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Abstract

The nuclear structure in stable nuclei is well understood, and nuclei become spherical and stable

when protons and neutrons take a �magic number�. However, recent studies have reported that

magic numbers disappear in areas of light neutron-rich nuclei and new magic numbers appear.

Further, nuclei with unique structures, such as nuclear deformation and spin anomalies, have been

discovered. Oxygen isotopes suitable for investigating the e�ect of neutrons that ignore the e�ect

of proton number Z because Z = 8 are suitable for nuclear structure studies. In this study, we

systematically investigated the nuclear structure of the 21O nucleus, which is a stable line.

The β-ray detected nuclear magnetic resonance (β-NMR) method is useful for measuring the nu-

clear magnetic moment, for which it requires a spin-polarized radioactive isotope (RI) beam. Prior

to the magnetic moment measurement, nuclear spin polarization was measured using the adiabatic

�eld rotation (AFR) method. In the AFR method, it is possible to measure the degree of polariza-

tion without a frequency search; thus, the parameters (e.g., emission angle, momentum selection,

measurement sequence, target thickness) required to produce polarization can be optimized before-

hand. Therefore, we can focus on frequency search under optimum polarization and yield conditions.

The newly developed AFR device can reversely rotate a permanent Nd magnet (B0 ∼ 500 mT)

mechanically using a Halbach array; thus, it is possible to invert the nuclear spin adiabatically. A

nuclear spin polarization of 21O was produced using the projectile fragmentation reaction and nu-

cleon pick-up reaction. Spin-polarized 21O beams were implanted into the CaO crystal placed in the

static magnetic �eld, polarization is measured by performing AFR measurement. In the case of 21O,

the asymmetry parameter can only obtain the upper limit value and the lower limit value because

there are excitation levels where the spin of the daughter nucleus 21F is not decided. Therefore,

|P | > 4.9% is the lower limit value, which can potentially yield even greater polarization.

Furthermore, 21O has no determined spin, and it is necessary to search across a wide range

of resonance frequencies when performing β-NMR. Therefore, we improved the e�ciency of the

resonant frequency search by introducing a fast switching system. In the proposed system, the

number of variable capacitors in the LCR circuit can be increased from one to three, capacitors can

be switched sequentially using the relay circuit, and a single wide frequency search can be performed.

Therefore, the introduction of this system is very useful to perform the measurement e�ciently in a

limited time.

By introducing these systems, we successfully measured the ground-state magnetic moment of
21O for the �rst time. From the obtained resonance frequency, the g-factor of the ground state

of 21O was |gexp| = 0.6036 ± 0.0014. Experimental results indicating Iπ(21Og.s.) = 5/2+ have

been reported; however, that result has not been determined. Then, the g factors corresponding

to two possible con�gurations, i.e., |[(sd)4]0+(d5/2)⟩I
π=5/2+ and |[(sd)4]0+(s1/2)⟩I

π=1/2+ , calculated



using the e�ective g factors are given as geff(d5/2) = −0.729 and geff(s1/2) = −3.449, respectively.

Although a sign was not assigned to the experimental g factor determined in the present study, we can

de�nitely assign Iπ = 5/2+ to the 21O ground state even only from the comparison of the absolute

value to the e�ective g factors values, due to the large di�erence (as much as 4.6 fold) in geff(d5/2)

and geff(s1/2). Now that we are certain that the Iπ(21Og.s.) is 5/2+, the ground-state nuclear

magnetic moment of 21O can be determined as |µexp(21Og.s.)| = (1.5090±0.0035) µN. Furthermore,

considering the ambiguity of 0.1 µN due to the accuracy of the e�ective g-factor, the magnetic

moment µSM = −1.41 µN obtained using shell model calculation and magnetic moment µRPA(D1M) =

−1.487 µN obtained using random phase approximation (RPA) calculation were consistent with the

experimental results. From these results, Iπ of the ground state of 21O was 5/2+, and 21O was found

to be a �normal� nucleus.

ii



Contents

1 Introduction 1
1.1 Structure of neutron-rich oxygen isotopes . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Nuclear electromagnetic moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Nuclear magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Nuclear electric quadrupole moment . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Nuclear electromagnetic moment measurements of far-unstable nuclei . . . . . 9

2 Principles of Experiment 11
2.1 Spin polarization in projectile fragmentation and nucleon pick-up reactions . . . . . . 11

2.1.1 Projectile fragmentation reaction . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Production of spin-polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Near-side and Far-side orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Nucleon pick-up reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Production of spin polarization by nucleon pick-up reaction . . . . . . . . . . 16

2.2 Measurement of nuclear magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Energy level and transition frequency . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Hyper�ne interaction of implanted nuclei . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 β-NMR method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Development of β-NMR system 29
3.1 AFR method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 RF oscillating magnetic �eld for β-NMR . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 RF magnetic �eld system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Fast switching system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Performance test of AFR system 43
4.1 AFR apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Experimental results of AFR measurement . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Performance tests of New AFR/AFP system 48
5.1 New AFR apparatus using Halbach type magnet . . . . . . . . . . . . . . . . . . . . 48
5.2 Time spectra of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 AFR measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 β-NMR measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 β-NMR measurement using the conventional system . . . . . . . . . . . . . . 53
5.4.2 β-NMR measurement using the new RF system . . . . . . . . . . . . . . . . . 55
5.4.3 Precise measurement of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Derivation of magnetic moment of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Experimental procedure 62
6.1 Description of RIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Polarization production parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Optimal FOM simulation by momentum selection . . . . . . . . . . . . . . . . 67
6.2.2 Emission angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Momentum distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Polarization measurement using the new AFR system . . . . . . . . . . . . . . . . . 75

i



6.4 Magnetic moment measurement using new β-NMR system . . . . . . . . . . . . . . . 76
6.5 Data acquisition system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Data analysis and experimental results 79
7.1 Particle identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Time spectrum for the β decays 21O . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 AFR measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3.1 Selection of stopper materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.2 Selection of measurement sequence . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.3 Selection of target thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.4 Selection of emission angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3.5 Nuclear polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 β-NMR measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Discussion 94
8.1 Results of g-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Ground-state spin parity and con�guration of 21O . . . . . . . . . . . . . . . . . . . . 95
8.3 Comparison with theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 Conclusion 99

Acknowledgments 101

Appendix 102

A Data analysis of 21O 103

B Production of 21F beam 109

C AFP-simulation of 21F 112

D The circuit of the data acquisition system 116

References 121

ii





List of Figures

1.1 Nuclear chart with magic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Nuclear chart around oxygen isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Interaction cross section and matter radii of oxygen isotopes . . . . . . . . . . . . . . 3
1.4 Nuclear electromagnetic moments of oxygen isotopes . . . . . . . . . . . . . . . . . . 4
1.5 Con�guration in the 21O ground state. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Schematic diagram of the projectile fragmentation reaction. . . . . . . . . . . . . . . 12
2.2 Momentum dependence of spin polarization degree of fragment . . . . . . . . . . . . 14
2.3 Near-and far-side orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Production of spin polarization by nucleon pick-up reaction . . . . . . . . . . . . . . 17
2.5 Energy level changes for 21O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Precession of nuclear spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Nuclear spin motion in depolarization method . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Nuclear spin motion in AFP method . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Example of amplitude control of oscillating magnetic �eld . . . . . . . . . . . . . . . 26
2.10 Time sequence of AFP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Initial AFR setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Time sequence of AFR method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Circuit of RF magnetic �eld generation system . . . . . . . . . . . . . . . . . . . . . 33
3.4 Fast switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Schematic layout of fast switching system . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Waveform observed by the RF monitor . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Conventional RF system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Fast switching system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Time sequence of wide search mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.10 Resonance conditions that set for each capacitor in the LCR series resonance circuit

in the fast switch system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.11 Time sequence of sequential mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Schematic of AFR system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Magnetic �eld distribution of AFR magnet. . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 AFR apparatus for RIKEN experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Obtained time spectrum of 20F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Obtained polarization of 20F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Layout of a Halbach type magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 B0 distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Circuit of rotation magnet system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Time spectrum of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Summary of AFR measurement of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Conventional RF magnetic �eld application system . . . . . . . . . . . . . . . . . . . 53
5.7 Results of NMR measurement of 21F using conventional system . . . . . . . . . . . . 54
5.8 Result of wide search mode NMR measurement of 21F . . . . . . . . . . . . . . . . . 55
5.9 Result of sequential measurement of 21F . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.10 Comparison of measurements of conventional and new systems at B0 ∼ 100 mT . . 57
5.11 Three-point measurement of 21F @ B0 ∼ 500.0 mT . . . . . . . . . . . . . . . . . . . 58

iv



5.12 Result of precise measurement of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.13 Fitting results of precise measurement of 21F . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Schematic of RIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Schematic of around target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Results of optimal target simulation by LISE++ . . . . . . . . . . . . . . . . . . . . 67
6.4 Calculation results of momentum distribution of 21O . . . . . . . . . . . . . . . . . . 68
6.5 Polarization calculation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Calculation results of FOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.7 Momentum distribution of 21O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.8 Schematic of AFR apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.9 Schematic of β-NMR apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 Particle identi�cation graph of 21O with 0.25-mmt Be target . . . . . . . . . . . . . . 80
7.2 Energy loss of 21O with 0.25-mmt Be target . . . . . . . . . . . . . . . . . . . . . . . 80
7.3 Particle identi�cation graph of 21O with 1.0-mmt Be target . . . . . . . . . . . . . . 81
7.4 Energy loss of 21O with 1.0-mmt Be target . . . . . . . . . . . . . . . . . . . . . . . . 81
7.5 Time spectrum of 21O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6 AFR measurement results (selection of measurement sequence) . . . . . . . . . . . . 84
7.7 AFR measurement results (selection of target thickness) . . . . . . . . . . . . . . . . 85
7.8 AFR measurement results (selection of emission angle) . . . . . . . . . . . . . . . . . 86
7.9 Decay scheme of 21O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.10 Results of NMR measurement using wide search mode . . . . . . . . . . . . . . . . . 90
7.11 Results of three-point sequential mode measurement . . . . . . . . . . . . . . . . . . 91
7.12 Results of AFP-NMR measurement of 21O . . . . . . . . . . . . . . . . . . . . . . . . 92
7.13 Results of �nal NMR measurement of 21O . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1 Results of AFP simulation of run50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 Results of AFP simulation of run52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.3 Results of simulation �tting of run50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.4 Results of simulation �tting of run52 . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.5 Results of experimental data �tting of run50 . . . . . . . . . . . . . . . . . . . . . . . 106
A.6 Results of experimental data �tting of run52 . . . . . . . . . . . . . . . . . . . . . . . 107

B.1 Particle Identi�cation of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.2 Energy loss of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.3 Momentum distribution of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.1 Final results of AFP-NMR measurement of 21F . . . . . . . . . . . . . . . . . . . . . 112
C.2 Results of AFP simulation of 21F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.3 Results of simulation �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.4 Results of experimental data �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

D.1 The circuit of the data collection system for AFP measurement using conventional PSG118
D.2 The circuit of the data collection system for AFR measurement . . . . . . . . . . . . 119
D.3 The circuit of the data collection system for AFP measurement . . . . . . . . . . . . 120

v



List of Tables

4.1 Deviation of magnetic �eld within target position . . . . . . . . . . . . . . . . . . . . 44
4.2 Obtained degree of spin polarization of 20F . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Least square �tting results of time spectrum of 21F . . . . . . . . . . . . . . . . . . . 51
5.2 Conditions of AFR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Relationship between applied frequency and g-factor . . . . . . . . . . . . . . . . . . 55
5.4 Relationship between applied frequency and g-factor in wide search mode . . . . . . 56
5.5 Relationship between applied frequency and g-factor in sequential mode . . . . . . . 58
5.6 Results of experimental data �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 RIPS overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 RIPS parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1 Least square �tting results for time spectrum of 21O . . . . . . . . . . . . . . . . . . 82
7.2 β ray yield and AβP values obtained with CaO and MgO crystals . . . . . . . . . . . 83
7.3 Optimum conditions obtained from AFR measurement . . . . . . . . . . . . . . . . . 86
7.4 Branching ratio and asymmetry parameter . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5 Correction using asymmetry parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.6 Correction using solid angle of detectors . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.7 Correction using solid angle of detectors . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.8 Relationship between applied frequency and g-factor . . . . . . . . . . . . . . . . . . 90
7.9 Relationship between applied frequency and g-factor for sequential measurement . . 91

8.1 Obtained values of static magnetic �eld . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Comparison of experimental magnetic moments obtained for the 21O ground state in

the present study with shell-model and RPA predictions. . . . . . . . . . . . . . . . . 98

A.1 AFP simulation input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.2 Results of simulation �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.3 Results of experimental data �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.1 Comparison of RIPS parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.1 Input parameters of AFP simulation of 21F . . . . . . . . . . . . . . . . . . . . . . . 113
C.2 Results of simulation �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.3 Results of experimental data �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

D.1 PSG output port allocation table used for AFR measurement. . . . . . . . . . . . . . 116
D.2 PSG output port allocation table used for AFP-NMR measurement. . . . . . . . . . 117

vi





Chapter 1

Introduction

1.1 Structure of neutron-rich oxygen isotopes

Nuclei, which exist at the center of an atom, comprise protons and neutrons. Depending on

the combination of protons and neutrons, nuclei demonstrate various features. For example, with a

certain �magic number� of protons and neutrons, nuclei become spherical and stable. Currently, for

naturally existent nuclei, the magic numbers are 2, 8, 20, 28, 50, 82, and 126. For approximately

half a century, magic numbers have been considered a universal constant in the fundamental law of

physics that is used to explain material formation. However, recent studies using radioactive isotope

(RI) beams have obtained data that overturn the theory that the magic number remains unchanged.

Figure 1.1 shows a nuclear chart with magic number [1]. With some RIs, magic numbers disappear

in the region of light neutron-rich nuclei and new magic numbers appear [2, 3]. This implies that all

known and conceptual nuclide are arranged with proton number Z on the vertical axis and neutron

number N on the horizontal axis. In Fig. 1.1, the black and white squares represent stable and

unstable nuclei,respectively. In this �gure, new magic numbers (N = 6, 16, 32, 34) are reported in

neutron-rich regions.

A nucleon enters a discontinuous energy orbit in terms of quantum mechanics. A group of orbits

close to the energy between these orbits is referred to as a shell, and the number of nucleons di�ers

from shell to shell. The magic numbers appear at places where the energy between shells is large.

New magic numbers are thought to appear owing to change in the energy of a speci�c orbit and

shell structure.

In our group, because it has the magic number Z = 8, we focused on the oxygen isotopes that

are suitable for investigating the e�ect of neutrons while ignoring the e�ect of the proton number Z.

Figure 1.2 shows a partial nuclear chart around oxygen isotopes. In the oxygen isotopes, 24O with

N = 16 as the new magic number is the nucleus of the neutron drip line. However, in a �uorine

isotope with one proton added to the oxygen, the neutron drip line moves to 31F of N = 22 [4].

The gap energy spread of N = 16 is due to the widening energy gap of 1s1/2 and 0d3/2 neutron

orbits. How these orbital energies change is important relative to the prediction of the position of

the neutron drip line and the characteristics of nuclei beyond the neutron drip line.
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Figure 1.1: View of the nuclear chart with traditional and new magic numbers.
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Figure 1.2: The nuclear chart around oxygen isotopes with its spin-parity of ground state. Red
squares are the nuclei that a magnetic moment is known and blue ones are the unknown nuclei.
The nuclei in which the diamond are written inside, the spin of the ground state is 0 and it has no
magnetic moment.
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The gaps with N = 16 open at low Z and are predicted to evolve with the oxygen isotopes

[5, 6, 7]. This is evident in the interaction of both USD [5] and SDPF-M [7]; however, the gap

size is signi�cantly larger in the latter. The only experimental estimates of this gap are provided

by a 23O measurement using the 22O(d, p) transfer reaction [8], which favors the USDA interaction

[6] (a modi�ed version of the USD interaction), and a measurement of the ground state in 25O [9],

which agrees with the USD calculations that predict 26O to be bound, which contradicts previous

experimental results [10].

Figure 1.3: (a) Interaction cross section of AO + C as a function of the mass number. The circles are
from Ref. [12] and the squares are from Ref. [11]. The line shows the A1/3 dependence normalized
to 16O. (b) Matter radii of the oxygen isotopes. The diamond/square/triangle indicates coupled-
cluster calculation with a cuto� parameter = 4.0/3.8/3.6 fm-1. Here, �lled point is Rrms, open point
is proton rms radii. (Taken from Ref. [12])

Figure 1.3(a) shows the measurement result of the interaction cross section of oxygen isotope

(E/A ∼ 900 MeV) AO + C [10]. The squares represent data measured in 2001 [11], and the circles

represent 2011 measurements [12]. The solid line is an A1/3 line normalized with 16O. Figure 1.3(b)

shows the matter radii of the oxygen isotope, where the diamonds, squares, and triangles indicate

coupled-cluster calculations with cuto� parameters of 4.0, 3.8, and 3.6 fm-1, respectively. Here, the

�lled point is Rrms and the open point is the proton rms radii. This result indicates the neutron skin

grows as the mass number increases. Although no subsequent remeasurement has been conducted,

further investigation is required because a large cross section has been observed for 24O. In fact, since

the size of the gap of N = 16 depends relatively weakly on the number of neutrons, it is possible to

obtain more detailed information by examining the more easily accessible nucleus (e.g. 21O).

Figure 1.4 shows the nuclear moment of the oxygen isotope. The magnetic moments measured to

date are 13,15,17,19O and the Q moment is 13,17,19O. From the Q moment of 19O, it is evident that the

value is small, and it is a normal nucleus. Nuclear moment is very sensitive to internal structure; thus

it may be possible to discover spin abnormalities and nuclear deformations. Therefore, measuring

the nuclear moment of 21,23O becomes important relative to discussion of nuclear structure.
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Figure 1.4: (a) Nuclear magnetic moment of oxygen isotopes, and (b) electric quadrupole moments
of the oxygen isotope

The 21O nucleus has N = 13, and the spin is expected to be Iπ = (5/2)+. As shown in Fig. 1.5,

the expected coordination is �ve valence neutrons enter the d5/2 orbital with 16O as the core. From

Fig. 1.2, looking at the isotone of N = 13, 23Ne (Z = 10) is Iπ = 5/2+, while 19C (Z = 6) is

predicted to be Iπ = (1/2)+. It is considered that the d5/2 and s1/2 orbitals are reversed between
19C and 23Ne. Further, we are interested in where this reversal begins. Therefore, we measured the
21O which is located in the middle and the magnetic moment is unknown.

p1/2

d5/2

s1/2

16O

d3/2

p3/2

s1/2
π ν

Figure 1.5: Con�guration in the 21O ground state. The expected con�guration is �ve valence
neutrons enter the d5/2 orbital with 16O as the core.
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1.2 Nuclear electromagnetic moment

The nuclear electromagnetic moment is a physical quantity that functions as an important probe

when investigating nuclei structures because nuclear electromagnetic measurements reveal informa-

tion regarding nuclear spin, shape, and con�guration. In particular, the magnetic dipole moment

described in the following text is a physical quantity that is sensitive to the orbital angular momen-

tum and spin of nuclei, and the electric quadrupole moment is a physical quantity that is sensitive to

nuclei deformation. Therefore, by measuring the nuclear electromagnetic moment, it is possible to

identify the structure and shape inside the nucleus microscopically. The interaction energy between

the electromagnetic �eld and nucleus is expressed as follows:

Hem =

∫
ρ(r)ϕ(r)dr − 1

c

∫
j(r) ·A(r)dr (1.1)

Here, ρ(r) and j(r) are charge and current density, respectively. ϕ(r) and A(r) are the scalar and

vector potential describing the electromagnetic �eld, respectively. Expanding this Hem around the

origin r = 0 yields:

Hem = qϕ(0)− P ·E(0)− µ ·B(0)− 1

6

∑
ij

Qij

(
∂Ej

∂xi

)
0

+ · · · (1.2)

Here, q, P , µ, and Qij denote a nuclear charge, an electric-dipole moment vector, a magnetic

moment vector and an electric quadrupole tensor, respectively, and are given as follows:

q =

∫
ρ(r)dr,

P =

∫
ρ(r)rdr,

µ =
1

2c

∫
r × j(r)dr,

Qij =

∫
ρ(r)(3xixj − σijr

2)dr. (1.3)

1.2.1 Nuclear magnetic moment

The nuclear magnetic dipole moment is determined by the current distribution in the nucleus.

In the single particle model, the spin, parity, and magnetic moment of a nucleus the mass number

of which is odd, are determined from the spins and parities of the remaining outermost shell nuclei

when an even number of protons and neutrons develop an angular momentum of 0. Using nuclear

magneton µN, nuclear spin, and g-factor, the magnetic moment µ of nuclei in a single particle model

can be expressed as follows:

µ = gµNI, (1.4)

µN =
eh̄

2Mpc
.
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Here, e is the elementary charge, h̄ is the Dirac constant, Mp is the rest mass of the proton, and

c is the speed of light. In this experiment, the magnetic moment is calculated using Eq. 1.5 when

nuclear spin is found by measuring the g factor. We can consider the physical properties of nuclei

by determining the magnetic moment.

Using the orbital angular momentum l of the nucleon and the intrinsic nuclear spin s, nuclear

spin I can be expressed as follows:

I = j = l+ s. (1.5)

If the orbital angular momentum of the nucleon and the g factor in the intrinsic nucleon spin are gl
and gs, respectively, the magnetic moment can be expressed as follows:

µ = (gll+ gss)µN (1.6)

From Eqs. 1.5 to 1.6, gj is given by

gj = gll+ gss. (1.7)

Here, when sorting out using s = 1/2 and j = ±1/2, g can be expressed as follows:

g =
gll · j + gss · j

j · j

=
1

2
(gl + gs) +

l(l + 1)− s(s+ 1)

2j(j + 1)
(gl − gs)

= gl ±
gs − gl
2l + 1

. (1.8)

Where, gl, gs take di�erent values for protons and neutrons.

gl =

{
1 (proton)
0 (neutron) , gs =

{
5.58569478(14) (proton)
−3.8260855(9) (neutron) (1.9)

Note that the value obtained by Eq. 1.8 is referred to as the Schmidt value. The magnetic moment

of nucleus whose nucleon number is the magic number and magic number ±1 can be well represented

by the Schmidt value. However, with an unstable nucleus distant from the closed shell, there are

many cases where the magnetic moment value cannot be explained by a single particle model. In

this case, the wave function of the entire nucleus must be represented using a linear combination

of multiple nucleon con�gurations, which is referred to as con�guration mixing. In such a case, the

Schmidt value, which is the predicted value of the single particle model and the g-factor which is

observed in the experiment are deviated. By comparing the experimental and Schmidt values, it can

be con�rmed that con�guration mixing occurs in the shell structure of the nucleus. On the other

hand, some g-factor measurement results can determine spin and parity. This is due to the fact that

g-factor has orbital angular momentum and spin sensitive responses of valence nucleon. Thus, the

magnetic moment is an important physical quantity when investigating structures that characterize

individual nuclear properties.
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1.2.2 Nuclear electric quadrupole moment

The nuclear electric quadrupole moment is a physical quantity representing deviation in the

charge distribution of the nucleus from the spherical shape.The electric-quadrupole moment shows

deformation of the nucleus, particularly deformation of the proton distribution. Here, for simplicity,

consider a nucleus in which the charge of Ze is distributed uniformly and is symmetrical around the

space-�xed z-axis. The charge density can be expressed as follows.

ρ =
Ze

V
. (1.10)

Here V = 4πa2b/3 is the volume of the nucleus, where a and b denote the length of the z axis and

the axis of perpendicular to z axis, respectively. From r2 = x2 + y2 + z2,

Q =
ρ

e

∫ {
3z2 − (x2 + y2 + z2)

}
dV. (1.11)

When Eq. 1.11 is calculated by introducing the cylindrical coordinate system (R, θ, z) as{
x = R cos θ
y = R sin θ
z = z

, (1.12)

it becomes

Q =
ρ

e

∫ (
2z2 −R2

)
dV

=
4πρ

e

∫ b

−b
dz

∫ r

0
R

(
z2 − R2

2

)
dR

=
4πρ

e

∫ b

−b

(
z2r2

2
− r4

8

)
dz, (1.13)

where r =
√
a2 − (a/b)2z2. Then,

Q =
2

15

4πρ

e

(
a2b3 − a4b

)
=

2

5
Z
(
b2 − a2

)
. (1.14)

From Eq. 1.14, it is evident that the nucleus is a spheroid when Q ̸= 0. If Q > 0, then b > a.

Conversely if Q < 0, then b < a. In other words, if Q > 0, nuclei are prolate deformation, and if

Q < 0, nuclei are oblate deformation. Here, we considered the charge distribution of the nucleus, i.e.,

the proton distribution. However, there is a strong attractive force between neutrons and protons,

and if one of the distributions is deformed, it is conceivable that the other distribution is also

deformed. Therefore, the electric quadrupole moment is a static observation quantity representing

nuclei deformation.

To this point, the discussion has assumed that the charge distribution is symmetrical. However,

in an actual nucleus, the charge distribution is not necessarily symmetric with respect to the spatial
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�xed z axis. Therefore, assuming that the charge distribution of the nucleus is symmetrical with

respect to the newly set rotational symmetric axis z′ axis. Considering that the charge distribution

rotates around the space-�xed z axis, we consider the physical meaning of the electric-quadrupole

moment. At this time, let the z′ axis be the quantization axis of nuclear spin I.

Here, the electric-quadrupole moment operator can be de�ned as follows.

Q̂ =
Z∑

k=1

r2kY
0
2 (θ, ϕ)

=

√
5

16π

∑
k

r2k
(
3 cos2 θk − 1

)
(1.15)

However, (r, θ, ϕ) represents polar coordinates, and Y 0
2 (θ, ϕ) is a spherical harmonic function. In this

paper, the electric-quadrupole moment Q is the expected value in state |I,m = I > and is de�ned

as follows.

Q(I) =

√
5

16π
< I,m = I|Q̂|I,m = I >

=
Z∑

k=1

∫
r2k
(
3 cos2 θk − 1

)
|ΦIm|2dV (1.16)

Here, m is the eigenvalue of the projection component Iz in the z direction of I, and ΦIm is the

wave function representing the quantum state |I,m > of the nucleus. First, Q is calculated from

the Eq. 1.3 with respect to the z axis as follows:

Q =

∫ (
3z2 − r2

)
ρdV

=

∫ (
3 cos2 θ − 1

)
r2ρdV. (1.17)

Here, the integral variable is converted from (r, θ, ϕ) to (r′, θ′, ϕ′).

cos θ = cos θ′ cosβ + sin θ′ sinβ cos
(
ϕ′ − φ

)
(1.18)

Here, the z′ axis is assumed to point in the direction of θ = β, ϕ = φ. Substituting Eq. 1.18 into

Eq. 1.17, Q becomes as shown below:

Q =

∫ [
3
(
cos2 θ′ cos2 β + sin2 θ′ sin2 β cos2

(
ϕ′ − φ

)
+ 2 cos θ′ cosβ sin θ′ sinβ cos

(
ϕ′ − φ

))
− 1
]
r2ρdV ′

(1.19)

Considering that ρ is not dependent on ρ′, the integral of
∫ 2π
0 · · · dϕ′ can be performed immediately,

and the third term of the integrand of Eq. 1.19 becomes zero. Given that
∫ 2π
0 cos2 (ϕ′ − φ) dϕ′ =

1
2

∫ 2π
0 dϕ′, Q is expressed as follows.

Q =

∫ [
3

(
cos2 θ′ cos2 β +

1

2
sin2 θ′ sin2 β

)
− 1

]
r2ρdV ′

=
1

2

(
3 cos2 β − 1

) ∫ (
3 cos2 θ′ − 1

)
r2ρdV ′

=
1

2

(
3 cos2 β − 1

)
Q0 (1.20)
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Here, Q0 is the value of Q when the z′ axis coincides with the z axis. In quantum theory, m

takes a discrete value and becomes cosβ = m/
√
I(I + 1). Therefore, using Eqs. 1.16 and 1.20, the

relationship between Q and di�erent m is obtained:

Q (m = m1)

Q (m = m2)
=

< I,m1|Q̂|I,m1 >

< I,m2|Q̂|I,m2 >

=
3 cos2 β1 − 1

3 cos2 β2 − 1

=
3m2

1 − I(I + 1)

3m2
2 − I(I + 1)

(1.21)

In particular, when m2 = I, the following is obtained.

Q(m) =
3m2 − I(I + 1)

I(2I − 1)
Q(I)

Q(I) =
2I − 1

2(I + 1)
Q0 (1.22)

In the actual measurement, Q0 de�ned in the direction of nuclear spin is not directly observed, Q

is observed with 2I−1
2(I+1) . This occurs due to the uncertainty of vector I from quantum mechanical

uncertainty.

1.2.3 Nuclear electromagnetic moment measurements of far-unstable nuclei

The nuclear electromagnetic moment is a fundamental observation that re�ects the structure of

stable nuclei i.e., energy, spin, and parity. However, few studies have investigated unstable nuclei. In

particular, the magnetic moment has a feature that re�ects the con�guration of nucleons in a single

particle state in a shell model and the way of their con�guration mixing sharply. In Fig. 1.2, the red

and blue squares indicate nuclei where the magnetic moment is known and unknown, respectively. In

addition, diamonds indicate that the spin of the ground state is 0 and has no magnetic moment. As

can be seen, some of the unstable nuclei have unknown magnetic moments. Despite the development

of unstable nuclear beam production technology, the production of neutron-rich nuclei distant from

the stable line is di�cult because the cross section is very small. For such neutron-rich nuclei, it is

di�cult to apply a conventional polarization method. For example, it is impossible to produce nuclei

distant from the stable line with polarized production by recoil, as in a (d, p) reaction at low energy.

In the optical pumping method, the nuclear moment of 11Li distant from the stable line could be

measured: however, the optical pumping method cannot be applied to isotopes of elements other

than alkali metals. It is di�cult to apply unstable nucleus production and polarization production,

simultaneously; thus it is di�cult to apply above methods to a short-lived nucleus.

Therefore, a method to produce polarization by projectile fragmentation reaction has been de-

veloped to address these di�culties. This method has three advantages over the above method. The

�rst is beam production by nuclear fragmentation reaction, such that any fragment can be produced

and polarized independent of its physical and chemical properties. Second, the degree of polarization
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is typically only a few percent; however it can sometimes exceed 10%, which is su�cient for nuclear

moment measurement. Third, since the velocity of the fragment is close to the beam velocity, it can

be produced with enough energy to deeply embed in the stopped sample. Therefore, the β-NMR

method can be applied to nuclear moment measurement.
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Chapter 2

Principles of Experiment

In this chapter, the principles of the method used in this research are described. First, we

explain the method used to produce neutron-rich nuclei and the accompanying spin polarizations.

Next, the β-NMR method will be described as a method of magnetic moment measurement for spin-

polarized unstable nuclei. In the β-NMR method, if the magnetic moment of the unstable nucleus

to be measured is unknown, spin polarization cannot be con�rmed. Therefore, the adiabatic �eld

rotation (AFR) method is employed to separate the nuclear spin operation and measure the degree

of polarization. In addition, we describe the control of a fast switching system used to perform

frequency sweeping over a wide range at the time of magnetic moment search.

2.1 Spin polarization in projectile fragmentation and nucleon pick-
up reactions

In order to measure nuclear moments using the β-NMR method, it is essential to produce a spin-

polarized 21O beam. In this section, we describe the method to obtain spin-polarized fragments.

2.1.1 Projectile fragmentation reaction

The projectile fragmentation reaction produces an unstable nuclear beam by stripping the nucleus

of the overlapping part of the projectiles and the target nucleus by bombarding the target with

a heavy ion beam (E/A > 30 MeV). When projectiles accelerated to an intermediate energy of

E/A > 30 MeV collide with a target nucleus, only the area in which nuclei geometrically overlap

reacts and is stripped from the projectiles. This part can be considered a �participant� in the reaction.

Here, the momentum of the nucleus accelerated to the intermediate energy becomes greater than the

Fermi momentum of the nucleon in the nucleus. Therefore, collision time is less than the movement

time of nucleons in the nucleus, and the crushed pieces of the remaining incoming nucleus can

be approximated as �spectators� that do not participate in the reaction. As shown in Fig. 2.1, a

signi�cant feature of this fragmentation reaction is that the fragments continue to move at nearly

the incident velocity. The number of nuclei stripped from the projectiles is given by the product of

the volume of the geometrical overlap volume and the nucleon density, and, if the projectiles and
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target nucleus are determined, it is determined by the collision parameter.

Projectile

Target

p0

participant

spectator

projectile-like
fragment

(a) (b) (c)

pf

pF = p0 + pf

Figure 2.1: Schematic diagram of projectile fragmentation reaction; (a) Projectiles were made to
bombard the target nucleus with momentum p0. (b) Only the region where the projectile overlaps
with the target nucleus reacts, and the other region does not participate in the reaction and moves;
(c) the momentum is preserved in the whole system, the momentum pF of the fragment represented
by the white arrow is the di�erence between the momentum of the projectile and the momentum to
be stripped. Here, an example in which the direction of the momentum to be peeled o� is opposite
the traveling direction is shown.

When the projectile fragmentation reaction occurs, the nucleon is removed instantaneously;

therefore, the stripped nucleon brings out its original exercise amount. Since nucleons exhibit Fermi

motion on a nuclear surface, the Fermi momentum also has distribution. The momentum of frag-

ment pF, which did not participate in the reaction, retains the exercise state produced at the time

of stripping, and the �uctuation ∆p of the internal motion in the nucleus of the fragment with

momentum p0 of the fragment corresponding with the incoming velocity has been added.

pf = p0 +∆p. (2.1)

Assuming that the nucleus is extracted randomly from the projectile where the nucleon is moving

independently, the distribution of ∆p and its width σ can be obtained as follows.

f(p) = exp

(
−(p− p0)

2

2σ2F

)
(2.2)

σF =

√
Af(Ap −Af)

Ap − 1
σ20 (2.3)

Here, Af and Ap are the number of nucleons of the fragment and the nucleon number of the projectile,

respectively. Also, σ0 is the standard deviation of the momentum that the nucleon has in the nucleus.

Similarly, considering that σ0 is 1/
√
5 of the Fermi momentum, it is experimentally found that σ0 ≈ 90

MeV/c. However, the momentum distribution is slightly di�erent, i.e., the tail is drawn to the low

energy side. On the low energy side, the one represented by a collision reaction, such as a projectile

fragmentation reaction, and a complicated reaction occurring multiple times between nucleons in

the nucleus at the time of collision, it is thought that the energy of fragments has decayed.
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2.1.2 Production of spin-polarization

Spin polarization refers to a state in which the spin state of individual particles is biased toward

a speci�c direction when viewed as a group. In the β-NMR method used for magnetic moment

measurement, it is necessary to produce this spin polarization state because it uses emission angle

distribution of β-rays depending on the spin direction of nuclei.

A method to produce spin polarization that uses the projectile fragmentation reaction has been

developed [13]. This method can also be understood by a simple kinematic consideration, i.e., a

nucleon with internal motion in the projectile (Section 2.1.1) is removed without a�ecting others.

When the projectile fragmentation reaction occurs, the stripped nucleus i removes the momentum

pi associated with the Fermi motion. Simultaneously, it takes away the angular momentum obtained

by the outer product of the position vector ri and pi with the center of the projectile as the origin.

Therefore, the angular momentum taken up by the entire stripped o� nucleon can be expressed by

the sum of these nucleons.

Lparticipant =
∑
i

(ri × pi) (2.4)

By the law of conservation of angular momentum, the fragment obtains angular momentum, i.e.,

the source of the spin polarization, as follows.

Lparticipant = −
∑
i

(ri × pi) (2.5)

From Eq. 2.5, the momentum distribution of the fragment, which is the same as the momentum

distribution pi of the stripped nucleon, directly represents the characteristic of the spin polarization

degree, as shown in Fig. 2.2.

2.1.3 Near-side and Far-side orbitals

Spin polarization depends on the emission angle of the fragment in the reaction. Depending on

which orbit of the target nucleus the projectile passes, the sign of fragment is reversed; thus even if

each fragment is spin-polarized, polarization will cancel out as a whole. To prevent this, we must

select what passed through one of the left and right orbits. To make this choice, the emission angle

can be determined based on the slit on the downstream of the target.

Here, we consider scattering of fragments by the target nuclei. The potential of the target

nucleus, which includes both nuclear and Coulomb forces, a�ects the scattering. When the target

nucleus is heavy, i.e., the proton number Z is large, the repulsive force due to the Coulomb force

dominates and the fragment is bent away from the target nucleus (a near-side orbit). Conversely,

if the target nucleus is light, due to the nuclear force, i.e., the in�uence of gravitational attraction,

the fragment is bent in a direction approaching the target nucleus, i.e., a far-side orbit. Since the

type of orbit depends on the target nucleus, if the emission angle is selected, the one that passed

the right or left orbit can be selected, as shown in Fig. 2.3. The emission angle distribution W (θL)
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of the fragment can be decomposed into the contribution of each orbit. Emission angle distribution

W (θL) is expressed as follows:

W (θL) ∝ exp

(
−
(
θL − θ̄def

)2
2∆θ2F

)
+

(
−
(
θL + θ̄def

)2
2∆θ2F

)
. (2.6)

Here, the �rst and second terms are the fragment distributions of the near- and far-side orbits,

respectively, and θ̄def is the average value of the orbital de�ection of the fragments. Conventionally,

this is calculated based on the nuclear forces acting between the projectile and the target nucleus

and the Coulomb force. The sign of polarization is positive when the fragment is bent outward

relative to the target nucleus and negative when it is bent inward. Generally, when the nuclear

force is dominant, it becomes easy for the orbit to be bent inward, and, when the Coulomb force is

dominant, it becomes easy for the orbit to be bent outward. The competitive relationship between

near- and far-side orbits is determined by the magnitude of the proton number Z of the projectiles

and the target nucleus. Here, ∆θF is the variance of the orbital de�ection angle. From Eq. 2.6,

the ratio of the number of fragments N that passed through the near-side orbit to the number of

fragments F that passed through the far-side orbit is expressed as follows:

N

F
= exp

(
θLθ̄def
∆θ2F

)
. (2.7)

Here, RNF is an index representing the competitive relationship between near- and far-side orbits:

RNF ≡ θLθ̄def
∆θ2F

. (2.8)

When RNF ≫ 1, the near-side orbit dominates, and, when RNF ≪ −1, the far-side orbit dominates.

In addition, when RNF ∼ 0, fragments passing through the near- and far-side orbits are equal.

If the collision coe�cient that contributes to the reaction also occurs due to stripping or merely

by �uctuation in the internal motion of the nucleon, ∆θF can be expressed as follows using the

�uctuation of the momentum in Eq. 2.3:

∆θF =
σG
p0
. (2.9)

Furthermore, if θ̄def is selected for θL, Eq. 2.8 is simply expressed as (θ̄def/∆θF)2, and Rdef in Eq. 2.10

(an index representing the orbit's competitive relationship) is expressed as follows:

Rdef ≡
θ̄def
∆θF

. (2.10)

Therefore, a spin-polarized unstable nuclear beam can be obtained by selecting the momentum and

its emission angle during the projectile fragmentation reaction.
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2.1.4 Nucleon pick-up reaction

In a nucleon pick-up reaction, a projectile strips one or more nucleons from the target nucleus

and moves to another nucleus. Similar to the projectile fragmentation reaction case, here, the nuclei

produced by the pick-up reaction are emitted in the form of a beam; thus the target unstable nuclide

can be taken out through a beam optical system. Changes in momentum in nucleon pick-up reactions

have been measured by Souliotis et al. [15] and Turzo et al. [16]. Assuming that the nucleon that

moves parallel to the projectile is stripped o� during the reaction, written as follows:

p⃗f∗ =
Af∗
Ap

p⃗rmp + k⃗ (2.11)

k⃗ = K⃗ − Af∗ −Ap

Ap
p⃗p (2.12)

p⃗f =
Af

Af∗
p⃗f∗ (2.13)

p⃗f∗ : the linear momenta of the pre-fragment

Af∗ : the number of nucleons of the pre-fragment

Ap : the number of nucleons of the projectile

p⃗p : the linear momenta of the projectile

K⃗ : Fermi momentum of nucleon (∼ 230 MeV/c)

Af : the number of nucleons of the fragment

p⃗f : the linear momenta of the fragment

Moreover, expansion of the momentum distribution in pick-up reaction σP is expressed as follows:

σP = σ0

√
APF(AP −APF)

AP − 1
. (2.14)

APF = AF −∆At : mass of the projectile part of the �nal product

∆At : the number of nucleons picked up from the target

AP : mass of projectile nuclei

σ0 ∼ 90 MeV/c

2.1.5 Production of spin polarization by nucleon pick-up reaction

Groh et al . reported that a large polarized RI could be produced by an intermediate energy

pick-up reaction [18]. In their experiment, they successfully obtained polarization of (8.5 ± 0.6)%

by utilizing the reaction of 36Ar (150 AMeV) + Be → 37K.

It is also expected that spin polarization can be produced in a one-neutron pick-up reaction.

From a projectile stationary system perspective, the target nucleus and pick-up nucleus come closer
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to the projectile at a constant speed; thus nuclear accompanied by angular momentum is produced

by nucleon trapping (Fig. 2.4). The magnitude of the expected angular momentum is given as

follows.

lz ∼ r0 · kFermi. (2.15)

r0 : nuclear radius

Therefore, the sign of polarization is not dependent on the projectile momentum and the emission

angular momentum. In this case, the spin polarization degree P is expected as follows:

P =

{
+ (Far-side orbital)
− (Near-side orbital).

(2.16)

Projectile

Fragment

lf

Target

kf

ki

R

-kFermi

lf = R ×(-kFermi)

x

yz

P > 0

ki

kf

Figure 2.4: Production of spin polarization by nucleon pick-up reaction
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2.2 Measurement of nuclear magnetic moment

2.2.1 Energy level and transition frequency

The nuclear Hamiltonian with magnetic moment µ, in static magnetic �eld B0 is expressed as

follows:

H = −µ ·B0 = −gµNIzB0, (2.17)

where g is the g-factor of the nucleus, µN is the nuclear magneton, and Iz is the z axis direction of

nuclear spin. Here, energy levels m = I, I − 1, . . . ,−I + 1,−I are expressed as follows:

Em = −gµNB0m. (2.18)

Thus, z direction components of spin I are separated at equal intervals to 2I + 1 according to the

magnetic quantum number m. Then, energy levels are represented as follows:

E(m) = −gµNB0m (2.19)

It is referred to as Zeeman splitting. The energy di�erence between adjacent levels is expressed as

follows:

∆E = −gµNB0(I − 1)− (−gµNB0I)

= gµNB0 (2.20)

= hνL.

Here, νL = gµNB0/h is the Larmor frequency.

Nuclei with electric-quadrupole moment Q in electric �eld gradient eq are a�ected by electric

quadrupole interaction in addition to magnetic dipole interaction. The Hamiltonian of this system

is expressed as follows:

H = −gµNIZB0 +
eqQ

(
3 cos2 θc−axis − 1

)
8I(2I − 1)

[
3I2Z − I(I + 1)

]
, (2.21)

where eq is the electric �eld gradient, Q is the quadrupole moment and θc−axis is the angle between

the B0 axis and the crystalline c-axis. The transition frequency νm,m+1 between the magnetic

sublevels m and m + 1 under a combined Zeeman and electric-quadrupole interaction is expressed

as follows:

Vm,m+1 = (Em − Em+1)/h

=
gµNB0

h
− 3eqQ

h

(
3 cos2 θc−axis − 1

)
8I(2I − 1)

(2m+ 1)

= νL − νQ
3
(
3 cos2 θc−axis − 1

)
8I(2I − 1)

(2m+ 1), (2.22)
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where νQ = eqQ/h denotes the quadrupole coupling constant. In the case of 21O, nuclear spin I is

expected to be 5/2. As a result, νm,m+1 can be rewritten as follows:

νm,m+1 = νL − νQ
3
(
3 cos2 θc−axis − 1

)
80

(2m+ 1). (2.23)

Figure 2.5 shows the changes in energy levels for 21O. In this experiment, because we chose a

CaO crystal that have no electrical �eld gradient eq, so the width of energy level is constant as

center �gure of Fig. 2.5 and

νm,m+1 = νL. (2.24)

m = -5/2

m = -3/2

m = -1/2

m = 1/2

m = 3/2

m = 5/2

eq = 0

B0 = 0

eq = 0

B0 ≠ 0

eq ≠ 0

B0 ≠ 0

nL

nL

nL

nL

nL

Figure 2.5: Energy level changes for 21O
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2.2.2 Hyper�ne interaction of implanted nuclei

The selection of host materials is very important for β-NMR measurements because the preserved

polarization, resonance frequency shift, and the broadening of the width of the NMR spectrum

depend on the hyper�ne interaction between the implanted nuclei and the stopper materials. In this

section, the hyper�ne interactions of impurities in stopper materials, such as spin-lattice relaxation,

broadening resonance width, and resonance frequency shift, are discussed. Since these items di�er

for metallic and non-metallic stoppers, the di�erences are also described.

Spin-lattice relaxation

Interactions between implanted nuclei and electrons in a crystal can cause relaxation. Generally,

the Hamiltonian for the electromagnetic interaction between nuclei and electrons is expressed as

follows:

H = 2µBγh̄I

[
l

r3
− s

r3
+ 3

r(sr)

r5
+

3

8
πsδ(r)

]
, (2.25)

where µB is the Bohr magneton, I is the nuclear spin, and l and s are the orbital and intrinsic

spins of electrons, respectively [19]. In free space, this interaction becomes very large; however, in a

diamagnetic sample, it is reduced the orbital angular momentum disappears.

The spin-lattice relaxation and resonance frequency shift, i.e., the Knight shift, in metals are

caused by the conduction S electrons. They are associated with the following well-known Korringa

relation:

T1

(
∆H

H

)2

=
h̄

4πkT

γ2e
γ2n
, (2.26)

where γe and γn denote the spin g factors of the electrons and nuclei, respectively, ∆H/H is the

Knight shift, and T1 is spin-lattice relaxation time. From this relation, relaxation time T1 is expected

to be inversely proportional to temperature T . Note that the temperature must be decreased to

increase the relaxation time.

In the case of insulators, spin-lattice relaxation time is not given by a simple relation, such as

Eq. 2.26. Spin-lattice relaxation time in pure metal is greater than 102 s at room temperature [20].

The paramagnetic impurity in the crystal is the primary cause of relaxation. In this study, lattice

defects produced in crystals during the implantation process may also have caused the relaxation

because defects may cause �uctuation in local magnetic and/or electric �elds, thereby destroying

the nuclear polarization [21].

Line broadening

The implanted nucleus is surrounded by multiple host nuclei that cause a local magnetic �eld.

Fluctuation in the local magnetic �eld causes the resonance width to increase.

As reported in the literature [19], the magnetic dipole interaction is expressed as follows:

H12 =
γ1γ2h̄

2

r312

[
I1I2 − 3

(I1r12)(I2r12)

r212

]
, (2.27)
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where r12 is the vector connecting two spins. Thus dipolar broadening (∆̄ω̄) is expressed as follows:

(∆̄ω̄)2 =
1

3
γ2l γ

2
s h̄

2S(S + 1)
∑
i

(
3 cos2 θi − 1

)2
r6i

, (2.28)

where γl and γs are the gyromagnetic ratios of the implanted and host nuclei, respectively, θi is the

angle between their direction and the magnetic �eld B0, and ri is the distance between them. A sum

should be taken over the surrounding nuclei [22]. Dipolar broadening is associated with spin-spin

relaxation time T2 as follows:
1

πT2
= ∆̄ω̄. (2.29)

In addition to the magnetic interaction between the implanted nuclei and surrounding nuclei,

eqQ causes line broadening if implanted nuclei have a quadrupole moment. There are some causes to

generate a local electric �eld gradient, such as the creation of lattice defects during the implantation

processes and a local lattice e�ect caused by impurities. However, estimating the broadening is

di�cult.

Chemical shift

An implanted nucleus is a�ected by many local magnetic and electric �elds in addition to the

experimental magnetic �eld for the β-NMR measurements. These �elds can cause a shift in the

resonance frequency.

In the case of a metallic sample, the primary cause of the shift is the magnetic �eld generated by

conduction electrons, i.e., the Knight shift, which depends on the concentration of implanted nuclei.

The measured Knight shift is in order of 0.01�1%

Even in the case of an insulator, we must still consider diamagnetic e�ects due to the rotation

of electrons around the nuclei [23]. The contribution from polarization of the atomic spin induced

by the external magnetic �eld, known as paramagnetic shielding, also causes a shift. Due to these

magnetic �elds, the total magnetic �eld is expressed as follows:

B = B0(1− σ), (2.30)

where B0 is the external magnetic �eld and σ, which is equivalent to the shift of resonance frequency,

σ, i.e., the chemical shift, is independent of the external magnetic �eld and is of the order of

10−4 ∼ 10−2.
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2.2.3 β-NMR method

The β-ray-detected nuclear magnetic resonance (β-NMR) method [24] is an experimental method

to detect nuclear magnetic resonance by observing the change in the β-ray emission angle distribution

from nuclear spin-polarized unstable nucleus. Among them, the β-ray-detected nuclear quadrupole

resonance method (β-NQR method) [25] refers to the observation of nuclear magnetic resonance fre-

quency separation by electric quadrupole interaction. The β-NMR method and the β-NQR method

are characterized by having sensitivity ∼ 1010 times or more compared to ordinary NMR methods

since one unstable nucleus (RI) emits one signal called β-ray, and the yield is an excellent method

capable of measuring at least nuclear moment. The β-NMR method is very e�ective for investigating

the structure of unstable nuclei.

Observation of spin polarization

A method to obtain the spin-polarized radioactive nucleus is discussed in section 2.1. The β-ray

angular distributionW (θ) for the β ray emitted from nuclei with spin polarization P [26] is expressed

as follows:

W (θ) = 1 +
v

c
AβP cos θ, (2.31)

where θ is the angle between the direction of the β-ray emission and the axis of the nuclear polar-

ization, v
c is the velocity of the β particle. Aβ denotes the β-ray asymmetry parameter. The sign of

P is positive when the spins are preferentially directed in the z axis. In the case of 21O, a decay Q

value Qβ− = 8110 keV [27]. A β particle loses energy when penetrating materials around the stopper

prior to entering the β-ray detectors; thus only β particles with Eβ ≥ 1600 keV [28] (or v
c ≥ 0.97)

were counted. As a result, W (θ) in Eq. 2.31 is well approximated by the second expression v
c ≈ 1.

Note that the asymmetry parameter is described in Section 8.2.

The spin-polarized fragments are implanted in a stopper crystal, to which a static magnetic

�eld is applied in order to preserve the spin polarization. Because the energy of β-rays emitted is

su�ciently large, it can be considered as v/c = 1. When the di�erence in the number of β rays

is maximized in the 0◦ and 180◦ directions relative to the direction of polarization of nuclear spin.

Thus, the detector is set in the θ = 0◦ and θ = 180◦ directions, and, by comparing the counts of

these β-rays it is possible to detect the amount of nuclear polarization. Here, the β-ray counts in

the up and down detectors are denoted Nu and Nd, respectively. The up/down ratio R of the β-ray

counts is expressed as follows:

R =
Nu

Nd
= a

1 +AβP

1−AβP
, (2.32)

where a is the ratio of β-ray detection e�ciency between the up and down detectors.

Observation of resonance by nuclear spin operation

An RF coil is placed on both sides of the stopper, and the nuclear spin of the unstable nucleus

can be manipulated by applying a high frequency magnetic �eld B1 in a direction perpendicular to
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the external static magnetic �eld B0. When an external magnetic �eld exists, the nuclear spin wraps

around an external magnetic �eld and precesses at the Larmor frequency (νL) around the external

static magnetic �eld B0. The movement of free spins with magnetic moments in the electrostatic

�eld is expressed as follows:
dµ⃗

dt
= γµ⃗× B⃗0

(
γ = gµN

h̄

)
. (2.33)

Then, by applying a high frequency magnetic �eld B1 (angular frequency ω) in the direction perpen-

dicular to the external static magnetic �eld B0, the e�ective magnetic �eld changes and the nuclear

spin precesses around the vector sum of B0 and B1. Assuming that the B0 direction is the z axis

and the B1 direction is the x axis, Eq. 2.33 can be written as follows:

dµ⃗

dt
= γµ⃗×

{(
B0 −

ω

γ

)
e⃗Z +B1e⃗X

}
. (2.34)

Thus, the e�ective magnetic �eld changes as follows:

B⃗eff =

(
B0 −

ω

γ

)
e⃗Z +B1e⃗X , (2.35)

and, as shown in Fig. 2.6, nuclear spins precess around this magnetic �eld.

ez

B0
Beff

B1

B0 -ω
γ

(a) Laboratory coordinate system (b) Rotational coordinate system

μ
μ

ez

ex ex

Figure 2.6: Precession of nuclear spin

Nuclear spin is associated with magnetic moment with the relation µ = gµNI. Thus, spin

polarization can be manipulated via a magnetic �eld. The depolarization and adiabatic fast passage

(AFP) [19] spin operation methods are described in the following.

1. Depolarization method

A radio frequency magnetic �eld with frequency that is equal to the resonance frequency (Larmor

frequency) νL is applied to destroy nuclear spin polarization. When the angular frequency ω of the

radio frequency magnetic �eld B1 is equal to ωL = γB0 (= 2πνL), the B0 component in the

rotating coordinate system is canceled and the e�ective magnetic �eld Beff is equal to B1. Here, the
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magnetic moment precesses around the x′ axis; thus, the component in the quantizing axis direction

of the nuclear spin, i.e., the static magnetic �eld direction, becomes zero on time average and the

polarization disappears (Fig. 2.7). Therefore, the degree of asymmetry of the detector at θ = 0◦ and

θ = 180◦ changes, and the spin polarization can be obtained from the amount of this change.

ex

ez

Beff

ex

ez

B1

B0-
w
g

μ

B1

μ

Figure 2.7: Nuclear spin motion in depolarization method

2. AFP method

The AFP method reverses the spin by adiabatically (slowly) changing the frequency ω of the

radio-frequency magnetic �eld before and after ωL. In the case of applying the radio frequency

magnetic �eld B1 as shown in Fig. 2.6, nuclear spin precesses around the e�ective magnetic �eld

Beff in the rotating coordinate system of frequency ω. Here, when Beff is changed at a su�ciently

slow rate compared to the angular frequency of nuclear spin precession, the nuclear spin follows

precession movement with Beff . If ω is changed slowly before and after the angular frequency at

which resonance occurs, the nuclear spin can be inverted completely (Fig. 2.8). Therefore, the

degree of asymmetry of the detector at θ = 0◦ and θ = 180◦ changes and nuclear polarization can

be observed from the change amount.

The adiabatic condition is expressed as follows:

dω

dt
≪ (γB1)

2. (2.36)

Here, dω is the full width of frequency modulation (FM) and dt is RF time. Using only this

conditional expression, it is said that it is better if it compares both, and it is better that it is not

clear how much it should be increased quantitatively. Therefore, factor K is introduced as an index

to compare dω and dt.

B1 =
K
√

dω
dt

γ
(2.37)
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Spin reversal using this K value as an indicator has been studied experimentally and via simulations.

The reversal rate is approximately 99% if the K value is 2.7 or greater, and the change in the reversal

rate is small if K is 2.0 or greater. However, spin relaxation will occur if the frequency sweep rate is

too slow to satisfy the adiabatic condition. Therefore, the sweep rate must be faster than the spin

relaxation time in the stopper sample.

Moreover, when the radio frequency magnetic �eld B1 is not su�ciently large compared with

the oscillating magnetic �eld at the embedded position of polarized nuclei in the crystal, the nucleus

polarization collapses when the direction of nuclear polarization is parallel to B1. In order to prevent

this, the following conditions are required.

2π

D
< γB1 (2.38)

where D is dipolar broadening, which represents expansion of the resonance line by the oscillating

magnetic �eld. The spin-spin relaxation (longitudinal relaxation) time T2 becomes:

D ∝ 1/T2

Beff

ex

ez

B1

B0-
ω(t=0)
γ

μ

B0-B0-
ω(t=T)ω(t=T)
γγ

μ

Figure 2.8: Nuclear spin motion in AFP method
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Figure 2.9: Example of amplitude control of oscillating magnetic �eld. The horizontal axis represents
time and the vertical axis represents the oscillating magnetic �eld strength.

In frequency sweeping, there is another problem to consider. Frequency sweeping searches the

resonance with a certain width, but when the resonance frequency exists at the end of the sweep

width, the angle θ of the e�ective magnetic �eld suddenly changes. As a result, the spin can not

keep up with the rapid change of the e�ective magnetic �eld, and the spin polarization destroy.

To solve this problem, there is a method of making the amplitude of the oscillating magnetic �eld

trapezoidal as shown in Fig. 2.9. Here, the frequency of the oscillating magnetic �eld to be applied

over time also changes so as to be proportional to time. The region that realizes a spin reversal

rate of 100% is a �at part in the center, and 100% spin reversal is not realized at both ends of the

trapezoid. In this study, the ratio of the edge part to the �at part of the trapezoid was set to be 1 :

10 : 1. By suppressing the sudden change of the oscillating magnetic �eld by this method, the spin

polarization is prevented from collapsing.

The NMR method using an AFP technique is referred to as the 4AP method. In this method,

the up/down ratio Roff of the detector at θ = 0◦ and θ = 180◦ when no radio frequency magnetic

�eld is applied is expressed as same as Eq. 2.32,

Roff =
Nu

Nd off
= a

1 +AβP

1−AβP
. (2.39)

Then, the spin is inverted using the AFP method, polarization P becomes −P , and Eq. 2.39 can be

written as follows:

Ron =
Nu

Nd on
= a

1 +Aβ(−P )
1−Aβ(−P )

= a
1−AβP

1 +AβP
. (2.40)

Here, we de�ne r as follows:

r =
Ron

Roff
. (2.41)

When the radio frequency magnetic �eld is applied when Ron satis�es the resonance condition, the
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nuclear polarization is inverted and r is written by

r =
a
1−AβP
1+AβP

a
1+AβP
1−AβP

=
(1−AβP )

2

(1 +AβP )2

≈ 1− 4AβP. (2.42)

Then, AβP is expressed as follows:

AβP =
1−

√
r

1 +
√
r
≈ 1

4
(1− r). (2.43)

The case where the applied oscillating magnetic �eld includes the resonance frequency has been

considered. When an oscillating magnetic �eld that does not include the resonance frequency is

applied, spin reversal does not occur and there is no change in the up/down counting ratio. Therefore,

r becomes 1.

r =
a
1+AβP
1−AβP

a
1+AβP
1−AβP

= 1. (2.44)

In other words, by determining if r has shifted from 1, we can identify whether resonance has occurred

and the resonance frequency can be determined. In order to evaluate the �gure of merit (FOM) for

the detection β-ray asymmetry change, we de�ne a quantity Dσ which means the deviation of the

ration r from unity as

Dσ =
1− r

∆r
(2.45)

Here, ∆r is the statistical error stemming from the β-ray counting statistics. As β decay occurs

randomly, β-ray counts follow a Poisson distribution. Note that errors in up/down counting are

denoted
√
Nu and

√
Nd, respectively. From the error propagation rule, the error of R can be

expressed as follows:

∆R

R
=

√(√
Nu

Nu

)2

+

(√
Nd

Nd

)2

=

√
1

Nu
+

1

Nd
. (2.46)

From this equation, the r error is as follows:

∆r

r
=

√(
∆Roff

Roff

)2

+

(
∆Ron

Ron

)2

. (2.47)

From Eqs. 2.46 and 2.47, we can see that ∆r is computed as follows:

∆r = r

√
1

Nu−off
+

1

Nu−on
+

1

Nd−off
+

1

Nd−on
= r

√
4

N
. (2.48)

Assuming that the value of AβP is much smaller than 1 and the solid angle of the upper and lower

counters does not change signi�cantly, and the Nu−off , Nu−on, Nd−off , and Nd−on value remain
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almost unchanged. By substituting Eqs. 2.42 and 2.48 into Eq. 2.45 and rearranging it, Dσ can be

expressed as follows.

Dσ ≈ 2AβP
√
N (2.49)

Solving for N , Eq. 3.8 can be rewritten as follows:

N =
D2

σ

4 (AβP )
2 (2.50)

Therefore, it is possible to know the count necessary to obtain the statistical error Dσ when the spin

polarization degree is AβP . If Yβ is the yield per unit time of β rays and Texp is measurement time,

we can obtain 4N = YβTexp. Therefore, measurement time Texp can be expressed as follows:

Texp =
D2

σ

(AβP )
2 Yβ

(2.51)

The �gure of merit is given by the denominator on the right side of Eq. 2.51 as

FOM = (AβP )
2Yβ. (2.52)

The time sequence of the AFP method is shown in Fig. 2.10. After irradiating the beam to

the stopper, the up/down ratio is measured in the initial polarized state without applying the

radio frequency magnetic �eld. Then, beam irradiation is performed again, and the measurement is

performed with a radio frequency magnetic �eld of the frequency to be investigated. Here, to prevent

the spin operation in this loop from in�uencing measurement of the next loop, a radio frequency

magnetic �eld of the same frequency is applied after the count time. This is considered a single loop

that repeats until su�cient statistics are obtained.

Beam on
off

RF

Count

spin

direction

Roff Ron

Figure 2.10: Time sequence of AFP method
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Chapter 3

Development of β-NMR system

3.1 AFR method

The e�ciency of the measurement using the β-NMR method primarily depends on the polar-

ization degree P . In order to achieve resonance, it is necessary that a degree of polarization of

su�cient magnitude is achieved. However, generally, predicting the polarization degree P of the nu-

clide obtained by the projectile fragmentation reaction and nucleon pickup reaction quantitatively is

di�cult. In the polarization degree measurement by the β-NMR method, however, a resonance can

be observed only if all three conditions are satis�ed simultaneously, i.e., production of spin-polarized

RI beam, preservation of spin polarization in the stopper crystal, and a search for the resonance

frequency, which makes the measurement di�cult. To conduct this measurement in separate step-

by-step procedures, we have developed a system in which spin polarization RI beams implanted in

a crystal can be measured prior to NMR measurement. Therefore, the AFR method was developed

to measure polarization. Note that the AFR method can handle a nuclide with unknown magnetic

moment [29]. With the AFR method, it is possible to determine the polarization degree prior to

carrying out the measurement by the β-NMR method. Figure 3.1 shows the initial experimental

setup. In general, to preserve the spin polarization of nuclei with larger atomic numbers, a stronger

B0 �eld is required. To extend our study to neutron-rich sd-shell nuclei, B0 ≥ 300 mT is desirable;

however this value is more than ten-times greater than the air-coil AFR system (B0 ∼ 30 mT).

In the present study, an AFR system that can apply and rotate a �eld of B0 ∼ 300 mT has been

developed. Details regarding the developed system will be provided in Chapter 4.

To measure the degree of polarization using the AFR method, the unstable nuclear beam is driven

into the stopper crystal in the same way that the β-NMR method is carried out. The stopper is

installed at the center of the static magnetic �eld B0 to maintain the polarization, and the direction

of the static magnetic �eld is applied in the z axis direction. Now, as the coordinate system, the

incident direction of the beam is de�ned as the x axis. The adiabatic magnetic �eld rotating device

creates a static magnetic �eld B0 using permanent magnets above and below the stopper, and a

detector for measuring β rays is installed inside each magnet. The setup is detailed in Fig. 4.1 in

Section 4.1. By this static magnetic �eld nuclear spin precesses around B0 in the stopper. Here,
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Figure 3.1: To study neutron-rich p-shell nuclei, two air coils were placed perpendicular to each
other. The system can generate a rotating �eld as high as B0 ∼ 30 mT in a duration much shorter
than β-decay lifetime.

when the holding magnetic �eld B0 is rotated adiabatically, the nuclear spin I rotates with precession

around B0, and the nuclear spin I and B0 are inverted 180◦. Let T be the time required for a half

turn of the magnetic �eld and t be the elapsed rotation time, the magnetic �eld B0 can be expressed

by the following equation.

B⃗0(t) =

 0
B0y sin

(
πt
T

)
B0z cos

(
πt
T

)
 (3.1)

Here, in order to rotate the nuclear spin I adiabatically, nuclear spin must precess around the

magnetic �eld faster than the rotational speed of the magnetic �eld. This condition is referred to as

the adiabatic condition in the AFR method, and, for B0z ≥ B0y, it can be expressed as follows [29].

(γB0y)B0y ≫ π

T
B0z

B2
y0

B 0z
≫ π

Tγ
(3.2)

In our AFR apparatus B0y = B0z because the static magnetic �eld is reversed; thus Eq. 3.2 can be

rewritten as follows.

T ≫ π

B0γ
(3.3)
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After performing adiabatic rotation of the magnetic �eld, we measure the up/down counting ratio

of β rays with β ray detectors installed above and below the stopper. At this time, the up/down

counting ratio when the static magnetic �eld B0 is directed to a (a =↑ or ↓) direction, and the spin

is directed to b (b =↑ or ↓) expressed as Rab. In addition, the β ray counts of the upper and lower β

ray detectors are denoted by Nu and Nd, respectively. Depending on the direction of the magnetic

�eld, Rab can be expressed as follow using the ratio ϵdet of the detection e�ciency of the upper and

lower detectors and detection e�ciency ϵa.

Rab =
Nu

Nd
ϵdetϵa (3.4)

A β-ray detector uses a photomultiplier tube, which is susceptible to the in�uence of a magnetic

�eld. Since the AFR apparatus rotates and changes the static magnetic �eld that a�ects the pho-

tomultiplier, a di�erence in detection e�ciency is concerned with the β ray detector depending on

the direction of the magnetic �eld; thus ϵa is introduced. The vertical count ratio R↑↑, R↓↓, R↑↓,

R↓↑ is measured by mechanically changing the up/down direction of the magnetic �eld and spin to

determine these ratios r.

r =
R↓↓
R↑↑

R↑↓
R↓↑

=

(
1−AβP

1 +AβP

)4

(3.5)

≈ 1− 8AβP

Then, AβP is expressed as follows:

AβP =
1− 4

√
r

1 + 4
√
r
≈ 1

8
(1− r) (3.6)

Next, we consider the time required for polarization degree measurement in the AFR method. As

discussed in the Section 2.2.3, ∆r can be expressed by the law of error propagation as follows.

∆r = r

√
1

Nu↑↑
+

1

Nd↑↑
+

1

Nu↓↓
+

1

Nd↓↓
+

1

Nu↑↓
+

1

Nd↑↓
+

1

Nu↓↑
+

1

Nd↓↑
(3.7)

Assuming now that the value of AβP is much smaller than 1 and the solid angles of upper and lower

counters also do not change signi�cantly, the Nu↑↑, Nd↑↑, Nu↓↓, Nd↓↓, Nu↑↓, Nd↑↓, Nu↓↑, and Nd↓↑

values almost unchanged. Then Dσ becomes as follows.

Dσ ≈ 2AβP
√
2N (3.8)

Solving for N , Eq. 3.8 can be rewritten as follows.

N =
D2

σ

8 (AβP )
2 (3.9)

Then, 8N = YβTexp; thus, the measurement time Texp can be expressed as follows.

Texp =
D2

σ

(AβP )
2 Yβ

. (3.10)
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The time sequence of AFR method is shown in Fig. 3.2. After irradiating the beam to the

stopper, measure the initial polarization state R without rotating the magnetic �eld. After the

next beam irradiation, measurement is performed after rotating the magnetic �eld. To cancel the

detection e�ciency due to the direction of the magnetic �eld, measurement is performed in a state

in which the magnetic �eld direction is reversed after the next beam irradiation. Finally, after beam

irradiation, the magnetic �eld is rotated and measurement is performed in a state where the spin is

reversed. This comprises a single loop that is repeated until su�cient statistics are obtained.

Beam on
off

B0 field

direction

Count

spin

direction

R↑↑R↑↑ R↓↓ R↓↑ R↑↓

Figure 3.2: Time sequence of AFR method
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3.2 RF oscillating magnetic �eld for β-NMR

The RF magnetic �eld is applied to the entire stopper by the coil in the LCR resonance circuit.

Figure 3.3 shows the RF magnetic �eld generation circuit system. The RF magnetic �eld is output

from function generator with control signal from programmable sequence generator (PSG) [31] as a

trigger. The output RF is ampli�ed using an RF preampli�er and a main ampli�er. It is then trans-

mitted to the LCR resonance circuit. Internal oscillation is less likely to occur due to the insertion

of attenuators between the function generator and the RF preampli�er, and the RF preampli�er

and the main ampli�er.

Control PC

PSG

Counting room

Experimental hall

Relay Box

WF1974
   RF jump

RF trigger

S
W

 j
u

m
p

S
W

 i
n

cr
em

en
t

Attenuator 1

RF preamp.

Attenuator 2

1kW RF Amp.

C1

LR

stopper

C5C4C3C2

Switch Box

SI-35USB

USB

RS485

RF monitor

Figure 3.3: Circuit of RF magnetic �eld generation system
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3.2.1 RF magnetic �eld system

Function generator

The function generator generates the RF magnetic �eld used in the NMR experiment. In this

experiment, a WF1974 multi function generator (NF Co., Ltd.) was used. The RF was controlled

using PSG control PC such that the voltage was output in synchronization with PSG. In addition,

to output the necessary voltage, it is possible to calculate the frequency of the voltage according to

the mode of the PSG, by the control PC, and by sending an instruction from the PC to the function

generator. Note that the frequency that can be output is less than 10 MHz.

Attenuator

The attenuator was used to adjust the magnitude of the signal and prevent the function generator

from being damaged due to re�ection by the RF ampli�er. Here, we used two TRA601D rotary

attenuators (Tamagawa Electronics Co., Ltd.). By placing the �rst attenuator in the counting

room, it is possible to adjust the RF magnitude without entering the experimental hall.

RF Ampli�er

The RF ampli�er was installed immediately before the coil to amplify the RF output. Here,

the T145-6036A high-frequency ampli�er ( Thamway Co., Ltd.) was used as the main ampli�er

(maximum output : 1 kW; frequency band : 500 kHz to 15 MHz; power gain : 55 dB; input level :

0 dBm). When the re�ection protection circuit was enable, if re�ection occurred, an LED blinked

to indicate that the input signal must be adjusted to avoid re�ection.

Relay Box

The relay control box output the 24-V pulse required to operate the switch. In this experiment,

a TCS-2110-0AU (Araki-eletec corp.) was used. This relay control switch has 10 output ports

that output 24-V pulses and input port that receives SW increments and SW jumps via PSG

control signals. Each time a signal enters SW increment, the switch connects nad then disconnects

sequentially, i.e., �No 1 open� → �No 1 close� → �No 2 open�. In addition, when a signal is input to

SW jump, the switch number is reset to start from �No 1 open� even if it ends in the middle of the

sequence.

Switch Box

A Kilovac K40P switch (TE Connectivity) was used in the fast switching system (Fig. 3.4). Fast

switching systems must demonstrate satisfactory switching time and resistance to RF. Since the

measurement target is an unstable nucleus with a lifetime of only several hundred milliseconds, it

is impossible to obtain su�cient β-ray yield by collapsing if the switch time is long. In addition,

since a frequency of several kW is added to the RF circuit, the switch must be robust against high
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frequencies. The operation time of the Kilovac K40P switch is 1 ms, which is su�ciently short for

our purpose. Figure 3.5 shows the schematic layout of a fast switching system [32]. As can be seen,

�ve switches are arranged in parallel in the switch box. RF is input to the red terminal and output

from one of the �ve black terminals. The BNC terminal is connected to the switch's open and close

terminals, and a 24-V pulse is input to control the connection and disconnection of the switch output

from the relay control box.

Variable capacitor

RF from the main ampli�er is impedance matched by a toroidal core and transmitted to the LCR

series resonance circuit. A variable capacitor that can adjust the capacitance whithin a certain range

was used to adjust the resonance frequency of the LCR series resonance circuit. Here, three parallel

capacitors were used such that the capacitors to be used could be selected by the PSG signal. The

variable capacitor can be adjusted from 200�2000 pF remotely without entering the experimental

room during beam irradiation.

RF Coil

The RF coil comprise two circular coils (coil diameter and distance between coils: 30 mm)

arranged in a Helmholtz coil shape. A coil with six windings on one side was fabricated using a

copper wire. Direct current was supplied to this coil, and the magnetic �eld in the stopper plane

was measured using a Gauss meter. Here, the RF magnetic �eld strength (coil DC characteristic)

per unit current of the coil was 2.2 Gauss/A. During the experiment, to monitor the current �owing

through the coil, the voltage across the 0.5 Ω resistor was monitored using an oscilloscope. in

addition, the RF magnetic �eld strength B1 was obtained by converting the voltage into current to

obtain the RF magnetic �eld intensity B1 for AFP-NMR. Note that compliance with the adiabatic

condition was evaluated.

Impedance matching

The RF magnetic �eld system was separated into high-frequency supply and resonance circuit

sides. However, the RF pulse output from the main ampli�er, i.e., the terminal on the high-frequency

supply side, was 50 Ω for impedance Zin, and the impedance Zout at the resonance point on the

resonance circuit side had resistance of 0.5 Ω, i.e., the impedance di�ered between the supply and

resonance circuit sides. In addition, power loss due to re�ection occurred at the connection point.

To match impedances on both sides, both sides were connected by a toroidal core, and the number

of turns to the core was adjusted to prevent power loss due to re�ection at the connection point.

The following relational expression represents winding ratio, where the number of turns on the

high-frequency side and that on the resonance circuit side are denoted nin and nout, respectively.

Zin

Zout
=

n2in
n2out

(3.11)
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Here, Zin/Zout = 100; thus nin : nout = 10 : 1. However, when the RF magnetic �eld strength

applied to the coil was measured by adjusting the winding ratio of the RF voltage to approximately

2000 kHz to the toroidal core, the transmission rate was the best at nin : nout = 3 : 1. Therefore

this ratio was set to 3 : 1. The waveform observed by the RF monitor is as shown in Fig. 3.6.

Voltage was measured for each frequency range. Here, the winding ratio with the highest voltage

was adopted, and Vi, Vm, and Vf represent the initial, middle, and end time voltages, respectively.

Figure 3.4: Fast switch

Figure 3.5: Schematic layout of fast switching system
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Figure 3.6: Waveform observed by the RF monitor
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3.2.2 Fast switching system

In the β-NMR experiments, potential theoretical predictions are diverse when the spin-parity of

the ground state of the target nucleus has not been determined. Therefore, the resonance frequency

must be searched over a wide range. In addition, the time allocated for actual online experiments is

limited; thus, the broadband resonance frequency region must be searched e�ciently. Therefore, an

RF magnetic �eld system equipped with multiple LCR series resonance circuits by the fast switching

system was developed to search the frequency domain over a wide range in a single measurement

and �nd the resonance point.

Note that coils with a small Q value must be used to sweep a wide frequency range using a RF

magnetic �eld system with a conventional single LCR series resonance circuit (Fig. 3.7). However, in

coils with small Q values, the RF magnetic �eld strength at resonance frequency cannot be obtained

su�ciently, and as a result, it is necessary to lower the adiabatic condition. However, in a coil with

a large Q value, even though the strength of the RF magnetic �eld at the resonance frequency is

su�cient, the full width at half maximum of the resonance spectrum is narrowed; thus, ensuring

that the adiabatic condition is satis�ed over a wide frequency range is di�cult. Therefore, in order

to sweep a wide frequency region while satisfying the adiabatic condition, we use a coil with a large

Q value by connecting a plurality of capacitors in parallel and switching using a switch shown in

Fig. 3.8.

Data taking room Experimantal room

F.G.

PSG

RF trigger

RF signal

RF monitor

RF coil

Capacitor

Resistance

Att. Amp. Att. Amp.
1kW

Figure 3.7: Conventional RF system

The hardware used to switch multiple capacitors in parallel is the switch and the relay box.

Since the lifetime of the unstable nucleus to be measured is typically approximately 100 ms, if the

switching time of the switch is long, it will collapse and su�cient β-ray yield can not be obtained.

Since a high frequency of several kW is applied to the RF circuit, it is necessary not to break even

when high frequency is applied. Here, a Kilovac K40P high voltage vacuum relay switch [30], which

satis�es the above conditions, was used.

Connection and disconnection of the high speed changeover switch were controlled by the relay

control box. To control switch connection and disconnection, a PSG signal, which is described later,
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RF trigger
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RF monitor

RF coil
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1kW

relay control
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Figure 3.8: Fast switching system

is input to the relay control box, converted to the voltage required to operate the control box switch,

and then sent to the switch. The relay control box is equipped with a port that can control all �ve

switches. Using this hardware, it was possible to switch the connection to the next switch in 2.15

ms after the switching signal was input to the relay control box.

Note that the fast switch was controlled using programmable sequence generator (PSG). PSG

is the hardware that controls the measurement sequence of AFR, β-NMR experiment. In addition

to controlling the switch, the measurement sequence considers the on/o� state of unstable nuclear

beams, on/o� of application of RF magnetic �eld, open/close of β ray measurement gate, the

number of measurement frequency regions, and static magnetic �eld. In this experiment, PSG for

AFR measurement and PSG for β-NMR measurement were prepared. The experimental operations

are described in the following.

Beam gate

Beam gate de�nes the irradiation time of the unstable nuclear beam. By sending the negative

logic signal of the beam gate to the accelerator console room as a pulsed beam signal, the pulsed

unstable nuclear beam is irradiated to the stopper.

Static magnetic �eld B0 sweep gate

The rotation time of the static magnetic �eld B0 is de�ned in the AFR measurement. While

this signal is being output, no beam is irradiated and β ray detection is also not performed.

Count gate

The β ray measurement time is de�ned. Measurement of β rays is performed while this signal is

being output.

39



Spin Up

The direction of the irradiated polarized unstable nuclear beam is de�ned in the AFR measure-

ment. The direction of the generated spin polarization is de�ned as upward, and when the spin

direction is upward in the static magnetic �eld rotation, a signal is output with positive logic.

B0 Up

The direction of the static magnetic �eld is de�ned in the AFR measurement. A signal is output

with positive logic if the direction of the static magnetic �eld in the initial state is directed upward

and, the direction of the static magnetic �eld is upward.

Rotation request

In the AFR measurement, the rotation request is a signal that instructs the rotation of the static

magnetic �eld magnet. When this signal is output, the magnet rotates a half turn.

RF jump

In the β-NMR measurement, the beginning of one sequence is de�ned. By outputting this signal,

the sequence is initialized and the measurement sequence is outputted again in chronological order.

This signal also serves as an operation start command by inputting this signal to the function

generator.

SW increment

In β-NMR measurement, it outputs a signal to control the connection or disconnection of the

switch. By sending this signal to the relay control box, control signal is converted to a 24-V signal

by the relay control box, and the connection and disconnection of the switch are controlled.

SW jump

By outputting this signal in β-NMR measurement, all the switches in the switch box are discon-

nected regardless of whether all switches are connected. When an SW increment is input, it controls

the relay control box such that it is again connected from switch No. 1. Therefore, SW jump signal

initializes the state of the switch.

RF ID

In the β-NMR measurement, the frequency region to be measured and the beta ray being mea-

sured at that time are tagged. A state in which each RF ID signal is output is de�ned as 1, and

a state in which each RF ID signal is not output is de�ned as 0. A frequency measurement area is

de�ned by a binary system by de�ning RF ID 1 as 20, RF ID 2 as 21, RF ID 3 as 22 and RF ID 4

as 23.
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There are two types of sequences used in β-NMR measurement using a fast switching system,

i.e., wide search and sequential modes.

The wide search mode uses multiple switches to widen the frequency sweeping region of a single

measurement point. If this mode is applied when the target frequency sweep region extends beyond

the frequency region that can be swept by the coil, it is possible to perform measurements e�ciently.

The measurement sequence is shown in Fig. 3.9. Prior to taking measurements, di�erent resonance

conditions were set for each capacitor in the LCR series resonance circuit in the fast switch system,

as shown in Fig. 3.10. Capacitors for which resonance conditions were set were switched at high

speed in order from the low frequency side to the high frequency side. Here, the switching time was

su�ciently shorter than the lifetime of the nucleus to be measured. As described in Section 2.3, in

the experiments, the up/down counting ratios of β rays and RF when RF is applied the resonance

frequency is obtained from the up/down counting ratio of β rays when not applied. At this time,

unless the measurement start times of β rays are matched between when RF is applied and when

RF is not applied, bias in the count ratio appears in the measured spectrum. Therefore, the time

interval at the end of the beam irradiation and the β ray counting was the same in both cases.

Beam on
off

RF

Count

spin

direction

123 123

Figure 3.9: Time sequence of wide search mode

The sequential mode measures a frequency region of multiple points over a wide range using

multiple switches in a single measurement. The measurement frequency width per point is the same

as when not using the fast switch system; however by setting di�erent resonance conditions for each

capacitor, it is possible to increase the entire width of the frequency region to be swept by one

measurement. By changing the resonance condition setting method, it is also possible to search

away frequency ranges with one measurement.
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Beam on
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RF
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spin

direction

RF1 RF2 RF3RF off

Figure 3.11: Time sequence of sequential mode
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Chapter 4

Performance test of AFR system

4.1 AFR apparatus

A schematic of the AFR apparatus is shown in Fig. 4.1 [33]. The pair of Nd magnets attached

to actuator is inverted by the stepping motor. The magnetic �eld can be adiabatically inverted in

150 ms by rotating the Nd magnets mechanically.Since the direction of the RI spin is also inverted

according to the B0 rotation, the spin polarization magnitude (more correctly, the product of the

spin polarization and the β-decay asymmetry parameter) can be determined through the change in

the β-ray asymmetry, as conducted in the conventional β-NMR measurements.

Figure 4.1: Schematic of AFR system.

In this apparatus, a static magnetic �eld B0of ∼ 300 mT was applied by a pair of permanent

Nd magnets to preserve polarization. Prior to conducting a performance test, we measured the

uniformity of the magnetic �eld of the AFR magnet. Figure 4.2 shows the measurement results.

The magnetic �eld at the center point of the AFR magnet was 287 mT. The deviation of the

magnetic �eld within the target position is listed Table 4.1. From this result, the uniformity was

not very good, and even within the target position (magnetic �eld deviation of approximately 4%

at maximum occurs).
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Figure 4.2: Magnetic �eld distribution of AFR magnet.

Table 4.1: Deviation of magnetic �eld within target position

Direction Deviation [mT] Deviation [%]

∆B0X - 5.5(5) 1.9(2)%

∆B0Y + 11.0(1.0) 3.8(3)%
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4.2 Experimental procedure

The performance of the system was evaluated with spin-polarized 20F (Iπ = 2+, T1/2 = 11.163 s)

nuclei produced in the 19F(
−→
d ,p)20F reaction at E/A = 7 MeV at the RIBF facility. A spin-polarized

−→
d beam was provided by a polarized ion source [34] and was accelerated by the AVF cyclotron.

The intensity of the
−→
d beam was typically ∼ 5 nA. The beam was pulsed with beam-on and -o�

durations of ton = 16 s and toff = 16 s, respectively. The
−→
d beams introduced into the AFR system

impinged on a stopper crystal (i.e., CaF2 : 10 mm × 10 mm × 1 mm) placed at the center of the

AFR apparatus, as illustrated in Fig. 4.3, produce the polarized 20F.

Pol-d beam 
7 MeV/u, ~4nA

From AVF cyclotron

Vacuum chamber

(Al + G10)

β-counter (Up)

β-counter (Down)

Rotation magnet

Collimator Φ5mm
(Al 5mmt)

Stopper (CaF2 1mmt)

Figure 4.3: AFR apparatus for RIKEN experiment

A lifetime measurement was �rst conducted to investigate whether 20F was produced and how

pure it was. A polarization measurement was then performed using an AFR apparatus. At this

time, measurements of three patterns were conducted where in the polarization direction of the

beam was up, down, and non-polarized. Finally, AFP-NMR measurements were performed using

this apparatus to compare the degree of polarization.
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4.3 Experimental results of AFR measurement

The production of 20F was identi�ed by observing a β-ray time spectrum as shown in Fig. 4.4.

The purity of 20F was determined as 92.2(4)% by a least χ2-�tting analysis with the following

function:

f(t) = N20Fexp

(
− ln2 · t
T1/2(20F)

)
+NB.G., (4.1)

whereN20F is the yield of β-rays from 20F andNB.G. is the yield of β-rays of the constant background.
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Figure 4.4: Obtained time spectrum of 20F (the experiment data were �tted using Eq. 4.1)

The obtained β-ray up/down ratios r of 20F with the
−→
d beams with of �up�, �down�, and

�unpolarized� spin directions relative to the direction of the B0 �eld are plotted in Fig. 4.5. Their

numerical values are listed in Table 4.2.

The obtained r = 0.992(5) with the �unpolarized�
−→
d beam indicates deviation from unity (i.e.,

r = 1) caused by the e�ect of the B0 �eld rotation on the e�ciency changes of the PMTs connected

to the plastic scintillators. The e�ciency di�erence of the β-ray telescopes can be canceled according

to Eq. 3.4 in the AFR method. In this measurement, however, the shift in the R spectra was caused

by dynamical e�ciency changes of the telescopes due to the rotating strong B0 �eld. We note that
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Table 4.2: Obtained degree of spin polarization of 20F
up/down ratio r−→

d beam polarization uncorrected corrected AβP Pcorrect

up 1.017(5) 1.025(5) 0.3(1)% 1.5(3)%
unpolarized 0.992(5) 1.000(5) 0.0(1)% 0.0(4)%

down 0.963(4) 0.972(4) -0.4(1)% -1.7(3)%

this e�ect can be minimized by introducing magnetic shielding at the PMTs.

Corrected r values, calculated taking the r = 0.992(5) e�ect as a common baseline shift, are

also expressed on the right axis in Fig. 4.5. Spin polarization of 20F, determined by adopting

these corrected AβP values, are listed in Table 4.2, where i) the asymmetry parameter of the 20F

β-decay, Aβ = 1/3, ii) the solid angle of detectors, Ω = 0.70(5), and iii) the observed purity

of 20F β-rays, 92.2(4)%, were considered. The resulting spin polarizations were Pup = 1.5(3)%,

Punpolarized = 0.0(4)%, and Pdown = −1.7(3)%.

Taking the weighted average of |P | values of the �up� and �down� beam polarizations, we obtained

|P | = 1.6(2)%. It has been reported in the literature [35] that the spin polarization P (20F) ∼ 3%

was measured using the β-NMR method under typical beam polarization of 72%. The
−→
d beam

polarization was derived as approximately ∼40% by simply scaling the presently obtained |P (20F)| =
1.6(2)%.
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Chapter 5

Performance tests of New AFR/AFP
system

When measuring the magnetic moment of 21O, a performance test was performed using 21F

nuclei previously produced and measured by RIPS. The results are reported in this chapter.

5.1 New AFR apparatus using Halbach type magnet

As discussed in Chapter 4, the degree of polarization obtained by the AFR measurement was

smaller than that of the previous study. As one factor, the di�erence in polarization of the beam

has been described previously; however, the possibility that the holding magnetic �eld was small is

another possible factor. Therefore, we have been developing a new AFR device in which permanent

magnets are arranged in a Halbach array [37] of rotating magnets in an AFR apparatus that used

opposing permanent magnets. Figure 5.1 shows the layout of a Halbach type magnet.

Figure 5.1: Layout of a Halbach type magnet
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The results of the magnetic �eld measurement inside this magnet are shown in Fig. 5.2. With

the central magnetic �eld of 481 mT, the uniformity of the magnetic �eld was 5 mT/10 mm in the

x direction, 30 mT/10 mm in the y direction and approximately 40 mT/10 mm in the z direction.

Since the stopper was tilted at 45 degrees vertically by 28 mm and laterally by 20 mm, uniformity

within ±10 mm is important. In the previous hyperbolic type magnet, there was a deviation of 10%

or more in the range of ±10 mm; however, by changing this magnet, deviation was 8% at maximum.
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The rotation of the magnet uses the TTL signal output from the PSG. Figure 5.3 shows the

circuit diagram for the magnet rotation control. The TTL signal of the rotation command output

from the PSG is input to a control box for signal processing. The control box is connected to the

control PC via a USB cable, and the command to initialize the rotation time and magnet position

can be issued using the control PC. The rotation command signal output from the control box is

connected to the magnet rotation motor in the AFR apparatus, and the signal is input to the motor,

whereby the magnet rotates by 180◦. To prevent malfunction, the control box is programmed to

not accept the TTL signal more than once per second. In addition, an origin sensor is installed

inside the AFR apparatus. When the command to initialize the magnet position is issued from the

control PC, initialization of the magnet position and a return to origin are performed using the origin

sensor. A light sensor is installed inside the AFR device to con�rm that the magnet has rotated by

180◦. When the magnet rotates 180◦, the light output from one of the optical sensors is detected

by the other sensor. The TTL signal is output when rotation detection is performed by the sensor.

In the experiment, the number of the rotation request and the rotation detection signals from the

PSG were monitored constantly, and an experiment was conducted while con�rming that there was

no deviation. In addition, when the magnet becomes uncontrollable, an emergency stop switch is

connected to the control box to forcibly stop the magnet rotation.

AFR
apparatus

Control PCDriver
Motor
Control board

Emergency
swich

PSG

Control Box

Origin sensor

Rotation check sensor

Rotation request 
signal (TTL)

USB cable

Counting room

Experimental hall

Scaler

Figure 5.3: Circuit of rotation magnet system
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5.2 Time spectra of 21F

First, lifetime measurement was conducted to con�rm the production of 21F. The results are

shown in Fig. 5.4. The red circle in the �gure shows the experimental data, the black line shows the

�tting curve,

f(t) = N21Fexp

(
− ln2 · t
T1/2(21F)

)
+NB.G., (5.1)

and the blue line shows the proportion of 21F in the whole. From this �tting result, the purity of
21F was 84.3 (1.1)%.
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Figure 5.4: Time spectrum of 21F

Table 5.1: Least square �tting results of time spectrum of 21F

NB.G. 166(13)

N21F 4233(21)

T1/2(
21F) 4158

χ2 1.06
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5.3 AFR measurement

In the AFR measurement, several conditions were changed and several measurements were per-

formed. The yield, polarization, and FOM results are shown in Fig. 5.5, and the conditions are

summarized in Table 5.2. The results demonstrate that although it was possible to observe the

degree of polarization even under conditions, the degree of polarization was optimal under condition

#4. Therefore, subsequent NMR measurements, proceeded under these conditions.
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Figure 5.5: Summary of AFR measurement of 21F

Table 5.2: Conditions of AFR measurement of 21F (pc is the center of momentum (= (pF −
pBeam)/pBeam))

# Selected momentum Selected angle Beam on/o� period Yβ AP [%]

1 1.5% < pc < 2.5% 1.6◦ < θ < 5.9◦ 6 s / 6 s 525(23) cps -0.38(11)

2 1.5% < pc < 2.5% 1.6◦ < θ < 5.9◦ 2 s / 10 s 305(17) cps -0.49(14)

3 1.5% < pc < 5.0% 2.1◦ < θ < 5.9◦ 2 s / 10 s 152(12) cps -0.64(19)

4 1.5% < pc < 5.0% 1.6◦ < θ < 5.9◦ 6 s / 6 s 469(22) cps -0.53(11)
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5.4 β-NMR measurement

Before using the fast switch system, measurements were conducted using the conventional system

as the comparison target. Although the magnetic moment measurement of 21F was previously

performed in this system, it is measured under slightly di�erent conditions such as beam energy and

target thickness. The details of beam conditions are given in the appendix.

5.4.1 β-NMR measurement using the conventional system

A conceptual diagram of the RF system in the conventional system is shown in Fig. 5.6. Only

one variable capacitor is used in the conventional system. To adjust the capacitance of the capacitor,

a variable vacuum condenser with a motor (Meidensha corp.) was used.

Control PC
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Counting room

Experimental hall

WF1974
   RF jump

RF trigger

Attenuator 1

RF preamp.

Attenuator 2

1kW RF Amp.

LR

stopper

C1

SI-35USB

USB

RS485

RF monitor

Figure 5.6: Conventional RF magnetic �eld application system
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The magnetic moment of 21F is |µ(21F:5/2+)| = 3.9194(12) µN [38], and the g-factor becomes |g|

= 1.5678(5). As described previously, in the conventional system, frequency sweeping is performed

using only one condenser; thus, three measurements are performed in sequence. This was done to

take measurements in the wide search mode at three points. The measurement results are shown in

Fig. 5.7.

Here, since the external magnetic �eld was set to 100.62(1) mT, which is comparable to that of

a previous study, and RF was applied at a resonance frequency of 1201.37 kHz. Compared to the

degree of polarization in the AFR measurement, here the degree of polarization was small because

the holding magnetic �eld was insu�cient or the RF magnetic �eld did not su�ciently satisfy the

AFP condition.
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Figure 5.7: Results of NMR measurement of 21F using conventional system
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5.4.2 β-NMR measurement using the new RF system

A conceptual diagram of the new RF system is shown in Fig. 3.3. As can be seen, three variable

capacitors are connected in parallel, and two ceramic capacitors are connected to correspond to RF

in the low frequency range. With this system, measurements were �rst taken in wide search mode,

and the results are shown in Fig. 5.8. The applied frequencies are summarized in Table 5.3. In this

mode, the RF of the three regions shown in the �gure was applied continuously; thus even when

resonance was observed, it could not be determined in which region the resonance frequency exists.

(However, in the case of 21F, since the magnetic moment is already known, it is known that there

is a resonance frequency in the center region from the beginning.) Therefore, when resonance was

observed, it was necessary to measure the same region in sequential mode.

Table 5.3: Relationship between applied frequency and g-factor
RF # frequency (kHz) g-factor

1 1147.31�1165.33�1183.35 1.4959�1.5194�1.5429

2 1183.35�1201.37�1219.39 1.5429�1.5664�1.5899

3 1219.39�1237.41�1255.43 1.5899�1.6134�1.6369
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Figure 5.8: Result of wide search mode NMR measurement of 21F. The wavy lines are an example
of frequency.
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As described above, the measurement was performed in sequential mode, and the results are

shown in Fig. 5.9. Here, the frequency deviates from that in the above-mentioned wide search

measurement (Fig. 5.8) because the static magnetic �eld, which is an input parameter of the RF

system, was erroneously input at 100.0 mT (it should be 100.6 mT). The applied frequencies are

summarized in Table 5.4. As a result, the frequency shifted to the lower frequency side, and as a

result, the resonance frequency was also included at the point on the high frequency side; therefore

resonance was observed at two points.

Table 5.4: Relationship between applied frequency and g-factor in wide search mode
RF # frequency (kHz) g-factor

1 1140.26�1164.16�1184.06 1.5011�1.5272�1.5533

2 1174.11�1194.01�1213.91 1.5403�1.5664�1.5925

3 1203.96�1223.86�1243.76 1.5795�1.6056�1.6317

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

 1150  1200  1250

 R
 /
R

o
ff
 r

a
ti
o

 

 Frequency [kHz] 

Figure 5.9: Result of sequential measurement of 21F

Figure 5.10 compares the measurement results of the conventional and new systems. As can be

seen, the R/Roff ratio value matches on the point on the low frequency side, but it does not match

even in the range of error at the other two points. Relative to the point on the high frequency side,

the R/Roff ratio became small because RF with the resonance frequency was applied in the new
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system. For the central point, the polarization degree AβP of the new system was -0.59(10)%, and

the polarization degree at AFR (Table 5.2) could be reproduced.
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Figure 5.10: Comparison of measurements of conventional and new systems at B0 ∼ 100 mT

Therefore, it was con�rmed that the new system works without problem and that measurement

up to 100 mT (for comparison with previous work) has been realized. Then, β-NMR measurement

was started again by changing the static magnetic �eld to 500 mT, which is nearly equal to the

magnetic �eld of the new AFR apparatus.
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5.4.3 Precise measurement of 21F

After changing the magnetic �eld, three points were measured in the same g-factor region, as

in Table 5.4, and it was con�rmed that the same result shown in Fig. 5.9 was obtained. Here, the

magnetic �eld of this measurement was 500 mT; thus, frequency search was performed with 500

mT at the input of RF. The applied frequencies are summarized in Table 5.5, and the results are

shown in Fig. 5.11. As can be seen, polarization was observed only at the center point and that

polarization is smaller as compared with the case of B0 ∼ 100 mT. This is considered to be caused

by the fact that the holding magnetic �eld was insu�cient at 100 mT and a large magnetic �eld of

approximately 500 mT was required to preserve polarization.

Table 5.5: Relationship between applied frequency and g-factor in sequential mode
RF # frequency (kHz) g-factor

1 5721.31�5820.81�5920.31 1.5011�1.5272�1.5533

2 5870.56�5970.06�6069.56 1.5403�1.5664�1.5925

3 6019.82�6119.32�6218.82 1.5795�1.6056�1.6317
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Figure 5.11: Three-point measurement of 21F @ B0 ∼ 500.0 mT
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Finally, a precise 15-point measurement was performed. Here, frequency search was performed

with an overlap of 0.03%, with 1% width centered on g-factor = 1.5664. The results are shown in

Fig. 5.12.
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Figure 5.12: Result of precise measurement of 21F
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5.5 Derivation of magnetic moment of 21F

Since the resonance peak can be observed by precise measurement, the resonance frequency was

obtained by �tting using the least squares method. Here, for the original function, we simulated the

inversion rate of AFP and found the applicable function. See the appendix for details. Figure 5.13

shows the �nal result and the �tting curve. The �tting results are given in Table 5.6. Here, A0 is

the R/Roff ratio, x0 is the center frequency, and σEB is the extra broadening width. Based on the
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Figure 5.13: Fitting results of precise measurement of 21F

Table 5.6: Results of experimental data �tting

A0 -0.073 ± 0.018

x0 5978.28 ± 1.38

σEB 4.45 ± 1.32

Baseline 0.9997 ± 0.0025

Reduced χ2 1.787

above analysis, the center frequency was obtained as follows:

νL = 5978.28± 1.38(statistic error)± 4.45(systematic error).
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Since the spin of 21F is 5/2+ and the magnetic �eld at the end of experiment was 500.86 (1) mT,

the magnetic moment was derived as follows:

|g| =
hν0
µNB0

(5.2)

= 1.5659± 0.0004(sta.)± 0.0012(sys.).

|µuncorrect| = gµNI (5.3)

= (1.5659± 0.0004± 0.0012)× 5

2
× µN

= 3.9147± 0.0009± 0.0029µN

= 3.9147± 0.0031µN.
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Chapter 6

Experimental procedure

This experiment was conducted at the RIKEN Radioactive Isotope Beam Factory (RIBF). 22Ne

accelerated to E/A = 70 MeV was injected into 9Be to produce 21O by projectile fragmentation

reaction and nucleon pick-up reaction. The produced nuclear beams were separated using RIKEN

Projectile Fragment Separator (RIPS) [39], and the produced 21O was led to an AFR apparatus

located downstream of RIPS, and the degree of polarization was measured using the AFR method.

Then, the setup of the �nal focal plane was changed from the AFR apparatus to the β-NMR

apparatus, and the magnetic moment measurement was conducted using the β-NMR method. This

chapter describes the experimental procedure.

6.1 Description of RIPS

A 22Ne beam accelerated up to E/A = 70 MeV in the ring cyclotron accelerator (RIKEN Ring

Cyclotron, RRC) with the AVF accelerator as the front stage collides with the target nucleus 9Be.To

separate the target nuclei from various fragments produced by subsequent projectile fragmentation

and nucleon pick-up reactions, a projectile fragment separator RIPS was used. An overview of

RIPS is shown in Fig. 6.1. Beam swingers are installed upstream of the RIPS target chamber. The

fragments produced using the bipolar electromagnet inside the swinger are bent and made to enter

the target at an angle of 15◦ at maximum. The swinger and slit on the downstream side of the

target are combined to select the emission angle. Then, the following steps were conducted to select

only the target nuclei from the produced fragments.

Separation of dipolar electromagnet D1

The velocity of the fragments produced by the projectile fragmentation reaction was nearly equal

to velocity v of the incident particles. Therefore, assuming that the magnetic �eld B is applied by

the dipole electromagnet D1, the motion equation of the particle with atomic number Z and the

mass number A in this magnetic �eld is as follows:

AmN
v2

ρ1
= ZevB (6.1)

62



E6 Experimental Room

D1

D2

F1

S
lit (A

l)

W
edge degrader(A

l)

P
P
A
C

Target (Be 0.25 mm, Be 1.0 mm, C 0.25 mm)

4D slit (L,R)

Swinger magnet

F2 F3
Experimental

Setup

P
la

s
tic

S
S

D
P

P
A

C
S

lit (A
l)

P
la

s
tic

P
P

A
C

b
S

lit(A
l)

P
P

A
C

a

Figure 6.1: Schematic of the setup for production and implantation of spin-polarized fragments using
RIPS

where ρ1 is the radius of curvature of the dipolar electromagnet D1 (3.6 m), and mN and e denote

the nucleon mass and elementary electric charge. As a result, the magnetic rigidity Bρ1 is given as

follow, and separation with A = Z becomes possible by the dipolar electromagnet D1.

Bρ1 =
A

Z

mNv

e
=
A

Z

p1
e

(6.2)

Particles other than the set A = Z were removed using the slit of F1. If we have the same A = Z

from Eq. 6.2, the trajectory depends on momentum, so D1 is also used to select momentum.

Separation by energy degrader and dipole magnet D2

In the separation by the dipole magnet D1, a nucleus having the same A = Z as the target

nucleus and target nucleus is obtained. To select only target nuclei from these, pass through the

energy degrader placed on the focal plane of Fl. The range R of the particle in the energy degrader

is expressed by the following equation.

R = k
A

Z2
pλ1 (6.3)
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Here, k, p1 and λ are constants that depend on the material of the degrader, the momentum of the

particle per nucleon, and the constant that depend on the energy of the particle. Assuming that the

thickness of the degrader is d, the range after passing through the energy degrader is R − d; thus,

the range can be expressed as follows equation if the momentum is p2.

R− d = k
A

Z2
pλ2 (6.4)

After passing through the energy degrader, the particles are incident on the dipolar electromagnet

D2 and the magnetic rigidity Bρ2 thereof is calculated from these equations:

Bρ2 = Bρ1

(
1− d

k

A2λ−1

Z2λ−2
(Bρ1)

−2λ

) 1
2λ

(6.5)

ρ2 is the radius of curvature at D2, and its value is 3.6 m as D1. In the region where the energy per

nucleon is 100 MeV, when aluminum is used as the material of the energy degrader, since λ = 1.75,

separation is performed at A2.5/Z1.5 in the dipole electromagnet D2 and F2.

A2.5

Z1.5
∝
(
(Bρ1)

3.5 − (Bρ2)
3.5
)
/d (6.6)

For simplicity, the spread of the momentum with the variance represented by Eq. 2.2 has not

been considered; however, as a result, the trajectory spreads even for one nuclide. To converge the

spread of this trajectory, the shape of the energy degrader was wedged such that the target nucleus

can be focused at the F2 focal plane. Table 6.1 shows the thickness of the aluminum plate as the

e�ective thickness and bending angle of the aluminum plate as the e�ective angle.

Several slits were installed in this con�guration. 1) A slit behind the production target was used

to de�ne the emission angle for the projectile fragments. As shown in Fig. 6.2, this slit comprises of

two sets of thick Ta plates. The left and right plates determine the acceptance of the emission angle

θh in the reaction plane, and the up and down plates determine the acceptance angle θv along the

reaction normal. A 7-mm displacement of the slit edge from the beam-line axis corresponds to the

emission angle of 1◦. 2) The slit is located just before the energy degrader (the �rst focal plane F1 in

Fig. 6.1) and is used to select momentum. Opening the slit 24 mm corresponds to 1% momentum.

3) The slit was placed on the second focal plane F2 for nuclide selection.

Particle discrimination at the second focal plane F2 was performed using a semiconductor solid

state detector (SSD) and a parallel plate avalanche counter (PPAC) in the F2 chamber, as well as a

plastic scintillator in the F2 and F3 chambers to obtain energy loss (∆E) and �ight time (Time of

Flight, TOF). It is possible to obtain information about the energy loss of particles passing through

the SSD, and there is a relationship of ∆E ∝ Z2. In this experiment, the SSD was used (thickness:

500 µm). TOF is measured from the signal of plastic scintillator in F2, F3 chamber and TOF is

proportional to A = Z. The thickness of the plastic scintillator used in this experiment was 100

mum. By two-dimensionally plotting ∆E-TOF, it is possible to identify the particles. Figure 6.3

shows the particle identi�cation diagram of 21O of this experiment. The setting of the beam line
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Figure 6.2: Acceptance slit for emission angles of fragments. A primary beam is inclined using a
beam swinger. θh and θv denote acceptance of the emission angle in the reaction plane and along
the reaction normal, respectively.

at this time is shown in Table 6.1. Since PPAC is sensitive to position information, it was used to

view an image of the beam. Here, the magnetic �elds of the dipole electromagnets D1and D2 were

adjusted such that the target unstable nuclear beam passed through the center at the focal plane

using the PPAC in the F1 and F2 chambers. In addition, PPAC in the F2 chamber, together with

the particle identi�cation information, the nuclide whose position is shifted from the target nuclide

on the F2 focal plane among the nuclide other than the target nuclide not reaches the �nal focal

plane F3 by adjusting the slit.
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Table 6.1: RIPS overview
Con�guration Q-Q-SX-D-SX-Q (�rst section)

Q-Q-SX-D-SX-Q-Q-Q (second section)

Q-Q-Q (third section)

Angular acceptance 80 mrad, circle

Solid angle 5 msr

Momentum acceptance 6%, for full angular acceptance

Max. magnetic rigidity 5.76 Tm, 65% larger than that of the cyclotron

Focuses F1: dispersive, end of the �rst section

F2: double achromatic, end of the second section

F3: double achromatic, end of the third section

Flight path length F0-F1: 10.4 m

F0-F2: 21.3 m

F0-F3: 27.5 m

Momentum dispersion at F1 (x|δ) = 2.4 cm/%

Magni�cation at F1 (x|x) = -1.6, (y|y) = -5.7

Magni�cation at F2 (x|x) = 2.5, (y|y) = 1.5

Beam swinger Max 15 degree
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6.2 Polarization production parameter

6.2.1 Optimal FOM simulation by momentum selection

We simulated change in the experimental e�ciency by momentum selection in the nuclear reac-

tion. First, we describe selection of the target thickness. Initially, we optimized the target thickness

using the LISE ++ simulation code [40]. The results are shown in Fig. 6.3. Thickness approximately

1.0 mm assuming that the maximum value of yield×0.7 is the maximum thickness, concerned that

the target is too thick and depolarized. Therefore, in case of an emphasis on yield, the Be 1.0

mm target is optimal. Next, we describe the momentum distribution. As discussed in Section 2.1,

momentum in the case of nuclear fragmentation reaction is given by Eq. 2.3, and in the case of

pick-up reaction it is given by Eq. 2.14. The parameters of this experiment were added to these and

calculated as follows.

Figure 6.3: Results of optimal target simulation by LISE++

σF = σ0

√
K(A−K)

A− 1
(6.7)

= 90×
√

21(22− 21)

22− 1
= 90 MeV/c
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σP = σ0

√
APF(AP −APF)

AP − 1
(6.8)

= 90×
√

20(22− 20)

22− 1
= 124 MeV/c

Momentum p0 of fragments 21O with speed equal to the incident velocity is given as follows:

p0 = 7.728× 103 MeV/c. (6.9)

Thus, momentum distribution f(x) with x = (p− p0)/p0 is given as

f(x) = exp

(
−1

2

(p0
σ

)2
x2
)
, (6.10)

and the obtained calculation results are shows in Fig. 6.4.
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Figure 6.4: Calculation results of momentum distribution of 21O

Next, the degree of polarization of the fragment 21O against the momentum distribution will

be considered. The change in polarization degree P relative to the momentum distribution can be

expressed by Eqs. 6.11 and 6.12, where a = 0.8 and b = 1.7 to reproduce the polarization of reported

in the literature [16]. Figure 6.5 shows the calculation result.

PF(x) = − tanh(ax) (6.11)
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PP(x) = − tanh(ax+ b) (6.12)
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Figure 6.5: Polarization calculation results

Experimental e�ciency, FOM is expressed using Yield×Polarization2. In the case of 21O, it can

be expressed by the following expression using the Eqs. 6.10, 6.11 and 6.12.

FOM(x) = f(x)× P (x)2, (6.13)

The results are shown in Fig. 6.6. As can be seen, the momentum area that should be selected for

both reactions was found.
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6.2.2 Emission angle

To obtain spin-polarized RI beams, the emission angle should be selected as described in Section

2.1. The slit located downstream of the production target was used to select the emission angle

(Fig. 6.2).

The transversal momentum distribution of the outgoing fragments has a Gaussian-like shape

with a width known as the perpendicular width σ⊥ being function of the Goldhaber width [16]:

σ2⊥ = σ20
Af (Ap −Af )

Ap − 1
+ σ2d

Af (Af − 1)

Ap(Ap − 1)
, (6.14)

where σd is orbital dispersion and takes a typical value of 200 MeV/c [17].

The emission angle θL is expressed as follows:

θL = tan−1 σ⊥
p0
. (6.15)

The emission angle that calculated are σL = 1.69◦. However after AFR measurement, the emission

angle was optimized to 2.6◦.

The target, angle, and momentum acceptance di�ered between measurements because the po-

larization degree was optimized by the AFR measurement. Table 6.2 lists the �nal RIPS parameters

for the β-NMR measurement.
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Table 6.2: RIPS parameters

Primary beam 22Ne10+

Incident energy 69.18 A MeV

Beam intensity 250 pnA

Target material 9Be

Target thickness 1.81 mg/cm2

Emission angle(θL) 2.6◦

Emission angle(θh) 2.1◦ − 6.0◦

Emission angle(θv) ±1.0◦

Momentum region 7.47 GeV/c ±3%

F1 slit ±72 mm

Bρ1 2.9330 Tm

F1 degrader material Aluminum

F1 degrader thickness 452.8 mg/cm2

F1 degrader angle 2.21 mrad

Bρ2 2.5813 Tm

F2 slit L 25 mm

F2 slit R 15 mm

Intensity at F2 25 kcps

Purity 88%
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6.2.3 Momentum distribution

The momentum distribution measured in this experiment is shown in Fig. 6.7. Here, pBeam is

the center of the velocity of the momentum, and p0 is the velocity of the incident nucleus converted

to the momentum of the fragment. In the momentum measurement, while setting the magnetic �eld

of the D1 dipole magnet to 0% at the point corresponding to p0 and setting the momentum width

at ± 0.5% at the F1 slit, the number of 21O per unit time obtained at that time, the ratio with the

recoil counter in the F0 chamber was measured. As shown in Fig. 6.7, the momentum recalculated

as (pF − pBeam)/pBeam. First, the number of 21O was determined using the two-dimensional TOF

image measured between the SSD in the F2 chamber and the F2-F3 plastic scintillator, and the

purity of 21O contained in the secondary beam was obtained. If the synchronized count of the SSD

and plastic scintillator is Nall and the count of 21O is N21O, then purity P can be expressed as

follows.

P =
N21O

Nall
(6.16)

Next, the count of the F2 plastic scintillator was standardized by the count of the recoil counter per

unit time, and the number of 21O was obtained by multiplying the standardized count by the purity

P . If the count per unit time of the F2 plastic scintillator is NPL and the count of the recoil counter

is Nr, the count Y21O of 21O can be expressed as follows:

Y21O =
NPL

Nr
× P (6.17)

The vertical axis of Fig. 6.7 is Y21O.
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6.3 Polarization measurement using the new AFR system

A schematic of the AFR apparatus is shown in Fig. 6.8. The unstable nuclear beam that passed

the F3 chamber degraded the energy with the energy degrader, then the beam diameter was narrowed

with the collimator and stopped in the stopper crystal at the center of the static magnetic �eld.

Note that the thickness of the energy degrader can be changed continuously by rotation, the stop

position of the beam is con�rmed by beam counters installed upstream and downstream of the

stopper, and the unstable nuclear beam stops at the center position of the stopper. Here, the Al

plate was set to 0.25 mm for the 21 O measurement. β rays emitted upward and downward from

the unstable nuclei stopped at the stopper were detected using plastic scintillators. As shown in

Fig. 6.8, two plastic scintillators (thickness: 0.5 mm) were installed above and below the stopper.

Two plastic scintillators were used at the top and bottom to eliminate the background due to γ

rays from daughter nuclei or the like by synchronizing the two signals. This is possible because the

detection e�ciency of γ rays is less than that of β rays.

The stopper was tilted to not interfere with the β rays coming up and down. Considering only

the energy loss of β rays, the stopper should be tilted as much as possible; however, the length of

the stopper in the beam axis direction becomes long with increasing tilt. Therefore, since the size

of the rotating magnet in the AFR also becomes large, the torque required to rotate the rotating

magnet also becomes large, and a strong motor is required. In addition, as the length in the beam

axis direction increases, the time required for the unstable nuclear beam to pass through the stopper

increases and the energy generally attenuates much more than in atmosphere. We installed 45◦ such

that the thickness passing through the β-ray relative to the center of the stopper and the thickness

through which the unstable nuclear beam passed through the stopper were equal.

Plastic scintillators

Upstream
Beam counter

Collimator

Energy
Degrader (Al)

Downstream
Beam counter

Halbach-type rotation magnet

The spin-
polarized RIB

From RIPS

Stopper

Figure 6.8: Schematic of AFR apparatus
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6.4 Magnetic moment measurement using new β-NMR system

A schematic of the β-NMR apparatus is shown in Fig. 6.9. Similar to the AFR device described

in Section 5.3, the unstable nuclear beam that passed through the F3 chamber was energy degraded

by the energy degrader installed downstream of the F3 chamber, and the beam diameter was reduced

by passing it through a collimator with a diameter of 18 mm. The beam stops at the center of the

stopper crystal at the center between the poles of the dipole magnet. Here, the dipole magnet

had a pole gap of 70 mm and a static magnetic �eld of 500.94(16) mT was obtained by applying

DC current (20.986(1) A) to the electromagnet in constant current mode. The �uctuation of the

magnetic �eld at this time is due to the �uctuation of the current. β-rays emitted from the stopped

unstable nucleus are detected by β ray detectors, which are three on each of the up and down sides.

The scintillator part of the β ray detector used is a circle with a diameter of 100 mm, 120 mm,

and 145 mm in order from the innermost scintillator. The thickness is 2 mm, and the thicknesses

of the light guide and light shielding �lm wound on the scintillator were also adjusted. The total

thickness was approximately 5 mm per sheet. An H1161 (Hamamatsu Photonics) was used as the

photomultiplier. The voltage is -2700 V. The solid angle Ω of the upper counter is expresses as

follows, where θ0 is the angle from the center of the magnet to the edge of the outermost scintillator.

Ω = 2π(1− cosθ0) (6.18)

With a scintillator size of θ0 = 64.2◦, the upper solid angle is 1.1π. Since the shape of the detector

is vertically symmetrical, it is su�cient to consider only the upper side, and the detection e�ciency

ϵΩ by the solid angle is given as

ϵΩ =
2π(1− cosθ0)

2π
= 0.56. (6.19)
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Figure 6.9: Schematic of β-NMR apparatus
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6.5 Data acquisition system

In the AFR (β-NMR) experiment, β rays are detected by two (three) plastic scintillators of each

measuring device. The detection signal is divided into two using a signal divider. Here one signal

detects the β ray energy information as an analog signal, and the other signal is converted to a

digital signal and sent to a data processing system. The start signal (event trigger) of the data

processing system is expressed as follows.

event trigger = (((U1 ∩U2) ∪ (D1 ∩D2)) ∩ count gate) for AFR (6.20)

= (((U1 ∩U2 ∩U3) ∪ (D1 ∩D2 ∩D3)) ∩ count gate) for β −NMR (6.21)

The U1, U2, and U3 detectors were installed on the upper side of the stopper, and the D1, D2,

and D3 detectors were installed on the lower side of the stopper. With the occurrence of this event

trigger, the event capture gate of the CAMAC module opens, and the analog digital converter

(ADC), the coincidence register, and the non-stop time to digital converter (NSTDC) record the

information. The circuit diagram is shown in Figs. D.1�D.3. Here, a 4300B fast enhancement and

readout ADC (FERA) manufactured by LeCroy was used as ADC. In addition, a CC7700 (Toyo

Technica Co.) was used as the crate controller. The analog signal is divided into two, where one

signal is converted into a digital signal and used as time information of the event. The other signal is

used to synchronize the analog signal with the gate with a certain time window created by the digital

signal and obtain energy information by integrating the charge that has entered the time gate. The

energy information of β rays obtained by FERA, time information, such as the collapse of nuclei

by NSTDC, β ray detection information, and control information from PSG were recorded by the

coincidence register. The event trigger information is transferred to the PC for data processing, i.e.,

online analysis processing. Since event detection is prohibited until data processing is completed, a

veto signal is applied when an event is detected. When data processing is complete, a veto release

signal is output from the output register and the next event trigger is accepted.
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Chapter 7

Data analysis and experimental results

In this chapter, we �rst report the analysis of the 21O beams produced by projectile-fragmentation

and pick-up reaction. Then, we determined the best condition of polarization from AFR measure-

ment. Finally, we measured Lamor frequency of 21O.

7.1 Particle identi�cation

The polarized beam of 21O was produced by the projectile fragmentation reaction and nucleon

pick-up reaction of 22Ne beam at E/A = 70 MeV. The isotope separation was provided by combined

analyses of the magnetic rigidity and momentum loss of the ions in the aluminum degrader at F1 of

RIPS. To identify 21O from the other isotopes, we measured the time of �ight (TOF) of the beam

and energy loss (∆E) in the Si detector located F2.

The ∆E-TOF spectrum of 21O with the 0.25-mm thick Be target is shown in Fig. 7.1. The

vertical axis stands for the ∆E and horizontal one stands for the TOF. The position distribution

of the 21O at the achromatic focal plane F2 of RIPS was measured by a parallel plate avalanche

counter (PPAC) installed at F2. The position was optimized by adjusting the magnetic �eld in the

D2 magnet. The ∆E spectrum of 21O with 0.25 mm thickness Be target is shown in Fig. 7.2. As

shown in Figs. 7.1 and 7.2, two components that correspond to 21O and 19N were observed with the

F2 slit L = 25 mm and R = 15 mm. From the spectrum the purity of the 21O beam was measured

to be about 88% at F2. The ∆E-TOF and ∆E spectrum of 21O with 1.0 mm thickness Be target

is shown in Figs. 7.3 and 7.4.
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Figure 7.1: Particle identi�cation graph of 21O with 0.25-mmt Be target
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Figure 7.2: Energy loss of 21O with 0.25-mmt Be target
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Figure 7.3: Particle identi�cation graph of 21O with 1.0-mmt Be target
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Figure 7.4: Energy loss of 21O with 1.0-mmt Be target
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7.2 Time spectrum for the β decays 21O

To con�rm whether the nuclei selected by particle identi�cation are really 21O, time spectrum

of β decay was obtained. The measurement result is shown in Fig. 7.5, where circles represent

experimental data and curves are �tting curve obtained using the following expression.

f(t) = N21Oexp

(
− ln2 · t
T1/2(21O)

)
+N21Fexp

(
− ln2 · t
T1/2(21F)

)
(7.1)

where N21OandN21F are free parameters, that represent the yield of nuclei. T1/2(21O) and T1/2(21F)

are �xed parameters that represent the half-life of nuclei. These �tting results are given in Table

7.1
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Figure 7.5: Time spectrum of 21O

Table 7.1: Least square �tting results for time spectrum of 21O

N21O 544(63)

T1/2(
21O) 3.42 s

N21F 670(58)

T1/2(
21F) 4.158 s

χ2 0.918

The half-life of 21O measured this time is 3.42 s, but it is di�cult to perfectly separate it because
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its half-life of the daughter nucleus 21F is close to 4.158 s. As a result, it is understood that 21O was

obtained with a purity of 43(6)%.

7.3 AFR measurement

AFR measurements were taken to identify optimal polarization conditions. The changed condi-

tions are summarized as follows.

7.3.1 Selection of stopper materials

MgO crystal was used as the stopper material for the magnetic moment measurement of 13O

[41] and CaO crystal was used for 19O [42]. The measurement results for each sample are given in

Table 7.2. As can be seen, polarization could not be observed in the MgO crystal. One possible

reason for this is that the spin-lattice relaxation time T1 of 21O is less than the counting time.

According to the literature [41], the relaxation time of 13O in the MgO crystal is T1 > 50 ms. The

half-life of 21O (T1/2 = 3.42 s) is two orders of magnitude greater than the lower limit value of T1

of 13O. In the measurement sequence, since beam on/o� was switched on the order of seconds; thus

it is possible polarization could not be preserved until the end of the counting time. In contrast,

polarization was observed in the CaO crystal; however, the degree of polarization was small, because

the other polarization conditions were not good.

Table 7.2: β ray yield and AβP values obtained with CaO and MgO crystals

MgO CaO

Yβ [cps] 128 ± 11 100 ± 10

AβP [%] 0.08 ± 0.31 0.27 ± 0.18

FOM [a.u] 0.9 ± 4.7 7.2 ± 7.0

7.3.2 Selection of measurement sequence

For the measurement sequence, the length of one loop was set to 10 s, which is approximately

twice the mean life of 21O, and measurement was conducted with two types of beam on/o� period

of �5 s � 5 s� and �2 s � 8 s�. This is a comparison in which the polarization is relaxed prior to

starting the measurement after beam implantation, and the polarization degree was reduced as the

polarization relaxation time was not so long. The results are shown in Fig. 7.6. As can be seen,

polarization relaxation time was not so long, and when the beam on was set to 5 s, the degree of

polarization was reduced. Therefore, the �2 s � 8 s� sequence represent the better condition.
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Figure 7.6: AFR measurement results (selection of measurement sequence)

84



7.3.3 Selection of target thickness

As the target, Be 0.25 mmt and 1.0 mmt were prepared. Figure 7.7 shows the results of FOM

on two targets, i.e., a thin target (0.25 mmt) emphasizing polarization, and a thick target (1.0 mmt)

with an emphasis on yield. We were apprehensive about depolarization in the thick target; however,

the results demonstrate that the thick target was better than the thin target because the β-ray yield

increased.
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Figure 7.7: AFR measurement results (selection of target thickness)
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7.3.4 Selection of emission angle

For the angle selection, measurements were taken with acceptance changed with the incident

angle unchanged. The measurement results are shown in Fig. 7.8. It was found that the FOM is

better when the angle is tightened; thus, we decided to select the angle from 2.1 to 6.0 degree.
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Figure 7.8: AFR measurement results (selection of emission angle)

In summary, the following condition is optimal in the current polarization measurement.

Table 7.3: Optimum conditions obtained from AFR measurement

Stopper material CaO crystal

Measurement sequence 2 s + 8 s

Target thickness 1.0 mmt

Selected angle 2.1�6.0 degree

86



7.3.5 Nuclear polarization

Polarization of |AβP | = 1.12±0.18% was obtained from an AFR measurement of 21O. Here, we

make some corrections to derive the degree of polarization.

Correction using asymmetry parameter

The asymmetry parameter Aβ represents the degree of asymmetry of the probability of emission

parallel or anti-parallel to β rays spin.

In the case of Fermi transition, Aβ is zero. For pure Gamow-Teller transition, Aβ is expressed

as follows:

Aβ =


±1 for I → I − 1

±
1

I + 1
for I → I

∓
I

I + 1
for I → I + 1

(7.2)

where up is selected if the sign is β+ decay and down is selected if the sign is β− decay.

Figure 7.9 shows decay scheme of 21O [27]. Although the spin of the ground state of 21O is not

determined in this �gure, it is determined that Iπ is 5/2+ from this study; thus, the following is

calculated as Iπ = 5/2+. Moreover, spins of several excitation levels of 21F, which is the daughter

Figure 7.9: Decay scheme of 21O

nucleus of 21O have not been determined. Therefore, asymmetry parameters were calculated with

all spin combinations. The results are shown in Table 7.4.

The upper and lower limit values of the asymmetry parameter were obtained as follows.

Aβ_upper limit = 0.372× (−1) + 0.123× (−2

7
) + 0.296× (−2

7
) + 0.105× (

5

7
) + 0.053× (−1)

= −0.472
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Table 7.4: Branching ratio and asymmetry parameter
Ex [keV] Branching ratio Spin exchange Asymmetry parameter

1730.40 37.2% 5
2

+ → 3
2

+
-1

3459.64 12.3% 5
2

+ → 5
2

+ −2
7

5
2

+ → 3
2

+
-1

3517.67 29.6% 5
2

+ → 5
2

+ −2
7

5
2

+ → 3
2

+
-1

4572.38 10.5% 5
2

+ → 7
2

+ 5
7

5
2

+ → 5
2

+ −2
7

5
2

+ → 3
2

+
-1

4584.0 5.3% 5
2

+ → 3
2

+
-1

Aβ_lower limit = 0.372× (−1) + 0.123× (−1) + 0.296× (−1) + 0.105× (−1) + 0.053× (−1)

= −0.949

Table 7.5 shows the value of the polarization degree corrected using the asymmetry parameter.

Table 7.5: Correction using asymmetry parameter
AβPexp Aβ Pexp

Upper limit 1.12±0.18 -0.472 -2.37±0.38
Lower limit 1.12±0.18 -0.949 -1.18±0.19

Correction using solid angle of detectors

When the unstable nuclei generated in the stopper β decay, β-rays are released at a certain

emission angle distribution. Although the emission angle distribution W (θ) described in Chapter 2

is only calculated when θ is 0 and 180 degrees, in practice the size of the detector is �nite, and the

observed AβP diminishes. Therefore, it is necessary to correct the solid angle of the detector. From

Section 6.4, the detection e�ciency ϵΩ by the solid angle is expressed as follows:

ϵΩ =
2π(1− cosθ0)

2π
= 0.56. (7.3)

Table 7.6: Correction using solid angle of detectors
Pexp ϵΩ P

Lower limit -1.18±0.19 0.56 -2.11±0.34
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Correction using purity

From the result of the lifetime measurement (Section 7.2), the purity of the 21O nucleus was

obtained. Since 100% purity cannot be obtained, corrections based on purity are required.

Table 7.7: Correction using solid angle of detectors
Pexp Purity P

Lower limit -2.11±0.34 0.43±0.06 -4.9±1.0

From the above correction, the polarization degree of 21O obtained in this experiment was |P | >
4.9%.
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7.4 β-NMR measurement

In this NMR measurement, since the polarization degree was optimized, the approximate value

of the polarization degree was known. First, we measured in wide search mode. As described in

Section 3.1, in this mode, a wide range frequency search can be performed by switching multiple

capacitors with a relay switch. Here, by switching between three variable capacitors and two ceramic

capacitors, the range g = 0.5765± 0.064 was searched in a single measurement. Table 7.8 shows the

relationship between applied frequency and g-factor. The results of the wide search measurement

are shown in Fig. 7.10. The AβP value (0.63 ± 0.15)% obtained by the wide search measurement

was smaller than that measured by AFR (AβP = (1.1 ± 0.2)%), but a resonance with a statistical

accuracy of 4.2σ was observed. Therefore, we determined that there was a resonance frequency in

this region, and it shifted to sequential measurement.
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Figure 7.10: Results of wide search mode NMR measurement (the wavy lines are an example of
frequency.)

Table 7.8: Relationship between applied frequency and g-factor
RF # frequency (kHz) g-factor

1 1956.46�2037.89�2119.32 0.5125�0.5338�0.5552

2 2119.32�2200.75�2282.17 0.5552�0.5765�0.5978

3 2282.17�2363.60�2445.03 0.5978�0.6192�0.6405
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In the sequential mode measurement, the wide search range was �rst divided into three to

accommodate a three-point. Here, the FM width was 147.94 kHz. Table 7.9 shows the relationship

between applied frequency and g-factor, and the results are shown in Fig. 7.11. As described in

section 2.2.3, the frequency sweep was performed in a trapezoidal shape. In this measurement, the

e�ective frequency did not overlap the neighboring region.
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Figure 7.11: Results of three-point sequential mode measurement (FM = 147.94 kHz)

Table 7.9: Relationship between applied frequency and g-factor for sequential measurement
RF # frequency (kHz) g-factor

1 1971.26�2045.23�2119.20 0.5164�0.5358�0.5552

2 2126.78�2200.75�2274.72 0.5571�0.5765�0.5959

3 2282.30�2356.27�2430.24 0.5978�0.6172�0.6366

The AβP value obtained in this measurement was 0.86 ± 0.19%, which is consistent with

the AFR AβP value (1.12 ± 0.18%); thus, the AFP-NMR measurement was successful. Since

resonance was observed in the high frequency region, it was possible resonance could be observed in

a higher region. However, we swept an FM width of approximately 4% in one region, and there was

a resonance frequency in this region. Therefore, this region was divided for further measurement.

Figure 7.12 shows the results of all sequential mode measurements; (a) �rst three-point measure-

ment; (b) seven-point measurement with FM = 29.16 kHz; and (c) second three-point measurement

with FM = 11.65 kHz. Figure 7.12(a) shows only the point to the right of Fig. 7.11. Here, it is

necessary to obtain the resonance frequency in order to derive the magnetic moment.
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Figure 7.12: Final results of AFP-NMR measurement of 21O: (a) �rst three-point measurement
(high-frequency region only); (b) seven-point measurement with FM = 29.16 kHz; and (c) second
three-point measurement with FM = 11.65 kHz. In the �gure, gray zone shows the region of �nal
resonance frequency error.
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Figure 7.13 shows results of �nal measurement of 21O again. Since resonance was observed only

at one point at three points in Fig. 7.13, half of the overlap of frequency sweep was adopted as a

frequency error. The resonance frequency was obtained as follows:

νL = 2304.94± 5.35kHz.
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Figure 7.13: Final results of AFP-NMR measurement of 21O. In the �gure, gray zone shows the
region of �nal resonance frequency error.
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Chapter 8

Discussion

8.1 Results of g-factor

The values of the center frequency was determined from Section 7.4 as follows.

νL = 2304.94± 5.35 kHz

The static magnetic �eld was measured six times using NMR probe before and after NMR measure-

ment. Table 8.1 shows the values of the magnetic �eld obtained. By taking a weighted average of

these values, the static magnetic �eld value obtained as follows.

B0 = 500.98± 0.16 mT

Table 8.1: Obtained values of static magnetic �eld. The values from 1 to 4 are the measured value
before NMR measurement, and 5 and 6 are the values after NMR measurement.

Number B0 [G]

1 500.86 ± 0.01

2 500.86 ± 0.01

3 500.85 ± 0.01

4 500.78 ± 0.01

5 501.09 ± 0.01

6 501.43 ± 0.01

Therefore, using the static magnetic �eld of B0 = 500.98 ± 0.16 mT, the value of g-factor could

be obtained as follows.

|g| =
hνL
µNB0

(8.1)

= 0.6036± 0.0014

The magnitude of the magnetic �eld actually sensed by the nucleus di�ers slightly from the exter-

nal magnetic �eld B0 due to the diamagnetic e�ect by the chemical shift. The magnitude of the

correction term of the diamagnetic shift is known to be

σ = 40± 15 ppm,
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from the literature value [44, 45]. From Eq. 2.30, the total magnetic �eld changes to

B = B0(1− σ) (8.2)

= 500.96± 0.16 mT.

Therefore, the �nal value of g-factor is

|g|corrected = 0.6036± 0.0014.

8.2 Ground-state spin parity and con�guration of 21O

A nucleus 21O comprises of eight protons forming the Z = 8 closed shell and �ve neutrons

occupying sd orbits outside the N = 8 closed shell. Therefore, its ground-state spin parity Iπ is

dominantly formed by the �ve neutrons in the sd orbit. In an extreme single-particle model, the

ground state of 21O is represented by the con�guration with one unpaired neutron in the d5/2 orbit,

i.e., |[(sd)4]0+(d5/2)⟩I
π=5/2+ . In this con�guration, the ground-state spin parity becomes Iπ = 5/2+,

similar to the odd-mass neutron-rich oxygen isotopes 17O and 19O, which also have one unpaired

neutron in the d5/2 orbit. Regarding the con�guration of [(sd)4]0
+
, [(d5/2)4]0

+
or [(d5/2)2(s1/2)2]0

+
,

or the admixture of thereof will be main components.

The neighboring nuclei of 21O having the even-Z number nearest to Z = 8 and the same neutron

number N = 13 are 23Ne and 19C, whose spin parities are also formed by the �ve neutrons in the sd

orbit like as 21O. Interestingly, however, their spin parities are di�erent from each other as follows.

Iπ(23Neg.s.) = 5/2+(Z = 10) and (8.3)

Iπ(19Cg.s.) = 1/2+(Z = 6) [46]

Provided the neutron con�guration of 21O is approximately same as 23Ne, which is natural in a

simple shell model, Iπ = 5/2+ is suggested for the 21O ground state. However, if 21O neutrons are

in the same situation of 19C, the Iπ = 1/2+ assignment is also possible.

Experimentally, the structure of 21O has been investigated through, the multi-nucleon transfer

reaction [47] and in-beam γ-ray spectroscopy [48], in whichIπ = 5/2+ has been tentatively assigned

to the 21O ground state. In Ref. [49], the momentum distribution was measured in the one-neutron

removal (knockout) reaction, and the same assignment of Iπ = 5/2+ as these previous studies has

been claimed. In a more recent study, the d(20O, 21O)p reaction as the (d, p) reaction in inverse kine-

matics was applied for the structure study on 21O [50]. This study also claims the 5/2+ assignment,

because a measured di�erential cross sections to the 21O ground state can be well reproduced with a

dominant ℓ = 2 component. However, according to the literature [51], the Iπ = 5/2+ assignment is

still treated as a tentative result. In such a situation, it is important to investigate the 21O ground

state through g factor by NMR spectroscopy, which is a completely di�erent observable from those

obtained in nuclear-reaction-based studies.
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There is no special reason for the inversion of the single-particle levels (νd5/2) and (νd3/2); thus,

here, we consider two possible con�gurations in which an unpaired d5/2 or s1/2 neutron carries

approximately entire nuclear spin parity Iπ = 5/2+ or 1/2+, respectively. Then, the g factors cor-

responding to the possible two con�gurations |[(sd)4]0+(d5/2)⟩I
π=5/2+ and |[(sd)4]0+(s1/2)⟩I

π=1/2+ ,

calculated with the bare g factors (i.e., the Schmidt value) are given as gSchmidt(d5/2) = −0.765 and

gSchmidt(s1/2) = −3.826, respectively. Although a sign was not assigned to the experimental g factor

determined in the present study, i.e., |gexp(21O)| = 0.6036± 0.0014, we can assign Iπ = 5/2+ to the
21O ground state even only from the comparison of the absolute value to the above-noted Schmidt

values due to the large di�erence in gSchmidt(d5/2) and gSchmidt(s1/2) (as much as 4.9-fold di�erence).

Because we took the bare g factors in the above analysis, the single-particle g factors, g(d5/2)

and g(s1/2), reduce to the Schmidt values. To make the discussion more quantitative, we include the

e�ects [52, 53] of the meson exchange currents and second-order con�guration mixing by taking the

e�ective g factors of Ref. [54]. Then, the single particle g factors are given as geff(d5/2) = −0.729 and

geff(s1/2) = −3.449, respectively. Here, the di�erence between them is reduced only from 4.9 times

to 4.6 times, even when the e�ective g factors are adopted. This 4.6-times di�erence is still large

and it does not compromise the sensitivity of the Iπ assignment. Thus, the Iπ(21Og.s.) = 5/2+

assignment remains unchanged.

It is interesting to compare the |gexp(21O)| value with the g factors of the neighboring nuclei 17O

and 19O in the neutron-rich oxygen isotope, whose ground state Iπ are known to be 5/2+, and thus,

their single particle g factors are commonly geff(d5/2). We found that the reported experimental

g factors for 17O and 19O, i.e., gexp(17Og.s.) = −0.75752(4) [42] and |gexp(19Og.s.)| = 0.61278(3) [55],

respectively, are close to the present |gexp(21O)| value in comparing their absolute values. This

observation also suggests the Iπ(21Og.s.) = 5/2+ assignment. Here, we are certain that Iπ(21Og.s.) is

5/2+; thus, the ground-state nuclear magnetic moment of 21O can be determined as |µexp(21Og.s.)|
= (1.5090± 0.0035) µN.

8.3 Comparison with theoretical models

The experimental µexp(21O) value was compared to the results of shell-model calculations. Here,

three unique sets of e�ective interactions were adopted. The �rst one, referred to as USD [5], was

introduced by Wildenthal in the 1990s. This is a parametric e�ective interaction with an inert

core of 16O, created to reproduce experimental energy levels of sd -shell nuclei. This interaction

has been used as a �standard� interaction in the sd model space for a long time. The other two

interactions, denoted USDA and USDB [6], are new interactions introduced by Brown and Richter

in 2006 by improving the USD interaction with updated datasets of binding energies and energy

levels accumulated over 20 years after the USD interaction was determined. Both have di�erent

procedures relative to parameter convergence in the interaction constructing process; however, they

are essentially very similar interactions.
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With these three interactions, the shell-model calculations were conducted for the 21O using a

code KSHELL [56] and the above-mentioned e�ective µ̂ operator. The predicted µ moments for the
21O ground state are given in Table 8.2, in which the Schmidt moment and single-particle moment

for 21O (i.e., those for the d5/2 neutron) are also shown for comparison.

First, looking at the calculation result for the USD interaction, the theoretical value shows

quenching from µeff(νd5/2) by the di�erence δµ ∼ 0.4 µN as an e�ect of con�guration mixing. In
21O, the admixture of proton-excited con�gurations is suppressed due to the LS-closed 16O hard

core. Thus, the e�ect of con�guration mixing is approximately caused only by the neutron side. Its

major part will be explained by the �rst-order e�ect of the M1 core polarization [58]. According

to the �rst-order core-polarization theory, the contribution to the magnetic moment from the M1

core polarization has a common factor −[1 + (−)1/2+ℓ−j(j + 1/2)](gs − gℓ), under the assumption

of a δ-function-type residual interaction. From the sign of this factor, it can be shown that the

corrections are directed inward from the Schmidt lines.

In the case of 21O, the second term of Eq. (8.4) plays an important role.

ψ(21Og.s.) = c0| [(sd)4]0
+
(d5/2)⟩I

π=5/2+

+ c1| [(sd)2]0
+
[d5/2d3/2]

1+(d5/2)⟩I
π=5/2+

+ c2| · · · ⟩I
π=5/2+

+ · · · (8.4)

(c0
2 + c1

2 + c2
2 · · · = 1)

The second (c1) term represents that one of the d5/2-neutron pairs forming Iπ = 0+ excited to the

d3/2 orbit by a residual interaction with another active d5/2 neutron forms Iπ = 1+ with the partner

neutron left in the d5/2 orbit. Provided that the Iπ = 1+ pair further couples with the active d5/2
neutron to form the total spin parity Iπ = 5/2+, this con�guration can mix into the ground state

wave function.

Remarkably, this c1 term in Eq. (8.4) can cause large quenching as an o�-diagonal M1 matrix

element in �rst order, in spite of the expected small amplitude of it. Even a small probability

|c1|2 ∼0.01 of the M1 core polarization component may give rise to correction in the order of 10%

to the magnetic moment. In the present 21O case, |c1|2 ∼1.5% was predicted from the shell model,

which is su�ciently large to cause δµ ∼ 0.4, considering a concentration to the main con�guration

with |c0|2 ∼ 80%.

Next, the predicted µ moments with the USD, USDA, and USDB interactions are compared. As

shown in Table 8.2, these three calculations di�er by a maximum of δµ ∼ 0.05 µN. The e�ective

M1 operator has ambiguity ∼ 0.1 µN due to the accuracy of the e�ective g factors; thus, these three

µ moments should be regarded as nearly identical. Then, taking the average of the three predicted

values, it can be said that these three calculations predict µ = −1.41 µN in common. This theoretical

µ moment agrees with the present experimental µexp(21O) moment with only a slight di�erence.
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These interactions cannot describe the nuclear structure a�ected by the �island of inversion� [57],

which is a phenomenon that causes anomalous nuclear structure in the vicinity of the neutron-rich

sd shell around neutron number N = 20 [6]. This phenomenon is caused by the e�ective level

inversion of the sd shell and pf shell thereon. Therefore, for such �island of inversion� nuclei it is

necessary to perform a shell-model calculation in a large model space including all these shells and

more higher shell [59]. In the case of 21O, however, as examined in the above discussion, both the

ground-state Iπ and µ moment can be well reproduced by the shell-model calculation within a sd

model space, suggesting that 21O is a �normal� nucleus which is not in�uenced by the �island of

inversion� phenomenon.

Apart from shell-model-based studies, recently a random phase approximation (RPA) calculation

was performed [60] to describe the core polarization e�ect of the doubly-magic core in odd-even

nuclei using a single-particle basis generated by Hartree-Fock calculations. In this study, nuclear

moments were the focus because nuclear moments are quite sensitive to the interaction between

the unpaired nucleon and other nucleons, which plays an important role in strongly modifying pure

shell-model predictions. The calculations were performed using two di�erent parametrizations of

the �nite-range density-dependent Gogny interactions based on the traditional D1S force [61] and

the recently proposed D1M one [62]. The structure of 21O was calculated taking 22O as a core

coupled with a νd5/2 hole, and the magnetic moment of 21O was deduced as µRPA(D1S) = −1.667

and µRPA(D1M) = −1.487 µN with the D1S and D1M interactions, respectively. Comparing absolute

values of these predictions with the present |µexp(21O)| = 1.5090 ± 0.0035) µN, µRPA(D1M) agrees

with the experimental µ moment, but the reduction in µ from the νd5/2 single-particle moment will

be slightly insu�cient for µRPA(D1S).

Table 8.2: Comparison of experimental magnetic moments (|µexp(21O)|) obtained for the 21O ground
state in the present study with shell-model (USD, USDA, and USDB) and RPA (RPA(D1S) and
RPA(D1M)) predictions. The µexp(21O) moment was calculated from the determined gexp(

21O)
factor and the assigned Iπ = 5/2+. The Schmidt moment (µSchmidt) for a d5/2 neutron and the
corresponding single particle moment (µeff(νd5/2)) are also shown.

µ moment (µN)

|µexp(21O)| 1.5090(35)

µSchmidt −1.913

µeff(νd5/2) −1.823

USD −1.435

USDA −1.382

USDB −1.421

RPA(D1S) −1.667

RPA(D1M) −1.487
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Chapter 9

Conclusion

To the best of our knowledge, in this study, the magnetic moment of the ground state of 21O

was measured for the �rst time using the β-NMR method with a spin-polarized RIB.

Prior to the magnetic moment measurement, nuclear spin polarization was measured using an

AFR method. In the AFR method, it is possible to measure the degree of polarization without

a frequency search; thus, the parameters (e.g., emission angle, momentum selection, measurement

sequence, target thickness) required to produce polarization can be optimized beforehand. Therefore,

we can focus on frequency search under optimum polarization and yield conditions. A nuclear spin

polarization of 21O was produced using the projectile fragmentation reaction and nucleon pick-

up reaction. Spin-polarized 21O beams were implanted into the CaO crystal placed in the static

magnetic �eld B0 = 481(30) mT, polarization is measured using an AFR measurement. In the

case of 21O, the asymmetry parameter can only obtain the upper limit value and the lower limit

value because there are excitation levels where the spin of the daughter nucleus 21F is not decided.

Therefore, |P | > 4.9% is the lower limit value, which can potentially yield even greater polarization.

In this study, by introducing fast switching system in the β-NMR measurement, it became

possible to perform more e�cient measurement than the conventional system. In the proposed

system, the number of variable capacitors in the LCR tank circuit can be increased from one to

three, capacitors can be switched sequentially using the relay circuit, and a single wide frequency

search can be performed. Because the frequency range to be searched is wide in the nucleus where

the spin is not determined such as the case of 21O, the introduction of this system is very useful to

perform the measurement e�ciently in a limited time.

The β-NMR measurement and data analysis indicate that the g-factor of the ground state of
21O is |gexp| = (0.6036 ± 0.0014). Experimental results indicating Iπ(21Og.s.) = 5/2+ have been

reported; however, that result has not been determined. Then, the g factors corresponding to two

possible con�gurations, i.e., |[(sd)4]0+(d5/2)⟩I
π=5/2+ and |[(sd)4]0+(s1/2)⟩I

π=1/2+ , calculated using

the e�ective g factors are given as geff(d5/2) = −0.729 and geff(s1/2) = −3.449, respectively. Al-

though a sign was not assigned to the experimental g factor determined in the present study, we can

de�nitely assign Iπ = 5/2+ to the 21O ground state even only from the comparison of the absolute

value to the above-noted e�ective g factors values, due to the large di�erence (as much as 4.6 fold)
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in geff(d5/2) and geff(s1/2). Now that we are certain that the Iπ(21Og.s.) is 5/2+, the ground-state

nuclear magnetic moment of 21O can be determined as |µexp(21Og.s.)| = (1.5090± 0.0035) µN.

Next, this result was compared to the shell model calculation using KSHLL code. The calculated

values using the USD, USDA, and USDB interactions are averaged, µ = −1.41µN. The e�ective M1

operator has ambiguity ∼ 0.1 µN due to the accuracy of the e�ective g factors; thus, this theoretical µ

moment nearly agrees with the present experimental µexp(21O) moment, with only a slight di�erence

in value. Recently, as RPA calculation was performed to describe the core polarization e�ect of

the doubly-magic core in odd-even nuclei using a single-particle basis generated by Hartree-Fock

calculations. The magnetic moment of 21O was deduced as µRPA(D1S) = −1.667 and µRPA(D1M)

= −1.487 µN with the D1S and D1M forces, respectively. Comparing the absolute values of these

predictions with the present |µexp(21Og.s.)| = (1.5090 ± 0.0035) µN, µRPA(D1M) agrees with the

experimental µ moment.

From these results, Iπ of the ground state of 21O was 5/2+, and 21O was found to have a �normal�

nucleus. Anomalous structures, such as those found in oxygen isotope 23O, do not develop in 21O,

which is consistent with the measurement result of the interaction cross section shown in Chapter

1. From the electric quadrupole moment, it is possible to know the shape and deformation of the

nucleus, so measuring the electric quadrupole moment of 21O is important to discuss the nuclear

structure. It is also very interesting to measure magnetic moment of 23O where abnormal structure

is predicted because it can obtain information about the nuclear structure.
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Appendix A

Data analysis of 21O

To obtain appropriate values for the resonance shape, a simulation of the AFP spin reversal

process was performed in consideration of the actual conditions for the RF �elds [43]. In this

simulation, it was possible to verify in which area the reversal in AFP occurred at 100% by using

the actual experimental conditions as the input parameters. Table A.1 shows simulation input

parameters, and the result is plotted in Figs. A.1 and A.2.

Table A.1: AFP simulation input parameters

run number 50 52

g-factor 0.6050 0.60504

B0 [G] 5008 5008

B1cp−max [G] 2.316 2.044

B1cp−min [G] 0.735 0.649

g-width [%] 0.132 0.110

RF time [ms] 5 5

Trapezoid shape

Lower 1 1

Middle 10 10

Higher 1 1

Here, fAFP(x) was introduced as a response function that reproduces the simulation result as

follows.

fAFP(x) =


A0 exp

(
−(x−x0+∆x/2

2σAFP
)2
)
+ b (x < x0 −∆x/2)

A0 + b (x0 −∆x/2 < x < x0 +∆x/2)

A0 exp
(
−(x−x0−∆x/2

2σAFP
)2
)
+ b (x0 +∆x/2 < x)

(A.1)

Here, A0 is the amplitude of R/Roff ratio, x0 is the center of frequency, ∆x is the AFP width, σAFP

is the Gaussian dispersion, and b is the baseline shift. By �tting the simulation results with this

function, we determined the values of σAFP and ∆x. The results are shown in Figs. A.3 and A.4

and Table A.2.
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Figure A.1: Results of AFP simulation of run50

Table A.2: Results of simulation �tting

run number 50 52

∆x 2.594 ± 0.0014 2.142 ± 0.0012

σAFP 0.2728 ± 0.0058 0.2497 ± 0.0050
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Figure A.2: Results of AFP simulation of run52
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Figure A.3: Results of simulation �tting of run50
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Figure A.4: Results of simulation �tting of run52
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Then, we introduced the function FAFP(x) convolving Gaussian function g(x) in Eq. A.2.

g(x) =
1√

2πσEB
exp(−(

x

2σEB
)2)

FAFP(x) = (fAFP ∗ g)(t) =
∫
fAFP(τ)g(t− τ)dτ (A.2)

Where σEB is width of extra broadening.

Finally, σAFP and ∆x were �xed, and the experimental data were �tted with FAFP(x). The

results are shown in Figs. A.5 and A.6 and Table A.3.
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Figure A.5: Results of experimental data �tting of run50

Table A.3: Results of experimental data �tting

run number 50 52

x0 2308.85 ± 0.98 2309.79 ± 0.52

σEB 0.30 ± 3.04 0.23 ± 0.53

χ2 1.526 0.507
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Figure A.6: Results of experimental data �tting of run52

Based on the above analysis, the center frequency was obtained as follows:

νL = 2308.85± 0.98(statistic error)± 0.30(systematic error)kHz (run50), (A.3)

= 2309.79± 0.52(statistic error)± 0.23(systematic error)kHz (run52),
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Here, it is necessary to consider spectrum spread. The following can be considered causes of

spectrum spread.

1) Change in the e�ective magnetic �eld by RF magnetic �eld B1

2) Integration of spectrum by frequency modulation

In the case of a macroscopic system comprising many elements, the aggregate contribution of the

individual elements is given as a Gaussian distribution.This is the central limit theorem in statistics,

which is why the NMR spectrum observed by individual NMR is approximately Gaussian.

1) Change in the e�ective magnetic �eld by the RF magnetic �eld B1

The angle between the spin polarization vector, which precess angular frequency ω about the

e�ective magnetic �eld Beff and the z-axis (direction of the static magnetic �eld B0) is α. In addition,

if the angle formed by Beff and the z-axis is θ, the following equation holds (Rabi's formula).

cosα = 1− 2 sin2 θ sin2
1

2
at (A.4)

Here, sin θ, ω0, ω1, and a are expressed as follows.

sin θ =
ω1√

(ω0 − ω)2 + ω2
1

(A.5)

ω0 = −γB0

ω1 = −γB1

a2 = (ω0 − ω)2 + ω2
1

The spin reversal ratio is proportional to sin2 θ and has a Lorentzian type spectrum. Here, when

spectrum spread is calculated from ω1 = −γB1, it becomes as follows.

∆fB1 =
|γB1|
2π

∼ 1.07kHz (A.6)

2) Integration of spectrum by frequency modulation

Since the RF magnetic �eld used for β-NMR changes the frequency using FM, the observed

spectrum is integrated over the range [f−∆fFM, f+∆fFM] from the original frequency distribution.

Therefore, if the FM width is greater than the spread of the frequency distribution due to the above

�uctuation of the magnetic �eld, the spread of the observed spectrum is determined by ∆fFM.

Conversely, if the FM width is su�ciently narrow, the spread of the spectrum is given by the

magnitude of the magnetic �eld �uctuation. The FM width used for the �nal measurement was

∆fFM = 2.55 kHz, which is ∆fFM > ∆fB1 when compared to the �uctuation of the magnetic �eld

obtained above. The observed broadening of spectrum was σEB = (0.30 ± 3.04) kHz (Table A.3);

thus, in this measurement, broadening of the spectrum was determined by the FM width.
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Appendix B

Production of 21F beam

Table B.1 listed the RIPS parameters for the β-NMR measurement of 21F.

Table B.1: Comparison of RIPS parameters
present experiment previous experiment

Primary beam 22Ne10+ 22Ne10+

Incident energy 69.18 A MeV 66.4 A MeV

Target material natC natC

Target thickness 56.3 mg/cm2 225.3 mg/cm2

Emission angle θL 2.6◦ 2.6◦

Emission angle θh 2.1◦ − 6.0◦ 1.6◦ − 3.6◦

Momentum region 7.44 - 7.52 GeV/c 7.44 - 7.52 GeV/c

F1 degrader material Aluminum Aluminum

F1 degrader thickness 583 mg/cm2 583 mg/cm2

F1 degrader angle 3.13 mrad 3.13 mrad

To identify 21F from the other isotopes, we measured the time of �ight (TOF) of the beam and

energy loss (∆E) in the Si detector located F2. The ∆E-TOF spectrum of 21F with the 0.25-mm

thick C target is shown in Fig. B.1. The ∆E spectrum of 21F is shown in Fig. B.2. As shown in

Figs. B.1 and B.2, three components that correspond to 21F, 19O and 18N were observed.
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Figure B.2: Energy loss of 21F
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The momentum distribution measured in this experiment is shown in Fig. B.3. In this �gure,

the gray zone shows region of selected momentum acceptance for AFP-NMR measurement.
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Figure B.3: Momentum distribution of 21F
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Appendix C

AFP-simulation of 21F

Figure C.1 shows �nal results of AFP-NMR measurement of 21F.
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 0.99

 1.00

 1.01

 1.02

 5940  5960  5980  6000
Frequency [kHz]

 R
/R

o
ff
 r

a
ti
o

 

Figure C.1: Final results of AFP-NMR measurement of 21F

In this simulation, it was possible to verify in which area the reversal in AFP occurred at 100%

by using the actual experimental conditions as the input parameters. Table C.1 shows simulation

input parameters, and the result is plotted in Fig. C.2 Table C.1 shows input parameters of AFP

simulation.
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Table C.1: Input parameters of AFP simulation of 21F

g-factor 1.5684

Static magnetic �eld B0 500.0 mT

B1cp−max 0.8576 G

B1cp−min 0.2528 G

g-width 0.089%

RF time 5 ms

Trapezoid shape

Lower 1

Middle 10

Higher 1

1.00

1.20

1.40

1.60

1.80

2.00

 5975  5980

Frequency [kHz]

o
ff
 r

a
ti
o

 
 R

/R

Figure C.2: Results of AFP simulation of 21F
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By �tting the simulation results with fAFP(x), we determined the values of σAFP and ∆x. The

results are shown in Fig. C.3 and Table C.2.
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Figure C.3: Results of simulation �tting

Table C.2: Results of simulation �tting

∆x 4.4484 ± 0.2799

σAFP 0.3917 ± 0.1120
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Then, σAFP and ∆x were �xed, and the experimental data were �tted with FAFP(x). The

results are shown in Figs. C.4 and Table C.3. Based on the above analysis, the center frequency was

obtained as follows:

νL = 5978.28± 1.38(statistic error)± 4.45(systematic error).
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Figure C.4: Results of experimental data �tting

Table C.3: Results of experimental data �tting

A0 -0.0730 ± 0.01768

X0 5978.28 ± 1.38

σblur 4.4482 ± 1.316

Baseline 0.9997 ± 0.0025

reduced χ2 1.78
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Appendix D

The circuit of the data acquisition system

Figures D.1�D.3 show the circuit diagrams with the data acquisition system. The U1PMT�

U3PMT and D1PMT�D3PMT denote the photo-multiplier tubes attached to the each plastic scin-

tillators located above and below the stopper.

Tables D.1 and D.2 show the signals output from the TTL signal output ports of PSG for AFR

and β-NMR, respectively.

Table D.1: PSG output port allocation table used for AFR measurement.
Output ch State control

1 Beam gate

2 B0 sweep gate

3 Count gate

4 Spin Up

5 B0 Up

6 nop

7 Rotation request
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Table D.2: PSG output port allocation table used for AFP-NMR measurement.
Output ch State control

1 Beam gate

2 RF trigger

3 Count gate

4 RF jump

5 SW jump

6 SW increment

7 nop

8 nop

9 RF ID1

10 RF ID2

11 RF ID3

12 RF ID4

13 nop

14 nop

15 nop

16 nop
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Figure D.1: The circuit of the data collection system for AFP measurement using conventional PSG

118



E
6

J5

2
1
O

 e
x

p
: S

e
p

t/
2

0
1

6

F
o

r 
A

F
R

U
1

P
M

T

U
2

P
M

T

D
1

P
M

T

D
2

P
M

T

β
 -

 r
a

y
 

A
tt

.

A
tt

.

A
tt

.

A
tt

.

P
M

 A
m

p

P
M

 A
m

p

P
M

 A
m

p

P
M

 A
m

p

B
o

x 
D

e
la

y

2
0

0
n

s
A

tt
.

P
M

 A
m

p

C
F

D

C
F

D

C
F

D

C
F

D

F
I/

F
O

F
I/

F
O

F
I/

F
O

F
I/

F
O

3
-f

o
ld

3
-f

o
ld

F
I/

F
O

F
I/

F
O

2
-f

o
ld

F
I/

F
O

2
 c

h
 G

.G

2
-f

o
ld

veto

st
a

rt

st
o

p

F
I/

F
O

8
 c

h
 G

.G

8
 c

h
 G

.G

8
 c

h
 G

.G
F

I/
F

O

8
 c

h
 G

.G
8

 c
h

 G
.G

F
E

R
A

O
u

tR
e

g

C
o

in
R

e
g

N
IM

-E
C

L

g
a

te

S
ca

le
r

in
h

ib
it

0
 c

h

8
 c

h

N
S

T
D

C

In
tR

e
g

F
2

P
M

T

H
o

ll
y

P
M

T

H
ir

o
sh

im
a

P
M

T

C
F

D

C
F

D

C
F

D
8

 c
h

 G
.G

8
 c

h
 G

.G

8
 c

h
 G

.G

2
 c

h
 G

.G

3
-f

o
ld

3
-f

o
ld

8
 c

h
 G

.G

V
S

1
[5

]

V
S

1
[6

]

V
S

1
[1

]

V
S

1
[2

]

V
S

1
[3

]

V
S

1
[4

]

2
-f

o
ld

2
-f

o
ld

P
S

G
1

L
e

v
e

l

A
d

a
p

te
r

F
I/

F
O

L
e

v
e

l

A
d

a
p

te
r

 f
ro

m
 P

S
G

(3
):

 c
o

u
n

t
ru

n

e
v

a
n

t

F
I/

F
O

F
I/

F
O

F
I/

F
O

F
I/

F
O

F
I/

F
O

F
I/

F
O

C
[4

]

C
[3

]

to
 t

h
e

 c
o

n
so

l
P

S
G

(1
):

 b
e

a
m

 p
u

ls
in

g
 

T
T

L

F
I/

F
O

F
I/

F
O

L
e

v
e

l

A
d

a
p

te
r

 f
ro

m
 P

S
G

(3
):

 c
o

u
n

t

 f
ro

m
 P

S
G

(1
):

 b
e

a
m

V
S

3
[6

]

C
S

[1
3

]

F
I/

F
O

L
e

v
e

l

A
d

a
p

te
r

V
S

1
[7

]

C
S

[1
4

]

R
o

ta
ti

o
n

 M
a

g
n

e
t

co
n

tr
o

ll
e

r

tr
ig

g
e

r

g
a

te

R
o

ta
ti

o
n

 S
e

n
so

r
F

I/
F

O
L

e
v

e
l

A
d

a
p

te
r

V
S

1
[8

]

C
S

[1
5

]

TT
L

N
IM

V
S

3
[4

]

V
S

3
[3

]

V
S

3
[2

]

V
S

3
[7

]

V
S

3
[8

]

C
lo

ck

1
0

H
z

V
S

3
[1

]

V
S

3
[5

]
C

S
[1

1
]

C
S

[9
]

C
S

[1
2

]

C
S

[8
]

C
S

[7
]

C
S

[6
]

C
S

[5
]

C
S

[4
]

C
S

[3
]

C
S

[2
]

C
S

[1
]

C
S

[0
]

C
[7

]

C
[8

]

[1
] 

b
e

a
m

 g
a

te

[2
] 

B
0

 s
w

e
e

p
 g

a
te

[3
] 

co
u

n
t 

g
a

te

[4
] 

S
p

in
-U

P

[5
] 

B
0

-U
P

[6
] 

[7
] 

sw
e

e
p

 t
ri

g

C
A

M
A

C
 S

ca
le

r
Q

D
C

C
o

in
R

e
g

[ 
 0

] 
1

0
H

z 
   

   
   

   
   

   

[ 
 1

] 
B

t-
T

ri
g

  r
e

q
.  

   
  

[ 
 2

] 
B

t-
T

ri
g

  a
cc

.  
   

 

[ 
 3

] 
B

t-
U

P
 r

e
q

.  
   

   

[ 
 4

] 
B

t-
D

W
 r

e
q

.  
   

 

[ 
 5

] 
U

2
 

[ 
 6

] 
D

2

[ 
 7

] 
F

2
-P

l  
   

   
   

   
 

[ 
 8

] 
H

o
ll

y
 &

 F
2

-P
l

[ 
 9

] 
H

ir
o

sh
im

a
 &

 F
2

-P
l

[1
0

] 
<

n
o

p
>

[1
1

] 
B

e
a

m
 c

y
cl

e

[1
2

] 
B

0
 c

y
cl

e

[1
3

] 
C

o
u

n
t 

cy
cl

e
s

[1
4

] 
R

o
t.

 r
e

q

[1
5

] 
R

o
t.

 a
cc

.

  [
0

] 
U

1

  [
1

] 
U

2

  [
2

] 
<

n
o

p
>

  [
3

] 
D

1

  [
4

] 
D

2

  [
5

] 
<

n
o

p
>

  [
6

] 
<

n
o

p
>

  [
7

] 
<

n
o

p
>

  [
8

] 
<

n
o

p
>

  [
9

] 
<

n
o

p
>

[1
0

] 
<

n
o

p
>

[1
1

] 
<

n
o

p
>

  [
1

] 
<

n
o

p
>

  [
2

] 
B

t-
T

ri
g

 a
cc

.

  [
3

] 
P

S
G

-4

  [
4

] 
P

S
G

-5

  [
5

] 
<

n
o

p
>

  [
6

] 
<

n
o

p
>

  [
7

] 
U

-c
o

in

  [
8

] 
D

-c
o

in

  [
9

] 
<

n
o

p
>

[1
0

] 
<

n
o

p
>

[1
1

] 
<

n
o

p
>

[1
2

] 
<

n
o

p
>

[1
3

] 
<

n
o

p
>

[1
4

] 
<

n
o

p
>

[1
5

] 
<

n
o

p
>

[1
6

] 
<

n
o

p
>

V
is

u
a

l S
ca

le
r 

1
[ 

 1
] 

U
1

[ 
 2

] 
U

2

[ 
 3

] 
D

1

[ 
 4

] 
D

2

[ 
 5

] 
B

t-
U

P
 r

e
q

.  

[ 
 6

] 
B

t-
D

W
 r

e
q

. 

[ 
 7

] 
R

o
t.

 r
e

q
.  

[ 
 8

] 
R

o
t.

 a
cc

.

V
is

u
a

l S
ca

le
r 

3
[ 

 1
] 

1
0

H
z

[ 
 2

] 
F

2
-P

L

[ 
 3

] 
H

o
ll

y
&

F
2

[ 
 4

] 
H

ir
o

sh
im

a
&

F
2

[ 
 5

] 
B

e
a

m
 c

y
cl

e
 

[ 
 6

] 
C

o
u

n
t 

cy
cl

e
 

[ 
 7

] 
B

t-
T

ri
g

  r
e

q
.  

[ 
 8

] 
B

t-
T

ri
g

  a
cc

.

TT
L

N
IM

TT
L

TT
L

Figure D.2: The circuit of the data collection system for AFR measurement
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Figure D.3: The circuit of the data collection system for AFP measurement
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