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ABSTRACT 

Lysosomes are a degradative organelle in a cell and formed by maturing of endosomes. It is 

necessary that lysosomal hydrolases are synthesized on the ER, modified on the Golgi 

apparatus and then targeted into endosomes. In model organisms, it is known that the 

selective trafficking of lysosomal enzymes from Golgi apparatus to endosomes is achieved by 

the cargo specific receptors. The absent of hydrolase receptors causes miss secretion of the 

lysosomal hydrolases out of the cell. Therefore lysosomal enzyme receptor plays a 

fundamental role in both the biogenesis of lysosomes and secretion of lysosomal hydrolases. 

Amoebiasis with dysentery in large intestine (colon), the most frequent protozoan disease 

in Japan, is caused by Entamoeba histolytica. E. histolytica also causes the extraintestinal 

amoebiasis by the achievement of the translocation from colon into the other organ, e.g. liver 

and brain, through a blood streams. Cysteine proteases (CPs), known to be a virulence factor 

in E. histolytica, are secreted to the intestinal surface and cause the destruction of the host 

tissue and the activation of host metalloproteases. CPs are also important for E. histolytica to 

digest the materials ingested by phagocytosis. Therefore, elucidation of CP trafficking and 

secretion mechanisms in E. histolytica is important for understanding of amoebic pathogenesis 

and lysosomal biogenesis. However, in E. histolytica genome there are no homologs of the 

proteins responsible for the lysosomal trafficking in model organisms, such as mannose 

6-phosphate receptor, Sortilin and Vps10p. Thus, the lysosomal trafficking mechanism in E. 

histolytica is still unclear. 
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Previously, cysteine protease binding protein family (CPBF) 1 was identified as the 

receptor of CP-A5 and also its family proteins were found. CPBF1 is involved in the 

trafficking and the processing of CP-A5. While CPBF6 and CPBF8 are related to 

phagosomal trafficking of α-amylase and γ-amylase or lysozyme and β-hexosaminidase, 

respectively. However, for other CPBF proteins, their ligands, binding specificity and 

binding mechanisms are unclear, and thus their roles in the CP trafficking are still unknown. 

In order to better understand the functions of CPBF proteins, I established E. histolytica 

transformants expressing CPBF2, 3, 4, 5, 7, 9, 10 and 11, tagged with the carboxyl-terminal 

hemagglutinin (HA) epitope and identified the binding proteins by immunoprecipitation 

using anti-HA antibody and liquid chromatography tandem-mass spectrometry 

(LC-MS/MS) analysis. CPBF2, 7 and 10 were shown to be associated to α-amylase1, two 

β-hexosaminidases, and α-amylase2 and 3, respectively. While, for CPBF3, 4, 5, 9 and 11, 

no ligands were identified. I also examined the localization of these CPBF-HA proteins by 

immunofluorescence assay. CPBF3, 4 and 11 were localized on ER-like small vesicles. 

CPBF2, 7, 9 and 10 were localized on ER-like vesicles and partially on lysosomal membrane 

like structure stained by LysoTracker. CPBF5 also localized on the ER-like vesicles, and 

colocalized with LysoTracker, suggesting the localization inside of the lysosomes. Hence, 

these CPBF proteins localized basically on ER, while CPBF2, 7, 9 and 10 also localized on 

the lysosomal membrane. Whereas, CPBF5 localized inside of the lysosomes. 

On the other hand, to elucidate the site of ligand recognition in CPBF, I developed the 
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recombinant CPBF1 protein with bacterial prepeptidase carboxyl-terminal domain (PPC) 

like-domain and examined the association of these recombinants with endogeneous CP-A5 

using pull-down assay. As a result, it was found that the among the six PPC domains, 

domain 3 dominantly bound to CP-A5. 

Next, to understand the relationship of CPBF with amoebic pathogenicity, I established 

the cpbf-gene silenced strains using the small RNA mediated transcriptional gene silencing 

system. For these strains, I conducted the screening to identify the CPBF which is related to 

the amoebic virulence by in vitro Matrigel invasion assay. In this experiment, cpbf2-silenced 

strain showed significant defect in Matrigel invasion. To confirm whether α-amylase was 

related to this phenotype, I also examined the Matrigel invasion ability of (CPBF2 ligand) 

α-amylase1- and other two α-amylase-gene-silenced strain. Compared with a mock control 

strain, the ability was not changed. Additionally, intracellular and secreted amylase activities 

of cpbf2-silenced strain or α-amylase-silenced strain were not different from those of control 

strain. Therefore, α-amylase was not involved in the defect of Matrigel invasion in 

cpbf2-silenced strain. I also examined another phenotype of cpbf2-silenced strain. Since in 

cpbf2-silenced strain, adhesion to collagen coated plate was increased, I tried to assess the cell 

motility of cpbf2-silenced strain. I tracked the cell movement from live imaging data taken by 

a confocal microscopy. Cpbf2-silenced strain showed very slow motility compared with the 

control strain. Thus, the facilitation of adhesion and the defect of Matrigel invasion in 

cpbf2-silenced strain were likely caused by low motility. Finally, I performed the RNA-seq 
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analysis for cpbf2-silenced strain. Expression of 77 genes in total were two-fold changed 

compared with those of wild-type strain. Among these genes, ten genes, including serine 

palmitoyltransferase, Rab7F and AIG1 family protein, etc., were upregulated, while sixty 

seven genes, including cytoskeleton related, regulation of gene expression and membrane 

trafficking, etc., were downregulated. 

In this study, it was revealed that eleven Entamoeba CPBF proteins recognized their 

specific ligands, and localized to different sites in the cell. From the examination of the 

recombinants, it was suggested that PPC-like domain was ligand recognition unit. Different 

from the generally accepted molecular mechanism that lysosomal enzymes are recognized by 

their ligands depending on the specific sugar modifications, Entamoeba CPBF proteins are 

likely to directly recognize each ligand protein. It is needed to elucidate how each CPBF 

protein has ligand specificity with the same domain composition. 

Cpbf2-silenced strain showed the significant defect of Matrigel invasion. It was suggested 

that CPBF2 plays a pivotal role in amoebic virulence. α-amylase, the ligand of CPBF2, was 

reported to increase in its transcription level depending on the extent of attachment with 

human colon, and thus was expected to be related to amoebic invasion. In the present study, 

however, I could not directly demonstrate the evidence for the relationship of α-amylase with 

amoebic invasion. If α-amylase was actually related to invasion, CPBF2 would have another 

function different from lysosomal enzymes receptor. Cpbf2-silenced strain showed the 

enhanced adherence to collagen and the very slow cell motility. Since the cell motility is 
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involved in the amoebic invasion, the defect of Matrigel invasion in cpbf2-silenced strain is 

plausibly caused by the low motility. In the transcriptome analysis of cpbf2-silenced strain,  

expression of some cytoskeleton related genes and cytoskeletal regulatory genes were reduced. 

Although the molecular mechanism of the regulation is still unclear, it was found that 

CPBF2 regulated the amoebic cell motility.
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GENERAL INTRODUCTION 

Lysosomal biogenesis and enzyme receptor 

Lysosomes are membrane-bound organelles and serve as a site for delivery of materials 

targeted for degradation within the central vacuolar system of eukaryotic cells. In this role, 

lysosomes are placed as the route of many endocytic, autophagic and secretory materials for 

degradation (Luzio, et al., 2007). Lysosomal degradation is important for many physiological 

processes, including the turnover of normal cellular proteins, removal of abnormal organelle, 

down-regulation of surface receptors, release of endocytosed nutrients, inactivation of 

pathogenic organisms and antigen processing (Mizushima, et al., 2008; Kaushik and Cuervo, 

2012; Luzio, et al., 2009). In addition, lysosomes play pivotal roles in metal ion homeostasis 

and plasma membrane repair (Polishchuk and Polishchuk, 2016; Settembre, et al., 2013). 

Lysosomes are containing many hydrolytic enzymes which are active on an acidic 

environment. The lysosomal membrane consists a single bilayer lipid membrane and contains 

proteins which are involved in transport of substances into an out of the lumen, acidification 

of the lysosomal lumen and fusion of the lysosome with other membrane structures (Saftig 

and Klumperman, 2009). Lysosomal maturation is accomplished by traffic through early 

endosomes to late endosomes/multivesicular bodies (Luzio, et al., 2014), and by delivery of 

lysosomal hydrolases and complete fusions between late endosomes and lysosomes. 

Lysosomal hydrolases are synthesized in the endoplasmic reticulum (ER) and pass through 
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the Golgi apparatus then sorted to the lysosomes in a receptor mediated manner. In 

mammals, majority of the lysosomal hydrolases are modified with mannose 6-phosphate 

(M6P) and two types of M6P receptors, cation dependent (CD-) and cation independent 

(CI-) M6P receptors, recognize M6P in the Golgi and target them to the 

endosome/lysosome system (Coutinho, et al., 2012). There are also several M6P-independent 

trafficking receptors are known such as Sortilin, LIMP2, LDLR, LRP1, LRP2, SEZ6L2 and 

MRC1 (Staudt, et al., 2016). M6P receptors and M6P-independent receptors consist of 

variety of proteins. M6P receptor and MRC1 recognize carbohydrate modification on the 

cargo with lectin domain. Sortilin has Vps10p domain forming β-propeller fold and the 

cavity between the blades is involved in cargo recognition. LDLR, LRP1 and LRP2 share 

LDLR repeats and LIMP2 and SEZ6L2 have unique structures. LRP1 binds to the 

Cathepsin D through the β chain of the extracellular domain. LIMP2 interacts with 

β-glucocerebrosidase via a coiled-coil domain within the luminal domain. 

Entamoeba histolytica 

Entamoeba histolytica is the agent of amoebiasis, which is the second leading cause of death 

due to parasitic disease in the world (Stanley, 2003). E. histolytica infects an estimated 50 

million people, resulting in 40,000-100,000 deaths annually (Ximénez, et al., 2009). 

Trophozoites colonizing the large intestine produce watery and bloody diarrhea (Haque, et al., 

2003). In some cases, they also migrate to blood stream and reached the other organs, 
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resulting in the extraintestinal amoebiasis (Grecu, et al., 2006). In intestinal lumen, 

trophozoites secrete an abundant cysteine protease (CP) that can degrade colonic mucin 

barrier (Moncada, et al., 2006) and extracellular matrix (ECM) (Que and Reed, 2000) to 

invade and damage the host tissues. First step of invasion for the intestinal wall is contact 

with and degradation of mucus layer to allow the trophozoites to attach the epithelial surface. 

Next is closely adhesion of the amoeba to the mucosal cells inducing the expression of its 

cytolytic activity. And then, E. histolytica induce a host inflammatory response, achieving the 

intestinal infection. 

Lysosomal enzyme receptors in E. histolytica 

Lysosomal enzymes such as CPs play a pivotal role in the pathogenesis of the intestinal 

parasitic protist E. histolytica. Cytolytic capacity and tissue invasiveness of this parasite are 

mainly attributed to CPs, as shown in numerous in vitro and in vivo studies (Brinen et al., 

2000; Que and Reed, 2000; Hellberg et al., 2001, 2002; Bruchhaus et al., 2003; Que et al., 

2003; Ackers and Mirelman, 2006; Gilchrist et al., 2006; MacFarlane and Singh, 2006; 

Meléndez-López et al., 2007; He et al., 2010; Ralston and Petri, 2011). The regulation of 

their intracellular processing and transport has begun to be unveiled by a recent discovery of 

the novel CP-specific carrier/receptor protein, named cysteine protease binding protein 

family (CPBF) 1 (Nakada-Tsukui et al., 2012). CPBF1 is a unique cargo receptor restricted 

to the Amoebozoa, and shows a number of differences from known transport receptors in 
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other eukaryotic lineages. As describe above, model organisms in Opisthoconta, mammals 

and yeast, have MPR, Sortilin/Vps10p controls. And also, it is known that there are 

Chloroplastida and Excavata specific receptors, plant specific valuolar sorting receptor (VSR) 

and Giardia lamblia specific vacuolar protein sorting (GlVps). There are two genes encoding 

putative CD-MPR in E. histolytica. However, immunoprecipitation of influenza virus 

hemagglutinin (HA)-tagged CD-MPRs demonstrated no interaction with soluble lysosomal 

proteins (Nakada-Tsukui et al., unpublished data), suggesting that MPRs are unlikely to 

function as lysosomal targeting receptors in E. histolytica. Furthermore, neither 

Sortilin/Vps10p, VSR, nor GlVps is present in the genome.  

The purpose of this study 

CPBF is unique lysosomal receptor/transporter and forms eleven family proteins in E. 

histolytica, which different with other lysosomal enzyme receptors. It is already known that 

CPBF1, 6 and 8 regulate the trafficking of hydrolases, including CP, lysozymes and 

β-hexosaminidases. However, the function of other CPBF proteins are still unknown. The 

purpose of this study is understanding of the unique mechanisms of lysosomal biogenesis and 

trafficking in E. histolytica through the elucidation of the CPBF functions. It will make clear 

a part of the mechanism of virulence mechanisms of E. histolytica.
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PART1. CYSTEINE PROTEASE BINDING PROTEIN FAMILY IN  
E. HISTOLYTICA 

1.1. Introduction 

Lysosomal enzymes such as cysteine proteases (CPs) play a pivotal role in the pathogenesis 

of the intestinal parasitic protist E. histolytica. The regulation of their intracellular processing 

and transport has begun to be unveiled by a recent discovery of the novel CP-specific 

carrier/receptor protein, named cysteine protease binding protein family (CPBF) 1 

(Nakada-Tsukui et al., 2012). CPBF1 is a unique cargo receptor restricted to the Amoebozoa.  

In E. histolytica, CPBF consists of 11 members with 18–75% mutual amino acid identities. 

Previously, it was demonstrated that three most highly expressed CPBF proteins, CPBF1, 6 

and 8 are involved in the targeting of soluble lysosomal proteins including CP, amylases, 

β-hexosaminidase and lysozymes (Furukawa et al., 2012, 2013; Nakada-Tsukui et al., 2012). 

As MPR, Sortilin/Vps10p and VSR are generally encoded by a single gene in the genome, 

CPBF represents the first protein family involved in targeting of lysosomal enzymes. All 

members of CPBF proteins share similar features such as the signal sequence at the amino 

terminus, a single transmembrane domain and the Yxx�motif at the carboxyl terminus. The 

Yxx� motif (Y is tyrosine, x is any amino acid and � is any aliphatic amino acid) is known 

to be present in the cytoplasmic portion of numerous receptors and responsible for binding to 

the adaptor protein (AP) complex (Nakatsu and Ohno, 2003). These common features 

suggest that all members of CPBF are involved in lysosomal targeting of respective specific 
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soluble lysosomal proteins. 

The structures of CPBF proteins were predicted using FORTE (Tomii and Akiyama, 

2004), which performs profile-profile alignments for protein structure prediction, by Dr. 

Tomii (AIST, Japan). FORTE allowed me to identify five PPC (bacterial prepeptidase 

carboxyl-terminal domain)-like domains at the luminal portion of each CPBF. PPC family 

(Pfam ID: PF04151) (Punta et al., 2012) includes a large and diverse set of protein domains 

that possess two β-sheets. The PPC domains are typically located at the carboxyl-termini of 

secreted proteases and may be involved in their secretion and/or localization (Yeats et al., 

2003). By manual inspection and sequence alignment, I identified an additional PPC-like 

domain, D4, which was not inferred by FORTE. There are similarities between individual 

PPC-like domains of each CPBF protein. I identified conserved cysteines and 

aromatic/hydrophobic residues in the predicted β-strands of the six PPC-like domains of 

CPBF1. Similarly, it appears that all CPBF proteins contain a region consisting of six 

PPC-like domains in the luminal portion. 

 To further examine the specificity and heterogeneity of the ligands of other members of 

CPBF proteins, I attempted to identify and characterize the ligands for CPBF2, 3, 4, 5, 7, 9, 

10 and 11 by immunoprecipitation and mass spectrometric analysis and to elucidate the 

function of PPC domain in CPBF by in vitro binding assay using recombinant PPC 

domains. 
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1.2. Materials and methods 

1.2.1. Cell culture 

Trophozoites of E. histolytica strain HM-1:IMSS cl6 (HM-1) (Diamond et al., 1972) were 

cultured axenically in BI-S-33 medium (Diamond et al., 1978) at 35.5 ℃ as previously 

described (Clark and Diamond, 2002). Amoeba transformants were cultured in the presence 

of 10 µg/mL of Geneticin (Invitrogen). Escherichia coli strain DH5α was purchased from Life 

Technologies (Tokyo, Japan). All chemicals of analytical grade were purchased from Sigma–

Aldrich (Tokyo, Japan) unless otherwise stated. 

1.2.2. Plasmid construction 

Standard techniques were used for routine DNA manipulation, subcloning and plasmid 

construction (Sambrook and Russell, 2001). Plasmids to express CPBF2, 3, 4, 5, 7, 9, 10 or 

11 fused with the HA epitope at the carboxyl terminus were generated by the insertion of the 

corresponding protein coding region of the cpbf-gene into the BglII site of a pEhExHA 

vector (Nakada-Tsukui, et al., 2009) either by standard restriction digestion and ligation 

methods for CPBF3, 4, 10 and 11, or by In-Fusion system (Takara, Tokyo, Japan) for 

CPBF2, 5, 7 and 9. The resultant plasmids were named pEhExHA-CPBF2, 3, 4, 5, 7, 9, 10 

and 11. The protein coding region of each cpbf-gene was amplified with specific sense and 

antisense oligonucleotide primers: 

5’-acacattaacAGATCATGGTTGTTCTGTTTTTATT-3’ and 
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5’-atggatacatAGATCGAAAGTTCCAAATGATGATT-3’ (CPBF2); 

5’-accggatccATGATCCTATTAATTCTAGCA-3’ and 

5’-gttggatccAAGTTCATGATATCCCAAAAA-3’ (CPBF3); 

5’-accggatccATGGTCCAAATAACATGTCTT-3’ and 

5’-gttggatccAAGTTCATGATATCTCAATAA-3’ (CPBF4); 

5’-acacattaacAGATCATGTTTATTCTTCTTAGTCT-3’ and 

5’-atggatacatAGATCAAAGTCAGAATAACTCTTTC-3’ (CPBF5); 5’-acacattaac 

AGATCATGTTGGTTTTCTTAACAAT-3’ and 5’-atggatacatAGATCAACTAAA 

GTAGCATATCCAG-3’ (CPBF7); 

5’-acacattaacAGATCATGTTATTGAAATGGGGATT-3’ and 

5’-atggatacatAGATCATTATCAATAATTGTTTTTA-3’ (CPBF9); 

5’-accggatccATGCTTTTAATAACTCTCCTC-3’ and 

5’-gttggatccGAAACTACTGAAACTTGATGA-3’ (CPBF10); 

5’-accggatccATGTTTTTGTTGTTCATTTCT-3’ and 

5’-gttggatccTAATTCATAATATCCTTTGTT-3’ (CPBF11). Plasmids to express 

GST-fusion proteins with the individual PPC domain (PPC1-6) of CPBF1 were generated 

by the insertion of the synthesized nucleotides corresponding to CPBF1 PPC1-6 or the first 

PPC domain of CPBF8 (CPBF8 PPC1) into the BamHI and NotI double-digested 

pGEX6p-2 vector (GE Healthcare, Tokyo, Japan), and designated as pGST-CPBF1 

PPC1-6 or pGST-CPBF8 PPC1, respectively. CPBF1 PPC1-6 corresponds with amino 
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acids (a.a.) 20-165, 172-298, 303-428, 435-570, 574-710 and 717-853, of CPBF1, 

respectively, and CPBF8 PPC1 corresponds to a.a. 16-154 of CPBF8.  

1.2.3. Amoeba transfection 

pEhExHA-CPBF2, 3, 4, 5, 7, 9, 10 or 11 was introduced into HM-1 trophozoites by 

lipofection, as previously described (Nozaki et al., 1999). Geneticin was added at a 

concentration of 1 µg/mL at 24 h after transfection and gradually increased for approximately 

2 weeks until the concentration reached 10 µg/mL. 

1.2.4. Immunoprecipitation, SDS–PAGE and immunoblot analysis 

For the isolation of CPBF-HA binding proteins, the cell pellet from 2.0 × 107 

CPBF-HA-expressing or mock-transfected cells was lysed with 1 mL of lysis buffer (50 mM 

Tris–HCl pH 7.5, 150 mM NaCl, 1% Triton-X100, 0.5 mg/mL of E-64 and complete mini 

EDTA-free protease inhibitor cocktail (Roche Applied Science, Penzberg, Germany)). After 

centrifugation at 14,000 × g for 5 min at 4 ℃, the soluble lysate was pre-cleared with 50 µL 

of protein G Sepharose (50% slurry in lysis buffer), (GE Healthcare, Waukesha, WI, USA) 

and then mixed and incubated with 50 µL of anti-HA monoclonal antibody-conjugated 

agarose (Sigma–Aldrich, St. Louis, MO, USA) for 3.5 h at 4 ℃. Immune complexes bound 

to the resin were washed five times with wash buffer (50 mM Tris–HCl pH 7.5, 150 mM 

NaCl, 1% Triton-X100) and then eluted by incubating the resin with 180 µL of 200 mg/mL 

HA peptide (Sigma–Aldrich) in lysis buffer for 16 h at 4 ℃. Approximately 2 µg of the 
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eluted samples were subjected to SDS–PAGE and visualised with either a silver stain MS kit 

(WAKO, Tokyo, Japan) or a SYPRO ruby protein stain (Takara). The same samples were 

also subjected to SDS–PAGE and immunoblot analyses as previously described (Sambrook 

and Russell, 2001). Primary antibodies were used at a 1:500 dilution for anti-Cm-CP-A5 

rabbit antibody (Nakada-Tsukui et al., 2012) or at a 1:1000 dilution for anti-HA mouse 

monoclonal antibody (clone 11MO, Covance, Princeton, NJ, USA) in immunoblot analyses.  

1.2.5. Mass spectrometric analysis 

Unique bands detected exclusively in the eluted samples from the HA-tagged 

transformants but not those from the control, after visualisation by silver or SYPRO ruby 

stain, were excised and subjected to LC-MS/MS analysis. The total mixture of the 

immunoprecipitated eluates using the lysate from CPBF2, 3, 4, 5, 7, 9, 10 and 11-HA 

expressing and mock transformants were briefly electrophoresed on SDS–PAGE to allow 

entry of proteins into the gel, visualized by silver stain, and the bands containing whole 

mixture were excised and subjected to LC–MS/MS analysis. LC–MS/MS analysis was 

performed at W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, 

USA. The gel pieces from the band were transferred to a siliconized tube and washed in 200 

µL of 50% methanol. The gel pieces were dehydrated in acetonitrile, rehydrated in 30 µL of 

10 mM DTT in 0.1 M ammonium bicarbonate and reduced at room temperature for 0.5 h. 

The DTT solution was removed and the sample alkylated in 30 µL of 50 mM iodoacetamide 
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in 0.1 M ammonium bicarbonate at room temperature for 0.5 h. The reagent was removed 

and the gel pieces dehydrated in 100 µL of acetonitrile. The acetonitrile was removed and the 

gel pieces rehydrated in 100 µL of 0.1 M ammonium bicarbonate. The pieces were 

dehydrated in 100 µL of acetonitrile, the acetonitrile removed and the pieces completely 

dried by vacuum centrifugation. The gel pieces were rehydrated in 20 ng/µL of trypsin in 50 

mM ammonium bicarbonate on ice for 30 min. Any excess enzyme solution was removed and 

20 µL of 50 mM ammonium bicarbonate added. The sample was digested overnight at 37 ℃ 

and the peptides formed extracted from the polyacrylamide in a 100 µL aliquot of 50% 

acetonitrile/5% formic acid. This extract was evaporated to 15 µL for MS analysis. The LC–

MS system consisted of a Thermo Electron Velos Orbitrap ETD mass spectrometer system 

with a Protana nanospray ion sourceinterfaced to a self-packed 8 cm x 75 µm inner diameter 

Phenomenex Jupiter 10 µm C18 reversed-phase capillary column. The extract (7 µL) was 

injected and the peptides eluted from the column by an acetonitrile/0.1 M acetic acid 

gradient at a flow rate of 0.5 µL/min over 1.2 h. The nanospray ion source was operated at 

2.5 kV. The digest was analyzed using the double play capability of the instrument, acquiring 

a full scan mass spectrum to determine peptide molecular weights followed by product ion 

spectra to determine a.a. sequence in sequential scans. 

1.2.6. Data analysis to determine specific binding proteins 

The data were analyzed by database searching using the Sequest search algorithm against 
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the E. histolytica genome database (http://amoebadb.org/amoeba/). The quantitative value 

(QV), normalized with unweighted spectrum counts, was used to estimate relative quantities 

of proteins in the samples. Specific binding proteins were determined by the following criteria. 

First, proteins that showed QV > 8, or QV > 10 in the control pEhExHA transformed 

sample (‘‘HA’’ in Table 2) and proteins that showed QV < 3 in the CPBF samples were 

removed, and it was assumed that those were non-specific proteins. The proteins that showed 

>3 or >4-fold higher QV in the CPBF samples compared with those in the HA control were 

selected. Finally, proteins lacking the signal sequence were removed from a list of possible 

ligands. Applying these criteria to the proteins discovered, positive controls, i.e., CPs in 

CPBF1-HA, were unequivocally detected. 

1.2.7. Indirect immunofluorescence assay 

The indirect immunofluorescence assay was performed as previously described 

(Nakada-Tsukui et al., 2012). Briefly, the amoeba transformant cells were harvested and 

transferred to 8 mm round wells on a slide glass, and then fixed with 3.7% paraformaldehyde 

in PBS, pH 7.2, for 10 min. After washing, the cells were permeabilized with 0.2% saponin 

in PBS containing 1% BSA for 10 min, and reacted with an anti-HA monoclonal antibody 

(clone 11MO, Covance) diluted at 1:1000 in PBS containing 0.2% saponin and 1% BSA. 

After washing three times with PBS containing 0.1% BSA, the samples were then reacted 

with Alexa Fluor 488-conjugated anti-mouse secondary antibody (1:1000 dilution in PBS 
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containing 0.2% saponin and 1% BSA) for 1 h. For lysosomal staining, 10 µM Lysotracker 

Red (Molecular Probes, Eugene, OR, USA) was added to E. histolytica transformants for 16 

h, and the trophozoites were then washed, harvested and subjected to an immunofluorescence 

assay. The samples were examined on a Carl-Zeiss LSM 510 META confocal laser-scanning 

microscope. The resultant images were further analyzed using LSM510 software. 

1.2.8. Recombinant protein expression and in vitro binding assay 

GST-fused recombinant proteins containing individual PPC domains (CPBF1 PPC1-6 

and CPBF8 PPC1) were produced as follows: pGST-CPBF1PPC1-6 and 

pGST-CPBF8PPC1 were introduced into E. coli BL21(DE3) competent cells (Merck, 

Tokyo, Japan). Expression of the recombinant proteins was induced with 100 mM 

isopropyl-β-thiogalactoside (IPTG) at 25 ℃ for 5 h. The bacterial cells were collected and 

lysed by adding bacterial protein extraction reagent in phosphate buffer (B-PER) (Thermo 

Scientific, Tokyo, Japan) to the cell pellet. Clear lysate was mixed with glutathione Sepharose 

4B (GE Healthcare) for 1 h at 4 ℃ and then washed three times with wash buffer (50 mM 

Tris–HCl pH 7.5, 150 mM NaCl, 1% Triton-X100). The GST-CPBF PPC-bound 

Sepharose beads were mixed with the soluble supernatant of lysates prepared from 3 × 106 

HM-1 trophozoites as described in Immunoprecipitation, SDS–PAGE and immunoblot 

analysis and incubated for 1 h at 4 ℃. The beads were washed three times with wash buffer 

and boiled with SDS–PAGE loading buffer. The eluted proteins were separated by SDS–
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PAGE and analyzed by Coomassie Brilliant Blue stain (CBB, one step CBB stain kit, Bio 

Craft, Tokyo, Japan) and an immunoblot assay. Images of CBB-stained polyacrylamide gel 

and immunoblots were acquired by GELSCAN (iMeasure Inc., Nagano, Japan) and 

LAS3000 (GE Healthcare), respectively. The O.D. of the bands was quantified using Image 

J (http://rsbweb.nih.gov/ij/index.html). Binding efficiency was estimated with the parameter 

defined as the O.D. of the band corresponding to CP-A5 on an immunoblot divided by the 

O.D. of the GST-fusion protein band on a CBB-stained gel. Relative binding efficiency of 

each GST-PPC domain fusion protein to CP-A5 was expressed after normalization against 

the value of the GST control. 

1.3. Results and discussion 

1.3.1. Establishment of CPBF-HA over expressing transformants 

While the ligands of CPBF1, 6 and 8 were identified in the previous studies (Furukawa et 

al., 2012, 2013; Nakada-Tsukui et al., 2012), the spectrum of the ligands recognized by other 

members of CPBF proteins remained poorly understood. Thus, I established E. histolytica 

transformants expressing CPBF2, 3, 4, 5, 7, 9, 10 or 11, tagged with the carboxyl-terminal 

HA epitope, to identify the ligands of all members of CPBF proteins. In all experiments, the 

amoeba transformants transfected with a pEhExHA mock vector and a pCPBF1-HA vector 

were used as negative and positive controls respectively. Expression of HA-fused CPBF 

proteins was confirmed by immunoblot analysis with anti-HA antibody (Fig. 1). All of the 
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HA-tagged CPBF proteins showed molecular masses slightly higher than those predicted, as 

seen for other HA-tagged proteins (Nakada-Tsukui et al., 2005, 2012; Furukawa et al., 2012, 

2013). Even if considering the effect of the HA tag, CPBF7 and CPBF10 showed higher 

molecular masses than other CPBF proteins, suggesting possible post-translational 

modifications, similar to CPBF6 and CPBF8 which have a serine-rich region (SRR) 

upstream of the transmembrane domain (Furukawa et al., 2012, 2013). It was previously 

demonstrated that a deletion of the SRR in CPBF8 caused a mobility shift in the predicted 

molecular masses and a decrease in the ligand binding (Furukawa et al., 2012). In addition, 

CPBF7 and CPBF10 showed a close kinship with CPBF6 and CPBF8 by a phylogenetic 

analysis (Nakada-Tsukui et al., 2012). While CPBF7 has a SRR (Furukawa et al., 2012), 

there is no apparent SRR in CPBF10; CPBF10 contains only two serine residues within the 

luminal portion near the transmembrane domain. There is no potential N-glycosylation site, 

either, as predicted by NetNglyc 1.0 server (http://www.cbs.dtu.dk/services/NetNGlyc/). 

1.3.2. Immunoprecipitation of CPBF-binding proteins 

All CPBF-HA- and mock-transfected E. histolytica lines were subjected to 

immunoprecipitation with anti-HA antibody, separated by SDS�PAGE and visualized with 

silver or SYPRO ruby stain (Fig. 2). Immunoprecipitation of the CPBF-HA proteins was 

confirmed in all transformants. Compared with the mock transfected line (“HA” in Fig. 2), 

one extra band at approximately 70 kDa in CPBF2-HA, and three extra bands at 
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approximately 60, 55 and 40 kDa in CPBF10-HA, and one extra band around 45 kDa in 

CPBF11-HA were detected (Fig. 2B and C). These specific bands were excised and 

subjected to LC-MS/MS analysis. I also analyzed whole immunoprecipitated samples from 

lysates of CPBF1, 2, 3, 4, 5, 7, 9, 10, 11 and the mock control by LC�MS/MS. In the 

following sections, I categorized CPBF members based on their ligand specificities. 

1.3.3. CPBF2, CPBF6 and CPBF10 bound to amylases 

Three CPBF proteins, namely CPBF2 and CPBF10, as well as previously identified 

CPBF6 (Furukawa et al., 2013), bound to a variety of amylases. Silver staining of 

immunoprecipitated samples from CPBF2-HA lysates after SDS–PAGE showed a specific 

70 kDa band (Fig. 2C). LC–MS/MS analysis of the band (Table 1) and the whole 

immunoprecipitated sample (Table 2) indicated the protein to be α-amylase (XP_655699, 

EHI_152880), with 22% and 42% coverage, respectively, and a high QV (122.5 for the whole 

sample). The 60 and 55 kDa bands exclusively detected in CPBF10-HA were identified as 

α-amylases (XP_655636 (EHI_023360) and XP_656406 (EHI_153100)), with 23% and 

25% coverage, respectively (Table 3). These two amylases were also detected in the whole 

immunoprecipitated sample from CPBF10-HA (Table 2). One should note that these two 

α-amylases were different from α-amylases that bind to CPBF2 (XP_655699, EHI_152880). 

The 40 kDa band detected in the immunoprecipitated sample from CPBF10-HA was not 

unequivocally assigned (QV < 4). Another α-amylase, XP_656406 (EHI_153100), was 
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detected from the 40 kDa band, despite a low QV (3) and being more frequently detected in 

the 55 kDa band. Intriguingly, one α-amylase (XP_655636, EHI_023360) was also 

identified as the cargo of CPBF6 (Furukawa et al., 2013), which shows phylogenetic kinship 

with CPBF10 (Nakada-Tsukui et al., 2012). In addition to these α-amylases, β-amylase, 

XP_653896 (EHI_192590), was detected from whole mixture. Three α-amylases found as 

CPBF ligands in this study were previously detected in the phagosome proteome studies 

(Okada et al., 2006; Furukawa et al., 2013). A recent transcriptomic analysis using the ex vivo 

human colon explant showed that trophozoites of the virulent strain showed a remarkable 

up-regulation of genes implicated in carbohydrate metabolism and processing of glycosylated 

residues compared with the non-virulent strain (Thibeaux et al., 2013). It was shown in that 

among the carbohydrate metabolism-related genes, β-amylase (XP_653896, EHI_192590) 

was the most highly induced (approximately 17-fold increase) in the virulent strain compared 

with the non-virulent strain. Furthermore, Thibeaux et. al. (2013) showed that the gene 

repression of β-amylase caused a reduction in mucus layer degradation. Together with the 

previous observation of β-amylase localization in phagosomes (Furukawa et al., 2013), these 

findings suggest a role for amylases and their corresponding CPBF receptors in pathogenesis. 

1.3.4. Polymorphism of amylases 

There are at least five independent (non-allelic) α-amylase-genes (XP_656406, 

EHI_153100; XP_655636, EHI_023360; XP_655699, EHI_152880; XP_649162, 
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EHI_130690; XP_652044, EHI_055650). Among these five α-amylases, CPBF2, 6 and 10 

bind to three of them (XP_656406, EHI_153100; XP_655636, EHI_023360; and 

XP_655699, EHI_152880), all of which possess the signal peptide. Among α-amylases that 

interact with CPBF proteins, XP_655699 (EHI_152880) and XP_656406 (EHI_153100) 

specifically interact with CPBF2 and CPBF10, respectively, whereas XP_655636 

(EHI_023360) interacts with both CPBF6 and CPBF10. XP_655636 (EHI_023360) is the 

most highly expressed mRNA among all putative α-amylase-genes, as demonstrated by the 

previous microarray analysis (Penuliar et al., 2012). This is one of the two examples in which 

one ligand is recognized by more than one CPBF proteins (see below). Although it was 

previously shown that SRR is essential for the binding of CPBF6 to α- and γ-amylases 

(Furukawa et al., 2013), CPBF10 appears to lack SRR. Possible post-translational 

modifications on CPBF10, as suggested by slower migration on SDS–PAGE (see Section 

1.3.1), and their involvement in the ligand interaction needs to be investigated. 

1.3.5. CPBF7 bound to β-hexosaminidase, similar to CPBF8, amoebapore and MPR 

Three possible lysosomal luminal proteins, two β-hexosaminidases (XP_656208 

(EHI_012010) and XP_650273 (EHI_007330)) and an amoebapore B precursor, were 

detected in the whole immunoprecipitated sample from CPBF7-HA (Table 2), while those 

were not detectable by SDS–PAGE and silver staining (Fig. 2C). The E. histolytica genome 

encodes three β-hexosaminidases, two of which were bound to CPBF7-HA, and the other, 
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AJ582954 (XP_657529, EHI_148130), was recognized by CPBF8 (Furukawa et al., 2012, 

Table 1). It was shown that this β-hexosaminidase (AJ582954) is localized in cytoplasmic 

granules and phagosomes (Riekenberg et al., 2004; Furukawa et al., 2012) and all three 

β-hexosaminidases have the signal peptide. Thus, unlike amylases, all β-hexosaminidases 

seem to be carried by CPBF proteins. Both CPBF7 and CPBF8 have SRR, which was shown 

to be essential for β-hexosaminidase binding by CPBF8 (Furukawa et al., 2012). 

β-hexosaminidases are involved in the hydrolysis of terminal N-acetyl-D-hexosamine 

residues in hexosaminides. When E. histolytica trophozoites propagate extraintestinally, they 

take a route similar to that during metastasis of cancer cells (Leroy et al., 1995), which 

requires both proteases and glycosidases during the passage of the basement membrane 

(Bernacki et al., 1985; Liotta, 1984). Furthermore, it was shown that β-hexosaminidase 

activity is involved in mucin degradation (Stewart-Tull et al., 1986). β-hexosaminidase was 

found as one of the transcriptionally upregulated genes after E. histolytica trophozoite’s 

contact with human colon epithelia in an ex vivo model (Thibeaux et al., 2013). Taken 

together, β-hexosaminidases and their traffic regulation are important for the pathogenesis of 

E. histolytica. Identification of amoebapore B precursor as a CPBF7 cargo is important as 

amoebapores are described as major virulence factors (Leippe et al., 2005). Amoebapores are 

the cytolytic peptides homologous to granulysin, which is present in human cytotoxic 

lymphocytes, displays potent cytolytic activity towards bacterial and human cells, and forms 

ion channels in artificial membranes (Leippe, 1997). Amoebapores are targeted to lysosomes 
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and mainly involved in degradation of ingested bacteria. Inhibition of expression of the 

amoebapore A gene by antisense or gene silencing caused a reduction in virulence, suggesting 

that this protein plays a key role in pathogenesis (Bracha et al., 1999, 2003). One of two 

MPRs in E. histolytica, MPR1, was also found as a CPBF7-binding protein. MPR1 is 

predicted to have a single CRD, but the a.a. residues implicated for mannose 6-phosphate 

binding (Dahms et al., 2008) are not conserved. Immunoprecipitation and LC-MS/MS 

analysis of HA-tagged MPR1 was performed, but failed to identify the ligand (personal 

communication from Dr. Nakada-Tsukui, data not shown). It is of note that in Saccharomyces 

cerevisiae Vps10p and a single CRD domain-containing protein, Mrl1p (Whyte and Munro, 

2001), cooperatively function in the traffic of lysosomal (vacuole in yeast) proteins, but no 

ligand was assigned for Mrl1p. It is plausible that MPR1 and CPBF7 are cooperatively 

involved in trafficking to lysosomes. 

1.3.6. CPBF9 bound to lysozyme, similar to CPBF8 

Lysozyme 2, XP_656933 (EHI_096570), was found to bind to CPBF9-HA (Table 2), 

however, no specific bands were detect by SDS–PAGE or silver staining (Fig. 2C). It has 

previously been shown that lysozyme 2 is also recognized by CPBF8 (Furukawa et al., 2012). 

Lysozymes are encoded by six independent genes in the E. histolytica genome and annotated 

as lysozymes or N-acetylmuraminidase. Among them, the lysozyme 2-gene is the most highly 

transcribed (Penuliar et al., 2012). Lysozymes are well-known glycosidases that degrade the 
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bacterial cell wall (Chipman et al., 1967). It was reported that lysozyme-genes were poorly 

expressed in an avirulent E. histolytica Rahman strain and in Entamoeba dispar (MacFarlane 

and Singh, 2006; Davis et al., 2007). Furthermore, expression of lysozyme-genes was repressed 

when E. histolytica trophozoites were treated with 5-azacytidine, a potent inhibitor of DNA 

methyltransferase, and the repression of lysozyme-genes correlated with a reduction in 

virulence (Ali et al., 2008). It was also demonstrated that repression of cpbf8-gene expression 

by small antisense RNA-mediated transcriptional silencing (Bracha et al., 1999, 2003) caused 

a decrease in the targeting of lysozyme 2 to phagosomes and delay in digestion of ingested 

gram-positive bacteria (Furukawa et al., 2012). It was also reported that the SRR of CPBF8 

is glycosylated and glycosylation is important for the binding of β-hexosaminidase and 

lysozyme 2 (Furukawa et al., 2012). CPBF9 has no SRR, and does not seem to have 

post-translational modifications. These data indicate that mechanisms of interaction between 

CPBF9 and lysozyme 2 must be different from those of CPBF8 and lysozyme 2. 

1.3.7. Identification of additional CPBF1 binding proteins 

To further identify additional lysosomal proteins recognized by CPBF1 other than 

previously identified CPs, I vigorously searched for other binding proteins. Based on the 

criteria described in Section 1.2.6, the proteins identified in four independent experiments 

and those repeatedly detected (either in two, three or four out of the four experiments) are 

listed (Table 4). I detected a total of 20 proteins in the four experiments. Among them, four 



 

 27 

proteins were detected in all four experiments (CP-A2, CP-A4, CP-A5 and CPBF1 itself), 

while three other proteins were detected in two or three experiments. CP-A1 and CP-A6 

were detected only in a single experiment (Table 4). None of the possible soluble lysosomal 

proteins, other than CPs, were detected as CPBF1-HA binding protein, reinforcing the 

specificity of CPBF1 to CPs and verifying the stringency of the protocol used in the study. 

Previous study identified CP-A1 as one of the cargos for CPBF1 by a pull-down experiment 

of CPBF1-HA, followed by immunoblot analysis using anti-CP-A1 antibody 

(Nakada-Tsukui et al., 2012). One should note that anti-CP-A1 antibody cross-reacted with 

CP-A2 due to the high a.a. identity (81%) (Mitra et al., 2007). In the present study, LC–

MS/MS data have clearly shown that CPBF1 preferentially interacts with CP-A2 but not 

CP-A1. CP-A1 and CP-A2 are the two major CPs with comparably high expression levels, 

followed by CP-A5 in E. histolytica HM-1:IMSS (Tillack et al., 2007). CP-A4 is one of the 

poorly expressed CPs, but suggested to be involved in the pathogenesis of invasive amebiasis 

(Tillack et al., 2007; He et al., 2010). Reproducible detection of CP-A4 in all of the 

experiments indicates the high affinity of CPBF1 toward CP-A4. Interestingly, CP-A4 is 

localized to the nuclear region and the acidic compartment (He et al., 2010). The role of 

CPBF1 in the CP-A4 localization needs to be elucidated. As more than 95% of the CP 

activity of E. histolytica trophozoites is attributed to CP-A1, A2, A5 and A7 (Bruchhaus et al., 

2003; Irmer et al., 2009), the amounts of CPs bound to CPBF1 does not seem to be 

proportional to their expression levels, but determined by the ligand specificity of CPBF1. I 



 

 28 

reproducibly identified heat shock protein 70 (Hsp70) (XP_654737, EHI_199590), which 

has the ER retention signal (KDEL) at the carboxyl terminus (three out of four experiments). 

It is worth noting that this protein was repeatedly detected in all immunoprecipitation 

experiments except for CPBF4. Mannosyltransferase, localized in the ER (Maeda and 

Kinoshita, 2008; Loibl and Strahl, 2013), was also repeatedly identified (two out of four 

experiments). Identification of the ER-residing Hsp70 and mannosyltransferase suggests 

possible involvement of ER proteins in the functionality of CPBF1. Hypothetical protein 

(XP_649888, EHI_146110), with no detectable domain or motif, was detected in two out of 

four experiments.  

1.3.8. Analysis of ligands for CPBF3, CPBF4, CPBF5 and CPBF11 

No known or possible hydrolases or membrane proteins were detected either by SDS–

PAGE analysis followed by silver staining or LC–MS/MS analysis of the whole 

immunoprecipitated samples, with a few exceptions: CP-A2 and a light subunit of galactose/ 

N-acetylgalactosamine-inhibitable lectin in CPBF4-HA (with low QV, 3.44) (Fig. 2A, 

Table 2). Thus, no specific ligand was identified for CPBF4. It may be worth noting that the 

pIs of CPBF3, CPBF4, CPBF11 (7.2, 6.5 and 6.5, respectively) are higher than those of 

other members; the average pI value of the 11 CPBF proteins is 5.5. CPBF3 was detected by 

immunoprecipitation of CPBF4-HA and vice versa. CPBF3 and CPBF4 have high mutual 

a.a. identity (75%, Table 6). Three peptides detected in the CPBF3-HA pull-down sample 
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were mapped to CPBF4 (5% coverage). Similarly, five peptides were mapped to CPBF3 in 

the CPBF4-HA pull-down sample (7% coverage). These data indicate interaction between 

CPBF3 and CPBF4. Serine threonine isoleucine rich protein (STIRP) was found in the 

immunoprecipitated sample from CPBF4-HA. Another isotype of STIRP (XP_656227.2, 

EHI_012330) was also detected, although it was removed from Table 2 due to lack of the 

signal peptide. Since the carboxyl-terminal regions of these proteins show high mutual 

similarity (MacFarlane and Singh, 2007), detected peptides did not differentiate two 

EhSTIRPs. EhSTIRP, which contains a single transmembrane domain, was exclusively 

expressed in virulent E. histolytica strains, but not in non-virulent E. histolytica Rahman strain 

or E. dispar, and thus is considered to be a virulent associated protein (MacFarlane and Singh, 

2007). Possible interaction between STIRP and CPBF4 needs to be further verified. A light 

subunit of galactose/N-acetylgalactosamine-inhibitable lectin was found in the 

immunoprecipitated sample from CPBF4-HA and CPBF5-HA. It is well established that 

this lectin is involved in the interaction between E. histolytica and host cells/microbes, and is 

essential for pathogenesis (Ravdin et al., 1989; Petri et al., 2002). The lectin is composed of 

three subunits, i.e. heavy, intermediate and light subunits (Petri et al., 2002). The 170 kDa 

heavy subunit with a transmembrane domain and the 31–35 kDa 

glycosylphosphatidylinositol (GPI)-anchored light subunit form a heterodimer by disulfide 

bonds. An intermediate subunit of 150 kDa is non-covalently associated with the 

heterodimer. All three subunits are encoded by multigene families. There are five genes for 
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the heavy subunit, six to seven for the light subunit and 30 for the intermediate subunit (Petri 

et al., 2002). The fact that only specific light subunits were associated with CPBF4 and 

CPBF5, respectively, indicates that these light subunits together with the corresponding 

CPBF proteins may be involved in trafficking of the surface receptor in association with 

other lysosomal receptors. CPBF5 was found to also interact with two additional proteins, 

neither of which seems to be a potential lysosomal protein. Interestingly, an 

immunofluorescence assay (Fig. 3D, see Section 1.3.9) showed that CPBF5-HA is localized 

in lysosomes, as indicated by colocalization with LysoTracker. This is in good contrast with 

other CPBF proteins mainly localized in the ER/Golgi compartments, e.g., CPBF1, CPBF6 

and CPBF8. Assuming that the receptor binds to the ligand depend on pH, as shown for 

CPBF1 (Nakada-Tsukui et al., 2012), the conditions for pull-down experiments may need to 

be further optimized to obtain the ligand of CPBF5. A 45 kDa band was specifically detected 

in the immunoprecipitated sample from CPBF11-HA by SYPRO ruby stain (Fig. 2C), but 

identified as CPFB11 itself by LC-MS/MS analysis (Table 7). The whole 

immunoprecipitated sample was subjected to MS analysis, but no additional binding protein 

was detected (Table 2). It is worth noting that mRNA expression of a gene encoding a 

CPBF11 homologue in Entamoeba invadens, a reptilian sibling of E. histolytica and the model 

of encystation, is 4.7–9-fold upregulated after 24–120 h of encystation (De Cádiz et al., 2013). 

The finding may explain why no CPBF11 ligand was discovered in trophozoites. 

Identification of CPBF11 binding proteins from E. histolytica cysts may be needed. 
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1.3.9. Intracellular localization of CPBF proteins 

Intracellular localization of CPBF proteins was examined by immunofluorescence assay 

with anti-HA antibody using LysoTracker stained trophozoites of CPBF-HA-expressing 

lines (Fig. 3). CPBF2, 7, 9 and 10-HA were detected on vacuolar membranes and small 

membrane structures scattered all over the cells. CPBF3, 4 and 11 were mostly localized on 

small membrane structures and hardly detected on vacuolar membranes. In contrast, as 

briefly mentioned 1.3.8, CPBF5-HA was nicely colocalized with LysoTracker, indicating 

lysosomal localization. However, CPBF5 was not identified in previous phagosome proteome 

study (Okada et al., 2006; Furukawa et al., 2012), which may be due to low expression of 

endogenous CPBF5. Partial colocalization was also observed for CPBF2, 7, 9 and 10. 

Localization of the CPBF proteins involved in the transport of carbohydrate digesting 

enzymes, CPBF2, CPBF7 and CPBF10, was similar to that of CPBF6 and CPBF8 

(Furukawa et al., 2012, 2013). They are localized on both the vacuolar membrane and the 

small membrane structures. It was previously shown that CPBF6 and CPBF8 are colocalized 

with pyridine nucleotide transhydrogenase (PNT), which utilizes the electrochemical proton 

gradient across the membrane to drive NADPH formation from NADH (Yousuf et al., 

2010). 

1.3.10. PPC domain is a functional unit of the ligand binding of CPBF1 

To investigate whether the binding activity of CPBF1 to CP can be attributable to specific 
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PPC domain(s), each PPC domain, CPBF1 domains 1–6 (D1–D6), was expressed as 

GST-fusion protein in E. coli, with CPBF8 domain 1 (D1) as negative control and an in vitro 

pull-down assay was performed (Fig. 4). Among the six PPC domains of CPBF1, D3 

showed significantly higher affinity (P < 0.05) compared with D1 and D6 (Fig. 4C). D5 also 

showed significantly higher affinity than D6 (P < 0.05). These results indicate that single 

PPC domains per se have the ability of ligand binding. D4 was truncated or degraded during 

expression and/or purification and not used in the study. The mechanisms of ligand 

recognition of CPBF proteins have not been elucidated. Previously, it was showed that 

carbohydrate modifications of SRR are involved in ligand binding of CPBF6 and CPBF8 

(Furukawa et al., 2012, 2013). However, only CPBF6-8 apparently have SRR, whereas other 

CPBF proteins lack it.  

A phylogenetic analysis of six PPC-like domains of 11 CPBF proteins indicates that 

corresponding domains (e.g., D3) of all CPBF proteins tend to form clusters (data not 

shown). This likely implies, together with the fact that all CPBF proteins have similar 

domain configuration, that individual corresponding domains (e.g., D3, D5) retain distinct 

structural role(s).  

Further structural studies are required to better understand the mechanisms of ligand 

recognition binding and dissociation, as well as ligand specificities. 
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GENERAL CONCLUSIONS AND PERSPECTIVES 

Lysosomal enzymes play a pivotal role in E. histolytica pathogenesis. CPBF regulates these 

functions through the trafficking of them. CPBF1 transports CP-A5 from ER to lysosomes 

and control the processing of CP-A5. CPBF6 and CPBF8 is involved in the trafficking of 

carbohydrolases to phagosomes.  

In this study, I identified the ligands of CPBF2, 7, 9 and 10. They bind to carbohydrolases, 

α-amylases, β-hexosaminidases and lysozymes specifically. Since these CPBF proteins 

localized on the lysosomal membranes, it seemed that these ligand enzymes functioned at 

lysosomes. This sort of lysosomal trafficking system which is regulated by diverse family 

proteins is completely different from already-known mechanisms such as MPR dependent or 

independent trafficking system in other organisms. In that manner, single receptor protein 

can recognize and bind to various cargo proteins through the sugar modification or protein 

conformation. While in E. histolytica, CPBF diversifies eleven family proteins, and each 

CPBF proteins associates with specific ligand proteins. CPBF1 specifically associate with 

CP-A5 via PPC domain independent of protein modification. Additionally, E. histolytica 

conserved the highly divergent Rab GTPase genes (Nakada-Tsukui et al., 2010), which is 

related for many membrane trafficking system, suggesting that membrane trafficking system 

has been evolved uniquely and divergently on the line leading to E. histolytica.  

The ligand proteins of CPBF3, 4, 5 and 11 could not be identified in this study. To reveal 

the functions of these CPBF proteins, other approach is needed, such as the 



 

 34 

immunoprecipitation with cross-linker or some stimulation, including contact with 

mammalian cells or host organs and oxidative or starvation stress.  
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Table 1. LC-MS/MS data of 70 kDa cysteine protease binding protein family 2 (CPBF2)-interacting protein.

No. Identified proteins 
GenBank

gi number
Molecular

weight
Total specrum

count

1 α-amylase family protein (Entamoeba histolytica HM-1:IMSS) gi|67480699 69 kDa 16

2 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|183230151 48 kDa 1
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Table 2. Ligands and associated proteins of cysteine protease binding protein family (CPBF) 2-11 identified by immunoprecipitation and LC-MS/MS analysis.

CPBF Identified proteins GenBank AmoebaDB CPBF HA CPBF HA

CPBF2 CPBF2

CPBF2 CPBF2 97 kDa XP_653276 EHI_087660 348.17 0 43 0

α-Amylase family protein 69 kDa XP_655699 EHI_152880 122.46 0 25 0

70 kDa heat shock protein 73 kDa XP_654737 EHI_199590 3.37 0 3 0

Hypothetical protein 24 kDa XP_655760 EHI_155310 3.37 0 1 0

CPBF3

CPBF3 CPBF3 96 kDa XP_649180 EHI_161650 203.48 0 42 0

70 kDa heat shock protein 73 kDa XP_654737 EHI_199590 14.8 2.64 12 3

CPBF4 98 kDa XP_655897 EHI_012340 12.02 0 1 0

CPBF4

CPBF4 CPBF4 98 kDa XP_655897 EHI_012340 152.3 0 34 0

CPBF3 96 kDa XP_649180 EHI_161650 15.49 0 2 0

Serine-therionine-isoleucine rich protein 260 kDa XP_001913596 EHI_004340 4.3 0 4 0

EhCP-A2 35 kDa XP_650642 EHI_033710 3.44 0 3 0

Galactose-specific lectin light subunit 34 kDa XP_001913429 EHI_049690 3.44 0 4f 0

CPBF5

CPBF5 CPBF5 96 kDa XP_654065 EHI_137940 172.19 0 33 0

70 kDa heat shock protein 73 kDa XP_654737 EHI_199590 12.98 0 7 0

Galactose-specific lectin light subunit 34 kDa XP_656145 EHI_035690 6.92 0 5 0

Hypothetical protein 34 kDa XP_650601 EHI_047800 3.46 0 3 0

CPBF6a CPBF6 99 kDa XP_653036 EHI_178470

α-Amylase family protein 57 kDa XP_655636 EHI_023360

γ-Amylase 75 kDa XP_652381 EHI_044370

CPBF7

CPBF7 CPBF7 100 kDa XP_649361 EHI_040440 344.3 3.14 33 0

β-N-acetylhexosaminidase 64 kDa XP_656208 EHI_012010 17.95 0 5 0

β-N-acetylhexosaminidase, subunit 64 kDa XP_650273 EHI_007330 16.32 0 5 0

MPR1 24 kDa XP_656907 EHI_096320 13.06 0 4 0

Pore-forming peptide amoebapore B precursor 10 kDa XP_001913632 EHI_194540 9.79 0 3 0

70 kDa heat shock protein 73 kDa XP_654737 EHI_199590 8.16 0 4 0

Hypothetical protein 30 kDa XP_652382 EHI_044360 6.53 3.14 2 1

Hypothetical protein 17 kDa XP_650886 EHI_069510 3.26 1.57 1 1

Hypothetical protein 24 kDa XP_655760 EHI_155310 3.26 0 1 0

Hypothetical protein 59 kDa XP_656261 EHI_178650 3.26 0 2 0

CPBF8b CPBF8 100 kDa XP_652899 EHI_059830

β-hexosaminidase, "alpha" sign-subunit 60 kDa XP_65729/AJ582954c EHI_148130

Lysozyme1 23 kDa XP_653294 EHI_199110

Lysozyme2 23 kDa XP_656933 EHI_096570

CPBF9

CPBF9 CPBF9 100 kDa XP_655360 EHI_021220 100.27 0 18 0

Hypothetical protein 18 kDa XP_656071 EHI_117850 10.29 0 1 0

70 kDa heat shock protein 73 kDa XP_654737 EHI_199590 10.29 0 3 0

Lysozyme2 23 kDa XP_656933 EHI_096570 7.71 1.52 1 1

CPBF10

CPBF10 CPBF10 98 kDa XP_649015 EHI_191730 63.88 0 12 0

α-Amylase 53 kDa XP_656406 EHI_153100 49.05 0 10 0

α-Amylase family protein 57 kDa XP_655636 EHI_023360 27.38 5.76 10 4

70 kDa heat shock protein 73 kDa XP_654737 EHI_199590 25.09 4.61 11 3

Hypothetical protein 59 kDa XP_656261 EHI_178650 19.39 0 6 0

β-Amylase 47 kDa XP_653896 EHI_192590 17.11 2.31 6 2

Hypothetical protein 71 kDa XP_651525 EHI_022130 4.56 0 3 0

Hypothetical protein 57 kDa XP_648234 EHI_025100 4.56 0 3 0

MPR1 24 kDa XP_656907 EHI_096320 3.42 0 3 0

CPBF11

CPBF11 CPBF11 86 kDa XP_656044 EHI_118120 89.53 0 23 0

70 kDa heat shock protein 73 kDa XP_654737 EHI_199590 24.11 4.61 17 3

HA, hemagglutinin; EhCP, Entamoeba histolytica cysteine protease; MPR, mannose 6-phosphate receptor
a From Furukawa et al. (2013).
b From Furukawa et al. (2012)
c XP_657529 (EHI_148130) and AJ582954 are identical except that XP_65729 (EHI_148130) starts at the second methionine of AJ582954 and lacks the signal sequence.
d Quantitative values are shown for the identified proteins from the CPBF-HA and control transformants.
e The number of unique peptides detected are shown.
f This protein is similar to two other closely related proteins and the number of all detected peptides is shown.

Molecular
 weight

Accession number Quantitative valued Unique peptidese
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Table 3. LC-MS/MS data of 60, 55 and 40 kDa cysteine protease binding protein family 10 (CPBF10)-interacting protein.

No. Identified proteins 
GenBank

gi number
Molecular

weight
Total specrum

count

60 kDa band

1 α-amylase family protein (Entamoeba histolytica HM-1:IMSS) gi|183230432 57 kDa 24

2 α-amylase (Entamoeba histolytica HM-1:IMSS) gi|67482113 53 kDa 20

3 malic enzyme (Entamoeba histolytica HM-1:IMSS) gi|67464797 53 kDa 5

4 α-amylase (Entamoeba histolytica HM-1:IMSS) gi|67471047 50 kDa 4

5 ATP/GTP-binding protein (Entamoeba histolytica HM-1:IMSS) gi|67477909 48 kDa 1

6 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67469553 26 kDa 1

55kDa band

1 α-amylase (Entamoeba histolytica HM-1:IMSS) gi|67482113 53 kDa 31

2 α-amylase (Entamoeba histolytica HM-1:IMSS) gi|67471047 50 kDa 8

3 enolase (Entamoeba histolytica HM-1:IMSS) gi|67466006 47 kDa 8

4 guanine nucleotide exchange factor (Entamoeba histolytica HM-1:IMSS) gi|67464925 51 kDa 6

5 Actin-related protein 3 (Entamoeba histolytica HM-1:IMSS) gi|67462416 47 kDa 6

6 α-amylase family protein (Entamoeba histolytica HM-1:IMSS) gi|183230432 57 kDa 4

7 alcohol dehydrogenase (Entamoeba histolytica HM-1:IMSS) gi|183234048 47 kDa 4

8 helicase (Entamoeba histolytica HM-1:IMSS) gi|67480889 47 kDa 4

9 elongation factor 1-α 1 (Entamoeba histolytica HM-1:IMSS) gi|67463408 48 kDa 3

10 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67469661 59 kDa 2

11 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67477467 23 kDa 1

12 anti-Entamoeba histolytica immunoglobulin γ heavy chain (Homo sapiens) gi|5360677 24 kDa 1

13 actin (Entamoeba histolytica HM-1:IMSS) gi|67462785 42 kDa 1

14 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|183235174 150 kDa 1

15 DNA primase small subunit (Entamoeba histolytica HM-1:IMSS) gi|183235176 22 kDa 1

16 phosphoglycerate kinase (Entamoeba histolytica HM-1:IMSS) gi|67476166 45 kDa 1

17 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67472989 37 kDa 1

18 acid phosphatase (Entamoeba histolytica HM-1:IMSS) gi|67467196 49 kDa 1

19 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|183230572 47 kDa 1

20 elongation factor 1-alpha 1 (Entamoeba histolytica HM-1:IMSS) gi|67471927 48 kDa 1

21 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67481643 82 kDa 1

40 kDa band

1 alcohol dehydrogenase (Entamoeba histolytica HM-1:IMSS) gi|67479581 43 kDa 4

2 α-amylase (Entamoeba histolytica HM-1:IMSS) gi|67482113 53 kDa 3

3 enhancer binding protein-1 (Entamoeba histolytica HM-1:IMSS) gi|67471742 35 kDa 2

4 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67476757 38 kDa 2

5 NADP-dependent alcohol dehydrogenase (Entamoeba histolytica HM-1:IMSS) gi|67475633 39 kDa 2

6 actin (Entamoeba histolytica HM-1:IMSS) gi|67462785 42 kDa 1

7 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|183235174 150 kDa 1

8 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67477467 23 kDa 1

9 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67478285 151 kDa 1

10 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67483075 29 kDa 1

11 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67483069 57 kDa 1

12 actin-related protein 2/3 complex subunit 1A (Entamoeba histolytica HM-1:IMSS) gi|67484080 40 kDa 1

13 alcohol dehydrogenase (Entamoeba histolytica HM-1:IMSS) gi|67468848 42 kDa 1

14 helicase (Entamoeba histolytica HM-1:IMSS) gi|183233848 110 kDa 1

15 malate dehydrogenase (Entamoeba histolytica HM-1:IMSS) gi|183232436 40 kDa 1

16 leukocyte-endothelial cell adhesion molecule 3 (Entamoeba histolytica HM-1:IMSS) gi|67467899 36 kDa 1

17 alcohol dehydrogenase (Entamoeba histolytica HM-1:IMSS) gi|67476643 43 kDa 1

18 L-asparaginase (Entamoeba histolytica HM-1:IMSS) gi|67482473 41 kDa 1

19 TolA-like protein (Entamoeba histolytica HM-1:IMSS) gi|67471361 38 kDa 1

20 AIG1 family protein (Entamoeba histolytica HM-1:IMSS) gi|183237430 33 kDa 1

21 Sec61 α subunit (Entamoeba histolytica) gi|52352493 52 kDa 1



54

﻿Table 4. Reproducibility of identified cysteine protease binding protein family 1 (CPBF1) binding proteins.

Identified proteins 
Molecular

weight
GenBank

gi number AmoebaDB

CPBF1 101 kDa XP_655218 EHI_164800 4

EhCP-A2 35 kDa XP_650642 EHI_033710 4

EhCP-A4 34 kDa XP_656602 EHI_050570 4

EhCP-A5 35 kDa XP_650937 EHI_168240 4

70kDa heat shock protein 73 kDa XP_654737 EHI_199590 3

Mannosyltransferase 49 kDa XP_650080 EHI_029580 2

Hypothetical protein 43 kDa XP_649888 EHI_146110 2

EhCP, Entamoeba histolytica cysteine protease.

Accession number Number of
experiments in

which the protein
was identified
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Table 5. Ligands and associated proteins of cysteine protease binding protein family 1 (CPBF1) identified in four independent experiments.

Exp. ID Identified proteins GenBank AmoebaDB CPBF1 HA

CPBF1 101 kDa XP_655218.1 EHI_164800 471.75 8.97

EhCP-A5 35 kDa XP_650937.1 EHI_168240 76.26 0.00

PIG-X domain 58 kDa XP_648739.1 EHI_130880 38.77 0.00

EhCP-A2 35 kDa XP_650642.1 EHI_033710 28.43 0.00

EhCP-A4 34 kDa XP_656602.1 EHI_050570 25.85 0.00

nuclear poar protein 186 kDa XP_654325.1 EHI_183510 19.39 3.26

EhCP-A1 35 kDa XP_650156.2 EHI_074180 12.92 0.00

EhCP-A6 35 kDa XP_657364.1 EHI_151440 9.05 0.00

DNAJ homolog subfamily A member 1 39 kDa XP_656707.2 EHI_182520 6.46 0.00

mannosyltransferase 49 kDa XP_650080.1 EHI_029580 6.46 0.00

MIR domain protein 23 kDa XP_655109.1 EHI_100480 6.46 0.00

protein disulfide isomerase 42 kDa XP_650651.1 EHI_071590 3.88 0.82

CPBF1 101 kDa XP_655218.1 EHI_164800 70.41 1.57

hypothetical protein 71 kDa XP_651525.1 EHI_022130 8.06 1.57

galactose-inhibitable lectin 35 kda subunit precursor 34 kDa XP_656145.1 EHI_035690 6.45 1.57

70 kDa heat shock protein 73 kDa XP_654737.1 EHI_199590 6.45 0.00

EhCP-A4 34 kDa XP_656602.1 EHI_050570 5.37 0.00

Gal/GalNAc lectin light subunit 32 kDa XP_657460.1 EHI_148790 4.30 0.00

EhCP-A5 35 kDa XP_650937.1 EHI_168240 3.76 1.57

hypothetical protein 43 kDa XP_649888.1 EHI_146110 3.22 1.57

CPBF1 101 kDa XP_655218.1 EHI_164800 219.14 0.00

hypothetical protein 34 kDa XP_649236.1 EHI_160980 13.91 3.81

70 kDa heat shock protein, putative 73 kDa XP_654737.1 EHI_199590 10.44 0.00

EhCP-A5 35 kDa XP_650937.1 EHI_168240 9.28 0.00

hypothetical protein 43 kDa XP_649888.1 EHI_146110 6.96 2.28

hypothetical protein 55 kDa XP_649879.1 EHI_001100 6.96 0.00

EhCP-A4 34 kDa XP_656602.1 EHI_050570 6.96 0.00

CPBF3 96 kDa XP_649180.2 EHI_161650 5.80 0.76

EhCP-A2 35 kDa XP_650642.1 EHI_033710 5.80 0.00

CPBF1 101 kDa XP_655218.1 EHI_164800 260.13 0.88

EhCP-A5 35 kDa XP_650937.1 EHI_168240 22.62 0.00

70 kDa heat shock protein, putative 73 kDa XP_654737.1 EHI_199590 22.62 2.64

EhCP-A2 35 kDa XP_650642.1 EHI_033710 9.69 0.00

EhCP-A4 34 kDa XP_656602.1 EHI_050570 8.08 0.00

mannosyltransferase, putative 49 kDa XP_650080.1 EHI_029580 3.23 0.00

EhCP, Entamoeba histolytica cysteine protease; MIR, [Mannosyltransferase,
Inositol 1,4,5-trisphosphate receptor (IP3R); Ryanodine receptor (RyR)]; HA, hemagglutinin.
Experiment identification numbers (Exp. ID), used in MS analysis at Biomedical Mass Spectrometry Laboratory, University of Virginia, USA are shown.

1875

Molecular
 weight

Accession number Quantitative value

1787-1

1814b

1830A



56

Table 6.  Percentage of mutual identity among cysteine protease binding protein families (CPBFs).

CPBF1 CPBF2 CPBF3 CPBF4 CPBF5 CPBF6 CPBF7 CPBF8 CPBF9 CPBF10 CPBF11
CPBF1 100 25.6 23.9 24.9 25 22.4 20.1 20.2 23.8 20 21.6
CPBF2 100 24.1 23.1 30.1 21.8 21.1 20.2 25.5 20.5 18.7
CPBF3 100 74.8 22.1 22.8 21.7 22.6 20.4 20.4 29.1
CPBF4 100 20.2 22.2 20.8 21.7 19.6 20.7 30.5
CPBF5 100 18 19.2 19.2 24.9 18.6 19.5
CPBF6 100 27.3 28.2 19.7 24.6 20
CPBF7 100 51.1 20.1 27.5 20.2
CPBF8 100 18.9 27.8 17.6
CPBF9 100 19.5 18.8

CPBF10 100 18
CPBF11 100

100~75%
75~50%
50~25%
25~10%
10~0%
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Table 7.  LC-MS/MS data of 45 kDa cysteine protein binding protein family 11 (CPBF11)-interacting protein.

No. Identified proteins
GenBank

gi number
Molecular

weight
Total spectrum

count

1 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67481389 86 kDa 32

2 heat shock protein 90 (Entamoeba histolytica HM-1:IMSS) gi|67474857 83 kDa 4

3 4-α-glucanotransferase (Entamoeba histolytica HM-1:IMSS) gi|67479419 97 kDa 4

4 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67483069 57 kDa 2

5 protein kinase domain containing protein (Entamoeba histolytica HM-1:IMSS) gi|183235054 67 kDa 2

6 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|67477467 23 kDa 1

7 alcohol dehydrogenase (Entamoeba histolytica HM-1:IMSS) gi|67473032 96 kDa 1

8 hypothetical protein (Entamoeba histolytica HM-1:IMSS) gi|183231355 79 kDa 1

9 diaphanous protein (Entamoeba histolytica) gi|7159336 122 kDa 1

10 actinin-like protein (Entamoeba histolytica) gi|6636336 63 kDa 1

11 Rab GTPase activating protein (Entamoeba histolytica HM-1:IMSS) gi|67467287 73 kDa 1

12 adaptor protein (AP) family protein (Entamoeba histolytica HM-1:IMSS) gi|67466287 81 kDa 1

13 WD domain containing protein (Entamoeba histolytica HM-1:IMSS) gi|67473313 111 kDa 1

14 ribonuclease P protein subunit p30 (Entamoeba histolytica HM-1:IMSS) gi|67470047 27 kDa 1

15 Rab family GTPase (Entamoeba histolytica HM-1:IMSS) gi|67481151 23 kDa 1

16 serine palmitoyltransferase (Entamoeba histolytica HM-1:IMSS) gi|67483423 98 kDa 1
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Table 8. Up-regulated genes in cpbf2 -silenced strain

gene ID Description
fold change

(log2) q_value
protein synthesis

EHI_069310 serine palmitoyltransferase putative 2.13 3.03E-03

membrane traffic

EHI_192130 Rab family GTPase (Rab7F) 4.05 1.48E-02

protein degradation

EHI_169350 nonpathogenic pore-forming peptide precursor putative 4.39 3.03E-03

AIG family

EHI_144270 AIG1 family protein 2.74 3.03E-03

EHI_176580 AIG1 family protein putative 3.79 3.03E-03

EHI_176590 AIG1 family protein putative 4.31 3.03E-03

EHI_176700 AIG1 family protein putative 4.21 3.03E-03

other

EHI_C00154 Single TM Domain protein 4.92 3.03E-03

EHI_C00062 Two TM Domain protein 5.84 3.03E-03
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FIGURES 
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Figure 1. Immunoblot analysis to confirm the cysteine protease binding 
protein family 1–11 tagged with hemagglutinin (CPBF1-11-HA) 
expression in the Entamoeba histolytica transformants.  
Whole lysates of the transformants were subjected to SDS-PAGE and 
immunoblot analysis using anti-HA antibody. Arrows indicate the 
individual CPBF1-11. Note that the predicted molecular mass of the 
fusion proteins are: CPBF1-HA, 100.7 kDa; CPBF2-HA, 96.7 kDa; 
CPBF3-HA, 99.1 kDa; CPBF4-HA, 99.3 kDa; CPBF5-HA, 96.5 kDa; 
CPBF7-HA, 100.0 kDa; CPBF9-HA, 100.0 kDa; CPBF10-HA, 97.8 
kDa; CPBF11-HA, 86.3 kDa.�
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Figure 2. SDS–PAGE analysis of immunoprecipitated mixtures of 
Entamoeba histolytica cysteine protease binding protein families 
(CPBFs) and ligands. �
CPBF1, 2, 3, 4, 5, 7, 9, 10 and 11-haemagglutinin (HA) were 
immunoprecipitated from the corresponding transformant lines with 
anti-HA monoclonal antibody, separated by SDS–PAGE and 
stained by (A, C) silver staining or (B) Sypro Ruby staining. (A) 
CPBF1, 3 and 4-HA; (B) CPBF1, 10 and 11-HA; (C) CPBF1, 2, 
5, 7 and 9-HA. Arrows indicate the bait (CPBF–HA) 
immunoprecipitated, and arrowheads depict candidates for co-
immunoprecipitated ligands. Note that immunoprecipitation and 
electrophoresis were conducted in three independent experiments.  
* These bands were not reproducible.�
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Figure 3. Immunofluorescence images of Entamoeba histolytica cysteine protease 
binding protein families (CPBFs) 2, 3, 4, 5, 7, 9, 10 and 11.�
Trophozoites of the CPBF- haemagglutinin (HA)-expressing transformants were 
incubated with LysoTracker Red, fixed, reacted with anti-HA antibody and 
confocal images were captured on LSM510. Thirteen to 61 cells were examined 
in one to five independent experiments for each CPBF. Two representative cells 
are shown for each CPBF. Arrows heads depict LysoTracker accumulation in the 
CPBF-positive vesicles and vacuoles. Bars = 10 µm.�
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Figure 4. Binding assay of individual domains of Entamoeba histolytica cysteine protease 
binding protein family (CPBF) 1 to cysteine protease (CP)-A5.�

***� ***�

***�

 GST-fused recombinant proteins containing each prepeptidase carboxyl-terminal (PPC) 
domain (D1, 2, 3, 5 and 6) from CPBF1 were mixed with E. histolytica lysates and purified 
with glutathione-conjugated beads. The CPBF/ligand mixtures were separated by SDS–
PAGE and either stained by Coomassie Brilliant Blue staining or subjected to 
immunoblot analysis using anti-CP-A5 antibody. Note that GST-only and GST fused 
with D1 from CPBF8 were used as negative controls. D4 was not used in this assay 
because a large proportion of GST-CPBF1 D4 was degraded during production or 
purification. (A) Coomassie Brilliant Blue staining. An arrow indicates GST-fused 
CPBF1 PPC domain recombinant (CPBF1 D1-D6) and CPBF8 D1 (an irrelevant 
control) used for pull down assays. *GST control.  
(B) Immunoblot analysis. An arrow indicates CP-A5. **Non-specific bands.  
(C) Quantification of relative binding efficiency of individual prepeptidase carboxyl 
domains to CP-A5. Relative binding efficiency of each GST-prepeptidase carboxyl 
domain fusion protein to CP-A5 was expressed after normalisation against the value of the 
GST control (set to 1). S.D.s of three replicates are shown with error bars. ***Statistical 
significance (P< 0.05 by Student’s t test).�
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