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In highly polarized cells such as neurons, compartmentalization of mRNA and 

of local protein synthesis enables remarkably fast, precise, and local responses 

to external stimuli. These responses are highly important for neuron growth cone 

guidance, synapse formation, and regeneration following injury. Because an 

altered spatial distribution of mRNA can result in mental retardation or 

neurodegenerative diseases, subcellular transcriptome analysis of neurons could 

be a useful tool for studying these conditions, but current techniques, such as in 

situ hybridization, bulk microarray, or RNA-Seq, impose tradeoffs between 

spatial resolution and multiplexing. To obtain a comprehensive analysis of the 

cell body versus neurite transcriptome from the same neuron, our group has 

recently developed a label-free, single-cell nanobiopsy platform based on 

scanning ion conductance microscopy (SICM), that uses electrowetting within a 

quartz nanopipette to extract cellular material from living cells with minimal 

disruption of the cellular membrane and milieu. In this study, I used this 

platform to collect samples from the cell bodies and neurites of human neurons 

and analyzed the mRNA pool with multiplex RNA-Seq. The minute volume of a 

nanobiopsy sample allowed me to extract samples from several locations in the 

same cell and to map the various mRNA species to specific subcellular 

locations. In addition to previously identified transcripts, I discovered new sets 

of mRNAs localizing to neurites, including nuclear genes such as Eomes and 

Hmgb3. In summary, my single-neuron nanobiopsy analysis provides 

opportunities to improve our understanding of intracellular mRNA transport and 

local protein composition in neuronal growth, connectivity, and function.  
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mRNA compartmentalization in neurons 

Compartmentalization of proteins provides a way for cells to respond to 

extracellular stimuli with great spatial resolution. Neurons are highly polarized 

cells. Intracellular distances between the cell body and the axon terminals can be 

as long as one meter, thus transporting proteins or other cellular materials from 

the soma to the peripheries may take days. Therefore, neurons can greatly 

benefit from subcellular localization of mRNAs and local translation. Local 

mRNA translation enables rapid, remarkably precise, local responses to external 

stimuli, allowing tight/accurate regulation of subcellular composition/content 

(Jung et al., 2014).  

Subcellular localization of mRNAs is a highly prevalent and evolutionary 

conserved phenomenon. Indeed, a large-scale, in situ hybridization study in 

Drosophila embryos revealed, that 71% of mRNAs of the genes examined 

localize to distinct subcellular compartments (Lécuyer et al., 2007). Evidence 

for local protein synthesis in axon was shown as early as 1968 (Giuditta et al., 

1968), and, as proved later, severed axons are capable of responding to guidance 

cues in a protein synthesis-dependent manner (Campbell and Holt, 2001). 

Components of the protein synthesis, posttranslational modification and folding 

machinery, such as rough endoplasmic reticulum, polyribosomes and Golgi 

apparatus can be found in dendrites, and can be easily visualized using electron 

microscopy (Job and Eberwine, 2001). On the other hand, in axons, 
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ultrastructural analysis does not reveal any typical morphological features 

corresponding to rough endoplasmic reticulum or Golgi. In fact, resident RER 

and Golgi proteins show puncta-like localization, as shown by 

immunofluorescence, indicating the presence of functionally equivalent, ER and 

Golgi-like vesicles, respectively (Merianda et al., 2009).  

One advantage of mRNA compartmentalization and local translation in axons 

and dendrites can be that, one mRNA molecule can be translated to several 

protein molecules, making molecular transport more economic and avoiding 

crowding of cargo molecules. This greatly resonates with the fact, that the 

amount of protein in the cells depends on the rate of translation rather than the 

amount of mRNA (i.e transcription) (Schwanhäusser et al., 2011). This indicates 

that the local protein composition and amount depends on what kind of mRNA 

transcripts localize to that subcellular area and at what rate they are translated.  

In theory fast axonal transport could, at 50–200 mm/day, maintain the baseline 

level of membrane and secreted proteins (Merianda et al., 2009). Therefore, 

local protein synthesis may be implemented in fast, remarkably precise, local 

response to external stimuli or metabolic changes, allowing tight regulation of 

subcellular composition. In addition, newly synthetized proteins that have not 

undergone any posttranslational modification may harbor some unique 

information.  
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Figure 1. Schematic of mRNA compartmentalization in neuronal cells. 
mRNAs bind specific RNA binding proteins in the cell body and are transported 
along the microtubulues to neuronal extensions. Various extracellular signals or 
synaptic transmission can trigger the local translation of mRNAs in the 
axons/dendrites enabling a fast, precise  and localized response.  

 

So far, analysis of mRNA species in dendrites and axons revealed thousands of 

transcripts that are differentially localized (Gumy et al., 2011; Cajigas et al., 

2012; Ainsley et al., 2014; Minis et al., 2014; Shigeoka et al., 2016). Some 

sequence motifs at the 3’UTR, 5’UTR and retained intron regions of the mRNA 

have been found to regulate the localization of transcripts to neuronal processes 

(Buckley et al., 2011; Jung et al., 2012a) in the translationally repressed state 

during mRNA trafficking (Jung et al., 2014) (Fig. 1). 
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Compartmentalization and local translation of mRNAs are involved in different 

aspects of neuronal homeostasis. Neuronal growth cones respond to attractive 

(BDNF, netrin) and repulsive (SEM3A, Slit2b) guidance cues, by regulating the 

local translation of the cytoskeletal protein β-actin (Bassell et al., 1998; Zhang et 

al., 1999, 2001; Brittis et al., 2002; Leung et al., 2006; Yao et al., 2006; Huebner 

and Strittmatter, 2009; Kundel et al., 2009) and the actin cytoskeleton 

remodeling proteins cofilin (Piper et al., 2006) and RhoA (Wu et al., 2005). In 

the developing retina, the mRNA encoding the activated leukocyte cell adhesion 

molecule (ALCAM) localizes to axons, where it mediates homophilic adhesion 

of axons from the same neuronal subtype, thus formation of axon bundles 

(Thelen et al., 2012). In vivo data in Drosophila melanogaster shows that the 

axonal synthesis of the Slit2 receptor Robo-3/Rig-1 is necessary for axon 

guidance and midline crossing (Kuwako et al., 2010).  

In rat and mouse dorsal root ganglions target-derived neurotrophic factors 

induce the transcription, anterograde transport and axonal translation of Bclw, 

that, by inhibiting caspase6 apoptotic cascade, prevents axonal degeneration and 

promotes axon maintenance (Cosker et al., 2013). In Xenopus laevis retinal 

ganglion cells lamin B2 protein is translated in axon, binds mitochondria, and it 

is required for the maintenance of mitochondrial function and axonal integrity 

(Yoon et al., 2012). Neurotrophic factor stimulation induces the synthesis of 

SMAD 1/5/8 (Ji and Jaffrey, 2012) and CREB (Cox et al., 2008) proteins in 
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axon, that, after retrograde transport and phosphorylation, act as transcription 

factors and promote neuron survival. Thus, transcription factors synthesized in 

the periphery and interacting with the local signaling environment may carry 

some unique information. 

Following neuron injury, local translation is required for neurite regeneration 

(Twiss et al., 2000; Zheng et al., 2001; Verma et al., 2005; Yoo et al., 2010; 

Donnelly et al., 2011). Locally synthesized proteins include importin (Hanz et 

al., 2003), vimentin (Perlson et al., 2005), RanBP1 (Yudin et al., 2008), STAT3 

(Ben-Yaakov et al., 2012) and CREB3 (Ying et al., 2014). In fact, the ability of 

axons to synthesize proteins decreases as they mature, in parallel with their 

reduced ability to re-grow after axotomy (Jung et al., 2012b).  

mRNAs localized to dendrite include those of encoding CAMPKIIα, Protein 

kinase Mζ, and neurotransmitter receptors of the AMPA (GluR1 and 2) and 

NMDA (NR1) families. (Doyle and Kiebler, 2011) Their presence and 

translation is necessary for synapse maturation, long term potentiation, memory 

formation and learning. (Miller et al., 2002; Muslimov et al., 2004; Piper et al., 

2005). On the other hand, mRNAs encoding neurotransmitters, such as oxytocin 

and vasopressin, localize to axons (Jirikowski et al., 1990; Trembleau et al., 

1995; Prakash, 1997). 

It has been shown that mRNAs encoding capsaicin and κ-opioid receptors are 

transported to the processes of sensory neurons (Tohda et al., 2001; Bi et al., 
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2003), thus mRNA transport and local receptor synthesis may be involved in 

sensitization and nociception.  

It has been shown that altered mRNA transport and translation lead to 

devastating consequences, as mental retardation or neurodegenerative disease, 

such as amyotrophic lateral sclerosis (Liu-Yesucevitz et al., 2011; Ramaswami 

et al., 2013; Alami et al., 2014).  

Fragile-X mental retardation protein is an mRNA transporter protein, that also 

acts as a negative regulator of translation, by repressing the translation of the 

cargo mRNA during transport. Mutations in the human FMRP-coding gene 

(Fmr1) cause fragile X mental retardation, a disease characterized by intellectual 

disability, disruptive and autistic-like behavior, epileptic seizures and language 

deficits (Darnell et al., 2001, 2011; Dictenberg et al., 2009). Mutations of 

mTORC1 cause upregulated translation, associated with autism (Kelleher and 

Bear, 2008) and Down-syndrome (Troca-Marín et al., 2012).  

Taken together, mRNA transport and spatially precise protein synthesis is of 

high importance for growth cone guidance, neuron maintenance, survival, 

synapse formation, long-term potentiation, memory formation and nociception.  
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Subcellular transcriptome analysis in neurons 

Comparative subcellular transcriptome analysis of neurons has faced many 

technical limitations (Fig. 2).  

 

Figure 2. Schematic of the currently available techniques for the study of 
mRNA compartmentalization in neuronal cells. Bulk neurite samples can be 
collected by A. dissecting specific brain areas that have very ordered neuron 
arrangement or by B. culturing neurons in compartmentalized microfluidics 
chambers and harvesting the neurite compartment. The bulk sample can be used 
to prepare RNA for RT-PCR, microarray or RNA Sequencing analysis. Thus, 
expression values can be obtained for several thousand genes at the same time, 
but spatial resoluation is lost. Image courtesy: Wikipedia. C. In situ 
hybridization can reveal the precise spatial location of transcripts. However, it 
can be used to study only a few genes at a time, thus cannot be multiplexed. 
Toth E., unpublished data.  
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Multiplexed mRNA localization data can be obtained by RT-PCR, microarray or 

more recently, RNA sequencing. To detect genes specific for axon or dendrite, 

the processes must be separated from the soma. This can be achieved either by 

culturing neurons in compartmentalized chambers (Gumy et al., 2011; Minis et 

al., 2014), microdissection of specific brain areas where the cells have highly 

ordered, uniform arrangement, e.g. the CA1 region of the hippocampus (Cajigas 

et al., 2012), or by laser microdissection and glass micropipette aspiration of 

neurites of cultured neurons (Crino and Eberwine, 1996; Poon et al., 2006; 

Zivraj et al., 2010b; Francis et al., 2014). Although, these isolation methods 

have the advantage of the ability to detect several thousands of mRNA species at 

the same time, their major drawback is that bulk input sample is used. This way, 

information about mRNA composition of individual cells, and spatial resolution 

is lost. Fluorescent in situ hybridization using RNA probes is capable of 

resolving the accurate localization of mRNA species. However, this method 

cannot be used on live cells, and is capable of detecting only a few genes at a 

time. 

In addition, previous studies used different cell types for axonal and dendritic 

transcriptome analysis, making data comparison very difficult. Thus, previously, 

there was no available method for multiplexed, neurite transcriptome analysis at 

the single-cell-level. 
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Nanopipette technology 

To address the challanges of subcellular transcriptome analysis, our group has 

recently developed a label-free, single-cell nanobiopsy platform.  

 

 

Figure 3. Schematic of the nanopipette setup and the application for single-
cell sampling. A. Nanopipettes are fabricated from quartz capillaries to produce 
a tip diameter of ~100 nm. B. The nanopipettes are then filled with a solution of 
of 1,2-dichloroethane (DCE) containing tetrahexylammonium tetrakis-(4-
chlorophenyl)borate (THATPBCl). C. Nanopipettes are connected to an 
electrical circuit involving the cell culture medium and are used as a Scanning 
Ion Conductance Microscopes (SICM) to map the cell topography by measuring 
the electrical feedback. D. Our custom-coded control software enables automatic 
cell surface finding, penetration and aspiration of cellular material through 
electrowetting. The aspiration volume corresponds to ∼1% of cell volume.  

 

I fabricate nanopipettes from quartz capillaries to produce nanopipettes with a 

diameter of ~100 nm (Fig. 3A). The nanopipettes are then filled with a solution 

of of 1,2-dichloroethane (DCE) containing tetrahexylammonium tetrakis-(4-

chlorophenyl)borate (THATPBCl) (Fig. 3B), a salt with large organic functional 

groups. The nanopipettes are then connected to an electrical circuit involving the 

cell culture medium. I use the nanopipette as a Scanning Ion Conductance 
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Microscope (SICM) to map the cell surface by measuring the ion current 

flowing through the nanopipette (Fig. 3C).  

Since the nanopipette backfilling solution is not miscible with the cell culture 

medium due to its apolarity, we can take advantage of the phenomena of 

electrowetting in small capillaries. By applying different voltage to the electrode 

we can change the surface tension of the liquid. The change in the surface 

tension results in the curvature of the nanopipette solution, and aqueous solution 

can enter the pipette. Thus, by applying different voltage we can aspirate 

material into the nanopipette. Our group wrote a control software enabling 

automatic cell surface finding, penetration and aspiration of cellular material 

through electrowetting (Fig. 3D). From electron microscopic measurements and 

geometrical calculations this volume was estimated to be ∼50 fL, which 

corresponds to ∼1% of the volume of a cell. This method of sampling causes 

minimal disruption of the membrane and cellular milieu such that cell viability 

is maintained, and thus several samples can be collected repeatedly from the 

same cell (Actis et al., 2014). 
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In this study, my objective was to use the nanobiopsy platform developed by our 

laboratory to extract samples from the soma and neurites of human Induced 

Pluripotent Cell-derived iCell® Neurons, and analyze the mRNA pool by 

multiplex RNA Sequencing (Fig. 4).  

 

 

Figure 4. Outline of the objective of this study. My purpose is to extract 
several miniscule cytosolic samples from the cell body and neurites of human 
neurons using nanopipette technology and analyze the mRNA by RNA 
Sequencing. After RNA-Sequencing read alignment, I will compare the 
transcriptomes of neuron cell bodies and neurites and I will analyze the 
elaborate subcellular distribution of mRNA by comparing the mRNA 
composition of small subcellular samples. 

 

Due to the minute volume of a nanobiopsy sample, it was possible to extract 

cytoplasm from multiple locations in one cell. I aimed to compare the 
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transcriptomes of neuron cell bodies and neurites, and to demonstrate the 

functional difference between the two subcellular compartments. I also intended 

to study the elaborate pattern of mRNA compartmentalization in neurons by 

comparing the mRNA composition of small subcellular samples. This analysis 

may shed light on how neurons take advantage of compartmenatlizing specific 

mRNA molecules to small subcellular areas and how that may contribute to the 

fast, local responses to extracellular signaling or metabolic changes, contributing 

to the establishment of neuron cell polarity, synapse development and neuronal 

cell network formation. 
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Neuronal Cell Culture 

The neuronal cells cultured for this study were hiPSC-derived neurons (iCell 

Neurons) obtained from Cellular Dynamics International (Madison, WI). The 

cryopreserved cells were a more than 95% pure population of GABAergic and 

glutamatergic neurons, with less than 1% of dopaminergic neurons (CDI, 

Madison, WI). Cells were plated at 20,000 cells/cm2 density in 3.5 cm diameter, 

CELLview™ Cell Culture Dishes (Greiner Bio-One GmbH, Rainbach im 

Mühlkreis, Austria) pre-treated with 0.05% poly-ethylene-imine (PEI) (Sigma-

Aldrich, St. Louis, MO) for 1h and coated with 5.0 µg/ml laminin (Sigma-

Aldrich, St. Louis, MO) for 1h. Cells were grown in media provided by Cellular 

Dynamics supplemented with 1% PenStrep (Lonza, Basel, Switzerland), at 

37°C, with 5% CO2/95% air. To better visualize axons, the cells were 

transfected with pEGFP-c1-Tau (Kan resistance) plasmid using GeneJuice® 

transfection reagent (Merck Millipore, Billerica, MA), according to 

manufacturer’s instructions. The plasmid was a generous gift of Steve 

Finkbeiner's laboratory from the Gladstone Institute at UCSF. 

Electrowetting in Nanopipettes 

Nanopipettes were fabricated as previously described (Actis et al., 2014). 

Briefly, nanopipettes with a mean diameter of 106 ±16 nm were made from 

quartz capillaries (Sutter Instrument, Novato, CA) using a P-2000 laser puller 

(Sutter Instrument, Novato, CA). Quartz nanopipettes were filled with a 10 mM 
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tetrahexylammonium tetrakis-(4-chlorophenyl)borate (THATPBCl) solution in 

1,2-dichloroethane (DCE). An Ag/AgCl wire was then inserted into the barrel of 

the nanopipette, and an Ag/AgCl wire was submerged in the media of the cell 

culture acting as a reference electrode. 

 

SICM Setup 

The scanning ion conductance microscope was set up as described previously 

(Actis et al., 2014). The scanning ion conductance microscope (SICM) consisted 

of an Axopatch 200B low-noise amplifier (Molecular Devices, Sunnyvale, CA) 

for nanopipette bias and current measurement. The nanopipette was spatially 

manipulated with a MP-285 micromanipulator (Sutter Instrument, Novato, CA) 

for coarse control and with a Nano-piezo actuator (Physik Instrumente, Irvine, 

CA) for fine control. A PCIe-7851R Field-Programmable-Gate-Array (FPGA) 

(National Instruments) was used for hardware control of the system. A custom-

coded software written in LabVIEW (National Instruments) was used to operate 

the system, enabling automatic cell surface finding, penetration and collection of 

cellular material. The volume of aspirated cellular material was ∼50 fL, which 

corresponded to ∼1% of the total volume of an average cell. 
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RNA-seq; cDNA Synthesis and Sequencing 

cDNA was synthesized from aspirated RNA samples using the ultra low RNA 

input SMART-Seq system (Takara Bio USA, Mountain View, CA). The cDNA 

was prepared for each individual nanobiopsy for library preparation. All samples 

were supplemented with 0.5 µl 1:5,000 diluted ERCC Spike-In Mix 1 (Ambion) 

for quality control. cDNA was amplified by KAPA HiFi HotStart ReadyMix 

PCR Kit (KAPA Biosystems, Wilmington, MA), using SMART-Seq PCR 

primers. cDNA was purified by AmPure XP beads (Beckman Coulter 

Genomics, Danvers, MA). The quality and quantity of single-aspiration cDNA 

was assessed using the Agilent Bioanalyzer 2100 High Sensitivity DNA Assay 

(Agilent, Palo Alto, CA).  

 

Tagmentation of cDNA for the preparation of RNA-Seq libraries was performed 

by Nextera XT DNA Library preparation kit (Illumina, San Diego, CA). 

Multiplexed sequencing adapters were ligated to tagmented cDNA by limited-

cycle polymerase chain reaction (10 cycles), according to manufacturer's 

instructions. The final, amplified libraries were purified by AmPure XP beads 

(Beckman Coulter Genomics, Danvers, MA), and size-selected in the range of 

200-600 bp using the Caliper LabChip XT system (PerkinElmer, Waltham, 

MA). The final RNA-Seq libraries were quantified using the Agilent 

Bioanalyzer 2100 High Sensitivity DNA Assay and KAPA Library 
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Quantification Kit. The pooled, multiplexed libraries were sequenced for 

2 × 150 bp paired-end or 2 × 80 bp paired-end reads on Illumina MiSeq 

(Illumina, San Diego, CA). 

 

RNA Sequencing Read Mapping 

RNA-seq reads were aligned to the hg38 UCSC human reference genome using 

STAR aligner (Dobin et al., 2013). Genes were scored positive for expression if 

at least one read mapped uniquely to an annotated transcript. Gene expression 

was quantified using HTSeq (Anders et al., 2014). Venn diagrams were created 

by the BioVenn web application (Hulsen et al., 2008).  

 

Gene Ontology Enrichment Analysis 

Gene Ontology Enrichment Analysis was performed using the DAVID 

Functional Annotation tool (Huang et al., 2008). Relevant Gene Ontology (GO) 

terms were visualized as tree-maps using the REVIGO server (Supek et al., 

2011).  

 

Self-organizing Maps 

Self-organizing Maps can be used to reduce the dimensionality of a large gene 

expression dataset. This machine learning-based technique can be used to 

visualilly examine the transcriptome of each nanobiopsy sample. Self-
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organizing maps (SOM) were constructed as described (Kim et al., 2015), 

(Fig. 5). Before constructing the Self-Organizing Map, each gene expression 

value was normalized on a gene-by-gene basis by subtracting each gene 

expression mean and dividing by its standard deviation across libraries. A self-

organizing map was trained with the 1,000 genes of the highest variance among 

the nanobiopsy samples, using the R package ‘‘kohonen’’(Wehrens and 

Buydens, 2007).  

 

 

Figure 5. Schematic of gene expression data visualization using a Self-
Organizing Map. For the illustration, a small dataset of a few samples and 
genes is depicted. Each hexagon represents a set of genes whose expression 
pattern across samples is the most similar Hexagons are clustered to construct a 
map and have fixed positions. Each single nanobiopsy transcriptome can be 
visualized by color-coding the hexagons based on the expression level of the 
genes in that sample.  

 

The total number of map units (hexagons) was set to 3*sqrt(N), where N 

corresponds to the number of genes used for the training. Initial values were 

assigned to the grid by multiplying the first two principal components of the 

data by a sinusoidal function, and the training lasted 200 epochs. The local 

minima of the u-matrix was used to seed each cluster, with a value for each 
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hexagon set as the average of the vector difference between that hexagon’s 

prototype and its six neighbors on the grid. All other unit prototypes were then 

given to clusters based on the minimum vector distance to a seed unit. Thus, 

each hexagon represents a group of genes that have very similar expression 

patterns to one another. These units are clustered to generate a 2D heatmap, 

where each unit has fixed position across all single-nanobiopsy components of 

the SOM, and spatial proximity corresponds to similarity in gene expression 

pattern. I mapped all expressed genes onto the SOM, and visualized them as 

components of the SOM using a custom Python code. The lists of clustered 

genes were submitted to the DAVID Functional Annotation tool (Huang et al., 

2008) in order to determine enriched terms. 
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Nanobiopsy sampling of neuronal cells 

To study the spatial pattern of mRNA compartmentalization within neuronal 

cells, I extracted samples from the cell bodies and neurites of human Induced 

Pluripotent Cell-derived iCell® Neurons using our nanobiopsy platform. I 

collected 43 nanobiopsy samples from 33 cells in total, of which 13 samples 

were derived from cell bodies, and 30 from neurites (Fig. 6, Table 1, 

Supplementary Table 1).  

Table 1: Summary of the nanobiopsy sampling of human Induced 
Pluripotent Cell-derived iCell® Neurons 
Neuron nanobiopsies collected and processed to cDNA 
Origin Number of nanobiopsies 
Cell body 13 
Neurite 30 
 

 

Figure 6. Schematic nanobiopsy sampling of human iPS-derived neuronal 
cells. A Illustration of automated approach to cell surface, penetration in the cell 
cytosol, followed by controlled aspiration of cytoplasmic material by 
electrowetting B Optical micrographs of a neuronal cell projection nanobiopsy 
procedure illustrating the cell membrane penetration and aspiration via 
electrowetting. Two nanobiopsy samples were collected from the same neuronal 
projection. Scale bars 25 µm. 
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The cDNA was prepared from each individual sample for library preparation. 

Together, I generated 43 single-nanobiopsy RNA-sequencing libraries. Due to 

the minute amount of input RNA used, the sequencing depth ranged between 

10-2900 mapped reads per nanobiopsy sample (Supplementary Table 2). 

To assess the quality of the sequencing libraries, ERCC RNA Spike-In Mix, a 

standard mix of poly-adenylated RNAs was added to each sample. After 

mapping and quantification the ERCC reads, I found that there was a high 

correlation between the samples, especially the ones that were sequenced in the 

same batch using the same sequencing kit. This demonstrated the high quality 

and reproducibility of our RNA Sequencing library preparation (Fig. 7A).  

 

Figure 7: Quality assessment of nanobiopsy RNA Sequencing. A: Pairwise 
correlation coefficients calculated for ERCC spike-in controls (Ambion). First 
round of sequencing: 150-bp paired end Illumina MiSeq sequencing, second 
round of sequencing: 80-bp paired end Illumina MiSeq sequencing. B: Dose-
response curve of ERCC spike-in detection in nanobiopsy samples. Data points 
are shown as Tukey box plots.  
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The dose-response curve of ERCC spike-in RNA quantification showed that the 

lower limit of reliable mRNA detection is around 50-100 mRNA copies 

(Fig. 7B). Thus, if a nanobiopsy sample contains less than 50-100 copies of a 

transcript, it is likely that it will not be detected and it will be a false negative. 

Nanobiopsy sampling targets a very small subcellular region, with practically no 

contamination from other sources, thus even genes displaying a low number of 

reads mapped uniquely to an annotated transcript may be scored positive for 

expression. My negative control sample was an aliquot of cDNA synthesis 

buffer supplemented with ERCC Spike-in without the addition to nanobiopsy 

sample (Sample_NC, Supplementary Table 1). Mapping of the RNA 

Sequencing reads resulted in only 2 reads mapped to human genome 

(Sample_NC, Supplementary Table 2). Thus, this can be regarded as 

background noise. On the other hand, my nanobiopsy samples had ~10-2,900 

reads mapped to human genome (Supplementary Table 2), proving that these 

reads, indeed originate from the mRNA sampled from the neuronal cells. I 

considered genes to have higher expression level if they had at least 4 reads 

mapped in a nanobiopsy sample. Mapping of the sequencing reads to the human 

genome identified 10-1000 genes expressed in each sample (Fig. 8A and B, 

Supplementary Table 2). This very wide range indicates that the concentration 

and/or homogeneity of mRNA transcripts vary greatly depending on the precise 

subcellular location. 
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Figure 8. Neuronal cell nanosurgery RNA Sequencing read mapping. 
A, B Histogram of the number of mRNA transcripts mapped by analyzing the 
nanobiopsy samples taken from A cell body B neuronal processes of neuronal 
cells. C The total number of mRNA transcripts detected in all nanobiopsy 
samples, all cell body and all neurite samples D Schematic illustration of 
nanobiopsy sampling from neurons and RNASeq analysis using the self-
organizing map (SOM). Briefly, the 1,000 genes with the greatest variance 
among the libraries were used for training a self-organizing map, where each 
hexagon represents a group of genes whose expression patterns across samples 
are most similar. These units are clustered and are located in the same positions 
across all nanobiopsy components of the SOM. Thus in this 2D heat map, spatial 
proximity corresponds to expression pattern similarity. Each nanobiopsy 
transcriptome can be visualized as a component of SOM, thus by mapping the 
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genes expressed onto the SOM. Four representative nanobiopsy transcriptome 
SOM components are shown for each subcellular compartment.  

 

The total number of genes found in all 43 nanobiopsy samples was 2011, of 

which approximately ~ 1300 mRNA transcripts were identified in cell bodies 

and ~ 930 in neuronal processes (Fig. 8C, Supplementary Table 3). The list of 

the most abundant transcripts based on the number of nanobiopsies in which 

they were detected can be seen in Table 2.  

Previously, other groups have used laser microdissection or aspiration by glass 

pipette to collect individual neurites from cultured neurons for transcriptome 

analysis. Zivraj et.al (Zivraj et al., 2010a) used laser-capture microdissection to 

collect axon segments. After pooling 250 axon segments and microarray 

analysis, they identified ~5,000 transcripts that localize to axon. Francis et.al. 

(Francis et al., 2014) used glass micropipette to collect a pool of 100-400 

dendrites for microarray analysis, and found ~11,000 genes in dendrites. The 

advantage of neurite microdissection compared to bulk sampling was that 

contamination from cell body could be reduced very significantly. The most 

important difference between microdissection and nanobiopsy sampling is the 

amount of sample being collected. When hundreds of whole neurites are 

dissected and pooled, a large amount of input material is present, therefore a 

high number of transcripts can be identified.  
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Table 2: The most abundant transcripts in neuronal cells based on the 
number of nanobiopsy samples in which they were found.  

The total number of nanobiopsies was 43. 

Symbol Description 
Number of 
nanobiopsy samples 

MAPT microtubule-associated protein tau  13 
TUBA1A tubulin alpha 1a 13 
C17orf76-AS1 
 noncoding RNA  11 
MAP1B 
 microtubule-associated protein 1b 11 

STMN2 
 

  
stathmin-2 
 9 

MARCKS 
 

myristoylated alanine rich protein kinase 
C substrate 7 

MORF4L1 mortality factor 4 like 1 7 
SET SET nuclear proto-oncogene  7 

YWHAB 
tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein beta 13 

YWHAE 
tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein epsilon 12 

HMGCS1 
3-hydroxy-3-methylglutaryl-CoA 
synthase 1 9 

MALAT1 
metastasis associated lung 
adenocarcinoma transcript 1 6 

SOX11  SRY-box 11 6 
ACTG1 actin gamma 1 5 
CCNI cyclin I 5 
DCX doublecortin 5 

HSP90AA1 
heat shock protein 90kDa alpha family 
class A member 1 5 

RPL9 ribosomal protein L9 5 
SOX4 SRY-box 4   5 
 

A single nanobiopsy, however, collects approximately 1% of the volume of a 

cell. This enables us to collect samples from very small, targeted area. The 

number of transcripts sequenced is smaller compared to microdissection 



	 33	

sampling, but we can get a much higher spatial resolution. In addition, the cell 

viability does not decrease after the procedure, allowing us to collect multiple 

small samples from the same cell. 

I analyzed this high dimensional data using a self-organizing map (SOM), 

described by Kim et al. (2015). The SOM provides an intuitive way to visualize 

and examine the particular repertoire of genes in each nanobiopsy sample. I 

mapped 2011 genes onto a SOM, where each hexagon represents a set of genes 

whose expression patterns are most similar to one another. These units are 

clustered and are located in the same positions across all nanobiopsy 

components of the SOM. Thus in this 2D heat map, spatial proximity 

corresponds to expression pattern similarity. Each nanobiopsy transcriptome 

was visualized as a component of SOM (Fig. 8D, four representative 

nanobiopsy components shown for each cellular compartment type).  

 

Nanobiopsy is an unbiased and sensitive way of neurite transcriptome 

sampling 

Nanobiopsy can sample repeatedly from cell bodies and neurites of the same 

cell, and since we can collect sample from a very small subcellular area, the 

transcript sets do not need to undergo any data filtering. To examine the 

sensitivity of nanobiopsy sampling, I compared the mRNA repertoire in my 

nanobiopsy samples to all genes detected in axon or dendrite by bulk microarray 
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analysis, RNA sequencing, and in situ hybridization in previous studies 

(Fig. 9A, Supplementary Table 4.)  

 

Figure 9. Nanobiopsy sampling/RNA-seq is able to collect and identify rare 
transcripts that are not detected via bulk sampling methods 

A Venn diagram of the genes detected by neurite nanobiopsy, and the genes 
identified in axon and dendrite by previous bulk microarray, RNA Sequencing 
or in situ hybridization studies B Venn diagram of the genes detected by cell 
body and neurite nanobiopsy of neuronal cells. References in A: (Jirikowski et 
al., 1990; Crino and Eberwine, 1996; Steward and Schuman, 2001; Brittis et al., 
2002; Eberwine et al., 2002; Moccia et al., 2003; Muslimov et al., 2004; Zhong 
et al., 2006; Lein et al., 2007; Willis et al., 2007; Bramham and Wells, 2007; 
Andreassi and Riccio, 2009; Hengst et al., 2009; Merianda et al., 2009; Taylor et 
al., 2009; Kuwako et al., 2010; Aschrafi et al., 2010; Zivraj et al., 2010b; Gumy 
et al., 2011; Cajigas et al., 2012; Ainsley et al., 2014; Kratz et al., 2014; Minis et 
al., 2014; Pfeiffer-Guglielmi et al., 2014; Francis et al., 2014; Shigeoka et al., 
2016). All Venn diagrams area proportional; the labels indicate the number of 
genes. 

 

Sampling from 30 neurites enabled the identification of 929 transcripts that 

localize to neuronal processes. Although the total number of genes was smaller 

compared to bulk sampling, I found 178 transcripts in neurites that were not 

detected in previous studies (Fig. 9A, Supplementary Table 4). When 
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performing bulk sampling the relative number of rare transcripts is very low, 

partly because the fragments can be lost during purification steps, and their 

sequencing read signal intensities may be regarded as noise. Our nanobiopsy 

platform can collect a miniscule amount of cytosolic material and a rare 

transcript could be present in a relatively higher amount in a smaller sample. 

Nanobiopsy samples are directly reverse transcribed and the cDNA is amplified, 

without cell lysis or RNA purification steps, thus further reducing the loss of 

rare transcripts. 

The new discovered transcripts localizing to neurites belong to various 

functional categories, such as neuron development, immune system, cell 

signaling and even proteins annotated as nuclear. Some of the new genes I found 

encode proteins involved in immune response. My highly sensitive nanobiopsy 

sampling of neuronal cells has shown for the first time that the mRNA encoding 

the Toll-like receptor 5 (Tlr5) are part of the mRNA repertoire of neurites. I was 

surprised to see that many of the new transcripts I sampled from neuronal 

processes encode proteins that function in the nucleus. This includes 

transcription factors, which are important in nervous system development, such 

as EOMES Nanobiopsy sampling has also shown that mRNA encoding many 

histone-remodeling enzymes are transported to neurites as well; such as the 

lysine demethylase Kdm5c, and general constituents of the DNA replication or 

the transcription machinery such as the double-stranded DNA unwinding protein 
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HMGB3, the Mini-chromosome maintenance binding protein MCMBP and the 

transcription elongation factor TCEAL7. There is very little known about the 

function of nuclear proteins that are synthesized or transported to the peripheral 

areas of neurons. My report is the first to show that transcripts encoding DNA-

unwinding or histone remodeling proteins are part of the mRNA repertoire of 

neurites. 

The cell body is a transport hub of neuronal mRNA and protein 

compartmentalization 

I next compared the list of genes I identified in the cell body and neurite 

nanobiopsy samples (Fig. 9B, Supplementary Table 5). The two gene sets 

showed little overlap ( ~200 genes) demonstrating the functional difference 

between the two subcellular compartments. To get a general overview of the 

repertoire mRNAs that localize to neuronal cell bodies I analyzed the pooled 

expression data from all cell body nanobiopsy samples (13 samples, 1292 

genes). (Fig. 10A, Table 3, Supplementary Table 6,). This gene set was 

significantly enriched for the Gene Ontology (GO) terms ”Cellular localization” 

(p-val: 2.23E-26), “Intracellular transport” (p-val: 9.66E-22) and “Cellular 

protein localization” (p-val: 1.17E-20). 
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Table 3: Gene Ontology Enrichment analysis of all transcripts identified in 
all nanobiopsy samples taken from cell bodies and neurites of human 
iPS-derived neuronal cells 

Cell body P-val Neurite P-val 

Cellular localization 2.23E-26 Translation 
initiation 

 

3.83E-15 

Intracellular 
transport 

9.66E-22 Nuclear 
transcribed 
mRNA catabolic 
process, nonsense 
mediated decay 

5.66E-14 

Cellular protein 
localization 

1.17E-20 Establishment of 
protein 
localization to 
endoplasmic 
reticulum 

7.52E-14 

Translational 
initiation 

3.97E-14 Cellular 
localization 

2.32E-11 

Cellular component 
biogenesis 

2.34E-13 Cellular 
component 
biogenesis 

2.34E-11 

Cytoskeleton 
organization 

2.64E-11 mRNA metabolic 
process 

4.96E-11 

RNA processing 1.76E-11   

 

301, 206 and 274 genes were annotated to these three GO terms, including 

mRNA encoding the microtubule tethering protein HOOK3, the anchoring 

protein AKAP12, which regulates the subcellular compartmentation of protein 

kinase A (PKA) (Radeva et al., 2014), the GABA(A) receptor-associated protein 
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(GABARAP), as well as the RNA-binding protein RANBP1. The Gene 

Ontology (GO) term “Cellular component biogenesis” was also significantly 

enriched (p-val: 2.34E-13). 288 genes were annotated to this term, the big 

majority of them are cytoskeletal or nuclear proteins, including components of 

the microtubule cytoskeleton or chromatin. Additionally, cell-body transcripts 

exhibited strong upregulation of genes involved in translational initiation (p-

val: 3.97E-14) and RNA processing (p-val: 1.76E-11).  

When I looked at the genes that had at least 4 reads mapped uniquely to an 

annotated transcript (259 genes), thus can be considered higher expression level, 

“Neuron projection development” (p-val: 4.25E-7) was the most highly enriched 

GO term, followed by “Microtubule-based process” (p-val: 1.08E-5) (Fig. 10B, 

Table 4, Supplementary Table 6). Genes involved in neuronal projections 

development include Rtn4, a developmental neurite growth regulatory factor and 

Stmn2 that controls neurite length in neuronal cells.  

Taken together, my data suggest that the neuron cell body is mainly involved in 

regulating gene expression, synthesizing mRNA and proteins, transporting and 

redistributing them to the neurites, creating a complex, modular, fine-tunable 

supply network for axon and denrites.  

 



	 39	

 



	 40	

Figure 10. The cell body is a transport hub of neuronal mRNA and protein 
compartmentalization. Neurites are enriched for mRNA encoding genes 
related to mRNA processing and translation. 

Gene Ontology Enrichment analysis of all transcripts identified in all 
nanobiopsy samples taken from human iPS-derived neuronal cells. A: cell body 
genes B: cell body genes that had at least 4 reads mapped to human genome 
C: neurite genes. Gene Ontology (GO) terms were visualized as a treemap using 
the REVIGO server.  
 

Table 4: Gene Ontology Enrichment analysis of all transcripts that had at 
least 4 reads mapped to the human genome in cell body nanobiopsy 
samples taken from human iPS-derived neuronal cells 

Cell body P-val 

Neuron projection 
development 

4.25E-7 

Nervous system development 1.78E-6 

Microtubule-based process 1.08E-5 

Neuron differentiation 1.58E-5 

 

The neurite mRNA repertoire is enriched in transcripts related to mRNA 

processing, protein synthesis and transport 

To get a general comparison of the mRNA profile of the neuronal processes I 

examined the pooled expression data from all neurite nanobiopsy samples (30 

samples, 932 genes) (Fig. 10C, Table 3, Supplementary Table 6). I found that 

neurite transcripts are highly enriched for Gene Ontology (GO) categories 

related to protein synthesis, such as “Translational initiation” (p-val: 3.83E-15). 

40 genes were annotated to this GO term, including genes encoding ribosomal 
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proteins. Neuronal processes also showed enrichment for the GO term “mRNA 

metabolic process” (p-val: 4.96E-11). 73 genes mapped to this GO term, 

including the mRNA splicing gene Ddx5. Furthermore, neurites showed 

enrichment for the Gene Ontology terms “Establishment of protein localization 

to endoplasmic reticulum” (p-val: 7.52E-14) and “Cellular localization” (p-

val: 2.32E-11). 29 and 190 genes mapped to these GO terms, including genes 

involved in microtubule-mediated transport or protein targeting to ER.  

mRNA shows a mosaic pattern of localization in neuronal cells 

To get a deeper insight into the spatial dynamics of mRNA 

compartmentalization/distribution in neuronal cells, I analyzed single-

nanobiopsy components of the SOM (Fig. 11). As the amount of cytosolic 

material collected during each biopsy sampling is only about 1% of the cell’s 

total volume, we could compare very small segments of the cellular space to 

each other. Nanobiopsy samples showed great variability in terms of the number 

(Fig. 8A-B) and the identity of transcripts (Fig. 11) they contained. This 

indicated that the cellular mRNA pool cannot be considered well-mixed and 

homogeneous, and that subcellular areas fundamentally differ from each other in 

terms of their mRNA composition. The two most commonly found gene clusters 

(Cluster 1 and Cluster 2) (Supplementary Table 7) did not show any significant 

enrichment for any Gene Ontology term. These clusters included genes such as 

the large ribosomal subunit protein Rpl8, the DNA-unwinding protein Hmgb3,, 
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the mitochondrial import inner membrane translocase subunit Timm10 or the E3 

ubiquitin ligase complex substrate adapter protein Keap1.  

mRNAs encoding functionally related proteins often localize to the same 

subcellular place 

To dissect the functional significance of the elaborate mRNA 

compartmentalization pattern in neuronal cells, I examined the gene clusters that 

showed similar expression patterns across samples (Fig. 11, 

Supplementary Table 7). Most gene clusters contained functionally unrelated 

trancripts. However, I was surprised to see that a subset of the gene clusters 

were enriched for a common Gene Ontology (GO) term 

(Supplementary Table 8). Cluster 4, found in one cell body nanobiopsy sample 

was significantly enriched for the GO term “Intracellular transport” (p-

val: 4.29E-11). 120 genes were annotated to this GO term, including the 

Kinesin-like protein Kif13a (Nakagawa et al., 2000), or the protein transport 

gene Sec24d (Pagano et al., 1999). Cluster 3, another cell body nanobiopsy 

sample, showed enrichment for the GO term “Protein dephosphorylation” (p-

val: 1.31E-3). Seven protein phosphatases mapped to this GO term, including 

Ptprb (Ratcliffe et al., 2000) and Dusp1 (Tanoue et al., 2001). Cluster 7, found 

in one of the neurite nanobiopsy samples showed enrichment for the GO term 

“Respiratory electron transport chain” (p-val: 4.44E-7).  
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Figure 11. Analysis of mRNA compartmentalization pattern in neuronal 
cells by nanobiopsy sampling and RNASeq analysis using the Self-
Organizing Map 

The Self-Organizing map consists of units representing a group of genes whose 
expression patterns across samples are most similar. The units are clustered and 
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have fixed positions across all nanobiopsy components of the SOM. Individual 
nanobiopsy transcriptomes can be plotted by mapping the genes expressed in the 
sample onto the SOM. Gene clusters are defined as groups of units that are next 
to each other, and are often co-expressed in cells. Above, representative single-
nanobiopsy transcriptomes depicted as individual components of the self-
organizing map (SOM) are shown. Boxes represent individual nanobiopsy 
samples taken from A neuronal cell bodies or B neurites. Gene clusters are 
outlined in grey.  

 

Five mitochondrial genes were annotated to this term, including NADH-

dehydrogenase subunits and Cytochrome c-oxidase subunits. Cluster 14, found 

in another of the neurite nanobiopsy samples showed significant enrichment for 

the GO term “Translational initiation” (p-val: 7.60E-6). Nine genes were 

annotated to this GO term, including the ribosomal proteins Rpl39, Rpl10, Rpl11 

and Rpl7. Overall, these results suggest that neuronal cells take advantage of 

sophisticated mRNA-transport mechanisms to establish defined mRNA 

compartmentalization patterns to fine-tune the molecular functions of the 

subcellular segments in response to extracellular stimuli. 
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Discussion 
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My analysis has shown that the repertoire of mRNAs that localized to neuronal 

cell bodies is highly enriched for genes related to intracellular transport 

including genes regulating cytoskeleton organization, protein and RNA-

transport, vesicle trafficking and transcription activation. This indicates the 

importance of distributing the mRNA and protein to the peripheral sites of the 

neuronal cell through highly regulated and sophisticated transport mechanisms. 

 

The neurite transcriptome was highly enriched for genes related to protein 

synthesis, protein targeting to ER, ribosome biogenesis, and RNA metabolism. It 

has been reported before that neuronal growth cones respond to attractive 

(BDNF, netrin) and repulsive (SEM3A, SLIT2B) guidance cues by regulating 

the local translation of the cytoskeletal protein β-actin and the actin cytoskeleton 

remodelling proteins cofilin and RhoA (Campbell and Holt, 2001; Piper et al., 

2006; Yao et al., 2006). Newly synthesized β-actin has higher polymerization 

ability compared to old, covalently modified β-actin, thus, it significantly affects 

growth cone dynamics (Condeelis and Singer, 2005). Neurotrophic factors also 

induce the axonal translation of Bclw that prevents axonal degeneration and 

promotes axon maintenance (Cosker et al., 2013). Following neuron injury, local 

translation is required for neurite regeneration (Verma et al., 2005). Taken 

together, regulating local translation of mRNA and regulation of protein levels is 

one of the major ways that axons respond to extracellular stimuli, and maintain a 

physiologically accurate composition. 
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My highly sensitive nanobiopsy sampling approach enabled the detection in 

neurites of ~200 very low expression level transcripts that could not be found by 

using previously employed bulk sampling methods. To my great surprise, many 

of these transcripts encode nuclear proteins, such as the transcription factor 

EOMES, the double-stranded DNA unwinding protein HMGB3, the Mini-

chromosome maintenance binding protein MCMBP and the transcription 

elongation factor TCEAL7..  

Although unexpected, there is a growing body of evidence indicating the 

presence of transcripts encoding nuclear proteins in axons and dendrites. 

Nuclear genes can have additional functions, unrelated to nucleus. The nuclear 

scaffolding protein Lamin B2 is translated in axons, where it binds 

mitochondria, and is required for the maintenance of axonal integrity (Yoon et 

al., 2012). Some transcription factors (e.g. CREB and SMAD 1/5/8) are 

translated in axons following neurotrophic factor stimulation or injury, 

retrogradely transported to nucleus and act as transcription factors to promote 

neuron survival (Cox et al., 2008; Ji and Jaffrey, 2012). Up to now there was 

only limited evidence showing the importance of the dendritic synthesis of 

transcription factors in the dendrite-soma signaling (Crino et al., 1998; Barrett et 

al., 2006). Ainsley et al. have shown that H4 histone and Mediator complex 

member mRNAs are localized to dendrites (Ainsley et al., 2014). Thus, 

transcription factors synthesized in the periphery and interacting with the local 
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signaling environment may carry some unique information or function, allow a 

local response, and contribute to the synapse-axon-nucleus signaling axis. In 

addition, the time delay required for these transcription factors to be translated 

in the axon and retrogradely transported to the nucleus may be an essential part 

of the temporal dynamics of neuronal cell physiology. Alternatively, the signal 

for transport to the nucleus may depend upon other environmental cues 

encountered at the periphery. Thus, my study can help establish the 

comprehensive list of nuclear genes that localize to neurites and help us shed 

light on the possible function of these genes. 

I have also definitively shown that the neuronal mRNA pool cannot be 

considered well-mixed and homogeneous, in that subcellular areas 

fundamentally differ from each other in terms of their mRNA composition. This 

is in agreement with a previous study showing that in Drosophila embryos > 

70% of the mRNA transcripts analyzed appeared to be regionally distributed 

(Lécuyer et al., 2007). Nanobiopsy samples showed great variability in the 

number and the kind of transcripts they contained. Analyzing gene clusters that 

showed similar expression pattern across samples I found that some gene 

clusters showed functional enrichment. For example, mRNAs encoding genes 

related to cytoskeleton remodeling or protein translation localized to the same 

subcellular space. Recent reports have shown the presence of translationally 

active hotspots in cells (Katz et al., 2016; Wang et al., 2016; Yan et al., 2016), 
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and that in primary neurons, mRNAs display “bursting” translation (Wu et al., 

2016). Translation machinery components are often anchored to the plasma 

membrane and are being relaesed upon activation of transmembrane receptors 

and initiation of local signalling, enabling local translation of mRNA 

(Tcherkezian et al., 2010). Furthermore, proteins synthesized at distal sites are 

more likely to be rich in assembly-promoting domains and are often regulated 

by posttranslational modification sites (Weatheritt et al., 2014). Thus, 

compartmentalizing mRNAs encoding proteins of related function to the same 

subcellular area can contribute to the coordinated, local synthesis of these 

proteins, and the formation of cellular multi-protein assemblies in response to 

extracellular stimuli. Some sequence motifs located in the 3’UTR, 5’UTR, 

intron or coding sequence of an mRNA as well as RNA-binding proteins 

regulating the transport of mRNAs to neuronal processes have been identified 

(Jung et al., 2012a; Gomes et al., 2014; Taliaferro et al., 2016). However, the 

mechanisms by which most of the several thousand mRNAs that localize to 

neuronal axons and dendrites are transported are still unkown.  
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Concluding remarks and future prospects 
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Neurons are highly polarized cells that take great advantage of 

compartmentalizing mRNA and locally translating it wherever and whenever it 

is needed. To examine the pattern of mRNA compartmentalization in neuronal 

cells, I extracted miniscule cytosolic samples from cell bodies and neurites using 

my label-free, single-cell nanobiopsy platform, prepared the cDNA and 

performed Next Generation RNA-Sequencing. My easy-to-operate, flexible 

platform allowed me to sample from any subcellular compartment of neural 

cells with high spatial resolution and precision. Due to the minute volume of a 

nanobiopsy sample, it was possible to extract cytoplasm from multiple locations 

in one cell. I collected 43 nanobiopsy samples in total and identified more then 

2000 transcripts.  

 

I found that the subcellular mRNA pools showed great mosaicity, and that cell 

regions are fundamentally different from each other in terms of their mRNA 

composition. Neuronal cell bodies showed enrichment for transcripts encoding 

proteins involved in transcriptional regulation and protein transport, while 

neurites were enriched in genes related to protein synthesis, protein targeting to 

endoplasmic reticulum (ER), and mRNA metabolism. In addition to the 

previously identified transcripts, I report a new set of mRNAs that specifically 

localize to neurites, including mRNAs encoding proteins that were previously 

believed to localize exclusively to the nucleus such as EOMES and HMGB3. 
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My nanobiopsy sampling and analysis revealed that neuronal cells take 

advantage of sophisticated mRNA-localization mechanisms to establish defined 

mRNA compartmentalization patterns. This allows neuronal cells to fine-tune 

the molecular functions of the subcellular segments according to an endogenous 

program as well as in response to extracellular stimuli. Here I provide evidence 

that single-neuron nanobiopsy studies can deepen our understanding of mRNA 

compartmentalization and open the possibility to study the molecular 

mechanism for specific neuronal functions, cellular circuitry, neuronal growth, 

and network formation.  

Nanopipette technology can be used for further probing of neuronal cell function 

and connectivity. Since we collect miniscule samples, we can easily target very 

specific subcellular areas. For instance, we can label a protein of interest with a 

fluorescent tag, sample the fluorescent spots by nanobiopsy, and prepare RNA-

Sequencing libraries to identify the RNAs that bind to the protein of interest. 

This protein can be a constituent of RNA-binding granules or it can have other 

function influencing the storage, stability, transport or translation of RNA.  

Nanopipette sampling causes minimal damage to the cell, the cell stay alive after 

sampling, thus we can collect several samples from the same cell. This allows us 

to track the same cell over time. For example, we can collect samples from 

neurite terminals at different stages of synapse maturation: from the 

neurotrophic factor-induced growth of the neurites, to the establishment of 
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synapses until the maturation and strengthening of the synapse by long-term 

potentiation. This way, we can follow what kinds of changes in the RNA 

composition occur at the synapse during maturation. We can sample from both 

the pre- and post-synaptic cells of the same synapse, thus we can follow the 

maturation of both the pre- and post-synaptic cells.  

Nanobiopsy sampling coupled with the temporal analysis of a single cell can be 

also applied to study the differentiation of iPS cells to neurons. We can analyze 

the mRNA composition of the same cell during various stages of differentiation, 

thus we can decipher what determine what determines the success of 

differentiation and what are the branching points where cells choose alternative 

differentiations paths.  

The above analysis can also be applied to study stem cells derived from patients 

with genetic disorders, mental dieseases or neurodegenerative diseases. We can 

use nanopipette to sample from these cells, compare to cells derived from 

healthy patients and to analyze differentiation defects. Furthermore, by sampling 

from neurite terminals, we can get a deeper insight into why the cells of these 

patients cannot develop properly functioning synapses.  

We can use nanopipette to sample individual mitochondria and sequence 

mitochondrial genome as well. Thus, we can analyze the frequency of 

mitochondrial genome mutations in healthy and disease patient-derived neuronal 

cells. We can also decipher how the mutation of mitochondrial genome affects 
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the synthesis of mitochondrial genes and how it changes the function of the 

mitochondria. This can shed light on the mechanism of neurological disorders 

caused by mitochondrial genome mutation. 

We can also modify the quartz surface of the nanopipette by functionalizing it 

with small molecules or antibodies. These functionalized nanopipettes can bind 

specific subcellular analytes, e.g. glucose, metal ions, proteins. Upon binding of 

the target molecule, the current flowing through the nanopipette changes, thus 

the nanopipette can be used as a sensor. We can then combine sensing and RNA 

sampling by first measuring the subcellular concentration of our target molecule 

in live cells, and then sample and analye RNA by RNA-Sequencing. 

Taken together, nanopipette technology is an easy-to-use, precise, highly 

sensitive and flexible platform that allows us to collect miniscule cytosolic 

samples from live cells and analyze gene expression and mRNA 

compartmentalization with unparalled spatial and temporal precicision. I 

sincerely hope, this technology will be later implemented to study RNA 

expression and transport in cells derived from patients suffering from 

neurological disorders and that it will contribute to our understanding of these 

conditions. 
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