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1 INTRODUCTION

1 Introduction

The study of theK0 − K0 mixing is very important phenomena to study the indirect CP-violation,

because the CKM matrix elements emerges in the Feynman diagrams. The mission of the lattice

QCD is the calculation of the QCD correction of the diagrams, such quantity is called as the kaon

bag parameter. There were many efforts to calculate the kaon bag parameter, however, it tends to

struggle in the calculation using the Wilson-type fermions. This problem relates to the chiral sym-

metry breaking which makes us to perform an extra renormalization. We discuss about the kaon

physics and its relation with theK0 − K0 mixing in the section 2.1.

In this thesis, we suggest that the gradient flow works for the calculation of the kaon bag param-

eter. The gradient flow is a recent new effort of the lattice QCD, it considers a fictitious time and

the developments of fields towards that direction. Moreover, the gradient flow has a property that

it removes the ultraviolet divergence from the theory, in other words, we can regard the gradient

flow as a certain renormalization scheme. From the previous researches, we know the way to de-

fine the renormalized operator via the gradient flow scheme, which is called as the small flow time

expansion. It is also known that the background field method can be applied to the flowed theory

and it makes calculations slightly easy. We will review these techniques of the gradient flow in the

section 3.1.

The gradient flow made many contributions to the lattice QCD. For example, the energy momen-

tum tensor is successfully defined even on the lattice via the gradient flow. The energy momentum

tensor is a convenient origin of the thermodynamical quantities and is defined as a Noether cur-

rent of the translational symmetry. Since the translational symmetry is broken on the lattice, it has

the important meaning that the gradient flow removes the details of the lattice. In addition, the

computation of the topological susceptibility provides a new perspective for calculations with the

Wilson fermion. The topological susceptibility is involved with the axion and known as one of the

targets of the finite temperature lattice QCD. The topological susceptibility can be defined via the

two different ways, however, one of them uses the chiral Ward-Takahashi identity. The previous

work tells that the two definitions have good agreement with each other. From the fact that the

Wilson fermion breaks the chiral symmetry, the gradient flow makes the great assistance of the

renormalization even for the Wilson fermion.

We would like to use the consequence above to the other computation. In especially, the aim of this

study is calculation of the kaon bag parameter with the Wilson fermion using the gradient flow. We

must calculate a transition amplitude of the∆S= 2 four fermion operator,O∆S=2 = (sγL
µd)(sγL

µd),

to calculate the kaon bag parameter. When we consider the renormalization of the∆S = 2 four

fermion operator, however, it must be contaminated by another operators which have same parity

and other chirality with the original∆S= 2 four fermion operator.

O∆S=2
Ren. = ZO∆S=2 +

∑
i

ZiOi .
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1 INTRODUCTION

Our prospectus is that the gradient flow undertakes this bothersome renormalization.

To substantiate our claim, we numerically study about the meson correlation functions in the sec-

tion 3.3 and 3.5. In particular, we estimate meson masses, pion decay constant and PCAC mass

using the gradient flow. In especially, the calculation of PCAC mass is important from the view-

point of chiral symmetry, because it is defined via the PCAC relation which is a kind of the chiral

Ward-Takahashi identity. Our numerical results were consistent with the Schrödinger functional

scheme, therefore, the gradient flow works well for the lattice calculation.

In this study, we will consider the matching factor of the∆S= 2 operator. Calculations with the

gradient flow is very convenient, however, what we want to calculate are operators renormalized

in the MS scheme. Such transformation can be done by the small flow time expansion method

[37],[120]-[123]. According to the small flow time expansion method, we can evaluate the match-

ing factor with the perturbation theory. For the fermion bi-linear operators, the matching factor

have been calculated. Since our new calculation is in relation to the four fermion operators, we

calculate it in the section 4.1. The calculation of four fermion operator needs several techniques,

dimensional reduction scheme and Fierz rearrangement. We will review these techniques at the

same time. We also challenge to the calculation of the∆S= 1 operator which is important for the

K → ππ decay in the section 4.2.∆S = 1 operator includes so-called penguin diagrams. We will

evaluate them with the gradient flow.
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2 KAON BAG PARAMETER

2 Kaon Bag Parameter

The purpose of the lattice QCD is to ”solve” the QCD from the view point of first principle nu-

merical study. For example, the nucleon-nucleon potential is one of the recent achievements of the

lattice QCD and the finite density lattice QCD challenges to drive the confinement/deconfinement

phase transition of the QCD phase diagram. It is also important to study the CP violation phenom-

ena, because it is involved with the undecided parameter of the Standard Model.

Historically, CP violation is deeply involved with the kaon physics. The kaon has been discovered

in 1947 and contributed to the discovery of CP violation in 1964. After that, the kaon physics

has been active as a prove of the CP violation. Even in the 21st century, the NA48 and the KTeV

experiments detected the direct CP violation from the kaon decay.

The neutral kaon has an unique property that it oscillate to its antiparticle pair with each other.

This phenomena is called as theK0−K0 mixing and gives an indirect evidence of the CP violation.

The kaon bag parameter also relates to the CP violation phenomena, since it gives QCD corrections

of theK0 − K0 mixing. There are many works to attacking the bag parameter, however, it tends to

suffer from the operator mixing for the Wilson type fermions.

The lattice QCD is one of the most powerful framework to attack the QCD in a non-perturvative

way, however, we must take care to artifacts called doublers. It is known that the lattice action

which describes one particle corresponds to 16 particles in the naive discretization method. The

Wilson fermions add the extra term which vanishes in the continuum limit and succeed to remove

the doublers in exchange for the chiral symmetry. This effort is useful for many observables, how-

ever, if an observable relates to the chiral symmetry we must perform an extra renormalization to

obtain the correct result. The kaon bag parameter just corresponds to this case.

In this section, we will discuss about the mechanism of the operator mixing. The section 2.1

shows the definition of the bag parameter and its relation with the CP violation via theK0 − K0

mixing. The section 2.2 shows an brief introduction to the lattice QCD with the Wilson fermion, in

which we will see the explicit chiral symmetry breaking and its effect.

5



2.1 Standard Model Parameter 2 KAON BAG PARAMETER

2.1 Standard Model Parameter

The Standard Model describes strong, electromagnetic and weak interactions based on the

SU(3)C×SU(2)L×U (1)Y gauge theory [1]-[9]. In 2012, the Standard model Higgs boson was

detected by ATLAS and CMS collaborations [10][11], and the Standard Model was established.

However, there are some parameters which cannot be fixed from the original theory. The CKM

mixing angles and the CP violation phase are included in such the undecided parameters. In this

section, we will start from the CP violation phenomena and reach to the kaon bag parameter which

describes the QCD correction of theK0 − K0 mixing.

2.1.1 CP Violation

In our Universe, the matter exists overwhelmingly more than the antimatter. It indicates that the CP

symmetry is broken under the development of the Universe. The CKM matrix takes into account

about the CP violation in the Standard Model.

The CP violation deeply relates to the kaon physics. The experiment which firstly found the CP

violation detected the process in kaon decays [12]. TheK0 state is constructed from thes quark

and thed quark. It has an antiparticle pairK0 and they are related via the CP transformation as

CP ���K0
⟩
= −

����K0
⟩
. (2.1)

From this relation, we can construct eigenstates of the CP transformation,

K1 =
1
√

2

(
K0 − K0

)
, (2.2)

K2 =
1
√

2

(
K0 + K0

)
. (2.3)

They have eigenvalue±1. Let us assume that the weak interactions do not change the CP symmetry

and consider a decay process to two pion state. Because the two pion state is CP even,

CP |ππ⟩ = + |ππ⟩ , (2.4)

only theK1 can decays to the two pion state. However, the experiment [12] detected that theK2

can decay to the two pion state via a state called asKL.

Let us next regard theK0 andK0 as the two state system and consider their time evolution via the

Hamiltonian,

H = M − i
2
Γ = *, M11− i

2Γ11 M12− i
2Γ12

M∗12−
i
2Γ
∗
12 M22− i

2Γ22

+- . (2.5)

Because of theCPT, we can assume symmetry that

H11 = H22. (2.6)

6



2.1 Standard Model Parameter 2 KAON BAG PARAMETER

From the Schrödinger equation,

i
d
dt
ψ = Hψ, (2.7)

we obtain the time evolution of the each state as

i
d
dt

K1 =

[
H11− M12+

i
2

Re{Γ12}
]

K1 +
1
2

Im {Γ12} K2

i
d
dt

K2 =

[
H11+ M12−

i
2

Re{Γ12}
]

K2 −
1
2

Im {Γ12} K1. (2.8)

Therefore,K1 andK2 do not diagonalize the Hamiltonian (2.5) and are mixed with each other. Since

K1 has even parity andK2 has odd parity for the CP transformation CP is no longer conserved under

this Hamiltonian.

2.1.2 CKM matrix

As we saw in the previous section, the mixing, in other words the CP violation, comes from the

complex number. The Cabbibo-Kobayashi-Maskawa matrix{Vi j } describes the mixture between

the other generations of quarks, which explains the CP violation [14][15]. By using the CKM

matrix we can write the coupling of the W gauge bosons as

− 1
2
√

2
W−µ

(
uα cα tα

)
γµ(1− γ5)

*...,
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

+///-
*...,

dα
sα
bα

+///- . (2.9)

Because of the unitarity of the CKM matrix, it has 9 free parameters. Because some of the pa-

rameters can be absorbed into the phase of the quark fields it is enough to consider 4 parameters

as

*...,
c12c13 s12c13 s13e−iδ13

−s12c23− c12s23s13eiδ13 c12c23− s12s23s13eiδ13 s23c13

s12s23− c12c23s13eiδ13 −c12c23− s12c23s13eiδ13 c23c13

+///- , (2.10)

where we denoted as

ci j = cos(θi j ), si j = sin(θi j ), (2.11)

and the 4 free parameters asθ12, θ23, θ13 andδ131. Because the experimental data show that

s13≪ s23≪ s12, (2.12)

1This parameterization is called as standard parameterization [16].
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2.1 Standard Model Parameter 2 KAON BAG PARAMETER

we can parameterize that

s12 = λ, s23 = Aλ2, s13e
iδ13 = Aλ3(ρ − iη), (2.13)

with the parametersλ, A, ρ andη2. The CKM matrix becomes

*...,
1− 1

2λ
2 λ Aλ3(ρ − iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ − iη) −Aλ2 1

+///- , (2.14)

for O
(
λ4

)
.

Note that the complex numbers emerge in the matrix elementsVub andVtd denote the CP violation

in the Standard Model.

2.1.3 K0 − K0 mixing

In the section 2.1.1, we dealt theK0 − K0 system and mixing. The eigenstates which diagonalize

the Hamiltonian are notK1 andK2. The correct ones are given as

|KS⟩ =
1

√
1+ ϵ2

( |K1⟩ + ϵ |K2⟩) , (2.15)

|KL⟩ =
1

√
1+ ϵ2

( |K2⟩ + ϵ |K1⟩) . (2.16)

The subscriptsS/L mean the short/long living particle. TheKS mainly decays to the two pion

CP even state, on the other hand, theKS mainly decays to the three pion CP odd state. However,

because of the mixingKL can also decays to the two pion state although such process is rare.

Let us consider the box diagrams in Figure 1 which describe theK0 − K0 mixing. It is important

Figure 1: Box diagrams of theK0 − K0 mixing.

that at the vertex there are the complex CKM matrix elementsVub andVtd. In the Standard Model,

we cannot apply the perturbation theory to the QCD part since the coupling constant becomes large

2This parameterization is called as Wolfenstein parameterization [17].
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2.1 Standard Model Parameter 2 KAON BAG PARAMETER

at low energy scale. To take out the QCD part from the diagrams, [18] and [19] integrate out heavier

particles and obtain the effective Hamiltonian as

H∆S=2
eff. ∝

∫
d4x O∆S=2(x), (2.17)

O∆S=2 =
(
sγµ(1− γ5)d

) (
sγµ(1− γ5)d

)
. (2.18)

The bag parameter our target of this study characterize the matrix element of the∆S= 2 operator

as

BK =

⟨
K0

����O∆S=2 ���� K0
⟩

8
3
���⟨0 ��� sγµ(1− γ5)d ��� K0

⟩���2 =
⟨
K0

����O∆S=2 ���� K0
⟩

8
3m2

K f 2
K

, (2.19)

wheremK and fK mean the mass and decay constant of the kaon. We need the lattice QCD calcu-

lation to obtain the bag parameter.

In this section, we considered the CP violation in the viewpoint of the kaon system. Since the

K0 − K0 mixing does not describe the end state of the decay process, it is called as the indirect CP

violation. The bag parameter relates to the QCD part of theK0 − K0 mixing and it is necessary to

use the lattice calculation.
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2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

2.2 Lattice Fermion and Chiral Symmetry

The lattice regularization has two important meanings for the field theory. One is that the lattice

regularization provides a non-perturbative formulation of the theory. It is well known that the

Wilsonian renormalization group approach brought a big progress in the analysis of the critical

phenomenon. One is that the lattice, discrete space time, is compatible with numerical calculations.

The lattice QCD is almost the only numerical method that gives non-perturbative calculations, and

becomes a big field in the elementary particle theory nowadays. We focus on the later property and

consider an application to the bag parameter. We will review some problems specific to the lattice

QCD in the progress.

2.2.1 Naive discretization

In this section, we will see the most naive discretization procedure of the QCD. Since QCD needs

the gauge invariance of the theory, it is natural to put quarks on the site and put gluon on the link3.

Along with that, the gauge fields are defined through the link variable,

Uµ(x) = ei10Aµ (x+µ̂/2) . (2.20)

The gauge transformations are defined as

ψ(x) → Ω(x)ψ(x), (2.21)

ψ̄(x) → ψ̄(x)Ω†(x), (2.22)

Uµ(x) → Ω(x + µ̂a)Uµ(x)Ω†(x), (2.23)

Ω(x) ∈ SU(3), (2.24)

on the lattice. When we take the naive continuum limita → 0 the gauge transformation (2.23)

reproduces the correct gauge transformation, because

1+ i10aAµ(x) +O(a2)

→ 1+ i10a

{
Ω(x)AµΩ

†(x) − i
g
Ω(x)∂µΩ

†(x)

}
+O(a2). (2.25)

By using the link variable, we can construct the gauge invariant plaquette action as

Sw (U) =
1

12
0

∑
x,µ,ν

Re tr
[
Uµν +Uµν†(x)

]
, (2.26)

Uµν (x) = Uµ(x)Uν (x + µ̂)U†µ (x + ν̂)U†ν (x), (2.27)

3Gauge fieldsAµ (x) depends not only on the coordinatex but also on the directionµ!
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2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

whereUµν is called as the plaquette which is the simplest gauge invariant quantity. We can also

show that when we take a naive continuum limita → 0 the plaquette action becomes the gluon

action as

Sg[U] =
6

12
0

∑
x;µ<ν

{
1− 1

6
Tr

(
Uµν (x) +Uµν†(x)

)}
(2.28)

=

∫
dx Fa

µν (x)Fa
µν (x) +O(a2). (2.29)

In practice, the rectangular action4 (2.30) is often used, because it can get closer to the continuum

limit earlier than the plaquette action.

Sg[U] =
1

12
0

∑
x;µ,ν

Tr
{
(1− 8C)Uµν (x) +C

(
Rµµν (x) + Rννµ(x)

)}
, (2.30)

Rµµν (x) = Uµ(x)Uµ(x + µ̂a)Uν (x + 2µ̂a)U†µ (x + µ̂a + ν̂a)U†µ (x + ν̂a)U†ν (x), (2.31)

whereRµµν is the 2× 1 rectangular plaquette.

The naive discretization of the fermion action is given by

S0
F [U,ψ,ψ] =

∑
x

ψ
′
(x)


∑
µ

γµ

2

(
Uµ(x)ψ′(x + µ̂) −Uµ(n− µ̂)ψ′(x − µ̂)

)
+m

∑
x

ψ(x)ψ(x). (2.32)

Note that we rewrite the quark fieldψ′ = a3/2ψ and the quark massM = mato erase the dimension.

This action return to the continuum action ina→ 0,

S0
F [U,ψ,ψ] →

∫
d4x

{
ψ(x)γµDµψ(x) +mψ(x)ψ(x)

}
, (2.33)

however, it includes the doublers which are extra degrees of freedom. To indicate the doublers

explicitly, let us take

Uµ(x) = 1. (2.34)

With this condition, the naive fermion action becomes

S0
F [U = 1,ψ,ψ] =

∑
x

ψ
′
(x)


∑
µ

γµ

2
(
ψ′(x + µ̂) − ψ′(x − µ̂)

) + M
∑

x

ψ
′
(x)ψ′(x)

=

∫
p
ψ
′
(−p)

(
iγµ sin(pµa) +m

)
ψ′(p), (2.35)

4C = −0.331 is known as the Iwasaki gauge action[106].
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2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

where we denoted ∫
p
(· · · ) =

∫
1

(2π)4
d4p (· · · ). (2.36)

In the naive continuum limit, the quark propagator is given by

⟨
ψ(x)ψ(y)

⟩
=

∑
p̄

ei p̄· x−ya
∫

p

−i
∑
µ ei p̄µγµp̃µ +m

p̃2 +m2
eip·(x−y), (2.37)

p̃µ =
1
a

sin(pµa) (2.38)

where we denoted ¯p as the momenta runs in 2D = 16 vertices of the hyper-cubic lattice,

p̄ ∈ {(0, 0, 0, 0), (π, 0, 0, 0), (· · · ), (π, π, 0, 0), (· · · ), (π, π, π, 0), (· · · ), (π, π, π, π)} , (2.39)

where(· · · ) means possible permutations. These 15 extra degrees of freedom are called doubler,

which must be removed from the lattice theory.

2.2.2 Nielsen-Ninomiya theorem

The fermion doubling problem is not failure of the lattice formulation. We can understand it as

a property the lattice formalization essentially has. Such property is known as Nielsen-Ninomiya

theorem [26]. The statement of the theorem is that if the lattice fermion satisfy the assumptions

below the doubling problem must occur.

• translational invariance on the lattice

• chiral symmetry

• hermitian symmetry

• bi-linear form of the fermion field

• locality

One can find the proof of this theorem, for example, in [27] and [28], in which the Poincáre-Hopf

index theorem is used.

2.2.3 Wilson fermion

The Nielsen-Ninomiya theorem seems to impose the strong restriction to the lattice theory. How-

ever, if we use it in the reverse sense there are possibilities to avoid the fermion doubling problem.
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2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

The Wilson fermion realizes it by giving up the chiral symmetry of the fermion action.

The chiral transformation is defined by

ψ → eiθγ5ψ (2.40)

ψ → ψeiθγ5. (2.41)

Since theγ5 anti-commutes with the other gamma matricesγµ the naive fermion action (2.33) is

surely invariant with respect to the chiral transformation. Besides, half of the doublers,

p̄ ∈ {(0, 0, 0, 0), (π, π, 0, 0), (· · · ), (π, π, π, π)} , (2.42)

have positive chirality and the other half of the doublers

p̄ ∈ {(π, 0, 0, 0), (· · · ), (π, π, π, 0), (· · · )} , (2.43)

have negative chirality.

The Wilson fermion is defined as

SWilson
F [U,ψ,ψ] = S0

F [U,ψ,ψ]

− r
2

∑
x;µ

{
ψ
′
(x)Uµ(x)ψ′(x + µ̂ + ψ

′
(x + µ̂)U†µ (x)ψ′(x) − 2ψ

′
(x)ψ′(x)

}
.(2.44)

The additive term corresponds toO(a) term,

−ar
∫

d4x ψ(x)D2ψ(x), (2.45)

and it will be vanished in the naive continuum limit. Simultaneously, it can be seen that the additive

term breaks the chiral symmetry explicitly. Let us consider the quark propagator again. We can

write down it as⟨
ψ(x)ψ(y)

⟩
=

∑
p̄

ei p̄· x−ya
∫

p

−i
∑
µ ei p̄µγµp̃µ +m(p)

p̃2 +m2(p)
eip·(x−y), (2.46)

m(p) = m+
2r
a

∑
µ

sin2 (pµa/2). (2.47)

We can see that the pole mass is changed from (2.37). The massm(p) returns to the bare massm

in the continuum limit. On the other hand,m(p) diverges as 1/a at the 15 edges of the Brillouin

zone. In this way, the doublers are removed from the theory at the expense of the chiral symmetry

for the Wilson fermion.

Practically, the Wilson-clover fermion [105] is frequently used,

SWilson-clover
F [U,ψ, ψ̄] = SWilson

F [U,ψ,ψ] −Csw

∑
µ<ν

ψ̄′(x)[γµ, γν]

2i
F̂µν (x)ψ′(x), (2.48)

13



2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

where we defined the ”clover” term as

F̂µν (x) := − i
8

(Uµν (x) +Uµ−ν (x) +U−µν (x) +U−µ−ν (x) − (µ←→ ν)). (2.49)

This additional term isO(a) improvement of the action and it approaches to

−aCsw

∫
d4x ψ̄(x)

[γµ, γν]

2i
Fµν (x)ψ(x), (2.50)

in the continuum limit.

There are some kinds of fermions besides the Wilson fermion. The Kogut Susskind fermion [29]

doubles the effective lattice spacing to reduce the Brillouin zone. The doublers reduce to half,

however, the chiral symmetry also breaks. The overlap fermion [32] which satisfies the Ginsparg

Wilson relation [30] and the domain wall fermion [31] which uses the five dimensional heavy

quarks are new efforts of the lattice QCD. They avoid the fermion doubling problem and realize the

lattice chiral symmetry at the same time in exchange for computational costs.

2.2.4 Operator mixing

The Wilson fermion explicitly breaks the chiral symmetry as we saw in the previous section. This

breaking emerges as artifacts which have different chirality on the calculation of the bag parameter.

To see this, let us consider for a four fermion operator,

O±ΓΓ′ =
1
2

((
ψ1Γψ2

) (
ψ3Γ

′ψ4

)
±

(
ψ1Γψ4

) (
ψ3Γ

′ψ2

))
, (2.51)

and its chirality. It is convenient to take the interpolate operatorsΓ andΓ′ as

(Γ, Γ′) ∈ {VV + AA, VV − AA, SS+ PP, SS− PP, TT

V A+ AV, V A− AV, SP+ PS, SP− PS, TT̃
}

(2.52)

When we consider the discrete chiral transformation as

χ24 =
 ψ2→ iγ5ψ2, ψ2→ iψ2γ5,

ψ4→ iγ5ψ4, ψ4→ iψ4γ5,
(2.53)

and

χ12 =
 ψ1→ iγ5ψ1, ψ1→ iψ1γ5,

ψ1→ iγ5ψ2, ψ2→ iψ2γ5.
(2.54)

14
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Under these transformations, the each four fermion operators are transformed as

O±VV+AA

χ24−−−→ −O±VV+AA , O±VV+AA

χ12−−−→ +O±VV+AA, (2.55)

O±VV−AA

χ24−−−→ +O±VV−AA , O±VV−AA

χ12−−−→ +O∓VV−AA, (2.56)

O±SS−PP

χ24−−−→ +O±SS−PP , O±SS−PP

χ12−−−→ −O∓SS−PP, (2.57)

O±SS+PP

χ24−−−→ −O±SS+PP , O±SS+PP

χ12−−−→ −O±SS+PP, (2.58)

O±TT

χ24−−−→ −O±
T̃T̃

, O±TT

χ12−−−→ −O±
T̃T̃
, (2.59)

O±V A+AV

χ24−−−→ −O±V A+AV , O±V A+AV

χ12−−−→ +O±V A+AV, (2.60)

O±V A−AV

χ24−−−→ +O±V A−AV , O±V A−AV

χ12−−−→ +O∓V A−AV, (2.61)

O±SP−PS

χ24−−−→ +O±SP−PS , O±SP−PS

χ12−−−→ −O∓SP−PS, (2.62)

O±SP+PS

χ24−−−→ −O±SP+PS , O±SP+PS

χ12−−−→ −O±SP+PS, (2.63)

O±
TT̃

χ24−−−→ −O±
TT̃

, O±
TT̃

χ12−−−→ −O±
TT̃
. (2.64)

Therefore, the bag parameter which has the chiralityVV+ AAdoes not mix with the other operator

in the massless limit. However, the chiral symmetry breaking contributes to the renormalization

factor as

Oren.
VV+AA =

∑
i

ZVV+AA,iO
0
i , (2.65)

where subscripti runs in {VV + AA, VV − AA, SS+ PP, SS− PP, TT} and ZVV+AA, i means the

mixing coefficients for the bare operatorO0
i with VV + AA.

For the domain wall fermions, it is suggested that the mixing coefficients with the wrong chirality

ZVV+AA, i , i , VV + AA areO
(
(am)2

)
[93][94], in which the Rome-Southampton method [92]

works well to calculate the bag parameter.

2.2.5 Previous works

The kaon bag parameter has been calculated with the domain wall fermions, the improved staggered

fermion and the twisted mass Wilson fermion5. There is no mixing of operators for the domain wall

fermion, however, it is hard to increase the number of statistics. The staggered fermion also suffers

from the chiral symmetry breaking.

For the Wilson fermion, there are two approaches to the kaon bag parameter. The first method

uses the chiral Ward-Takahashi identity to determine the mixing coefficients [89] and the second

method uses the twisted mass approach [99][100]. The first one tends to struggle with the unwanted

operators as in Figure 2 and 3. ETMC collaboration has used the twisted mass approach forn f =

2+ 1+ 1 flavor QCD [102] and succeeded to calculate the kaon bag parameter with high precision.

5One can find the recent progress of the bag parameter in the figures of [95] or [102] for examples.
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Figure 4 shows their results.

In this thesis, we propose to use the gradient flow method to the kaon bag parameter. Since the

Figure 2: The bag parameter calculated in [89].

unwanted mixing is originally lattice artifacts, it will be vanished by applying the gradient flow in

prospect. To support our claim, we will see the details of the gradient flow in the next chapter.
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Figure 3: The bag parameter calculated in [91].

Figure 4: The bag parameter calculated in [102].
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3 Gradient Flow

In recent years, the gradient flow method [33]-[38] provides many advantages to the Lattice QCD

calculation. The concepts of the gradient flow have been expanded even for the quark fields, and

use range was also expanded significantly, definition of the energy momentum tensor, setting a

scale to the lattice, computation of the chiral susceptibility, studying the topological susceptibility,

and so on[39]-[57]. Especially for the computation of the topological susceptibility[49] provides

a new perspective for calculations with the Wilson fermion. Since the Wilson type fermion ex-

plicitly breaks the chiral symmetry at the finite lattice spacing, it is hard to define the topological

susceptibility in naive ways. However, they successfully used the property that the gradient flow

can present a correct renormalization for operators even it is related to the chiral symmetry. They

suggested two definitions for the topological susceptibility which coincide throughout the chiral

Ward-Takahashi identity, and their numerical results had a very good agreement. Therefore, the

gradient flow makes the great assistance of the renormalization even for the Wilson fermion.

In this chapter, we firstly introduce the gradient flow and see the matching factor of forming bi-

linear operators as simple examples. When we use the gradient flow method is there is need to

transfer an expectation value to theMS scheme. According to the renormalization group argument,

perturbative calculations are justified, however, the gradient flow increases the number of Feynman

diagrams and makes the calculation difficult. Since such calculations are generally tough, we will

put the first half of this chapter into it.

In the later part of the chapter, we will see numerical examples of the gradient flow. As the

concrete examples of lattice QCD, we will treat the meson mass and the decay constant in the sec-

tion 3.3. They do not relate to the chiral symmetry, however, we make sure that the gradient flow

correctly renormalize the hadronic observables. In the section 3.4 and 3.5, we finally proceed to

calculations of the quantity which is related to some symmetry. We will see the numerical study

of the energy momentum tensor, the topological charge, the chiral condensate and the PCAC mass.

The energy momentum tensor is the Noether current of the translational symmetry and it is hard to

calculate on the lattice. Because the topological susceptibility and the PCAC mass can be defined

via the chiral Ward-Takahashi identity, it is also hard to calculate with the Wilson fermion. The

chiral condensate needs a nontrivial additive renormalization for the Wilson fermion. We will see

that the gradient flow solves such the problems. Finally, note that the results in the section 3.4 are

short review and in the section 3.5 are our original results.
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3.1 Definition and Techniques

In the gradient flow method, we consider a time evolution to the fictitious time direction. If the

original theory is defined on the 4 dimensional space time we add one dimension and consider a

4 + 1 dimensional ”flowed” theory. The time evolution equations are originally defined via the

variation of the action,

∂tϕ(t, x) = − δS[ϕ]
δϕ(t, x)

. (3.1)

This method was a great success in Yang-Mills theory [35] and the other theories. For examples,

super Yang-Mills theory [60][61] andO(N) non-linear sigma model [62]. In these theories, it is

known that the right hand side of (3.1) takes a form like a thermal diffusion equation. The idea was

also incorporated into QCD and the flow equation for the quark fields were also written down [36].

At the same time, computational techniques were developed, the small flow time expansion

method and the background field method. The small flow time expansion provides us a way to

transfer the gradient flow scheme to the other renormalization scheme and the background field

theory makes perturbative calculations slightly easy. In this section, we will review and introduce

them in a practical way.

3.1.1 Flow equations

The gradient flow for theSU(N) gauge group is called as the Wilson flow [35], and is defined via

a flow equation,

∂t Bµ(t, x) = DνGνµ(t, x), Bµ(t = 0, x) = Aµ(x), (3.2)

Gµν (t, x) = ∂µBν (t, x) − ∂νBµ(t, x) + [Bµ(t, x),Bν (t, x)], (3.3)

Dµ = ∂µ + [Bµ(t, x), ·]. (3.4)

We denote the fundamental gauge field asAµ(x) and its flowed field asBµ(t, x). The right hand

side of the flow equation (3.2) is nothing but the gradient of the Yang-Mills action,

SY M = − 1

212
0

∫
dDx tr[Fµν (x)Fµν (x)], (3.5)

Fµν (x) = ∂µAν (x) − ∂νAµ(x) + [ Aµ(x),Aν (x)]. (3.6)

Note that the symbolt means the flow time andx means four dimensional coordinates6. Let us

consider the gauge transformation of the flow equation. If the gauge transformation does not depend

on the flow time,

Bµ(t, x)→V(x)
(
Bµ(t, x) + ∂µ

)
V−1(x), (3.7)

6We distinguish the coordinate time from the flow time and write it asx0.
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the flow equation obviously covariant. To consider the flow time dependent gauge transformation,

it is convenient that we regard the original flow equation (3.2) as a special case of the generalized

flow equation,

∂t Bµ(t, x) = DνGνµ(t, x) + α0Dµ∂νBν (t, x). (3.8)

If we choose the gauge parameterα0 as 0, the flow equation (3.8) returns to the original one (3.2).

We can show that (3.8) is also covariant for the flow time dependent gauge transformation,

Bµ(t, x)→V(t, x)
(
Bµ(t, x) + ∂µ

)
V−1(t, x), (3.9)

where the transfer matrixV(t, x) satisfies

∂tV(t, x) = −α0∂νBν (t, x)V(t, x) , V(t = 0, x) = 1l. (3.10)

In particular, (3.9) can be changed to an infinitesimal gauge transformation

Bµ(t, x)→Bµ(t, x) + Dµω(t, x), (3.11)

where the transfer matrixω(t, x) satisfies

∂tω(t, x) = α0Dν∂νω(t, x) − δα0∂νBν (t, x) , ω(t = 0, x) = 0. (3.12)

This infinitesimal gauge transformation changes the gauge parameterα0 to α0 + δα0.

The flow equation (3.8) can be separated to a linear part and a nonlinear part as

∂t Bµ(t, x) = ∂2Bµ(t, x) + (α0 − 1)∂µ∂νBν (t, x) + Rµ(t, x), (3.13)

whereRµ means the nonlinear part,

Rµ(t, x) = 2[Bν (t, x), ∂νBµ(t, x)] − [Bν (t, x), ∂µBν (t, x)]

+(α0 − 1)[Bµ(t, x), ∂νBν (t, x)] + [Bν (t, x), [Bν (t, x),Bµ(t, x)]] (3.14)

To construct the formal solution, we define the heat kernel

Kt (x)µν =
∫

p

1

p2

{(
δµνp

2 − pµpν
)

e−tp2
+ pµpνe

−α0tp2}
eipx. (3.15)

If we choose the gauge parameterα0 to 1, the heat kernel reduces to a Gaussian damping factor

Kt (x)µν |α0=1 =

∫
p
δµνe

−tp2
eipx = δµν

e−x2/4t

(4πt)D/2
. (3.16)

According to the general solution of differential equations, the solution of (3.8) is constructed by

the solution for linear part,

Bµ(t, x)linear =

∫
dDy Kt (x − y)µνAν (y), (3.17)
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and the particular solution for the nonlinear part,

Bµ(t, x)non-linear =

∫
dDy

∫ t

0
ds Kt−s(x − y)µνRν (s, y), (3.18)

Bµ(t, x) = Bµ(t, x)linear+ Bµ(t, x)non-linear. (3.19)

The gradient flow can be expanded for the quark field[36]. The gradient flow is originally defined

via the variation of the action, however, we give the flow equation in the form of a thermal diffusion

equation,

∂t χ(t, x) = D2χ(t, x) − α0∂νBν (t, x) χ(t, x), (3.20)

∂t χ(t, x) = χ(t, x)
←−
D2 + α0χ(t, x)∂νBν (t, x), (3.21)

and the initial condition

χ(t = 0, x) = ψ(x) , χ(t = 0, x) = ψ(x). (3.22)

The covariant derivative is act for the quark field as

Dµ = ∂µ + Bµ(t, x). (3.23)

We can also discuss about the flow time dependent infinitesimal gauge transformation

χ(t, x) → (1+ iω(t, x)) χ(t, x), (3.24)

χ(t, x) → χ(t, x)(1− iω(t, x)). (3.25)

If the gauge transfer matrixω(t, x) satisfies (3.12) the flow equations for the quark field are also

covariant.

To construct the formal solution of the flow equation (3.20), we separate it as

∂t χ(t, x) = ∂2χ(t, x) + ∆′ χ(t, x), (3.26)

∆
′ = (1− α0)∂νBν (t, x) + 2Bν (t, x)∂ν + Bν (t, x)Bν (t, x). (3.27)

At this time, we define the heat kernel as

Kt (x) =
∫

p
e−tp2

eipx =
e−x2/4t

(4πt)D/2
. (3.28)

and obtain the formal solution,

χ(t, x) =
∫

dDy

{
Kt (x − y)ψ(y) +

∫ t

0
ds Kt−s(x − y)∆′ χ(s, y)

}
. (3.29)
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We can also construct the formal solution for the flow equation with respect to the anti-quark field

(3.21) as

χ(t, x) =
∫

dDy

{
ψ(y)Kt (x − y) +

∫ t

0
ds χ(s, y)

←−
∆
′Kt−s(x − y)

}
, (3.30)

←−
∆
′ = −(1− α0)∂νBν (t, x) − 2

←−
∂ νBν (t, x) + Bν (t, x)Bν (t, x). (3.31)

In the next section, we will adopt a perturbative calculation of the gradient flow. Since the formal

solutions (3.19), (3.29) and (3.30) take the simplest form we will set the gauge parameter to 1,

α0 = 1 for the perturbation. By contrast, we will set the gauge parameter to 0,α0 = 0 for numerical

calculation exclusively. Numerical study of the gradient flow is discussed in the section 3.3.1.

3.1.2 Renormalization and gradient flow

The gradient flow has the property that the gradient flow makes an expectation value of a composite

operator become free from the ultra violet divergence. The general proof is subject to [37][59] and

we see the flowed energy,

E(t) =
1
4

∫
dDx

⟨
Ga
µν (t, x)Ga

µν (t, x)
⟩
, (3.32)

as an example. We use the dimensional regularization scheme,D = 4− 2ϵ , and consider one loop

perturbation theory. As we mentioned, the gauge parameter is set to 1 for simplicity. Therefore, the

flowed gauge field is given as

Bµ(t, x) =
∫

dDy

{
Kt (x − y)Aµ(y) +

∫ t

0
ds Kt−s(x − y)Rµ(s, y)

}
, (3.33)

Rµ(t, x) = 2[Bν (t, x), ∂νBµ(t, x)](t, x)]

−[Bν (t, x), ∂µBν + [Bν (t, x), [Bν (t, x),Bµ(t, x)]] , (3.34)

with the heat kernel

Kt (x) =
∫

p
e−tp2

eipx. (3.35)

22



3.1 Definition and Techniques 3 GRADIENT FLOW

Note that the formal solution above is a recursive representation and we can separate the flowed

gauge field as

Bµ(t, x) =
∑

k=1,2,3,···
Bµ,k(t, x), (3.36)

Bµ,1(t, x) =
∫

dDy Kt (x − y)Aµ(y), (3.37)

Bµ,2(t, x) =
∫

dDy

∫ t

0
ds Kt−s(x − y)

(
2[Bν,1(s, y), ∂νBµ,1(s, y)] − [Bν,1(s, y), ∂µBν,1(s, y)]

)
, (3.38)

Bµ,3(t, x) =
∫

dDy

∫ t

0
ds Kt−s(x − y)

(
2[Bν,2(s, y), ∂νBµ,1(s, y)] − [Bν,2(s, y), ∂µBν,1(s, y)]

+2[Bν,1(s, y), ∂νBµ,2(s, y)] − [Bν,1(s, y), ∂µBν,2(s, y)] + [Bν,1(s, y), [Bν,1(s, y),Bµ,1(s, y)]]
)
.

(3.39)

The higher order terms of the flowed gauge field,Bµ,k>3, areO(16
0) and we omit them. The each

Figure 5: Diagrammatic representation of the flowed gauge field.

term (3.37)-(3.39) are also diagrammatically represented as in the Figure 5. The heat kernel is

pictured as a double wavy line. By using these picture, we can also describe the flowed energy,

E =
⟨
GµνGµν

⟩
/4, diagrammatically as shown in the Figure 6, where the black spots mean the

usual QCD vertices.

One can calculate the flowed energy as

E(t) =
(N2 − 1)(D − 1)

2(8πt)D/2
1

2
0

[
1+

(8t)ϵ

(4π)2
1

2
0

{(
11
3

N − 2
3

Nf

)
1
ϵ
+ (finite)

}
+ O(14

0)

]
. (3.40)
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Figure 6: One loop diagrams for the energyE =
⟨
GµνGµν

⟩
/4.
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The ultraviolet divergence can be absorbed into the gauge coupling,

1
2
0 = 1

2µ2ϵ (
4πe−γ

)−ϵ {
1− 1

(4π)2
1

2
(
11
3

N − 2
3

Nf

)
1
ϵ
+ O(g4)

}
. (3.41)

This cancellation is not a coincidence but a general property. Lüscher and Weisz [37] provided a

general proof for the renormalizability of the gradient flow. In this thesis, we admit the renormal-

izability of the gradient flow and proceed to concrete calculation methods.

Note that when we include the flowed quark fieldsχ and χ we must impose the field strength

renormalization in addition to the gauge coupling and the quark mass. In [123], it is suggested that

a useful choice of the field strength renormalization is given by

χ̊(t, x) =
√
φ(t) χ(t, x), (3.42)

χ̊(t, x) =
√
φ(t) χ(t, x), (3.43)

where χ̊ and χ̊ are renormalized quark field and the coefficientφ is defined by

φ(t) =
−6

(4π)2t2
⟨
χ(t, x)γµ

←→
D µ χ(t, x)

⟩ , ←→
D µ = Dµ −

←−
Dµ. (3.44)

We will discuss the perturbative evaluation of the renormalization factor (3.44) in the section 3.2.1.

3.1.3 Small flow time expansion

The small flow time expansion method provides us a way to ”match” an expectation value calcu-

lated in the gradient flow scheme to the other renormalization scheme. Since the general choice

is theMS scheme we particularly consider the matching factor for theMS scheme later. The first

step of the small flow time expansion is calculating the relation between the bare operator and the

flowed operator. When we consider thet → 0 limit, because of the symmetry, we can demand the

relation as

O( χ, χ,B) ∼ c(t)O(ψ,ψ,A) , (for t → 0), (3.45)

whereO(ψ,ψ,A) means the bare operator andO( χ, χ,B) means its flowed operator7. The coeffi-

cientc(t) connects the bare operator and the flowed operator. To obtain the coefficientc(t), let us

7As an example, if we choose the bare operator as the scalar density,

O(ψ,ψ,A) = ψTaψ,

its flowed operator is given by

O( χ, χ,B) = χTa χ.
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consider the one particle irreducible vertex correction of the differenceO( χ, χ,B) −O(ψ,ψ,A). In

generally, it would be proportional to the vertex functionΓ8⟨
O( χ, χ,B) −O(ψ,ψ,A)

⟩
1PI
= IGF(t)Γ, (3.46)

where we denote the proportional constant asIGF(t). The left hand side will be⟨
O( χ, χ,B) −O(ψ,ψ,A)

⟩
1PI
= (c(t) − 1)

⟨
O(ψ,ψ,A)

⟩
1PI

= (c(t) − 1)ZOΓ ∼ (c(t) − 1)Γ (3.47)

In the second line, we considered one loop perturbation theory and used the fact thatc(t) − 1 is

O(12), because the tree level contributions of the flowed operator and the bare operator are same,

⟨O( χ, χ,B)⟩1PI |tree = Γ , (for t → 0), (3.48)⟨
O(ψ,ψ,A)

⟩
1PI
|tree = Γ. (3.49)

Comparing them and the right hand side of the (3.45), we obtain the representation of the small

flow time expansion as

O( χ, χ,B) ∼ (1+ IGF(t))O(ψ,ψ,A) + O(t) , (for t → 0). (3.50)

We will see concrete examples of the coefficient IGF(t) in the section 3.2.

As we mentioned, we must renormalize the quark field by the useful choice,

χ̊(t, x) =
√
φ(t) χ(t, x), (3.51)

χ̊(t, x) =
√
φ(t) χ(t, x), (3.52)

φ(t) =
−6

(4π)2t2
⟨
χ f (t, x)γµ

←→
D µ χ(t, x)

⟩ . (3.53)

Therefore, the flowed operator must be written asO( χ̊, χ̊,B)9. If the operatorO includes a quark

field O( χ̊, χ̊,B) andO( χ, χ,B) are related to

O( χ̊, χ̊,B) = φn/2(t)O( χ, χ,B). (3.54)

8For the scalar density,

Γ = Ta .

9For the scalar density,

O( χ̊, χ̊,B) = χ̊Ta χ̊.
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Finally, we have

O( χ̊, χ̊,B) = φn/2(t)(1+ IGF(t))O(ψ,ψ,A), (3.55)

for the small flow time. Renormalizing the bare operator as

O(ψ,ψ,A) =
1

ZMS
O

(
ZMS
ψ

)n/2
OMS(ψMS,ψMS,A), (3.56)

we obtain the matching factor,

ZGF→MS(t) =
ZMS

O

1+ IGF(t)
*.,

ZMS
ψ

φ(t)
+/-

n/2

. (3.57)

By using this matching factor, we can define theMS operator via the gradient flow as

ZGF→MS(t)O( χ̊, χ̊,B). (3.58)

The point for calculation of the matching factor (3.57) isIGF(t), in other words, the one particle

irreducible vertex correction of the differenceO( χ, χ,B) − O(ψ,ψ,A). However, there are many

diagrams specific to the gradient flow. We can reduce some diagrams by using the background field

method. We will discuss it in the next section.

3.1.4 Background field method

To calculate the matching factor (3.57), we must consider the one particle irreducible vertex correc-

tion. Since the formal solution of the gauge field and the quark fields are recursive representation

the number of diagrams increases. Moreover, it is also difficult to evaluate the integration in gen-

eral. The background field method provides a way to reduce the number of diagrams to evaluate.

The background field method [63]-[67] is originally adopted for general field theory including

QCD. It improves the perspective of the perturbative calculation by separating the fields to back-

ground fields and quantum fields. Especially for QCD, the gauge fieldAµ and the quark fieldψ,ψ

are separated to

Aµ(x) = Âµ(x) + aµ(x), (3.59)

ψ(x) = ψ̂(x) + p(x), (3.60)

ψ(x) = ψ̂(x) + p(x). (3.61)

We denote the background fields asÂµ, ψ̂, ψ̂ and the quantum fields asaµ, p, p. In actual calcula-

tion, we can fix the background fields to some constant value and regard the quantum fields as the

integration variables for the path integral.
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Let us consider the flow time evolution of the each field[121]. From here on, we denote the flowed

background fields aŝBµ, χ̂, χ̂ and the flowed quantum fields asbµ, k, k. Of course, the sum of the

background and the quantum fields return to the original fields,

Bµ(x) = B̂µ(x) + bµ(x), (3.62)

χ(x) = χ̂(x) + k(x), (3.63)

χ(x) = χ̂(x) + k(x). (3.64)

We naturally assume that the background fields evolve along the form of original flow equation

with α0 = 0,

∂t B̂µ(t, x) = D̂νĜνµ(t, x) , B̂µ(t = 0, x) = Âµ(x), (3.65)

∂t χ̂(t, x) = D̂2 χ̂(t, x) , χ̂(t = 0, x) = ψ̂(x), (3.66)

∂t χ̂(t, x) = χ̂(t, x)
←̂−
D

2

, χ̂(t = 0, x) = ψ̂(x), (3.67)

where we defined that the field strength of the background field

Ĝµν (t, x) = ∂t B̂ν (t, x) − ∂t B̂µ(t, x) + [ B̂µ(t, x), B̂ν (t, x)], (3.68)

and the covariant derivative with the background field

D̂µ = ∂µ + [ B̂µ(t, x), · ] , (for gauge fields), (3.69)

D̂µ = ∂µ + B̂µ(t, x) , (for quark fields). (3.70)

Let us suppose that the background gauge fieldÂµ(x) satisfies the equation of motion,

D̂ν F̂νµ(x) = 0. (3.71)

In such situation, the background gauge field does not flow and we can write

B̂µ(t, x) = Âµ(x). (3.72)

The solutions for the background fermion flow also simplified as

χ̂(t, x) = et D̂2
ψ̂(x), (3.73)

χ̂(t, x) = ψ̂(x)et
←̂−
D

2

. (3.74)

The formal solutions for the background fields take greatly simple form, however, the quantum

field part must take more complicated structure.
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Because of the equations (3.62)-(3.64), the flow equations for the quantum fields must be remain-

ing part of the original flow equation as

∂tbµ(t, x) = {δµν D̂2 + (α0 − 1)D̂µD̂ν}bν (t, x) + 2[Ĝµν (t, x), bν (t, x)] + R̂µ(t, x), (3.75)

∂t k(t, x) =
{
D2 − α0D̂µbµ(t, x)

}
k(t, x)

+
{
(1− α0)D̂µbµ(t, x) + 2bµ(t, x)D̂µ + b2(t, x)

}
χ̂(t, x), (3.76)

∂t k(t, x) = k(t, x)
{←−
D2 + α0D̂µbµ(t, x)

}
+ χ̂(t, x)

{
−(1− α0)D̂µbµ(t, x) − 2

←̂−
Dµbµ(t, x) + b2(t, x)

}
, (3.77)

with the initial conditions,

bµ(t = 0, x) = aµ(x), (3.78)

k(t = 0, x) = p(x), (3.79)

k(t = 0, x) = p(x), (3.80)

where we defined the higher order term as

R̂µ(t, x) = +2[bν (t, x), D̂νbµ(t, x)] − [bν (t, x), D̂µbν (t, x)]

+(α0 − 1)[bµ(t, x), D̂νbν (t, x)] +
[
bν (t, x),

[
bν (t, x), bµ(t, x)

] ]
. (3.81)

Note that when we clearly indicate the color index the higher order term become

R̂a
µ(t, x) = 2 f abcbb

ν (t, x)D̂cd
ν bd

µ(t, x) − f abcbb
ν (t, x)D̂cd

µ bd
ν (t, x)

+ f abc f cdebb
ν (t, x)bd

ν (t, x)be
µ(t, x). (3.82)

We can construct the formal solution for these flow equations with the same assumption (3.71) and

the gauge fixingα0 = 1,

ba
µ(t, x) =

∫
dDy

{
Kab

t (x, y)µνa
b
ν (y) +

∫ t

0
ds Kab

t−s(x, y)µν R̂
b
ν (s, y)

}
, (3.83)

k(t, x) = et D̂2
p(x)

+

∫ t

0
ds e(t−s)D̂2 {

2bµ(s, x)D̂µ + b2(s, x)
} {

esD̂2
ψ̂(x) + k(s, x)

}
, (3.84)

k(t, x) = p(x)et
←̂−
D

2

+

∫ t

0
ds

{
ψ̂(x)es

←̂−
D

2

+ k(s, x)

} {
−2
←̂−
Dµbµ(s, x) + b2(s, x)

}
e(t−s)

←̂−
D

2

, (3.85)

where we defined the heat kernelKab
t (x, y) by

Kt (x, y) = et
{
D̂x+2F̂ (x)δ(x−y)

}
, (3.86)

D̂ab
µ = δab∂µ + B̂c

µ(t, x) f acb, (3.87)

F̂ ab
µν (x) = F̂c

µν (x) f acb. (3.88)
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In this section, we constructed the formal solutions for the background (3.72), (3.73), (3.74) and the

quantum flow equations (3.83), (3.84), (3.85). The results above will be used for the calculations

of bi-linear operators in the next section and the four fermion operators in the next chapter.
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3.2 Example : Fermion Bi-linear Operator

In this section, we will see two examples of the matching factor of fermion bi-linear operators

[120][123]. We deal with the axial vector current and the scalar density for the later convenience.

We will view the PCAC relation via evaluating the axial vector current and the pseudo scalar density

numerically in the section 3.5. At first, we evaluate the renormalization factor of the quark field

(3.44) which is necessary for the renormalization. Although the calculation is complicated, it will

be a good exercise for the gradient flow.

For the fermion bi-linear operators, the calculation itself has no difficulty, however, we must take

care to the infrared divergence. We will see that the order of the integration is sensitive. We will

discuss about them in the end of this section.

3.2.1 Quark field renormalization

As we mentioned, we must consider the renormalization of the field in the case of quarks. When

we choose the prescription,

χ̊(t, x) =
√
φ(t) χ(t, x), (3.89)

χ̊(t, x) =
√
φ(t) χ(t, x), (3.90)

φ(t) =
−6

(4π)2t2
⟨
χ(t, x)γµ

←→
D µ χ(t, x)

⟩ , (3.91)

we must evaluate the expectation value,⟨
χ(t, x)γµ

←→
D µ χ(t, x)

⟩
. (3.92)

We evaluate the expectation value (3.92) with one-loop perturbation. We set the gauge parameter

α0 = 1 for simplicity. As we did in the section 3.1.2, the flowed quark field can be decomposed

into

χ(t, x) =
∑

k=1,2,3,···
χk(t, x), (3.93)

χ1(t, x) =
∫

dDy Kt (x − y)ψ(y), (3.94)

χ2(t, x) =
∫

dDy

∫ t

0
ds Kt−s(x − y)2Bν,1(s, y)∂ν χ1(s, y), (3.95)

χ3(t, x) =
∫

dDy

∫ t

0
ds Kt−s(x − y)

(
2Bν,1(s, y)∂ν χ2(s, y) + Bν,1(s, y)Bν,1(s, y) χ1(s, y)

)
,

(3.96)

whereBµ,1 means the linear term of the flowed gauge field,

Bµ,1(t, x) =
∫

dDy Kt (x − y)Aµ(y), (3.97)
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andKt means the heat kernel,

Kt (x) =
∫

p
e−tp2

eipx =
e−x2/4t

(4πt)D/2
. (3.98)

The each term (3.94)-(3.96) can be diagrammatically represented as in the Figure 7. The heat

Figure 7: Diagrammatic representation of the flowed quark field.

kernel is pictured as a double line. By using these pictures, we can also describe the expectation

value (3.92) as in the Figure 8. Since the propagator of the linear term of the flowed gauge fields

can be calculated as⟨
Ba
µ,1(t, x)Bb

ν,1(s, y)
⟩
= 12

0
−e(t+s)∂2

x

∂2
x

δabδµνδ(x − y), (3.99)
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Figure 8: One loop diagrams for the quark renormalization factor.
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the each diagram in the Figure 8 are denoted as

D02 : (−ipµ)e−2tp2
SFν (p)SF ρ(p− l )SFσ (p)Gab

αβ (l )TaTbtr
[
γµγνγαγργβγσ

]
, (3.100)

D03 :
∫ t

0
ds(−ipµ)e−(t−s)p2

e−s(p−l )2
e−tp2

SFν (p)SFσ (p− l ) (3.101)

× (−2i (p− l )λ )Gab
ρλ (s,0; l )TaTbtr

[
γµγνγργσ

]
,

D04 :
∫ t

0
ds

∫ s

0
du(−ipµ)SFν (p)e−(t−s)p2

e−(s−u)(p−l )2
e−up2

e−tp2

× (−2i (p− l )ρ)(−2ipλ )Gab
ρλ (s,u; l )TaTbtr

[
γµγν

]
, (3.102)

D05 :
∫ t

0
ds

∫ t

0
du(−ipµ)SFν (p− l )e−(t−s)p2

e−(t−u)p2
e−(s+u)(p−l )2

× (−2i (p− l )ρ)(2i (p− l )σ)Gab
ρσ (s,u; l )TaTbtr

[
γµγν

]
, (3.103)

D06 :
∫ t

0
ds(−ipµ)SFν (p)e−(t−s)p2

e−sp2
e−tp2

Gab
ρρ(s,s; l )TaTbtr

[
γµγν

]
, (3.104)

D07 : e−tp2
e−tl2

e−t(p+l )2
SF ρ(p)SFλ (p+ l )Gab

µν (t,0; l )TaTbtr
[
γµγργνγλ

]
, (3.105)

D08 :
∫ t

0
ds e−(t−s)p2

e−(t+s)(p+l )2
(−2i (p− l )ρ)SFν (p+ l )Gab

µρ(t,s; l )TaTbtr
[
γµγν

]
,

(3.106)

with the quark and gluon propagator,

SFµ(l ) = −i
l µ
l2
, (3.107)

Gab
µν (t,s; l ) = 12

0e−(t+s)l2 1

l2
δabδµν . (3.108)
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Calculations specifically to the gradient flow are the internal momentum integral and the each ones

are denoted as

ID02 =

∫
l ,p

1

l2(p− l )2
e−2tp2

, (3.109)

ID03 =

∫
l ,p

∫ t

0
ds

1

l2
e−tp2

e−s(p−l )2
e−sl2e−(t−s)p2

(3.110)

ID04 =

∫
l ,p

∫ t

0
ds

∫ s

0
du

p · (p− l )

l2
e−(t−s)p2

e−(s−u)(p−l )2
e−up2

e−tp2
e−(s+u)l2

(3.111)

ID05 =

∫
l ,p

∫ t

0
ds

∫ t

0
du

p · (p− l )

l2
e−(t−s)p2

e−(t−u)p2
e−(s+u)(p−l )2

e−(s+u)l2
(3.112)

ID06 =

∫
l ,p

∫ t

0
ds

1

l2
e−(t−s)p2

e−sp2
e−tp2

e−2sl2 (3.113)

ID07(1) =

∫
l ,p

1

l2(p+ l )2
e−tp2

e−tl2
e−t(p+l )2

(3.114)

ID07(2) =

∫
l ,p

p·l
p2l2(p+ l )2

e−tp2
e−tl2

e−t(p+l )2
(3.115)

ID08 =

∫
l ,p

∫ t

0
ds

1

l2
e−(t−s)p2

e−(t+s)l2
e−(t+s)(p+l )2

. (3.116)

The each integrals are calculated as follows.

We use the Feynman parameter integral forID02.

ID02 =

∫
l ,p

∫ 1

0
dx

1{
(l − px)2 + x(1− x)p2}2

e−2tp2

=

∫
l ,p

∫ 1

0
dx

1{
l2 + x(1− x)p2}2

e−2tp2

=
Γ(2− D/2)

(4π)D/2

∫ 1

0
dx xD/2−2(1− x)D/2−1

∫
p

(
p2

)D/2−2
e−2tp2

=
1

2(2t)2(4π)4

{
1
ϵ
+ 2 log(8πt) + 1

}
, (3.117)

where we used the representation of the beta function

B(x, y) =
∫ 1

0
dx tx−1(1− t)y−1 =

Γ(x)Γ(y)
Γ(x + y)

. (3.118)
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The other integrals can be performed straightforwardly.

ID03 =

∫
l ,p

∫ t

0
ds

1

l2
e−2t(p− s

2t l )2

e
−
(
2s− s2

2t

)
l2

=
1

(2t)(4π)D

Γ(D/2− 1)
Γ(D/2)

∫ t

0
ds

(
4ts− s2

)1−D/2

=
2(2t)2−D

(4π)D

Γ(D/2− 1)
Γ(D/2)

22−D
∫ 1/4

0
dx

(
x − x2

)1−D/2

=
2(2t)2−D

(4π)D

Γ(D/2− 1)
Γ(D/2)

21−D
{∫ 1/4

0
dx

(
x − x2

)1−D/2
+

∫ 1

3/4
dx

(
x − x2

)1−D/2
}

=
2(2t)2−D

(4π)D

Γ(D/2− 1)
Γ(D/2)

21−D
{

B(ϵ, ϵ ) −
∫ 3/4

1/4
dx

1
x(1− x)

}
=

1

2(2t)2(4π)4

{
1
ϵ
+ 2 log(8πt) + 1+ 2 log(2) − log(3)

}
, (3.119)

where we replaceds = 4tx in the third line and took a limit

lim
ϵ→0

∫ 3/4

1/4
dx

(
x − x2

)1−D/2
. (3.120)

D04 and D05 do not diverge withϵ → 0.

ID04 =

∫
l ,p

∫ t

0
ds

∫ s

0
du

p · (p− l )

l2
e−2t(p− s−u

2t l )2

e
(s−u)2

2t l2
e−2sl2

=

∫
l ,p

∫ t

0
ds

∫ s

0
du

1

l2

{
p2 +

(s− u)(s− u− 2t)

4t2
l2

}
e−2tp2

e
(s−u)2

2t l2
e−2sl2

=
1

(2t)2(4π)4

∫ t

0
ds

∫ s

0
du

 2

4ts− (s− u)2
+

(s− u)(s− u− 2t){
4ts− (s− u)2}2


=

1

2(2t)2(4π)4

{
4 log(3) − 5 log(2)

}
, (3.121)

and

ID05 =

∫
l ,p

∫ t

0
ds

∫ t

0
du

p · (p− l )

l2
e−2t(p− s+u

2t l )2

e
(s+u)2

2t l2
e−2sl2

=

∫
l ,p

∫ t

0
ds

∫ t

0
du

1

l2

{
p2 +

(s+ u)(s+ u− 2t)

4t2
l2

}
e−2tp2

e
(s+u)2

2t l2
e−2sl2

=
1

(2t)2(4π)4

∫ t

0
ds

∫ t

0
du

[
2

(s+ u)(4t − s− u)
+

(s+ u)(s+ u− 2t)

{(s+ u)(4t − s− u)}2

]
=

1

4(2t)2(4π)4

{
12 log(2) − 5 log(3)

}
, (3.122)
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where we tookϵ → 0 in the middle.

D06 must be calculated on theD dimension, because it diverges as

ID06 =

∫
l ,p

∫ t

0
ds

1

l2
e−2tp2

e−2sl2

=
1

(4π)D

Γ(D/2− 1)
Γ(D/2)

∫ t

0
ds (2t)−D/2(2s)1−D/2

=
(2t)2−D

(4π)D

Γ(D/2− 1)
Γ(D/2)

∫ 1

0
dx x1−D/2

=
1

(2t)2(4π)4

{
1
ϵ
+ 2 log(8πt) + 1

}
. (3.123)

D07 and D08 do not also diverge.

ID07(1) =

∫
l ,p

∫ ∞

0
dα

1

l2
e−tp2

e−tl2
e−(t+α)(p+l )2

=
1

(4π)4

∫ ∞

0
dα

1
2t + α

1

3t2 + 2tα

=
1

t2(4π)4

{
2 log(2) − log(3)

}
, (3.124)

and

ID07(2) =

∫
l ,p

∫ ∞

0
dαdβ

p·l
l2

e−(t+β)p2
e−tl2

e−(t+α)(p+l )2

=
−1

(4π)4

∫ ∞

0
dαdβ

t + α
2t + α + β

1{
3t2 + 2t(α + β) + αβ

}2

=
−1

2t2(4π)4

{
2 log(2) − log(3)

}
, (3.125)

and

ID08 =

∫
l ,p

∫ t

0
ds

1

l2
e−2tp2

e−
3t2−s2+2t s

2t l2

=
1

(4π)4

∫ t

0
ds

1
2t

1

3t2 + 2ts

=
1

4t2(4π)4
log(3). (3.126)
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Combining them with the spinor factor, we have

D02 : −1
ϵ
− 2 log(8πt), (3.127)

D03 : 2
1
ϵ
+ 4 log(8πt) + 2+ 4 log 2− 2 log 3, (3.128)

D04 : −20 log(2) + 16 log(3), (3.129)

D05 : 12 log(2) − 5 log(3), (3.130)

D06 : −4
1
ϵ
− 8 log(8πt) − 2, (3.131)

D07 : 8 log(2) − 4 log(3), (3.132)

D08 : −2 log(3), (3.133)

in the unit of

−8Nf

(4π)2t2

12
0

(4π)2

N2 − 1
2N

. (3.134)

Finally, we obtain that

φ(t) = (8πt)−ϵ
{

1+
12

(4π)2

N2 − 1
2N

(
3
ϵ
+ 3 log(8πµ2t) − log (432)

)}
. (3.135)

3.2.2 Axial vector current

We evaluate the matching factor for the axial vector current in this section. This time, we will use

the background field method. The formal solutions for the background are (3.72), (3.73), (3.74)

and for the quantum flow equations are (3.83), (3.84), (3.85). Since we can freely choose the

background fields we set the gauge field to be 0 and the quark fields to be constant,

B̂(t, x) = Â(x) = 0, (3.136)

χ̂(t, x) = ψ̂(x) = (const.), (3.137)

χ̂(t, x) = ψ̂(x) = (const.). (3.138)

According to the small flow time expansion method, it is important to calculate the expansion

coefficient IGF, in other words, the one particle irreducible vertex correction of the difference

O( χ, χ,B) − O(ψ,ψ,A). Since we are using the background field method the coefficient IGF will

appear as ⟨
χ(t)γµγ5T

a χ(t) − ψγµγ5T
aψ

⟩
1PI
= IGF(t)ψ̂γµγ5T

aψ̂. (3.139)

We evaluate (3.139) in the one-loop order. It is enough to consider the quantum quark fields as

k(t, x) ∼ et∂2
p(x) +

∫ t

0
ds e(t−s)∂2 (

b2(s, x)ψ̂ + 2bµ(s, x)∂µe
s∂2

p(x)
)
, (3.140)

k(t, x) ∼ p(x) et
←−
∂ 2
+

∫ t

0
ds

(
ψ̂b2(s, x) − 2p(x) es

←−
∂ 2←−
∂ µbµ(s, x)

)
e(t−s)

←−
∂ 2
. (3.141)
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With the same conditions, the propagator of the gauge field is evaluated as⟨
ba
µ(t, x)bb

ν (s, y)
⟩
∼ 12

0
−e(t+s)∂2

x

∂2
x

δabδµνδ(x − y). (3.142)

By using these representations (3.140)-(3.142), we can calculate the left hand side of the (3.139),

diagramatically it is described as in the Figure 9. We denoted the QCD quark-gluon vertex as the

Figure 9: One loop diagrams for the fermion bi-linear operators.

black solid point and the flowed vertex as the white solid point. The heat kernel of the gradient flow

is described by the double line. When we set the all of the external momentum to 0 the diagrams

(d), (e) and ( f ) in the Figure 9 are vanished, because, the each diagrams are proportional to the

external momentum. The other diagrams can be expressed as

(a) :
∫

l
ψ̂Vb

1νγργµγ5T
aγλV

c
1σψ̂

(
e−2tl2 − 1

)
SF ρ(l )SFλ (l )Gbc

νσ (l ), (3.143)

(b) : 2
∫ t

0
ds

∫
l
ψ̂γµγ5T

a(−il ν)TbγλV
c
1ρψ̂e−sl2SFλ (l )Gbc

νρ(s.0; l ), (3.144)

(c) :
∫ t

0
ds

∫
l
ψ̂γµγ5T

aTbTcψ̂Gbc
νν (s,s; l ), (3.145)

where we used the symbols below,

SFµ(l ) = −i
l µ
l2
, (3.146)

Va
1µ = γµT

a, (3.147)

Gab
µν (t,s; l ) = 12

0e−(t+s)l2 1

l2
δabδµν . (3.148)
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Note that when we calculate the diagram(a) (3.143) we must replace

e−2tl2 − 1 = −2l2
∫ t

0
ds e−2sl2, (3.149)

and perform the internal momentum integration first. This procedure is related to the infrared

divergence, and we will discuss about them in the section 3.2.4. Anywhere, the contribution from

the diagram(a) become

(a) :
∫ t

0
ds

∫
l
ψ̂Vb

1νγργµγ5T
aγλV

c
1σψ̂(−2l2)e−2sl2SF ρ(l )SFλ (l )Gbc

νσ (l ). (3.150)

Since the form of the internal momentum integrals are same it is enough to consider that∫
dD l

(2π)D

1

l2
e−tl2

=
t1−D/2

(4π)D/2

Γ(D/2− 1)
Γ(D/2)

, (3.151)

and we obtain that

(a) :
12

0

(4π)2

N2 − 1
2N

(−1)

{
1
ϵ
+ log(8πt) +

7
2

}
ψ̂γµγ5T

aψ̂, (3.152)

(b) :
12

0

(4π)2

N2 − 1
2N

(+2)

{
1
ϵ
+ log(8πt) + 1

}
ψ̂γµγ5T

aψ̂, (3.153)

(c) :
12

0

(4π)2

N2 − 1
2N

(−4)

{
1
ϵ
+ log(8πt) +

1
2

}
ψ̂γµγ5T

aψ̂. (3.154)

Therefore, the coefficient of the small flow time expansion become

IGF(t) =
12

0

(4π)2

N2 − 1
2N

(−3)

{
1
ϵ
+ log(8πt) +

7
6

}
. (3.155)

Since the axial vector current does not require the renormalization this ultraviolet divergence will

be canceled by the quark field strength renormalization. In reality, because of the small flow time

expansion

χ̊(t)γµγ5T
a χ̊(t) =

{
1+

12

(4π)2

N2 − 1
2N

(
7
2
− log(432)

)}
ψγµγ5T

aψ, (3.156)

for the small flow time. To obtain the relation (3.156), we used the renormalization of the coupling

constant

1
2
0 = µ

2ϵ
1

2. (3.157)

Comparing with theMS renormalized operator [119],{
ψγµγ5T

aψ
}

MS
=

{
1+

12

(4π)2

N2 − 1
2N

(−4)

}
ψγµγ5T

aψ, (3.158)
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we obtain the matching factor as

ZGF→MS(t)axial = 1+
12

(4π)2

N2 − 1
2N

(
−1

2
+ log(432)

)
. (3.159)

We can also replace the coupling constant1 by the running coupling constant1(q), because the

matching factor (3.159) is independent of the renormalization group flow as discussed in [120].

Moreover, we can set the scaleq = 1/
√

8t and obtain

ZGF→MS(t)axial = 1+
1(1/

√
8t)2

(4π)2

N2 − 1
2N

(
−1

2
+ log(432)

)
. (3.160)

3.2.3 Pseudo scalar density

In the previous section, we saw the matching factor of the axial vector current. Since it does not

require the renormalization there is no divergence derived fromϵ . In this section, we will consider

the pseudo scalar density. We can see the mechanism of the renormalization well, since the pseudo

scalar density requires the renormalization.⟨
χ(t)γ5T

a χ(t) − ψγ5T
aψ

⟩
1PI
= IGF(t)ψ̂γ5T

aψ̂. (3.161)

The Feynman diagrams take the same form of the axial vector current. At this time, non-zero

contributions from the each diagram of the Figure 9 can be represented as

(a) :
∫

l
ψ̂Vb

1νγργ5T
aγλV

c
1σψ̂

(
e−2tl2 − 1

)
SF ρ(l )SFλ (l )Gbc

νσ (l ), (3.162)

(b) : 2
∫ t

0
ds

∫
l
ψ̂γ5T

a(−il ν)TbγλV
c
1ρψ̂e−sl2SFλ (l )Gbc

νρ(s.0; l ), (3.163)

(c) :
∫ t

0
ds

∫
l
ψ̂γ5T

aTbTcψ̂Gbc
νν (s,s; l ). (3.164)

We can see that the internal momentum integral is same with the previous one and the difference

comes from the spinor index. The results are

(a) :
12

0

(4π)2

N2 − 1
2N

(−4)

{
1
ϵ
+ log(8πt) +

1
2

}
ψ̂γ5T

aψ̂, (3.165)

(b) :
12

0

(4π)2

N2 − 1
2N

(+2)

{
1
ϵ
+ log(8πt) + 1

}
ψ̂γ5T

aψ̂, (3.166)

(c) :
12

0

(4π)2

N2 − 1
2N

(−4)

{
1
ϵ
+ log(8πt) +

1
2

}
ψ̂γ5T

aψ̂. (3.167)

The result of the diagram(b) and (c) are not changed. It can be considered that the diagram(b)

and (c) belong to the self energy part, in other words, the field strength renormalization and the
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diagram(a) is a composite type contribution of the operator. Combining them with the quark field

renormalization, we obtain the coefficient

IGF(t) =
12

0

(4π)2

N2 − 1
2N

(−6)

{
1
ϵ
+ log(8πt) +

4
3

}
. (3.168)

and the relation

χ̊(t)γ5T
a χ̊(t) =

{
1+

12

(4π)2

N2 − 1
2N

(
−3
ϵ
− 3 log(8πµ2t) − 2− log(432)

)}
ψγ5T

aψ. (3.169)

We again compare with theMS renormalized operator,{
ψγ5T

aψ
}

MS
=

{
1+

12

(4π)2

N2 − 1
2N

(
−3
ϵ
+ 3γ − 3 log(4π) + 4

)}
ψγ5T

aψ, (3.170)

and we have

ZGF→MS(t)pseudo= 1+
12

(4π)2

N2 − 1
2N

{
3 log(8tµ2) + 3γ − 2 log(2) + 6+ log(432)

}
. (3.171)

When we set the scaleq = 1/
√

8t,

ZGF→MS(t)pseudo= 1+
1(1/

√
8t)2

(4π)2

N2 − 1
2N

{
3γ − 6 log(2) + 6+ log(432)

} m(1/
√

8t)
m

. (3.172)

Note that we add the factorm(1/
√

8t)/m to the matching factor to apply the renormalization group

argument.

We can see that the divergence of the flowed operator (3.169) is canceled by the operator renor-

malization (3.170). Therefore, the gradient flow scheme and theMS scheme are connected by the

finite renormalization.

3.2.4 Infrared divergence

In the previous sections, we put off the discussion about the infrared divergence. We considered the

subtraction between the flowed operator and the bare operator. The meaning of this representation

is thate2tl2 − 1 is rewritten by an integration of the flow time,

e−2tl2 − 1 = −2l2
∫ t

0
ds e−2sl2. (3.173)

This replacement cares the infrared divergence and we will see it directly by introducing a gluon

mass to the propagator. Such evaluation appears in the Figure 9. and the integration of the internal

momentum is given by ∫
l

1

l2(l2 + λ2)

(
e−2tl2 − 1

)
, (3.174)
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where we introduced the gluon massλ > 0. We can show that∫
l

1

l2(l2 + λ2)
e−2tl2

=
1

(4π)2

{
− log

(
2tλ2

)
− γ

}
, (3.175)∫

l

1

l2(l2 + λ2)
=

1

(4π)2

{
1
ϵ
− γ + log

(
4π

λ2

)
+ 1

}
. (3.176)

Since the second equation (3.176) is easy, let us proof the first one (3.175)∫
l

1

l2(l2 + λ2)
e−2tl2

=

∫
l

∫ ∞

0
dα

1

l2
e−2tl2

e−α(l2+λ2)

=
1

(4π)D/2

Γ(D/2− 1)
Γ(D/2)

λD−4
∫ ∞

0
dα (α + 2tλ2)1−D/2e−α

=
1

(4π)D/2

1
1− ϵ λ

−2ϵ e2tλ2 (
Γ(ϵ ) − γ(ϵ, 2tλ2)

)
, (3.177)

whereγ(z,p) means a lower incomplete gamma function which is defined by

γ(z,p) :=
∫ p

0
dx xz−1e−x. (3.178)

We know the power series expansion of it. (3.178) is expanded as

γ(z,p) = e−p
∞∑

n=0

pz+n

z(z+ 1) · · · (z+ n)
. (3.179)

Using equation (3.179), we obtain that∫
l

1

l2(l2 + λ2)
e−2tl2

=
1

(4π)2

(
−γ − log (2tλ2)

)
. (3.180)

When we consider the subtraction between these two integrations above, the infrared divergence

log(λ2) is just canceled out.

As we mentioned that ∫ t

0
ds

∫
l

1

l2
e−2sl2 ,

∫
l

∫ t

0
ds

1

l2
e−2sl2, (3.181)

because the right hand side is ill-defined. However, we can proof that∫ t

0
ds

∫
l

1

l2 + λ2
e−2sl2 =

∫
l

∫ t

0
ds

1

l2 + λ2
e−2sl2. (3.182)

Since we calculated the right hand side of (3.182) we must calculate the left hand side of (3.182),∫ t

0
ds

∫
l

1

l2 + λ2
e−2sl2 =

1

(4π)D/2
λD−2

∫ ∞

0
dα

∫ t

0
ds(α + 2sλ2)−D/2e−α

=
1

2(4π)2

(
4π

λ2

) ϵ
(1+ ϵ )

∫ ∞

0
dα

{
(α + 2tλ2)1−D/2 − α1−D/2

}
e−α

=
−1

2(4π)2

(
4π

λ2

) ϵ
(1+ ϵ )

(
1
ϵ
+ log (2tλ2)

)
=

−1

2(4π)2

(
1
ϵ
+ log (8πt) + 1

)
. (3.183)
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It is just the right hand side of (3.182). In other words, we can exchange the gluon mass to 0 limit

and the internal momentum integral on the left hand side of (3.182),

lim
λ→0

∫ t

0
ds

∫
l

1

l2 + λ2
e−2sl2 =

∫ t

0
ds

∫
l
lim
λ→0

1

l2 + λ2
e−2sl2, (3.184)

while cannot exchange them in the right hand side of (3.182),

lim
λ→0

∫
l

∫ t

0
ds

1

l2 + λ2
e−2sl2 ,

∫
l
lim
λ→0

∫ t

0
ds

1

l2 + λ2
e−2sl2.. (3.185)

This result shows that the gluon massλ correctly cares the infrared divergence, in other words,

the right hand side of (3.181) is contaminated by the infrared divergence. Moreover, it is empha-

sized that we can evaluate the integration (3.175) in four dimensional space time because it has no

divergence derived fromϵ . This property will be helpful for the calculation of the Penguin diagram

in the section 4.2.

As the end of this section, let us calculate the renormalization factor of the quark field with the

gluon mass. We will confirm that the gluon mass does not contribute to the renormalization fac-

tor10. There is no need to calculate the diagramsD04, D05, D07 andD08 in the Figure 8, because

they do not have divergence originally. The other diagrams are denoted as

D02 : (−ipµ)e−2tp2
SFν (p)SF ρ(p− l )SFσ (p)Gab

αβ (l )TaTbtr
[
γµγνγαγργβγσ

]
, (3.186)

D03 :
∫ t

0
ds(−ipµ)e−(t−s)p2

e−s(p−l )2
e−tp2

SFν (p)SFσ (p− l ) (3.187)

×(−2i (p− l )λ )Gab
ρλ (s,0; l )TaTbtr

[
γµγνγργσ

]
,

D06 :
∫ t

0
ds(−ipµ)SFν (p)e−(t−s)p2

e−sp2
e−tp2

Gab
ρρ(s,s; l )TaTbtr

[
γµγν

]
, (3.188)

where we denote the gluon propagator including the gluon mass as

Gab
µν (s, t; l ) =

12
0

l2 + λ2
e−(s+t)l2

δabδµν . (3.189)

We can see that integration of the internal momentuml of the diagramD06 does not suffer from

the infrared divergence, and we can remove the gluon massλ from this calculation.

D06 : −4
1
ϵ
− 8 log(8πt) − 2 (3.190)

The diagramsD02 andD03 need the gluon mass, and the form of their momentum integration can

be written as

D02 :
∫

p,l

p · (p− l )

p2 (p− l )2

1

l2 + λ2
e−2tp2

, (3.191)

D03 :
∫

p,l

∫ t

0
ds

1

l2 + λ2
e−s(p−l )2

e−tp2
e−sl2. (3.192)

10One can skip the calculation (3.186)-(3.208), since it is just a confirmation.
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Let us evaluate eq.(3.191) first. We can decompose the integrand as

p · (p− l )

p2 (p− l2)
=

1
2

{
1

p2
+

1

(p− l )2
− l2

p2(p− l )2
− 1

l2
+

1

l2

}
. (3.193)

We added 0= l−2 − l−2 for later calculation. We can evaluate that∫
p,l

{
1

(p− l )2
− 1

l2

}
1

l2 + λ2
e−2tp2

, (3.194)

in four dimensional space time, because they do not have a divergence derived fromϵ

lim
ϵ→0

∫
p,l∈RD

{
1

(p− l )2
− 1

l2

}
1

l2 + λ2
e−2tp2

=

∫
p,l∈R4

{
1

(p− l )2
− 1

l2

}
1

l2 + λ2
e−2tp2

. (3.195)

When we integrate out the internal momentump, we get∫
p,l∈R4

1

l2

1

l2 + λ2
e−2tp2

=
1

(4π)2

1

(2t)2

∫
l

1

l2(l2 + λ2)
(3.196)

and ∫
p,l∈R4

1

(p− l )2

1

l2 + λ2
e−2tp2

=

∫
p,l

∫ ∞

0
dα e−α(p−l )2 1

l2 + λ2
e−2tp2

=
1

(4π)2

∫
l

∫ ∞

0
dα

1

(α + 2t)2
e−

2tα
α+2t l2

=
1

(4π)2(2t)2

∫
l

1− e−2tl2

l2(l2 + λ2)
. (3.197)

The other integration must be done inD = 4− 2ϵ dimension, however, we can show that

lim
λ→0

∫
p,l∈RD

{
1

p2
− l2

p2(p− l )2

}
1

l2 + λ2
e−2tp2

=

∫
p,l∈RD

{
1

p2 l2
− 1

p2(p− l )2

}
e−2tp2

= 0. (3.198)

To sum up eq.(3.196) to eq.(3.198), we obtain∫
p,l

{
1

p2
+

1

(p− l )2
− l2

p2(p− l )2
− 1

l2

}
1

l2 + λ2
e−2tp2

=
1

(4π)2(2t)2

∫
l

−1

l2(l2 + λ2)
e−2tl2

=
1

(4π)4(2t)2

(
γ + log (2tλ2)

)
. (3.199)

It does not diverge inϵ → 0 limit. The last integration is∫
p,l

1

l2(l2 + λ2)
e−2tp2

=
1

(4π)4(2t)2

(
1
ϵ
− γ + log

(
2t(4π)2

λ2

)
+ 1

)
. (3.200)
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Finally, we have

D02 : −1
ϵ
− 2 log(8πt). (3.201)

Therefore, the diagramD02 is not changed by introducing the gluon mass. One may be wondering

that there is arbitrariness in how to make 0 like

0 =
1+ ϵ

l2
− 1+ ϵ

l2
, (3.202)

however, we can show that such construction makes obvious cancellation. In particular,

lim
ϵ→0

∫
p,l∈RD

{
1

(p− l )2
− 1+ ϵ

l2

}
1

l2 + λ2
e−2tp2

,
∫

p,l∈R4

{
1

(p− l )2
− 1

l2

}
1

l2 + λ2
e−2tp2

. (3.203)

We evaluatep integration inD = 4− 2ϵ dimension at this time,∫
p,l∈RD

{
1

(p− l )2
− 1

l2

}
1

l2 + λ2
e−2tp2

=

∫
p,l∈RD

∫ ∞

0
dα

{
e−α(p−l )2 − e−αl2} 1

l2 + λ2
e−2tp2

=

∫
l∈RD

∫ ∞

0
dα

{
1

(α + 2t)2−ϵ e−
2tα
α+2t l2 − 1

(2t)2−ϵ e−αl2
}

1

l2 + λ2
. (3.204)

It is hard to evaluate this integration, however, we can discuss whether the integrand is bounded.

The most dangerous area is whereα = 0 and the integrand become 0 in there. If we choose an

equation (3.202) we cannot exchange the limit and the integration.

Let us evaluate the diagramD03 throughout equation (3.192).∫
p,l

∫ t

0
ds

1

l2 + λ2
e−s(p−l )2

e−tp2
e−sl2

=
1

(4π)2−ϵ (2t)2−ϵ

∫
p,l

∫ t

0
ds

1

l2 + λ2
e
−
(
2s− s2

2t

)
l2

=
1

(4π)2−ϵ (2t)2−ϵ

∫
l

1

l2 + λ2

{
1

2l2

(
1− e−

3
2tl2

)
+

∫ t

0
ds

s
2t

e
−
(
2s− s2

2t

)
l2
}
, (3.205)

where we used an integration by parts. In the second term, the divergence is suppressed because

the integrand is vanishing ats = 0. We can evaluate it as∫
l

∫ t

0
ds

s
2t

1

l2
e
−
(
2s− s2

2t

)
=

1

(4π)2
log

(
4
3

)
. (3.206)
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The first term will be

1

(4π)2−ϵ (2t)2−ϵ

∫
l

1

2l2(l2 + λ2)

(
1− e−

3
2tl2

)
=

1

2(4π)4(2t)2

(
1
ϵ
+ 2 log(8πt) + 1− log

(
4
3

))
. (3.207)

Therefore, there is no change with the gluon mass and we have again

Zχ = 1+
12

0

(4π)2

N2 − 1
2N

(
3
ϵ
+ 6 log(8πt) − log (432)

)
. (3.208)
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3.3 Hadronic Observables

In the previous sections, we reviewed the theoretical system of the gradient flow and discussed

about some examples. The point is that the gradient flow can be dealt as a renormalization scheme.

Gradient flow is more effective combining it with the lattice calculation. When we calculate some

operator using the gradient flow on the lattice, the result is automatically renormalized in the gradi-

ent flow scheme. Since what we need to calculate is the operator renormalized in theMS scheme,

we must multiply the matching factor to the numerical result.

We will discuss the numerical procedure of such operation at first. We must take care to the

two important points. One is taking the Wick contraction, and one is extracting of flow time zero

limit. Such discussions are given in the next section. After that, we will calculate mass and decay

constant of mesons, which are practical examples of the lattice calculation.

3.3.1 Computational procedure on the lattice

In this section, we will review the computational procedure of the lattice simulation combining

with the gradient flow. Since there are no differences about Hybrid Monte Carlo simulation we can

use the existing configurations. We will discuss about two issues for applying the gradient flow

method to the lattice simulation. One is that the gauge field is defined on the link of the lattice. We

must rewrite the flow equation in terms of the link variable. The other one is caused by the fact

that the integration of the quark field is already performed, in other words, the quark field does not

explicitly appear in the lattice simulation. The flow equation of the quark field will be taken over

by the flow kernel.

In the lattice simulation, gauge field is put on the link and defined via the link variable,

Uµ(x) = ei10Aµ (x+µ̂/2) . (3.209)

Therefore, we must consider the flow equation11 with respect to the link variable. According to the

flow equation for the gauge field,

∂t Bµ(t, x) = DνGνµ(t, x), Bµ(t = 0, x) = Aµ(x), (3.210)

Gµν (t, x) = ∂µBν (t, x) − ∂νBµ(t, x) + [Bµ(t, x), Bν (t, x)], (3.211)

Dµ = ∂µ + [Bµ(t, x), ·], (3.212)

we obtain that (
∂tVµ(t, x)

)
V−1
µ = −12

0∂x,µSw (V), Vµ(t = 0, x) = Uµ(x), (3.213)

where we defined the plaquette actionSw

Sw (U) =
1

12
0

∑
x

Re tr
[
Uµ(x)Uν (x + µ̂)U†µ (x + ν̂)U†ν (x)

]
, (3.214)

11Convenient choice of the gauge parameter isα0 = 0 for numerical studies.
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and its differential

∂x,µ f (U) = Ta d
ds

f
(
esXU

)
, X(y, ν)


Ta (y, ν) = (x, µ),

0 otherwise.
(3.215)

When we rewrite the flow equations (3.213) as

∂tVt = Z(Vt )Vt , (3.216)

one suspect that the equation (3.216) can be solved by using the Runge-Kutta method. The Runge-

Kutta method gives an approximate solution of a diffusion equation. In generally, let us consider

d
dt
y(t) = F (t, y), y(t0) = y0. (3.217)

Thes stage approximate solution is

yn+1 = yn + h
s∑

i=1

bi ki , (3.218)

ki = f *.,tn + ci h, yn + h
i−1∑
j=1

ai j k j
+/- , (3.219)

where the coefficientsa, b, c are defined by Butcher tableau.

However, we must solve the diffusion equation (3.216) which is defined on the Lie group. The

approximate solutions also must belong to the Lie group. Such techniques are suggested in [77]

and [78]. Lüscher constructed the solutions for these equations. According to [34],

W0 = Vt , (3.220)

W1 = exp

(
1
4

Z0

)
W0, (3.221)

W2 = exp

(
8
9

Z1 −
17
36

Z0

)
W1, (3.222)

W3 = exp

(
3
4

Z2 −
8
9

Z1 +
17
36

Z0

)
W2, (3.223)

Zi = ϵZ(Wi ), i = 0, 1, 2. (3.224)

The flow time evolution is

Vt+ϵ =W3 + O(ϵ4). (3.225)

The flowed quark field emerges via the propagator on the lattice. We must take care that the flowed

propagator is not defined through the inverse of the flowed Dirac operator

χf (t) χf (t) , {D(t) +m}−1 . (3.226)
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To see the correct representation, let us consider the flow equation for the quark field with flavor

f = u, d, s.

∂t χf (t, x) = ∆χf (t, x), χf (t = 0, x) = ψ f (x), (3.227)

∂t χf (t, x) = χf (t, x)
←−
∆ , χf (t = 0, x) = ψ f (x), (3.228)

where we denote

∆χf (t, x) = DµDµ χ(t, x), (3.229)

χf (t, x)
←−
∆ = χf (t, x)

←−
Dµ
←−
Dµ, (3.230)

Dµ χf (t, x) =
(
∂µ + Bµ(t, x)

)
χf (t, x), (3.231)

χf (t, x)
←−
Dµ = χf (t, x)

(←−
∂ µ − Bµ(t, x)

)
. (3.232)

When we describe solutions of the flow equation

χf (t, x) =
∑
y

K (t, x; 0, y)ψ(y), (3.233)

χf (t, x) =
∑
y

ψ(y)K (t, x; 0, y)†, (3.234)

the flow kernelK (t, x; s, y), (s ≤ t) satisfies flow equation

(∂t − ∆x) K (t, x; s, y) = 0, K (t, x; t, y) = δx,y,, (3.235)

K (t, x; s, y)†
(←−
∂ t −

←−
∆ x

)
= 0, K (t, x; t, y)† = δx,y, (3.236)

and adjoint flow equation

K (t, x; s, y)
(←−
∂ s −

←−
∆ y

)
= 0, (3.237)(

∂s − ∆y
)

K (t, x; s, y)† = 0. (3.238)

We can obtain the correct quark propagator

χf (t, x) χf (s, y) =
∑
v,w

K (t, x; 0,v)
(
Sf (v,w) − cflδv,w

)
K (s, y; 0,w)†, (3.239)

whereSf (x, y) means the quark propagator with bare massm0 f and satisfies(
Dµγµ +m0 f

)
Sf (x, y) = 0. (3.240)

The term including the coefficientcfl means aO(a) improvement of the Green’s function and it is

given at tree level perturbation as

cfl =
1
2
. (3.241)
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Finally, let us see the expectation value of the axial vector current as an example. The axial vector

current at flow timet is given by

Aa
µ,f (t, x) = cA(t)φf (t) χf (t, x)γµγ5T

a χf (t, x), (3.242)

where we denote the matching factor ascA(t) and the renormalization factor of the quark fieldχf (t)

asφf (t) which is defined by

φf (t) =
−6

(4π)2t2
⟨
χ f (t, x)γµ

←→
D µ χ(t, x)

⟩ , ←→
D µ = Dµ −

←−
Dµ. (3.243)

In the section 3.2.1, we calculated the matching factorcA(t) as

cA(t) = 1+
1

2(
√

1/8t)

(4π)2

N2 − 1
2N

(
−1

2
+ log (432)

)
. (3.244)

We can estimate (3.244) numerically by using Mathematica, and some instance are listed in the

Table 112. We set theMS reference scale to 2GeV.

flow time t cA(t) flow time cA(t)

0.1 1.1413035695042353 1.1 1.2954060122014912

0.2 1.1644982623865360 1.2 1.3098832143525223

0.3 1.1825307239391032 1.3 1.3249219203188570

0.4 1.1983333490997918 1.4 1.3406632095394684

0.5 1.2129577533829257 1.5 1.3572681120862948

0.6 1.2269285984453740 1.6 1.3749271524269420

0.7 1.2405611222968254 1.7 1.3938730705716695

0.8 1.2540716233799060 1.8 1.4143988648626418

0.9 1.2676254449909745 1.9 1.4368847146685473

1.0 1.2813613936858140 2.0 1.4618401155811900

Table 1: Matching factor of the axial vector current.

The expectation value of the axial vector current is⟨
Aµ,f (t, x)

⟩
= −cA(t, µ)φf (t)tr

[
γµγ5χf (t, x) χf (t, x)

]
= −cA(t, µ)φf (t)

∑
v,w

tr
[
γµγ5K (t, x; 0,v)

(
Sf (v,w) − cflδv,w

)
K (t, x; 0,w)†

]
. (3.245)

12we set the bare gauge couplingβ = 2.05.
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The renormalization factor (3.243) is estimated within almost the same manner. In practice, we

must take the zero flow time limit after taking the continuum limit, because there areO(t) terms in

the expression (3.242). In principle, we can expand the perturbative calculation to higher order and

such improvement will be helpful to take the zero flow time limit. Two loop calculation and more

detailed discussion can be shown in the [58].

In this section, we briefly reviewed the numerical procedure of the gradient flow method and the

construction of the axial vector current as an example. We will proceed to concrete calculation in

the next section.

3.3.2 Meson mass

The most easiest calculation of lattice QCD is the calculation of pion mass, since it does not need

a renormalization. Therefore, if we calculate the pion mass with the gradient flow, it does not de-

pend on the flow time. It will be a first check of our numerical procedure discussed in the previous

section. We will calculate masses of pion, kaon,ρ meson,ηss meson andϕ meson as an exercise.

We use (2+1) flavor gauge configurations generated in [104], and the number of configura-

tions is 65. Bare gauge coupling is set toβ = 2.05 and hopping parameter of each quarks are

κu = κd = 0.1356, κs = 0.1351, which corresponds toa = 0.0701(29)fm. The Lattice size is

283 × 56. The fermion action isO(a) improved Wilson-clover action[105] and the gauge action is

renormalization group improved Iwasaki gauge action. The reference scale of renormalization is

fixed toµ = 2GeV. Our purpose of this section is reproduction of the original resultsmπ/mρ ∼ 0.63

andmηss/mϕ ∼ 0.73.

At first, we evaluate pion mass with periodic boundary condition. It is calculated via the correla-

tion function of

Pa(x⃗, t) = ψ( x⃗, t)γ5T
aψ( x⃗, t). (3.246)

Under the periodic boundary condition, the expectation value of some operatorO is defined by

⟨O⟩PBC =
∑

n

⟨
n|O eiHT |n

⟩
, (3.247)

Where|n⟩ means some complete set andT means temporal size of the lattice. Combining with the

fact that

1l = |0⟩ ⟨0| +
∑

k:one particle state

∫
d3p

(2π)3
��Ek(p⃗)

⟩ ⟨
Ek(p⃗)�� 1

2Ek(p⃗)

+(contribution from multi particle state),(3.248)
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we obtain the representation of the correlation function as

G(t) :=
∑

x⃗

⟨
P(0⃗,0)P(x⃗, t)

⟩
PBC

=
∑

k:one particle state

| < 0|P(0) |Ek(0⃗) > |2
2mk

(
e−mk t + e−mk (T−t)

)
+ (multi particle state).

(3.249)

When we taket enough large,t → T/2, contribution from the lightest particle become relevant,

and we obtain

G(t) ∼ | < 0|P(0) |Eπ (0⃗) > |2
mπ

e−mπT/2 cosh(mπ (t − T/2)), (3.250)

and

mπ = cosh−1
(
G(t + 1) +G(t − 1)

2G(t)

)
. (3.251)

We present the correlation functionG(t) for several flow time in the Figure 10. The difference of

color means the difference of the flow time. The red, green and blue data meanG(t) at dimension-

less flow timet/a2 = 0.1, 1.0 and 2.0. We can see that the value itself is different, however, the

slope seems to be constant for each flow time.

Figure 11 describes the flow time dependence of pion mass. As we expected, the pion mass does

not depend on the flow time, since the pion mass is not effected by the renormalization. We can

realize that the gradient flow slightly improves the errors of the meson mass, because the gradient

flow plays a role of smearing for the each field.

Figure 10: Correlation functionG(t) for several flow time.
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Figure 11: Flow time dependence of pion mass.

The mass of the other meson can be calculated with almost the same manner. We summarize

the meson mass in the Table 2. We estimated the mass of the pseudo scalar particle, pion, kaon,

ηss meson, and vector meson,ρmeson,ϕ meson. Our results reproduce the original one,mπ/mρ ∼
0.63 andmηss/mϕ ∼ 0.73. We also estimate the kaon mass which is necessary for the calculation

of bag parameter.

meson mass[MeV]

π 630.2(4.7)

K 731.7(4.8)

ρ 975.7(54.1)

ηss 823.6(4.7)

ϕ 1125.0(28.3)

Table 2: Estimation of meson masses.

The gradient flow is greatly convenient method for the lattice QCD calculation, however, we

need extreme caution for the each calculation. Especially for the Wick contraction of the flowed

quark field (3.239), contraction must be taken at zero flow time. Our first estimates above are first

check of validity.

3.3.3 Decay constant

We can also calculate the decay constant with the gradient flow. Historically, decay constant of a

lot of particle have been measured[115]-[118] and such calculation will become a good exercise.
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The pion decay constant is defied via the probability amplitude,

ipµ fπ =
⟨
0|Aµ(0) |Eπ (p⃗)

⟩
, (3.252)

whereAµ means the axial vector current,

Aa
µ(x) = ψ(x)γµγ5T

aψ(x). (3.253)

Note that we improved the axial vector current by

(AI )
a
µ (x) = Aa

µ(x) + cA
1
2

(
Pa(x + aµ̂) − Pa(x − aµ̂)

)
, (3.254)

which removes theO(a) errors. The coefficient cA is determined non-perturbatively[109], and

given as

cA = −0.0272(18), (3.255)

in our parameter setup. After that, we simply denote the improved axial vector current asAa
µ(x).

As we discussed in the previous section, the correlation function of the pion operator with the

periodic boundary condition is denoted by∑
x⃗

⟨
P(0⃗,0)P(x⃗, t)

⟩
PBC

t→T/2∼ | < 0|P(0) |Eπ (0⃗) > |2
mπ

e−mπT/2 cosh(mπ (t − T/2)). (3.256)

Similarly, the correlation function of the axial vector current and the pion operator with the periodic

boundary condition is denoted by

∑
x⃗

⟨
Aµ(0⃗,0)P( x⃗, t)

⟩
PBC

t→T/2∼
< 0|Aµ(0) |Eπ (0⃗) >< Eπ (0⃗) |P(0) |0 >

mπ
e−mπT/2 sinh(mπ (t − T/2)).

(3.257)

When we rewrite the each coefficient as∑
x⃗

⟨
P(0⃗,0)P( x⃗, t)

⟩
PBC

t→T/2∼ WPP cosh(mπ (t − T/2)), (3.258)∑
x⃗

⟨
Aµ(0⃗,0)P( x⃗, t)

⟩
PBC

t→T/2∼ WAP sinh(mπ (t − T/2)), (3.259)

we can obtain the representation of the pion decay constant,

fπ =
⟨
0|A0(0) |Eπ (p⃗)

⟩
mπ

=
WAP√

mπe−mπT/2WPP

. (3.260)

We will evaluate (3.260) using the gradient flow.

The Figure 12 shows the flow time dependence of the pion decay constant. As we mentioned,
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Figure 12: Pion decay constant and itst → 0 limit.

we must take the flow time to 0 limits, because, our perturbative matching factor contains remnants

which appear asO(t) terms to the calculation. However, we cannot directly take the flow time to 0

limits, unlike the case of meson masses. In many cases, observables are contaminated by an artifact

which is proportional toa2/t. If we take the continuum limit before taking the flow time to 0 limit,

the artifacts are successfully vanished. In [44], a way to skip formal procedures was suggested.

According to the paper [44], once we find a window region in which the flow time dependence

seem to linear, we can extrapolate the flow time to zero limit. We also apply the method and denote

as the red solid line in the Figure 12. The window region which we used is denoted by the area

between the blue dotted line in the Figure 12. We obtain the pion decay constant

fπ = 161.3(9.3)MeV. (3.261)

At the physical point, the pion decay constant is∼ 130MeV. Since our parameter setup is in the

heavy quark region13 our numerical result (3.261) is valid.

We also calculated the kaon decay constant as in the Figure 13. The result is

fπ = 168.7(9.3)MeV. (3.262)

In this section, we measured the meson mass and the decay constant. We will advance to mea-

surements of the operators which is related to some symmetry.

13mπ ∼ 630MeV
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Figure 13: Kaon decay constant and itst → 0 limit.

3.4 Previous Works with Gradient Flow

As we discussed in the section 2.2, Wilson fermion explicitly breaks the chiral symmetry. The

effect is onlyO(a), however, it grows combining with the divergence and we no longer ignore it

even taking the continuum limit. We can define an operator in theMS scheme via the gradient flow

method as ⟨
OMS

⟩
= lim

t→0
ZGF→MS(t)

⟨
OGF(t)

⟩
. (3.263)

Numerically, we measure
⟨
OGF

⟩
on the lattice with the continuum limit. Our claim is that we

can take the continuum limit even if the operatorO relates to some symmetry which is broken

on the lattice. In this section, we will see three previous works, energy momentum tensor [48],

topological charge [49] and chiral condensate [48][57]. The each observable relate to breaking

symmetry, however, the numerical results imply that the gradient flow works well even for such

observables.

3.4.1 Energy momentum tensor

The energy momentum is Noether current with respect to the translational symmetry. In the thermo-

dynamics of QCD, the energy momentum tensor is used as a convenient source of various thermo-

dynamic quantities. For example, pressure and entropy density can be pulled out from the diagonal

part of the energy momentum tensor. However, since the lattice regularization breaks the transla-

tional symmetry it is hard to define the energy momentum tensor on the lattice in naive ways.

In the finite temperature (continuum) QCD, the energy momentum tensor is written via the four
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dimensional and gauge invariant symmetric operators,

O1µν (x) = Fa
µρ(x)Fa

νρ(x), (3.264)

O2µν (x) = δµνF
a
ρσ (x)Fa

ρσ (x), (3.265)

O3µν (x) = ψ(x)
(
γµ
←→
D ν + γν

←→
D µ

)
ψ(x), (3.266)

O4µν (x) = δµνψ(x)γρ
←→
D ρψ(x), (3.267)

O5µν (x) = δµνψ(x)ψ(x), (3.268)

as

Tµν (x) =
1

12
0

(
O1µν (x) − 1

4
O2µν (x)

)
+

1
4

O3µν (x) − 1
2

O4µν (x) −O5µν (x). (3.269)

Because the energy momentum tensor takes an additive renormalization we can introduce a renor-

malization prescription for the energy momentum tensor as{
Tµν (x)

}
R
= Tµν (x) −

⟨
Tµν (x)

⟩
T=0

, (3.270)

where⟨·⟩T=0 means the vacuum expectation value at zero temperature. However, we cannot use

this definition on the lattice, since, the transnational invariance is no longer guaranteed. In [41],

it is suggested that the gradient flow can play an important role to give the definition of the energy

momentum tensor on the lattice. According to the general considerations of the gradient flow,

if an operator is constructed from renormalized flowed fields the operator is free from the ultra

violet divergence, that is, normalizations. Furthermore, we can expect that if we flow the definition

(3.270) it can be diverted even on the lattice. Therefore, with the flowed operators,

Õ1µν (t, x) = Ga
µρ(t, x)Ga

νρ(t, x), (3.271)

Õ2µν (t, x) = δµνG
a
ρσ (t, x)Ga

ρσ (t, x), (3.272)

Õ3µν (t, x) = χ̊(t, x)
(
γµ
←→
D ν + γν

←→
D µ

)
χ̊(t, x), (3.273)

Õ4µν (t, x) = δµν χ̊(t, x)γρ
←→
D ρ χ̊(t, x), (3.274)

Õ5µν (t, x) = δµνmχ̊(t, x) χ̊(t, x), (3.275)

the energy momentum tensor is given by{
Tµν (x)

}
R
= c1(t)

{
Õ1µν (t, x) − 1

4
Õ2µν (t, x)

}
+ c2(t)

{
Õ2µν (t, x) −

⟨
Õ2µν (t, x)

⟩}
+ c3(t)

{
Õ3µν (t, x) − 2Õ4µν (t, x) −

⟨
Õ3µν (t, x) − 2Õ4µν (t, x)

⟩}
+ c4(t)

{
Õ4µν (t, x) −

⟨
Õ4µν (t, x)

⟩}
+ c5(t)

{
Õ5µν (t, x) −

⟨
Õ5µν (t, x)

⟩}
,

(3.276)
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where the coefficientsci (t) mean the matching factor and given by for theMS scheme as

c1(t) =
1

1
2(1/
√

8t)
− 1

(4π)2

(
11
3

N − 2
3

Nf

)
(γ − 2 log(2)) − 1

(4π)2

(
7
3

N − 3
4

Nf

)
,

(3.277)

c2(t) =
1

8(4π)2

(
11
3

N +
11
6

Nf

)
, (3.278)

c3(t) =
1
4

1+
1

2(1/
√

8t)

(4π)2

N2 − 1
2N

(
3
2
+ log(432)

) , (3.279)

c4(t) =
3

4(4π)2

N2 − 1
2N

1
2(1/
√

8t), (3.280)

c5(t) = −m(1/
√

8t)
m

1+
1

2(1/
√

8t)

(4π)2

N2 − 1
2N

(
3γ − 6 log(2)

7
2
+ log(432)

) . (3.281)

The validation of the definition (3.276) have been concerned forSU(3) Yang-Mills theory14 in [44]

and for full QCD in [48]. In this thesis, we review some of the results in QCD [48]. Figure 14

Figure 14: Pressure as a function of temperature

[48].

Figure 15: Entropy density as a function of tem-

perature [48].

shows the numerical result of the pressure and Figure 15 shows the entropy density. The red points

denote the results of the gradient flow method and the black points denote the results of the integral

method. These two results are consistent in the region ofT ≲ 279MeV. It shows that the definition

(3.276) which use the gradient flow works well. At the high temperature, because they used the

fixed scale approach the lattice artifacts are severe and the two methods are not consistent.

14In Yang-Mills theory we must remove the quark fields from the representation (3.276).
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3.4.2 Topological charge

The axion is a hypothetical elementary particle which was introduced to solve the strong CP prob-

lem in QCD. With the progress of the elementary particle theory, the axion also became a candidate

for the dark matter. Since the axion mass relates to the topological susceptibility, there were many

attempts to calculate the topological susceptibility on the lattice [69]-[73]. In [49], it is suggested

that the gradient flow can contribute to the measurement of it.

The topological susceptibility can be defined via two different ways. One way is straightforward,

and it is defined as a fluctuation of the topological charge,

Q =

∫
d4x

1

64π2
ϵ µνρσFa

µν (x)Fa
ρσ (x), (3.282)

χ
(gluonic)
Q =

1
V

(⟨
Q2

⟩
− ⟨Q⟩2

)
. (3.283)

In [49], this definition is called as gluonic definition.

The other way is using the chiral Ward-Takahashi identity

χ(fermionic)
Q =

m2

V N2
f

(⟨
P0P0

⟩
− Nf

⟨
PaPa⟩2

)
, (3.284)

Pa =

∫
d4xψ(x)Taψ(x). (3.285)

In [49], it is called as fermionic definition. However, this definition has power divergence caused

by the explicit chiral symmetry breaking for the Wilson fermion. They cared this problem by using

the gradient flow. The two definitions evolve to

Q(t) =
∫

d4x
1

64π2
ϵ µνρσGa

µν (t, x)Ga
ρσ (t, x), (3.286)

χ
(gluonic)
Q (t) =

1
V

(⟨
Q2(t)

⟩
− ⟨Q(t)⟩2

)
, (3.287)

and

χ(fermionic)
Q (t) =

m2

V N2
f

(⟨
P0(t)P0(t)

⟩
− Nf

⟨
Pa(t)Pa(t)

⟩2
)
, (3.288)

Pa(t) = cs(t)
∫

d4x χ̊(t, x)Ta χ̊(t, x), (3.289)

cs(t) =
1+

1
2(1/
√

8t)

(4π)2

(
4γ − 8 log(2) + 8+

4
3

log(432)

) mf (1/
√

8t)
mf

.(3.290)

After taking the flow time to 0 limit, the each expectation value are calculated as in Figure 16

which are the result of [49]. The red points show the gluonic definition (3.287) and the black points

show the fermionic definition (3.288). They have good agreement, therefore, the gradient flow

works well for the chiral Ward-Takahashi identity even for the Wilson fermion.
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Figure 16: Topological susceptibility as a function of temperature [49].

3.4.3 Chiral condensate

Most of the Hadron mass comes from the spontaneous symmetry breaking of the chiral symmetry.

However, when the temperature becomes very high the chiral symmetry is expected to recover.

Such two phases are called as Hadron phase and Quark-Gluon plasma phase. The chiral condensate

1
V

∑
x

⟨
ψf (x)ψf (x)

⟩
, (3.291)

is the order parameter of the phase transition. Since the Wilson fermion explicitly breaks the chiral

symmetry (3.291) is taken an additive renormalization. When we consider the susceptibility of the

chiral condensate, which shows a peak around the transition or crossover line,

χdisc.
f =

⟨ 1
V

∑
x

ψf (x)ψf (x)


2⟩
−

⟨

1
V

∑
x

ψf (x)ψf (x)

⟩
2

. (3.292)

must has a complicated structure for the Wilson fermion.

In [48], the renormalization was done by the gradient flow and realized the calculation of discon-

nected susceptibility. They defined it via the gradient flow as

χdisc.
f (t) = c2

s(t)φ2(t)

⟨ 1
V

∑
x

χf (t, x) χf (t, x)


2⟩
−

⟨

1
V

∑
x

χf (t, x) χf (t, x)

⟩
2

, (3.293)

where the matching coefficient is given by

cs(t) =
1+

1
2(1/
√

8t)

(4π)2

(
4γ − 8 log(2) + 8+

4
3

log(432)

) mf (1/
√

8t)
mf (2GeV)

. (3.294)
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Figure 17: Disconnected chiral susceptibility as a function of temperature [48].

After taking the flow time to 0 limit, the disconnected chiral susceptibility become as in Figure

17. The red points show the disconnected chiral susceptibility for u, d quarks and the black points

show for s quark. Moreover, there is a clear peak atT ∼ 199MeV and this transition temperature is

consistent with the previous work [68].

Their calculation was expanded to the connected part of the chiral susceptibility which includes

the two point functions of flowed operators [57]. The flowed connected part is defined by

χconn.
f (t) = c2

s(t)φ2(t)

⟨
1
V

∑
x

χf (t, x) χf (t, x) χf (t,0) χf (t,0)

⟩
. (3.295)

Combining these effects, the full chiral susceptibility can be calculated and the numerical results

are denoted in Figure 18. The black points show the full chiral susceptibility for u, d quarks and the

red points show for s quark. They also show a peak atT ∼ 199MeV, however, the signal is mild at

this time. It is notable that the same behavior can be seen for the Wilson fermion [74], the overlap

fermion [75] and the HISQ [76].
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Figure 18: Full chiral susceptibility as a function of temperature [57].

3.5 PCAC Relation

In the section 3.2, we saw the two examples, axial vector current and the pseudo scalar density,

which are important and concrete for PCAC15 relation which is one representation of the chiral

Ward-Takahashi identity. Since we are using Wilson fermion there are nontrivial renormalization

to the equation. In some previous works with Wilson fermion[112]-[114], PCAC relation is used as

a renormalization condition of the Schrödinger functional method[107][108], however, we expect

that the PCAC relation will be automatically satisfied by using the gradient flow. We will obtain two

important consequences in this section. (1) PCAC relation seems to be established. (2) PCAC mass

calculated in gradient flow scheme and calculated in Schrödinger functional scheme are consistent

within error bars.

3.5.1 Validation of PCAC relation

The gradient flow plays a role of ultraviolet cutoff for operators and such property is probably held

even for the operator which relates to the broken symmetry by the lattice fermion. In the previous

section we saw the three circumstantial evidence, energy momentum tensor, topological charge and

chiral condensate. Since our target, the kaon bag parameter relates to the chiral symmetry, more

study about chiral symmetry is important.

In this section, we will see that the PCAC relation is also held by using the gradient flow. The

PCAC relation is a kind of Ward-Takahashi identity with respect to the chiral symmetry. The

15Abbreviation of partially conserved axial-vector current
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infinitesimal chiral transformation is defined as

ψ′(x) = ψ(x) + iTaθa(x)γ5ψ(x),

ψ
′
(x) = ψ(x) + iψ(x)γ5T

aθa(x), (3.296)

whereθ(x) means the infinitesimal number. Assuming the invariance of the expectation value of

an operator,< 0|O(ψ,ψ) |0 >, we obtain the chiral Ward-Takahashi identity⟨
0|O(ψ,ψ)δSF + δO|0

⟩
= 0. (3.297)

When we choose the operatorO(ψ, ) asψ(y)γ5Taψ(y) andθa(x) = θ = const.,

δSF = iθ − ∂µAa
µ(x) + 2mPa(x), (3.298)

δO = 2iθδ(x − y)S0(x), (3.299)

where we defined the scalar densityS0, the pseudo scalar densityPa and the axial vector current

Aa
µ as

S0(x) = ψ(x)ψ(x), (3.300)

Pa(x) = ψ(x)γ5T
aψ(x), (3.301)

Aa
µ(x) = ψ(x)γµγ5T

aψ(x). (3.302)

Performing a spacial integration, we obtain PCAC relation

2m
⟨
Pa(Nt )Pa(0)

⟩
= −

⟨
∂0Aa

0(Nt )Pa(0)
⟩
. (3.303)

We will evaluate its both sides numerically with Wilson fermion using gradient flow. As we saw

in the previous section, the renormalized pseudo scalar density and the renormalized axial vector

current are calculated via the flowed operator as

Pa
f (t, x) = lim

t→0
cP(t)φf (t) χf (t, x)γ5T

a χf (t, x), (3.304)

Aa
µ,f (t, x) = lim

t→0
cA(t)φf (t) χf (t, x)γµγ5T

a χf (t, x). (3.305)

Flow time dependence of each operators are shown in Figure.20 and Figure 19. Figure 20 indicates

⟨Pa(Nt )Pa(0)⟩ and Figure 19 indicates
⟨
Aa

0(Nt )Pa(0)
⟩

with Nt = 28. We simply used linear

extrapolation to take the flow time to 0 limit and the fit range is fixed for allNt . The fit range is

taken to 0.8≤t≤1.2. TheAP indicates a clear signal and a wide window region, however,PP has

severe flow time dependence as in Figure 20. We chose the fit range as theAP andPP seem to

indicate a linear dependence at the same time.
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Figure 19:⟨A0(Nt = 28)P(Nt = 0)⟩ and itst → 0 limit.

Figure 20:⟨P(Nt = 28)P(Nt = 0)⟩ and itst → 0 limit.

The numerical results of PCAC relation for u,d quarks are shown in Figure 21 and Figure 22.

We used the same configuration with . The red points mean the left hand side of eq.(3.303) and

the blue points mean the right hand side of eq.(3.303). We use the PCAC mass renormalized in

Schrödinger functional scheme as quark massm= 82.3(4.1)MeV. These two data are successfully

consistent within error bars withoutNt ∼ 0.
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Figure 21: PCAC relation Figure 22: PCAC relation forNt ∼ 28

Our numerical results tells that the PCAC relation is held, although we are using the PCAC

mass renormalized in Schrödinger functional scheme. However, we have still tested only the linear

fit. We must apply the non-linear extrapolation to take the flow time to 0 limit, and the effect should

be included as an systematic error.

3.5.2 PCAC mass

To estimate the renormalized PCAC mass, Schrödinger functional method is commonly used. In

this section, we estimate the PCAC mass from the gradient flow method. Let us define the effective

PCAC mass via the flowed operator as

mGF(t) = −
cA(t)cP(t)φ2(t)

⟨
∂0Aa

0(Nt )Pa(0)
⟩

2c2
P(t)φ2(t) ⟨Pa(Nt )Pa(0)⟩

. (3.306)

At first, we look for a plateau with respect to the temporal distanceNt as in Figure 23. We specially

pick up the caset = 1.0 in the Figure 23.

The renormalized PCAC mass can be estimated by

mGF = lim
t→0

mGF(t). (3.307)

We also use the linear extrapolation to take the flow time to 0 limit for the calculation of the PCAC

mass as shown in the Figure 24 for u,d quarks. We chose the fit range same as theAP and thePP.

Our final result of the renormalized PCAC mass for u,d quarks is that

mGF,ud= 76.9(5.2)MeV. (3.308)

This result is consistent with Schrödinger functional scheme

mSF,ud= 82.1(4.1)MeV. (3.309)
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Figure 23: The effective PCAC mass fort = 1.0.

Figure 24: PCAC ud quark mass and itst → 0 limit.
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Figure 25: PCAC s quark mass and itst → 0 limit.

With the same procedure, we can evaluate the renormalized PCAC mass for s quark. Figure 25

shows the linear extrapolation and the result is

mGF,s= 125.9(7.3)MeV. (3.310)

The Schrödinger functional scheme gives

mSF,s= 137.9(6.8)MeV. (3.311)

These results are also consistent within error bar.

In this section, we discussed about the PCAC relation which needs the nontrivial renormalization

related to the chiral symmetry. We started from the validation of the PCAC relation and reached

the PCAC mass. Our numerical result of the PCAC mass for u,d and s quarks are consistent with

the Schrödinger functional scheme. It tells that the gradient flow works well even for the operator

which is related to the chiral symmetry, and become a tailwind of the calculation of kaon bag

parameter with gradient flow.
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4 Four Fermion Operators

We saw a lot of applications of the gradient flow in the previous chapter. The point is that the

gradient flow can be regarded as some kind of renormalization scheme, because the expectation

value of flowed operators are finite. What we must calculate is matching factor of the each operator,

since the most popular expression is given in theMS scheme. We have already discussed about the

dominant techniques in the section 3.1 and practiced with fermion bi-linear examples in the section

3.2.

In the case of four fermion operators, the basic idea of the calculation is almost as same as the

fermion bi-linear operators. However, when we consider one loop correction of the four fermion

operators in naive way we can recognize that the spinor indices are disorganized. In general, we

can expand a 4× 4 Hermitian matrix with some base. Such reconstruction is known as Fierz

rearrangement and we will see in the section 4.1.1. Fierz rearrangement recompose the spinor

indeces and make the calculation possible. It is emphasized that Fierz rearrangement is effective

in the four dimensional space time, therefore, the dimensional regularization scheme cannot be

adopted just as it is. The dimensional regularization scheme changes to the dimensional reduction

scheme in which only the internal loop momentums are reduced in theD = 4−2ϵ dimensional space

time and the other Lorentz indices run for four dimensional space time. We will see more details

of it in the section 4.1.2. After introducing Fierz rearrangement and the dimensional reduction

scheme, the remaining calculation, integration of the internal momentum, will be smoothly done.

Our calculation will be based on the small flow time expansion with the background field method.

The key is calculation of⟨Oflow −Obare⟩1PI, which is free from the infrared divergence as discussed

in the section 3.2.3.

Our interest can be expanded to the other four fermion operators. Especially considering the

importance of physics, we will pick up∆S = 1 four fermion operator in the section 4.2. It relates

to theK → ππ phenomenology and, therefore, also with CP-violation. When we consider the one

loop correction of it we face to the new diagrams called QCD penguin diagrams. We will evaluate

the internal momentum integration of penguin diagrams with the gradient flow in the section 4.2.2.

We will see that integration of the internal momentum for the penguin diagram is more complicated

than the∆S= 2 four fermion operator.
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4.1 Kaon Bag Parameter

In this section, we calculate the matching factor of∆S = 2 four fermion operator which is the

numerator of kaon bag parameter. Before the actual calculations, we will prepare two theoretical

tools, Fierz rearrangement and the dimensional reduction scheme, which are needed for the calcu-

lation peculiar to the four fermion operators.

We also use the same notations with the previous section.Ta mean anti-Hermitian which satisfy

[Ta,Tb] = f abcTc, (4.1)

Tr (TaTb) = −1
2
δab, (4.2)

TaTa = −N2 − 1
2N

1l, (4.3)

for fundamentalN representation ofSU(N). Gauge fieldAµ and quark fieldψ are decomposed

into background fields and quantum fields

Aµ(x) = Âµ(x) + aµ(x), (4.4)

ψ(x) = ψ̂(x) + p(x), (4.5)

ψ(x) = ψ̂(x) + p(x), (4.6)

whereÂµ, ψ̂, ψ̂ are background fields andaµ, p, p are quantum fields.

The each fields evolve to flowed fields,B̂µ, χ̂, χ̂, bµ, k, k, along flow equations, wheret means

the flow time. The flow equation for the background fields are

∂t B̂µ(t, x) = D̂νĜνµ(t, x) , B̂µ(t = 0, x) = Âµ(x), (4.7)

∂t χ̂(t, x) = D̂2 χ̂(t, x) , χ̂(t = 0, x) = ψ̂(x), (4.8)

∂t χ̂(t, x) = χ̂(t, x)
←̂−
D

2

, χ̂(t = 0, x) = ψ̂(x), (4.9)

and for the quantum fields are

∂tbµ(t, x) = D̂2bµ(t, x) + 2[Ĝµν (t, x),bν (t, x)] + R̂µ(t, x) , b̂µ(t = 0, x) = âµ(x), (4.10)

∂t k(t, x) =
{
D2 − D̂µbµ(t, x)

}
k(t, x)

+
{
2bµ(t, x)D̂µ + b2(t, x)

}
χ̂(t, x) , k(t = 0, x) = p(x), (4.11)

∂t k(t, x) = k(t, x)
{←−
D2 + D̂µbµ(t, x)

}
+ χ̂(t, x)

{
−2
←̂−
Dµbµ(t, x) + b2(t, x)

}
, k(t = 0, x) = p(x), (4.12)
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where we define that

Ĝµν (t, x) = ∂t B̂ν (t, x) − ∂t B̂µ(t, x) + [ B̂µ(t, x), B̂ν (t, x)], (4.13)

D̂µ = ∂µ + [ B̂µ(t, x), · ] , (for gauge fields) (4.14)

D̂µ = ∂µ + B̂µ(t, x) , (for quark fields) (4.15)

R̂µ(t, x) = +2[bν (t, x), D̂νbµ(t, x)]

−[bν (t, x), D̂µbν (t, x)] +
[
bν (t, x),

[
bν (t, x), bµ(t, x)

] ]
. (4.16)

The four fermion operator we will consider throughout this section is defined as

O± =
[(
ψ1γ

L
µψ2

) (
ψ3γ

L
µψ4

)
±

(
ψ1γ

L
µψ4

) (
ψ3γ

L
µψ2

)]
, (4.17)

γL
µ := γµ

(1− γ5)
2

, (4.18)

and its flowed one is defined as

O±(t) =
[(
χ1γ

L
µ χ2

) (
χ3γ

L
µ χ4

)
±

(
χ1γ

L
µ χ4

) (
χ3γ

L
µ χ2

)]
. (4.19)

The subscript 1· · · 4 means the flavor index of the quark fields.

4.1.1 Fierz rearrangement

For perturbative calculation of four fermion operator, we will consider some product(
ψ1Λ

(1)ψ2

) (
ψ3Λ

(2)ψ4

)
. (4.20)

If Λ(1) andΛ(2) take simple form, there is no problem at all. However, we will evaluate the more

complicated spinor structure as (
ψ1γµψ2

) (
ψ3γµψ4

)
, (4.21)

and we must take a summation with respect to the spinor indexµ. Firtz rearrangement makes such

calculation possible.

Let us consider an arbitrary 4× 4 Hermitian matrixΛ. In general terms,Λ can be expanded by 16

linearly independent matrices. We choose them as

λA =
{
1l, γ5, γµ, iγµγ5, iσµν

}
. (4.22)

We can verify that they are normalized as

tr[λAλB] = 4δAB, (4.23)
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andΛ is written by

Λ =
1
4

∑
A

tr[λA
Λ]λA. (4.24)

When we regard the product ofΛ(1) andΛ(2) as a 4× 4 matrix,

Λ
(il )
j k := Λ(1)

i j Λ
(2)
kl , (4.25)

four fermion operator (4.20) is rewritten as(
ψ1Λ

(1)ψ2

) (
ψ3Λ

(2)ψ4

)
= ψ1iΛ

(1)
i j ψ2jψ3kΛ

(2)
kl ψ4l

=
1
4

∑
A

tr[λA
Λ

(il )]λA
jkψ1iψ2jψ3kψ4l

= −1
4

∑
A

(
ψ1Λ

(1)λA
Λ

(2)ψ4

) (
ψ3λ

Aψ2

)
, (4.26)

where we used equation (4.24) in the second line and imposed that the spinor index run in the four

dimensional space time. If we define the 4× 4 matrix by (4.27) instead of (4.25),

Λ
( j k)
il := Λ(1)

i j Λ
(2)
kl , (4.27)

we obtain another form of Fierz rearrangement,(
ψ1Λ

(1)ψ2

) (
ψ3Λ

(2)ψ4

)
= −1

4

∑
A

(
ψ1λ

Aψ4

) (
ψ3Λ

(2)λA
Λ

(1)ψ2

)
. (4.28)

Fierz rearrangement also lead formulae,

S⊙ S = −1
4

(S⊗ S+ P ⊗ P+ V ⊗ V − A⊗ A− T ⊗ T) , (4.29)

P ⊙ P = −1
4

(S⊗ S+ P ⊗ P− V ⊗ V + A⊗ A− T ⊗ T) , (4.30)

S⊙ P = −1
4

(
S⊗ P+ P ⊗ S− V ⊗ A+ A⊗ V − T̃ ⊗ T

)
, (4.31)

P ⊙ S = −1
4

(
S⊗ P+ P ⊗ S+ V ⊗ A− A⊗ V − T̃ ⊗ T

)
, (4.32)

V ⊙ V = −1
4

(4S⊗ S− 4P ⊗ P− 2V ⊗ V − 2A⊗ A) , (4.33)

A⊙ A = −1
4

(−4S⊗ S+ 4P ⊗ P− 2V ⊗ V − 2A⊗ A) , (4.34)

V ⊙ A = −1
4

(−4S⊗ P+ 4P ⊗ S− 2V ⊗ A− 2A⊗ V) , (4.35)

A⊙ V = −1
4

(4S⊗ P− 4P ⊗ S− 2V ⊗ A− 2A⊗ V) , (4.36)

T ⊙ T = −1
4

(−6S⊗ S− 6P ⊗ P− 4V ⊗ V + 4A⊗ A) (4.37)

T ⊙ T̃ = −1
4

(−6S⊗ P− 6P ⊗ S+ 4V ⊗ A− 4A⊗ V) . (4.38)
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4.1.2 Dimensional reduction

We reviewed Fierz rearrangement which organizes the spinor indeces by the complete set (4.22) in

the previous section. Since we considered a 4× 4 Hermitian matrix, the spinor indeces must run in

the four dimensional space time. We impose that only the internal loop momentums are reduced in

theD = 4−2ϵ dimension and the other Lorentz indices run for four dimensional space time, which

condition is called as the dimensional reduction scheme. We denote the gamma matrices in four

dimension asγµ, and the gamma matrices inD dimensional asγµ. When we denote the remaining

part as ˜γµ, the gamma matrices are separated as

γµ = γµ + γ̃µ. (4.39)

We define theγ5 matrix which anti-commute with every gamma matrices in this scheme.{
γ5, γµ

}
= 0, (4.40){

γ5, γµ
}
= 0, (4.41){

γ5, γ̃µ
}
= 0. (4.42)

When we consider an anti-commutation relation betweenγµ andγν, it can be calculated as{
γµ, γν

}
=
{(
γµ + γ̃µ

)
, γν

}
= 2δµν, (4.43)

where theδµν means the Kronecker delta inD dimension. The other relation can be calculated

almost the same manner. For example,

γµγνγµ = Dγν − 2γν, (4.44)

γµγνγµ = −2γν . (4.45)

In the previous chapter, we calculated the renormalization factor of the quark field with the

dimensional regularization scheme(DREG). The renormalization condition of flowed quark fields

is

χ̊(t, x) =

√√√√ −8Nf

(4π)2t2
⟨
χ(t, x)γµ

←→
D µ χ(t, x)

⟩ χ(t, x) := φ1/2(t) χ(t, x). (4.46)
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Figure 26: One loop diagrams for the fermion renormalization factor.
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Feynman diagrams are drawn as Figure26. The contribution of each diagram is given by

D02|DERG : −1
ϵ
− 2 log(8πt), (4.47)

D03|DERG : 2
1
ϵ
+ 4 log(8πt) + 2+ 4 log 2− 2 log 3, (4.48)

D04|DERG : −20 log(2) + 16 log(3), (4.49)

D05|DERG : 12 log(2) − 5 log(3), (4.50)

D06|DERG : −4
1
ϵ
− 8 log(8πt) − 2, (4.51)

D07|DERG : 8 log(2) − 4 log(3), (4.52)

D08|DERG : −2 log(3), (4.53)

in the unit of

−8Nf

(4π)2t2

12
0

(4π)2

N2 − 1
2N

. (4.54)

Summing up all, we obtain

φ(t) |DREG = (8πt)−ϵ
{

1+
12

(4π)2

N2 − 1
2N

(
3
ϵ
+ 3 log(8πµ2t) − log (432)

)}
. (4.55)

It is emphasized that this calculation is done in the dimensional regularization scheme and the result

must be changed in the dimensional reduction scheme with finite value. The contribution of each

diagram in the dimensional reduction scheme is

D02|DERD : −1
ϵ
− 2 log(8πt) − 1, (4.56)

D03|DERD : 2
1
ϵ
+ 4 log(8πt) + 2+ 4 log 2− 2 log 3, (4.57)

D04|DERD : −20 log(2) + 16 log(3), (4.58)

D05|DERD : 12 log(2) − 5 log(3), (4.59)

D06|DERD : −4
1
ϵ
− 8 log(8πt) − 4, (4.60)

D07|DERD : 8 log(2) − 4 log(3), (4.61)

D08|DERD : −2 log(3), (4.62)

and the renormalization factor is

φ(t) |DRED = (8πt)−ϵ
{

1+
12

(4π)2

N2 − 1
2N

(
3
ϵ
+ 3 log(8πµ2t) + 3− log (432)

)}
. (4.63)

The difference emerges in diagram D02 and D06. We use this renormalization factor for the calcu-

lation of four fermion operator.
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4.1.3 Feynman diagrams

The purpose of this section is finding Feynman diagrams which effect on the calculation of of

⟨O±(t) −O±⟩1PI. O± andO±(t) are defined at (4.17) and (4.19).

Let us review the procedure of perturbative calculation of the flowed field. At first, we denote the

flowed operator via the bare operator with small flow time,

O±(t) ∼ c(t)O± + O(t) , (for t → 0), (4.64)

where the coefficient c(t) is available later. A convenient combination isO±(t) − O± and its one

particle irreducible vertex correction. When we use the background field method vertex correction

is proportional to the operator which is written by the background field. In this case,

⟨O±(t) −O±⟩1PI = IGF(t)Ô±, (4.65)

Ô± =
[(
ψ̂1γ

L
µ ψ̂2

) (
ψ̂3γ

L
µ ψ̂4

)
±

(
ψ̂1γ

L
µ ψ̂4

) (
ψ̂3γ

L
µ ψ̂2

)]
, (4.66)

where we denote the proportional constant asIGF(t). The right hand side, in other wards, propor-

tional constantIGF(t) is calculated in the section 4.1.4 and 4.1.5. We can also calculate the left

hand side by using the relation (4.64) as

⟨O±(t) −O±⟩1PI = (c(t) − 1) ⟨O±⟩1PI

= (c(t) − 1)ZO±Ô± ∼ (c(t) − 1)Ô± (4.67)

In the second line, we considered one loop perturbation theory and used the fact thatc(t) − 1 is

O(12), because the tree level contributions of the flowed operator and the bare operator are same,

⟨O±(t)⟩1PI |tree = Ô± , (for t → 0), (4.68)

⟨O±⟩1PI |tree = Ô±. (4.69)

Comparing (4.65) and (4.67) we obtainc(t), therefore, the representation of the small flow time

expansion,

O±(t) ∼ (1+ IGF(t))O± + O(t) , (for t → 0). (4.70)

When we define the renormalization of the flowed quark fieldχ(t, x) by

χ̊(t, x) =

√√√√ −8Nf

(4π)2t2
⟨
χ(t, x)γµ

←→
D µ χ(t, x)

⟩ χ(t, x) := φ1/2(t) χ(t, x), (4.71)

the relation between the gradient flow scheme and theMS scheme are given as

O̊±(t) = (1+ IGF(t))φ2(t)O±

=
(1+ IGF(t))

ZMS
O±

*.,
φ(t)

ZMS
ψ

+/-
2

OMS
± , (4.72)
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where we define the ringed four fermion operatorO̊±(t),

O̊± =
[(
χ̊1γ

L
µ χ̊2

) (
χ̊3γ

L
µ χ̊4

)
±

(
χ̊1γ

L
µ χ̊4

) (
χ̊3γ

L
µ χ̊2

)]
. (4.73)

The other factor,ZMS
O±

andZMS
ψ , mean renormalization factor for the four fermion operatorO± and

the renormalization factor of the quark fieldψ(x) in theMS scheme.

Eq. (4.72) tells us a representation of the matching factor from the gradient flow to theMS,

ZGF→MS
O±

=
ZMS

O±

(1+ IGF(t))
*.,

ZMS
ψ

φ(t)
+/-

2

. (4.74)

We have already calculated the renormalization factorφ(t) at (4.63) in the dimensional reduction

scheme. What we want to calculate areZMS
O±

, ZMS
ψ and IGF(t). We postpone the calculation in the

MS scheme, we consider the coefficient of small flow time expansionIGF(t) in this section.

Our starting point is the solution of flow equations of quantum field (4.10), (4.11) and (4.12).

According to background field method, we can freely choose the background fields to a certain

degree. It is emphasized that our calculation needs contributions from one loop and 1PI diagrams.

Therefore, we can set the background gauge field to zero and the background quark field to be

constant. They evolve along the flow equation of the background field (4.7), (4.8) and (4.9). The

solution are

B̂(t, x) = Â(x) = 0, (4.75)

χ̂(t, x) = ψ̂(x) = (const.), (4.76)

χ̂(t, x) = ψ̂(x) = (const.). (4.77)

Let us review the formal solutions of flow equations discussed in the section 3.1.3,

ba
µ(t, x) =

∫
dDy

{
Kab

t (x, y)µνa
b
ν (y) +

∫ t

0
ds Kab

t−s(x, y)µν R̂
b
ν (s, y)

}
, (4.78)

k(t, x) = et D̂2
p(x)

+

∫ t

0
ds e(t−s)D̂2 {

2bµ(s, x)D̂µ + b2(s, x)
} {

esD̂2
ψ̂(x) + k(s, x)

}
, (4.79)

k(t, x) = p(x)et
←̂−
D

2

+

∫ t

0
ds

{
ψ̂(x)es

←̂−
D

2

+ k(s, x)

} {
−2
←̂−
Dµbµ(s, x) + b2(s, x)

}
e(t−s)

←̂−
D

2

, (4.80)
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where we define heat kernelKab
t (x, y)µν,

Kt (x, y) = et
{
D̂x+2F̂ (x)δ(x−y)

}
, (4.81)

D̂ab
µ = δab∂µ + B̂c

µ(t, x) f acb, (4.82)

F̂ ab
µν (x) = F̂c

µν (x) f acb, (4.83)

R̂a
µ(t, x) = 2 f abcbb

ν (t, x)D̂cd
ν bd

µ(t, x) − f abcbb
ν (t, x)D̂cd

µ bd
ν (t, x)

+ f abc f cdebb
ν (t, x)bd

ν (t, x)be
µ(t, x). (4.84)

Combining them with the solutions for the background fields, we obtain the propagator between

b(t, l ) andb(s, l ) as

G(t,s; l ) ∼ e−(t+s)l2
G(l ), (4.85)

whereG(l ) means gluon propagator at zero flow time withl momentum,

G(l ) = 12
0

1

l2
δabδµν . (4.86)

The quantum quark fieldsk andk can be simplified as,

k(t, x) ∼ et∂2
p(x) +

∫ t

0
ds e(t−s)∂2 (

b2(s, x)ψ̂ + 2bµ(s, x)∂µe
s∂2

p(x)
)
, (4.87)

k(t, x) ∼ p(x) et
←−
∂ 2
+

∫ t

0
ds

(
ψ̂b2(s, x) − 2p(x) es

←−
∂ 2←−
∂ µbµ(s, x)

)
e(t−s)

←−
∂ 2
. (4.88)

It is enough to use these three results for the later calculation.

Our purpose of this section is a preliminary arrangement for the calculation of⟨O±(t) −O±⟩1PI.

We set the external momentum to zero for simplicity. With such conditions, it is enough to consider

five types of diagrams to calculate the one loop corrections, and name the each diagram(a) to (e)

as in Figure 27. We denote the heat kernele(t−s)∂2
as double solid line with vertex in white circle.

We can denote the each diagrams as

(a) :
∫ t

0
ds

(
γL
σγρV

a
1µ

)
12

(
γL
σγλV

b
1ν

)
34

(−2l2)e−2sl2SF ρ(l )SFλ (−l )Gab
µν (l ) ± {Fierz} ,(4.89)

(b) :
∫ t

0
ds

(
Va

1µγ ργ
L
σ

)
12

(
γL
σγλV

b
1ν

)
34

(−2l2)e−2sl2SF ρ(l )SFλ (l )Gab
µν (l ) ± {Fierz} , (4.90)

(c) :
∫ t

0
ds

(
Va

1µγ ργ
L
σγλV

b
1ν

)
12

(
γL
σ

)
34

(−2l2)e−2sl2SF ρ(l )SFλ (l )Gab
µν (l ) ± {Fierz} , (4.91)

(d) : 2
∫ t

0
ds

(
γL
σ (−i )l µT

aγνV
b

1ρ

)
12

(
γL
σ

)
34

e−sl2SFν (l )Gab
µρ(s.0; l ) ± {Fierz} , (4.92)

(e) :
∫ t

0
ds

(
γL
σTaTb

)
12

(
γL
σ

)
34

Gab
µµ(s,s; l ) ± {Fierz} , (4.93)
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Figure 27: One loop and 1PI diagrams for zero external momentum.

where we abbreviate the quark propagatorSFµ(l ), quark-gluon vertexVa
1µ and fermion bi-linear

term (Γ)12 to

SFµ(l ) = −i
l µ
l2
, (4.94)

Va
1µ = γµT

a, (4.95)

(Γ)12 = ψ̂1 Γ ψ̂2. (4.96)

The symbol{Fierz} of each equations (4.89)-(4.93) means the Fierz partner of the original operator,

for example

(ΓA)12(ΓB)34± {Fierz} := (ΓA)12± (ΓB)34± (ΓA)14± (ΓB)32. (4.97)

Estimation of each diagram will be shown in the next sections.

4.1.4 Calculation of diagram c, d and e

In this section, we evaluate the diagram(c), (d) and (e). The calculation is almost same as of

fermion bi-linear operators discussed in the section 3.2. As we discussed in the section 3.2.3, we

must take care the order of the integrations. For example,∫ t

0
ds

∫
l

1

l2
e−2sl2 ,

∫
l

∫ t

0
ds

1

l2
e−2sl2. (4.98)
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The right hand side of (4.98) are ill-defined integration because the integrand has infrared diver-

gence. If we introduce a regulator of the infrared divergence such as gluon mass, there is no need

to care the order. More discussion is given in the section 3.2.3.

The biggest difference comes fromO(ϵ ) term called evanescent operator. Evanescent operator

is a byproduct of the dimensional reduction scheme, and it must be removed from the calculation.

The spinor factor of the diagram(c) is calculated as,(
γµγργ

L
σγ ργµ

)
12

(
γL
σ

)
34
= 2D

(
γL
σ

)
12

(
γL
σ

)
34
− 4

(
γL
σ

)
12

(
γL
σ

)
34
. (4.99)

We can define the evanescent operatorÊ by

Ê :=
(
γL
σ

)
12

(
γL
σ

)
34
− 4

D

(
γL
σ

)
12

(
γL
σ

)
34
. (4.100)

We can check that the evanescent operatorÊ isO(ϵ ). At first, we transform the evanescent operator,

Ê =
(
γ̃L
σ

)
12

(
γ̃L
σ

)
34
− ϵ

2

(
γL
σ

)
12

(
γL
σ

)
34
+ O(ϵ2). (4.101)

We defined that the remnant gamma matrix ˜γµ live in the 2ϵ dimension. Therefore, we can consider

that the first term is(ϵ ). We choose the evanescent operator with (4.100), we can adopt another

definition which vanishes in the limit ofϵ → 0.

Removing the evanescent operator, the spinor factor of the diagram(c) become(
γµγργ

L
σγ ργµ

)
12

(
γL
σ

)
34
= D

(
γL
σ

)
12

(
γL
σ

)
34
. (4.102)

The integrations of the internal momentum are given by the formula,∫
dD l

(2π)D

1

l2
e−tl2

=
t1−D/2

(4π)D/2

Γ(D/2− 1)
Γ(D/2)

, (4.103)

whereΓ(·) means the gamma function. Combing them all, we can evaluate (4.91)-(4.93),

(c) :
N2 − 1

2N

−12
0

(4π)2

{
1
ϵ
+ log(8πt) + 1

}
Ô±, (4.104)

(d) :
N2 − 1

2N

12
0

(4π)2

{
1
ϵ
+ log(8πt) + 1

}
Ô±, (4.105)

(e) :
N2 − 1

2N

−212
0

(4π)2

{
1
ϵ
+ log(8πt) + 1

}
Ô±. (4.106)

The above calculations are in essence same as of fermion bi-linear operator. Since we used the

dimensional reduction scheme, the spinor factor causes a gap inO(ϵ ). We rewrite such gap as the

evanescent operator̂E defied in (4.100).

In the next section, we go forward to the calculation of the diagram(a) and(b) which are specific

to the four fermion operators.
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4.1.5 Calculation of diagram a and b

For the evaluation of(a) and (b), Fierz rearrangement make a significant contribution, since the

spinor and the color indeces of (4.89) and (4.90) take a complicated structure. Calculation of the

color factor is easier, because we know a formula,

Ta
i j T

a
kl = −

1
2
δil δ j k +

1
2N

δi j kl . (4.107)

The spinor factor can be calculated using Fierz rearrangement (4.26) and the formulae of gamma

matrix (4.44) and (4.45),

(a) :
(
γL
σγργµ

)
12

(
γL
σγργµ

)
34
= 4 D

(
γL
σ

)
14

(
γL
σ

)
32

= 4 D
(
γL
σ

)
12

(
γL
σ

)
34
, (4.108)

(b) :
(
γµγ ργ

L
σ

)
12

(
γL
σγργµ

)
34
= 2 D

(
γL
σ

)
14

(
γL
σ

)
32
− 4

(
γL
σ

)
14

(
γL
σ

)
32

= D
(
γL
σ

)
14

(
γL
σ

)
32
= D

(
γL
σ

)
12

(
γL
σ

)
34
. (4.109)

The evanescent operator is removed in the second line of equation (4.109). We use the same

definition of Ê with (4.100).

We obtain the contributions of the diagram(a), (b),

(a) : ∓N ∓ 1
2N

−412
0

(4π)2

{
1
ϵ
+ log(8πt) + 1

}
Ô±, (4.110)

(b) : ∓N ∓ 1
2N

12
0

(4π)2

{
1
ϵ
+ log(8πt) + 1

}
Ô±. (4.111)

Since the(a), (b), (c) type diagrams exist two and the(d), (e) type diagrams exist four, the coef-

ficient of the small expansion methodIGF(t) is estimated as

IGF = −3
N2 ∓ N

N
12

(4π)2

{
1
ϵ
+ log(8πµ2t) + 1

}
, (4.112)

where we replace the bare gauge coupling10 by

1
2
0 = µ

2ϵ
1

2. (4.113)

In the calculation until now, we obtained the renormalization factor of the flowed quark fieldφ(t)

and the the coefficient of the small expansion methodIGF(t). The last pieces are renormalization

factor for the four fermion operatorO± and the renormalization factor of the quark fieldψ(x) in the

MS scheme.
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Figure 28: One loop and 1PI diagrams for zero external momentum.

4.1.6 Result inMS scheme

The remaining part of our calculation isZMS
O±

andZMS
ψ . We will estimate them in this section.

To calculate the renormalization factorZMS
O±

, we must consider the 1PI vertex corrections ofOpm.

Diagrams what we need to evaluate for the calculation are the diagrams(a), (b), (c) in the Figure

28. The other diagrams do not emerge since they are peculiar for the calculation of the gradient

flow. We again set the external momentum to zero for simplicity. However, we must also regularize

the infrared divergence as same as previous calculation. We introduce a gluon massλ and rewrite

the propagatorG(l ) as

Gab
µν (l ; λ) = 12

0
1

l2 + λ2
δabδµν . (4.114)

Using this replacement, we can denote the contribution from each type of diagrams as

(a) :
(
γL
µγ ρV

a
1µ

)
12

(
γL
µγλV

b
1ν

)
34

SF ρ(l )SFλ (−l )Gab
µν (l ; λ) ± {Fierz} , (4.115)

(b) :
(
Va

1µγργ
L
µ

)
12

(
γL
µγλV

b
1ν

)
34

SF ρ(l )SFλ (l )Gab
µν (l ; λ) ± {Fierz} , (4.116)

(c) :
(
Va

1µγργ
L
µγλV

b
1ν

)
12

(
γL
µ

)
34

SF ρ(l )SFλ (l )Gab
µν (l ; λ) ± {Fierz} . (4.117)

Calculations for spinor factors and color factors can be done in the same way. We again use Fierz

rearrangement and the dimensional reduction scheme, and the definition of the evanescent operator

is same as (4.100). The difference comes from the integration of the internal momentum. The

convenient formula is∫
dD l

(2π)D

1

(l2)a(l2 + λ2)
=

1

(4π)D/2
λD−2a−2Γ(D/2− a)Γ(a + 1− D/2)

Γ(D/2)
. (4.118)
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After all, we obtain

(a) : ∓N ∓ 1
2N

412
0

(4π)2

{
1
ϵ
− γ + log

(
4π

λ2

)
+ 1

}
Ô±, (4.119)

(b) : ∓N ∓ 1
2N

−12
0

(4π)2

{
1
ϵ
− γ + log

(
4π

λ2

)
+ 1

}
Ô±, (4.120)

(c) :
N2 − 1

2N

12
0

(4π)2

{
1
ϵ
− γ + log

(
4π

λ2

)
+ 1

}
Ô±, (4.121)

and the one loop 1PI vertex corrections

⟨O±⟩1PI =

[
1+

N2 ∓ 3N + 2
N

12

(4π)2

{
1
ϵ
− γ + log

(
4πµ2

λ2

)
+ 1

}]
Ô±. (4.122)

The renormalization factor is extracted,

ZMS
O±
= 1+

N2 ∓ 3N + 2
N

12

(4π)2

{
1
ϵ
− γ + log (4π) + 1

}
. (4.123)

Renormalization factor of the quark field is defined via the self energy,⟨
ψ(x)ψ(y)

⟩
=

∫
p

1
ipµγµ +m

e−p·(x−y)

− N2 − 1
2N

1
2
0

∫
p,q

1
ipµγµ +m

γν
1

iqµγµ +m
γν

1
ipµγµ +m

1

(p− q)2 + λ2
eip·(x−y) .

(4.124)

Integration of the internal momentumq can be performed as∫
q
γν

1
iqµγµ +m

γν
1

(p− q)2 + λ2

=

∫
q

iqµγµ +m

q2 +m2

1

(p− q)2 + λ2

=
1

(4π)2
ipµγµ

{
1
ϵ
− γ + log

(
4π

λ2

)
+

1
2

}
+

1

(4π)2
4m

{
1
ϵ
− γ + log

(
4π

λ2

)
+ 1

}
.

(4.125)

Reading the renormalization factor of the quark field, we obtain

ZMS
ψ = 1+

N2 − 1
2N

12

(4π)2

{
1
ϵ
− γ + log (4π) +

1
2

}
. (4.126)

We have already seen the renormalization factor for the quark field in theMS scheme in the section

3.2, however the result is changed only with finite value, because we are using the dimensional

reduction scheme for the spinor factor.
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4.1.7 Matching factor

We get all pieces which are required to calculate the matching factor in the previous sections. Be-

fore seeing the result, let us consider the ultraviolet divergence. We have faced many divergences

1/ϵ in the calculation of 1PI vertex corrections of{O±(t) −O±}, such as (4.110), (4.111), (4.104),

(4.105) and (4.106). These divergences can be classified into two types, derived from bare oper-

ator O± or derived from flowed fieldO±(t). Indeed, the divergence of (4.110), (4.111), (4.104)

corresponds to the divergence of (4.119), (4.120), (4.121), because the diagrams(a), (b), (c) are

composite combination and must be renormalized by the gradient flow. The other divergences re-

late to the renormalization of quark fields, and cared byφ(t) and ZMS
ψ . After all, the ultra violet

divergence is removed and the matching factor ofO± is given by

ZGF→MS
O±

=
ZMS

O±

(1+ IGF(t))
*.,

ZMS
ψ

φ(t)
+/-

2

= 1+
12

(4π)2

{
−3
∓N + 1

N

(
log (8tµ2) + γ − log 4+ 1

)
+

N2 ∓ 6N + 5
2N

+
N2 − 1

N
log 432

}
. (4.127)

We can see that the finiteness of the gradient flow indirectly, since the matching factor (4.127) does

not depend on 1/ϵ . In other words, the gradient flow scheme and theMS is bounded by a finite gap.

We have calculated the matching factor throughout this section with some steps. At first, we con-

sidered the one loop and one particle irreducible vertex corrections of the combination{O±(t)−O±}
and obtained the representation of the small flow time expansion of the four fermion operator

O±(t) = (1+ IGF)O±. The coefficient IGF is defined via the⟨O±(t) −O±⟩1PI. Combining with the

renormalization factor of the flowed quark fieldφ(t), the relation between bare operatorO± and

the ringed operator̊O± becomes obvious. When we consider another operator the difference should

emerge in the representation ofIGF. In the next section, we will calculate it against∆S = 1 four

fermion operator which is important forK → ππ phenomenology.

Our perturbative calculation is justified by applying a renormalization group argument. As dis-

cussed in [120], we can replace the coupling constant1 by the running coupling constant1(q)

in (4.127). Moreover, we can set the scaleq = 1/
√

8t, because the expression (4.127) does not

depend on the scaleq.

ZGF→MS
O±

(
t,1(1/

√
8t)

)
= 1+

1(1/
√

8t)2

(4π)2

{
−3
∓N + 1

N
(
γ − log 4+ 1

)
+

N2 ∓ 6N + 5
2N

+
N2 − 1

N
log 432

}
. (4.128)
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Since we adopted the small flow time expansion, the flow time must be restricted to small. There-

fore, the running coupling constant1(1/
√

8t)2 is also small because of the asymptotic freedom of

QCD, and our expression of matching factor (4.128) goes to the perturbative region.

4.2 ∆S= 1 Operator

In the previous section, we calculated the matching factor of the∆S = 2 four fermion operator.

Our interesting can be expanded to the∆S = 1 four fermion operator, which is important to the

kaon decay phenomenology. Lattice calculation of it is also suffering from the chiral symmetry

breaking of Wilson fermion, and we can expect that the gradient flow is effective. We will calculate

the matching factor of the∆S= 1 four fermion operator in this section.

The∆S = 1 four fermion operator has almost same form of the∆S = 2 four fermion operator.

The definition is given by

O∆S=1 =
(
ψsγ

L
µψd

) (
ψqγ

L
µψq

)
, (4.129)

γL
µ := γµ

(1− γ5)
2

, (4.130)

where the subscriptq meansu,d,s flavor. It is also convenient to consider the operator

O± =
[(
ψ1γ

L
µψ2

) (
ψ3γ

L
µψ4

)
±

(
ψ1γ

L
µψ4

) (
ψ3γ

L
µψ2

)]
. (4.131)

When we consider the Feynman diagrams, we will recognize that the subscriptq makes a new Wick

contraction possible. Such new contribution is called as (QCD) penguin diagrams. We will discuss

the internal momentum integration of the penguin diagrams.

4.2.1 Penguin diagram

We consider the Green function without the gradient flow. The flowed penguin diagrams are treated

in the next section.

The Feynman diagrams are distributed in the Figure 29-31. The gluon exchange diagrams in the

Figure 29 are same as the Figure 28. At the one loop perturbation theory, we can show that the

contribution of them are same as previous ones. Therefore, we omit their estimation.

Let us consider the penguin diagram in the Figure 30. When we set the external momentum asp

and denote the internal momentum asl , we can denote them as

γL
σγ ρV

a
1µγλγ

L
σ⊗Vb

1ν SF ρ(l )SFλ (l − p)Gab
µν (p; λ), (4.132)
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Figure 29: Gluon exchange diagrams.

with the notations,

SFµ(l ) = −i
l µ
l2
, (4.133)

Va
1µ = γµT

a, (4.134)

Gab
µν (l ; λ) = 12

0
1

l2 + λ2
δabδµν . (4.135)

We took the massless limit of quarks and denote their propagator simply asSu = Sd = Ss ≡ SF .

Since we also use the dimensional reduction scheme, only the gamma matrix accompanies to the

internal momentum live at theD = 4− 2ϵ dimensional space time. We denote such gamma matrix

by γµ as we did in the section 4.1.2.

The remaining contribution is disconnected diagrams described in the Figure 31. We can see that

Figure 30: Penguin diagrams.

the disconnected diagram is proportional to the quark mass. Therefore, it will be vanished in the

massless limit.

Let us evaluate the internal momentum integration of the penguin diagram (4.132),

Iµν =
∫

l

l µ − pµ
(l − p)2

l ν
l2
. (4.136)
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Figure 31: Disconnected diagram.

Using the Feynman parameter integral and completing the square, we get

Iµν =
∫

l

∫ 1

0
dx

(l µ − pµ)l ν{
x(l − p)2 + (1− x)l2}2

=

∫
l

∫ 1

0
dx

(l µ − pµ)l ν{
(l − xp)2 + x(1− x)p2}2

=

∫
l

∫ 1

0
dx

l µl ν − x(1− x)pµpν{
l2 + x(1− x)p2}2

. (4.137)

We can use the useful formula,

∫
l

(
l2

)a

(
l2 + λ2)b

=

(
λ2

)a−b+D/2

(4π)D/2

Γ(a + D/2)Γ(b− a − D/2)
ΓD/2Γ(b)

, (4.138)

and theIµν is

Iµν =
1

(4π)2

∫ 1

0
dx p2−1µν

2
x(1− x)

{
1
ϵ
− γ + log

(
4π

p2

)
− log(x(1− x)) + 1

}
+

1

(4π)2

∫ 1

0
dx pµpνx(1− x)

{
1
ϵ
− γ + log

(
4π

p2

)
− log(x(1− x))

}
= −1

6
1

(4π)2

1µν

2
p2

{
1
ϵ
− γ + log

(
4π

p2

)
+

8
3

}
− 1

6
1

(4π)2
pµpν

{
1
ϵ
− γ + log

(
4π

p2

)
+

5
3

}
.

(4.139)

We also calculate the flowed penguin diagram in the next section.

4.2.2 Flowed penguin diagram

According to the discussion of the section 4.1, the new calculation is concentrated on theIGF which

is defined via the flowed operator and the original operator,⟨O±(t) −O±⟩1PI. The other calculation

specific to the gradient flow, the renormalization factor of the quark field, have been calculated in
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the section 4.1.2.

We emphasized that the pareO±(t)−O± has no infrared divergence and rewrote the flowed kernel

e−tl2
as

e−tl2 − 1 = −l2
∫ t

0
ds e−sl2. (4.140)

This replacement was effective, because we set the external momentum to zero in the previous

computation. In the meaning of it, we can separate the pair at this time, because our calculation

here has nonzero external momentump. Moreover, the flowed penguin diagram can be considered

as a composite type diagram at the one loop calculation. Therefore, we can take theϵ → 0 limit in

the calculation of it.

We start from the flowed disconnected diagrams shown in the Figure 32. We can show that the

flowed disconnected diagrams are proportional to the quark mass, therefore, contributions of them

are also vanished in the massless limit.

Figure 32: Disconnected diagrams with gradient flow.
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When we consider the flow time evolution of the penguin diagram there are two types of the

flowed diagrams described in the Figure 33. The left diagram has the same shape with the original

one, however, the flow kernel is accompanied to the solid line.

Figure 33: Flowed penguin diagram.

Contributions from the left diagram is written as

γL
σγ ρV

a
1µγλγ

L
σ⊗Vb

1ν SF ρ(l )SFλ (l − p)e−t(l−p)2
e−tl2

Gab
µν (p; λ). (4.141)

The internal momentum integration is denoted by

Iµν (t) =
∫

l

l µ − pµ
(l − p)2

l ν
l2

e−t(l−p)2
e−tl2

. (4.142)

As we mentioned, we estimate the integral without subtraction of the original operator.16 More-

over, we can takeϵ → 0 limit, because, the penguin diagrams are composite combination of the

contraction. Indeed, the internal momentum integrationIµν (t) can be performed free from the ultra

violet divergence as follows. At first, we put the denominator on the shoulder of the exponential,

Iµν (t) =
∫

l

∫ ∞

0
dα

∫ ∞

0
dβ(l µ − pµ)l νe

−(t+α)(l−p)2
e−(t+β)l2

=

∫
l

∫ ∞

t
dα

∫ ∞

t
dβ(l µ − pµ)l νe

−α(l−p)2
e−βl2

. (4.143)

Using complete the squared,

α(l − p)2 + βl2 = (α + β)

(
l − α

α + β
p

)2

+
αβ

α + β
p2, (4.144)

the integration of the internal momentuml can be performed,

Iµν (t) =
∫

l

∫ ∞

t
dα

∫ ∞

t
dβ

(
l µl ν −

αβ

α + β
pµpν

)
e−(α+β)l2

e−
αβ
α+β p2

=

∫ ∞

t
dα

∫ ∞

t
dβ

{
1
2
1µν

1

(α + β)3
− pµpν

αβ

(α + β)3

}
e−

αβ
α+β p2

, (4.145)

16It is very difficult to evaluate the differenceIµν (t)− Iµν in the 4−2ϵ dimensional space time. We decide to evaluate

Iµν (t) in theD = 4 dimension andIµν in D = 4−2ϵ dimension. In theD = 4−2ϵ dimension, the integrand of (4.147)

takes more complicated structure. Such operation is justified by the general property of the gradient flow.
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where we used the formula∫
l

(
l2

)a
e−tl2

=
t−2−a

(4π)2

Γ(2+ a)
Γ(2)

, for a > −2 and D = 4. (4.146)

In the second line of (4.145), we can replaceαβ/(α + β) by ∂/∂p2 as

Iµν (t) =
∫ ∞

t
dα

∫ ∞

t
dβ

{
1
2
1µν

1

(α + β)3
+ pµpν

1

(α + β)2

∂

∂p2

}
e−

αβ
α+β p2

. (4.147)

Performing the integration ofβ for the first term, we obtain

I1 =

∫ ∞

t
dα

∫ ∞

t
dβ

1

(α + β)3
e−

αβ
α+β p2

=

∫ ∞

t
dα

{
1

p2

1

α2(α + t)
e−

αt
α+t p2

+
1

(p2)2

1

α4
e−

αt
α+t p2 − 1

(p2)2

1

α4
e−αp2

}
. (4.148)

When we make the substitutionτ ≡ αt/(α + t) we get

I1 = − 1

(p2)2

∫ ∞

t
dα

1

α4
e−αp2

+
1

p2

∫ t

t/2
dτ

t − τ
t2τ2

e−τp2 − 1

(p2)2

∫ t

t/2
dτ

(t − τ)2

t2τ4
e−τp2

= − 1

t3(p2)2

∫ ∞

1
dx

1

x4
e−tp2x +

1

t2p2

∫ 1

1/2
dx

1− x

x2
e−tp2x − 1

t3(p2)2

∫ 1

1/2
dx

(1− x)2

x4
e−tp2x.

(4.149)

Since we are applying the small flow time expansion, we need a power series with respect to the

flow time. We can recognize thatI1 is constructed from then−th order exponential integral,

En(z) ≡
∫ ∞

1
dx

1
xn e−zx. (4.150)

Its alternating series are

E1(z) = −γ − log(z) +
∞∑

k=1

(−1)k+1zk

k k!
, (4.151)

En(z) =
1
n

e−z − z
n

En−1(z). (4.152)

Using them all, we obtain

I1 =
1

t3(p2)2

(
−2E3(tp2) + E2(tp2)

)
− 1

8t3(p2)2

(
E4(2tp2) − 4E3(2tp2) + 4E2(2tp2)

)
− 1

t2p2

(
E2(tp2) − E1(tp2)

)
+

1

2t2p2

(
E2(2tp2) − 2E1(2tp2)

)
=

p2

6

(
3

2tp2
+ log(2tp2) + γ − 25

12

)
+ O(t). (4.153)
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With the almost same calculation, the second term of (4.147) and we finally obtain

Iµν (t) = −1
6

1

(4π)2

1µν

2
p2

{
− 3

2tp2
− γ − log

(
2tp2

)
+

25
12

}
− 1

6
1

(4π)2
pµpν

{
−γ + log

(
4π

p2

)
+

13
12

}
. (4.154)

It is no wonder that 1/t is appearing in the result, because the right diagrams in the Figure 33

cancels such term. Contributions from it are written as

2
∫ t

0
dsγL

σγρT
aγL

σ⊗Vb
1ν (−il µ)SF ρ(l )e−(t−s)(p+l )2

e−sl2e−tl2
e−sp2

Gab
µν (p; λ). (4.155)

The integration of the internal momentuml is

Iµν (t) =
∫ t

0
ds

∫
l

l µl ν
l2

e−(t−s)(p+l )2
e−sl2e−tl2

e−sp2
. (4.156)

Computational procedure is almost same as previous one,

Iµν (t) =
∫ t

0
ds

∫ ∞

0
dα

∫
l
l µl νe

−(t−s)(p+l )2
e−sl2e−(t+α)l2

e−sp2

=

∫ t

0
ds

∫ ∞

0
dα

∫
l
l µl νe

−(2t+α)(l+ t−s
2t+α p)2−tp2+

(t−s)2

2t+α p2

=

∫ t

0
ds

∫ ∞

0
dα

∫
l

{
l µl ν +

(t − s)2

(2t + α)2
pµpν

}
e−(2t+α)l2

e−tp2
e

(t−s)2

2t+α p2

=

∫ t

0
ds

∫ ∞

2t
dα

∫
l

{
l µl ν +

s2

α2
pµpν

}
e−αl2

e−tp2
e

s2
α p2

=

∫ t

0
ds

∫ ∞

2t
dα

{
1
2

1

α3
l µl ν +

s2

α4
pµpν

}
e−tp2

e
s2
α p2

. (4.157)

Replacings2/α by ∂/∂p2,

Iµν (t) =
∫ t

0
ds

∫ ∞

2t
dα e−tp2

{
1
2

l µl ν
1

α3
+

1

α3
pµpν

∂

∂p2

}
e

s2
α p2

. (4.158)

After performing the integration forα, we apply expand the exponential with respect tos,

I2 =

∫ ∞

2t
dα

1

α3
e

s2
α p2

=
1

s4(p2)2

{
1−

(
1− s2

2t
p2

)
e

s2
2t p2

}
= − 1

8t2
− s2p2

24t3
+ · · · . (4.159)

Therefore, the integration of the right diagram is

Iµν (t) = −1
6

1

(4π)2

1µν

2
p2

(
3

4tp2
− 2

3

)
− 1

6
1

(4π)2
pµpν

(
− 1

12

)
. (4.160)
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Let us finally the 1/t term in (4.154) is canceled out by the 1/t term in (4.154). Since such terms

are proportional to1µν the spinor factor of (4.141) can be written

γL
σγ ρV

a
1µγλγ

L
σ⊗Vb

1ν 1ρλGab
µν (p; λ)

= γL
σγρV

a
1µγλγ

L
σ⊗Vb

1ν 1ρλGab
µν (p; λ)

= −2γL
σγµT

aγL
σ⊗Vb

1ν Gab
µν (p; λ)

= −2γL
σγρT

aγL
σ⊗Vb

1ν 1µρG
ab
µν (p; λ). (4.161)

This spinor factor is same as (4.155). Including the symmetric factor 2 the (4.160), the 1/t is just

canceled out.
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5 Summary and Outlook

In the elementary particle physics, the CP violation has an important meaning involved with new

physics. The missions of the lattice QCD are giving the first principle calculation of quantities.

Especially for the kaon bag parameter, since it indicates the QCD corrections of theK0 − K0

mixing the expectation of the lattice QCD is great. Unfortunately, the∆S= 2 four fermion operator

involves with the chiral symmetry, and is incompatible with the naive Wilson fermions.

The purpose of this study is preparations towards calculations of the kaon bag parameter with the

gradient flow. In particular, we performed two preparations in the thesis. One is the calculation of

the PCAC mass for a numerical practice. One is perturbative evaluation of the∆S= 2 four fermion

operator. These studies have the meaning as follows.

As we mentioned, the∆S= 2 four fermion operator causes the operator mixing and the origin is

the chiral symmetry breaking of the Wilson fermion. Similarly, the PCAC relation needs an additive

renormalization, since it is defined via the PCAC relation. Our numerical results in the section 3.5

use only the gradient flow instead of the additive renormalization. Nevertheless, the both sides

of the PCAC relation have good agreement with each other as in Figure 22, and the PCAC mass

is consistent with the one calculated in the Schrödinger functional scheme. Although there is a

problem related to the linear window, the gradient flow method is reasonable for calculations of

the PCAC mass. Note that we simply apply the gradient flow without the other special techniques

and the renormalization is automatically done. It implies that the gradient flow removes the details

of the lattice fermion and make it possible to take a continuum limit with no concern from the

renormalization. We can also expect that the gradient flow can be applied to the operator mixing, in

other words, the kaon bag parameter. However, we must take care of the linear window discussed

in the section 3.3.3. We should research the fit range dependence and fitting function dependence

of the operator, and include it as a systematic error of the results. There is also possibility that such

analyses make the error large. It is the future work of our study.

We should calculate the matching factor which gives the conversion factor to theMS scheme

to define theMS operator via the gradient flow. In numerical studies of the section 3, we used

the previously calculated matching factors of the fermion bi-linear operators. However, we must

construct it for four fermion operators. To calculate them, we used the small flow time expansion

combining with the background field method in the section 4.1. Our result is (4.127) with the

dimensional reduction scheme. In addition to the∆S = 2 four fermion operator, we discussed

about the∆S= 1 four fermion operator in the section 4.2. According to the general considerations

of the small flow time expansion, it is enough to see the one particle irreducible vertex of the

difference between the bare operator and the flowed operator. We evaluated the internal momentum

integration as (4.154) and (4.160). Of cause, the numerical studies of them are our future works.
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