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Chapter 1  

 

General Introduction 

 

1.1 Background of Research 

1.1.1 Boreal forests and larch 

    Larch species are present in all the temperate-cold zones of the northern hemisphere, 

from North America to northern Siberia, passing through Europe, mountainous China, 

and Japan (Bonan and Shugart 1989; Gower and Richards 1990). Even at the northern 

and altitudinal limits for tree growth, larches are widespread and often dominate the 

woodland zone north of evergreen-dominated boreal forests or above subalpine forests 

(Richards 1985; Richards and Bliss 1986). The widespread occurrence of larches in 

subalpine and boreal forests has given rise to the concept that the evergreen habitat is 

more advantageous in harsh environments. Therefore, larches must possess physiological 

and morphological characteristics that enable them to survive, grow, and reproduce as 

deciduous conifers in environments where evergreens normally dominate. Hence, it 

appears that larches are successfully living in what is normally considered an evergreen 

world (Gower and Richards 1990).  

    Generally, larch forests were considered as an important biome from the following 

aspects: 1) Larch forests were indispensable for land surface - atmosphere energy 

exchange as well as climatic regulating (Kelliher et al. 1997). Also, larches in northern 
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hemisphere were large carbon stock of global scale (Euskirchen et al. 2006), which were 

important natural resources for human welfare (Gunin et al. 1999; Burton et al. 2003). 2) 

Habitats of larch were vulnerable and sensitively affected by global climatic change and 

human activity. In Siberian permafrost area, larch forests were dramatically affected by 

global warming (Osawa et al. 2010). In Mongolian forest – steppe ecotone, larch forests 

were threatened by drought and artificial destruction (Tsogtbaatar 2004; Dulamsuren et 

al. 2009a). As to Japanese natural larch forests, the existence of competition species, as 

well as warm, wet climate, might lead to more risky habitats for its regeneration (Franklin 

et al. 1979; Okitsu 1999). 3) Larch is also an important plantation species which widely 

planted in Japan and Europe (Horikawa 1972; Koike et al. 2000; Hirano et al. 2003).        

    The larch forest area in Mongolia is mainly located in the northern parts of the 

country along the Russian border, forming a transition zone between the Siberian taiga 

forest and the central Asian steppe zone (Mongolian Ministry of Environment and 

Tourism 2016), mostly dominated by L. sibirica. Other needle-leaved species are Pinus 

sibirica, Pinus sylvestris, and Picea obovata. Betula platyphylla often occurs in the forest 

canopy, sometimes dominating in secondary woods (van Staalduinen 2005). In more 

southwards, the forest-steppe zone, consisting of a mosaic of patches of forest and 

grassland. Due to differences in topography, there is a differentiation of the vegetation in 

forests on the north-facing slopes and higher altitudes, and steppes on the south-slopes, 

and in valleys. Stumps of larch trees, or a parachernozem soil in a meadow steppe, are 

indicators of a former forest site as parachernozem is typical for forest, whereas 
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castanozem is typical for steppe habitats (Hilbig 1995; Mongolian Ministry of 

Environment and Tourism 2016). A clearly defined broad-leaved forest zone as in 

temperate Europe does not occur in Mongolia. In northern Mongolia, the Mongolian Altai 

and Khyangan conifer forests directly border the steppe (Mongolian Ministry of 

Environment and Tourism 2016) 

    Unlike the dry habitat of larch forest in Mongolian forest-steppe ecotone and the 

cold and dry habitat of the Siberian larch forest, natural Japanese larch (L. kaempferi) is 

mainly distributed in central Honshu (Hayashi 1951; Horikawa 1972), which has a humid 

environment (Mt. Yatsugatake, annual precipitation more than 1400 mm; Takaku et al. 

2018). Larix kaempferi forests are usually mixed with conifer species such as Tsuga 

diversifolia, Abies homolepis, A. veitchii, A. mariesii and board-leaved species such as 

Fagus crenata, Quercus crispula, Betula platyphylla, and Betula ermanii (Hayashi 1951; 

Tatewaki et al. 1965). Natural forests are commonly formed on debris of a landslide, 

collapsed slope, and/or river terrace (Maeda et al. 1978; Baba 1989).  

 

1.1.2 Mongolian Larch forests 

    Grassland in northern Mongolia and southern central Siberia primarily border on 

taiga forests of L. sibirica (Hilbig 1995; Dulamsuren et al. 2005a). Larix sibirica covers 

80% of the forested areas across Mongolia (Gunin et al. 1999; Tsogtbaatar 2004), and is 

modified by human activities (Rösch et al. 2005), but the distribution limit of this species 

is generally caused by drought (Gunin et al. 1999; Dulamsuren et al. 2008). As water 
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supply and evapotranspiration levels vary with the physiognomy of the landscape, the 

ecotone between forest and grassland is an aspect-dependent vegetation mosaic with 

forests on northern slopes and in dry valleys and grasslands on southern slopes and in 

moist valley bottoms (Dulamsuren et al. 2005a). The southern distribution limit of the 

individual tree species occurring in this ecotone and, with it, the entire forest-steppe 

border, migrates depending on the variation of precipitation and temperature (Dinesman 

et al. 1989; Gunin et al. 1999; Miehe et al. 2007). Furthermore, anthropo-zoogenic 

influences affect the position of the forest-steppe borderline (Hilbig 1995; Rösch et al. 

2005; Sankey et al. 2006). The proportion of forests within the present vegetation pattern 

of forests on north-facing slopes and grassland on south-facing slopes in Mongolia’s 

forest-steppe ecotone is not likely to increase under the present climate, but might 

decrease with increasing aridity due to global warming (Dulamsuren et al. 2009a). 

    The dynamics of the forest-steppe ecotone captured the attention of researchers. In 

Mongolia, Sankey et al. (2006) suggested that an abrupt decline in the Darhad Valley 

ecotones’ larch establishment during the 20th century coincided with increased local 

grazing pressure and regional climate variability, affecting larch regeneration. 

Dulamsuren et al. (2010b) suggested that in forest-steppe ecotones, occasional growth 

reductions were thought to have little effect on the performance of L. sibirica, whereas 

the absence of fast-growing competitors of other tree species that are either not or only 

slightly affected by gypsy moth was important. Furthermore, according to Dulamsuren et 

al. (2010a), trees in the forest interior were more severely stressed and grow more slowly 
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than trees at the forest line as a result of the recent increase in aridity. The stand density 

and probably the trees themselves in the forest interior are adapted to more moist 

conditions, whereas the trees at the forest edge have always been exposed to a more 

extreme microclimate (Dulamsuren et al. 2010b). For this reason, future climate warming 

will likely decrease the productivity of Siberian larch, thus affecting its existence within 

the forest-steppe ecotone of Mongolia (Dulamsuren et al. 2011). Other than the ecotone 

in Mongolia, ecotones in other places have also aroused the interest of many researchers.  

 

1.1.3 Siberian Larch forests 

    In northern Siberia, large areas are covered almost solely by larch, and the canopy is 

much less dense. Pine species, which can withstand a range of harsh conditions, grow in 

light, sandy soils, and other dry areas. As the boreal forest-tundra boundary is approached, 

conifers thin out to a woodland, with lichen and moss dominating the ground and trees 

become increasingly stunted. In the boreal ecotone, fire is a common disturbance (Rowe 

and Scotter 1973) and may interact with periods of favorable climate to synchronize 

recruitment events. In addition, one of the most influential characteristics of the 

environment of the boreal forest biome is the permafrost, or the perennially frozen soils 

of various thickness and spatial extent. Its considerable role in the formation of forests is 

expressed at the borderline with tundra within the West-Siberian Plain. In the taiga zone, 

L. sibirica usually only participates in the formation of mixed stands. After fires and clear 

cutting, this species is, as a rule, replaced by birch and other woody species (Abaimov et 
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al. 1998). 

 

1.1.4 Japanese Larch forests 

    Japanese larch, L. kaempferi, is the only endemic, deciduous conifer species in Japan. 

The natural distribution of this species is restricted to subalpine and montane areas in 

central Honshu (Hayashi 1951; Horikawa 1972). Natural Japanese larch forests occur as 

pioneer communities on arid and immature soils in volcanic areas, flood plains, and 

stream banks, and they form secondary communities in climax forests that have 

previously been clear cut. Japanese larch is often found in open forests, together with 

other species such as Salix bakko, A. homolepis, A. veitchii and Tsuga diversifolia, and 

sometimes forms the timberline at high elevations in the species range, such as on Mt. 

Fuji (Tatewaki et al, 1965; Numata 1974). Since it is one of the most important 

silvicultural species in Japan, artificial plantations have frequently been established in 

upper montane zones both within and outside its natural distribution range, from 

Hokkaido to central Honshu, especially since the late 1880s (Toda and Mikami 1976). 

 

1.1.5 Studies of Larch forests in Mongolia, Siberia and Japan 

    Siberian larch forests were intensively studied in respect of morphological and 

ecological features (Abaimov 2010), postfire recovery of larch forest (Zyryanova et al. 

2004), forest biomass, productivity and stand structure (Kajimoto et al. 2010), 

dendrochronology of larch forests (Vaganov and Kirdyanov 2010), etc. In Mongolian 
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forest – steppe ecotone area, several studies demonstrated the vegetation composition 

(Dulamsuren et al. 2005a), water relation in larch forests (Dulamsuren et al. 2009a), effect 

of drought and climate change (Dulamsuren et al. 2010c) and species succession after 

forest fire (Otoda et al. 2013). However, dynamics of forests in ecotones, edge effects on 

forest structure and dynamics from forest edge to the interior are not fully understand. In 

Japanese natural larch forests, studies of natural larch forest dynamics were mainly 

focused on phytosociological research and volcano areas (Tatewaki et al. 1965; Maeda et 

al. 1978; Masuzawa 1985; Nakamura 1985; Maruta 1996) and research of mountainous 

area with different types of disturbance are not enough. 

 

1.1.6 Larch species and systematics in Mongolia, Siberia and Japan 

    Larix tree species spread out at high latitudes after the last glacial period (LePage and 

Basinger 1995). L. sibirica and L. gmelinii distributed in northeastern Eurasian continent, 

whereas L. kaempferi only distributed in Honshu island (Nagamitsu and Tomaru 2015). 

Semerikov and Lascoux (1999) indicated L. sibirica is genetically close to L. gmelinii var. 

olgensis, that was also revealed by investigation of Larix phylogenies (Semerikov et al. 

2003). On the other hand, L. gmelinii was also distributed in Hokkaido and Tohoku region 

during the last glacial period, but it was extinct from these areas with the warming after 

the last glacial period (Nagamitsu and Tomaru 2015). In addition, Japanese larch (L. 

kaempferi) was isolated at the southern limit of the distribution. Phylogeographic studies 

of this alpine plants have revealed the history that such a distribution pattern had been 
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formed in the late Pleistocene glacial, interglacial cycles (Senni 2006). Moreover, L. 

kaempferi was closest to L. gmelinii distributed in Sakhalin, Chishima and Korean 

Peninsula, which were connect to Japanese archipelago by land bridge during the glacial 

period (Polezhaeva et al. 2010). Therefore, L. kaempferi was considered to have 

differentiated from L. gmelinii. 

 

1.2 Purpose of Research 

    From the above, L. sibirica, L. gmelinii and L. kaempferi were genetically close and 

important in northern hemisphere. Although each of three species had its own 

geographical and climatic condition, for the overall understanding, comparative research 

is necessary. Generally, Larix in Eurasian continent were continuously distributed in cold 

and relatively drought environment, and the main disturbance factor is forest fire. 

However, Japanese Larix showed a completely different pattern with isolated distribution 

and warm, humid climate. This study focused on a representative drought habitat 

(Mongolian forest – steppe ecotone) and a representative warm, humid habitat (central 

Japanese mountainous area) of Larix. In order to improve the comprehensive 

understanding of Larix species in Northeastern Asia, comparative study was considered 

effective and necessary.  

    My study is carried out in larch forest on the southern fringe of a Mongolian boreal 

forest area adjacent to steppe, as well as in the mountainous region of central Honshu 

which is typical natural Japanese larch habitat. Specifically, I compared the climatic 
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distribution of L. sibirica, L. gmelinii (Northeast Asia) and L. kaempferi (Japan), also 

estimated the climatic and topography variables which influence the distribution of L. 

kaempferi in Japan (Chapter 3); I clarified the forest dynamics of a L. sibirica forest and 

assessed the disturbance regime in forest-steppe ecotone in northern Mongolia (Chapter 

4); I also studied and described the forest dynamics of a natural L. kaempferi forest in 

central Japan (Chapter 5). I conclude with a discussion on the comparison of forest 

dynamics, disturbance regime and regeneration of larch forests between Japan and 

Mongolia and additionally discuss the conservation issues of larch forests under current 

conditions in the two countries. 
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Chapter 2  

 

Status of research area 

 

2.1 Study site and species in Mongolia 

     Mongolian forest-grassland is semiarid and highly continental, with a subzero 

annual mean temperature and precipitation between 100 and 400 mm (Chenlemuge et al. 

2013). My research areas were in Gorkhi Terelj National Park which near the capital city 

(Figure 2.1), Ulaanbaatar, the annual precipitation of the Gorkhi Terelj National Park was 

270 mm (estimated using the Worldclim data set, Hijmans et al. 2005). 

    Northern Mongolia represents the only area where central Siberian taiga vegetation 

directly borders on the open steppe. This area is of special botanical interest as central 

Siberia has a highly diverse relief (Rylkov 1996) and because the taiga is more diverse in 

tree species than that of taiga vegetation in other parts of Siberia (Dulamsuren et al. 

2005a). The latter is because the western Siberian dark taiga forests dominated by Picea 

obovata, Abies sibirica, Pinus sibirica, and Larix sibirica (Knystautas 1987) meet the 

eastern Siberian light taiga forests made up by Betula platyphylla and related species as 

well as by Larix spp. and Pinus sylvestris (Ermakov et al. 2002). The genus Larix is 

represented by L. sibirica in the Khentey Mountains and in western Siberia but is replaced 

by L. gmelinii in the ultra-continental regions east and northeast of Lake Baikal 

(Dulamsuren et al. 2005a). The “double” borderline situation makes the Khentey 
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Mountains a unique place for flora and vegetation. Here the transitional zone between 

western and eastern Siberian taiga forests passes into the Mongolian Daurian forest steppe 

within another transitional zone. 

    Larix sibirica (Siberian larch) is a cold-tolerant gymnosperm, coniferous, deciduous 

tree species in taiga forests, which serves as the main stand-forming species in montane 

forests and sometimes in river valleys in the lower montane belt, and is also the dominant 

forest species, occupying a wide range of sites stretching from the valley floor to the 

coniferous treeline (James 2011). In addition, Betula platyphylla (white birch) and Pinus 

sibirica (Siberian Pine) were also found in this study. 

 

2.2 Study site and species in Japan 

    The climate of Japan is an example of a temperate monsoon region on the east coast 

of continents in middle latitudes (Ohsawa 1990). However, the country extends over 22 

degrees of latitude, so the climate shows wide variation from region to region. In 

considering the distribution of plants in Japan, the climatic differences between the 

longitudinal variation from the Japan and Pacific sea sides cannot be ignored (Horikawa 

1972). This difference has produced two groups of plants characterized 

phytogeographically as the Japan sea (or inner Japan) side and the Pacific (or outer Japan) 

zones. In winter, the dry wind blowing from the Asian continent picks up quantities of 

moisture when passing over the Japan sea and brings much precipitation in the form of 

storms and snow to the Japan sea side. In contrast, coastal areas on the Pacific side 
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experience fine weather during winter, being in a rain shadow. In summer, damp monsoon 

winds blow across the whole of Japan from the Pacific, bringing considerable rainfall 

throughout the land. Particularly high precipitation is recorded in the southwestern Pacific 

coast areas. On the other hand, Hokkaido, the eastern half of Tohoku, and the inland sea 

area experience lower precipitation throughout the year. Ocean currents, both warm from 

the southwest and cold from the northeast, also greatly influence the distribution of plants 

in Japan, both climatologically and mechanically. 

    The Japanese islands are composed primarily of high and rugged mountains and 

contain many volcanoes. The highest mountains of nonvolcanic origin are found in the 

central part of Honshu, with many peaks over 3000 m in height. Low land areas make up 

only 12.5% of the total land area and they consist mostly of eroded deposits from 

mountainous areas (Horikawa 1972). Yatsugatake, a volcanic group of more than ten 

inactive volcanoes, is located across the border of Yamanashi and Nagano Prefectures in 

central Honshu with the highest peak named Mt. Aka (2899 m) (Tatewaki et al. 1965; 

Kozu and Minami 2001). Plantations of L. kaempferi are mainly distributed at the foot of 

mountain, while natural individuals are distributed in subalpine conifer forests. Research 

plots in this study were established in natural L. kaempferi forests in the southern part of 

Mt. Yatsugatake, Nagano, and Yamanashi prefecture (Figure 2.2), which have subalpine-

alpine characteristics and are steeper than the more northern sections. The annual mean 

temperature of study area was 6.7 °C (−5.3 °C in January; 19.2 °C in August) with annual 

precipitation of 1426.4 mm (www.worldclim.org; Hijmans et al., 2005; Takaku et al., 
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2018). 

    Japan has a large variety of climatic conditions and shows remarkable complexity of 

topographic and edaphic conditions. This situation has enabled Japan to support a 

diversity of vegetation and a very rich flora with complex patterns of plant distribution 

(Horikawa 1972). At the climax of subalpine conifer forest (Abies-Picea formation), the 

subalpine or northern regions are covered with forests consisting of evergreen conifers 

such as Abies veitchii, A. mariesii, A. sachalinensis, Picea jezoenesis, Picea jezoenesis 

var. hondoensis, and Tsuga diversifolia. On the forest floor, Pyrola secunda, Cacalia 

auriculata var. kamtschatica, C. adenostyloides, and Dryopteris austriaca are common. 

Bryophytes occur in abundance, such as Dicranum majus, Mnium hornum, Pleurozium 

schreberi, Hylocomium splendens, Scapania bolanderi, and Nipponolejeunea subalpina.  

    Larix kaempferi (Japanese larch), is a species of larch native to Japan, predominantly 

in the mountains of Chubu and Kanto regions in central Honshu (Hayashi 1951; Horikawa, 

1972; Farjon 1990). It is a medium-sized to large deciduous, coniferous tree reaching 20–

40 m tall, with a trunk of up to 1 m in diameter. The crown is broad conic; both the main 

branches and the side branches are level, and the side branches only rarely droop.  

 

 

 

 

 



14 

 

 

 

Figure 2.1 Map of research area in Mongolian forest – steppe ecotone area 
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Figure 2.2 Map of research area in southern Mt. Yatsugatake, Japan.  

Map was modified from the map of Geospatial Information Authority of Japan (GSI) 
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Chapter 4  

 

Regeneration of Larix sibirica boreal forest patches in the forest - steppe ecotone in 

Gorkhi Terelj National Park, Mongolia 

 

4.1 Introduction 

    Boreal forest, the largest terrestrial biome composed of coniferous forests, covers ca. 

14 million km2, accounting for 32% of the world forest cover (Burton et al. 2003). Intact 

forests still occupy a large proportion of boreal forest (Aksenov et al. 2002) and serve as 

an important natural resource for promoting human welfare (Zasada et al. 1997; Gunin et 

al. 1999; Burton et al. 2003; Tsogtbaatar 2004). In the Mongolian boreal forest area, the 

ecotone between the Central Asian steppe and southernmost Siberian boreal forest is 

mainly dominated by larch (Dulamsuren et al. 2016; Sankey et al. 2006), and this area is 

of great importance for the protection of water and soil quality and water flow 

(Tsogtbaatar 2004). According to previous estimations, Siberian larch (Larix sibirica) 

forests constitute almost 80% of the total boreal forest area and 84% of the total 

coniferous forest area of Mongolia (Dulamsuren et al. 2016; Tsogtbaatar 2004). Other 

common conifer species include Pinus sibirica, Pinus sylvestris L., Picea obovata, and 

Abies sibirica, coniferous forests have been replaced by Betula platyphylla and Populus 

tremula in disturbed areas (Dulamsuren et al. 2016). 

    The boreal forests area of Mongolia neighbors temperate grasslands (i.e., steppe) on 
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the southern border where forest distribution is limited by less precipitation (Chenlemuge 

et al. 2013). There are fragmented boreal forests (i.e., forest patches) surrounded by 

transition zones from the steppe, the forest edge, to the forest interior (i.e., forest-steppe 

ecotone). Typically, the forest-steppe ecotone in Mongolia consists of aspect-dependent 

vegetation mosaics of boreal forests at wetter sites (i.e., north-facing slopes of 

mountainous regions) and grasslands at drier sites (i.e., south-facing slopes and dry 

valleys) (Chytrý et al. 2008; de Vries et al. 1996; Dulamsuren et al. 2005a).  

    Based on physiological studies of water relations and the photosynthetic performance 

of L. sibirica, Dulamsuren et al. (2009a) suggested that drought serves as the major factor 

leading to the forest-steppe ecotone of Mongolia and that L. sibirica does not have the 

potential to encroach on the steppe under the current climate conditions. Limited reports 

have described differences in forest structure between the forest edge and forest interior 

in Mongolia (Dulamsuren et al. 2016) and Kazakhstan (Dulamsuren et al. 2013). 

Dulamsuren et al. (2009a) reported that at sites near the forest edge L. sibirica exhibited 

increased tree ring growth, higher stomatal conductance and higher shoot water potential 

than individuals in the forest interior. In addition to the topography (i.e., slope aspect), 

disturbance regime, such as the frequency and intensity of forest fire, is also a primary 

factor that forms distribution patterns in forests and affects forest structure and species 

composition in Mongolia (Johnson et al. 2009; Otoda et al. 2013; Tsogtbaatar 2004). 

Otoda et al. (2013) identified forest stand age structures in a northern Mongolian boreal 

forest and suggested that successional change from L. sibirica to P. sibirica forest 
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occurred after forest fire. For a comprehensive understanding of the maintenance 

mechanism of the forest-steppe ecotone in Mongolia, integrated studies on the forest 

dynamics and ecotone formed by topographical factors (e.g., slope aspect) seem to be 

effective. In the North American forest-grassland ecotone, Coop and Givnish (2007) 

studied the mean tree height, girth, and basal area (BA), which indicated no increasing 

tendency with distance into the forest from the treeline; however, tree seedling density 

increased strikingly in the forest interior with distance from the forest edge. 

    Recently, the Mongolian forest-steppe ecotone has been severely affected by climate 

change and human disturbance, and future declines of the forests caused by climate 

change have been suggested (Dulamsuren et al. 2009a, 2010c). Therefore, adequate forest 

management of the forest-steppe ecotone requires more knowledge about forest 

regeneration and forest patch vulnerability. However, studies on the dynamics of forest 

patches in forest-steppe ecotones and/or edge effects on forest structure and dynamics 

from the forest edge to the forest interior are not sufficient. In the present, I aim to clarify 

the dynamics of forest patches in the Mongolian forest-steppe ecotone and to examine 

how forest structure changes with distance from the forest edge to the forest interior on a 

northern slope. 

 

4.2 Materials and methods 

4.2.1 Study area 
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    All measurements were conducted around the southwest the border of Gorkhi Terelj 

National Park (2,864 km2 in area), which is located 54 km Northeast of Ulaanbaatar, Tov 

Province (Figure 4.1). The Terelj region was officially classified as a national park in 

1993 (lUCN 1998). The park covers a large, diverse landscape comprising mostly 

mountains (i.e., the southern parts of the Khentii Range), river valleys, wetlands, forests, 

rocky summits and grasslands. Gorkhi Terelj National Park is mainly used for tourism, 

and grazing was found sporadically around the town of Terelj (Hayford 2010). The 

representative forest-steppe ecotone landscape is distributed in the mountainous area of 

Gorkhi Terelj National Park, i.e., forest patches are distributed on north-facing slopes, 

whereas steppe occurs on south-facing slopes and lower valleys. The Terelj area is 

characterized by continuous and discontinuous permafrost on the northern slopes 

(Battogtokh et al. 2006), which is assumed to be a water source for trees growing in forest 

patches (north-facing slopes) but not for trees growing in steppe (south-facing slopes) 

(Sugimoto et al. 2002; Etzelmüller et al. 2006) (Figure 4.2; Figure 4.3). 

 

4.2.2 Climatic condition 

    The climate of Gorkhi Terelj National Park is classified as subarctic climate (Dwc 

type based on the Köppen classification), with dry winters and cold summers (Peel et al. 

2007). According to the estimation from the WorldClim dataset 

(http://www.worldclim.org; Hijmans et al. 2005), the mean temperature in the study area 

is -2.3°C yr-1 (January: -23.1°C; July: 16.4°C). The average precipitation is 286 mm yr-1, 
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and approximately 83.6% of the precipitation is concentrated between June and 

September.   

 

4.2.3 Field survey 

    The study sites (47°54′21.37″-47°59′44.37″ N, 107°19’49.07″-107°27′17.02″ E; 

1660-2049 m a.s.l.; Figure 4.2) were in the forest-steppe ecotone in the mountainous area. 

Several burned conifer stumps indicate that forest fires have previously burned in the 

study area. However, historical information on forest fires or other disturbance data were 

not available for the study site. 

    Fieldwork was carried out in July and September for three consecutive years (2013, 

2014 and 2015). I selected a total of five forest-steppe ecotones with a variety of structures 

in forest patches as the sampling sites (labeled T1-T5). T1 and T3 were composed of 

smaller L. sibirica trees, T2 and T4 were composed of larger L. sibirica trees, and T5 was 

composed of larger P. sibirica and L. sibirica trees. All sites were subject to limited 

anthropogenic influence, and no trees (including the dead ones) were cut, logged or 

removed. 

    To demonstrate the changes in forest structure and species composition with distance 

from the forest edge, I defined treeline as a borderline separating the steppe and forest 

edge with > 50% tree stand cover (Coop and Givnish 2007). Line transects, which crossed 

the treeline between forest and steppe, were established at the five sites. Additionally, 20 

m × 5 m quadrats were established at 0 m, 5 m, 10 m, 25 m and 50 m on both sides of the 
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treeline; thus, meaning quadrats were located equidistantly in the forest side and on the 

steppe side of the treeline. The long side (20 m in length) of each quadrat was 

perpendicular to the transect. The forest patch is represented by the stand of the line 

transect on the forest side. Because of the wider forest patch in T4 and T5 than in T1 – 

T3, I added additional quadrats to both sides at 100 m in T4 and T5 (Figure 4.4 a, b). 

    All trees were categorized into three classes: > 130 cm in height, 15-130 cm in height 

(i.e., saplings) and < 15 cm in height (i.e., seedlings). I measured the diameter at breast 

height (DBH) of trees > 130 cm in height, and the heights of the saplings were measured 

in each 100-m2 quadrat. The seedlings of tall tree species (Larix sibirica, Pinus sibirica 

and Betula platyphylla) were counted in five 1-m2 subquadrats established at regular 

intervals within the 5-m, 25-m, 50-m, and 100-m (only in T4 and T5) quadrats on either 

side of the treeline (Figure 4.4 b). 

    The number and width of tree rings of trees with DBH ≥ 5 cm were measured in all 

quadrats except in the quadrats at 100 m (Figure 4.5). The sampling numbers in each 

quadrat depended on the tree density (DBH ≥ 5 cm), and the largest tree in each quadrat 

was always sampled to estimate the stand age. (1) If the number of trees in a quadrat (20 

m × 5 m) was less than 10, all trees were measured. (2) If the number of trees in a quadrat 

was between 10 and 30 trees, all trees were measured in the half of the evenly divided 

quadrat (10 × 5 m) that included the largest tree. (3) If the number of trees was greater 

than 30 trees, all trees were measured in one of four evenly divided quadrats (5 m × 5 m), 

i.e., whichever section included the largest tree. Cores were collected by using an 
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increment borer from each tree at 1.3 m in height. After the processes of air-drying, the 

cores were sanded and tree rings were counted and measured using a 0.01-mm binocular 

microscope with a sliding stage. Core samples were collected in September 2014 (T1, T2, 

T3, T4) and September 2015 (T5). I used the estimated age in 2014 for analysis. 

 

4.2.4 Boundary – line dendroecological release criteria 

    I quantified the forest disturbance magnitude of each quadrats from forest edge to 

interior in each transect by using the boundary – line dendroecological release criteria 

(Black and Abrams 2003), which are considered more flexible for evaluating disturbance 

histories and can be used to estimate disturbance magnitude precisely and fundamentally. 

A feature of this approach is to analyze the relationship between tree ring release response 

(percent growth change) and tree ring growth prior to release (prior growth) without 

considering the tree age, radius or crown class (Black and Abrams 2003). The value of 

percent growth change was calculated according to the method of Nowacki and Abrams 

(1997): 

                  Percent growth change = (M2 - M1) / M1               (1) 

where M1 is the mean growth over the prior 10 years and M2 is the mean growth over 

the subsequent 10 years. 

    I used the definition of prior growth described by Black and Abrams (2003), in which 

prior growth is equal to mean growth over the 10 years prior to each tree ring. Both the 
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percent growth change and the prior growth were analyzed for each year of all sampled 

cores (tree ring series) of L. sibirica. In this study, the percent growth change in relation 

to the prior growth of tree ring series within 0 – 15 m (0 m, 5 m and 10 m quadrats), 25 – 

30 m (25 m quadrat) and 50 – 55 m (50 m quadrat) from the treeline to the interior were 

plotted. In this analysis, I integrated three quadrats near the forest edge (0 m, 5 m and 10 

m quadrats) because the sample size (no. of trees) in the forefront of the forest edge was 

too small. 

    In each of the transects, the percent growth change in relation to prior growth of all 

tree ring series was applied to construct a boundary line, which was defined as the upper 

threshold of tree ring release response through the range of prior growth (Black and 

Abrams 2003). In this study, I constructed the boundary line by following the method of 

Black and Abrams (2003). First, the mean value of top 10 percent growth change points 

in each 0.5 mm segment of prior growth was selected. Then I determined the boundary 

line using regression analysis of these selected points. In this regression analysis, I 

compared liner, power, exponential and logarithmic regression and selected a regression 

line with the highest R2 value as the boundary line. 

    Furthermore, percent growth change values greater than 10% were reserved to 

identify the growth pulse (Nowacki and Abrams 1997; Black and Abrams 2003). Only 

the maximum percent growth change values among tree ring series in the same year were 

selected and measured as maximum potential using the boundary line. 
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    Similar to Black and Abrams (2003), I quantified and classified releases as “not a 

release”, “moderate release” and “major release” based on relative value to the boundary 

line. I defined percent growth change values (release thresholds) no less than 50% of the 

boundary line as “major”, those between 20% and 49.9% of the boundary line as 

“moderate” and those less than 20% of the boundary line as “not a release”. 

 

4.2.5 Data analysis 

    I used the generalized linear model (GLM; “glm” function) approach with a log-

linkage and Poisson distribution to determine the association between the maximum tree 

age in each quadrat as an index value of stand age and tree basal areas of all measured 

trees, L. sibirica and P. sibirica in each of the quadrat. I also used the generalized linear 

mixed model (GLMM; “glmer” function in package “lme4”) approach with Poisson 

distribution and log-linkage to assess the effect of distance from the treeline to the forest 

interior on the forest structures. I used the distance from the treeline to the forest interior 

as an independent variable, and the tree basal area, maximum age, number of trees per 

quadrat, sapling number per quadrat and seedling number per quadrat were the dependent 

variables; finally, the study transects were included as a random effect factor. All 

statistical analyses were performed using R 3.4.0 (R Development Core Team 2017). 

 

4.3 Results 

4.3.1 Overview of forest – steppe ecotone 
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    Tree densities and basal areas (BA) were significantly lower on the steppe than on 

the forest patch (T4 and T5 have one more quadrat in 100 m than other plots; steppe tree 

density: 0-602.8 stems ha-1, BA: 0-11.3 m2 ha-1; forest tree density: 1117-3164 stems ha-

1, BA: 17.2-59.4 m2 ha-1; P < 0.01, Mann-Whitney U test). Overall, L. sibirica was the 

single dominant species (87.0%-100.0% of total tree density and 95.0%-100.0% of total 

BA) in forest patches, with the exception of T5, where L. sibirica was mixed with P. 

sibirica (relative density: 61.9%, relative BA: 43.7%) (Table 4.1). Living Betula 

platyphylla trees were rarely found in only T1 and T4. The maximum tree ages (an 

indicator value of stand age) were 48, 156, 185, 222, and 244 years in T3, T1, T2, T5 and 

T4, respectively (Table S1). 

 

4.3.2 Tree size distribution 

    DBH size distributions in each of the forest patches were sorted by the increasing 

order of maximum age (Figure 4.6). In all transects, the DBH values of living trees were 

significantly larger than those of dead trees (P < 0.05, Mann-Whitney U test). In T3, 

which had the lowest maximum age (48 years), only L. sibirica was present, and both 

living and dead trees showed unimodal size distributions (Figure 4a, f); additionally, the 

peak living tree distribution was in the 8-10-cm class and was larger than that of dead 

trees. All dead trees were smaller than 8 cm DBH. Similar left-leaning unimodal size 

distributions of both living and dead trees were found in T1 (maximum age: 156 years, 

Figure 4.6 b, g). Additionally, 89.8% of the dead L. sibirica trees were concentrated 
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under 10 cm DBH, and the peak occurred in the 2-4-cm class, which was much higher 

than the peak density of living trees (4-6-cm class). In the transects with higher maximum 

ages (T2: 185 years, T5: 222 years and T4: 244 years), the living trees had a bimodal 

distribution (Figure 4.6 c, d, e). In T2, L. sibirica was the only living tree species with 

the peak in the 2-4-cm class, which was larger than that of dead trees. P. sibirica occurred 

in the oldest two transects (i.e., T4 and T5, Figure 4.6 d, e, i, j). 

 

4.3.3 Relationship between tree quadrat age and tree size 

    The relationships between the maximum core age and the BA of L. sibirica and P. 

sibirica in each quadrat are shown in Figure 4.7. L. sibirica occurred in all quadrats, but 

P. sibirica only occurred in quadrats that had maximum core ages over 100 years old. In 

addition, the basal areas of P. sibirica (0.0-25.1 m2 ha-1) were lower than those of L. 

sibirica (5.0-95.5 m2 ha-1) in all quadrats. For L. sibirica and P. sibirica, the basal area of 

trees increased with the increase in maximum quadrat age (Table 4.2). 

 

4.3.4 Spatial distribution of tree age 

    The spatial distribution of sampled trees’ age is shown in Figure 4.8. In transects 

with a relative younger maximum age (T3 and T1), the ages of L. sibirica showed 

concentrated distribution like cohorts. The ranges of ages in T3 and in T1 were 26 -48 

and 56 - 156, respectively. In T2, cohort - like age distributions of L. sibirica were present 

in quadrats from 0 to 25 m, whereas age distribution was divided into two sections 
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(younger and older individuals) in 50 m quadrats. The range of ages in quadrats from 0 

to 25 m in T2 was 32 - 58. The ranges of lower age sections and those of higher age 

sections in 50 m quadrat of T2 were 45 - 64 and 180 - 185, respectively. In T5, age 

distributions of trees were generally distributed in two sections. The range of the lower 

age section and that of the higher age section from 0 to 50 m quadrats in T5 was 35 - 76 

and 126 - 222, respectively. In addition, P. sibirica was more abundant in the lower age 

section of T5. In transects with the oldest maximum age (T4), unimodal age distributions 

of L. sibirica were present in quadrats from 0 to 10 m (42 - 80 in range of ages). However, 

quadrats in 25 and 50m in T4 did not present younger cohort of L. sibirica (section of 

younger individuals). Two younger P. sibirica individuals (age of 66 and 64) were found 

in 25 and 50 m quadrats. Age distributions of L. sibirica in 25 m and 50m quadrats were 

201 - 244 in range of ages. Moreover, the growth curve of all sampled trees also showed 

cohort like regeneration of L. sibirica individuals in all five transects (Figure 4.9).  

 

4.3.5 Results of Boundary – line dendroecological release criteria 

    The total percent growth change and prior growth of L. sibirica in 5 transects, 

included 10594 years of growth and were used to construct the boundary line of each 

transect (Figure 4.12). For all transects, a negative exponential regression curve was 

calculated with the highest R2 value to be selected as the boundary line. 

    To distinguish severe disturbance events from mild events, I subdivided releases into 

"moderate" and "major" categories based on percent distance to the boundary line (see 
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methods). Major releases would lie closest to the boundary line and represent those events 

intense enough to elicit the largest possible growth pulses (Figure 4.10).  

    Generally, the proportion of release (moderate and major) was lower in T5 and T4 

than in the other three transects with younger maximum ages (Figure 4.11). The 

proportion of release decreased with increasing distance from forest edge to the interior 

in T2 and T4. Additionally, major release percentages in T1 and T2 decreased with 

distance. However, lower proportion of major release in near the forest edge was observed 

in T3 (Figure 4.11). 

 

4.3.6 Change in forest structure with distance 

    Based on the GLMM results (Table 4.3, Figure 4.13) and distribution from edge to 

the forest interior (data in steppe sides were not included in the GLMM results), the basal 

area and maximum age of both L. sibirica and P. sibirica increased with the increase in 

distance from the forest edge. The number of L. sibirica trees also increased with distance 

from the forest edge. Saplings of L. sibirica only occurred in T1, and I found no 

association between the number of saplings and distance from the forest edge. In contrast, 

saplings of P. sibirica occurred only in the older quadrats in T5 and T4 and increased 

with the increase in distance from the forest edge. Seedlings of L. sibirica occurred in all 

transects except T5, and they generally increased with the increase in distance from the 

forest edge; however, seedlings of P. sibirica were found only in T5 and T4 and had no 

relationship with distance. 
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4.4 Discussion 

4.4.1 Dynamics of forest patches in the Mongolian forest-steppe ecotone 

    The age and DBH distribution in each of the quadrats in the younger transects (T1, 

T2, T3) suggest that most of the L. sibirica of younger cohorts regenerated after the recent 

disturbance (Figures 4.6, Figure 4.8). However, ages of younger cohorts varied among 

transects (Figure 4.8). This suggested that forest fires had occurred continuously in this 

study area and small or moderate scale (quadrat or transect scale) regeneration occurred 

after each disturbance. Many standing dead trees of smaller sizes (Figure 4.6) suggested 

effects of density on the tree community, which seems to be caused by an intensive stand-

replacing disturbance. Angelstam and Kuuluvainen (2004) reported that severe self – 

thinning and competition occurred in young boreal forests. In addition, the bimodal size 

distribution and discontinuous age distribution in the older stands (T4, T5) indicated 

multiple regeneration, including recent regeneration (Figures 4.6, Figure 4.8). The recent 

regeneration of young trees may have been caused by forest fire (Otoda. et al 2013; 

Tsogtbaatar 2004). Fire disturbance frequently occurs in Mongolian boreal forests 

(Tsogtbaatar 2004; Nyamjav et al. 2007; Johnson et al. 2009). In my transects, many dead 

stumps with remnants of fire were observed (Li et al. 2019). Frequent fire disturbances 

seem to have important roles in boreal forest regeneration (Lavoie and Sirois 1998; 

Harper et al. 2002; Johnstone et al. 2004; Angelstam and Kuuluvainen 2004; Johnstone 

et al. 2006) and in the Mongolian forest-steppe ecotone (Johnson et al. 2009; Otoda et al. 
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2013). A multi-aged stand structure is also common in Siberian larch forests (Bondarev 

1997). Bondarev (1997) noted that a multi-aged pattern reflected severe previous forest 

fire disturbances within a stand. The older age sections of T5 and T4 (Figure 4.8) showed 

wider range of age than T2. This age structure does not support simultaneous regeneration 

after an intensive disturbance. In addition, the results of boundary line criteria (Figure 

4.11) showed a lower contribution of intensive disturbances (moderate and major release) 

in T5 and T4. Angelstam and Kuuluvainen (2004) suggested that intensive and large-

scale disturbance, and low intensive and small-scale disturbance, such as gap creation in 

the canopy layer, might have complementary effects in European boreal forests. As in 

European boreal forests, the L. sibirica boreal forest patches in Gorkhi Terelj National 

Park seems to be maintained by both the high and low intensive disturbances.  

    Our results indicated that P. sibirica was more common on transects where the oldest 

trees were found (T4, T5) and that the BA values of L. sibirica and P. sibirica were 

positively correlated with the maximum age of the quadrat (Figures 4.8, Figure 4.13, 

Table 4.2); these results demonstrated that P. sibirica regenerated only in relatively 

mature stands with long large - scale disturbance intervals, such as those caused by forest 

fire, which was similar to the conclusions of Otoda et al. (2013). In the boreal forests of 

Mongolia and Siberia, L. sibirica and P. sibirica are considered as pioneer and late 

successional species, respectively (Otoda et al. 2013; Schulze et al. 2005; Shorohova et 

al. 2009). Our results suggested that succession from L. sibirica to P. sibirica occurred in 

the Mongolian forest-steppe ecotone. This change seems to be owing to differences in 
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seedling shade tolerance and soil condition. Larix sibirica was initially established after 

disturbance, as Larix species prefer disturbed areas with high light and less soil organic 

matter, as well as lower competition conditions (Tanaka et al. 2008; Zhu et al. 2008). On 

the forest floor in T1, T2, and T3 (Figure 4.13), L. sibirica seedlings were found; however, 

few saplings were found. It is possible that the seedlings cannot develop to saplings 

because of shade intolerance even if they can germinate under a closed canopy. In contrast, 

late successional species, such as Pinus species, can regenerate under low light conditions 

and on soil with a thick organic layer with decayed stumps and logs (Kuuluvainen and 

Juntunen 1998), and the regeneration of P. sibirica was continuous for over 100 years 

(Otoda et al. 2013). Thus, differences in shade tolerance and soil conditions, i.e., the thick 

soil organic layer, seem to be one explanation for the observed successional change. 

 

4.4.2 Change in forest structure from forest edge to interior 

    The GLMM results showed there were significant effects of distance from the forest 

edge on the forest structure (Table 4.3). In general, the total BA and the maximum age 

(used as an indicator value of stand age) increased with distance from the forest edge 

(Figure 4.13, Table 4.3). Moreover, the results of boundary line criteria (Figure 4.10, 

Figure 4.11) showed a generally decreasing trend of moderate and major releases from 

the forest edge to forest interior in T1, T2 and T4, although ratio of major release in 0 - 

15m quadrat was the lowest in T3 and there was no clear tendency in T5. Therefore, the 

spatial pattern from forest edge to interior seems to be caused by the changes in the 
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disturbance regime with distance from forest edge. Unlike other transects, a lower 

proportion of major release near the forest edge was observed in T3 (Figure 4.11). Some 

disturbances might have occurred exceptionally in forest interior in T3. 

    The relationship between edge effect and disturbance regime of forest fire has been 

examined in several fragmented forests. In tropical Amazonian fragmented forest, forest 

edges were considered to exhibit dry and fire - prone conditions (Laurance and 

Williamson 2001). Most forest fires were associated with forest edges, and the majority 

of burned forests occurred near forest edges (Gascon et al. 2000; Cochrane 2001; 

Armenteras et al. 2013) and were less frequent with distance from the forest edge 

(Cochrane 2001). Additionally, in both tropical (Murcia 1995) and boreal (Harper et al. 

2014) forests, forest fires near the forest edge led to higher tree mortality than in the forest 

interior. According to these studies, the undeveloped forest structure with smaller BA and 

younger maximum age near the forest edge in our study site may be owing to more 

frequent and/or intensive disturbance caused by forest fires. 

    Abiotic environmental conditions also varied in the forest-steppe ecotone. Lower air 

and soil moisture (Kapos 1989; Matlack 1993), and higher vapor pressure deficit (VPD), 

air temperature, and light conditions (photosynthetically active radiation) (Kapos 1989; 

Williams-Linera 1990; Matlack 1993) at the forest edge were reported. The drier 

conditions (Kapos 1989; Matlack 1993) at the forest edge, combined with the south-

facing slopes being drier than the north-facing slopes owing to lower exposure to solar 

radiation (Murcia 1995; Matlack 1993), may cause more frequent forest fires at the forest 
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edge. However, the physiological stress experienced by tree individuals does not simply 

change with distance from the forest edge. Dulamsuren et al. (2009a) reported that trees 

of L. sibirica in forest-steppe ecotone frequently suffered from drought stress, whereas L. 

sibirica trees grew better at the forest edge than in the forest interior. This decline in 

growth in the forest interior is possibly owing to a higher tree density in the forest interior 

that was related to both light and water stress induced by competition among tree 

individuals.  

    The increase in BA and number of P. sibirica saplings (Table 4.3, Figure 4.13) 

suggested that succession from L. sibirica to P. sibirica was more advanced in the forest 

interior than forest edge. This also seemed to reflect more sufficient recovery times for 

the seed dispersal and establishment of the late successional P. sibirica after disturbance 

in the forest interior. Furthermore, the density of seedlings and saplings of P. sibirica and 

the density of seedlings of L. sibirica increased with increasing distance from the forest 

edge to the forest interior. These results might be caused by the gradient of environmental 

conditions on the forest floor from the forest edge to the forest interior. Drought stress is 

more likely to affect the seedlings of late successional conifers (Calvo et al. 2008), 

especially in early spring (Berg and Chapin 1994). To examine the effects of 

environmental conditions, such as light and soil water on seedling establishment of L. 

sibirica and P. sibirica, further study is necessary.  

    Our study suggested multiple regeneration induced by high and low intensive 

disturbances and the changes in forest structure and species composition with distance 
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from the forest edge in the L. sibirica boreal forest patches in the forest-steppe ecotone in 

Gorkhi Terelj National Park by analyzing two spatial scales: transects and quadrats within 

transects. The diverse forest structure in the forest-steppe ecotone is possibly maintained 

by severe climatic conditions for trees (Dulamsuren et al. 2009b); topographical factors 

(Dulamsuren et al. 2005b); and disturbance regimes including intensive disturbances, 

such as fire (Otoda et al. 2013) and the higher susceptibility to disturbance at the forest 

edge. 
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Figure 4.1 The location of Gorkhi Terelj National Park and the five transects established 

in this study. 
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Figure 4.2 Slope aspect-dependent forest-steppe ecotone and transects applied in this 

study 
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Figure 4.3 Typical landscape of Larix forest – steppe ecotone in Terelj National Park, 

Mongolia 
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Figure 4.4 General view of each transect (unit: m) 

 

(a) Transects were established across the treeline and extended to both forest and steppe 

slope; 100-m2 quadrats (5 m × 20 m) were established on forest and steppe sides at 0 

m, 5 m, 10 m, 25 m, 50 m and 100 m (only T4 and T5). 

(b) The long side of each quadrat was perpendicularly bisected by the transect; thus, five 

1-m2 sub-quadrats were evenly distributed in one quadrat. 
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Figure 4.5 Main tree species in forest – steppe ecotone area, Larix sibirica and Pinus 

sibirica 
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Figure 4.6 DBH size distributions of all tree species (> 130 cm in height) in each of the 

five forest patches (living trees: a-e, dead trees: f-j) with 2-cm classes sorted in increasing 

order of maximum age of quadrat. 

Ls: Larix sibirica, Ps: Pinus sibirica, Bp: Betula platyphylla. Number of trees is shown 

beside tree species name. T4 and T5 have one more quadrat in 100 m than other 

transects. 
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Figure 4.7 Relatinship between maximum core age and basal area (BA) for the two main 

tree species, Larix sibirica (Ls) and Pinus sibirica (Ps), in each quadrat. 
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Figure 4.8 Core age distributions of L. sibirica and P. sibirica (> 130 cm in height) in 

each of the five forest patches with 10-year classes sorted in increasing order of maximum 

age of quadrat.  
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Figure 4.13 Relationship between distance and basal area, maximum age, number of trees, 

saplings and seedlings of the two main tree species, Larix sibirica (Ls) and Pinus sibirica 

(Ps), in each quadrat. 

The dashed lines in the figure indicate the boundary between forest and steppe in all 

transects. The y-axis indicates the quadrats established at 0 m, 5 m, 10 m, 25 m, 50 m and 

100 m (only in T4 and T5) in north slope (forest patches, right side of dashed line) and 

south slope (steppe, left side of dashed line). Trees and saplings were measured in each 

quadrat, seedlings were counted in 5 m, 25 m, 50 m and 100 m (only in T4 and T5) 

quadrats. Tree ring samples were cored in each quadrat except in the 100 m quadrats. 
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Table 4.1 Tree species composition, density, basal area (BA), diameter at breast height 

(DBH) and maximum tree age in the five transects. 

 “Relative tree density” and “Relative basal area” indicate the fraction of particular 

species in overall trees number and basal area. T4 and T5 have one more quadrat in 100 

m than other plots. 
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Table 4.2 Estimated using a Generalized Linear Model (GLM) approach for tree basal 

areas of L. sibirica and P. sibirica. 

Maximum age: maximum age of trees in each quadrat. The values of each variable 

represent the regression coefficients (± SE). 

Between the two models (Null and Maximum age) for each species, the model with the 

lower AIC (Akaike information criterion, shown in bold) value is suggested as more 

appropriate for the data. Significance of the coefficients inferred from Wald’s test: ns P > 

0.05, * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Table 4.3 Results of generalized linear mixed model (GLMM) selection. 

Maximum age: maximum age of trees in each quadrat. The values of each variable 

represent the regression coefficients (± SE). 

Between the two models (Null and Distance) for each species, the model with the lower 

AIC (Akaike information criterion, shown in bold) value is suggested as more appropriate 

for the data. Significance of the coefficients inferred from Wald’s test: ns P > 0.05, * P < 

0.05, ** P < 0.01, *** P < 0.001. 
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