanotubes. The peapod and semi-

infinite carbon nanotubes can be regarded as a scatter and electrodes, respectively. The lower panel

shows the plane-averaged electrostatic potential along the transport direction at zero bias. It can

be seen that the influence of the central region is screened within several angstrom and electrostatic

potential smoothly connects to the bulk potential. Thus, the whole system is divided into three part:

left (L) electrode, central region (C), and right (R) electrode, and it is assumed that the effective local

potential and scattering states connect to the bulk potential and Bloch states inside the electrodes.

Note that the Hamiltonian matrix of electrode region is obtained by the self-consistent calculation for

the bulk system. The system can be further divided into the principal layers perpendicular to the

transport direction by introducing the basis set such as real-space grids, localized atomic orbitals, or

Laue representation. Here the principal layers are defined so as to interact only the nearest neighboring

layers. Based on the above system setup, what we need to consider is the finite-dimensional Hamil-

tonian matrix in the “transition” region (T) which is the central region plus two adjacent principal

layers for left and right electrodes as illustrated in Fig. 3.2.

Due to the locality of the real-space representation of the Hamiltonian matrix, the infinite Hamil-
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Figure 3.2: Schematic representation of a quasi-one-dimensional conductor sandwiched by two semi-

infinite electrodes. As an example, atomic structure of (10, 10)carbon nanotube (CNT) with single C60

is illustrated in the upper panel. Because of the localized feature of the real-space grid approach, the

system can be divided into principal layers denoted by · · · ,L1,L0,C1,· · · ,CN,R0,R1,· · · . Transition

region incorporate L0 and R0 layers as wavefunction matching planes. The lower panel shows the

plane-averaged electrostatic potential along the transport direction at zero bias. It can be seen that

the influence of the central region is screened within several angstrom and electrostatic potential

smoothly connects to the bulk potential due to the screening effect of metal.
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tonian is partitioned into the following matrix form:

Ĥ =


ĤL ĤLT 0

ĤTL ĤT ĤTR

0 ĤRT ĤR

 , (3.6)

where ĤL, ĤT and ĤR are the Hamiltonian matrices for the left electrode, transition region and

right electrode, respectively. ĤTL and ĤLT (ĤTR and ĤRT ) are the coupling matrices between the

central region and the left (right) electrode. Note that ĤTL = Ĥ†
LT and ĤTR = Ĥ†

RT . The transition

region should be taken large enough in order to eliminate the coupling between the left and right

electrodes. The representation of Eq. (3.6) is also valid for periodic in the direction parallel to the

electron transport. In this case, translation of the transverse direction can be characterized in terms

of the Bloch vector k∥ in the two-dimensional Brillouin zone, which is still a good quantum number

in the transport calculation.

3.2 Green’s function method: GF

At present, the non-equilibrium Green’s function (NEGF) method combined with Kohn-Sham Hamil-

tonian in DFT is the de-facto standard approach to calculate the electronic structure and transmission

probability in two-probe systems. The advantages of NEGF method is summarized as the following

reasons: (i) the non-equilibrium Green’s function is compactly described by the localized basis set,

(ii) the contribution of bound states to the charge density can be included by the contour integral of

the retarded Green’s function, (iii) the inelastic effects on the transport properties such as electron-

electron and electron-phonon interactions can be included as self-energy matrices. Owing to these

advantages, the NEGF method has been implemented in several DFT codes with the localized basis

set [41–44], and there are many successful applications for transport properties.

3.2.1 Basic formalism

The Kohn-Sham equation (2.54) for the two-probe system can be written as a matrix equation,
ĤL ĤLT 0

ĤTL ĤT ĤTR

0 ĤRT ĤR




ψL

ψT

ψR

 = ε


ψL

ψT

ψR

 . (3.7)

From the first and third equations, the wavefunction in electrodes and transition region can be coupled

with as below:

ψL = ĝL(ε)ĤLTψT , ψR = ĝR(ε)ĤRTψT , (3.8)
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where ĝL(ε) and ĝR(ε) are surface Green’s functions for left and right electrodes,

ĝL(ε) = [εÎ − ĤL]
−1, (3.9)

ĝR(ε) = [εÎ − ĤR]
−1. (3.10)

Using Eq. (3.8), the wavefunction in the transition region becomes

[εÎ − ĤT ]ψT = ĤTLψL + ĤTRψR

= [Σ̂L(ε) + Σ̂R(ε)]ψT , (3.11)

where Σ̂L,R(ε) are self-energy matrices for left and right electrodes defined as

Σ̂L(ε) = ĤTLĝL(ε)ĤLT , (3.12)

Σ̂R(ε) = ĤTRĝR(ε)ĤRT . (3.13)

Equation (3.11) can be rewritten as

[εÎ −HT − Σ̂L(ε)− Σ̂R(ε)]ψT = 0. (3.14)

The retarded Green’s function of the transition region 1 can be defined as a resolvent of the coefficient

matrix of Eq. (3.14), that is,

ĜT (ε) = [(ε+ iη)Î − ĤT − Σ̂L(ε)− Σ̂R(ε)]
−1, (3.15)

where η is the positive infinitesimal. It is worth noting that the size of the matrices in Eq. (3.15)

is finite in contrast to the infinite size of the whole Hamiltonian of Eq. (3.6), which is numerically

tractable. Thus, the matrix inversion procedure can be executed once the self-energy matrices for

electrodes are obtained.

In the NEGF method. the charge density of the transition region is calculated using the relationship

between density matrix and Green’s function,

nT (r) = TrD̂

=
1

2πi

∫ ∞

−∞
G<

T (ε; r, r)dε, (3.16)

where D̂ is the density matrix and Ĝ<
T (ε) is the lesser part of the non-equilibrium Green’s function.

Assuming that the edge of the transition region, i.e., L0 and R0 layers are close to the equilibrium,

1We can also derive Eq. (3.15) from the identity

A =


a11 a12 0

a21 a22 a23

0 a32 a33

 , A−1
22 =

a11a33

a11a22a33 − a11a23a32 − a33a12a21
.
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one might obtain

Ĝ<
T (ε) = ĜT (ε)Σ̂

<
T (ε)Ĝ

†
T (ε)

≃ ĜT (ε)[if(ε− µL)Γ̂L(ε) + if(ε− µR)Γ̂R(ε)]Ĝ
†
T (ε). (3.17)

Here, I introduced the matrices Γ̂L,R(ε) that are called coupling constants and defined by the imaginary

part of the self-energy matrices, that is,

Γ̂L(ε) = i[Σ̂L(ε)− Σ̂†
L(ε)], Γ̂R(ε) = i[Σ̂R(ε)− Σ̂†

R(ε)]. (3.18)

Equation (3.17) can be divided into equilibrium and non-equilibrium parts as below:

Ĝ<
T (ε) = iĜ(ε)T [Γ̂L(ε) + Γ̂R(ε)]Ĝ

†
T (ε)f(ε− µR) + iĜT (ε)Γ̂L(ε)Ĝ

†
T (ε)[f(ε− µL)− f(ε− µR)]. (3.19)

If the Hamiltonian matrix is independent from k∥, the equilibrium part can be simplified into a

well-known formula,

iĜT (ε)[Γ̂L(ε) + Γ̂R(ε)]Ĝ
†
T (ε)f(ε− µR) = −2if(ε− µR)ImĜT (ε). (3.20)

Substituting Eqs. (3.19) and (3.20) into Eq. (3.16) leads to

nT (r) = neqT (r) + nneqT (r), (3.21)

where

neqT (r) = − 1

π

∫ ∞

−∞
dεImGT (ε; r, r)f(ε− µR), (3.22)

nneqT (r) =
1

2π

∫ ∞

−∞
dεTr[ĜT (ε)Γ̂L(ε)Ĝ

†
T (ε)][f(ε− µL)− f(ε− µR)]. (3.23)

Here, I assume that µL ≥ µR. The first term, the equilibrium charge density, is evaluated from the

retarded Green’s function which is an analytic function for Im(z) > 0 on the complex plane. In

practice, the integration of the retarded Green’s function along the real axis is replaced by the contour

integration on the upper half complex plane, which makes it efficient to evaluate the equilibrium

charge density because the retarded Green’s function on complex plane is very smooth. On the other

hand, the second term, non-equilibrium correction term for the charge density, should be evaluated at

real axis because the integrant is not analytic apart from the real axis and thus one cannot apply the

counter integral approach. As same as the standard DFT calculation for isolated or periodic system,

one can construct the effective local potential veff (r) in the transition region from the charge density

nT (r).

The transport properties of two-probe system are evaluated by the Landauer formula, for example,

the current is given by following formula,

I =
e

πℏ

∫ ∞

−∞
T (ε)[f(ε− µL)− f(ε− µR)]dε, (3.24)
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where T (ε) is computed by the Fisher-Lee formula [8]:

T (ε) = Tr[ĜT (ε)Γ̂L(ε)(ĜT (ε))
†Γ̂R(ε)], (3.25)

which means that the transmission probability is determined by the matrices Σ̂L, Σ̂R, and ĜT .

As mentioned in the sections above, it is possible to include the effect of the electron-electron and

electron-phonon interaction into the transport properties, which is also one of the merits of the NEGF

method. For further details on the NEGF method, I refer the reader Ref. [8] and Ref [45].

3.2.2 Self-energy matrices

To determine the self-energy matrices, it is needed to compute the surface Green’s functions defined

by Eqs. (3.9) and (3.10). However, as mentioned in the sections above, the Hamiltonian matrices

of electrodes are semi-infinite, resulting in that the matrix inversion procedure is infeasible. Thus, I

introduce several numerical techniques to calculate the surface Green’s functions. Considering that

the Hamiltonian matrices of electrodes are periodic and the couplings exist only between the nearest

neighbor unit cells, which makes it possible to write the Hamiltonian matrices of electrodes as the

following block tri-diagonal form:

ĤL =



. . .
. . . 0

. . . Â B̂

B̂† Â B̂

0 B̂† Â


, ĤR =



Â B̂ 0

B̂† Â B̂

B̂† Â
. . .

0
. . .

. . .


, (3.26)

where Â and B̂ correspond to the on-site and hopping Hamiltonian matrices in the unit cell, respec-

tively. By construction, these matrices are same for each unit cell. I here assume the left electrode

is identical with the right electrode to keep the notation as simple as possible, but the extension to

the hetero electrodes is straightforward. Because the transition region is defined so as to include the

outermost unit cells L0 and R0, the self-energy matrices is simplified into a more compact form, for

example, Σ̂L(ε) can be written as below,

Σ̂L(ε) = ĤTLĝL(ε)ĤLT

=



· · · 0 B̂†

0 0

. .
. ...





. . .
...

ĝL22 ĝL21 ĝL20

ĝL12 ĝL11 ĝL10

· · · ĝL02 ĝL01 ĝL00





... . .
.

0 0

B̂ 0 · · ·


= B̂†ĝL00B̂. (3.27)
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Similar expression for Σ̂R(ε) can be obtained by

Σ̂R(ε) = ĤTRĝR(ε)ĤRT

=



... . .
.

0 0

B̂ 0 · · ·





ĝR00 ĝR01 ĝR02 · · ·

ĝR10 ĝR11 ĝR12

ĝR20 ĝR21 ĝR22
...

. . .





· · · 0 B̂†

0 0

. .
. ...


= B̂ĝR00B̂

†, (3.28)

where ĝ
L/R
00 is the surface Green’s function of the outermost unit cell, i.e., L0 or R0 layer in Fig. 3.2.

Recursive Green’s function method

The most straightforward way for calculating the outermost surface Green’s function ĝ
L/R
00 is the

recursive Green’s function (RGF) method proposed by Haydock et al. [46, 47]. In the following, I

will drop the subscript L/R for the sake of the simplicity and focus on the calculation of the surface

Green’s function for right electrode because the left surface Green’s function can be obtained by the

analogous manner. Using the identity for the matrix inversion A B

C D


−1

=

 1
A−BD−1C

−A−1B 1
D−CA−1B

−D−1C 1
A−BD−1C

1
D−CA−1B

 , (3.29)

and putting A = εÎ − Â, B = −ĤRC , C = −ĤCR, D = εÎ − ĤR, one can derive the continued fraction

expression for ĝ00:

ĝ
(n+1)
00 (ε) = [εÎ − Â− B̂ĝ

(n)
00 (ε)B̂†]−1, (3.30)

or equivalently,

Σ̂
(n+1)
L (ε) = B̂[εÎ − Â− Σ̂

(n)
L (ε)]−1B̂†, (3.31)

where index n is the number of iteration. Note that one needs to add infinitesimal η to the energy,

that is, ε→ ε+ iη in order to avoid the singularities of the surface Green’s function. It is evident that

the procedure of the (n + 1)-th iteration means that adding the single periodic layer to the isolated

n slices, and the exact surface Green’s function is obtained when n → ∞. It is well known that the

RGF method requires many iterations until the self-consistency is achieved because the only n layers

are taken into account after n iteration. While the RGF method is inefficient for the surface Green’s

function calculation, it is frequently used to evaluate the retarded and lesser Green’s functions in

O(N) operation [48].
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Quick decimation method

To overcome the slow convergency of the RGF method, Lopez Sancho et al. [49, 50] proposed the

alternative iterative method which takes into 2n layer after n iteration. I call this method as quick

decimation method in this thesis. Owing to its numerical efficiency and stability, the quick iterative

method is one of the most popular methods to evaluate the surface Green’s function.

Since the surface Green’s function for right electrode satisfies

[εÎ − ĤR]ĝR = Î , (3.32)

matrix elements obey that

[εÎ − Â]ĝ00 − B̂ĝ10 = Î , (3.33)

−B̂†ĝn−1,0 + [εÎ − Â]ĝn0 − B̂ĝn+1,0 = 0, (3.34)

for n ≥ 1. Equation (3.34) can be written as

ĝn0 = t̂0ĝn−1,0 + t̃0ĝn+1,0, (3.35)

where

t̂0 = [εÎ − Â]−1B̂†, (3.36)

t̃0 = [εÎ − Â]−1B̂. (3.37)

Using the Eqs. (3.34)-(3.37) iteratively, Eq. (3.35) can be generalized as

ĝ2n,0 = t̂nĝ00 + t̃nĝ2n+1,0, (3.38)

t̂n = [Î − t̂n−1t̃n−1 − t̃n−1t̂n−1]
−1t̂2n−1, (3.39)

t̃n = [Î − t̂n−1t̃n−1 − t̃n−1t̂n−1]
−1t̃2n−1. (3.40)

Thus, one might obtain

ĝ10 = t̂0ĝ00 + t̃0ĝ20

= t̂0ĝ00 + t̃0(t̂1ĝ00 + t̃1ĝ40)

= · · ·

= (t̂0 + t̃0t̂1 + t̃0t̃1t̂2 + · · ·+ t̃0t̃1...t̃nt̂n)ĝ00 + t̃0t̃1...t̃nĝ2n+1,0. (3.41)

If |t̃0t̃1...t̃n| is negligibly small,

ĝ10 = T̂nĝ00, (3.42)

where T̂n = t̂0 + t̃0t̂1 + t̃0t̃1t̂2 + · · · + t̃0t̃1...t̃nt̂n. Substituting Eq. (3.42) into Eq. (3.33), the surface

Green function is obtained

ĝ00 = [εÎ − Â− B̂†T̂n]
−1. (3.43)
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Note that it is necessary to add infinitesimal η to the energy, that is, ε → ε + iη in order to avoid

the singularities of the surface Green’s function. As mentioned above, the quick decimation method

calculates the surface Green’s function of the finite 2n layers after n iteration. Thus, the number

of the iteration required to converge is decreased significantly. Because the convergency depends on

the closeness of the singularity of the surface Green’s function, too small η gives rise to increase the

number of iteration, on the other hand, too large η gives a result far away from the exact value which

should be calculated when η = 0.

Semi-analytical method

The alternative approaches have been proposed by several groups, for example, transfer-matrix method

[51], matrix Möbius transformation method [52, 53], semi-analytical method [54, 55]. All of these ap-

proaches use the solutions of the Kohn-Sham equation for bulk system to construct the surface Green’s

function. According to the pioneering work by Sanvito and his coworkers [54], who first applied this

approach to the electron transport, I call these approaches as semi-analytical method in this thesis.

The advantages of the semi-analytical method compared to the iterative methods are summarized as

follows: (i) exact (semi-infinite) surface Green’s function can be constructed analytically from the gen-

eralized Bloch states, (ii) computation of the surface Green’s function is one-shot (non-self-consistent

procedure), (iii) it is not required to add the infinitesimal η to the energy and the computational cost

does not depend on the choice of η. On the other hand, one needs to solve the eigenvalue problem

typically with ill condition instead of calculating the matrix inversion. However, it has been reported

that the computational cost of the semi-analytical approach is faster than the quick decimation tech-

nique [48]. Because the semi-analytical method is closely related with the WFM method, I introduce

the details of this method in the latter section.

Alternatives to self-energy matrices

The computation of the self-energy matrices must be done independently at each energy point and

takes a large amount of time. To reduce this computational burden, several approximate expressions

for self-energy matrices have been proposed. The simplest one might be the jellium model for metal

electrode which approximates the spatially varying electron density by a uniformly distributed electron

density. This model is often used with the Lippmann-Schwinger scattering method as an unperturbed

system. Because the solutions of the Kohn-Sham equation for jellium model are plane waves, the

self-energy matrices are constructed analytically. However, it is not difficult to imagine that the

jellium model fails to describe the atomic contact between electrodes and central region, which leads

an artificial scattering at the interface. In addition, it may give the poor description for the electronic

structure of 3d-transition metals where valence electrons are spatially localized. On the other hand, in

the field of quantum computational chemistry, the wide-band limit (WBL) approximation [56] is the

commonly used approach especially for the gold metal. The WBL approximation assumes that the real

part and energy dependency of the of the self-energy matrices can be neglected, that is, Σ̂(ε) ≈ iΓ̂(εF ).
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Moreover, the imaginary part of the surface Green’s function is approximated by the density of states

of bulk electrode. This approximation might give reasonable results when the interaction between

electrodes and central region is weak and density of states is nearly constant around the Fermi energy.

The advantage of the WBL approximation is that the self-energy matrices are independent of the

energy and determined by the self-consistent calculation for the bulk system, realizing the dramatic

reduction of the computational cost. Recently, the complex adsorbing potential (CAP) method [57–59]

has been developed to compute the Green’s function and the self-energy matrices. The CAP method

mimics the self-energy matrices via imaginary analytical functions such as Gaussian function. However,

the use of the CAP requires several parameters to be tuned manually to remove spurious reflections

at the left and right boundaries; this may restrict its applicability to complicated electrode materials.

In addition, the CAP method can only be used for the linear response regime, that is, for non-self-

consistent calculations.

3.3 Wavefunction-matching method: WFM

Transport properties in nanoscale conductor can be calculated directly from the scattering states

that are the solutions of the Kohn-Sham equation under the open boundary condition. There have

been proposed many numerical approaches to evaluate the scattering states, including the Lippmann-

Schwinger scattering method [60–62], recursive transfer-matrix method [63, 64], and wavefunction-

matching (WFM) method [65–67]. However, due to the restriction of the jellium approximation,

applications of the Lippmann-Schwinger scattering method and recursive transfer-matrix method have

been limited only for the systems connected with the structureless electrodes, e.g., molecular junctions

or atomic chains suspended by the jellium electrodes. On the other hand, the WFM method can deal

with the electrodes and central region on the equal footing. In this section, I here focus on the

theoretical framework of the WFM method.

3.3.1 Basic concept

Again, let us consider the scattering problem of the two-probe system. From Eq. (2.54), the Kohn-

Sham equation in the transition region can be written as below:

−B̂†ψL1 + [εÎ − ĤT ]ψT − B̂ψR1 = 0, (3.44)

As already mentioned, I assume that the scattering state inside the electrodes are expressed by the

linear combination of the solutions of the Kohn-Sham equation for the Hamiltonian of electrodes.

If there is no incoming electron from the right electrode, scattering states will fulfill the following

boundary matching condition:

ψLk = ϕ+
Lk,i +

∑
j

ri,jϕ
−
Lk,j , (3.45)

ψRk =
∑
j

ti,jϕ
+
Rk,j , (3.46)
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for k ≥ 0, where ϕ+
Lk,j and ϕ−

Rk,j represent the j-th right-going in Lk layer and left-going states

in Rk layer, respectively. Right-going states are either evanescent waves that are decaying to the

right direction or Bloch waves that are propagating to the right direction. On the other hand, left-

going states are either decaying or propagating to the left direction. Here, ri,j and ti,j are reflection

and transmission coefficients. In addition, the dual vectors {ϕ̃j} are determined so as to satisfy

(ϕj , ϕ̃j′) = δj,j′ . In case that {ϕ̃j} spans the complete system in each electrode, the following identity

is established ∑
j

ϕ+
Lk,j(ϕ̃

+
Lk,j)

† =
∑
j

ϕ−
Rk,j(ϕ̃

−
Rk,j)

† = I, (3.47)

and therefore scattering states in the left and right electrodes can be written as

ψLk = ϕ+
Lk,i +

∑
j

(ϕ̃−
Lk,j ,ψLk)ϕ

−
Lk,j , (3.48)

ψRk =
∑
j

(ϕ̃+
Rk,j ,ψRk)ϕ

+
Rk,j . (3.49)

Comparing Eqs. (3.45) and (3.46) with Eqs. (3.48) and (3.49) yields

ri,j = (ϕ̃−
Lk,j ,ψLk − ϕ+

Lk,i), (3.50)

ti,j = (ϕ̃+
Rk,j ,ψRk). (3.51)

Especially when k = 0,

ri,j = (ϕ̃−
L0,j ,ψL0 − ϕ+

L0,i), (3.52)

ti,j = (ϕ̃+
R0,j ,ψR0). (3.53)

By substituting Eq. (3.52) into Eq. (3.45), ψL1 can be expressed by

ψL1 =
[∑

j

ϕ−
L1,j(ϕ̃

−
L0,j)

†
]
ψL0 + ϕ

+
L1,i −

[∑
j

ϕ−
L1,j(ϕ̃

−
L0,j)

†
]
ϕ+
L0,i. (3.54)

Similarly for ψR1, eliminating tij from Eq. (3.46) results in

ψR1 =
[∑

j

ϕ+
R1,j(ϕ̃

+
R0,j)

†
]
ψR0. (3.55)

Finally substituting Eqs. (3.54) and (3.55) into Eq. (3.44) yields the closed form of the Kohn-Sham

equation for the transition region,

[εÎ − ĤT − Σ̂L(ε)− Σ̂R(ε)]ψT = Ωi(ε), (3.56)

where

Σ̂L = B̂†
[∑

j

ϕ−
L1,j(ϕ̃

−
L0,j)

†
]
, (3.57)

Σ̂R = B̂
[∑

j

ϕ+
R1,j(ϕ̃

+
R0,j)

†
]
, (3.58)

Ωi = B̂†ϕ+
L1,i − Σ̂Lϕ

+
L0,i (3.59)
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Note that Σ̂L and Σ̂R are same as that of Eqs. (3.27) and (3.28) defined by the surface Green’s

functions, although the relationship is not seemingly obvious. The equivalence of the self-energy

matrices between the GF and WFM methods will be proved in the next section. Remembering that

the transition region has N principal layers for central region and 2 additional layers L0 and R0 as

wavefunction matching planes, εÎ − ĤT can be written as the following matrix form:

εÎ − ĤT =



H00 H01 0

H10 H11
. . .

. . .
. . . HN,N+1

0 HN+1,N HN+1,N+1


. (3.60)

Thus, Kohn-Sham equation (3.44) is reduced to the (N + 2)-dimensional linear equation

H00 − Σ̂L H01 0

H10 H11 Ĥ12

. . .
. . .

. . .

HN,N−1 HN,N HN,N+1

0 HN+1,N HN+1,N+1 − Σ̂R





ψL0

ψC1

...

ψCN

ψR0


=



Ωi

0

...

0

0


. (3.61)

The derivation of the above equation was firstly done by Ando [65] for the tight-binding approximation

and later Khomyakov et al. [68,69] and Kong et al. [70,71] generalized it to the first-principles method

within real-space finite-difference scheme.

After solving Eq. (3.61), the electric current is calculated by the integration of the current density

j(r) over the arbitral surface region

I =

∫
j(r) · dS

=
2e

(2π)3

∑
i,j

∫
(f(ε− µL)− f(ε− µR))v

′
j |ti,j |2Sdk

=
∑
i,j

∫
S

(2π)2
dkxdky

∫ ∞

−∞
(f(ε− µL)− f(ε− µR))

2e

h

v′j
vi
|ti,j |2dε

=
e

πℏ

∫ ∞

−∞
(f(ε− µL)− f(ε− µR))

∑
i,j

v′j
vi
|ti,j |2dε, (3.62)

where vi and v
′
j are the group velocity of the incident i-th and transmitting j-th right-going states,

respectively. As shown in appendix A, vi is given by

vi =
1

ℏ
∂E

∂k+i
=

2a

ℏ
Im[(λ+i )

−1(ϕ+
i )

†B†ϕ+
i ]. (3.63)
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Here a is the length of the unit cell in the z direction, k+i is the wave vector for i-th right going states,

and λ is the Bloch factor defined by λ+i = eik
+
i a.

Thus, transmission probability is obtained as

T (ε) =
∑
i,j

v′j
vi
|ti,j |2. (3.64)

Note that the summation runs over right-going propagating states i and j for right and left electrodes,

respectively, because the propagating states contribute to the physical transmissions.

3.3.2 Generalized Bloch states

Generalized Bloch states (i.e., solutions of the Kohn-Sham equation for the Hamiltonian of the elec-

trode) play a significant role in the WFM method since the scattering state is expanded by them at

the left and right electrode regions. To find the generalized Bloch states, it is necessary to seek the

complex wave vectors that satisfy the Kohn-Sham equation under the periodic boundary condition.

Because of the block tridiagonal structure of the Kohn-Sham Hamiltonian (3.26), Kohn-Sham equation

can be written as the following matrix equation:

−B̂†ψl−1 + (εÎ − Â)ψl − B̂ψl+1 = 0, (3.65)

where ψl is the solution of the Kohn-Sham equation for the l-th unit cell. By introducing the Bloch

ansatz, ψl±1 = e±ikaϕn, the above equation can be rewritten as

[−e−iknaB̂† + (εÎ − Â)− eiknaB̂]ϕn = 0, (3.66)

where n-th complex wave vector kn and a is the distance between adjacent unit cells. Note that

the {kn} and {ϕn} need to be determined for a given input energy ε. The above equation is solved

most typically by converting it to the generalized eigenvalue problem with twice matrix dimension of

the original problem [55, 72] because generalize eigenvalue problem is readily solved by the standard

eigensolvers such as QZ method. It should be noted that the coupling matrix B̂ is singular in most

cases, resulting that solutions of Eq. (3.66) will have Im(kn) → ±∞. Fortunately, the contribution of

the waves that decay infinitely fast is negligibly small, and therefore it is sufficient to compute 2Nr

physically important solutions, with Nr being the rank number of the coupling matrix computed with

the singular value decomposition technique [53,55,73].

Furthermore, 2Nr solutions are distinguished into Nr left-going waves {ϕ−
n } with either Im(kn) < 0

or Im(kn) = 0 and vn < 0, and Nr right-going waves {ϕ+
n } with either Im(kn) > 0 or Im(kn) = 0

and vn > 0. This is because if kn is an eigenvalue, then −kn, k∗n, and −k∗n are also eigenvalues [72].

From the Bloch ansatz, the solutions with real kn values are conventional Bloch states while those

with imaginary or complex kn are exponentially growing or decaying waves.
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3.4 Relationship between GF and WFM

I have reviewed the NEGF and WFM methods in the sections above. The two seemingly different

formalisms introduced in previous sections are closely related. This section shows the relationship

between the self-energy matrices for electrodes, transmission probability, and charge density obtained

by the NEGF and WFM methods.

3.4.1 Construction of Self-energy matrices from generalized Bloch states

According to Ref. [54], I show that surface Green’s function can be constructed by the generalized

Bloch states. I focus on the l-th line of the Green’s function of the infinite system

−B̂†Ĝl−2,l + [εÎ − Â]Ĝl−1,l − B̂Ĝl,l = 0, (3.67)

−B̂†Ĝl−1,l + [εÎ − Â]Ĝl,l − B̂Ĝl+1,l = Î , (3.68)

−B̂†Ĝl,l + [εÎ − Â]Ĝl+1,l − B̂Ĝl+2,l = 0, (3.69)

where Ĝl,m is the matrix element of the Green’s function of the infinite system. Comparing Eqs. (3.67)-

(3.69) with Eq. (3.65), it is obvious that the Green’s function is just generalized Bloch states except for

the diagonal element Ĝl,l. By the requirement that Green’s function does not diverge and smoothly

connect at Ĝl,l, Green’s function can be expressed by

Ĝl,m =


∑
j

ϕ+
j e

ik+j (l−m)a(ϕ̃+
j )

†Ĝl,l (l ≥ m) (3.70a)

∑
j

ϕ−
j e

ik−j (l−m)a(ϕ̃−
j )

†Ĝl,l (l ≤ m). (3.70b)

Substituting Eq. (3.70) into Eq. (3.67), one might obtain

−B̂†
(∑

j

ϕ−
j e

−ik−j a(ϕ̃−
j )

†
)
Ĝl,l+[εÎ − Â]

(∑
j

ϕ+
j (ϕ̃

+
j )

†
)
Ĝl,l− B̂

(∑
j

ϕ+
j e

ik+j a(ϕ̃+
j )

†
)
Ĝl,l = Î . (3.71)

On the other hand, multiplying (ϕ̃+
j )

†Ĝl,l from the left side of Eq. (3.66) and summing up for ϕ+
j , one

might obtain

−B̂†
(∑

j

ϕ+
j e

−ik+j a(ϕ̃+
j )

†
)
Ĝl,l + [εÎ − Â]

(∑
j

ϕ+
j (ϕ̃

+
j )

†
)
Ĝl,l − B̂

(∑
j

ϕ+
j e

ik+j a(ϕ̃+
j )

†
)
Ĝl,l = 0. (3.72)

From Eqs. (3.71) and (3.72), the diagonal term Ĝl,l is given by

Ĝ−1
l,l = B̂†

[∑
j

ϕ+
j e

−ik+j a(ϕ̃+
j )

† −
∑
j

ϕ−
j e

−ik−j a(ϕ̃−
j )

†
]−1

. (3.73)

In the same way, arranging so as to leave B̂, one might obtain

Ĝ−1
l,l = B̂

[∑
j

ϕ−
j e

ik−j a(ϕ̃−
j )

† −
∑
j

ϕ+
j e

ik+j a(ϕ̃+
j )

†
]−1

. (3.74)
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Next, I consider to make the surface Green’s function ĜS from that of infinite system. This is

achieved by subtracting the surface term from the Green’s function of infinite system,

ĜS,n,m = Ĝn,m − Ĝn,0Ĝ
−1
0,0Ĝ0,m. (3.75)

When putting n ≥ 0 is the vacuum region and n < 0 is the bulk region, the left surface Green’s

function ĝL00(= ĜS,−1,−1) is obtained as

ĝL0,0 =
[
Î −

(∑
j

ϕ−
j e

−ik−j a(ϕ̃−
j )

†)(∑
j

ϕ+
j e

ik+j a(ϕ̃+
j )

†)]Ĝ0,0. (3.76)

Similarly for right surface Green’s function,

ĝR0,0 =
[
Î −

(∑
j

ϕ+
j e

ik+j a(ϕ̃+
j )

†)(∑
j

ϕ−
j e

−ik−j a(ϕ̃−
j )

†)]Ĝ0,0. (3.77)

Thus, once the solutions of Eq. (3.66) are obtained, Green’s function of the infinite system and surface

Green’s functions are constructed by them analytically. This is so called semi-analytical method

proposed by Sanvito and his coworkers [54].

Next, I clarify the relationship between the self-energy matrices defined by NEGF and WFM

methods. For this purpose, I introduce the transfer matrices [55]

T̂−
L =

∑
j

ϕ−
L1,j(ϕ̃

−
L0,j)

† =
∑
j

ϕ−
L0,je

−ik−j a(ϕ̃−
L0,j)

†, (3.78)

T̂+
R =

∑
j

ϕ+
R1,j(ϕ̃

+
R0,j)

† =
∑
j

ϕ+
R0,je

ik+j a(ϕ̃+
R0,j)

†. (3.79)

The subscripts L and R indicate the left and right electrodes, respectively. Using the transfer matrices,

one can rewrite Green’s function of the infinite system in Eqs. (3.73) and (3.74) and surface Green’s

functions in Eqs. (3.76) and (3.81) as follows:

Ĝ−1
0,0 = B̂†((T̂+

R )−1 − T̂−
L )

= B̂((T̂−
L )−1 − T̂+

R )), (3.80)

ĝL00 = (Î − T̂−
L T̂

+
R )[B̂((T̂−

L )−1 − T̂+
R )]−1

= T̂−
L B̂

−1, (3.81)

ĝR00 = (Î − T̂+
R T̂

−
L )[B̂†((T̂+

R )−1 − T̂−
L )]−1,

= T̂+
R (B̂†)−1. (3.82)

By substituting Eqs. (3.81) and (3.82) into Eqs. (3.27) and (3.28), one might obtain

Σ̂L(ε) = B̂†T̂−
L , (3.83)

Σ̂R(ε) = B̂T̂+
R . (3.84)

Compared with Eqs. (3.57) and (3.58), the self-energy matrices obtained by the NEGF method are

identical to that obtained by the WFM method.
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3.4.2 Transmission probability

Let us prove the equivalence of Eq. (3.25) and Eq. (3.64). In preparation, I introduce the Bloch

matrices

Q̂Lk = [ϕ+
Lk,1,ϕ

+
Lk,2, ...,ϕ

+
Lk,Nr

], Q̂Rk = [ϕ+
Rk,1,ϕ

+
Rk,2, ...,ϕ

+
Rk,Nr

], (3.85)

Q̃Lk = [ϕ̃+
Lk,1, ϕ̃

+
Lk,2, ..., ϕ̃

+
Lk,Nr

], Q̃Rk = [ϕ̃+
Rk,1, ϕ̃

+
Rk,2, ..., ϕ̃

+
Rk,Nr

]. (3.86)

From the definition of the dual vectors, Q̂LkQ̃
†
Lk = Q̂RkQ̃

†
Rk = Î, and Q̃† = Q̂−1 if Q̂ is full rank.

Furthermore, one can write

Q̂L1 = T̂+
L Q̂L0, (3.87)

where T̂+
L is the transfer matrix for the right-going states in the left electrode defined by

T̂+
L =

∑
j

ϕ+
L1,j(ϕ̃

+
L0,j)

† =
∑
j

ϕ+
L0,je

−ik+j a(ϕ̃+
L0,j)

†. (3.88)

In the exactly same manner as deriving Eqs. (3.83) and (3.84), the advanced self-energy matrix for

the left electrode is defined by

Σ̂†
L(ε) = B̂†T̂+

L . (3.89)

Using Eq. (3.61), (3.87), and (3.89), the scattering state in the transition region can be rewritten as

ψT = iĜT Γ̂LϕL0,i. (3.90)

To derive the Fisher-Lee formula from the WFM method, I rewrite the total transmission proba-

bility of Eq. (3.64) to the following matrix form

T = Tr[T̂ †V̂RT̂ V̂−1
L ], (3.91)

where T̂i,j = ti,j and V̂L/R is the velocity matrix for the left or right electrode (see Appendix A). Using

Eq. (3.53) and (3.90),

T̂ = iQ̃†
R0ĜT Γ̂LQ̂L0. (3.92)

In addition, it is easy to show that

V̂L = i[Q̂†
L1B̂Q̂L0 − Q̂†

L0B̂
†Q̂L1]

= iQ̂†
L0[(B̂

†T̂+
L )† − B̂†T̂+

L ]Q̂L0

= iQ̂†
L0[Σ̂L(ε)− Σ̂†

L(ε)]Q̂L0

= Q̂†
L0Γ̂L(ε)Q̂L0, (3.93)

and

V̂R = i[Q̂†
R0B̂Q̂R1 − Q̂†

R1B̂
†Q̂R0]

= iQ̂†
R0[B̂T̂

+
R − (T̂+

R )†B̂†]Q̂R0

= iQ̂†
R0[Σ̂R(ε)− Σ̂†

R(ε)]Q̂R0

= Q̂†
R0Γ̂R(ε)Q̂R0. (3.94)

Substituting Eqs. (3.92)-(3.94), into Eq. (3.91) leads the Fisher-Lee formula (3.25).
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3.4.3 Charge density

It is possible to evaluate the charge density required for the self-consistent calculation directly from

the wavefunctions. The charge density in the non-equilibrium condition can be computed by summing

up the scattering states injected from the left and right electrodes

ñT (r) =

∫ ∞

−∞
|ψ+

L (ε; r)|
2f(ε− µL)dε+

∫ ∞

−∞
|ψ−

R(ε; r)|
2f(ε− µR)dε (3.95)

where ψ+
L (ε; r) is the right-going scattering states injected from the left electrode and ψ−

R(ε; r) is the

left-going scattering states injected from the right electrode. To see the relationship between the above

equation and Eq. (3.21), it is useful to introduce the density of states ρ(ε; r), which is divided into the

contributions from left and right electrodes,

ρ(ε; r) = ρL(ε; r) + ρR(ε; r), (3.96)

where

ρL(ε; r) = |ψ+
L (ε; r)|

2, (3.97)

ρR(ε; r) = |ψ−
R(ε; r)|

2. (3.98)

On the other hand, according to the Green’s function theory, the density of states is given by

ρ(ε; r) = − 1

π
ImĜ(ε; r, r). (3.99)

Since (Ĝ†)−1 − Ĝ−1 = Σ̂− Σ̂† = −iΓ̂ = −i[Γ̂L + Γ̂R],

ImĜ =
i

2
[Ĝ− Ĝ†]

=
1

2
Ĝ[Γ̂L + Γ̂R]Ĝ

†. (3.100)

By substituting Eq. (3.100) to Eq. (3.99), one can confirm the equivalence of Eq. (3.95) and Eq. (3.21).

It should be noted that the equivalence is valid only when the infinitesimal η can be neglected. Actually,

as pointed out in Refs. [41,42,62], the expression of the charge density in Eq. (3.95) is not true because

the bound states that do not couple to the electrodes contribute to the charge density. If bound states

exist, total charge density in the transition region is given by

nT (r) = ñT (r) + nb(r). (3.101)

The second term is the contribution from the bound states

nb(r) =
∑
εb

|ψ(εb; r)|2F(εb), (3.102)

where εb is the discrete energy levels of the bound states, F(εb) is the occupation number of the bound

states, and ψ(εb; r) is the bound state, which is the solutions of the nonlinear eigenvalue problem:

[ĤT + Σ̂L(εb) + Σ̂R(εb)]ψεb = εbψεb , (3.103)
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where ψ(εb; r) = ⟨r|ψεb⟩. The above equation can be derived from Eq. (3.61) by putting Ωi = 0.

To evaluate the contribution from the bound states, it is required to give some representation for

F(εb). Obviously, F(εb) = 1 (F(εb) = 0) when εb is lower (higher) than two chemical potentials µL

and µR. On the other hand, if the bound states have energies within the bias window, F(εb) remains

unknown and additional information on the filling is needed. Fortunately, these situations rarely arise

in practice since a certain physical interaction exits between electrodes. Otherwise, electron transport

behavior becomes quantum-dot like in the Coulomb blockade regime, which is out of our interest.

Fig. 3.3 illustrates the one-to-one correspondence between NEGF and WFM methods.
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Figure 3.3: One-to-one correspondence between NEGF and WFM methods
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Chapter 4

Evaluation of self-energy matrices on

real-space finite-difference scheme

In Chap. 3, I reviewed the typical methods to calculate the self-energy matrices. These methods

have been used commonly with the tight-binding approximation or localized basis set. While one

can apply them for any spatially localized basis set, the calculation is still slow especially when the

real-space finite-difference (RSFD) scheme [74, 75] is employed because the size of the Hamiltonian

matrix in the unit cell becomes very large. To overcome this difficulty, efficient implementations

for the RSFD scheme have been developed so far [67, 68, 73, 76]. However, the relationship between

the typical methods such as RGF, quick decimation, and semi-analytical methods, and those based

on the RSFD scheme is not seemingly obvious. In addition, in my knowledge, there is no study

which investigates whether the quick decimation method is applicable for RSFD scheme or not. In

this chapter, I first show that the Hamiltonian matrix of the size of the unit cell can be reduced

to the contracted Hamiltonian matrix of the size of the electrode principal layer by introducing the

partitioning technique in Ref. [68]. Next, the methods introduced in Chap. 3 can be used for a

contracted Hamiltonian matrix without large modification. Finally, I introduce the several efficient

implementations to compute the self-energy matrices using the singular value decomposition. The

results and discussions in this chapter are unpublished.

4.1 Basic concept

The RSFD scheme leads to the structured, very sparse matrix representation of the Hamiltonian

as well as other real-space methods such as finite elements, or wavelets. In this study, real-space

calculations are performed on uniform Cartesian meshes, and the Laplacian operator is approximated

by the higher-order finite-difference approximation. The unit cell consists ofM(=Mx×My×Mz) grid

points, where Mx,My, and Mz grid points in the x, y, and z directions, respectively. In addition, the

direction of current flow is assumed to be along z axis. Due to the sparsity of real-space Hamiltonian

matrix, the unit cell can be decomposed into m electrode principal layers and interaction exists only
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between the nearest neighboring layers, which allows us to rewrite Â and B̂ in Eq. (3.26) as

Â =



Â1 B̂1 0

B̂†
1

. . .
. . .

. . .
. . . B̂m−1

0 B̂†
m−1 Âm


, B̂ =



0 0 · · · 0

...
... . .

. ...

0 0 · · · 0

B̂0 0 · · · 0


, (4.1)

where Âi and B̂i are block-matrix elements with the dimension of M̃(= Mx × My × MB0). MB0

corresponds to the number of grid points in the z direction, which is defined so as to cover the

nonlocal region of the pseudopotentials. Note that B̂0 = B̂m due to the periodicity. Because B̂ has

the nonzero term only at the left corner, self-energy matrix for the left electrode defined in Eq. (3.27)

has the form

Σ̂L(ε) = B̂†ĝL00B̂

=



0 · · · 0 B̂†
0

0 · · · 0 0

... . .
. ...

...

0 · · · 0 0





ĝL,0011 · · · · · · ĝL,001,m

...
. . . . .

. ...

... . .
. . . .

...

ĝL,00m,1 · · · · · · ĝL,00m,m





0 0 · · · 0

...
... . .

. ...

0 0 · · · 0

B̂0 0 · · · 0



=



0 · · · 0 0

...
. . .

...
...

0 · · · 0 0

0 · · · 0 B̂†
0ĝ

L,00
m,mB̂0


, (4.2)

where ĝL,00m,m is the left surface Green’s function of the outermost (m-th) electrode principal layer in L0

layer. Equation (4.2) means that it is unnecessary to compute ĝL00 with the size of the unit cell, but

need the only ĝL,00m,m with the size of the electrode principal layer. Similarly for the self-energy matrix

for right electrode, one may obtain

Σ̂R(ε) = B̂ĝR00B̂
†

=



B̂0ĝ
R,00
11 B̂†

0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


, (4.3)
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where ĝR,00
11 is the right surface Green’s function of the outermost (1st) electrode principal layer in R0

layer.

In order to calculate the self-energy matrices efficiently, I apply the partitioning technique in

Ref. [68]. I first assume that B̂0 is full rank, that is, Nr = M̃ , and consider the case Nr ̸= M̃ in the

section later. To eliminate trivial solutions of Eq. (3.65), I partition the Hamiltonian matrix into M̃

and (m− 1)M̃ dimensional matrices, and then Eq. (3.65) can be rewritten as

. . .
. . .

. . . α̂1 β̂1

β̂†1 α̂2 β̂2

β̂†2 α̂1 β̂1

β̂†1 α̂2 β̂2

β̂†2 α̂1 β̂1

β̂†1 α̂2
. . .

. . .
. . .





...

ψl−1
1

ψl−1
2:m

ψl
1

ψl
2:m

ψl+1
1

ψl+1
2:m

...



= ε



...

ψl−1
1

ψl−1
2:m

ψl
1

ψl
2:m

ψl+1
1

ψl+1
2:m

...



, (4.4)

where

α̂1 = Â1, α̂2 =



Â2 B̂2 0

B̂†
2

. . .
. . .

. . .
. . . B̂m−1

0 B̂†
m−1 Âm


, β̂1 = [B̂1, 0, ..., 0], β̂2 =



0

0

...

B̂0


, ψl =

 ψl
1

ψl
2:m

 .

(4.5)

The generalized Bloch states will satisfy that

−β̂†1ψ
l−1
1 + (εÎ − α̂2)ψ

l−1
2:m − β̂2ψ

l
1 = 0, (4.6)

−β̂†2ψ
l−1
2:m + (εÎ − α̂1)ψ

l
1 − β̂1ψ

l
2:m = 0, (4.7)

−β̂†1ψ
l
1 + (εÎ − α̂2)ψ

l
2:m − β̂2ψ

l+1
1 = 0. (4.8)

From Eqs. (4.6) and (4.8),

ψl−1
2:m = (εÎ − α̂2)

−1(β̂†1ψ
l−1
1 + β̂2ψ

l
1), (4.9)

ψl
2:m = (εÎ − α̂2)

−1(β̂†1ψ
l
1 + β̂2ψ

l+1
1 ). (4.10)

Substituting Eqs. (4.9) and (4.10) into Eq. (4.7) yields

−B̂†ψl−1
1 + (εÎ − Â)ψl

1 − B̂ψl+1
1 = 0, (4.11)

43



4.1 Basic concept CHAPTER 4 Evaluation of self-energy matrices on RSFD scheme

where ĝR,k0
11 is the right surface Green’s function of the 1st electrode principal layer in Lk layer, and

Â = α̂1 + β̂†2(εÎ − α̂2)
−1β̂2 + β̂1(εÎ − α̂2)

−1β̂†1, (4.12)

B̂ = β̂1(εÎ − α̂2)
−1β̂2. (4.13)

Using the Bloch ansatz, ψl±1
1 = λ±1ϕl

1, one might obtain the quadratic eigenvalue problem for ϕl
1:

[−λ−1B̂†
+ (εÎ − Â)− λB̂]ϕl

1 = 0. (4.14)

Once solving Eq. (4.14), ϕl
2:m will be obtained from Eq. (4.10). Note that the above derivation was

firstly done by Khomyakov et al. [68]. A contracted form of Kohn-Sham equation (4.14) is particularly

attractive against Eq. (3.65) because the problem is reduced to the only M̃ -dimensional eigenvalue

problem compared with M(= mM̃)-dimensional eigenvalue problem of the original equation.

Next I derive a contracted formula for the self-energy matrix. I first consider the right electrode

and the extension to the left electrode will be presented in the future section. The 0-th column of the

right surface Green’s function which is the outermost one and needed for the transport calculation

satisfies 

zÎ − Â −B̂ 0

−B̂† zÎ − Â −B̂

−B̂† zÎ − Â
. . .

0
. . .

. . .





ĝR00

ĝR10

ĝR20
...


=



Î

0

0

...


, (4.15)

where z = ε+iη. By the exactly same manner as deriving Eq. (4.14), it is easy to obtain a constructed

form of the right surface Green’s function

zÎ − ÂS −B̂ 0

−B̂T zÎ − Â −B̂

−B̂T zÎ − Â . . .

0
. . .

. . .





ĝR,00
11

ĝR,10
11

ĝR,20
11

...


=



Î

0

0

...


, (4.16)

where

ÂS = α̂1 + β̂1(zÎ − α̂2)
−1β̂†1. (4.17)

Note that B̂T = B̂† when η = 0 1. Compared with Eqs. (4.15) and (4.16), one can see that the

translational symmetry of the contracted Hamiltonian is broken only at the outermost principal layer

1It should be noted that B̂T = β̂†
2(zÎ − α̂2)

−1β̂†
1 is established only when Ai and Bi are real matrices whose elements

consist entirely of real numbers. Although we need to introduce the new matrix Ĉ = β̂†
2(zÎ − α̂2)

−1β̂†
1 if Ai and Bi are

complex Hermite matrices, all formulations in this chapter are available with minor modification.
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4.2 Computational aspects CHAPTER 4 Evaluation of self-energy matrices on RSFD scheme

since ÂS ̸= Â, leading the sophisticated iteration methods for computing the surface Green’s function

are not applicable directly.

Fortunately, this is a trivial problem. Using the matrix identity for the matrix inversion, a11 a12

a21 a22


−1

=

 1
a11−a12a

−1
22 a21

−a−1
11 a12

1
a22−a21a

−1
11 a12

−a−1
22 a21

1
a11−a12a

−1
22 a21

1
a22−a21a

−1
11 a12

 , (4.18)

ĝR,00
11 is given by

ĝR,00
11 = [zÎ − ÂS − B̂(zÎ − Ĥbulk

R )−1B̂T ]−1, (4.19)

where

Ĥbulk
R =



Â B̂ 0

B̂T Â B̂

B̂T Â . . .

0
. . .

. . .


. (4.20)

It is obvious that Ĥbulk
R has the translational symmetry for the transport direction and therefore

iterative technique is applicable for computing the self-energy-like matrix, Σ̂bulk
R = B̂(zÎ−Ĥbulk

R )−1B̂T .

For example, Σ̂bulk
R can be computed by the RGF method of Eq. (3.31) as below

Σ̂
(n+1)
R = B̂[zÎ − Â − Σ̂

(n)
R ]−1B̂T , (4.21)

where n is the number of iteration. In the case of the semi-analytical method, one can easily extend

Eq. (3.84) for Σ̂bulk
R , that is,

Σ̂bulk
R = B̂T̂ +

R , (4.22)

where T̂ +
R is defined by

T̂ +
R =

∑
j

ϕ+
R,j,1e

ik+j a(ϕ̃+
R,j,1)

†, (4.23)

where ϕ+
R,j,1 and ϕ̃+

R,j,1 are right-going generalized Bloch states on the 1st electrode principal layer

and its dual vector, respectively.

4.2 Computational aspects

In this section, I briefly discuss the efficient implementation. One might think that all matrix elements

of (zÎ−α̂2)
−1 are needed to construct A,B, and AS . This is not the case, but the corner block elements

of the inverted matrix are necessary because of the sparsity of β̂1 and β̂2. The matrix elements of
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4.3 Singular value decomposition CHAPTER 4 Evaluation of self-energy matrices on RSFD scheme

(zÎ − α̂2)
−1 can be written as

(zÎ − α̂2)
−1 =


D̂22 · · · D̂2,m

...
. . .

...

D̂m,2 · · · D̂m,m

 . (4.24)

From Eqs. (4.12), (4.13), and (4.17), the terms that involve (zÎ − α̂2)
−1 are reduced to the following

forms

β̂†2(zÎ − α̂2)
−1β̂2 = B̂†

0D̂m,mB̂0, (4.25)

β̂1(zÎ − α̂2)
−1β̂†1 = B̂1D̂2,2B̂

†
1, (4.26)

β̂1(zÎ − α̂2)
−1β̂2 = B̂1D̂2,mB̂0. (4.27)

It should be noted that the block matrix elements of D̂22, D̂2,m, and D̂m,m are evaluated efficiently by

use of the iterative solvers. The details of the iterative solver will be presented in the later chapter.

In case that the semi-analytical method is used, it is efficient to solve the contracted quadratic

eigenvalue problem (4.14) directly by the contour integral eigenvalue solver, such as Sakurai-Sugiura

method [77]. In this method, the most time-consuming part is inverting the matrix

P̂−1(zj) = [−z−1
j B̂† + (εÎ − Â)− zjB̂]−1, (4.28)

on each quadrature point zj . As noted before, the quadratic eigenvalue problem is usually solved by

transforming the generalized eigenvalue with twice matrix size of P̂ [67, 68]. However, a significant

reduction of the computational time will be achieved by directly solving the quadratic eigenvalue

problem because the matrix inversion scales to O(N3
matrix), where Nmatrix is the dimension of the

matrix to be inverted.

In addition, because (εÎ − Â)† = (εÎ − Â), one might obtain the relationship

P̂†(zj) = P̂(z∗−1
j ). (4.29)

Thus, if either P̂−1(zj) or LU-decomposed matrix of P̂(zj) at outer quadrature points zj is stored, one

can immediately obtain the resolvent at the inner quadrature points z∗−1
j . It means that one can save

the cost of the integration by almost half. From the discussion above, it is estimated that the time-

and memory-saving of the proposed method are about 16 times and 4 times, respectively, against the

standard eigenvalue approaches proposed for the RSFD scheme [67,68].

4.3 Singular value decomposition

If the nonlocal region of pseudopotentials are larger than the order of the finite-difference, off-diagonal

elements of the Hamiltonian, i.e., B̂0 and B̂1 become usually singular, which results in that B̂ is
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also singular. In this case, the quadratic eigenvalue problem will be ill-condition and it is expected

that the accuracy degradation will occur. This problem can be resolved by use of the singular value

decomposition technique [55]:

B̂ = Û ŜV̂ †, (4.30)

where Û and V̂ are unitary matrices and Ŝ is the diagonal matrix whose diagonal elements are singular

values si. Suppose that the rank of B̂ is Nr, si = 0 for i > Nr. By applying the unitary transformation

in terms of Û , Â′ = Û †ÂÛ , B̂′ = Û †B̂Û and ϕ′l
1 = Û †ϕl

1 might have the forms

Â′ =

 Â′
11 Â′

12

Â′
21 Â′

22

 , B̂′ =

 B̂′
11 B̂′

12

0 0

 , ϕ′l
1 =

 ϕ′l
1,1

ϕ′l
1,2

 , (4.31)

where Â′
11 and B̂′

11 are Nr×Nr matrices, Â′
12 and B̂′

12 are Nr×(M̃−Nr) matrices, Â′
21 is (M̃−Nr)×Nr

matrix, Â′
22 is (M̃ − Nr) × (M̃ − Nr) matrix, and ϕ′l

1,1 and ϕ′l
1,2 are Nr- and (M̃ − Nr)-dimensional

vectors, respectively. The unitary transformation rewrites Eq. (4.14) to

[−λ−1B̂′† + (εÎ − Â′)− λB̂′]ϕ′l
1 = 0. (4.32)

Because the number of the nontrivial solutions is 2Nr, it is enough to calculate ϕ′l
1,1. Thus, eliminating

ϕ′l
1,2 by substitution of Eq. (4.31) into Eq. (4.32) leads to the Nr-dimensional eigenvalue problem

[−λ−1B̂†
r + (εÎ − Âr)− λB̂r]ϕ

′l
1,1 = 0, (4.33)

where

Âr = Â′
11 + Â′

12(εÎ − Â′
22)

−1Â′
21 + B̂′

12(εÎ − Â′
22)

−1(B̂′
12)

†, (4.34)

B̂r = B̂′
11 + B̂′

12(εÎ − Â′
22)

−1Â′
21. (4.35)

Once ϕ′l
1,1 is obtained, rest terms are given by

ϕ′l
1,2 = (εÎ − Â′

22)
−1(λ−1(B̂′

12)
† + Â′

21)ϕ
′l
1,1. (4.36)

Finally, the generalized Bloch states of the original system are obtained by the inverse unitary trans-

formation ϕl
1 = Ûϕ′l

1 .

Next, I extend the above discussion for the surface Green’s function. To avoid the complexity of

the notation, I here put z = ε. Minor changes are needed for the general case (see Appendix B).

Applying the unitary transformation, Â′
S = Û †ÂSÛ , Â′ = Û †ÂÛ , B̂′ = Û †B̂Û , and ĝ′ = Û †ĝÛ , they

have the form

Â′
S =

 Â′
S,11 Â′

S,12

Â′
S,21 Â′

S,22

 , ĝ′R,00
11 =

 ĝ′R,00
11,1

ĝ′R,00
11,2

 . (4.37)
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The unitary transformation rewrites Eq. (4.16) to

εÎ − Â′
S −B̂′ 0

−B̂′† εÎ − Â′ −B̂′

−B̂′† εÎ − Â′ . . .

0
. . .

. . .





ĝ′R,00
11

ĝ′R,10
11

ĝ′R,20
11

...


=



Î

0

0

...


, (4.38)

From Eqs. (4.37) and (4.38), eliminating ĝ′i01,2 yields

εÎ − ÂS,r −B̂r 0

−B̂†
r εÎ − Âr −B̂r

−B̂†
r εÎ − Âr

. . .

0
. . .

. . .





ĝ′R,00
11,1

ĝ′R,10
11,1

ĝ′R,20
11,1

...


=



Îr

0

0

...


, (4.39)

where

ÂS,r = Â′
S,11 + Â′

S,12(εÎ − Â′
S,22)

−1Â′
S,21 + B̂′

12(εÎ − Â′
22)

−1B̂
′†
12, (4.40)

Îr = Î1 + Â′
S,12(εÎ − Â′

S,22)
−1Î2. (4.41)

Here, I split the identity matrix Î into

Î =

 ÎNr×Nr 0

0 Î
M̃−Nr×M̃−Nr

 =

 Î1

Î2

 , (4.42)

where ÎNr×Nr and Î
M̃−Nr×M̃−Nr

are identity matrices with Nr and M̃ −Nr dimensions, respectively.

The outermost element of the surface Green’s function ĝ′0011,1 is obtained by

ĝ′0011,1 = [(εÎ − ÂS,r)− B̂r(εÎ − Ĥbulk
R,r )

−1B̂†
r]
−1Îr, (4.43)

where Ĥbulk
R,r is defined by

Ĥbulk
R,r =



Âr B̂r 0

B̂†
r Âr B̂r

B̂†
r Âr

. . .

0
. . .

. . .


. (4.44)
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Because Ĥbulk
R,r preserves the translational symmetry for transport direction, it might be possible to

compute the self-energy-like matrix. Again, for example, recursive Green’s function method (self-

consistent equation for self-energy matrix) enables us to compute

Σ̃
(n+1)
R,r = B̂r[εÎ − Âr − Σ̃

(n)
R,r]

−1B̂†
r, (4.45)

where n is the number of iteration. Once ĝ′R,00
11,1 is obtained, ĝ′R,00

11,2 can be computed by

ĝ′R,00
11,2 = (εÎ − Â′

S,22)
−1(Â′

S,21ĝ
′R,00
11,1 + Î2), (4.46)

and the inverse unitary transformation leads to ĝR,00
11 = Û ĝ′R,00

11 Û †.

4.4 Left surface Green’s function

The formula of the self-energy matrix for the left electrode can be derived in the analogous manner

as for the right electrode, that is, ĝL,00m,m can be obtained by partitioning the Hamiltonian matrix into

(m − 1)M̃ and M̃ dimensional matrices. In this case, the contracted matrices Â and B̂ must be

recalculated because the partitioning position is different between left and right electrodes. However,

if the left and right electrodes are identical, one can skip the computation of contracted matrices. In

this section, I show that the self-energy matrix for the left electrode can be computed from ĝL,001,m using

the relationship between ĝL,00m,m. The 0-th column of the left surface Green’s function is

. . .
. . . 0

. . . zÎ − Â −B̂

−B̂† zÎ − Â −B̂

0 −B̂† zÎ − Â





...

ĝL20

ĝL10

ĝL00


=



...

0

0

Î


. (4.47)

Partitioning of Eq. (4.47) leads to

. . .
. . . 0

. . . zÎ − Â −B̂

−B̂T zÎ − Â −B̂

0 −B̂T zÎ − Â





...

ĝL,201,m

ĝL,101,m

ĝL,001,m


=



...

0

0

Ĵ


, (4.48)

where

Ĵ = β̂1(zÎ − α̂2)
−1Î ′. (4.49)

Here,

Î ′ =

 0

Î
M̃×M̃

 , (4.50)

49



4.5 Matrix inversion CHAPTER 4 Evaluation of self-energy matrices on RSFD scheme

where Î
M̃×M̃

is the M̃ dimensional identity matrix. Thus ĝL,001,m is

ĝL,001,m = [zÎ − Â − B̂T (zÎ − Ĥbulk
L )−1B̂]−1Ĵ , (4.51)

where

Ĥbulk
L =



. . .
. . . 0

. . . Â B̂

B̂T Â B̂

0 B̂T Â


. (4.52)

The self-energy-like matrix for left electrode, Σ̃L = B̂T (zÎ − Ĥbulk
L )−1B̂, can be computed by the

recursive Green’s function method,

Σ̃
(n+1)
L = B̂T [zÎ − Â − Σ̃

(n)
L ]−1B̂. (4.53)

After obtaining ĝL,001,m , ĝL,00m,m is given by

ĝL,00m,m = D̂m,2B̂
†
1ĝ

L,00
1,m + D̂m,m. (4.54)

Finally substituting Eq. (4.54) into (4.2), self-energy matrices for left electrode can be calculated.

4.5 Matrix inversion

As in Eqs. (4.25)-(4.27), it is necessary to compute D̂2,2, D̂2,m and D̂m,m that are M̃ × M̃ matrices.

If β̂1 and β̂2 are singular, it is possible to reduce the computational cost of matrix inversion. First I

perform the singular value decomposition for B̂0 and B̂1. Because the rank of B̂0 is Nr, B̂0 can be

truncated as

B̂0 = ÛB0ŜB0(V̂ B0)†

= [ÛB0
1 , ÛB0

2 ]

 ŜB0
1 0

0 0


 (V̂ B0

1 )†

(V̂ B0
2 )†


= ÛB0

1 ŜB0
1 (V̂ B0

1 )†, (4.55)

where ÛB0
1 and V̂ B0

1 are M̃ × Nr matrices and ŜB0
1 is Nr × Nr matrix. Then, β̂2 might have the

following form

β̂2 =



0

...

0

B̂0


=



0

...

0

ÛB0
1


ŜB0
1 (V̂ B0

1 )†. (4.56)
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In the exactly same manner, β̂†1 might have the following form

β̂†1 =



B̂1

0

...

0


=



V̂ B1
1

0

...

0


ŜB1
1 (ÛB1

1 )†. (4.57)

Thus, to construct Â and B̂, it is enough to solve the following linear equation

[zÎ − α̂2]X̂ =



V̂ B1
1 0

0
...

... 0

0 ÛB0
1


. (4.58)

Note that the number of right-hand side of Eq. (4.58) is not 2M̃ but 2Nr.

4.6 Optimization of OBM method

In the previous sections, I have derived the contracted quadratic eigenvalue problem Eq. (4.14) based

on the partitioning technique proposed by Khomyakov et al. [68], and discuss the advantage of solving

quadratic eigenvalue problem rather than solving the generalized eigenvalue problem with the twice

size. An alternative method to calculate the generalized Bloch states on the RSFD scheme is the

overbridging boundary-matching (OBM) method [67, 73, 76]. The OBM method also calculates the

generalized Bloch states by solving the generalized eigenvalue problem. In this section, I show that

the generalized eigenvalue problem in the OBM method can be transformed into the similar quadratic

eigenvalue problem with high symmetric matrix form. The OBM method computes the generalized

Bloch states by solving

Π̂1

 ϕl−1
m

ϕl+1
1

 = λΠ̂2

 ϕl−1
m

ϕl+1
1

 , (4.59)

where

Π̂1 =

 Ĝl
m,1B̂

†
0 Ĝl

m,mB̂0

0 Î

 , Π̂2 =

 Î 0

Ĝl
1,1B̂

†
0 Ĝl

1,mB̂0

 . (4.60)

Here, Ĝl(ε) = [εÎ − Â]−1. Eliminating ϕl−1
m from Eq. (4.59) leads to

λ−1B̂−†
0 (Ĝl

1,1)
−1Ĝl

1,mB̂0ϕ
l+1
1 +[Ĝl

m,mB̂0−Ĝl
m,1(Ĝl

1,1)
−1Ĝl

1,mB̂0−B̂−†
0 (Ĝl

1,1)
−1]ϕl+1

1 +λĜl
m,1(Ĝl

1,1)
−1ϕl+1

1 = 0.

(4.61)
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To recover the symmetry, multiplying B̂†
0 from the left-hand side yields

λ−1(Ĝl
1,1)

−1Ĝl
1,mB̂0ϕ

l+1
1 +[B̂†

0Ĝ
l
m,mB̂0−B̂†

0Ĝ
l
m,1(Ĝl

1,1)
−1Ĝl

1,mB̂0−(Ĝl
1,1)

−1]ϕl+1
1 +λB̂†

0Ĝ
l
m,1(Ĝl

1,1)
−1ϕl+1

1 = 0.

(4.62)

If ε is a real number then Ĝl = (Ĝl)†, that is, Ĝl
1,1 = (Ĝl

1,1)
†, Ĝl

1,m = (Ĝl
m,1)

†, Ĝl
m,1 = (Ĝl

1,m)†, and

Ĝl
m,m = (Ĝl

m,m)†. Therefore, Eq. (4.62) can be rewritten as

[λ−1K̂†
1 + K̂0 + λK̂1]ϕ

l
1 = 0, (4.63)

where

K̂0 = B̂†
0Ĝ

l
m,mB̂0 − B̂†

0Ĝ
l
m,1(Ĝl

1,1)
−1Ĝl

1,mB̂0 − (Ĝl
1,1)

−1, (4.64)

K̂1 = B̂†
0Ĝ

l
m,1(Ĝl

1,1)
−1. (4.65)

Since K̂0 = K̂†
0, the similar relationship of Eq. (4.29) is established. After solving Eq. (4.63), one can

obtain the ϕl
m by

ϕl
m = (Ĝl

1,1B̂
†
0)

−1[Î − λĜl
1,mB̂0]ϕ

l
1. (4.66)

4.7 Reduction of matrix size

Even if B̂0 and B̂1 are regular matrices, B̂ is close to singular or more generally its condition number

κ(B̂) becomes extremely large. To see this, numerical calculations of Au atomic chain are presented

here as a simple example. I employ the central finite-difference approximation (N = 1 in Ref. [75]) for

the Laplacian operator and local pseudopotential by Troullier-Martins [24]. Local density approxima-

tion is used as an exchange-correlation functional [12]. The size of the supercell is 22.68×22.68×10.96

bohr3 and two Au atoms are contained in the supercell. The number of grid points is 56 × 56 × 28.

The transport direction is set along z direction. Only gamma point is sampled in the two-dimensional

Brillouin zone. In this case,

B̂0 = B̂1 = − 1

2h2z
Î , (4.67)

where hz is the grid spacing in z direction. From Eqs. (4.13) and (4.27), B̂ is reduced to

B̂ =
1

4h4z
D̂2,m, (4.68)

which indicates that B̂ seems to be regular because (εÎ − α̂2) is not singular.

In order to obtain κ(B̂), I first perform the singular value decomposition of B̂. Figure 4.1 shows

the singular values of B̂. Note that the singular values are divided by the largest singular value smax,

and input energy is set as the Fermi energy. D̂2,m is computed by CG method and the convergence

criteria is set by 10−15. If the smallest singular value is denoted as smin, the condition number is

defined by κ(B̂) = smax/smin. Then, in this case, κ(B̂) = 6.9 × 1022. Because the numerical error

due to the round-off error is proportional to the condition number, the precision of the significand
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is not guaranteed when κ(B̂) ≥ 1016 and double-precision floating-point operation is used. Although

a quadruple-precision floating-point operation is effective to treat such an ill-conditioned problem,

a significant increase of computational cost will be unacceptable in practical calculations. Instead,

I introduce the tolerance parameter of singular value decomposition δSVD and replace the singular

values less than smaxδSVD to 0. Then, by eliminating the degrees of null space, one may obtain the

contracted matrix B̂r with κ(B̂r) = δ−1
SVD (≪ κ(B̂)). In this section, I perform a detailed analysis of

numerical error of self-energy matrix arising from the singular value decomposition.

Figure 4.1: Singular values of B̂ normalized by the largest singular value smax.

4.7.1 Error analysis of generalized Bloch states

In order to see the effect of introducing δSVD on the accuracy of generalized Bloch states, I have

calculated the residual 2-norms ||[−λ−1B̂† + (εÎ − Â) − λB̂]ϕl
1||2 for a set of δSVD. To obtain the

solutions of quadratic eigenvalue problems (4.14) and (4.33), they are transformed into the generalized
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eigenvalue problem and solved by QZ method. For example, Eq. (4.14) is transformed by εÎ − Â −B̂†

Î 0


 ϕl

1

ϕl−1
1

 = λ

 B̂ 0

0 Î


 ϕl

1

ϕl−1
1

 . (4.69)

It is experimentally known that the accuracy of the solutions with |λ| ≪ 1 is worse than that with

|λ| ≫ 1. According to Ref. [55], in order to improve the accuracy of solutions with |λ| ≪ 1, solutions

with |λ| ≪ 1 are obtained by solving the equivalent equation εÎ − Â −B̂

Î 0


 ϕl

1

ϕl+1
1

 = λ−1

 B̂† 0

0 Î


 ϕl

1

ϕl+1
1

 . (4.70)

Figure 4.2 shows the residual norms for a set of δSVD in the range of (0, 10−16, 10−14, 10−12, 10−10).

In case that δSVD = 0, I directly solve Eq. (4.14) without unitary transformation. Note that the

solutions whose eigenvalues become not a number (NaN) or infinity are excluded from plots. In all

cases, the accuracy of the solutions become wrong as |λ| becomes greater or lesser than 1. This

common feature may come from the numerical error arising from the QZ method. In addition, it is

interesting to see that in spite of omitting the small singular values, better or same level accuracy

is obtained when δSVD = 10−16 or 10−14. This results indicates that reducing the condition number

enhances the numerical stability of the calculation. Furthermore, I plot the distribution of eigenvalues

in Fig. 4.3 to investigate the relationship between the generalized Bloch states and δSVD. Figure 4.3

clearly shows that eigenvalues with |λ| ≪ 1 and |λ| ≫ 1 are omitted by increasing the values of δSVD.

This indicates that the vector space with small singular values of B̂ corresponds to the rapidly decaying

evanescent states with |λ| ≪ 1 and |λ| ≫ 1. In other words, information of important generalized

Bloch states is handed over in the contracted system whose dimension is much smaller than that of

original system.

It is useful to discuss why important generalized Bloch states are expressed by the vectors with

singular values si which satisfy si ≥ smaxδSVD. Because α̂2 is made by truncating the bulk Hamiltonian,

(εÎ − α̂2)
−1 can be regarded as the Green’s function under the isolated boundary condition for z

direction and periodic boundary condition for xy direction. In free electron approximation, Green’s

function satisfies 2

(ε+∇2)G(r, r′) = δ(r, r′). (4.71)

In the 2D Laue representation, it becomes

(εz +
d2

dz2
)G(εz, z, z

′) = δ(z − z′), (4.72)

where εz = ε− |G|||2. Note that the boundary condition is imposed for G(εz, z, z
′) such that

G(εz, z1, z
′) = G(εz, zm+1, z

′) = 0. (4.73)
2Rydberg atomic unit is used to simplify the notation.
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Figure 4.2: Residual 2-norms ||[−λ−1B̂† + (εÎ − Â) − λB̂]ϕl
1||2 for a set of δSVD in the range of

(0, 10−16, 10−14, 10−12, 10−10). Note that the solutions are normalized by ||ϕl
1||2 = 1.

For εz < 0, the analytic form of the Green’s function is obtained as below [64]

G(εz, z, z
′) =

e−κz |z−z′| + e−κz(2(zm+1−z1)−|z−z′|) + e−κz(z+z′−2z1) − e−κz(2zm+1−z−z′)

2κz(e−2κz(zm+1−z0) − 1)
, (4.74)

where κz =
√

|G|||2 − ε. On the other hand, εz > 0, G(εz, z, z
′) is given by

G(εz, z, z
′) =

eikz |z−z′| + eikz(2(zm+1−z1)−|z−z′|) + eikz(z+z′−2z1) − eikz(2zm+1−z−z′)

2ikz(e2ikz(zm+1−z0) − 1)
, (4.75)

where kz =
√
ε− |G|||2. Eqs. (4.74) and (4.75) apparently indicate that G(εz, z, z

′) is constructed

by evanescent states if kinetic energy |G|||2 of xy direction is greater than input energy ε, vice

versa, if ε > |G|||2, G(εz, z, z′) is constructed by the propagating states. Remembering that B̂ ≈
G(x, y, z2, x

′, y′, zm), steep evanescent waves with large κz contribute little to B̂ and corresponding

singular values will be much smaller than propagating states with kz. This might be the reason that

the information of the generalized Bloch states with |λ| ≪ 1 or |λ| ≫ 1 drops from B̂.
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Figure 4.3: Distribution of eigenvalues of quadratic eigenvalue problem for a set of δSVD in the range

of (0, 10−16, 10−14, 10−12, 10−10). The eigenvalues or residual norms becomes NaN are omitted from

counts.

4.7.2 Computational cost

I here discuss the computational cost of the proposed algorithm. The proposed algorithm consists of

three parts: (i) partitioning of Hamiltonian matrix in bulk system and setup contracted matrices Â
and B̂, (ii) singular value decomposition of B̂ and setup the maximally contracted matrices Âr and

B̂r, (iii) computing the self-energy matrices by quick iterative or semi-analytical method. The cost of

partitioning scales as O((M − M̃)2), which is the cost of matrix inversion by CG method. The cost

of the singular value decomposition of B̂ scales as O(M̃3), while the cost of computing the self-energy

matrices scales as O(N3
r ), which is the cost of solving quadratic eigenvalue problem (4.33) or inverting

the matrix iteratively. Dominant part of the computational cost depends on the size of M , M̃ , and

Nr. Table 4.1 shows the breakdown of the computational details to solve Eq. (4.14) and (4.33) by

QZ method. Note that computational time to perform the singular value decomposition of B̂ and

setup Âr and B̂r are included in the calculation time. When δSVD = 0, the size of the matrix is not
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Table 4.1: Breakdown of the method in Sec. 4.3. δSVD is the tolerance of the singular value decompo-

sition. Nr is the number of singular values si such that si ≥ smaxδSVD, i.e., rank of B̂r. 2Nr −NNaN

is the number of solutions except ones whose eigenvalues with NaN. Here, NNaN is the number of

solutions whose eigenvalues or residuals become NaN.

δSVD Nr 2Nr −NNaN Elapsed time [sec.]

0 3136 820 2046.95

10−16 443 818 18.92

10−14 293 586 15.43

10−12 185 370 14.33

10−10 101 202 13.42

reduced, that is, Nr = M̃ . However, a vast majority of the solutions are numerically untractable due

to a large condition number. The physical interpretation of such solutions are evanescent states with

|λ| → ±∞ and therefore they cause overflow. By increasing the value of δSVD, not only extremely fast

decaying waves are removed but also a significant reduction of the computational cost is achieved. The

reduction of computational cost is saturated when δSVD ≥ 10−16 because Nr is sufficiently small and

then cost of solving quadratic eigenvalue problem (4.33) is also small and instead the cost of singular

value decomposition is dominant.

4.7.3 Error analysis of self-energy matrix

In order to analyze the effect of limiting the small singular values of B̂ on the accuracy of self-energy

matrices, I define the matrix as

Σ̂bulk
R,SVD = B̂SVD[εÎ − Ĥbulk

R,SV D]
−1B̂†

SVD, (4.76)

where

B̂SVD = Û ŜSVDV̂
†, (4.77)

Ĥbulk
R,SV D =



Â B̂SVD 0

B̂†
SVD Â B̂SVD

B̂†
SVD Â . . .

0
. . .

. . .


. (4.78)
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Here, ŜSVD is the diagonal matrix whose diagonal elements sn,SVD are sn,SVD = sn with sn,SVD ≥
smaxδSVD other than that sn,SVD = 0. Taking the limit of δSVD → 0, B̂SVD → B̂ and Σ̂bulk

R,SVD → Σ̂bulk
R

(Eq. (4.22)). Therefore, it is possible to estimate the numerical accuracy by means of the error matrix

∆̂Σ = Σ̂bulk
R − Σ̂bulk

R,SVD. (4.79)

Using the sparsity of ŜSVD, Σ̂
bulk
R,SVD can be rewritten as

Σ̂bulk
R,SVD = Û ŜSVDV̂

†[εÎ − Ĥbulk
R,SVD]

−1V̂ ŜSVDÛ
†

= Û

 ŝ1 0

0 0


 ĝ11 ĝ12

ĝ21 ĝ22


 ŝ1 0

0 0

 Û †

= Û

 ŝ1ĝ11ŝ1 0

0 0

 Û †, (4.80)

where ŝ1 is Nr-dimensional diagonal matrix whose non-zero elements are same as Ŝ and ĝ11, ĝ12, ĝ21,

and ĝ22 are Nr×Nr, Nr× (M̃ −Nr), (M̃ −Nr)×Nr, and (M̃ −Nr)× (M̃ −Nr) matrices, respectively.

Thus, the Frobenius norm of ∆̂Σ can be estimated by

||∆̂Σ|| = ||Û †∆̂ΣÛ ||

≈

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 0 ŝ1ĝ12ŝ2

ŝ2ĝ21ŝ1 ŝ2ĝ22ŝ2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

>

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 0 smaxδSVDĝ12

smaxδSVDĝ21 δ2SVDĝ22


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≈ smaxδSVD

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 0 ĝ12

ĝ21 0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ , (4.81)

which means that the error arising from the singular value decomposition is an order of smaxδSVD.

Figure 4.4 shows the maximum norm ||∆̂Σ||max and mean absolute error ||∆̂Σ||mean as a function

of δSVD. Both ||∆̂Σ||max and ||∆̂Σ||mean show the similar in shape to each other, which means that

the error arises uniformly on all matrix elements. Although the errors are in accordance roughly

with the estimated curve (dotted line in Fig. 4.4), the discrepancy is prominent at δSVD = 10−6 and

δSVD = 10−16. This may come from the additional two errors not considered in Eq. (4.81). First error

is the numerical error by the QZ method. Even when δSVD is forced to be zero, the accuracy of the

calculated generalized Bloch states is at most 10−11 as shown in Fig. 4.2. Thus, it is reasonable to

consider that the numerical error of the QZ method is not negligible when δSVD is sufficiently small.
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Actually, error curves in Fig. 4.4 are saturated in the limit of δSVD → 0. On the other hand, errors in

the relatively large δSVD may come from that Ĥbulk
R approximates Ĥbulk

R,SVD. However, it is difficult to

estimate the second error, but in the actual calculation, one can avoid it by monitoring the accuracy

of the self-energy matrices by decreasing δSVD.

Figure 4.4: Errors in the calculation of self-energy matrix as a function of δSVD.

　



　



Chapter 5

Evaluation of Green’s function on

RSFD scheme

One of the expensive computational tasks of the NEGF method is inverting the Hamiltonian matrix

for the transition region to obtain the retarded and non-equilibrium Green’s functions. On the other

hand, the WFM method, alternative to the NEGF method, can avoid any inversion of the Hamiltonian

matrix by transforming Kohm-Sham equation under the open boundary condition into a set of linear

equation (3.61). Since the real-space Hamiltonian matrix is very sparse and the self-energy matrices

hold nonzero elements at the outermost principal layer on L0 and R0, the scattering wavefunction can

be obtained efficiently by use of the iterative method such the bi-conjugate CG (BiCG) method. This

achieves a great reduction both on computational cost and memory usage. However, it is very difficult

to calculate the charge density by the WFM method due to the presence of the bound states. As

mentioned in Sec. 3.4.3, the bound states are the solution of the highly nonlinear eigenvalue problem

which is numerically difficult to solve. Furthermore, one does not know how many bound states exist

a priori. Thus, it is well accepted that the self-consistent calculation which is the crucial step toward

finite-bias simulation is numerically difficult except for the atomic chains where bound states do not

exist. For this reason, I herein focus on the numerical implementation of the NEGF method based on

RSFD scheme. The results and discussions in this chapter are based on my published papers [78,79].

5.1 Charge density revisit

In Chap. 3, I have introduced the NEGF method for computing the non-equilibrium charge density;

however, its implementation on the RSFD scheme is challenging both in computational cost and

memory usage. This difficulty mainly comes from taking the inversion of [zÎ−ĤT−Σ̂L(z)−Σ̂R(z)]. The

simplest way is the direct inversion by Gaussian elimination method, but it is impractical when the size

of Hamiltonian matrix for the transition region increases due to its cubic scaling of the computational

cost. However, if the physical quantities can be evaluated by the block matrix element of the inverted

matrix, computational cost and memory usage will be saved significantly. It is fortunately so, that
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the charge density and transmission can be evaluated by not whole but the only several elements of

the retarded Green’s function in the transition region. I first present the efficient implementation to

compute the charge density in the non-equilibrium state.

Because self-energy matrices have non-zero value only at the left and right matching planes, Γ̂L/R,

the imaginary part of the self-energy matrix, has the form

Γ̂L =



Γ̂L0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


, Γ̂R =



0 · · · 0 0

...
. . .

...
...

0 · · · 0 0

0 · · · 0 Γ̂R0


. (5.1)

Owing to the sparsity of Γ̂L/R, one may write

ĜT Γ̂LĜ
†
T =



Ĝ00

Ĝ10

...

ĜN+1,0


× Γ̂L0 ×

[
Ĝ†

00 Ĝ†
10 · · · Ĝ†

N+1,0

]
, (5.2)

ĜT Γ̂RĜ
†
T =



Ĝ0,N+1

Ĝ1,N+1

...

ĜN+1,N+1


× Γ̂R0 ×

[
Ĝ†

0,N+1 Ĝ†
1,N+1 · · · Ĝ†

N+1,N+1

]
. (5.3)

It is evident from Eqs. (3.19) and (3.100) that the non-equilibrium Green’s function and the imaginary

part of the retarded Green’s function can be evaluated by the first and last columns of the retarded

Green’s function. To compute the columns of the retarded Green’s function, standard iterative solvers

such as BiCG method are not always efficient, since [zÎ − Ĥ − Σ̂L(z)− Σ̂R(z)] is non-Hermitian, for

which the slow convergence is frequently a serious problem. To overcome this issue, I present the

efficient numerical technique to compute the retarded Green’s function.

From Eq. (3.15), one can derive the Dyson equation

ĜT = ĜT + ĜT (Σ̂L + Σ̂R)ĜT , (5.4)

where ĜT is the unperturbed Green’s function defined as

ĜT (ε) = [(ε+ iη)Î − ĤT ]
−1. (5.5)
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Focusing on the first and last columns of Eq. (5.4), the following equations are obtained

Ĝ00

Ĝ10

...

ĜN+1,0


=



Ĝ00

Ĝ10

...

ĜN+1,0


+



Ĝ00Σ̂LĜ00

Ĝ10Σ̂LĜ00

...

ĜN+1,0Σ̂LĜ00


+



Ĝ0,N+1Σ̂RĜN+1,0

Ĝ1,N+1Σ̂RĜN+1,0

...

ĜN+1,N+1Σ̂RĜN+1,0


, (5.6)



Ĝ0,N+1

Ĝ1,N+1

...

ĜN+1,N+1


=



Ĝ0,N+1

Ĝ1,N+1

...

ĜN+1,N+1


+



Ĝ00Σ̂LĜ0,N+1

Ĝ10Σ̂LĜ0,N+1

...

ĜN+1,0Σ̂LĜ0,N+1


+



Ĝ0,N+1Σ̂RĜN+1,N+1

Ĝ1,N+1Σ̂RĜN+1,N+1

...

ĜN+1,N+1Σ̂RĜN+1,N+1


.(5.7)

From Eqs (5.6) and (5.7), corner matrix elements, Ĝ00, Ĝ0,N+1, ĜN+1,0 and ĜN+1,N+1, are obtained

by solving linear equations [76] Î − Ĝ00Σ̂L −Ĝ0,N+1Σ̂R

−ĜN+1,0Σ̂L Î − ĜN+1,N+1Σ̂R


 Ĝ00 Ĝ0,N+1

ĜN+1,0 ĜN+1,N+1

 =

 Ĝ00 Ĝ0,N+1

ĜN+1,0 ĜN+1,N+1

 . (5.8)
Once Ĝ00, Ĝ0,N+1, ĜN+1,0 and ĜN+1,N+1 are obtained, the rest matrix elements can be computed by

Ĝm,0 = Ĝm,0 + Ĝm,0Σ̂LĜ00 + Ĝm,N+1Σ̂RĜN+1,0, (5.9)

Ĝm,N+1 = Ĝm,N+1 + Ĝm,0Σ̂LĜ0,N+1 + Ĝm,N+1Σ̂RĜN+1,N+1. (5.10)

for m = 1, ..., N . Computation of Eq. (5.8) can be performed with relatively low cost. Therefore,

the non-equilibrium charge density can be computed easily from the first and last columns of the

unperturbed Green’s function. Important point here is that the unperturbed Green’s function can be

calculated by making use of the conjugate-orthogonal CG (COCG) method with rapid convergence

thanks to the complex symmetric property of [εÎ − ĤT ].

Strictly speaking, Eqs. (3.19) and (3.100) are established only when η = 0, i.e., the energy is on

real axis. It means that the overall results based on Eqs. (3.19) and (3.100) are invalid for complex

energy. In addition, calculating the density matrix by performing the integral of the Green’s function

on real axis is difficult. The reason is that the density of states diverges at the band edge where the

group velocity becomes zero. This well-known problem can be overcome by the contour integration of

the retarded Green’s function on complex plane. In this case, from Dyson equation (5.4), the diagonal

elements of the retarded Green’s function at complex energy z is obtained by

Ĝm,m = Ĝm,m + Ĝm,0Σ̂LĜ0,m + Ĝm,N+1Σ̂RĜN+1,m, (5.11)
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for m = 1, 2, ..., N . Ĝ0,m and ĜN+1,m are determined by Î − Ĝ00Σ̂L −Ĝ0,N+1Σ̂R

−ĜN+1,0Σ̂L Î − ĜN+1,N+1Σ̂R


 Ĝ0,m

ĜN+1,m

 =

 Ĝ0,m

ĜN+1,m

 . (5.12)

Note that it is not required to compute Ĝ0,m and ĜN+1,m because Ĝ0,m = ĜT
m,0 and ĜN+1,m = ĜT

m,N+1

for a real-symmetric Hamiltonian. In addition, one does not need the whole matrix element of Ĝm,m

but its diagonal elements to compute the charge density.

5.2 Transmission revisit

I next present the computational technique to obtain the transmission probability T (ε) from Eq. (3.25)

which indicates that matrices Σ̂L, Σ̂R, and ĜT are required to determine T (ε) at a given energy ε.

Since Σ̂L and Σ̂R can be determined in an efficient manner in Chap. 4, I here discuss how to compute

ĜT efficiently. Due to the sparsity of the broadening matrices Γ̂L and Γ̂R, the Fisher-Lee formula is

simplified as below [76]:

T (ε) = Tr
{
ĜT (ε)×



Γ̂L0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


× (ĜT (ε))

† ×



0 0

. . .
...

0 0

0 · · · 0 Γ̂R0


}

= Tr[ĜN+1,0Γ̂L0Ĝ
†
N+1,0Γ̂R0], (5.13)

which means that left-hand block matrix element of ĜT has all information to determine T (ε) when

the couplings between electrodes via self-energy matrices are already known. From Eq. (5.8), ĜN+1,0

can be obtained easily by

ĜN+1,0 = [d̂− ĉâ−1b̂]−1[ĜN+1,0 − ĉâ−1Ĝ0,0], (5.14)

where

â = Î − Ĝ00Σ̂L, (5.15)

b̂ = −Ĝ0,N+1Σ̂R, (5.16)

ĉ = −ĜN+1,0Σ̂L, (5.17)

d̂ = Î − ĜN+1,N+1Σ̂R. (5.18)

Thus, the transmission calculation requires the corner elements of the unperturbed Green’s func-

tion, Ĝ00, Ĝ0,N+1, ĜN+1,0, and ĜN+1,N+1.

64



5.3 Shifted Krylov solvers CHAPTER 5 Evaluation of Green’s function on RSFD scheme

5.3 Shifted Krylov solvers

As shown in the previous two sections, the block matrix elements of the unperturbed Green’s func-

tion is necessary to determine the physical quantities, e.g., charge density and transmission, via the

relationship between the retarded Green’s function. For large and sparse matrix such as real-space

Hamiltonian matrix, the iterative solvers are suitable rather than the LU-factorization. Especially,

the COCG method might be the best choice for our problem because [zÎ − ĤT ] is very sparse and

complex-symmetric when ĤT is a real-symmetric matrix. Moreover, [zj Î − ĤT ] is a shifted matrix for

a given set of complex energy zj (j = 1, 2, ..., Ns), which is in contrast to [zj Î− ĤT − Σ̂L(zj)− Σ̂R(zj)]

for the retarded Green’s function due to the presence of the energy dependent self-energy matrices.

In this section, I present the efficient numerical solver to compute the block matrix elements of the

unperturbed Green’s function.

5.3.1 Krylov solver for computing Green’s function

Because the direct inversion of [zÎ − ĤT ] is prohibitively expensive in many cases, it is efficient to

compute the matrix elements of the unperturbed Green’s function by solving a set of linear equations

Ĝi,j(z) = ⟨i| [zÎ − ĤT ]
−1 |j⟩

= ⟨i|xj(z)⟩ , (5.19)

where |xj(z)⟩ is a solution vector of a linear equation,

[zÎ − ĤT ] |xj(z)⟩ = |j⟩ . (5.20)

Here |j⟩ indicates a site vector on the j-th principal layer in the transition region. Because [zÎ−ĤT ] is a

sparse and complex-symmetric matrix, the COCG method might be the best choice to solve the above

equation. To begin with this section, I briefly explain the algorithmic details of the COCG method.

Throughout this section, the linear algebraic expression will be used to avoid the misunderstanding.

5.3.2 COCG method

Let us consider a linear equation,

Âx = b, (5.21)

where x, b ∈ CM , and Â ∈ CM×M . Here, I assume that Â is the complex symmetric matrix (Â =

ÂT ̸= Â†). In the COCG method, which is a family of the CG method, the approximated solution

vectors are searched within the Krylov subspace. The n-th Krylov subspace is defined as

Kn(Â,v) = span{v, Âv, Â2v, ..., Ân−1v}. (5.22)

It is important to note that the whole space will be spanned by Kn(Â,v) when n =M . The correction

scheme to the approximated solution vectors is derived such that the n-th residual vector, rn = b−Âxn,
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is conjugate orthogonal to the Krylov subspace. Under the initial condition x0 = 0, the conjugate

orthogonality of the residual vector is expressed as below,

rn ∈ Kn+1(Â, b) and rn ⊥ Kn(Â, b), (5.23)

where the overline denotes the conjugate. Because the condition (5.23) is similar with the Ritz-

Galerkin condition rn ⊥ Kn(Â, b), the COCG algorithm is quite similar with the well-known CG one.

Specially, the difference appears only for construction of αn and βn. The COCG algorithm is written

in Table 5.1.

Table 5.1: COCG algorithm for Âx = b, with a complex symmetric matrix Â ∈ CM×M ,xn,pn, rn ∈
CM , and αn, βn ∈ C. Note that the inner product is defined as (u,v) = uTv.

1: Set x0 = p−1 = 0, r0 = b, α−1 = 1, and β−1 = 0

2: For n = 0, 1, 2, ..., until convergence do:

3: αn = (rn, rn)/(pn, Âpn)

4: xn+1 = xn + αnpn
5: rn+1 = rn − αnÂpn
6: βn = (rn+1, rn+1)/(rn, rn)

7: pn+1 = rn + βnpn
8: End do

5.3.3 Shifted COCG method

Next, I consider to solve a series of linear equations whose matrix elements are connected with each

other just by the scalar shift σ,

[Â+ σÎ]x(σ) = b. (5.24)

In the transport calculation, the number of σ is as many as 102 − 104. If one apply the COCG

method to Eq. (5.24), calculation cost increases linearly with the number of the shift, which results in

that large-scale transport calculation is not feasible. However, the most-time consuming task, matrix-

vector operation, is actually needed at the seed system (σ = 0). This trick is based on that the Krylov

subspace is invariant against σ,

Kn(Â, b) = Kn(Â+ σÎ, b), (5.25)

which is easily confirmed from the fact that the power of (Â + σÎ) is decomposed into that of Â.

Since the Krylov subspace is common among all shifts, residual vectors at arbitrary shifts and seed

are collinear, that is,

rn(σ) =
1

πn(σ)
rn, (5.26)
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where πn(σ) is the scalar function of σ. Eliminating pn from fifth and seventh lines in Table 5.1, the

new recurrence for rn is obtained as below,

rn+1 =
(
1 +

βn−1αn

αn−1
− αnÂ

)
rn − βn−1αn

αn−1
rn−1. (5.27)

The above equation is also valid for the shifted linear equations,

rn+1(σ) =
(
1 +

βn−1(σ)αn(σ)

αn−1(σ)
− αn(σ)(Â+ σÎ)

)
rn(σ)−

βn−1(σ)αn(σ)

αn−1(σ)
rn−1(σ). (5.28)

From Eqs. (5.24)-(5.26), one can derive the recurrence equations that determine the scalar functions

πn(σ), αn(σ), and βn(σ):

πn+1(σ) =
(
1 +

βn−1αn

αn−1
− αnσ

)
πn(σ)−

βn−1αn

αn−1
πn−1(σ), (5.29)

αn(σ) =
πn(σ)

πn+1(σ)
αn, (5.30)

βn(σ) =
( πn(σ)

πn+1(σ)

)2
βn. (5.31)

It should be noted that these recurrences are evolved without time-consuming matrix vector operations.

Thus, updating vectors x(σ) and p(σ) using Eqs. (5.30) and (5.31) will lead to a significant reduction

of the computational cost. This is the shifted COCG method [80] and its algorithm is written in

Table 5.2.

Next, I briefly comment on two numerical techniques about the shifted Krylov solvers. The shifted

COCG method is not applicable to Eq. (5.11) when [zÎ − ĤT ] is not complex symmetric matrix. This

situation occurs when z is complex number and ĤT is complex Hermitian matrix, ĤT = Ĥ†
T ̸= ĤT

T .

In this case, the shifted BiCG method [81] might be suitable. On the other hand, if z = ε, [εÎ− ĤT ] is

always Hermite, and one should use the shifted CG method [82]. The shifted CG, COCG, and BiCG

methods are quite similar to each other, but the only shifted BiCG method requires two matrix-vector

operations per iteration. Therefore, the use of shifted BiCG will increase the computational cost of

matrix-vector operation as twice as larger than the shifted CG or COCG method. However, the shifted

CG method can be applied to the problem with complex shifts if the reference energy is set on the real

axis, leading to a half reduction of the matrix-vector operation which is the most time-consuming part.

Furthermore, if ĤT is a real-symmetric matrix, one should choose seed system as z = ε and employ

the shifted CG method instead of shifted COCG method because the shifted COCG method requires

complex matrix-vector operation for a complex seed while the shifted CG method does real-matrix

vector operations for a real seed.

The second technique is the seed switching [83]. There is no guarantee that the residual norms

of all shifts satisfy the convergence criterion when that of the seed is sufficiently small. Because

the iterations are performed until all the residual norms satisfy the convergence criterion, the total

number of iterations increases, resulting in the slight increase of CPU time in the shifted COCG

method with respect to the number of shifts. In addition, when the norm of the residual vector of
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Table 5.2: Shifted COCG algorithm for [Â + σÎ]xn(σ) = b, with a complex symmetric matrix Â ∈
CM×M , σ ∈ C,xn,pn, rn,xn(σ),pn(σ) ∈ CM , and αn, βn, αn(σ), βn(σ), πn(σ) ∈ C. Note that the

inner product is defined as (u,v) = uTv.

1: Input σj (j = 1, 2, ..., Ns)

2: Set x0 = p−1 = 0, r0 = b, α−1 = 1, and β−1 = 0

3: Set x0(σj) = p−1(σj) = 0, r0(σj) = b, α−1(σj) = 1, and β−1(σj) = 0, π−1(σj) = π0(σj) = 1

(j = 1, 2, ..., Ns)

4: For n = 0, 1, 2, ..., until convergence do:

5: αn = (rn, rn)/(pn, Âpn)

6: xn+1 = xn + αnpn
7: rn+1 = rn − αnÂpn
8: βn = (rn+1, rn+1)/(rn, rn)

9: pn+1 = rn + βnpn
10: For j = 1, 2, ..., Ns do:

11: πn+1(σ) =
(
1 + βn−1αn

αn−1
− αnσ

)
πn(σ)− βn−1αn

αn−1
πn−1(σ)

12: αn(σj) =
πn(σj)

πn+1(σj)
αn

13: βn(σj) =
(

πn(σj)
πn+1(σj)

)2
βn

14: xn+1(σj) = xn(σj) + αn(σj)pn(σj)

15: pn+1(σj) = 1/πn(σj)rn + βn(σj)pn(σj)

16: End do:

17: End do

the seed system becomes small, the numerical precision of the residual vectors for the shifts degrades.

The seed switching technique, which switches the seed to the point where the residual norm is largest

among the whole shifts after the solution of the seed system converges, enables us to build up the

residual vectors for the sampling energy points without loss of numerical precision and significant

increase of the computational cost.

5.3.4 Efficient implementation of the shifted COCG method

Although a significant reduction of the computational cost will be achieved by using shifted COCG

method for solving shifted linear equations, its benefit fades out as increasing the number of shifts.

This is because that the computational complexity of the (sparse) matrix-vector operation is O(cM),

where cM is the nonzero element ofM×M Hamiltonian matrix, while the scalar-vector product of the

shifted COCGmethod scales asO(NsM), whereNs is the number of shifts. Thus, ifNsM ≥ cM , a cost

to update the vectors x(σ) and p(σ), a large amount of scalar-vector products, becomes comparable to

a cost of constructing the Krylov subspace on a seed. Moreover, the shifted COCG method does not

contribute to reduce the memory consumption. Because many energy points are required to evaluate

the transmission, large amount of memory consumption secondarily limits us to obtain the unperturbed
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Green’s function. To overcome these difficulties, I introduce the reduced vectors ξ(σ),θ(σ), and ρ,

ξ(σ) = V̂ Tx(σ), θ(σ) = V̂ Tp(σ), ρ = V̂ Tr, (5.32)

where V̂ ∈ CM×L and ξ(σ),p(σ),ρ ∈ CL. I assume that L≪M . The reduced vectors can be updated

without explicit computation of xn(σ) and pn(σ) instead by using the following recurrences

ξn+1(σ) = ξn(σ) + αn(σ)θn(σ), (5.33)

θn+1(σ) = ρn(σ) + βn(σ)θn(σ). (5.34)

The modified algorithm based on the shifted COCG method is written in Table 5.3. The algorithm is

mathematically trivial but quite efficient because the scalar-vector operation in Eqs (5.33) and (5.34)

scales O(NsL) while that in the standard shifted COCG method scales O(NsM).

Table 5.3: Modified shifted COCG algorithm for [Â + σÎ]xn(σ) = b, with a complex sym-

metric matrix Â ∈ CM×M , V̂ ∈ CM×L, σ ∈ C,xn,pn, rn ∈ CM , ξn(σ),θn(σ),ρn ∈ CL, and

αn, βn, αn(σ), βn(σ), πn(σ) ∈ C. Note that the inner product is defined as (u,v) = uTv.

1: Input σj (j = 1, 2, ..., Ns)

2: Set x0 = p−1 = 0, r0 = b, ρ0 = V̂ Tb, α−1 = 1, and β−1 = 0

3: Set ξ0(σj) = θ−1(σj) = 0, α−1(σj) = π−1(σj) = π0(σj) = 1, and β−1(σj) = 0 (j = 1, 2, ..., Ns)

4: For n = 0, 1, 2, ..., until convergence do:

5: αn = (rn, rn)/(pn, Âpn)

6: xn+1 = xn + αnpn
7: rn+1 = rn − αnÂpn
8: βn = (rn+1, rn+1)/(rn, rn)

9: pn+1 = rn + βnpn
10: ρn+1 = V̂ Trn+1

11: For j = 1, 2, ..., Ns do:

12: πn+1(σ) =
(
1 + βn−1αn

αn−1
− αnσ

)
πn(σ)− βn−1αn

αn−1
πn−1(σ)

13: αn(σj) =
πn(σj)

πn+1(σj)
αn

14: βn(σj) =
(

πn(σj)
πn+1(σj)

)2
βn

15: ξn+1(σj) = ξn(σj) + αn(σj)θn(σj)

16: θn+1(σj) = 1/πn(σj)ρn + βn(σj)θn(σj)

17: End do:

18: End do

The modified algorithm is useful when a part of the unperturbed Green’s function, Ĝ(z), is

needed. This situation frequently occurs in physics. For example, the four corner matrix elements,

Ĝ00, Ĝ0,N+1 ĜN+1,0 ĜN+1,N+1, are needed to calculate the transmission. As another example, the

charge density calculation requires the diagonal elements of the retarded Green’s function Ĝm,m which

is computed using Ĝm,0, Ĝm,m, Ĝm,N+1. Finally, the efficiency of the proposed algorithm is discussed.
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I consider Ns different complex energy as shifts σj = zj and set Â = εF Î − ĤT , where εF is the Fermi

level. In the transmission calculation, four corner matrix elements are obtained by setting b = |0⟩
and |N + 1⟩, and V̂ T = (⟨0| , ⟨N + 1|), where |0⟩ and |N + 1⟩ correspond to vectors on left and right

electrodes principal layer, respectively. As discussed in the previous chapter, the number of grid points

in the electrode is M̃(= Mx ×My × M̃z), where Mx and My are the number of grid points in x and

y direction and M̃z is the number of grid points defined so as to cover the nonlocal part of the pseu-

dopotential in z direction. Since M̃z ≪ Mz with Mz being the number of grid points in z direction,

the dimension of the reduced vectors is significantly smaller than the dimension of the linear equation

M(=Mx ×My ×Mz). In the charge density calculation, Ĝm,0, Ĝm,m, Ĝm,N+1 are obtained by setting

b = |0⟩ , |m⟩, and |N + 1⟩, and V̂ T = ⟨m|.

5.3.5 Extension to the generalized shifted linear equations

Let us consider the solution of the generalized shifted linear equation with complex symmetric matrices

of the form:

[Â+ σB̂]x(σ) = b, (5.35)

where Â and B̂ are non-singularM×M matrices. When B̂ = Î, Eq. (5.35) is reduced to Eq. (5.24) and

thus the shifted COCG method is applicable. However, if B̂ ̸= Î, the shift-invariant property of the

Krylov subspace does not hold. This situation occurs when the norm-conservation condition does not

apply or the tight-binding Hamiltonian based on the non-orthogonal atomic basis set is used. Note that

B̂ is often called an overlap matrix in the electronic structure calculation. Recently, Teng et al. [84]

proposed the extended algorithm of the shifted COCG method for solving the generalized shifted

linear equation (5.35). The extension is based on transforming Eq. (5.35) into the standard shifted

linear equation

[B̂−1Â+ σÎ]x(σ) = B̂−1b. (5.36)

Following the procedure of the shifted COCG method, the residual vector r′n = B̂−1b−B̂−1Âxn holds

the orthogonality relation,

r′n ∈ Kn+1(B̂
−1Â+ σÎ, B̂−1b) ⊥ Kn(B̂−1Â+ σÎ, b̄). (5.37)

It means that the orthogonality of the vectors in the COCG method is extended by the following

bilinear form:

(r′n+1, r
′
n)B = r′Tn+1B̂r

′
n = 0. (5.38)

The resulting algorithm, the generalized shifted COCG method, is written in Table 5.4. Note that in

the actual calculation r′n+1 = B̂−1rn+1 is computed by solving the linear equation

B̂r′n+1 = rn+1, (5.39)

at each step. Since B̂ is usually real-symmetric positive definite, equation can be solved by the CG

method.
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Table 5.4: Generalized shifted COCG algorithm for [Â + σB̂]xn(σ) = b, with a complex symmetric

matrices Â, B̂ ∈ CM×M , σ ∈ C,xn,pn, rn, r
′
n ∈ CM , and αn, βn, αn(σ), βn(σ), πn(σ) ∈ C. Note that

the inner product is defined as (u,v)B = uT B̂v.

1: Input σj (j = 1, 2, ..., Ns)

2: Set x0 = p−1 = 0, r0 = b, r
′
0 = Ŝ−1b, α−1 = 1, and β−1 = 0

3: Set x0(σj) = p−1(σj) = 0, α−1(σj) = π−1(σj) = π0(σj) = 1, and β−1(σj) = 0 (j = 1, 2, ..., Ns)

4: For n = 0, 1, 2, ..., until convergence do:

5: αn = (r′n, r
′
n)B/(pn, B̂

−1Âpn)B
6: xn+1 = xn + αnpn
7: rn+1 = rn − αnÂpn
8: r′n+1 = B̂−1rn+1

9: βn = (r′n+1, r
′
n+1)B/(r

′
n, r

′
n)B

10: pn+1 = r
′
n + βnpn

11: For j = 1, 2, ..., Ns do:

12: πn+1(σ) =
(
1 + βn−1αn

αn−1
− αnσ

)
πn(σ)− βn−1αn

αn−1
πn−1(σ)

13: αn(σj) =
πn(σj)

πn+1(σj)
αn

14: βn(σj) =
(

πn(σj)
πn+1(σj)

)2
βn

15: xn+1(σj) = xn(σj) + αn(σj)pn(σj)

16: pn+1(σj) = 1/πn(σj)r
′
n + βn(σj)pn(σj)

17: End do:

18: End do

In compensation for obtaining the shift-invariant property in the generalized shifted COCGmethod,

one need to solve linear equation (5.39) at each step, which might lead to increase the computational

cost. Here I present the numerical technique to compute B̂−1. In the ultrasoft pseudopotentials and

projector augmented wave method, B̂ has a form

B̂ = Î + P̂ D̂BP̂
T , (5.40)

with P̂ ∈ CM×NB and D̂B ∈ CNB×NB . Here NB is the number of projectors, which is as many as the

number of atoms. Since NB ≪M , the Sherman-Morrison-Woodbury formula yields

B̂−1 = Î − P̂ (D̂B + P̂ T P̂ )−1P̂ T . (5.41)

Thus, the matrix inversion B̂−1 is reduced to the NB × NB dimensional inversion (D̂B + P̂ T P̂ )−1

which can be directly computed by LU-decomposition method in advance.

5.4 Benchmark test

In this section, I will demonstrate the power of the proposed method through transmission calculations

of Na atomic wire and C60@(10,10)CNT peapod. The Hamiltonian matrices are obtained from the
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real-space pseudopotential DFT code RSPACE [85,86]. All calculations in this section are performed

by using the local density approximation [12] and norm-conserving pseudopotentials proposed by

Troullier-Martins [24]. Unless noted otherwise, I employ the central finite-difference approximation

(N = 1 in Ref. [75]) for the Laplacian operator.

5.4.1 Na atomic wire

To demonstrate the efficiency of the present scheme, the shifted COCG method with the seed switching

technique is applied to the calculation of the unperturbed Green’s functions of the transition region

for a Na atomic wire. The size of the supercell is 20.0 × 20.0 × 7.0 bohr3 and a single Na atom is

contained in the supercell. The number of grid points is 40× 40× 16. The transport direction is set

along z direction.

Figure 5.1: CPU time required to obtain unperturbed Green’s functions of Na atomic wire. The black

square, red circle, and blue triangle are the results obtained by the COCG (Table 5.1), shifted COCG

(Table 5.2), and the modified shifted COCG (Table 5.3), respectively. The energy points are set are

chosen so as to be equidistance in the interval ε− εF ∈ [−1, 1] eV, where εF is the Fermi level.
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Figure 5.1 shows the CPU time versus the number of sampling energy points for the COCG

(Table 5.1), shifted COCG (Table 5.2 [80]), and the modified shifted COCG (Table 5.3 [80]). The

energy points are set so as to be equidistance in the interval ε−εF ∈ [−1, 1] eV, where εF is the Fermi

level. The CPU time of the COCG method is almost proportional to the number of energy point.

In the shifted COCG method, although the CPU time is substantially reduced compared with the

result of the COCG method, the CPU time linearly increases over 11 energy points. It means that the

computational cost of updating vectors in shifted system becomes dominant in the whole computation.

Since, in this calculation, the (Hamiltonian) matrix-vector operation can be decomposed into the 7

times scalar-vector operations originated from the central finite-difference approximation and 4 times

vector-vector and scalar-vector operations from the evaluation of Na pseudopotential contribution

per iteration, the computational complexity of the matrix-vector operation is about O(11M). On the

other hand, the computational complexity of the scalar-vector operation in shifted system is O(NsM),

and therefore the speed-up owing to using the shifted COCG method saturates at around Ns ≈ 11,

which is consistent with the result of the shifted COCG method in Fig. 5.1. This simple analysis

is valid for understanding the result of the modified shifted COCG method. In this calculation, the

dimension of the reduced vectors is 8 times smaller than that of full vectors in the conventional

shifted COCG method, which implies that the cost of the scaler-vector operations in shifts reduced

by almost 8 times. Actually, the increase of the CPU time using the modified shifted COCG method

is substantially suppressed against the result of the shifted COCG method over 11 energy points.

The above discussion suggests that the modified shifted COCG method is particularly efficient

in the following two situations: (i) the matrix-vector operation is time-consuming, e.g., higher-order

finite-difference approximation is employed or many atoms are contained in the supercell, (ii) the

distance of the transition region along current flow direction is sufficiently large. Because both situa-

tions are usually satisfied in the large-scale transport calculations, the modified shifted COCG method

might be suitable to investigate the transport properties of large-scale conductors.

5.4.2 C60@(10,10)CNT peapod

I next compute a transmission of C60@(10,10)CNT peapod, in which a (10,10)CNT encapsulates

a single C60 molecule, as an application of the proposed method to a large system. This system

has been observed by transmission electron microscopy [87] and its electronic structure has been

intensively studied by DFT calculations [88,89]. The transport properties of peapods have mostly been

investigated using the tight-binding approximation [90] because of the large system size required for

calculations. However, the tight-binding Hamiltonian which is constructed by carbon 2s and 2p atomic

orbitals does not take into account the effect of the interaction between the molecular state of C60 and

nearly free electron state of the carbon nanotube correctly, making it difficult the qualitative prediction

of the transport properties. Comparing the results between DFT and tight-binding calculations is one

of our interests.

Figure 3.2 shows the computational model. The size of the transition region is taken to be 42.2×
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42.2 × 32.6 bohr and the transition region contains 340 carbon atoms. The initial carbon-carbon

distance is set to 2.68 bohr and structural relaxation is carried out. To determine the Kohn-Sham

effective potential for electrode and transition regions, the conventional supercell is used, where the

periodic boundary condition in imposed in all directions, and the grid spacing is ∼ 0.45 bohr3, which

gives a total number of grid points 774144(= 96× 96× 84).

The electronic band structures of the (10,10)CNT and C60@(10,10)CNT peapod are shown in

Figs. 5.2(a) and 5.2(b), respectively. In an isolated C60 molecule, there is the threefold degenerated

lowest unoccupied state t1u which is characterized by quantum number m = −1, 0, 1 [91,92]. Because

the structural symmetry of the C60 is broken, degenerated t1u levels are split into three levels which are

located just above the Fermi level in Fig. 5.2(b). Since the difference of the band structures between

(10,10)CNT and C60@(10,10)CNT peapod is significant only at just above the Fermi level, it might be

expected that the transport properties of the (10,10)CNT is not disordered except around the Fermi

energy.

Figure 5.2: Electronic band structures of (a) (10,10)CNT and (b) C60@(10,10)CNT. The Fermi level

is marked by the dotted line.

The conductance spectrum of the C60@(10,10)CNT is plotted in Fig. 5.3. Owing to the use of

the shifted COCG method, a large number of energy points can be sampled to detect the spiky dips

in the spectrum. It is found that the reductions of the conductance with maximally one quantum

unit occurs at energy levels of t1u states. Figure 5.4 shows a real-space picture of the charge densities

of scattering wavefunctions, which is useful for understanding the spatial behaviors of the transport

phenomenon. The charge density distribution with the energy at T (E) ≈ 2 spreads around the

(10,10)CNT, while that with the energy at the dip of the conductance spectrum accumulates in the

vicinity of the C60 molecule. These results imply that the transport behavior of (10,10)CNT is only

modified at the resonant scattering of the t1u states of the encapsulated C60 molecule. Note that

the resonant scattering is observable if the Fermi level of the (10,10)CNT is manipulated by impurity
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doping or gate-voltage. The obtained result is qualitatively similar to the tight-binding calculation [90].

However, the tight-binding approximation shows that the positions of the resonant scattering are at

below the Fermi level, while the DFT calculations predict the resonant scattering occurs above the

Fermi level. This discrepancy might come from the C60-CNT interaction is difficult to be taken into

account by the tight-binding approximation, which limits us to predict the quantitative prediction of

the transport properties of peapods.

Narrow conduction dips with maximally one quantum unit can be understood by the one-dimensional

tight-binding model attached with single impurity [90]. This model indicates that the quite narrow res-

onance peaks corresponds to the weak interaction between the (10,10)CNT and encapsulated fullerene.

Furthermore, from this model, there is a possibility of controlling the position of the resonant scat-

tering of the C60@(10,10)CNT by modifying the molecular level of the t1u states of the fullerene. For

example, endohedral doping is one of the interesting aspects of fullerene to modulate the transport

properties of the peapod since it modifies the electronic structure of the fullerene without altering the

shape of the fullerene. In last decades, many attempts have been made on the doping on the C60

using alkali [93], transition [94], rare-earth metals [95], noble gas [96], and molecules [97]. Here I focus

on alkali metal endohedral fullerene M@C60 (M=Li, Na, K) because M@C60 shows the interesting

physical properties not observed in the C60 due to the charge transfer from encapsulated metal to

fullerene. Owing to the weak C60-CNT interaction, the M@C60@(10,10)CNT may exhibit the similar

resonant scattering at the energy levels of the t1u states as same as the fullerene case. However, be-

cause the t1u state of M@C60 is partially occupied by valence electron of alkali metal, the reduction

of the conductance at the Fermi level will be expected. Since peapods and M@C60 have recently

become experimentally accessible structures, the obtained results should be helpful in understanding

and predicting the resonant scattering in experimental transport measurements.

5.5 Application

5.5.1 Silicon Carbide MOSFETs

Silicon carbide (SiC) is a promising material for power electronics because of its wide band gap, high

breakdown electric field, high thermal conductivity, and ability to form a native gate insulator, namely

SiO2. One of the most serious problems of SiC based metal-oxide-semiconductor field-effect transistors

(MOSFETs), primarily those of the n-channel type, is their low channel mobility caused by excessive

electron scattering at the SiC/SiO2 interface [98, 99]. It is widely accepted that the degradation of

channel mobility originates from electron trapping, Coulomb scattering, surface phonon scattering,

and surface roughness scattering [100]. The Hall measurement suggests that the amount of electron

trapping is reasonably low after NO annealing and that it does not play an important role in the channel

mobility under a heavy inversion condition [101]. Coulomb scattering can be suppressed by reducing

the interface state density. However, even after the interface state density is significantly reduced by

passivation treatment, the peak channel mobility is still less than 10% of the bulk mobility [102–104].
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Figure 5.3: Conductance spectrum of C60@(10,10)CNT.

On the basis of mobility models parametrized by the fitting of experimental mobility data, it has been

reported that surface phonon scattering is not a factor limiting channel mobility [101,105]. Although

the surface roughness scattering is dominant at a high effective field, the channel mobility is low at

a low effective field. The above results imply that an additional scattering mechanism that does not

appear in a conventional Si/SiO2 interface is needed for the accurate modeling of mobility. A more

comprehensive understanding of the electron-scattering mechanism at the SiC/SiO2 interface will be

indispensable for further improving the channel mobility in SiC-MOSFETs.

SiC has numerous polytypes, which are characterized by the stacking sequence along the [0001]

direction. Recently, Matsushita et al. performed first-principles electronic-structure calculations for

SiC polytypes and revealed that the wave functions at the conduction-band edge (CBE) of SiC are

distributed not near atomic sites but in the internal space [106,107]. The shape of the internal-space

states (ISSs) determines the band gap and electron mobility of SiC polytypes. On the other hand,

for the SiC/SiO2 interface, the behavior of the ISSs is affected by the surface orientation of the SiC

substrate because the wave functions of the ISSs are distributed along a specific crystal direction.

Kirkham et al. previously investigated the 4H-SiC(0001)/SiO2 interface, which is commonly employed

for MOSFETs, and found that the spatial distribution of the ISSs near the interface varies between two

types of interface structures denoted by the h and k types, which have cubic and hexagonal stacking

sequences from the top of the SiC bilayer, respectively [108]. Indeed, for the SiC surface, the existence

of such inequivalent structures is supported theoretically [109,110] and experimentally [111]. Moreover,
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Figure 5.4: Charge density distributions of scattering wavefunctions of C60@(10,10)CNT. (a) and (b)

correspond to the energies indicated by the arrows in Fig. 5.3. The spheres represent the positions of

carbon atoms. Each contour represents twice or half the charge density of the adjacent contour lines.

The lowest-density contour represents a density of 5.0× 10−4 e/Å3

a vicinal 4H-SiC(0001)/SiO2 interface containing the h and k types was observed by transmission

electron microscopy [112]. Since carrier electrons pass through the CBE states, i.e., the ISSs, in n-

channel MOSFETs, it is important to examine the relationship between the behavior of the ISSs at

both interfaces and the transport property through the ISSs.

For the modeling of carrier mobility in SiC devices, technology computer-aided design tools using

empirical scattering parameters are usually employed. Although technology computer-aided design

simulations are useful for obtaining a rough estimation of the scattering mechanism, it is unclear in

many cases how the experimental data should be interpreted in terms of the microscopic behavior.

More rigorous and accurate theoretical processes based on first-principles are required to take into

account the effect of the ISSs on the transport property. Recently, Iskandarova et al. performed first-

principles electron-transport calculations for the 4H-SiC(0001)/SiO2 interface using localized basis

sets [113]. However, since localized basis sets cannot reproduce the ISSs correctly [106], the contribu-

tion of the ISSs has not been properly investigated. Therefore, to my knowledge, there have been no

first-principles electron-transport calculations examining the contribution of the ISSs to the scattering

property of defects at the SiC/SiO2 interface.

In this study, first-principles calculations on the electron-scattering property of the oxygen-related

structures at the 4H-SiC(0001)/SiO2 interface, which appear during dry oxidation, are performed.

Note that the oxygen-related structures at the h type, which do not have defect states at the interface,

give rise to considerable electron scattering. The large scattering at the h type is direct evidence
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that the difference in the behavior of the ISSs between the h and k types plays a decisive role in

the electron-transport property at the SiC/SiO2 interface. I also examine the electron transmission

when carbon-related defects exist in the interface. It is intriguing that the effect of the ISSs on the

electron scattering is more significant than that of the defects. Since electron scattering by electrically

inactive oxygen-related structures does not generally occur in conventional Si-MOSFETs, the finding

provides a new paradigm for researchers interested in SiC-MOSFETs research. Because the 4H-

SiC(0001)/SiO2 interface inevitably contains both interface types, electron scattering at the SiC/SiO2

interface generated by dry oxidation is intrinsic and appears to be one of the limiting factors for

obtaining high channel mobility in n-channel SiC-MOSFETs.

5.5.2 Computational details

Figure 5.5: Atomic structures of 4H-SiC(0001)/SiO2 interface. (a) h type and (b) k type. Blue, yellow,

red, and white spheres are Si, C, O, and H atoms, respectively.

Figure 5.5 shows the atomic structure of the interface. Since the transport calculation for the

interface between crystalline SiC and amorphous SiO2 is computationally difficult, the crystalline

interface model generated in previous works [108, 114–117] is used to examine the electron-transport

property of the 4H-SiC(0001)/SiO2 interface. The two-dimensional slab model with a 21 bohr vacuum

region contains a crystalline substrate with 6 planes of SiC bilayers connected to β-tridymite SiO2
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with a thickness of 17 bohr. This model is referred to as the initial interface. Since it has been

reported that dry oxidation occurs via the reaction of O2 sequentially arriving at the interface with

the CO emission [108,116,118], the following oxygen-related structures will be present at the SiC/SiO2

interface: single oxygen interstitials at the interface, Oif , double oxygen interstitials at the interface

and subsurface, Oif+sub, and carbon vacancies at the interface saturated by two O atoms, VCO2. In

addition, single carbon interstitials, (C-Ci)C, and carbonyl complexes, CC, at the interface, which are

referred to as carbon-related defects, are investigated since they are among the strongest candidates

for the interface defects according to other theoretical and experimental results [118–120]. The atomic

structures of these defects are illustrated in Fig. 5.6. The optimized atomic structures are obtained in

the same manner as in Ref. [108].

Figure 5.6: Atomic structures of (a) clean, (b) Oif , (c) Oif+sub, (d) VCO2, (e) (C-Ci)C, and (f) CC

at SiC/SiO2 interface. Green spheres are additional O atoms in Oif , Oif+sub, and VCO2. Light-blue

spheres are C atoms in (C-Ci)C and CC. Other colors are the same as those in Fig. 5.5.

Figure 5.7 illustrates a schematics of the computational models used for the transport calculations,

in which the whole system is divided into three parts: a left electrode, a transition region, and a right

electrode. The transition region is composed of the SiC/SiO2 interface including the oxygen-related

structures or carbon-related defects. The left (right) electrode is a semi-infinite slab along the [1120]

([1120]) direction and its atomic structures correspond to those of the initial interface. Periodic
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boundary conditions are imposed in the ⟨1100⟩ and ⟨0001⟩ directions. The transmission from the left

electrode to the right electrode can be derived using the Fisher-Lee formula. Transport calculations

are performed using the real-space finite-difference method implemented in the RSPACE code. The

exchange-correlation energy among the electrons is treated in the local density approximation. Norm-

conserving pseudopotentials generated by the Troullier-Martins scheme are adopted to describe the

electron-ion interaction. A grid spacing of 0.42 bohr in the real space and the Γ-point approximation

in the two-dimensional Brillouin zone are used.

Figure 5.7: Schematic image of transport-calculation model. The boundary between the scattering

region and the semi-infinite electrodes is distinguished by solid lines. Supercells of electrodes are

bounded by dotted lines. The illustrated transition region contains Oif within the h type. Colors are

the same as those in Fig. 5.5.

5.5.3 Results and discussion

I first discuss the effect of the oxygen-related structures on the electron-transport property at the

SiC/SiO2 interface. The transmission spectra defined by Eq. (3.25) are shown in Figs. 5.8(a) and

5.8(b). The transmission of the initial interface is depicted as a black line for comparison. Since it has

been reported that p-channel SiC devices cannot compete with Si devices [99], the majority of SiC-

MOSFETs are n-channel ones. Thus, I focus on the electron transport through the CBE states. I find

that the transmission at the CBE strongly depends on the type of interface, decreasing at the h type
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but almost remaining unchanged at the k type. This result indicates that the electron transmission

through the h type is sensitive to the structural deformation caused by the insertion of oxygen. It is

surprising that the oxygen-related structures, which are naturally generated at the SiC/SiO2 interface

during dry oxidation, cause the electron scattering because the oxygen-related structures considered

here have been reported to be electrically inactive [118].

To obtain further insight into the origin of the electron scattering at the h type, I perform the

eigenchannel decomposition [121] of scattering wave functions, where the scattering wave functions are

obtained using GT , ΓL, and incident waves from the left electrode. I show the channel transmission

and the spatial distributions of the square of the scattering wave function only for the case of Oif in

Fig. 5.9 since no significant differences are observed among Oif , Oif+sub, and VCO2. It is found that

there are three channels in the cubic-stacking regions of SiC (ABC or CBA). Although these channels

have the same energy level in the bulk case, they have slightly different energy levels owing to the

existence of the interface for the present slab models. The transmission in the first and second channels

rapidly saturates to unity, which means that there is no electron scattering. On the other hand, the

transmission through the third channel, which is located slightly below the SiC/SiO2 interface, is

low. To consider the scattering property of the third channel in more detail, I calculate the barrier

height V of the scattering potential using a one-dimensional free-electron-like model. V is fitted so

as to reproduce the transmission probability of the third channel T3rd(ε) obtained by first-principles

calculations,

T3rd(ε) =


4ε(V−ε)

4ε(V−ε)+V 2 sinh2 κb
(ε < V )

4ε(ε−V )

4ε(ε−V )+V 2 sin2 Kb
(ε ≥ V ).

(5.42)

Here, ε = mv2/2, κ =
√

2m(V − ε)/ℏ, and K =
√

2m(ε− V )/ℏ, where ℏ is the reduced Planck’s

constant, m is the electron mass, and v is the group velocity of the incident electrons through the

third channel. b is the barrier length of the scattering potential, which is chosen to be one-third of

the supercell because the length of the Wigner-Seitz cell of Si and C atoms in SiC bulk is one-sixth of

the supercell along the ⟨112̄0⟩ direction. The calculated barrier heights V are listed in Table 5.5. It is

found that all oxygen-related structures behave as a potential barrier.

The scattering mechanism can be understood in terms of the modulation of the CBE of SiC near

the interface. As mentioned in Ref. [107], the electrostatic potential at the tetrahedral interstitial site

surrounded by four Si atoms (Si tetrahedral structure) is low because of the electron transfer from Si

to C. However, when an O atom is inserted between the Si-C bond at the interface, the electrostatic

potential at the Si tetrahedral structure is shifted upward owing to the strong electronegativity of O.

Since the Si tetrahedral structure appears in the cubic-stacking region, the band gap of the h type,

where the ISSs appear slightly below the interface, is widened locally around the oxygen interstitial.

For the k type, where the cubic-stacking region starts from the second SiC bilayer, the ISSs are

insensitive to the insertion of oxygen in the interface. Therefore, the transmission through the h type

is decreased, while that through the k type is almost unchanged.

The transmissions through the h and k types with carbon-related defects are illustrated in Figs. 5.8(c)
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Table 5.5: Transmission probabilities of the third channel and barrier heights calculated using

Eq. (5.42). The energies of the incident wave are εCBE + 0.7 eV and εCBE + 1.0 eV, where εCBE is

the energy of the CBE.

Transmission probability Barrier height (V)

Model εCBE + 0.7 eV εCBE + 1.0 eV εCBE + 0.7 eV εCBE + 1.0 eV

h-type Oif 0.30 0.52 1.48 1.30

Oif+sub 0.48 0.72 1.15 0.97

VCO2 0.33 0.34 1.41 1.64

(C-Ci)C 0.11 0.14 2.16 2.30

CC 0.14 0.69 1.99 1.02

and 5.8(d), respectively. Similarly to the case of the oxygen-related structures, the transmission at the

h type is markedly decreased. The scattering at the h type occurs in the third channel, which can be

explained by the negatively charged C atoms from the carbon-related defects and the existence of the

ISS distributed near the interface. Note that a decrease in the transmission of (C-Ci)C at the k type

is also observed, while the scattering of the CC is marginal. From the charge density distributions

of the CBE state at the k type (not shown here), hybridization between the C=C π∗ state and the

topmost ISSs of the k type is found, indicating that the scattering at the k type originates from the

hybridization effect. On the other hand, from the charge density distributions, I know that hybridiza-

tion between the C=C π∗ state and the ISSs of the h type is small. However, the transmission of the

h type is smaller than that of the k type due to the effect of the ISSs.

To compare the density of the ISSs at the interface with the sheet electron density in the inversion

layer, I solve the Poisson equation using typical conditions, i.e., an accepter density of 1.0 × 10−16

cm−3 and a temperature of 500 K. The sheet electron density is on the order of 1013 cm−2, which is

larger than the defect density (∼ 1011 cm−2) calculated using the experimental interface state density

and the dispersion of the density in energy. On the other hand, the density of atoms at the SiC(0001)

face is 2.44 × 1015 cm−2, indicating that the density of the ISSs, which scatter electrons, is on the

order of 1014 cm−2 when I assume that the oxygen-related structures investigated here evenly appear

during dry oxidation. Therefore, I can conclude that the ISSs play a prominent role in the scattering at

the SiC-MOSFET when the interface state density is sufficiently reduced because the oxygen-related

structures are usually formed by dry oxidation.

5.5.4 Short summary

In summary, I investigated the electron transmission through the CBE state at the two types of 4H-

SiC/SiO2 interface, i.e., the h and k types, to clarify the atomistic origin of the mobility degradation in

n-channel MOSFETs. The results show that oxygen-related structures at the h type lead to electron

scattering, which is counterintuitive because these structures are believed to be electrically inactive.
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Figure 5.8: Transmission spectra for (a) oxygen-related structures in h type, (b) oxygen-related struc-

tures in k type, (c) carbon-related defects in h type, (d) carbon-related defects in k type. The horizontal

axis is the energy relative to the Fermi energy εF defined as the center of the band gap. The vertical

axis is the total transmission probability.

Two physical phenomena combine to prevent electron transmission in the h type. First, the ISSs appear

from the top of the interface in the h type. Second, the energy level of the ISSs is shifted upward by

the Coulomb interaction with inserted O atoms or defects. The electron scattering by carbon-related

defects was also examined. Interestingly, the contribution of the ISSs to the electron scattering is

greater than that of the electrically active states of carbon-related defects. Since the existence of

both interfaces has been proven by transmission electron microscopy, these phenomena likely occur

at the 4H-SiC(0001)/SiO2 interface, resulting in low channel mobility. Further improvement of the

SiC-MOSFET will require the consideration of the relationship between the ISSs at the interface and

the crystal orientation of SiC as well as the decrease in the interface state density.
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Figure 5.9: (a) Channel transmission and (b) spatial distributions of scattering wave function for

eigenchannel. In (b), the case for Oif in h type at 1 eV from the CBE is shown. Channels are labeled

in descending order of transmission probability.
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Chapter 6

Contour integral method for evaluating

the self-energy matrices

In Chap. 4, I have introduced the RSFD implementation to compute the self-energy matrices. Com-

bining the partitioning and singular value decomposition technique, I derived the contracted form of

the Hamiltonian matrix whose dimension is significantly smaller than the original Hamiltonian ma-

trix. Nevertheless, it still requires inverting the matrix repeatedly or solving the quadratic eigenvalue

problem for the dense matrix. In this chapter, I present the alternative approach to evaluate the

generalized Bloch states, complex band structure, and self-energy matrices in order to reduce the

computational cost of the first-principles transport calculation. The key concept of this approach is to

construct the self-energy matrices by propagating and moderately decaying/growing waves via WFM

method [48, 68], which makes it feasible to apply the novel algorithm based on the contour integral

method to obtain such important waves efficiently. In addition, the proposed algorithm attains not

only speed-up and memory reduction but also an excellent parallel efficiency compared with the con-

ventional methods developed so far. The numerical tests for various electrode materials demonstrate

that the self-energy matrices are evaluated more efficiently than simply applying the standard eigen-

solver while keeping with the moderate accuracy. The results and discussions in this chapter are based

on my published papers [122,123].

6.1 Modified WFM method

In this section, I introduce a modified WFM method [48, 124] for handling one of the most compu-

tationally expensive parts of the real-space transport calculations, namely, the computation of the

self-energy matrices. If one applies the semi-analytical or WFM method, the most computationally

demanding part is determining the generalized Bloch states, i.e., solving the quadratic eigenvalue

problem (QEP)

[−λ−1
n B̂† + (εÎ − Â)− λnB̂]ϕn = 0, (6.1)
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Table 6.1: Number of right-going waves that satisfy 10−8 ≤ |λn|l ≤ 1 for several electrode materials

as a function of the number of unit cells l. The Fermi energy is used as an input energy, and all

calculations are performed by OBM method using QZ algorithm.

Material #solutions l = 1 l = 2 l = 3 l = 4 l → ∞
Au chain 21632 102 17 6 4 1

Al(100)

wire

51200 334 83 38 20 7

(6,6)CNT 41472 997 278 126 77 2

Graphene 7168 99 32 14 11 2

Silicene 24576 64 19 13 11 2

for a given input energy ε, where λn = eikna. Here, Â and B̂ are M ×M matrices with M being

the total number of real-space grid points in the unit cell. The solutions with |λn| = 1 correspond to

the propagating waves, whereas remaining states with |λn| ̸= 1 are decaying or growing evanescent

waves. It is important to note that a large majority of the generalized Bloch states in a real-space

grid decay completely within one unit cell of the electrode, and therefore, they contribute little to the

electron transport. Table 6.1 shows the number of right-going waves that satisfy 10−8 ≤ |λn|l ≤ 1

for several electrode materials as a function of the number of unit cells l. The Fermi energy is used

as an input energy. In all systems, the number of right-going waves satisfying the above criterion

is relatively small compared to the total number of nontrivial solutions even when l = 1. From the

Bloch ansatz, several studies [68,125] assume that the majority of right-going waves decay so fast that

they contribute negligibly to the electron transport if 1–2 unit cells are added as a buffer layer. The

left-going waves behave in exactly the same manner as the right-going waves because their eigenvalues

are pairwise.

Consequently, the self-energy matrices are expected to be well approximated by a relatively small

number of propagating and moderately decaying waves that correspond to the solutions of Eq. (6.1)

with λn being close to the unit circle in the complex plane, that is,

λmin ≤ |λn| ≤ λ−1
min, (6.2)

where λmin is the radius of the inner circle in Fig. 6.1. If λmin is set to a reasonably small value, the

transport calculations remain accurate [48,68,124]. Actually, as shown in the section later, the results

obtained using the approximated self-energy matrices that remove fast-decaying evanescent waves

are visibly indistinguishable from those obtained using exact ones, and they reproduce the previous

plane-wave transport calculations accurately. In addition, it is possible to obtain the exact self-energy

matrices from the approximated ones construed only by propagating and moderate evanescent waves

by employing the recursive Green’s function method [126]. Thus, it is enough to find the eigenpairs

satisfying Eq. (6.2), and for this purpose, I employ the Sakurai-Sugiura (SS) method which will be

presented in the next section.
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Figure 6.1: Relationship between the generalized Bloch states and solutions of the quadratic eigenvalue

problem. Physically important eigenvalues within the green shaded area and the others are plotted as

filled blue and open red dots, respectively.

6.2 Sakurai-Sugiura method for quadratic eigenvalue problem

Several efficient eigensolvers for finding the target eigenvalues of Eq. (6.1) located inside the ring-

shaped region have been proposed so far. From the viewpoint of the eigensolver, these approaches

are classified into two types: (i) shift-and-invert Krylov subspace approach [48] and (ii) contour

integral approach based on Sakurai-Sugiura (SS) method [77,122], Polizzi’s FEAST method [127,128],

and Beyn method [125, 129]. In general, the shift-and-invert Krylov subspace approach is designed

for determining eigenvalues close to a given shift, and thus, it is unsuitable for searching all target

eigenvalues distributed in a wide range of the complex plane. By contrast, the contour integral

approach finds eigenvalues in a given domain, and therefore, it is more appropriate for our target

problem. In this subsection, I present the basic algorithm of the SS method and discuss its advantages

against the FEAST and Beyn methods.

The complex moment-based eigensolver, proposed by Sakurai and Sugiura in 2003 [77], computes

all eigenpairs inside the target region by using the contour integration. Although the original algorithm

is developed for the generalized eigenvalue problem, the SS method can also be applied for the nonlinear

eigenvalue problem without loss of the efficiency [130].

The SS method consists of two steps. The first step is generating the subspace by contour in-

tegration. Let Γ be a contour along the ring-shaped region that encloses the target eigenvalues

λ1, λ2, ..., λNΓ
, where NΓ is the number of eigenvalues inside Γ. Then, the moment matrix Ŝp associ-
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ated with the target eigenpairs is defined as

Ŝp =
1

2πi

∮
Γ
zp[εÎ − Ĥ(z)]−1V̂ dz, p = 0, 1, ..., 2Nmm − 1 (6.3)

where V̂ is aM ×Nrh nonzero arbitrary matrix. Nrh and Nmm are the number of right hand sides and

the order of moment matrices, respectively. They are input parameters that are set so as to satisfy

NrhNmm > NΓ. I refer the reader to Ref. [131] for details on how to determine these parameters

efficiently. Here,

Ĥ(λ) = λ−1B̂† + Â+ λB̂. (6.4)

In the actual calculation, Ŝp is approximated by Nint points of numerical integration as

Ŝp ≈
Nint∑
j=1

wjz
p
j [εÎ − Ĥ(zj)]

−1V̂ , (6.5)

where zj and wj are quadrature points and weights, respectively, which are determined by a trapezoidal

rule.

The second step is extracting the eigenpairs from Ŝp. For the nonlinear eigenvalue problem, this

procedure can be performed by several ways including complex moment-based (SS-Hankel) method

[130], Rayleigh-Ritz projection (SS-RR) method [132], and communication-avoiding Arnoldi-type (SS-

CAA) method [133]. In this study, both SS-Hankel and SS-CAA methods are implemented. I first

present the basic algorithm of the SS-Hankel method following the procedure given in Ref. [130].

The SS-Hankel method uses the complex moment matrix µ̂p = V̂ †Ŝp, and the target eigenvalues are

extracted by solving the NmmNrh(≪M)-dimensional generalized eigenvalue problem

T̂<xi = τiT̂xi, (6.6)

with NmmNrh ×NmmNrh Hankel matrices T̂ and T̂< defined as

T̂< =


µ̂1 µ̂2 · · · µ̂Nmm

µ̂2 µ̂3 · · · µ̂Nmm+1

...
...

. . .
...

µ̂Nmm µ̂Nmm+1 · · · µ̂2Nmm−1

 , (6.7)

and

T̂ =


µ̂0 µ̂1 · · · µ̂Nmm−1

µ̂1 µ̂2 · · · µ̂Nmm

...
...

. . .
...

µ̂Nmm−1 µ̂Nmm · · · µ̂2Nmm−2

 . (6.8)

From the viewpoint of numerical stability and efficiency, one should compute the rank NΓ of T̂ by a

singular value decomposition

T̂ = [ÛT1, ÛT2]

[
Σ̂T1 Ô

Ô Σ̂T2

][
Ŵ †

T1

Ŵ †
T2

]
≈ ÛT1Σ̂T1Ŵ

†
T1. (6.9)
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Here the term ÛT2Σ̂T2Ŵ
†
T2 is omitted because Σ̂T2 ≈ 0. Upon substituting Eq. (6.8) into Eq. (6.6),

the QEP is reduced to NΓ-dimensional standard eigenvalue problem, that is,

Û †
T1T̂

<ŴT1Σ̂
−1
T1yi = τiyi, (6.10)

where yi = Σ̂T1Ŵ
†
T1xi. The (approximated) eigenpairs are obtained as (λn,ϕn) = (τn, ŜŴT1Σ̂

−1
T1yn),

where Ŝ = [Ŝ0, Ŝ1, . . . , ŜNmm−1]. In the algorithm, Eq. (6.10) is used instead of Eq. (6.6). If there

are too many eigenvalues inside the contour, the ring-shaped region should be divided into several

subdomains to reduce the cost of solving Eq. (6.10). In this case, it might be better to set a subdomain

to a ring-shaped region, i.e., the target region is sliced as an onion because the number of eigenvalues

located in each slice should be the same, owing to the pairwise relationship (λn, λ
∗−1
n ). The algorithm

of the SS-Hankel method is illustrated in Table 6.2.

Table 6.2: SS-Hankel method for quadratic eigenvalue problem, [−λ−1
n B̂† + (εÎ − Â) − λnB̂]ϕn = 0,

with complex matrices Â, B̂ ∈ CM×M ,ϕn ∈ CM , λn, ε ∈ C.
1: Input Nrh, Nmm, Nint ∈ N, δ ∈ R, V̂ ∈ CM×Nrh , (zj , ωj) for j = 1, 2, . . . , Nint

2: Purpose: Obtain NΓ approximate eigenpairs (λn,ϕn)

3: Compute Ŝp =
∑Nint

j=1 ωjz
k
j [εÎ − Ĥ(zj)]

−1V and µ̂p = V̂ †Ŝp
4: Set Ŝ = [Ŝ0, Ŝ1, . . . , ŜNmm−1] and block Hankel matrices T̂< and T̂

5: Perform a singular value decomposition for T̂ using the threshold δ:

T̂ = [ÛT1, ÛT2][Σ̂T1, Ô; Ô, Σ̂T2][ŴT1, ŴT2]
† ≈ ÛT1Σ̂T1Ŵ

†
T1

6: Solve U †
T1T̂

<ŴT1Σ̂
−1
T1yn = τnyn, and compute (λn,ϕn) = (τn, ŜŴT1Σ̂

−1
T1yn)

The SS-CAAmethod is the novel complex moment-based eigensolver using the block communication-

avoiding Arnoldi procedure. As proved in Ref. [133], the subspace Ŝ is equivalent to the Krylov

subspace, i.e.,

Ŝ = KNmm(Ĉ, Ŝ0) = [Ŝ0, ĈŜ0, ..., Ĉ
Nmm−1Ŝ0], (6.11)

where Ĉ is not generated explicitly, instead, computed implicitly via the block Arnoldi procedure.

Then, the target eigenpairs are obtained by the Arnoldi method with KNmm(Ĉ, Ŝ0),

Ĉxi = τixi. (6.12)

To obtain the expression of Ĉ, one might perform the QR factorization of the Krylov subspace

KNmm+1(Ĉ, Ŝ0),

KNmm+1(Ĉ, Ŝ0) = [Ŝ0, Ŝ1, . . . , ŜNmm ] = Q̂Nmm+1R̂Nmm+1, (6.13)

where Q̂Nmm+1 isM×(Nmm+1)Nrh orthogonal matrix and R̂Nmm+1 is (Nmm+1)Nrh×(Nmm+1)Nrh

upper triangle matrix. I also set Q̂Nmm = Q̂Nmm+1(1 : M, 1 : NmmNrh) and R̂Nmm = R̂Nmm+1(1 :

NmmNrh, 1 : NmmNrh). The unitary transformation rewrites Eq. (6.12) to

Ĉ ′x′
i = τix

′
i, (6.14)
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where Ĉ ′ = Q̂†
Nmm

ĈQ̂Nmm and x′ = Q̂†
Nmm

x. Based on the communication-avoiding Arnoldi proce-

dure, Ĉ ′ is given by

Ĉ ′ = R̂Nmm+1(1 : NmmNrh, Nrh + 1 : NmmNrh +Nrh)R̂
−1
Nmm

. (6.15)

In practice, to reduce the computational cost and improve the accuracy, the rank NΓ of R̂Nmm is

computed by singular value decomposition:

R̂Nmm = [ÛR1, ÛR2]

[
Σ̂R1 Ô

Ô Σ̂R2

][
Ŵ †

R1

Ŵ †
R2

]
≈ ÛR1Σ̂R1Ŵ

†
R1. (6.16)

Substituting Eqs. (6.15) and (6.16) into Eq. (6.14), one might obtain the reduced eigenvalue problem

Û †
R1R̂Nmm+1(1 : NmmNrh, Nrh + 1 : NmmNrh +Nrh)ŴR1Σ̂

−1
R1yi = τiyi, (6.17)

where the approximated eigenpairs are obtained as (λn,ϕn) = (τn, Q̂NmmÛR1yn). The algorithm of

the SS-CAA method is illustrated in Table 6.3.

Finally, I briefly mention about the advantage of the SS method compared with the FEAST and

Beyn methods. Considering that the FEAST method is employed to solve QEP, the QEP must be

transformed into the generalized eigenvalue problem with the twice-sized matrix because the FEAST

method is not designed for nonlinear eigenvalue problem. Due to the twice-sized eigenvalue prob-

lem, the FEAST method is inefficient. In addition, the FEAST and Beyn methods do not use the

higher-order moment matrices Ŝp, which requires to solve linear systems with much larger number

of right-hand sides than the SS method. Because the computational cost of solving linear systems

is proportional to the number of the right-hand side, Beyn method is also inefficient if the Krylov

subspace solver is employed.

Table 6.3: SS-CAA method for quadratic eigenvalue problem, [−λ−1
n B̂† + (εÎ − Â) − λnB̂]ϕn = 0,

with complex matrices Â, B̂ ∈ CM×M ,ϕn ∈ CM , λn, ε ∈ C.
1: Input Nrh, Nmm, Nint ∈ N, δ ∈ R, V̂ ∈ CM×Nrh , (zj , ωj) for j = 1, 2, . . . , Nint

2: Purpose: Obtain NΓ approximate eigenpairs (λn,ϕn)

3: Compute Ŝp =
∑Nint

j=1 ωjz
k
j [εÎ − Ĥ(zj)]

−1V̂

4: Set KNmm+1(Ĉ, Ŝ0) = [Ŝ0, Ŝ1, . . . , ŜNmm ]

5: Perform a QR factorization KNmm+1(Ĉ, Ŝ0) = Q̂Nmm+1R̂Nmm+1

6: Perform a singular value decomposition for R̂Nmm using the threshold δ:

R̂Nmm = [ÛR1, ÛR2][Σ̂R1, Ô; Ô, Σ̂R2][ŴR1, ŴR2]
† ≈ ÛR1Σ̂R1Ŵ

†
R1

7: Solve U †
R1R̂Nmm+1(1 : NmmNrh, Nrh + 1 : NmmNrh +Nrh)ŴR1Σ̂

−1
R1yn = τnyn,

and compute (λn,ϕn) = (τn, Q̂NmmÛR1yn)

6.3 Efficient implementation of Sakurai-Sugiura method

The most time-consuming part of the SS method and other contour-integral based eigensolvers [127,

129] are the numerical integration of Eq. (6.5). I herein present several efficient implementations based
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on the special structure of the target QEP.

6.3.1 Symmetry between inner and outer integrations

Figure 6.2: Contour path for the target ring-shaped region. The target eigenvalues and the others are

shown by • and ◦, respectively.

Because the target eigenvalues are located inside the ring-shaped region surrounded by the inner

and outer circles, the counter path can be set as shown in Fig. 6.2 and Ŝp can be split as

Ŝp =
1

2πi

∮
Γ1

zp[εÎ − Ĥ(z)]−1V̂ dz − 1

2πi

∮
Γ2

zp[εÎ − Ĥ(z)]−1V̂ dz

≈
Nint∑
j=1

wj(z
(1)
j )p[εÎ − Ĥ(z

(1)
j )]−1V̂ −

Nint∑
j=1

wj(z
(2)
j )p[εÎ − Ĥ(z

(2)
j )]−1V̂ , (6.18)

where z
(1)
j and z

(2)
j are quadrature points at outer and inner circles, respectively. Thus, it is required
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to solve 2×Nint number of linear system, that is,

[εÎ − Ĥ(z
(1)
j )]Ŷ

(1)
j = V̂ , (6.19)

[εÎ − Ĥ(z
(2)
j )]Ŷ

(2)
j = V̂ , (6.20)

for j = 1, ..., Nint, because the target region consists of two circles. By using the symmetry of the

Hamiltonian matrix, the computational cost can be reduced to half. Because Â = Â†, one might have

H(z
(2)
j ) = H(z

(1)
j )†. (6.21)

Therefore, Eq. (6.20) can be regarded as the dual system of Eq. (6.19), i.e.,

[εÎ −H(z
(1)
j )]†Ŷ

(2)
j = V̂ . (6.22)

As noted in Appendix B, the BiCG method can solve both systems simultaneously with very little

additional computational cost. Note that some other linear solvers including the direct solvers can

solve dual systems efficiently.

6.3.2 Multiple energy calculations: shifted BiCG method

Basically, first-principles electron transport calculations must be conducted independently at each

energy point. Therefore the total computational cost for determining the self-energy matrices is

proportional to the number of energy points, if dual systems, Eqs. (6.19) and (6.22), are solved

independently. However, by using the shift-invariant property of the Krylov subspace, it is possible to

reduce the cost substantially. The essence of this approach is that matrix vector operation, the most

time-consuming step of the Krylov subspace method, is performed only at the reference energy point

and the solutions at all energy points are updated with moderate computational costs. In this case,

the method is called the shifted BiCG method [81], and its details are presented in Appendix. C.

6.3.3 Modified shifted BiCG method for evaluating complex band structure

Although a significant reduction of the computational cost of the SS method will be achieved by using

shifted BiCG method for solving shifted linear systems, its benefit fades out as increasing the number

of energy points. This is because that the computational complexity of the (sparse) matrix-vector

operation is O(cM), where cM is the nonzero element of M × M Hamiltonian matrix, while the

scalar-vector product of the shifted BiCG method scales as O(NsM), where Ns is the number of the

energy points. Thus, if NsM ≥ cM , a cost to update the vectors, a large amount of scalar-vector

products, becomes comparable to a cost of construct the Krylov subspace on a seed.

To reduce the cost of the scalar-vector product of the shifted BiCG method, I consider the efficient

implementation of the SS-Hankel method [134]. From Eqs. (6.5), (6.8), and (6.9), the Hankel matrix

is constructed by the complex moment matrices,

µ̂p = V̂ †Ŝp ≈
Nint∑
j=1

wjz
p
j Ξ̂(ε). (6.23)
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Here the reduced solution matrix is defined as

Ξ̂(ε) = V̂ †[εÎ − Ĥ(zj)]
−1V̂ . (6.24)

Note that Ξ̂(ε) ∈ CNrh×Nrh does not need to be computed explicitly at each iteration, but can be

updated by the recurrences for reduced quantities. Because [εÎ − Ĥ(zj)] is a general complex matrix,

the modified shifted BiCG method is appropriate to compute the reduced solution vectors. The

algorithm of the modified shifted BiCG method is written in Table 6.4. Since the only reduced vectors

with dimension Nrh(≪M) appear in the algorithm, the computational cost of scalar-vector products

on each energy shift becomes significantly smaller than those for the full-dimensional vectors.

The proposed algorithm is favorable especially for the complex band structure (CBS) calculation

because the eigenvalues can be obtained only from the Hankel matrix which is constructed by reduced

matrix. As for the self-energy matrices, eigenvectors, i.e., generalized Bloch states, on shift energy

points are needed. This requires the solution vectors of linear equations at left and right matching

planes.

6.4 Accuracy of the Sakurai-Sugiura method

Figure 6.3: Unit cells of Al(100) and (6,6)CNT. The black arrow indicates the z-axis, i.e., transport

direction.

To evaluate the accuracy of the proposed method, I calculate complex k values as a function of

real energy ε. The dispersion relationship between complex k and ε is so-called CBS, which is useful

to investigate the static and dynamical electronic properties of materials. Because wavevector k which

satisfies |λ| = 1 corresponds to the standard band structure, plotting the CBS allows us to compare

with the band structure obtained from the electronic structure calculation for periodic system. I

employ fcc Aluminum (Al) and (6,6) armchair carbon nanotube (CNT) with 4 and 24 atoms per unit

cell, respectively. The unit cell of two models are shown in Fig. 6.3. The number of grid points,
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Table 6.4: Modified shifted BiCG algorithm for [Â + σÎ]xn(σ) = b and [Â† + σÎ]x̃n(σ) =

b, with a general complex matrix Â ∈ CM×M , V̂ ∈ CM×Nrh , σ ∈ C,xn,pn, rn, x̃n, p̃n, r̃n ∈
CM , ξn(σ),θn(σ),ρn, ξ̃n(σ), θ̃n(σ), ρ̃n ∈ CNrh , and αn, βn, αn(σ), βn(σ), πn(σ) ∈ C.
1: Input σj (j = 1, 2, ..., Ns)

2: Set x0 = x̃0 = p−1 = p̃−1 = 0, r0 = r̃0 = b, ρ0 = ρ̃0 = V̂ Tb, α−1 = 1, and β−1 = 0

3: Set ξ0(σj) = ξ̃0(σj) = θ−1(σj) = θ̃−1(σj) = 0

4: Set α−1(σj) = π−1(σj) = π0(σj) = 1, and β−1(σj) = 0 (j = 1, 2, ..., Ns)

5: For n = 0, 1, 2, ..., until convergence do:

6: αn = (rn, rn)/(pn, Âpn)

7: xn+1 = xn + αnpn
8: x̃n+1 = x̃n + ᾱnp̃n
9: rn+1 = rn − αnÂpn
10: r̃n+1 = r̃n − ᾱnÂ

†p̃n
11: βn = (rn+1, rn+1)/(rn, rn)

12: pn+1 = rn + βnpn
13: p̃n+1 = r̃n + β̄np̃n
14: ρn+1 = V̂ †rn+1

15: ρ̃n+1 = V̂ †r̃n+1

16: For j = 1, 2, ..., Ns do:

17: πn+1(σ) =
(
1 + βn−1αn

αn−1
− αnσ

)
πn(σ)− βn−1αn

αn−1
πn−1(σ)

18: αn(σj) =
πn(σj)

πn+1(σj)
αn

19: βn(σj) =
(

πn(σj)
πn+1(σj)

)2
βn

20: ξn+1(σj) = ξn(σj) + αn(σj)θn(σj)

21: θn+1(σj) = 1/πn(σj)ρn + βn(σj)θn(σj)

22: ξ̃n+1(σj) = ξ̃n(σj) + ᾱn(σj)θ̃n(σj)

23: θ̃n+1(σj) = 1/π̄n(σj)ρ̃n + β̄n(σj)θ̃n(σj)

24: End do:

25: End do

Mx ×My ×Mz, are 20 × 20 × 20 and 72 × 72 × 12, respectively. The transport direction is taken

along z-axis, which is parallel to the ⟨100⟩ direction (the nanotube axis) in the case of Al (CNT).

I set Nint = 32, Nmm = 8, Nrh = 16, δ = 10−10. I employ the BiCG method to solve the linear

systems in the contour integral methods and set the convergence criteria by 10−10. It is important

to mention that I also tried other linear solvers including BiCGstab, BiCGGR, and GMRES methods

for the target linear systems; however they fail to converge to the criteria within the realistic iteration

numbers. The Kohn-Sham Hamiltonian matrices are obtained from the real-space pseudopotential

DFT code RSPACE [85, 86]. All calculations in this and later section are performed by local density

approximation [12] and norm-conserving pseudopotentials proposed by Troullier and Martins [24].

The forth-order finite-difference approximation (N = 4 in Ref. [75]) is employed for the Laplacian
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operator. Figure 6.4 shows the CBSs for Al(100) and (6,6) CNT. The black dots are results computed

by SS-Hankel method and red curves are conventionally calculated band structures. For real k region,

the black dots are in good agreement with the standard band structure (red curve).

Figure 6.4: Complex band structure for (a) Al(100) and (b) (6,6)CNT. The black dots indicate the

numerical results obtained by the proposed method. The red curves show the conventionally calculated

band structure for comparison.

Next, I evaluate the performance of the SS-Hankel (Table 6.2) and SS-CAA (Table 6.3) methods as

comparison with the Beyn method [129]. In the numerical experiment, I use Nint = 32 and δ = 10−10

for three methods and set Nrh = 16 for the SS-Hankel and SS-CAA methods, while Nrh = 128 is used

for the Beyn method so as to construct the same subspace dimension. In this study, the residual 2-

norms ∥rn∥2 = ∥[εÎ− Ĥ(λn)]ϕn∥2 is used for checking the accuracy of the computed eigenpairs. Note

that the generalized Bloch states are normalized so as to satisfy ∥ϕn∥2 = 1. Calculations are performed

using the single node of Xeon-PhiTM 7250 (code name: Knights Landing) on Oakforest-PACS.

Figure 6.5 shows the residual norms of (6,6)CNT computed by three methods. It can be seen that

the Beyn method shows the best accuracy and the SS-CAA method is more accurate than the SS-

Hankel method. This tendency is in accordance with the numerical tests in Ref. [133]. In all methods,

the accuracies deteriorate from outer to inner circle. This numerical error mainly comes from the

round-off error of the moment matrices Ŝp because Ŝp at inner and outer contours are large and

small values, respectively, from Eq. (6.5). Thus, the higher-order moment matrices does not have the

information of the eigenpairs near the inner circle, leading the accuracy deterioration. The maximum

and minimum residual norms and elapsed time are presented in Table 6.5. Here, TSLE, TEig, and

TTotal are elapsed times of solving linear equations and constructing moment matrices, performing

singular value decomposition and solving the reduced eigenvalue problem, and whole computation,

respectively. From Table 6.5, the accuracy deterioration is observed clearly in SS-Hankel and SS-CAA
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methods. On the other hand, the SS-Hankel method is the best regarding the elapsed time, and SS-

CAA method is slightly slower than the SS-Hankel method. Because the TSLE is the dominant part of

the total elapsed time and linearly increases with Nrh, the Beyn method is almost 8 times slower than

the SS-Hankel and SS-CAA methods. Based on this result, the SS-CAA method is the best balanced

method in terms of the accuracy and computational cost.

In the actual calculations, parameters should be chosen such that all residues become less than

a given criteria. Table 6.5 also shows the breakdowns of the three methods when modulating the

number of right-hand side Nrh. TTotal (Nrh) of SS-Hankel, SS-CAA, and Beyn methods whose max-

imum residuals become less than 10−8 are 1438.22 sec. (24), 715.67 sec. (12), and 2862.30 sec. (48),

respectively. I thus conclude that the SS-CAA method is roughly twice and four times faster than

SS-Hankel and Beyn method, respectively.

Figure 6.5: Residual norms of (6,6) CNT computed by SS-Hankel, SS-CAA, and Beyn methods. I set

Nint = 32, δ = 10−10, λmin = 0.5 for all methods. Nrh = 16 and Nmm = 8 are used for SS-Hankel and

SS-CAA methods while Nrh = 128 is used for the Beyn method to span the same dimension of the

subspace. The number of eigenvalues excluding the spurious eigenvalues is 24.
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Table 6.5: Breakdown of the SS-Hankel, SS-CAA, and Beyn methods for (6,6)CNT.

Parameters Elapsed time[sec.] Residual 2-norm

#Nrh #Nmm TSLE TEig TTotal max∥rn∥2 min∥rn∥2
SS-Hankel method

24 8 1438.22 5.14 1443.36 8.46× 10−09 1.93× 10−10

16 8 957.94 3.45 961.39 1.74× 10−07 5.45× 10−10

SS-CAA method

16 8 960.67 9.70 970.37 5.39× 10−09 8.71× 10−11

12 8 715.67 5.89 721.56 7.86× 10−09 1.41× 10−10

Beyn method

128 – 7631.01 5.51 7636.52 1.03× 10−10 2.27× 10−11

64 – 3810.99 2.58 3813.57 2.47× 10−10 4.24× 10−11

48 – 2862.30 2.11 2864.41 2.39× 10−9 1.89× 10−10

32 – 1906.06 1.45 1907.51 1.48× 10−6 3.50× 10−7

6.5 Parallel implementation

Even though using the efficient techniques presented the above, solving Nint dual linear systems with

Nrh multiple right-hand side is still heavy task. Another important way to reduce the computational

cost is to use different number of processors, that is, to use parallel computing. For this purpose,

I introduce three layers of hierarchical parallelism of SS method as shown in Fig. 6.7. Note that

communication between layers is negligible. The details of each layer parallelism are summarized as

below.

• Top layer parallelism: Multiple right-hand sides

In the top layer, Nrh right-hand sides of linear systems are solved in parallel. Because it is

possible to solve linear systems with different right-hand side independently, this parallelism

requires no communication. In addition, it is expected that the convergence of the shifted BiCG

method does not strongly depend on right-hand sides, which leads the good load balancing.

• Middle layer parallelism: Quadrature points

As the dual systems (6.19) and (6.22) are independent of zj (j-th quadrature point), one can

independently solve these linear systems in Nint parallel without communication. While middle

layer parallelism also requires no communication; however, one need to take care of load bal-

ancing due to the imbalance of the convergence of the shifted BiCG method. In general, the

convergency of the shifted BiCG method becomes slow when the quadrature points are close to

the eigenvalues. To achieve good load balancing, it is recommended to use the following two

stopping conditions for the BiCG method.

– Relative residual 2-norm becomes less than certain stopping criteria. (This is a standard
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stopping criteria.)

– The BiCG method is stopped at over half of quadrature points. (This is used to achieve

good load balancing.)

Fortunately, the convergence behavior does not strongly depend on the quadrature points as

shown in Fig. 6.6. This uniform convergency guarantees the accuracy of the SS method when

using two stopping criteria.

Figure 6.6: Convergence behavior of the BiCG method for (a) Al(100) and (b) (6,6)CNT at ε = εF .

The figure shows the residual norms as a function of the number of iteration at each quadrature point

zj .

• Bottom layer parallelism: Domain decomposition technique

The real-space grid representation of the Hamiltonian matrix is highly sparse and easily paral-

lelized by the domain decomposition technique. Although this parallelism requires communica-

tion in matrix-vector multiplications and inner products per BiCG iteration, it is known that

high parallel performance is obtained when the number of grid points is sufficiently large [135].

The total parallelism Ntotal is

Ntotal = Ndm ×Nint ×Nrh,

where Ndm is the number of processors assigned for the domain decomposition. If the number of

processors available is less than Nint ×Nrh, one should use top layer parallelism first, because upper

layer is expected to show better scalability than lower layers.
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Figure 6.7: Hierarchical parallelism of the Sakurai-Sugiura method used in this study.
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6.6 Parallel performance

The computational cost of the SS method mainly depends on the part that solves the linear equations

(6.20) and (6.22), as shown in Table 6.5. Consequently, to evaluate the parallel performance of the

method, I parallelized only this part of the code by using OpenMP directives and the Intel Message

Passing Interface (MPI) library. As mentioned in the previous section, the three layers of hierarchical

parallelism of the SS method, i.e., parallelisms for multiple right-hand sides (top layer), quadratic

points (middle layer), and the domain decomposition (bottom layer) were introduced.

All calculations in this subsection were performed on Oakforest-PACS. Each computation node

is an Intel Xeon PhiTM 7250; each node has 68 cores (1.4 GHz) and 96 GB of system memory. I

here conducted numerical experiments on three different (8,0) CNTs with 32, 1024, and 10240 atoms

per unit cell. The computational models of the pristine (8,0) CNT with 32 atoms, the boron- and

nitrogen-doped (8,0) CNT (BN-doped (8,0) CNT) with 1024 atoms, and BN-doped (8,0) CNT with

10240 atoms are shown in Fig. 6.8. The BN-doped (8,0) CNT was made by randomly inserting boron

and nitrogen into pristine (8,0) CNT.

Figure 6.8: Schematic diagrams of (a) pristine (8,0) CNT, (b) BN-doped (8,0) CNT with 1024 atoms,

and (c) BN-doped (8,0) CNT with 10240 atoms. Carbon, boron, and nitrogen are depicted as brown,

green, and blue balls, respectively. The BN-doped (8,0) CNTs are made by randomly inserting boron

and nitrogen into a pristine (8,0) CNT.

6.6.1 Scalability in small system

The system that I first tested was a (8,0) CNT with 32 atoms (the number of grid points is 72×72×20).

I set Nint = 32, Nmm = 8, Nrh = 64, δ = 10−10, and λmin = 0.5. The convergence criteria for the BiCG

method was set to 10−10. One MPI process was assigned to each node, which allowed us to use 68
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OpenMP threads per MPI process. Figure 6.9 shows strong scaling of the three layers of parallelism.

The total time to solve the linear equations and the time to solve the remaining part are shown on

the left. Note that the remaining part does not include the disk I/O to write the solutions. The right

graph in Fig. 6.9 shows the speed-ups in solving the eigenvalue problem and linear equations.

Figure 6.9(a) shows the runtime and actual speed-up at the top layer of parallelism, where two MPI

processes were assigned to the middle layer and the number of processes in the top layer was varied

from 1 to 64. As I expected, the time of the remaining part is negligibly small compared with the

time to solve the linear equations. The method achieved almost ideal scaling at the top layer because

the linear equations with different right-hand sides can be solved in parallel without communication

and very good load-balancing can be achieved. It should be noted that the total runtime for the small

system decreased from 14392 to 234 seconds when the number of processes for the top layer increased

from 1 to 64.

The middle-layer scalability is shown in Fig. 6.9(b), where two MPI processes were assigned to

the top layer and the number of processes in the middle layer was varied from 1 to 32. The parallel

efficiency of the middle layer is slightly lower than that of the top layer, although the computations are

almost independent. The degradation of scalability at the middle layer comes from the difference in

convergence behaviors of the BiCG procedure at each quadrature point and it becomes more significant

as the number of processes assigned to the middle layer increases. Nevertheless, the strong scaling

was almost linear and a speed-up of about 21 times was achieved when I assigned 32 MPI processes

to the middle layer.

Figure 6.9(c) shows the bottom-layer scalability; here, two MPI processes were assigned to the

middle layer and the number of processes in the bottom layer was varied as 1, 2, 4, 8, and 16, where

the corresponding domain decompositions, nx×ny×nz, were 1×1×1, 1×1×2, 1×1×4, 2×1×4, and

2× 2× 4, respectively. Here nx, ny, and nz are the number of domains in the x, y, and z directions,

respectively. The bottom layer scalability based on a domain-decomposition technique is much worse

than the top or middle layer scalability because of frequent communications between processes in

every BiCG iteration. For the small system, the poor scaling in the bottom layer is not serious

because parallelization using only the top and middle layers is enough to reduce the computation

time.

I also considered how to divide the cores in the node among the OpenMP and bottom layer

parallelism because it is very difficult to take full advantage of the OpenMP scalability on a many-

core processor and the parallel resources are usually limited to the specific number. Table 6.6 shows

the elapsed times of 1000 BiCG iterations for (8,0) CNT with 32 atoms by fixing the number of cores

to 64 and varying the number of OpenMP threads and Ndm. In the small system, the best performance

was obtained when the 16 threads were assigned to OpenMP and four MPI processes were assigned

to the bottom layer.
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Figure 6.9: Scalability of three layers of parallelism for (8,0) CNT with 32 atoms. 68 OpenMP threads

were assigned to each MPI process.
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Table 6.6: Parallel performance inside the node. Elapsed times of 1000 iterations of the BiCG proce-

dure for the (8,0) CNT with 32 atoms and (8,0) BN-doped (8,0) CNTs with 1024 and 10240 atoms

were measured by fixing the total number of cores and splitting their allocation between the OpenMP

and bottom layer parallelism.

Elapsed time [sec.]

# OpenMP # Ndm (8,0)CNT BN-doped CNT (1024 atoms) BN-doped CNT (10240 atoms)

1 64 7.77 104.95 795.42

2 32 6.78 90.37 776.35

4 16 5.18 84.77 774.75

8 8 4.50 86.32 811.43

16 4 3.98 96.02 916.12

32 2 5.19 118.12 1132.11

64 1 6.16 161.24 1486.64

6.6.2 Scalability in medium-sized system

Next, I tested the (8,0) BN-CNT with 1024 atoms (the number of grid points is 72× 72× 640). I set

Nint = 32, Nmm = 8, Nrh = 16, δ = 10−10, and λmin = 0.5. The convergence criteria for the BiCG

method was set to 10−10. Four MPI processes were assigned to each node, which allowed us to use

17 OpenMP threads per MPI process. Figure 6.10(a) shows the runtime and actual speed-up at the

top layer parallelism, where 32 and 4 MPI processes were assigned to the middle and bottom layers,

respectively, and the number of processes in the top layer was varied from 1 to 16. The middle-layer

scalability is shown in Fig. 6.10(b), where 16 and 4 MPI processes were assigned to the top and

bottom layer and the number of processes in the middle layer was varied from 1 to 32. The bottom-

layer scalability is shown in Fig. 6.10(c), where 16 and 32 MPI processes were assigned to the top and

middle layer, and the number of processes in the bottom layer was varied from 1 to 16. The domain

decomposition was performed at the grid points along the z direction to minimize communications

and achieve better load-balancing. As shown in Figure 6.10, the top- and middle-layer performances

are similar to the results for the small system; i.e., the top layer has the almost ideal scaling and the

middle-layer scalability is slightly lower than the top-layer one. In contrast with the case of the small

system, good scalability is obtained at the bottom layer. In Table 6.6, I can see that the computational

time of 1000 BiCG iterations increases almost linearly relative to the number of atoms, which indicates

that the communications per iteration decreases and a domain-decomposition becomes more and more

efficient as the number of atoms increases. Figure 6.10(c) shows the CBS calculation using 2048 nodes

(139264 cores) of Oakforest-PACS, i.e., 25 % of total nodes. Even when using 2048 nodes, the method

scales favorably, and the total time needed to solve the eigenvalue equation is reduced to about 905

seconds. Table 6.6 shows the elapsed times of 1000 BiCG iterations for the BN-doped (8,0) CNT

with 1024 atoms with 64 cores, while varying the number of OpenMP threads and Ndm. The best

103



6.6 Parallel performance CHAPTER 6 Contour integral method

performance was obtained when the four threads were assigned to OpenMP and 16 MPI processes

were assigned to the bottom layer.

Figure 6.10: Scalability of three layers of parallelism for BN-doped (8,0) CNT with 1024 atoms. 17

OpenMP threads were assigned to each MPI process.
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6.6.3 Scalability in large system

Finally, I investigated the parallel performance on the (8,0) BN-CNT with 10240 atoms (72×72×6400

grid points). The top layer scalability is omitted due to lack of space. I set Nint = 32, Nmm = 8, Nrh =

16, δ = 10−10, and λmin = 0.5. The convergence criteria for the BiCG method was set to 10−10. 16 MPI

processes were assigned to each node, which allow us to use four OpenMP threads per MPI process.

The domain decomposition was performed at the grid points along the z direction. Figure 6.11(a)

shows the runtime of the middle layer parallelism, where 16 and 64 MPI processes were assigned to the

top and bottom layer, respectively, and the number of processes for the middle layer was varied from

1 to 32. The bottom layer scalability is shown in Fig. 6.11(b), where 16 and 32 MPI processes were

assigned to the top and middle layers and the number of processes in the bottom layer was varied from

2 to 64. The reduced efficiency at the large number of MPI process at bottom layer is caused by the

computational cost for the global communication in the operations of nonlocal pseudopotential-vector

products, which can be reduced by replacing it to local communication. Although I still need further

tuning of the code, the proposed method is efficient and scalable to a large number of processors. I

also note that the CBS calculations of BN-doped CNT with 10240 atoms can be executed in 2 hours

using 25 % of the computational power of Oakforest-PACS. Table 6.6 shows the elapsed times of 1000

BiCG iterations for the BN-doped (8,0) CNT with 10240 atoms on 64 cores while varying the number

of OpenMP threads and Ndm. The best performance was obtained when four threads were assigned

to OpenMP and 16 MPI processes were assigned to the bottom layer.

105



6.7 Variable conversion from λ space to k space CHAPTER 6 Contour integral method

Figure 6.11: Scalability of middle and bottom layers of parallelism for BN-doped (8,0) CNT with

10240 atoms. Four OpenMP threads were assigned to each MPI process.

6.7 Variable conversion from λ space to k space

In this subsection, I focus on the numerical difficulty of the SS method presented in the previous

sections. In general, the contour integral approach generates a subspace spanned by eigencomponents

inside a given region and extracts target eigenpairs from this subspace. However, When λmin ≪ 0.1,

the subspace quality degrades owing to a significant round-off error, which comes from the large

difference of the absolute values of the quadrature points at inner and outer circles. Consequently,

the information obtained from the contour integrations along the inner circle will not be properly

contained, and accuracy degradation occurs from the outer circle toward the inner circle. To avoid

this numerical difficulty arising from the explicit computation of eigenvalues in the λ plane, I convert

the variable space from the λ plane to the k plane, as shown in Fig. 6.12. The variable conversion,

k = lnλ/ia, replaces the ring-shaped region with the rectangular region, as shown in Fig. 6.12(b). In
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addition, the QEP for λ [Eq. (6.1)] is replaced by exponential-type eigenvalue problem (EEP) for k

[Eq. (3.66)]. The contour integration along the rectangular region can be performed without suffering

from the round-off error because the integration points always take moderate values.

Figure 6.12: Two equivalent contours in complex λ and k planes

Let Γ be a counterclockwise contour along each side of the rectangular region. Then, Eq. (6.3) can

be rewritten as the sum of four definite integrals:

Ŝp = Ŝ(1)
p + Ŝ(2)

p + Ŝ(3)
p + Ŝ(4)

p , (6.25)

where

Ŝ(1)
p =

1

2πi

∫ π/a

−π/a

(
x+ i

lnλmin

a

)p[
εÎ − Ĥ

(
x+ i

lnλmin

a

)]−1
V̂ dx, (6.26)

Ŝ(2)
p =

1

2πi

∫ − lnλmin/a

lnλmin/a

(π
a
+ iy

)p[
εÎ − Ĥ

(π
a
+ iy

)]−1
V̂ idy, (6.27)

Ŝ(3)
p =

1

2πi

∫ −π/a

π/a

(
x− i

lnλmin

a

)p[
εÎ − Ĥ

(
x− i

lnλmin

a

)]−1
V̂ dx, (6.28)

Ŝ(4)
p =

1

2πi

∫ lnλmin/a

− lnλmin/a

(
− π

a
+ iy

)p[
εÎ − Ĥ

(
− π

a
+ iy

)]−1
V̂ idy. (6.29)

Here, Ĥ(k) is redefined as

Ĥ(k) = e−ikaB̂† + Â+ eikaB̂. (6.30)

The Nq-point Gauss-Legendre quadrature rule is applied to evaluate the definite integrals. Here, Nq

is a pair of polynomial orders, that is, Nq = (Nq1, Nq2). Figure 6.12(b) shows Nq1 = 6 quadrature

points along the Re(k) axis and Nq2 = 6 quadrature points along the Im(k) axis. The total number

of quadrature points is Nint = 2Nq1 + 2Nq2. As with the calculation on λ plane, one need to solve
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linear systems with multiple right-hand sides at each quadrature point. By using the symmetry of the

Hamiltonian matrix H(k), the number of linear systems to be solved can be reduced to Nq1 +
1
2Nq2.

If time-reversal symmetry holds,

[εÎ − Ĥ(zj)]
† = εÎ − Ĥ(z∗j ). (6.31)

Equation (6.31) suggests that linear systems with Im(zj) > 0 are adjoints of linear systems with

Im(zj) < 0. As noted in the previous section, the BiCG method can solve both systems simultaneously

with very little additional computational cost. Furthermore, owing to the translational symmetry,

eika = ei(ka+2π) holds, and this leads to

εÎ − Ĥ
(
− π

a
+ zj

)
= εÎ − Ĥ

(π
a
+ zj

)
. (6.32)

It is clear from Eq. (6.32) that the linear systems in S
(2)
p and S

(4)
p are the same; thus, one only need

to solve either one of them. From the above, the numerical integration can be performed by solving

the linear systems indicated by black dots in Fig. 6.12(b).

6.8 Numerical experiments on k space.

In this subsection, I demonstrate the numerical accuracy and robustness of the SS method on k space

through a series of test calculations. In all cases, Γ-point sampling in the two-dimensional Brillouin

zone is used. Unless noted otherwise, a grid spacing of 0.38 bohr is used.

6.8.1 Accuracy of eigenpairs inside Γ

First, I confirm the accuracy of the SS method described in the previous subsection. Besides the

Hamiltonian matrix and inner radius λmin, the SS method requires several other parameters: the

order of Gauss-Legendre quadrature rule Nq = (Nq1, Nq2), the number of right-hand sides Nrh, and

the order of moment matrices Nmm. It is essential to select these parameters appropriately to make

the algorithm robust and efficient. Among these parameters, Nrh and Nmm are also used in the

conventional SS method, and their effects on numerical errors have been studied elsewhere. Thus,

it is expected that the general principles can be applied to Nrh and Nmm [136]. Care must be

taken when selecting Nq because the SS method features an ellipsoid-type contour, with numerical

integration performed using the trapezoidal rule. Because the numerical integration method for the

SS method using a rectangular-type contour has not been proposed, the Gauss-Legendre quadrature

rule is examined in this study. In this subsection, the selection of Nq is examined by monitoring the

residual norms of the obtained eigenpairs. Note that I remove eigenpairs whose residuals are larger

than 100 or located outside Γ as spurious eigenpairs. Here, I consider the fcc Al bulk with 4 atoms

whose transport direction is parallel to the ⟨100⟩ direction. It is used that Nmm = 8, Nrh = 16,

and λmin = 0.001. The criterion of the singular value decomposition is set to 10−14 and that for the

shifted BiCG method is set to 10−15. The SS-Hankel method is employed. Figure 6.13(a) shows the
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Figure 6.13: Numerical results for fcc Al bulk at Fermi energy of (a) distribution of eigenvalues

within the domain enclosed by Γ and (b) residuals ||[εÎ − H(kn)]ϕn||2 when varying the order of

the Gauss-Legendre quadrature rule, Nq = (Nq1, Nq2). The number of target eigenvalues that do

not include spurious eigenpairs is 18. The plots clearly show that the positions of the eigenpairs are

almost unchained and that the accuracy is straightforwardly improved by increasing Nq. Convergence

is achieved at Nq = (24, 24): further improvement is not achieved by increasing Nq over (24, 24).

Contour pass on k plane is indicated by the broken line.

distribution of the eigenvalues when Nq = (24, 24). It should be noted that the obtained eigenvalues

are pairwise, that is, (ki, kj) ≈ (ki, k
∗
i ), and the number of eigenvalues is unchanged irrespective of the

selection of Nq. In Fig. 6.13(b), the residuals ||[εÎ −H(kn)]ϕn||2 are plotted as a function of Nq. The

accuracy of the obtained eigenpairs is uniformly improved by increasing Nq until Nq = (24, 24), but

the noticeable change in accuracy is not observed between Nq = (24, 24) and Nq = (28, 28). It means

that numerical integration by the Gauss-Legendre rule is accurate enough when Nq = (24, 24), and

other parameters such as Nrh should be modified to achieve the further improvement, see Fig. 6.14.

6.8.2 Robustness of algorithm

Next, I demonstrate the robustness of the computations on the k plane in Fig. 6.12(b) against those on

λ plane in Fig. 6.12(a). For comparison, I also apply the algorithm proposed in Ref. [122] for solving

the QEP for λ by using the contour along the ring-shaped region in Fig. 6.12(a). The input parameters

of the SS-Hankel method are set to Nmm = 8 and Nrh = 16 for λmin = 0.001. The criterion of the

singular value decomposition is set to 10−14 and that for the shifted BiCG method is set to 10−15. The

order of the Gauss-Legendre quadrature rule is Nq = (24, 24) in the k plane computation. Instead,

I use the trapezoidal rule to approximate the contour integrals in Fig. 6.12(a), with the number of

quadrature points being 36 per circle. Figure 6.15 shows the eigenvalues and residuals calculated on
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Figure 6.14: Numerical results for fcc Al bulk at Fermi energy of residuals ||[εÎ −H(kn)]ϕn||2 when

varying the number of right-hand sides, Nrh. Nmm = 8 and Nq = (24, 24) are used. The plots clearly

show that the positions of the eigenpairs are almost unchained and that the accuracy is straightfor-

wardly improved by increasing Nrh. Convergence is achieved at Nrh = 16: further improvement is not

achieved by increasing Nrh over 16.
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the k plane and λ plane for λmin = 0.001. In both cases, all residuals computed on the k plane are

below the convergence criteria (10−8) irrespective of the eigenvalues. On the contrary, the accuracy

of the solutions computed on the λ plane is quite poor, and the accuracy is seen to degrade from the

outer circle toward the inner circle. The round-off error of the λ-plane computation can be reduced

by adding some circles between the outer and the inner circles with the appropriate choice of Nrh per

additional circle. If the BiCG method is employed as a solver, the number of iteration for the BiCG

method increases linearly or more with the common of λ−1
min, which leads to reduce the cost of total

computational time. Although the appropriate choice of Nrh per additional circle is difficult a priori,

Nrh can be tuned by monitoring the accuracy of the obtained eigenpairs. Note that this procedure is

not so time-consuming because solving linear system is the dominant part of the computational time.

By contrast, if the LU decomposition method is used as a solver, the additional computational cost is

roughly proportional to the number of added circles because the computation of LU decompositions

at quadrature points takes up a dominant part of the total execution time.

6.9 Transmission calculation

In this section, I present the transmission calculations for Au atomic chain with a CO molecule. I chose

this system because transport properties have been investigated extensively using other methods [137,

138]. To validate the accuracy of the method for electron transport calculations, I study the effect of

excluding rapidly decaying evanescent waves on the zero-bias transmission calculation, and I compare

this result with those obtained using other methods. In all calculations, the Kohn-Sham Hamiltonian

matrices in the transition region are obtained from the DFT calculation under periodic boundary

conditions, and the scattering states in real-space grids are calculated using the IOBM method [70,71].

I present the transmission calculation of the Au atomic chain with a CO molecule. Prior to this

work, transmission calculations for this system have been done by Calzolari et al. [137] and Strange

et al [138]. Interestingly, both groups reported relatively different transmission curves, even though

they employed the same methodology combined with the Green’s function method and maximally

localized Wannier function. As stated in Ref. [138], the disagreement might be related to the manner

of construction of the tight-binding Hamiltonian, but it is still unresolved as to which one is correct.

Thus, I revalidate the transmission calculation of the Au atomic chain with a CO molecule using

the real-space grid method. Figure 6.16(a) shows the atomic structure of the Au atomic chain with

a CO molecule. The transition region is a rectangular box of 22.68 × 22.68 × 49.32 bohr3, and

electron transport occurs along the z direction. As in Refs. [137, 138], the bond lengths are set as

dAu−Au = 5.48 bohr, dAu−C = 3.70 bohr, and dC−O = 2.17 bohr, and the Au atom attached to CO is

shifted toward CO by 0.38 bohr. The left and right electrodes are infinite Au chains with two atoms

in the unit cell. A grid spacing of 0.43 Å is used in the real-space grid calculation. Figure 6.16(b)

shows the transmission spectra obtained using the self-energy matrices calculated by the proposed

method with λmin = 0.999, 0.1, 0.01, 0.001. In all calculations, I reproduce the main features in Fig. 2

of Ref. [138]: (i) the drop in the transmission at the Fermi energy that originates from resonant
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Figure 6.15: Residuals ||[εÎ −H(kn)]ϕn||2 for fcc Al bulk at ε = εF +1.0 eV calculated on the k plane

(EEP/SS) and λ plane (QEP/SS). For λmin = 0.001, the number of eigenvalues that do not include

spurious eigenpairs is 18. In both cases, the EEP/SS method uses Nq = (24, 24) as the order of the

Gauss-Legendre quadrature rule; by contrast, the QEP/SS method uses the trapezoidal rule with the

number of quadrature points being 36 per circle in Fig. 6.12(a). The other parameters are kept the

same.
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scattering by CO adsorption, (ii) the single broad peak at ε− εF ∈ [0, 2] eV, and (iii) spiky peaks at

ε−εF ∈ [−4, 0] eV. As the λmin value decreases, the transmission spectra rapidly converge toward the

correct values, and visible differences are not observed when λmin ≤ 0.01. In Fig. 6.16(c), the real-

space grid calculation shows the qualitatively good agreement with the curve of Ref. [138]; however,

I found some discrepancies between the real-space grid calculation and the curve of Ref. [137].

Figure 6.16: (a) Transition region of Au atomic chain with CO adsorption. Au, C, and O atoms

are represented as gold, brown, and red balls, respectively. (b) Transmission spectra obtained using

self-energy matrices calculated by the proposed method with four different λmin values: 0.999 (red

line), 0.1 (blue line), 0.01 (green line), and 0.001 (black line). For clarity, transmission spectra are

shifted by the amount of 2.5 with respect to the original values in descending order of the legend.

(c) The transmission spectrum obtained with the proposed method (black line). The results obtained

with the maximally localized Wannier function of Ref. [138] (WF1: red dashed line) and Ref. [137]

(WF2 blue dashed line) are also shown in (c).

6.10 Serial performance

In this section, I experimentally evaluate the serial performance of the SS method for the eigenvalue

problem arising from the computation of self-energy matrices. To demonstrate speed-ups, the com-

putational time is compared with that of the OBM method, which is categorized as a WFM method.

Although continuous improvements [73, 76, 78, 126] have been made after the first study of the OBM
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method, the computation of the first and last Nr columns of (εÎ − Â)−1 and the 2Nr-dimensional

generalized eigenvalue problem is still required. In this study, the matrix inversion is calculated using

the CG method, and the generalized eigenvalue problem is solved by the SS method [73]. It should be

noted that another method based on a real-space grid approach proposed by Khomyakov et al. [68]

is not considered here because its computational procedure and cost are almost the same as those of

the OBM method. In addition, popular methods [48–50, 54, 55] used in the NEGF method are also

excluded from consideration because they involve the inversion of very dense matrices with the size of

the real-space grids in the unit cell of the electrode.

Table 6.7 shows the breakdown of the profiling results in various test systems. All calculations

are performed on a two-socket Intel Xeon E5-2667v2 with 16 cores (3.3 GHz) and 256 GB of system

memory. 4 MPI processes and 4 OpenMP threads are assigned to the CPU. The parameter λmin is set

to 0.1, as in Ref. [48]. The input parameters of the proposed method are set asNmm = 8, Nq = (24, 24),

and Nene = 100, and the criterion of the singular value decomposition and shifted BiCG method is

set to 10−15. The number of right-hand sides Nrh is set such that all residuals are less than 10−8.

Equidistant energy points are chosen in the interval ε− εF ∈ [−1, 1] eV, where εF is the Fermi energy.

The CPU times of the proposed method listed in the sixth column in Table 6.7 represent the average

calculation times for 100 energy points. For the SS method used in the OBM method, I employ the

trapezoidal rule with the number of quadrature points being 32 per circle in Fig. 6.2, which is the

default value used in z-Pares, [136] and other parameters are set as the same in the proposed method.

The CPU times including both CG and SS contributions listed in the fourth column are evaluated from

the computation at the Fermi energy owing to the limitation of computational resources. The CPU

times of these two reference methods can be reduced by employing the shifted CG method instead

of the standard CG method and using smaller number of quadrature points. To use the computer

resources efficiently, I need to optimize the parameters for the shifted CG and SS methods, which

depends on the test systems. Since the usage of uneven parameters become an obstacle to demonstrate

the characteristic advantage of the proposed method, the standard CG method is employed and the

number of quadrature points is set to be the default value in z-Pares. It was verified that the proposed

method is faster than the reference methods in order by one-, two-, and three-dimensional systems.

The computational cost of the proposed method scales as O(MNitrNintNrh), while that of the CG/SS

method does as O(N3
rNint), where Nitr is the number of iterations for the shifted BiCG method and

increases linearly or more with the common logarithm of 1/λmin. The number of target eigenvalues

generally decreases against its matrix size as the dimension of the systems becomes smaller, indicating

that the proposed method is much more efficient in the low dimensional systems because Nrh can be

set to be small number.

6.11 Application

Silicene, which is a two-dimensional honeycomb structure of Si atoms, is a promising candidate for

future nanoelectronic devices due to its unique electronic structures, as represented by a zero-gap
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Table 6.7: CPU times in hours for computing the eigenvalue problems arising from the self-energy

computations for various electrode materials. Here, M is the size of the Hamiltonian matrix, and 2Nr

is the number of nontrivial solutions of Eq. (3.65). Nrh is the number of right-hand sides used in the

SS method. The CPU times of the proposed method (this work) are averaged by the computation

times at 100 different energy points between εF − 1 eV and εF + 1 eV, where εF is the Fermi energy.

On the other hand, the CPU times of the OBM method (CG/SS) are measured only at the Fermi

energy owing to the limitation of computational resources.

Material M 2Nr Nrh CG/SS This work

Au chain a 64896 21632 8 4.11 0.01

Al(100) wire b 153600 51200 16 28.96 0.08

(6,6)CNT c 62208 41472 32 13.15 0.12

Graphene d 14336 7168 8 0.13 0.00

Silicene e 110592 24576 16 5.66 0.09

Au(111) bulk
f

34560 7680 8 0.66 0.01

a Geometry description is found in the transmission calculation of the Au atomic chain with a CO

molecule. See Sec. 6.9.
b Geometry description is found in Ref. [42].
c Ideal armchair (n,n) carbon nanotube with C-C bond length of 2.68 Å.
d Graphene with four atoms whose transport direction is along the armchair direction and C-C bond

length is 2.68 Å.
e Geometry description is found in the transmission calculation of the free-standing silicene. See

Sec. 6.11.
f Geometry description is found in Ref. [138].
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Figure 6.17: Optimized interface structure of silicene with α-β interface.

semiconductor with Dirac cone [139, 140]. In fact, a silicene field effect transistor (FET) using the

transfer-fabrication process was recently reported. [141] However, the measured mobility values of

silicene FET are considerably lower than the theoretical calculation [142] by an order of magnitude, and

grain boundary scattering has been proposed as a possible cause. Despite the demand for the detailed

information on the electron scattering at the grain boundaries of silicene, the electron transport

behavior across the grain boundary of silicene is not well understood. This is because the fabrication

of silicene is still challenging, especially on a dielectric substrate.

Unlike graphene, it is well known that silicene forms a low-buckled structure, which leads to two

energetically equivalent geometrical phases, whose buckling directions are opposite to each other, as

shown in Fig. 6.17. Following the notations in Ref. [143], I call these phases the α and β phases,

respectively. In this study, I present the first-principles analysis of the transport properties of the

free-standing silicene sheet across the interface between the α and β phases. To keep the focus on

application of the methodology to the transport calculations rather than on comprehensive under-

standing of the scattering mechanism in silicene, attention is paid only to the grain boundary between

the α and β phases along the armchair direction.

Initially, I perform the relaxation of the interface structure using a grid spacing of 0.21 Å and

a 4 × 1 × 1 k-point sampling on Brillouin zone. The interface model is constructed with a 256-atom

supercell using a value of 2.27 Å for the Si-Si bonding length. To avoid the spurious interaction

between silicene layers, a vacuum region of 10 Å is introduced in the simulation cell. The interface

structure is relaxed until the residual forces become lower than 0.003 eV/Å. The relaxed geometrical

structure is shown in Fig. 6.17. The reconstruction of chemical bonds at the interface does not occur,

but instead the rearrangement of the out-of-plane dislocation is observed at the interface. This result

is in agreement with previous theoretical work. [143] I subsequently perform the transport calculations

along the z direction using the self-energy matrices evaluated with λmin = 0.01. The transition region
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contains 128 atoms and the Γ point in the transverse direction is used in the transport calculation.

Figure 6.18: Effects of the α-β interface on the transmission spectra. The solid line is the result of

real-space grid calculation using the self-energy matrices obtained with λmin = 0.01. Empty dots

denote the transmission spectrum without the defect.

The total transmission is shown in Fig. 6.18. A feature of immediate interest is that the trans-

mission at the Fermi energy is unchanged for a pristine silicene; that is, this type of grain boundary

does not scatter incoming electrons at this energy. On the other hand, I found three transmission

dips below and above the Fermi energy in Fig. 6.18. Aiming to understand the origin of such dips, I

also plot the group velocity of the incident electrons and the band structure of silicene in Fig. 6.19.

The important bands near the Fermi energy are labeled by I, II and III, and they contribute to the

transmission in [−1.0, 1.0] eV, [−1.0, 0.57] eV, and [0.57, 1.0] eV, respectively. Note that the III band

is doubly degenerated. At ε = εF − 1.0 and 0.57 eV where the transmission dips are observed, the

group velocities go to zero with opening or closing the channel in bands. The scattering where the

group velocity becomes zero is understood by the one-dimensional tight-binding model with a single

impurity. According to Eq. (75) in Ref. [69], it is easy to show that the transmission probability

becomes zero when the group velocity becomes zero, which indicates that the perturbation of the po-
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tential induced by the geometrical disorder at the silicene interface causes the scattering near the band

edge. In addition, I numerically examine the scattering at the band edge using the one-dimensional

Kronig-Penny model and observe the strong scatterings at the band edge (see, Appendix D.)

Figure 6.19: (a) Band structure and (b) group velocity of silicene.

I next consider the origin of the dip at ε = εF + 0.91 eV, where two bulk modes in III band are

completely reflected at the interface. To obtain the more detailed information about the scattering, I

plot the charge densities of two bulk modes for left electrode at ε = εF +0.6 and 0.91 eV. As seen from

Fig. 6.20, the charge densities of two channels at ε = εF +0.6 eV distribute on inner and outer sides of

silicene atoms, while they turn to concentrate on the only outer side at ε = εF +0.91 eV. By expanding

the result for left electrode to the interface, the new insight of the scattering is obtained. Figure 6.21

illustrates the scattering of the incident electron coming from the left electrode at ε = εF + 0.91 eV.

The bulk modes distribute around the outer side of the silicene atoms in both right and left electrodes,

however, the scattering states in the right electrodes will be inner side of the silicene atoms because the

buckling of the silicene is reversed. Therefore, the scattering states which come from the left electrode

hardly connect with the bulk modes in right electrodes, which leads the transmission reduction at

ε = εF + 0.91 eV.
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Figure 6.20: Charge densities of two bulk modes in III band for left electrode at ε = εF +0.6 and 0.91

eV.
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Figure 6.21: An illustration of the scattering of silicene at ε = εF + 0.91 eV. The symbols L, M, and

U represent the lower buckled, non-bucked, and upper buckled atoms, respectively.
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Chapter 7

Conclusion and outlook

Quantum transport calculations based on DFT have been recognized as powerful tools to investigate

the transport properties of the nanoscale conductor. The most popular method for such calculations

is the NEGF method which is used frequently with the localized atomic basis. The WFM method

which is the alternative of the NEGF method has recently been refocused due to its efficiency. In

order to apply these methods to the large-scale system with millions of atoms such as semiconductor

device simulations, however, default implementations like a full eigensolver for self-energy matrices

of electrodes or Gaussian elimination method for Green’s function are inefficient and therefore it is

important to develop new theoretical and computational methods for the most time-consuming part

of the quantum transport calculations.

The purpose of this thesis is to develop and implement the numerical methods which are faster

than existing methods and show its capability for quantum transport calculations. Because the imple-

mentation of the NEGF or WFM method depends strongly on the basis set, it is important to select

the appropriate one according to their purpose. Here, I focused on the real-space grid method as a

basis set for transport calculations. The first reason is that the real-space grid method enables us to

treat the spatially delocalized electronic states which are important because these states play a central

role in the transport phenomena such as tunneling current in the scanning-tunneling measurement,

electron scattering process of the SiC-MOSFET, and so on. The second reason is that the Hamiltonian

matrix represented by a RSFD scheme is large but very sparse, which makes it possible to perform

the massively parallel computing if one can utilize the sparsity of the Hamiltonian matrix. However,

real-space transport calculations are computationally demanding and only several tens atoms can

be treated so far. To reduce the computational cost and memory usage of the real-space transport

calculation, I thus reformulated the most time-consuming part of the NEGF method, namely, compu-

tations of the self-energy matrix and Green’s function. At the same time, new algorithms have been

proposed to accelerate the time-to-solution compared with the standard solver. I briefly summarize

my contributions and present an outlook on future works related with them.

• Contracted form of the Hamiltonian matrix (Chapter 4): Combining the partitioning
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and singular value decomposition techniques, I have derived the contracted form of the Hamil-

tonian matrix that allows us to use the sophisticated numerical methods such as the RGF, quick

decimation, and semi-analytical methods. Although the contracted formula has already devel-

oped in the literature of the semi-analytical or WFM method, the developed formula in this

thesis is applicable not only semi-analytical method but also for the RGF and quick decima-

tion methods, which makes it possible to compute the self-energy matrices at complex energy

efficiently. Because the size of the contracted Hamiltonian matrix is much smaller than that

of the Hamiltonian matrix of the unit cell, the contracted formula is expected to enable us to

achieve a significant speed-up and memory reduction compared to the original methods without

large modification. In addition, useful relations to compute the generalized Bloch states which

are required for the semi-analytical method based on the contour integral eigensolver have been

proposed. I believe that the contracted formula is crucial contribution toward the self-consistent

calculation under the non-equilibrium condition.

• Fast evaluation of the retarded and lesser Green’s function (Chapter 5): The procedure

for computing the retarded and lesser Green’s function was developed using the sparsity of the

coupling matrix of electrodes and Dyson equation. In this procedure, the unperturbed Green’s

function is calculated first and the retarded Green’s function are obtained by the mathematically

strict relationship between the retarded and unperturbed Green’s function. Because physically

important quantities such as transmission, density of state, and charge density can be evaluated

by the only block matrix elements of the unperturbed Green’s function, it is suitable to compute

them by solving a set of liner equations with the use of the iterative solver. In this direction, the

shifted COCG method is employed to obtain the reduced solution vector of the shifted linear

system. This algorithm is much faster than the conventional COCG method especially when

the many energy points are required to evaluate the Green’s function or the system involves

many atoms and long along the transport direction, that are usually satisfied in the large-scale

transport calculations. Preliminary testing shows that the transmission calculation is accelerated

by an order of magnitude in the computation of the unperturbed Green’s function. I believe

that the this scheme has great potential for studying the quantum transport properties of the

large-scale system.

• Contour integral method (Chapter 6) for self-energy matrix: Based on the idea that

the transmission of nanoscale system can be evaluated with practically sufficient accuracy using

a comparatively small number of propagating and moderately decaying waves, a contour integral

eigensolver based on the Sakurai-Sugiura method combined with the shifted BiCG method is

developed to obtain the such important waves as solutions of the quadratic eigenvalue problems.

Because the quadratic eigenvalue problem is solved directly by the iterative solver, one can

utilize the fast technique of the conventional first-principles calculations, which speeds up the

computations and reduces memory usage dramatically. Furthermore, owing to the inherently

rich parallelism of the Sakurai-Sugiura method and the use of a domain-decomposition technique
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for real-space grids, excellent scalability on modern massively parallel computers is achieved.

Further improvements of the iterative solvers which might avoid the instability of the BiCG

method, such as preconditioning, has the potential to outperform the proposed method. I leave

this to future work.

　



　



Appendix A

Group velocity

In this appendix we give a derivation of the expression of the group velocity,

vn =
1

ℏ
∂ε

∂k+n
=

2a

ℏ
Im[(λ+n )

−1(ϕ+
n )

†B†ϕ+
n ]. (A.1)

For ease of notation, we drop the index + in the following. By introducing the Bloch factor λn = eikna,

we can rewrite Eq. (3.66) to the quadratic eigenvalue problem,

[−λ−1
n B̂† + (εÎ −A)− λnB̂]ϕn = 0. (A.2)

Multiplying ϕ†
m from the left hand side, we obtain

−λ−1
n ϕ

†
mB̂

†ϕn + ϕ†
m(εÎ −A)ϕn − λnϕ

†
mB̂ϕn = 0. (A.3)

From the conjugate of Eq. (A.2),

−λ∗mϕ†
mB̂

†ϕn + ϕ†
m(εÎ −A)ϕn − (λ∗m)−1ϕ†

mB̂ϕn = 0. (A.4)

Subtracting Eq. (A.4) from Eq. (A.3) and multiplying λ∗mλn gives

(λnϕ
†
mB̂ϕn − λ∗mϕ

†
mB̂

†ϕn)(1− λnλ
∗
m) = 0 (A.5)

Here we introduce the velocity matrix V̂ defined by

V̂m,n = i(λnϕ
†
mB̂ϕn − λ∗mϕ

†
mB̂

†ϕn) (A.6)

According to Eq. (A.5), if λnλ
∗
m ̸= 1 then V̂m,n = 0. Because right going evanescent states have

Im(kn) > 0, i.e., λn > 0, V̂m,n = 0 for evanescent waves and V̂m,n might has nonzero value only when

both ϕm and ϕn are right-going propagating states.

Next, taking the derivative with respective to ε of Eq. (A.3), we obtain

∂λn
∂ε

(λ−1
n ϕ

†
mB̂

†ϕn − λnϕ
†
mB̂ϕn) + λnϕ

†
mϕn = i

∂λn
∂ε

V̂m,n + λnδm,n = 0. (A.7)
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Here we used λ∗ = λ−1 and ϕ†
mϕn = δm,n for propagating waves. The above equation indicates that

V̂m,n = 0 for m ̸= n. In addition, differentiating the both side of λn = eikna yields

∂λn
∂ε

= iaλn
∂kn
∂ε

. (A.8)

Finally substituting Eq. (A.8) into Eq. (A.3), we obtain

vn =
a

ℏ
V̂n,n (A.9)

=
ia

ℏ
(λnϕ

†
nB̂ϕn − λ∗nϕ

†
nB̂

†ϕn) (A.10)

=
2a

ℏ
Im(λ−1

n ϕ
†
nB̂

†ϕn). (A.11)

This expression is seen to be equivalent to Eq. (A.1).
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Dual singular value decomposition for

self-energies

In Sec. 4.3, I assume that Ĉ = B̂†, where

Ĉ = β̂†2(zÎ − α̂2)
−1β̂†1, (B.1)

in order to write the unitary transformed matrix as

Ĉ′ =

[
Ĉ′
11 0

Ĉ′
12 0

]
. (B.2)

The matrix structures of Eqs. (B.1) and (4.31) are essential to derive Eqs. (4.33) and (4.39). However,

it is clear that Ĉ ̸= B̂† when z is the complex number, and therefore Ĉ′ does not have such a matrix

structure. Here, we present a simple transformation scheme to overcome this difficulty. If Âi and B̂i

are complex matrices and z is a complex number, one might consider a dual transformation based on

the singular value decomposition for B̂ and Ĉ,

B̂ = ÛBŜBV̂
†
B, (B.3)

Ĉ = ÛC ŜC V̂
†
C (B.4)

where ÛB, V̂B, ÛC , and V̂C are unitary matrices and ŜB and ŜC are diagonal matrices with the singular

values on the diagonal. From the construction, the rank of Ĉ should be same as the rank of B̂. Using

ÛB and V̂C , a dual transformation

B̂′ = Û †
BB̂V̂C , (B.5)

Ĉ′ = Û †
B ĈV̂C , (B.6)

bring the same matrix form of Eqs. (B.1) and (4.31). Thus, all derivations in Sec. 4.3 are valid when

Ĉ ̸= B̂†.
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If Âi and B̂i are real matrices, which leads Ĉ = B̂T , a transformation,

B̂′ = Û †
BB̂Û

†
B, (B.7)

Ĉ′ = Û †
B ĈÛ

†
B, (B.8)

brings both B̂′ and Ĉ′ to the matrix form of Eqs. (B.1) and (4.31), respectively. In this case, the

singular value decomposition for Ĉ is not required.
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Shifted BiCG method and seed

switching technique

The BiCG method is one of the Krylov subspace methods for solving dual linear systems such as

Âx = b, Â†x̃ = b, (C.1)

where the matrix Â need not to be a Hermitian matrix. The algorithm updates the solution vectors

x and x̃ using the vectors p, r, p̃, and r̃ and the scalars α and β via the following recurrences:

αn =
(r̃n, rn)

(p̃n, Âpn)
, (C.2)

xn+1 = xn + αnpn, (C.3)

x̃n+1 = x̃n + ᾱnp̃n, (C.4)

rn+1 = rn − αnÂpn, (C.5)

r̃n+1 = r̃n − ᾱnA
†p̃n, (C.6)

βn =
(r̃n+1, rn+1)

(r̃n, rn)
, (C.7)

pn+1 = rn+1 + βnpn, (C.8)

p̃n+1 = r̃n+1 + β̄np̃n, (C.9)

where the initial conditions are set as x0 = x̃0 = 0 and r0 = p0 = r̃0 = p̃0 = b.

Now, we focus on solving the m sets of shifted dual linear systems:

(Â+ σiÎ)x(σi) = b, (Â† + σiÎ)x̃(σi) = b, (C.10)

for i = 1, 2, . . . ,m, using the reference system Âx = b and Â†x̃ = b, where σi is a real-valued scalar

shift and Î is the identity matrix. When we choose the initial conditions as x0(σi) = x̃0(σi) = 0, the

Krylov subspace of the reference system and shifted dual linear systems are identical. As a result, the

residual vectors rn(σi) and r̃n(σi) are collinear with rn and r̃n, respectively, that is,

rn(σi) =
1

πn(σi)
rn, r̃n(σi) =

1

π̄n(σi)
r̃n, (C.11)
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where πn(σi) is a scalar that is updated by the following recurrence:

πn+1(σi) = (1 +
βn−1αn

αn−1
+ αnσi)πn(σi)−

βn−1αn

αn−1
πn−1(σi). (C.12)

Here, π0(σi) = π−1(σi) = 1. By using the collinear relation given in Eq. (C.11), the shifted dual linear

systems are updated by the following recurrences:

αn(σi) =
πn−1(σi)

πn(σi)
αn, (C.13)

βn(σi) =
(πn−1(σi)

πn(σi)

)2
βn, (C.14)

xn+1(σi) = xn(σi) + αn(σi)pn(σi), (C.15)

x̃n+1(σi) = x̃n(σi) + ᾱn(σi)p̃n(σi), (C.16)

pn+1(σi) = rn+1(σi) + βn(σi)pn(σi), (C.17)

p̃n+1(σi) = r̃n+1(σi) + β̄n(σi)p̃n(σi). (C.18)

Because the recurrences in Eqs. (C.11)-(C.18) consist of only scalar-scalar and scalar-vector products,

the shifted dual linear systems can be solved very quickly rather than applying the standard BiCG

method to them.

The iterations continue until the residual norms of the entire system become sufficiently small.

However, when the residual norm of the reference system becomes too small, the numerical precision

of the residual vectors of shifted dual linear systems decreases. To avoid this problem, we use the

seed switching technique that replaces the reference system with a shifted dual linear system whose

residual norm is the largest in the entire system. To switch the reference system to the new one s̃ =

arg maxi∈I{||rn(σi)||}, we need a scalar in Eq. (C.12) for the new reference system:

πn(σs̃, σi) =
πn(σi)

πn(σs̃)
. (C.19)

The seed switching technique for an arbitrary shift σ(/∈ {σ1, σ2, . . . , σm}) is presented in Ref. [83].
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Appendix D

Kronig-Penny model

I here discuss the effect of the small perturbation of the potential to the electron scattering in a one-

dimensional system with square potentials. The system is divided into L, R, and C and I consider that

L and R are semi-infinite electrodes with periodic square potentials and the barrier height of square

potential in C is shifted. The parameters are given in Fig. D.1. Figs. D.2(a) and (b) show the energy

dispersion for the periodic square potentials and transmission spectra, respectively. Naturally, it is

observable that the scatterings at the band edges where the group velocity becomes zero. Note that

the same tendency can be seen when varying parameters.
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Figure D.1: An illustration of a one-dimensional system with square potential barriers. The parameters

a, b, V0, and V1 represent the width of depths, width of barriers, barrier height in L and R regions,

and barrier height in C region, respectively.

Figure D.2: (a) Energy dispersion of the Kronig-Penny model with periodic square potentials and (b)

transmission spectra. The parameters in atomic units are set as a = 2.0, b = 0.2, V0 = 10, and V1 = 11.
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