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1 Classical Radon Transform

1.1 Preliminary
For 1 < p < oo, LP(R"™) denote

1

DR = {F Ml = ([ 1@)Pde)” < oo},

Also, the Schwartz space S(R"™) is the function space of C'*°-functions whose derivatives are rapidly
decreasing, i.e.,

S(R") = {f € C®°(R"): lim 290°f(z) =0 Ya,f € zi}.

|z| =00

For f € L?>(R"), the Fourier transform and the inverse Fourier transform are given by

FINO(=£©) = | rae=<s

_ « 1
FHAO(=FU©) = G

f(x)e4de.

The Hilbert transform of a function u(t) is defined as

Hu (1) = pov.— / GO /| N ) 4

T )t —T e—=0m t—T

1.2 Properties of classical Radon transforms

We first introduce the definition of the classical Radon transform.

Definition 1. Let n > 2. The Radon transform of a function f € S(R™) is defined by the formula
R(f)(t,7) = L f(@)o(x -y —t)dz, (1)

where v € S"71, t € R and § is the Dirac delta function on R'.

Here, S"~! is the unit sphere. Obviously, R(f) is an even function on S"~! x R, that is R(f)(—t, —7) =
R(f)(t,v). If n = 2, then the classical Radon transform is called the (2-dimensional) X-ray transform.
Note that the (n-dimensional) X-ray transform is given by

X(f)(z,7) = /_OO f(x + py)dp,

where v € S"71 and x € R™. The above formula means the integral of f € S(R™) over the straight line
through = with direction ~.
Then, the following result connecting with the Fourier transform is known:

Fourier Slice Theorem For all s € R and v € S"~!, the Radon transform R(f) satisfies

FiR(H(s,7) = Falf1(s7)- (2)



Proof The left hand side of (2) can be computed as follows,
FR(s) = @n 2 [ R
= (27?)1/2/ e it Oz -y —t)dxdt
RTL

= [ @z = Ff](sy). O
-

The Fourier slice theorem enables us to deduce the inverse of (1). Also for generalized Radon transforms
such as the d-plane transform, this sort of equality would be a crucial to derive range properties (see [13],
[15]). Next, we consider the reconstruction formula of f from R(f). We also define the dual transform

for ¢(t,7) € SR x ")
R*(¢)(x) = /SR1 e(@ -7, 7)do(y),

where do(v) is the normalized Haar measure on S™~!. Indeed, it formally holds that

(R(£).%) = [ [ ] s@st—-adeptardat

L2(RxS™1)

- / @ /S oy - 2,7)do(y)dz
= (FR°®) sy

Define the Laplace-Bertrami operator (—A)n%1 by

n—1

(—A) = f(z) = FllE" ™ Fa fl(2).
Then we have the following theorem:

Theorem 1. Let n > 2. The classical Radon transform for f € S(R™)
R(f)(t,7) = . f@)o(x -y —t)dz,

and its dual transform for ¢ € S(R x S"71)
satisfy the reconstruction formula:

Proof From the definitions, we get

R*Rf(z) = - R -v,7)do(y)

= /S 127r/ "% f(sy)dsdo(v)

= o [ ATt [ e ionashaot)

Sn—1 0

_ /S / Y f(sy)dsdo (7).
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The polar coordinates £ = sy gives
* 1 iz -n §
RRf(@) = [ e elel' (e

Operating (—A)nT_l, we obtain

Thus, we have

2 Fractional Radon Transform

2.1 Fractional Fourier Transform

The fractional Fourier transform is a generalization of classical Fourier transform. It was introduced by
Namias in the context of quantum mechanics as a tool for solving several types of Schrodinger equation.
Recently, Mendlovic and Ozaktas et al [28] showed that the fractional Fourier transform can be successfully
applied in optics. The fractional Fourier domains interpolate continuously between time and frequency
domains. Let Cp = (5=5o—)'/2 where —7/2 < arg C,, < m/2. Define that

27i sin
6(z — &) (v € 272Z),
Ko(,8) = o(x +¢) (a+me2nZ),
’ wo fillaP g im-g .
(Ca) exp{ 2tana sina} (otherwise),

where § is the Dirac delta function on R™. For f € L?(R") the ath fractional Fourier transform is defined
with the integral kernel K, (z,¢) as follows:

FOUE) = | Ka(z,6)f(2)dx

K, (z, &) satisfies the following properties:
e Symmetry: K, (z,§) = K (&, ).

Inverse: K_,(z,&) = KX(x,¢).
Additivity: Kais(2,8) = [y Ka(2,9)Kp(y,§)dy

Periodicity: Ko(z,&) = Kor(z,8) = d(z — &).

Generalizability: K o(z,§) = W exp(—ix - £).

Generalizability means that the fractional Fourier transform is a generalization of the standard Fourier
transform. By the Inverse property, we can obtain the inversion formula of the fractional Fourier transform
and write

FEel(@)(= FO*el(x) = | K-a(é2)p()dE.

n
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Moreover, we introduce the ath order fractional Fourier series. Let T > 0 and W = 27 /T. For f € L?*(Ry)
satisfying suppf C [-7/2,T/2], the ath order fractional Fourier series is given by the following (see [2]):

f(t) = WC_o|sinal Y FO kW sina)el (1), (5)
kEZ

where {e,(;a)}kez is the orthonormal basis in L?(—1/2,T/2) defined as

K_,(t,kWsina) 1 i(t2+ (kW sin a)?)
e, (t):= :—exp{—

VT vT
At the end of this section, we show the direct and simple relation of the fractional Fourier transform to
the Wigner transform. The Wigner transform of a function f is given by

WIF](tw) = \/12? /Rf(t + t2/>f(t - g)e*“’wﬂ (7)

which also can be defined in frequency domains:

s + zk:Wt}. (6)

/

WIAl(tw) = = [ P+ ) 7L o - et s
) - o R 2 2 )
where 7 is the complex conjugate of the complex number z. We easily see that

[ Wit wdo =17@)E and [ WiAwdt = FA)P
R R

Then, the following result connecting with the fractional Fourier transform and the Radon transform is
known:

Theorem 2. Let 0 < a < 7/2. For f € L?(R) the Wigner transform W satisfies
ROWIfI(t,w)) (s, ) = |[FO[f](s)]. (8)

The left hand side of (8) is so-called "Radon-Wigner transform” (see [28]).

2.2 Fractional Radon Transform and its Properties

In this section, we generalize the classical Radon transform by using the fractional Fourier transform.

In 1960 Semyanistyi [32] proved that the Dirac delta function § on R is the weak limit of hq|7|*"!

(hy = LUa)/2)

"= o iariarey) @ a — 0 and the following ath order fractional Radon transform can be considered:
o l/20 (o) 2)

Ra(Pt1) = ba [ fla)la-y =t do. )

(9) satisfies F:[Ra(f)](s,7) = Fu[|D|~f](57) instead of the Fourier slice theorem (2) since F*[|p|*~!](s) =
hits| (= hytys|~%), where |D|~¢ is defined by |D|~%f(x) = Fell€l7*Fz f](x). On the other hand, we
are concerned with another ath order fractional Radon transform satisfying the following relation (linked
to the Fourier slice theorem (2) by the ath order fractional Fourier transform):

FOR@())(s,7) = FOf](57). (10)

Based on this identity, we define the ath order fractional Radon transform

RE(£)(2,7) = (Ca) " FL [FE1)(57)] 8,7). (11)
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Remark 3. In particular when o = /2, by the Fourier slice theorem the definition (11) coincides with
the classical Radon transform.

The classical Radon transform has been generalized with various manifolds, e.g., Funk transform, Horo-
cycle transform, etc. (see [14], [18]). We consider (11) not only for |y| = 1 but also for all v € R™\{0}.
For |y| = 1, Zelevsky and Mendlovic [36] first gave a definition of the fractional Radon transform without
oscillatory Fourier integrals. Starting from (10), we shall derive such a representation for all v € R™\{0}.
We prove the following:

Theorem 4. [11] Let n > 2, —7/2 < a < 7/2 and Kéa) = S Ii) moa)h” For f € S(R") the ath
m(l—|Yy Sin 2

order fractional Radon transform R(O‘)(f) satisfying the relation
FORO$(s,7) = () FO()(s7) (s € R,y € RN{0}) (12)

and RE2(f) = R(f), is given by

(@) (@) i(|z)* = %) | i(lylz -y —1)?
R 7) = K3 Ry /() exp{ 2tan o + (1 — |y|?) sin 2a}dm (13)

in the case of |y| # 1,0, and
RO () (t,7) = R(Fla)exp { L= ) (19
’ 2 tan o ’
in the case of |y| = 1. For the special case of for |y| =1, we have

—i|z|? 12

f@) =27 exp { 25 () TR (exp { o JRO(£)(1,7) (@),

2tan « 2tana

Remark 5. The representation (14) in the case of |y| = 1 is the same as the definition given by [36].
Moon[26] investigated isometry and stability estimates in some functional spaces for (14).

Remark 6. For all v € R™\{0}, the classical Radon transform is generalized as the so-called ”Radon
transform on the affine plane”

~ _ t ¥
R f 75,7 = IR f I ERTNINA 15
(N7 = RO (7 77) (15)
where R(f)(t/|1v],v/|7]) in the right hand side is defined by (3) (see [14], p. 5 and [32], p. 131). The
changes of t/|y| and ~v/|vy| would be reasonable by regarding the line x -y =1t as x - ﬁ = ﬁ However, we

have to pay attention to the multiplication by |y|~' which is required for the Fourier slice theorem (12)
with o = w/2. We remark that (14) generalized as (15), i.e.,

RO = b R(Fwee {MEE=D) (L 1) (16)

does not satisfy the relation (12) with —w/2 < a < 7w/2 in the case of || # 1,0. So, (16) never coincides
with (13) which preserves the property (12).

Proof of Theorem 4 Taking the orthonormal basis {v/|7|,e], - ,e! ;} in R" we try to change the
representation (11) as follows:



i(|z|? + |sv|? i(s7) - x
FOUIs) = (Co)" [ flayexp {0 100,
-

2tan « sin o

v {(tyD? + |y*} +is* 2
= o [ (W med ot el ) exp (I

i(57) - {(t) 7 + €] + -+ vcrel )
- E = byd(tn)

sin o

= (Ca)n/ f(tl + yle¥ + -+ Z/n—1e,71_1>
Rn v
o {i{t2 +lyPy +isthy P i) - {tg el - g} }dydt
2tan « sin «v

i(t? + s2|v|%)  ast ily|?
= (Ca)”/ exp{ ( 5 D _ i M}/ f(tl+yle¥+"-+yn_1e7kl> exp{iw‘ }dydt
R, tan « sina J Jrr—1 le 2 tan «

= (Ca)"_lfto‘ [/Rnl f<t% +yre] + -+ yn_1e2_1> exp { 2?55@ }dy} (s|v],y)-
Y

For the special case of || = 1, by (10) R(®(f) can be rewritten as

ily[?)
1 fty+yie] + - +yn_1e) ;) exp { 5 tan e }dy. (17)

RO (f)(t,7) = /

Ry~
By (10), we get
FOREO(N)](5,7) = FOUf(s7) = FORO )t/ DI (s17] 7).

Now, let us define the composition operator SI(Val) by S|($|) [g(t)] == ]—'s(a)*[.ﬂ(a) [g(t)](s|y])]. Then, R(a)(f)
is also rewritten as

RIV()(E) = S5 [ROWD (6 1) ), (18)

Next, we consider the solution to the Schrédinger equation 0, (p, q) = —agw(p, q) with (0, q) = ¥o(q).
This solution is given by

(g — )2
600 = ey [ el ar

where we interpret +i'/2 as e*™/4 (see [7]). Noting that iapiﬁ(p, s) = s20(p, s), we also get
1 .
Y(p,q) = @n)i2 /100(3) exp{—is’p + isq}ds,
and see that

) , , 1 i(g —n)*
/RS Po(s) exp{—szp +isq}ds = W /Rn Yo(n) exp {T}dn. (19)
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Hence, putting p = and q= we have for o # +m/2

smcx’

S 1g(1)]

M

2 _ 42 ; _
_ / / exp i(12 + |s7] 52 —2) 1(7‘5|.7| st) }des

27 sin o 2tan o sin av
t2 . o 2 1_ 2 . t
_ / / eXp ) lﬁth}dTeXp{ 5" (A=) | is }ds
27 sin « T 2 tan o sin « 2tan o sin «
. -rrmsina\2 2
| sin | / { 1 / isn (nsma> {Z((V) —t)} } o
= — —_— e e dn ¢ exp{—is“p + isq}ds
2m)2|y|sina Jr, L (27)1/2 JR. g kel P 2 tan o Ny expi=isTp at
| sin | / (nsina) . {Z T;ria } { }d
= ——— )ex
(47ip)L/2|y|sin « Rng Y] P 2 tan o K
L i(r2 — 1) (0~ )
B (47ip)t/2 sina/R 9(7) exp{ 2tan o }exp{ 4;) § }dT

= Kga)/ g(T)exp{i(TQ_t2)+ Z.(MT_Z.S)Q }dT,

2tan (1 = |7|?) sin 2«

-

and for the special case of o = £7/2

s 1 35t ™
STl = <= | FET o) s
_ s (t/ 1)) F(E7/2) N1 ot
75 o, T 0] = el 2

In the case of |y| # 1, we find that

RO = S5 [RO0 (1 1) 6

2 2 ~ 2
K@ iz =% _ilr = 1)
K /T/acer f) exp{ 2tana * (1—1v?) sin2a}dxd7-
a)

iz =) | i(lylz-y—1)?
Ry /(@) exp{ Stana (1 —1]v/|?)sin 2a}dx' (21)

=K§

In the case of |y| = 1, noting that = ty+y1e]+- - -+yp—1€]_; and |y|? = |[z—ty|* = |z|* —2tz-y+t3|y|> =
|z|? — t2, we are allowed to write (17) as

|2 g2
R (1) (1) = R (fla)exp { =Y ), 22)
By (3), we obtain the inversion formula of (22),

—i|z|? it?

flz) =277 " exp b(=a)" = R (exp FRO((E ) (). O

2tan o 2tan o

Remark 7. (15) and (20) give R(f)(t,v) = Sﬁm/m [RETI2(F)(t,~v/1Y)](t,~), which coincides with (18)
for o = £7/2.
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The last reconstruction formula is not the one we desire in the sense that it has been described with the
dual transform of not R(®)(f) but R(f). The inversion formula for |y| = 1 had been proved via the ath
order fractional dual transform of R (f) (see [8], [26]). To get an inversion formula for all |y| # 1,0,
we also use the ath order fractional dual transform of R(®)( f) and a suitable operator instead of the
Laplacian in the next section.

Finally, at the end of this section, let us introduce the result of applying the fractional Radon transform
and its reconstruction formula to the pictures. Figure (Original image) is the original sample data, Figures
give the images of fractional Radon transform of the sample data, and Figure (Reconstruct image) is the
image reconstructed from the ath order fractional Radon transform data with o = 7. In each image, the

horizontal line represents the angle of v from =" to 5 and the vertical line represents the parameter ¢.

1
ﬁﬂ-

Figure 1: Sample Data Figure 2: o =

Figure 3: a = %ﬂ'

Figure 4: o = %77
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Figure 5: a = %W

Figure 6: Reconstruction of Sample Data

2.3 Dual Transform and Laplace-Bertrami Operator

In this section we discuss the ath order fractional dual Radon transforms for |y| = 1 and for |y| =r > 0.

f;a)* for the relation (10) would not give a reconstruction formulae, since only one direction variable sy
is substituted into the right hand side. In fact, the reconstruction formula of some generalized Radon
transforms are derived via the dual transforms and the Laplace operator (see, e.g., [18], [21]). In the
case of the Funk transform regarded as a generalization of the Radon transform, its dual transform and
the Riemann-Liouville fractional derivative operator play an important role in reconstructing the original
function (see [32], [33]). Therefore, our strategy for the ath order fractional Radon transform is to find
the dual transform and a suitable differential operator.

In the case of |y| = 1, by Theorem 13 we note that the R(®(f) is represented by the classical Radon
transform with § on R, i.e.,

() _ . i(lz* — %)
ROGIEA) = [ ot =y 2) () exp{ “g

tdx

Therefore, we find the dual transform

2tana

) cz)? — |z]?
R () = [ ep (M2 o )aote),

Indeed, it formally holds that

(R(a)(f)’SO) = / /Sn 1 /nexp —lof )}5(15 — - z) f(x)dze(t, v)dtdo ()

L2(RxSn—1) Ztana

= /nf(x)/sn_1 exp{z«’y'x) — lal? )}w(v-x,v)da(v)dw = (f, R(“)*(w))

2tan o

Lz(Rn)‘

Define the Laplace-Beltrami operator in the sense of the ath order fractional Fourier transform F(® by
—A@) .= Fl)*|¢]2 F(@)  More generally, as for pseudo-differential operators in the sense of F(®), see [29].

Proposition 1. Let m € N. Define that

(x 5) (COS )efi£~(m+2_1£tana)(_Af)m€i§~(:v+2_1£tana). (23)
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Then, we have (—ACNY™ = p_(x, D,), in particular when m =1,

—A® = _(sin® @) A —i(sinavcos ) (2 - Vg + n) + (cos? )|z, (24)

Remark 8. The one-dimensional Laplace-Beltrami operator —A®) has the nonnegative eigenvalues
{(kW sina)?}rez and the eigenfunctions (6) for the orthonormal basis in L*(—=T/2,T/2). [29] considers
the 1st order differential operator (0, — iz cot ) to formulate the ath order fractional Fourier analysis,
and studies a heat type of equation with (0y — ix cot a) o (0, — ix cot ) which coincides with A up to
a constant additive factor.

Proof Let us decompose the fractional Fourier transforms as

(~a@ym = F/De{ a2 ple 1) pe)

E—x ¢—¢ '—(¢ z—&’

Then, considering the oscillatory integrals, by the change of variables y = —(/cosa and n = &' — £ we
obtain

FETP RS IP R

/_><
_ 1 PO [ ~2m i(lg? —1€'7?) | iC- (€ =&
~ (27)" cos™ /Rn Rn HEI exp { 2 cot av +e cos & }d£ d

_ co;ima/n/n €_iy’n\y|2m}f(77+§)exp{i(|£|22_cc|)17;—£|2)}d7ldy
Ll ] s g (1T,
_ et (o) {f(n+g>exp{i(|§’2_’HS'Q)}HFO

2cot a

= cos2maexp{ Z’£|2 }(_Aﬁ)m{f(g)e}(p{_ﬂﬂg}}’

2cot o 2cot «

here we used the properties of oscillatory integrals : [ ['e™"y®g(y,n)dndy = [ [ e~ Dgg(y,n)dndy
and ﬁffe*iy'"h(n)dndy = h(0) (see, e.g., [23]). Hence, the symbol of (—A(®)™ in the sense of

pseudo-differential operator theory is (cos?™ a)e~ % (427 Etana) (L A ymeib (v+27 ¢ tana) ipdeed

ey = e [ o (A gl fere {75 Lae
- e [ a0 omten {8 )i e {58 e
1

_ (27T)n / eix-&{(COSQm a)efii-(:c+2*1§ tan ) (_Ag)meié(erQ*lE tan ) }f(f)d§

In particular the case when m = 1 implies (24), since the symbol is given by

(cos? a)e*ié(a’“ilgtana)(—Ag)eig'(ﬂrlgtana) = cos?af|z|* + |¢tana® + 22 - Etana — nitan o}

= (sin?a)[¢]* + (sinacos ) (2¢ - & — ni) + (cos® a)|z|*.00
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2.4 Reconstruction Formula

In this section, we consider the reconstruction formula of the ath order fractional Radon transform. First,
we prove the following theorem in the case of |y| = 1:

Theorem 9. [11] Let n > 2 and —7/2 < a < w/2. The ath order fractional Radon transform for
feSER)
i(|x]? — 2
RO(£)(t7) = R(fw) exp { LWL

and its dual transform for ¢ € L?>(R x S"71)

RO = [ eo{ M=o n o) (serr)

})(m) ((m) €R x SH)

2tan o

satisfy the reconstruction formula:

1
2(27 sina)n—1

n—1

fz) = (AT REOREO(f) (). (25)

Proof Noting that [q,_1 G(v)do(y) = [gu-1 G(—7)do(7), we have

i((y - 2)* = =)
2tan o

RORO )@y = [ e

) cx)? — |z]?
- /Snlexp{ ((72t)anoz| | )}

<0 [ e { - MR IO 2000 o )

FRO () ,7)do ()

. 2tan a sina
— e [ [Ten{- AP XD 109 2 o) (v rdr()

+clre, /Sn_1 /Ooo exp{ - i(‘gfa:j) + i(A(S;:;)’x}f(“) [F1A(=7))dAdo ()
e [ [Tl AR 0yt

i(Jz*+[¢P) | iC-=
- + —
2tan o sin o

= 20, [ e ] FFOQIC e
R¢

= 202msina)" FO [FOU0)) ] (@),

By the inversion formula of the ath fractional Fourier transform, we obtain

1
_ b et p)ple)g (@ 0
1= sramayer T T FORORE () @),

Next, we shall consider (13) in the case of |y| = r(# 1) to reconstruct f(z). By the operator theory, we
find the dual fractional Radon transform

(o) i(t? — |x|? i(re -~ —t)?
R (o)) =57 [ [ gt esn(MG I - AT o)

2tan o (1 —7r2)sin2«

15



Theorem 10. [11] Let n > 2, —7/2 < a < 7/2,0 <r # 1 and K = — L . The ath order

(im(1—72) sin 2a)

fractional Radon transform for f € S(R")

i(|z|?> — %)  di(ra-y —t)?
2 tan « (1 —r?)sin2«a

RO = 5 | f(a)exp fao (1) eRx 87,

and its dual transform for ¢ € L2(R x S?71)

2 ' 2
(a)* - ‘33" ) o Z(T’.%'-"}/—t) n
R /S" 1 /Rt () exp 2tana (1 —72)sin 2« }dtda('y) (x €R )’
satisfy the reconstruction formula:
1 n-1 i(r? —1|z|?) x
- _A@ ()*po(a) U 92
/(@) 2rn—2(2m sin )1 (=A%) { P { 2tan « }R RN r)} (26)

Proof From the definitions in case of |y| = r(# 1), we have
RIVRE([) ()

= an [ [ R ] e e { NG - S0 o)

2tan« (1 —72)sin 2«

sina|2Y/2CL"C_,, i(ra - v)?
| | / exp { ~i(rz-9) }
spt (

(i(r?2 — 1) sin 20&)% 1 —7?)sin2a

x /R {(1 /R o—itn exp{ _i(jz)* + (nsin)?) }féa)[f](—nsinafy)dn}

27)1/2 2 tan a

it? 29trx -y
- dtd .
" exp { (1 —7r2)sin 2« * (1 —7r2)sin 2a} °(7)

2rx-y

obtain

and t instead of s and similarly to Theorem 9, we

(a)* 7 () _ —\sina\C&‘”C_a/ . i(rw'7)2
REVRE(f)(2) e - T )

(p(1 — r?)sin2a)? — r?)sin 2a

y / exp{ - Y (”Sm“)Q)}f;a)[f](nsinaw)exp{“q‘”)z}dnda(v)

2 tan o 4p
= [ e 'ﬂi:;.f“)+iz:z;.ﬁ}f;awfuswdsdaw
— 201" /S N / exp { ’g‘:a: 22) + "(:izl)O; x)}]-'(o‘)[f]()\fy)dAda(fy)
= 2ol | oo { Y G (27)

Hence, it follows that

ROFR@O () (2) = 2(27 sin o)L~ 2 F (@) [f(“) [£1(C) exp {u}\c - ”}( )-

sin«

16



Thus, we have

1
©2rn=2(2msin )L

f [f@*{exp{w}\d"l}ﬂa)m(a)*n(a)(f)(x)-

Moreover, by using the dilation operator M,g(x) = g(x/r), we proceed to change (27) into

REO*RE(f)(x)
i(r?lz? +[¢?) | i¢-x
+ —
2tana sin o

= 20O M e FFOIQI
Re

L= r?)laf?

= 2(CCoa) 2 e { LFO OO @),

2tana

and get
1

2r"—2(2m sin )71

_ (@nzt i =Dl (0275 (0)
f A T exp{ MR R (f)(z). O

2tan o

2.5 Wave Equation

In this section we try to apply the ath order fractional Radon transform to a wave equation. It is well
known that the solutions of the wave equation can be consisted by the calssical Radon transform. In fact,
as for the classical Radon transform, let us put for j = 0,1

271 (2mi) O T IR (uy) (8, ) n odd,
Walu;)(t7) = { 2*1(2m')1*”7¢(af—l—jn(uj)(t,7)) n even,

where H is the Hilbert transform. We see that
u(t,z) = /S » {Wn(uO)(x Y H )+ Wa(w)(z -y + 1, 7)}d0(7)
solves the following Cauchy problem:

9u— Ayu=0 ((t, z) € (0,00) x Rn),
u(0,2) = up(x), Ou(0,z) = ui(x) (:1: € R”).
For the ath order fractional Radon transform, we also get the following:

Theorem 11. Define that for j = 0,1

2_1(27TZ)1_nq(a) (t 8t)R(a) (’U,)(t P)/) n odd
W(a) NG — n,g\" VVANE )
n () (E7) {21(27rz')1"H(qf:?(t,8t)R(a)(Uj)(ta’7)) n even,

where ¢\ (x,t,0,) = exp{ Gl 07 — (0771 exp{ 55l Y exp{gilg ). Then,

n,J 2tan 2tan« 2tan

u®(t,x) = /SH VI (wo) (- 7+ 1,7) + Wi () (@ -y + £,7) Yo (7)

solves the Cauchy problem

. T
SN~ «

1
Pul) — TA(O‘)u(O‘) =0 ((t,x) € (0,00) x R”),
w0, 2) = ug(x), Ou'(0,2) = uy(a) (:r: € R”).
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R (f)(t,~) is suitable to deal with the multi-dimensional case of the generalized wave equation based
on Ag(ca) in analogy to the classical Radon transform.

)2
Proof Let ¢, = 271 (2mi)! ™" and put v;(x) := exp{ izl }u](a:) By (14) we find that when n is odd

2tan

W) (0.7) = eadl o1 00R (g o) exp { =Ny g )

2tan «
i }R(vj)(tﬁ)> = exp{ - }Wn(vj)(tﬁ%

iz

= canf‘} (x,t,0) ( exp {

2tana 2tana

and when n is even W (uj)(t,y) = exp{— ;!gfa PWh(v5)(t,7), here we remark that (07177 exp { 2;;22 }}
in q(a)

n7j

denotes the commutator of the differential operator 9;' 17 and the multiplication operator

exp{ 2;;;512&}. Thus, we see that

iz

o) =exp{ = [ W)y +09) W)y +1.9) o)

2tana

solves

2@ — Al @ = ¢ <(t, z) € (0,00) X R”),
00, 2) = vo(x), AW (0,2) = vy (z) (3: € R”).

Hence, putting u(®) (¢, ) = exp{— izl o @ (t,z) | by (24) we get

2tan «

412
(@) _ 1ol 3@ 2y =
A0\ (t, x) Az(exp{Qtana}u (t,z)) = exp{
i|z|? 1
|z| 1L

sin“ «

1| 2ix in T
- }(Am—l_tanoa'vw _i

Jul®(t, )

2tan o tana  tan?«

= exp{ ALy (¢ 1),

2tan o
This proves Theorem 2.7. [J

Remark 12. Theorem 11 characterizes the ath order fractional Radon transform R (f)(t,~). Also for
a generalized heat equation based on (0, — ix cot ) o (O — ix cot o) ~ Aff‘), the fundamental solution is

given by [29].
3 Known Results of Various Transforms

In this section, for application to images we concern two-dimenssional transforms (including dilation,
translation and rotation). We shall use letters in bold font to denote two-dimensional vectors. Let

a € R\{0}, a= (a1,a2) € R*\{0}, b€ R, b= (by,b) € R? w € (—m,7],

and put

= (cosw,sinw), L = = (sinw, —cosw), R, = cosw —sinw
Yo ; y Yw 7w—7r/2 5 s w sinw cosw .

e Wavelet transform The continuous wavelet transform is given by

Wy f(b,a,w) = 1 \I’(Rw (%))f(x)dx

|a| R2

18



which is useful for representing point singularities (but not so efficient for detecting line singularities).
The continuous wavelet transform was pioneered by Morlet and Grossmann [17]. Recently like the Fourier
transform, it is one of the important tools in time-frequency analysis.

¢ Ridgelet transform Candés [3] and Donoho [6] proposed the ridgelet transform

a

Ry f(b,a,w) = |a’11/2 /RQ ¢<w)f(x)dx,

which can be obtained by the composition of the one-dimensional wavelet transform and the X-ray trans-
form (Radon transform), and extracts directional features for straight-line singularities.

e Windowed X-ray transform (windowed Radon transform) Kaiser [21] proposed the windowed X-
ray transform for the relativistic quantum theory. Afterwards it realized a generalization of the Analytic-
Signal transform (see also [22], [35]).

WA f(x,v) = /R D) (x + pv)dp.

By the Parseval’s formula we find that the windowed X-ray transform (windowed Radon transform)
represents with the kernel:
Wwa(Xa V) = Klb(b ) V)f(b)dba
R}

where the integral kernel as follows:

Ky(b—x,v):= /R2 e BX)E (v . £)de.
¢

Moreover we give the inversion formulas of these transforms. The following condition plays a central role
to the inversion formulae:
Admissibility condition Let be 1 € L2(R!). We say 1 satisfies the admissibility condition if

n 2
0, - / [Ds)
R S
Converges.

e Inversion formula of the wavelet transform If v is admissible, for f € L?(R?), the inversion
formula of the wavelet transform is given by

Cot) = |

In 2014, Lebedeva and Postnikov [24] gave another inverse formula of the one-dimensional wavelet trans-

form when Cy, := —4(0) # 0 and ) € L*(R):

SO (YW, f (b, a) 1202 (25)
R2 a

1
a

Cotl@) = Mol [ oW (b.la”da] o) (29)

e Inversion formula of the ridgelet transform For f € L?(R?), the inversion formula of the ridgelet

transform is given by
Y, - X — b\ dadw
D = b
(%) /Sl/R/RRM (LX) S,
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if a constant D, exists:

[ (s)1”

Dw :2(27'() 2
R 8]

ds.

e Inversion formula of the windowed X-ray transform If ¢ is admissible, the inversion formula of
the windowed X-ray transform is given by

Cot = [ [ Wt K-y L (30)

4 Double Ridgelet Transform

In this section we propose a generalization of the ridgelet transform.
We consider the composition of the one-dimensional wavelet transform and the windowed X-ray transform.
1 q—0>

_f(b - ) aoVPwa - dq. 1
WR#,#,f( 7a>w) |a1|1/2 /l;‘q¢< al )|CL2| W ¢f(q’797a27w) q (3 )

In [12], (31) is called “double windowed ridgelet transform”. The following theorem means that (31)
has the form with the kernel of double windows.

Theorem 13. [12] Let v, € L*(R') and v, = (cos6,sinf), v} = (sinw, — cosw). Then, for f € L*(R2)
the double windowed ridgelet transform defined by (31) is represented as

‘a1a2’1/2

WRygf(ba,w) = =5 /R ; € (aryy - )l - €)f(€)de

1 Yo (X=D)\ 7 vy X
= x)dx,
|aras|' /2y, - g /ng( 1Yy - Vo >w<a2%-79>ﬂ )

where b 1= by, with b € R and 0 € (-7/2,7/2], a = (a1,a2) € R?*\{0} and w € (—x, 7| such that
Yo Yo # 0.

Remark 14. In particular when b = by, := by, with 0 = w, we have

WR, s buvase) = Lo [ (B2 (LX)

" ayag|t/? ay a2

which corresponds to the ridgelet transform, zf@Z) =1.

Proof We change the windowed X-ray transform (windowed Radon transform) with the additional coef-
ficient |a|'/? as

|a\1/2WX¢f(b,a,w) — ‘a|1/2/ mf<b—|—ap(sinw,—cosw))dp
Ry

V2 o NI
= '{;L)z /R ¥(p) /R el Lt f(g)dedp
P 3
a2

_ T D€
- Gl il o) (€)de (32)

20



Substituting this windowed X-ray transform with ¢ into (31), we get

‘a ’1/2 q_b i 9.:7A
WR, gl (baw) = - B — | w(* =) /R o € (axvt - €)f(€)de fdg

(2m)2V/]aa |

(27T)2\/W Ré {/Rqe " d}( ai )dq}¢(a2’7w é)f(é)d&

1/2 A 2 ;
Foa /R P4 (aryy - €)dlazys - €)f(€)dé.
3

(27)?

w

Putting \i/w(g) = (&) ® ¢(52) (:;’9> and A := < %1 6?2 ), we see that

Wy (AGE) = a1y - £)v(ays - €).
Therefore, it follows that

|a1a2|1/2
(2m)?

/ i
_ \\/R/R (G AyLIew, o (y)dy f(€)dE

- (2m)? ’a1a1’1/27w Yo /R? /R2e zxﬁq; (A* G- b)>dxf(£)d€’

o1 cosf  sinw _1: 1 cosw sinw ) _ 1 Yo
sinf —cosw cos(w — 0) sinf@ —cosf Yo ' Yo "/9l .

Noting that W, 7(x) = 1(z1) ® Y (x2), we have

Wy f(b,a,0) = /R OMER(AGE) f(€)de

since

WRy.y f(b,a,w)

_ |1/12 / W, (4161~ b) ) fx)dx

laraz|/2y,, - vy
1 1 -~ v, X ~ -b>
— N Ax—1 w — w x)dx
|a‘1a2|1/2’yw 79/ ww<7w Yo { (ﬁyé_ 'X> < 0 }>f( )
1 Yo - (X B b) 7 79L X
= x)dx. [J
|araz|t/ 2y, - vy /ng< a1y - Yo >¢<a27w‘79>f( )

4.1 Features in the Frequency Space Rg

From a point of view of the partition in the frequency space R2, we study the features of the double
windowed ridgelet transform and other transforms.
e Double windowed ridgelet transform

|ayas|'/?

WR, ;f(b,a,w) = o)

/R2 D€ (aryg - E)arrs - €)f(€)dE
3
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has the window 1;((11’79 - €) rotating according to b := by, and another window 1[1(@270% - €) moving
independently.

(A) Both ¢4 and 94 are mother wavelets.

(B) ¥ is a father wavelet (scaling function) and ¢ is a mother wavelet.
(C) 1¢ is a mother wavelet and ¢¢ is a father wavelet (scaling function).
(D)

D) Both ¢p and vp are father wavelets (scaling functions).

By the Parseval’s theorem and the Fourier slice theorem we also get the representations of other trans-
forms:

e Wavelet transform

Wy f(b, a,w) := la A;¢“®W&£M@M§

e X-ray transform (Radon transform)

Xf(b0)= /R e f (s7yp)ds.

e Windowed X-ray transform (windowed Radon transform)

WX, f(b,a,w) =

1 e
e P(ayy - §) F(€)d§.
(27)? /Rg

e Ridgelet transform

1 7N 1/2 U
Roflbaw) = i [ o(U2) 2 stawdg = G [ e ias) o s

4.2 Reconstruction Formula

In this section we consider a reconstruction formulae of the double windowed ridgelet transform. Moreover,
we discuss the transforms WR " f which have the windows of the four types.

4.2.1 Case (A)

Since we have inserted the additional coefficient |a|'/? to WX »f, considering the additional coefficient

W, we get the inversion formula of the windowed X-ray transform:

1 /2 qdgqdadwdf
C- = — K- (x— ,a,w)WX Ay W) ————— 33
100 = 5 /S / . / L i v W ) (33)

here we used the polar coordinates v = |aly}; € R? with @ € R and w € (-, 7] and g7, with ¢ € R,
and 0 € (—7/2,7/2] in (30).
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Remark 15. The integration in v has been replaced by the integrations in a and w. But in fact, the
integration in w yields only the constant 2w. So, we can reduce (30) to

/2 dqdadd
qaqaa
/ﬂ/2/a R, KJ,(X_Q’Yeaaaw)Wwa(Q’Yea%w)W- (34)

Then, we prove the following:

Proposition 2. [12] Let 1, € L*(R) satisfying
a2 T2
Cy :/ [ (s)l ds < oo and 01; ::/ [ ()] ds < 00,
R |5l R sl

and vy = (cosf,sinf), vt = (sinw,—cosw). The inverse formula of the double windowed ridgelet

transform WR,, 5 f(b,a,w) for b := by, with b € R and § € (—7/2,7/2], a = (a1,a2) € R?\{0} and
w € (—m, | such that v, - vy # 0, is given by

. Yo - (x—Db) Y. - X dbda
WR, :f(b,a,w .
/112 /R2 az’Yw >¢( a1%Yw Yo ) w’wf( )|a1a2|5/2('7w “Y6)?
Remark 16. Indeed, by (28), (34), we can easily verify that (see, [12])

/2 —-b qdbdaydqdasdf
K (% — qvg, az,w / / WR., - f(b, a,w) 120010900200 35
/7r/2/R Rq T IR SRy N ) wipd (P22, |a1[?/2]az|*/2 2
= (x).

Proof of Proposition 2 Let us simplify the inverse formula (35) as

/2 —b dbdaydqdasdf
q q ajaqaa

K~xq7,a,w/ / v(—— )WR, - f(b,a,w)—

/w/2/Ra2 R, il 0262:) R., JR, ( a ) wipd{ ) |a1[5/2|ag[3/2

= L[ m {biaryg )+ i) ar - m) bn
RZ /R /RZ

dbda
|a1a2 ‘3/2

1
s Vg X Yo (x—Db Yo (xX—b) /v, (x—b
- |/ P2 ) o (e g Tl X (2 BB
R2 /R? |a1a2|'7w Yo a2y - Yo a1Yw - Ve A1Yw " Yo aA1Yw * Yo
dbda
|a1a2\3/2

) Y. - (x—Db) v, * X dbda
— WR b a, w )
/112 /R2 a2‘7w )d}( 1Yy " Yo ) vl )!a1a2|5/2(‘7w “Yp)?

here we used

X WRW/;f(b, a,w)

xWR,, ;f(b,a,w)

/ ¢<q B b>e—iq79'nqdq = |CL]_|€_ibﬂye.”7 / ¢(p)e_ipa179'n(b + (I]_p)dp
R,

al R,

= arle™™ 0 bib aryg - m) + ar () (a1vp - m) }

23



and

ay /R? el’(x—b‘ya)'m/;(az’yi . TI)(PAIP)(GWQ -m)dn
n
(2m)%a; 7, (x—Db) <7w.(x—b)>1z}( NEx )
|a1as|ve, Yo a17u - Yo a1 " Yo
(2m)? Yy - X v, (x—b)\ -/ vE-x
= _ b ‘
|arazly,, - ve {’m Yo }‘Z’( 0170 e ) ( )

This proves Proposition 2. [J

4.2.2 Case (B)

In this case, the mother wavelet 7;53 satisfies the admissible condition and the father wavelet ¢ is not
equal to zero at the origin. We can rewrite (29) by:

@%—Aﬂmmwwmw*@m (36)

where

1 N
IDg(8) = o= [ AN
T R,

Then, we can also prove the following:

Proposition 3. [12] Let 1,1, 1) € L2(R) satisfying

N
Cy = —(0) #0 and C’& ::/RW|(5|)‘ ds < 00,

and vy = (cosh,sinf), v= = (sinw,—cosw). The inverse formula of the double windowed ridgelet
transform WR 7 f(b,a,w) for b := by, with b € R and 6 € (—7/2,7/2], a = (a1,a2) € R?\{0} and
w € (—m, | such that v, -v9 # 0, is given by

1 dbda
Cwq;f(x) ~or /R% - K@(X —b, ag,w)]Db\WRw7¢f(b, aaw)W7

where

Kj(x —b,az,w) = / ! XPI M (agyss - m)dn
R

2
n
Proof of Proposition 3 By (34) and (36) we simplify the inverse formula as

1 [7/? / daygdgdasdf
Py K X = Qq%p,02,wW / Dy¢|WR ~f Y9, &, W) 7757 13/
R., JR, 1/;( 0 ) R, | q‘ Y,ap ( 0 )‘alll/g‘aglg/g

27 —7/2
1 dbda

= — K-(x—b D R, f(b _
or /R,g R%) qp(x ,GQ,WM b|W Wl}f( 7a7w)‘a1’1/2‘a2’3/2

In the last equality, we changed the polar coordinate g7, into the Cartesian coordinate b. This proves
Proposition 3. [
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4.2.3 Case (C)

In this case, the mother wavelet 14 satisfies the admissible condition and the father wavelet @EA is not
equal to zero at the origin. Hence we need to consider the inversion formula of the windowed X-ray
transform which has the father wavelet.
Lemma 1. Let ) € L*(R) satisfying
Cy =2y (0) # 0,

and v5 = (sinw, —cosw). The inversion formula of the windowed X-ray transform WXd;f(b,a,w) for
b e R? a € R\{0} and w € (—m, 7], is given by

Cofx) = [Pt DuWsf(b,a,wdads]

R, b=x

where

1 ibe L gl f
= el e

Ve - Dulf(b) =

Proof of Lemma 1 By (32) we obtain

/R L - Dy WX f(b,a,w)da = m €e™E) (vt - £) f(€)deda

a

- @ /R we{ [, dt o gaal ierae

3

_ v b€}
el eiee

here we used

/ Havs - O - €lda = / d(a)da = 219(0).
a R,

Substituting b = x, we get

2771/1(0)f(x):/R (fyj.Db)2WX1Zf(b,a,w)dab .0

Now, by Lemma 1 we prove the following;:

Proposition 4. Let 1,1 € L*(R) satisfying

:/ |¢(s>|2ds<oo and CJ, = 2%11;(0)750,
e

and vy = (cos@,sinf), v- = (sinw,—cosw). The inverse formula of the double windowed ridgelet

transform WR 7 f(b,a,w) for b := by, with b € R and 6 € (—7/2,7/2], a = (a1,a2) € R?\{0} and
w € (—m, | such that v, -v9 # 0, is given by

dbda
CyCyf(x / / e Dulo (L) WR, e W)
forx =gqvy € R? withq € R and § € (—7/2,7/2].
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Proof of Proposition 4 By (28) and Lemma 1 we see that

dbdaldag
LD WR byg, a,w)—
/R ‘7 |/ /Rb a1 ¢¢f( Yo ) |a1|5/2

dbda
/R/ s - Dl )WRMf(b'Ya,aw)| s

4.2.4 Case (D)

In the last case, the father wavelets ¥p and @D are not equal to zero at the origin. Then, we prove the
following:

Proposition 5. Let 1,9 € L?(R) satisfying

Cy = —1(0) #0 and Cy = 277@#0,

and vy = (cos@,sinf), v= = (sinw, —cosw). The inverse formula of the double windowed ridgelet

transform WR 7 f(b,a,w) for b := by, with b € R and 6 € (—7/2,7/2], a = (a1,a2) € R2\{0} and
w € (—m, 7] such that Yo Yo # 0, is given by

CuCaf (9= [ 1t - DullDyWR,, f(x.a,)lan| 2
R3

for x = qvy € R? with q € R and 0 € (—7/2,7/2).

Proof of Proposition 5 By (36) and Lemma 1 we see that

/ ”Yﬁ - Dx| /R \Dq\WRw@f(qug,a,w)|a1\1/2da1da2
a al

2

= [ & DAIDIWR, jfxaw)la| e O
R2 ’
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