
 

 

 

Tumor-selective in vivo Growth Inhibitory Activities of siRNAs  

Targeting Kinetochore-Associated Protein 2 

 

 

 

 

 

January 2019 

 

 

 

 

 

Yukimasa MAKITA 

  



 

 

 

Tumor-selective in vivo Growth Inhibitory Activities of siRNAs  

Targeting Kinetochore-Associated Protein 2 

 

 

 

A Dissertation Submitted to 

the Graduate School of Life and Environmental Sciences, 

the University of Tsukuba 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy in Biological Science 

(Doctoral Program in Biological Sciences) 

 

 

 

Yukimasa MAKITA 

 

 



i 
 

Table of Contents 
 

Abstract .............................................................................................................. 1 

Abbreviations ...................................................................................................... 3 

General Introduction ........................................................................................... 5 

 

Chapter 1 : Anti-tumor activity of KNTC2 siRNA in orthotopic tumor model mice 

of hepatocellular carcinoma ............................................................................... 14 

Abstract .......................................................................................................... 15 
Introduction .................................................................................................... 16 
Materials and Methods ..................................................................................... 18 
Results............................................................................................................ 22 
Discussion ...................................................................................................... 25 
Tables and Figures ........................................................................................... 28 

 

Chapter 2 : Anti-tumor activity of KNTC2 siRNA against lung cancer patient- 

derived tumor xenografts .................................................................................. 40 

Abstract .......................................................................................................... 41 
Introduction .................................................................................................... 42 
Materials and Methods ..................................................................................... 44 
Results............................................................................................................ 49 
Discussion ...................................................................................................... 52 
Tables and Figures ........................................................................................... 54 

 

General Discussion ............................................................................................ 62 

Acknowledgements ............................................................................................ 66 

References ......................................................................................................... 67 

 



1 
 

Abstract 
 

Kinetochore plays an important role in the precise segregation of chromosome during 

mitosis. Kinetochore-associated protein 2 (KNTC2) is a component of kinetochore 

sub-modules. It had been reported that the expression levels of KNTC2 are low in 

non-dividing normal cells and specifically upregulated in tumor tissues of various 

cancer patients. Some reports have indicated the relationship between KNTC2 and in 

vivo growth of tumor tissues. However, no anti-cancer drug had been developed 

targeting KNTC2. Therefore, I started this study to confirm the involvement of KNTC2 

with in vivo growth of tumor tissues and show the possibility of developing siRNA 

drugs for cancer therapy. 

In the first chapter, I selected highly potent siRNAs in vitro that were common 

for human KNTC2 and mouse Kntc2. Their IC50 values were less than 100 pM. These 

siRNAs were encapsulated into a lipid nanoparticle (LNP) for in vivo studies. KNTC2 

siRNA-LNPs were intravenously administerd to otrhotopic tumor model mice of 

hepatocellular carcinoma (HCC). The expression levels of human KNTC2 and mouse 

Kntc2 mRNAs in tumor tissues were significantly suppressed by KNTC2 siRNA-LNPs. 

KNTC2 siRNA-LNPs also increased the phosphorylation levels of histone H3 (HH3) at 

serine 10 in tumor tissues and suppressed the in vivo growth of HCC without inducing 

liver damages. These data demonstrated the tumor-selective in vivo growth inhibitory 

activities of KNTC2 siRNA-LNPs. 

In the second chapter, I expanded the application of KNTC2 siRNA-LNP to 

lung cancer patient-derived tumor xenografts (PDXs). It had been reported that drug 

sensitivities of PDXs were more similar to tumor tissues of cancer patients compared 
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with conventional cancer cell lines. I firstly established three-dimensional (3D) culture 

systems of lung cancer PDXs (LC-45 and LC-60) because PDXs could not be 

maintained in two-dimensional culture systems. KNTC2 siRNA-LNP showed 

anti-tumor activities in 3D-culture system of LC-60 that was resistant to an approved 

drug, erlotinib. KNTC2 siRNA-LNP also showed anti-tumor activities in subcutaneous 

tumor model mice of LC-60 and LC-45 that was resistant to erlotinib. These results 

indicated that KNTC2 siRNA could be widely applied to lung cancer patients. 

Taken together, I conclude that KNTC2 is a promissing target for patients with 

hepatocellular carcinoma and lung cancer. Phosphorylated HH3 at serine 10 was 

considered to be one of the pharmacodynamic markers for KNTC2 siRNA. These 

studies indicated a possibility of developing siRNA drugs for cancer therapy.  
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Abbreviations 
 

ALT  Alanine transaminase 

AST  Aspartate transaminase 

CDCA1  Cell division associated 1 

CDK1  Cyclin-dependent kinase 1 

cDNA  Complementary deoxyribonucleic acid 

CENP  Centromere protein 

DPPC  Dipalmitoylphosphatidylcholine 

dsRNA  Double-stranded RNA 

HCC  Hepatocellular carcinoma 

Hec1  Highly expressed in cancer protein 1 

HH3  Histone H3 

KD  Knockdown 

KNTC2  Kinetochore-Associated Protein 2 

KSP  kinesin spindle protein 

LNP  Lipid nanoparticle 

Luc  Luciferase 

mRNA  Messenger ribonucleic acid 

miRNA  MicroRNA 

Ndc80  Nuclear division cycle 80 

Nek2  NIMA-related kinase 2 

OMe  O-methyl 

PBS  Phosphate-buffered saline 
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PDX  Patient-derived tumor xenograft 

PEG  Polyethylene glycol 

PEI  Polyethylenimine 

PLK1  polo-like kinase 1 

pre-miRNA Precursor miRNA 

pri-miRNA Primary miRNA 

PS  Phosphorothioate 

qPCR  Quantitative PCR 

RISC  RNA-induced silencing complex 

RNAi  RNA interference 

shRNA  Short (or Small) hairpin RNA 

siRNA  Small interferering RNA 

SPC25  spindle pole body component 25 homolog 
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General Introduction 
 

Kinetochore-associated protein 2 

Precise segregation of chromosome during mitosis is essential to maintain the 

homeostasis of cells and organs. Missegregation of chromosome results in genome 

instability such as aneuploidy and leads to tumorigenesis1. In prometaphase, spindle 

microtubules extend from centrosome and bind to duplicated sister chromatids at the 

kinetochore region. The sister chromatids are aligned in the metaphase plate and 

segregated to the opposite poles during anaphase (Fig. 1). 

Kinetochore consists of inner and outer sub-modules (Fig. 2). The inner 

kinetochore normally forms on highly repetitive DNA sequences and assembles into a 

specialized form of chromatin that persists throughout the cell cycle. The outer 

kinetochore is a proteinaceous structure with many dynamic components that assembles 

and functions only during mitosis2. The kinetochore has two main 

microtubule-interacting sub-modules, nuclear division cycle 80 (Ndc80) and Dam1. The 

Dam1 complex is thought to form a full or partial ring around microtubules, while the 

Ndc80 complex reaches out from the kinetochore with finger-like projections to contact 

the microtubule. The Ndc80 complex increases in copy number during anaphase, while 

the Dam1 subunits remain at a constant number3. 

Kinetochore-associated protein 2 (KNTC2), also called highly expressed in 

cancer protein 1 (Hec1)4, is a component of Ndc80 complex1 (Fig. 2). Human KNTC2 

mRNA is upregulated in tumor tissues of various cancer patients such as colorectal 

cancer5, gastric cancer5,6, breast cancer7, non-small cell lung carcinoma8, pancreatic 

cancer9 and hepatocellular carcinoma10. In contrast, the expression level of mouse 
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KNTC2 protein was reported to be relatively low in normal liver where cells were not 

actively dividing4. Threfore KNTC2 was recognized as a potential target for cancer 

therapy11. Actually, some group had investigated the relationship between KNTC2 and 

tumor growth using retrovirus vector12 or small molecules. However there is no 

approved drug targeting KNTC2 probably because it is difficult to develop molecules 

that are highly effective and specific to KNTC2. Retrovirus vector is not suitable for 

clinical development because of safety concerns. In this situation, I started to search for 

small interfering RNAs that were highly effective and specific to KNTC2. 

 

Small interfering RNA 

RNA-mediated gene silencing is an evolutionarily conserved immune system in which 

intracellular double-stranded RNAs (dsRNAs) are processed into small RNAs that 

suppress gene expression with complementary sequences13. In 1998, A. Fire et al 

investigated the mechanism of RNA-mediated gene silencing and discovered that 

injection of dsRNAs into C. elegans resulted in specific silencing of endogenous genes, 

which was called RNA interference (RNAi)14. RNAi was also confirmed in mammalian 

cells by Tuschl et al. in 200115. A. Fire and C. Mello received the Nobel Prize in 

Physiology or Medicine 2006 for their discovery of RNAi. 

Endogenous RNAi is triggered by microRNAs (miRNAs), that are transcribed 

as long primary miRNAs (pri-miRNAs) and processed into precursor miRNAs 

(pre-miRNAs) by Drosha (Fig. 3). These pre-miRNAs are then exported to the 

cytoplasm by the Exportin-5 and cleaved into small RNA duplexes of approximately 22 

nucleotides by Dicer16. One strand of the mature miRNA is loaded into RNA-induced 

silencing complex (RISC) and cleaves homologous mRNAs. 
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Small interfering RNAs (siRNAs) are chemically syntesized dsRNAs (19-21 

nucleotides) with overhanging 3' ends15. SiRNAs can be exogenously introduced into 

cells and enter the endogenous RNAi pathway at Dicer stage. The high specificity and 

efficiency of siRNA enabled us to easily validate molecular targets for anti-cancer drugs. 

For example, siRNAs targeting cell division associated 1 (CDCA1) and kinetochore 

associated 2 (KNTC2) were used in vitro to evaluate their involvement in the growth of 

lung cancer cell lines8.  

Issues that makes the clinical application of siRNA difficult are the 

vulnerability of siRNA to nuclease and immunogenicity. Several types of chemical 

modification10, such as 2'-OMe, was examined to improve the stability of siRNAs or 

prevent immune-responses (Fig. 4). However, in vivo evaluation of KNTC2 siRNA had 

not been fully performed probably because there was no efficient in vivo delivery 

system for siRNA. Therefore I used a lipid nanoparticle (LNP) that was developed 

in-house for siRNA delivery. 

 

Lipid nanoparticle 

Several kinds of in vivo delivery systems, such as polyethylenimine (PEI)17 and 

ligand-conjugate18, have been developed for siRNA. Among them, LNPs (Fig. 5) were 

considered to be most promissing for cancer therapy19,20. Actually, siRNAs targeting the 

essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein 

(KSP) were validated in vivo using LNP21. These siRNAs showed knockdown activities 

and growth inhivitory activities in a orthotopic tumor model mice of hepatocellular 

carcinoma. Furthermore, first-in-human clinical trial was started in 2010 using LNP 

formulation of siRNAs targeting VEGF and KSP22. However, there was no report on 
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KNTC2 siRNA encapsulated into LNP. Therefore I started to use KNTC2 siRNA and 

LNP. 

 

Objective of my studies 

To confirm the involvement of KNTC2 in the growth of tumor tissues and show the 

possibility of developing KNTC2 siRNA drug for cancer therapy, I firstly selected 

highly potent KNTC2 siRNAs in vitro and encapsulated them into a LNP for in vivo 

studies. Anti-tumor activities of KNTC2 siRNA-LNP were investigated using orthotopic 

tumor model mice of hepatocellular carcinoma (chapter 1) and subcutaneous tumor 

model mice of lung cancer patient-derived tumor xenograft (chapter 2). 
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Figure 1 Segregation of sister chromatids during mitosis (modified from 

reference1). In metaphase (upper panel), spindle microtubules (green) extend from 

centrosome (red) and bind to duplicated sister chromatids (blue) at the kinetochore 

region (orange). These sister chromatids are aligned in the metaphase plate and 

precisely segregated to the opposite poles during anaphase (lower panel).  
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Figure 2 Structure of kinetochore (modified from reference2). The kinetochore is 

composed of several inner and outer plates (shown in yellow). Inner plate is a chromatin 

structure containing nucleosomes. Outer plate has attachment sites for the plus ends of 

microtubules (green). Dam1 complex (purple) and Ndc80 complex (red) are 

microtubule-interacting sub-modules. KNTC2 is a component of Ndc80 complex. 
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Figure 3 Endognous RNAi pathways and their use as tools for gene silencing 

(modified from reference16). Endogenous RNAi is triggered by pi-miRNAs that are 

processed into pre-miRNAs by Drosha (blue). Pre-miRNAs are exported to cytoplasm 

by Exportin-5 (gray) and cleaved into miRNA by Dicer (orange). One strand of mature 

miRNA is loaded into Ago (yellow) and forms RISC (green). Exogenous siRNAs 

(green) are loaded into Ago in the same way as miRNA. 
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Figure 4 Chemical modifications of siRNA (modified from reference10). Chemical 

structures of modified nucleosides are shown. Me (pink), Methyl; S (blue), 

phosphorothioate; F (brown), Fluorine. 
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Figure 5 Schematic illustration of LNP (modified from reference20). LNPs 

encapsulating siRNAs mainly consist of ionizable lipid (green), phospholipid (blue), 

PEG-lipid (pink) and cholesterol (orange). 
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Chapter 1 : Anti-tumor activity of KNTC2 siRNA-LNP in 

orthotopic tumor model mice of hepatocellular carcinoma 
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Abstract 
 

To clarify the involvement of KNTC2 in the growth of tumor tissues and develop 

siRNA drug for cancer therapy, I firstly selected highly potent KNTC2 siRNAs in vitro 

using human and mouse hepatocellular carcinoma cell lines. These siRNAs were 

encapsulated into a LNP for in vivo studies. Anti-tumor activities of KNTC2 

siRNA-LNP were investigated using orthotopic tumor model mice of hepatocellular 

carcinoma. Single intravenous administration of KNTC2 siRNA-LNP specifically 

suppressed the expression levels of both human KNTC2 mRNA and mouse Kntc2 

mRNA in tumor tissues. Phosphorylation levels of histone H3 (HH3) at serine 10 in 

tumor tissues were increased by KNTC2 siRNA-LNP. Repeated administration of 

KNTC2 siRNA-LNP (twice a week) specifically inhibited the growth of tumor tissues 

without increasing the plasma AST and ALT levels. Their growth inhibitory activities 

were consistent with knockdown activities. These data strongly indicated that KNTC2 is 

a promising target for the treatment of HCC and that phosphorylated HH3 at serine 10 is 

one of the pharmacodynamic markers for KNTC2. 
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Introduction 
 

Hepatocellular carcinoma (HCC) arises from a variety of disease states such as liver 

fibrosis23, liver cirrhosis24 and non-alcoholic fatty liver disease25. The risk factors of 

HCC are virus, alcohol, fungi, obesity and type II diabetes26. These factors lead to 

chronic inflammation, destruction and regeneration of hepatocytes or hepatic stellate 

cells resulting in genetic mutations and dysregulation of growth signals27,28. The 

etiology of HCC is so complicated that monotherapy is considered to be insufficient to 

cure all types of HCC. 

Therapeutic options for HCC are surgical resection29, liver transplantation30, 

transarterial chemoembolization31, radiotherapy32, immunotherapy33, interferon34, iron 

chelator (deferasirox35) and molecular targeted agents, such as multi-kinase inhibitors 

(regorafenib36, sorafenib37), anti-glypican-3 antibody (codrituzumab38), mTOR 

inhibitors (everolimus39) and anti-VEGF antibodies (bevacizumab40, ramucirumab41). 

Those therapies show some clinical benefits for several types of HCC patients but their 

therapeutic effects are limited. HCC is still the second42 or third43 cause of 

cancer-related death in the world. Therefore, new drugs with different mechanism of 

actions are desired for HCC patients to improve their survival rates. 

As described in the general introduction, kinetochore-associated protein 2 

(KNTC2) plays an important role in chromosome segregation during mitosis4. Its 

expression levels are specifically upregulated in tumor tissues of various cancer patients 

including HCC44. Small molecules targeting KNTC2 protein (TAI-1, TAI-95) inhibited 

the in vitro growth of several HCC cell lines without inhibiting the growth of normal 

cell lines44. TAI-1 and TAI-95 also demonstrated in vivo growth inhibitory activity in a 
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subcutaneous HCC model of Huh-7 cells. However, there is no follow-up report on the 

relationship between KNTC2 and in vivo growth of HCC. It is still unclear whether 

KNTC2 is widely involved in the growth of HCCs. In addition, their mechanism of 

actions are not yet fully understood in vivo. 

To further investigate the relationship between KNTC2 and in vivo growth of 

HCC and confirm its tumor-selectivity, I firstly selected highly efficient KNTC2 siRNA 

and encapsulated them into a lipid nanoparticle. Their knockdown efficiencies, 

pharmacodynamic marker, growth inhibitory activities and hepatotoxicities were 

evaluated in orthotopic HCC model mice of Hep3B-luc cells. 
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Materials and Methods 

 

Chemical modification of siRNAs 

All siRNAs used in this study were chemically modified with 2'-O-methyl 

ribonucleotide to prevent immune responses45. Their sequences were listed in Table 1. 

Luc#1 was originally designed for firefly luciferase gene15 and used as the negative 

control for in vitro studies. NC#1 was designed as a mismatch control of Luc#1 and 

used for in vivo studies. 

 

In vitro selection of KNTC2 siRNAs 

Hep3B (human hepatocellular carcinoma cell line) and Hepa-1c1c7 (mouse liver 

hepatoma cell line) were purchased from American Type Culture Collection (ATCC, 

Manassas, VA). These cells were seeded in 96-well plates (BD Biosciences, San Jose, 

CA), cultured overnight and transfected with KNTC2 siRNAs (56 fM to 10 nM) using 

DharmaFECT1 (Thermo Fisher Scientific, Waltham, MA). Twenty four hours after the 

transfection, total RNA was extracted from cells and reverse-transcribed using Cells to 

Ct kit (Thermo Fisher Scientific). Copy number of each mRNA was measured by 

quantitative PCR method using Real-Time PCR System (Thermo Fisher Scientific). 

Primers and probes were listed in Table 2. IC50 value of each KNTC2 siRNA was 

calculated using Prism 5.0 (GraphPad, La Jolla, CA). 

 

Encapsulation of siRNAs into lipid nanoparticles 

KNTC2 siRNAs were encapsulated into lipid nanoparticles using microfluidic devices, 

Asia modules (model no. 210, Syrris, Royston, UK). LNP was composed of  
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3-((5-(dimethylamino) pentanoyl)oxy) -2,2-bis (((3-pentyloctanoyl)oxy)methyl)propyl 

3-pentyloctanoate (WO2016021683), dipalmitoyl phosphatidylcholine (NOF 

Corporation, Tokyo, Japan), cholesterol (Avanti Polar Lipids, Inc., Alabaster, Alabama) 

and GS-020 (NOF Corporation) at the molar ratio of 60%, 10.6%, 28% and 1.4%, 

respectively. Particle size and polydispersity index (PdI) of LNPs were measured by 

dynamic light scattering using Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). 

The ratio of siRNA entrapment was calculated using Ribogreen (Thermo Fisher 

Scientific, Waltham, MA) and 2% Triton X-100 as described elsewhere46. Briefly, LNPs 

were dissolved in 1% Triton X-100 to release the siRNAs. The concentrations of siRNA 

prior to and following the dissolution were calculated by applying Ribogreen (final 

0.25%) and measuring the fluorescence of Ribogreen using a spectrofluorometer, 

Envision (Excitation, 485 nm and Emission, 535 nm) and Envision software (version 

1.13.3009.1409, PerkinElmer, Inc., Waltham, MA, USA). 

 

Establishment of Hep3B cells stably expressing firefly luciferase gene 

Human hepatocellular carcinoma cell line, Hep3B was purchased from ATCC and 

cultured in EMEM (Thermo Fisher Scientific) containing 2% L-Glutamine and 10% 

fetal bovine serum (ATCC). Fluc gene fragment originally encoded by pGL3-Control 

vector (Promega, Madison, WI) was inserted into pAcGFP1-N In-Fusion Ready vector 

(Clontech, Mountain View, CA) and introduced into Hep3B cells. Clone number Ef2 

stably expressing Fluc gene (Hep3B-luc) was isolated in a medium containing 400 

µg/ml geneticin (Thermo Fisher Scientific). 
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Orthotopic tumor model of hepatocellular carcinoma 

C.B-17/Icr-scid/scid (SCID) mice (female, 5 or 6 weeks old) were purchased from 

CLEA (Kanagawa, Japan) and acclimatized. Hep3B-luc cells (3×105 cells) were washed 

with HBSS and centrifuged. The cell pellet was mixed with approximately equal 

volume (3 µl) of Matrigel (BD, Franklin Lakes, NJ) using MICROMAN (Gilson, 

Middleton, WI). The cell suspension (6 µl) was inoculated into the liver (left lobe) of 

SCID mice under anesthesia. Tumor growth was assessed by measuring the 

luminescence from Hep3B-luc cells using IVIS Spectrum (PerkinElmer, Waltham, MA). 

All experiments were approved by the Institutional Animal Care and Use Committee in 

Takeda Pharmaceutical Company Limited (approval number AU-00020234). 

 

Evaluation of anti-tumor activity using in vivo imaging system 

Eleven days after the inoculation, SCID mice with Hep3B-luc cells were divided into 

groups by the values of luminescence and body weight (N=5). KNTC2 siRNA-LNP (1 

mg/kg) was intravenously administered twice a week during the test period. Tumor 

growth was monitored by IVIS Spectrum (PerkinElmer) until five days after the last 

administration. Values of the final measurement were statistically analyzed by Dunnett's 

test. Growth inhibitory rates (%) were calculated using the formula (1-Y/X)×100; X, 

tumor weight of control group; Y, tumor weight of test group. Photographs of dissected 

tumor tissues were taken after the final measurement. 

 

Measurement of the hepatotoxicity 

Just after the final measurement of anti-tumor activity, blood was collected from the tail 

vein of mice under anesthesia (N=5). Plasma AST and ALT levels were measured by 
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DRI-CHEM 3500 (FUJIFILM, Tokyo, Japan). 

 

Measurement of the in vivo knockdown activities by qPCR  

KNTC2 siRNA-LNP (1 mg/kg) was intravenously administered to HCC model mice 

eighteen or nineteen days after the transplantation (N=3). Two days after the single 

administration, tumor tissue and normal liver were separately dissected from mice. Total 

RNA was extracted using TRIzol reagent (Thermo Fisher Scientific) and 

reverse-transcribed using superscript VILO cDNA synthesis kit (Thermo Fisher 

Scientific). Copy number of each mRNA was measured as described above. Values were 

statistically analyzed by Dunnett's test. 

 

Immunohistochemistry 

Administration of KNTC2 siRNA-LNP was performed in the same manner as above 

mentioned (N=2). Two days after the single administration, tumor tissue and normal 

liver were dissected together from mice. These samples were fixed with 10% Formalin 

Neutral Buffer Solution (Wako) and paraffin embedded. Tissue sections (5 µm) were 

deparaffinized and autoclaved in Real Target Retrieval solution (Agilent, Santa Clara, 

CA) for immuno-stimulation. Primary and secondary antibodies were listed in Table 3. 

They were diluted in normal goat serum blocking solution (Vector Laboratories, 

Burlingame, CA). Tissue sections were mounted on slides using VECTASHIELD 

Mounting Medium with DAPI (Vector Laboratories). Images were acquired by 

NanoZoomer Digital slide scanner (Hamamatsu Photonics, Shizuoka, Japan). 
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Results 

 

In vitro screening of KNTC2 siRNAs 

To find highly potent KNTC2 siRNAs, I designed approximately 250 siRNAs and 

measured their in vitro KD activities against human KNTC2 mRNA in Hep3B-luc cells. 

The IC50 values of selected eleven siRNAs (#1 to #11) were between 3 pM to 58 pM 

(Table 4). Among the eleven siRNAs, four siRNAs (#1 to #4) showed relatively high 

KD activity against mouse Kntc2 mRNA in Hepa1c1c7 cells. Their IC50 values were 94 

pM, 50 pM, 19 pM and 62 pM (Table 4). 

 

In vivo knockdown activities of KNTC2 siRNAs-LNP 

Knockdown activities of KNTC2 siRNAs (#1 and #3) were evaluated in orthotopic 

HCC model mice of Hep3B-luc. Single intravenous administration of KNTC2 

siRNA-LNP (1 mg/kg) significantly suppressed the expression levels of human KNTC2 

mRNAs by 74% (KNTC2#1) or 78% (KNTC2#3), respectively. In contrast, NC#1-LNP 

(negative control) did not significantly suppress the expression level of human KNTC2 

mRNA (Fig. 6A). Mouse Kntc2 mRNAs were also suppressed by 52% or 75% at the 

same dosage (Fig. 6B). Lower dosage of KNTC2 siRNA-LNP (0.3 mg/kg) also 

suppressed the expression levels of human KNTC2 mRNAs by 55% or 68%, 

respectively (Fig. 6C). Mouse Kntc2 mRNAs were suppressed by 49% or 68% at the 

same dosage (Fig. 6D). 
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Pharmacodynamic marker of KNTC2 siRNAs-LNP. 

I next investigated a potential pharmacodynamic marker for KNTC2. Phosphorylation 

levels of histone H3 (HH3) at serine 10 in tumor tissues of HCC seemed to be increased 

by KNTC2 siRNAs-LNP (1 mg/kg) two days after the single intravenous administration 

(Fig. 7A, B and C). NC#1-LNP (negative control) did not seem to increase the 

phosphorylation levels of HH3 (Fig. 7D). In addition, phosphorylated HH3 seemed to 

be fragmented by KNTC2 siRNAs-LNP indicating that KNTC2 siRNA-LNP induced 

apoptosis (Fig. 7B, C). 

 

In vivo growth inhibitory activity of KNTC2 siRNAs-LNP 

Anti-tumor activities of KNTC2 siRNA-LNPs were evaluated at the same dosage as 

described above. Repeated administration (twice a week) of KNTC2 siRNA-LNP (1 

mg/kg) significantly inhibited the in vivo growth of Hep3B-luc cells as measured by 

IVIS (Fig. 8A, E) and tumor weight (Fig. 8B). NC#1-LNP (negative control) did not 

significantly inhibit the in vivo growth of Hep3B-luc cells. The growth inhibitory rates 

were 94% (KNTC2#1) or 99% (KNTC2#3) as calculated by tumor weight (Fig. 8B). 

These values were consistent with the appearance of tumor tissues (Fig. 8F). Body 

weights of mice were not significantly changed by the repeated administration of 

KNTC2 siRNA-LNP at the dosage of 1 mg/kg (Fig. 8G). Lower dosage of KNTC2 

siRNA (0.3 mg/kg) also significantly inhibited the in vivo growth of Hep3B-luc cells as 

measured by IVIS (Fig. 8C) and tumor weight (Fig. 8D). The growth inhibitory rates 

were 54% (KNTC2#1) or 87% (KNTC2#3) as calculated by tumor weight (Fig. 8D). 
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Hepatotoxicity of KNTC2 siRNA-LNPs in orthotopic HCC model mice 

In parallel with the anti-tumor activity, we evaluated the hepatotoxicity of KNTC2 

siRNA-LNP by measuring the plasma AST and ALT levels. These levels were increased 

in control groups (PBS and NC#1) probably because orthotopic tumor tissues damaged 

the surrounding hepatic cells (Fig. 9A, B). In contrast, repeated administration of 

KNTC2 siRNA-LNP (1 mg/kg, twice a week) significantly lowered the plasma AST and 

ALT levels indicating that they suppressed the tumor growth without inducing 

hepatotoxicity. 
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Discussion 
 

To confirm the relationship between KNTC2 and in vivo growth of HCC, I firstly 

selected highly potent siRNAs for human and mouse KNTC2. These siRNAs were 

encapsulated into a LNP and administered to orthotopic HCC model mice. Their KD 

efficiency, pharmacodynamic marker, growth inhibitory activity and hepatotoxicity 

were evaluated. 

Among the four siRNAs that showed relatively high KD efficiencies in vitro, I 

selected KNTC2#1 and KNTC2#3 for in vivo study because KNTC2#2, KNTC2#3 and 

KNTC2#4 were designed very closely within the gene structure of KNTC2. In contrast, 

KNTC2#1 was designed apart from KNTC2#3. Both of these separately-designed 

siRNAs inhibited the in vivo growth of orthotopically inoculated Hep3B-luc cells (Fig. 

8). Their growth inhibitory activities were consistent with their KD activities (Fig. 6). In 

addition, the specificities of these KD and growth inhibitory activities were confirmed 

by the inability of NC#1. These data strongly indicated that KNTC2 was involved in the 

in vivo growth of orthotopically inoculated Hep3B-luc cells. 

In vivo growth inhibitory activity of KNTC2#1 was lower than that of 

KNTC2#3 at the dosage of 0.3 mg/kg (Fig. 8C, D), which was consistent with their in 

vitro and in vivo KD activities (Table 4 and Fig. 6C, D). In vivo growth inhibitory 

activity might not be detected by other siRNAs whose in vitro KD activities were much 

lower than KNTC2#1. Generally, administration of high dose siRNA and lipid 

nanoparticle (LNP) faces a risk of unexpected adverse events, such as off-target effect47 

and toxicity of cationic lipids48. Therefore lowering the dosage of siRNA and LNP by 

selecting highly potent siRNAs in vitro was considered to be crucial to demonstrate in 
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vivo growth inhibitory activity without causing adverse events. 

KNTC2 siRNA-LNP increased the phosphorylation levels of HH3 at serine 10 

in the tumor tissues (Fig. 7). Phosphorylation of HH3 at serine 10 is reported to be 

correlated with chromosome condensation during mitosis and meiosis49. Previous report 

demonstrated that anti-KNTC2 antibody disturbed mitosis and induced a fragmentation 

of nuclei4. In my in vitro studies, KNTC2 siRNA induced misalignment of chromosome 

in Hep3B-luc cells and G2/M cell cycle arrest (Figs. 10-11). Taken together, it was 

estimated that KNTC2 siRNA-LNP disturbed the mitosis of Hep3B-luc cells in tumor 

tissues and induced G2/M cell cycle arrest resulting in the chromosome condensation 

and accumulation of phosphorylated HH3. 

Compared to subcutaneous HCC models50, orthotopic HCC models were 

considered to be more suitable for the simultaneous evaluation of anti-tumor activity 

and hepatotoxicity because tumor tissues were mixed with normal liver (Fig. 8F). I 

selected KNTC2 siRNAs that suppressed not only human KNTC2 mRNA but also 

mouse Kntc2 mRNA to simultaneously investigate the effect of KNTC2 siRNA on 

tumor tissue and normal liver (Table 4). Hepatotoxicity of KNTC2 siRNA-LNP was not 

detected at the therapeutic dosage (1 mg/kg) suggesting the safety of targeting KNTC2 

(Fig. 9). 

Repeated administration of KNTC2 siRNAs-LNP significantly lowered the 

plasma AST and ALT levels in the orthotopic HCC model mice of Hep3B-luc (Fig. 9). 

AST and ALT are released mainly from damaged hepatocytes51. Therefore, it was 

speculated that a portion of normal hepatocytes were damaged by the aggressive 

proliferation of tumor tissues and that tumor shrinkage by KNTC2 siRNAs-LNP led to 

the protection of normal hepatocytes and decrease of plasma AST and ALT levels (Figs. 
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8-9). 

In conclusion, I demonstrated the anti-tumor activities of KNTC2 siRNAs-LNP 

in an orthotopic HCC model of Hep3B-luc cells at the dosage of 0.3 and 1 mg/kg. I also 

clarified the increase and segmentation of phosphorylated histone H3 in tumor tissues 

treated with KNTC2 siRNAs-LNP. Hepatotoxicity was not detected at the therapeutic 

dosage (1 mg/kg). These data strongly indicated that KNTC2 is a promising target for 

the treatment of HCC and that phosphorylated HH3 at serine 10 is one of the 

pharmacodynamic markers for KNTC2. 
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Tables and Figures 
 

Table1 List of chemically modified siRNAs. Small cases "r", "d" and "s" indicate 

ribonucleotide, deoxy-ribonucleotide and phosphorothioate modification, respectively. 

Underline indicates 2'-O-methyl ribonucleotide. 

 

Luc siRNA (Luc#1) 
Sense 5'-r(CUUACGCUGAGUACUUCGA)-dTsdT-3' 
Antisense 5'-r(UCGAAGUACUCAGCGUAAG)-dTsdT-3' 
Negative control siRNA (NC#1) 
Sense 5'-r(CUUACCCUCAGUUGUUCGA)-dTsdT-3' 
Antisense 5'-r(UCGAACAACUGAGGGUAAG)-dTsdT-3' 
KNTC2 siRNA (KNTC2#1) 
Sense 5'-r(UGGAGGAUACUUUAGAACA)-dTsdT-3' 
Antisense 5'-r(UGUUCUAAAGUAUCCUCCA)-dTsdT-3' 
KNTC2 siRNA (KNTC2#2) 
Sense 5'-r(AUAGUCAACUUGGUAUAUU)-dTsdT-3' 
Antisense 5'-r(AAUAUACCAAGUUGACUAU)-dTsdT-3' 
KNTC2 siRNA (KNTC2#3) 
Sense 5'-r(UAGUCAACUUGGUAUAUUU)-dTsdT-3' 
Antisense 5'-r(AAAUAUACCAAGUUGACUA)-dTsdT-3' 
KNTC2 siRNA (KNTC2#4) 
Sense 5'-r(CAACUUGGUAUAUUUUCCA)-dTsdT-3' 
Antisense 5'-r(UGGAAAAUAUACCAAGUUG)-dTsdT-3' 
KNTC2 siRNA (KNTC2#5) 
Sense 5'-r(GUCUAGAGUCGUUGAGAAA)-dTsdT-3' 
Antisense 5'-r(UUUCUCAACGACUCUAGAC)-dTsdT-3' 
KNTC2 siRNA (KNTC2#6) 
Sense 5'-r(GACAUUGAGCGAAUAAAUC)-dTsdT-3' 
Antisense 5'-r(GAUUUAUUCGCUCAAUGUC)-dTsdT-3' 
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Table1 (continued) 
 
KNTC2 siRNA (KNTC2#7) 
Sense 5'-r(CUAGUUGUGCAAACCACGA)-dTsdT-3' 
Antisense 5'-r(UCGUGGUUUGCACAACUAG)-dTsdT-3' 
KNTC2 siRNA (KNTC2#8) 
Sense 5'-r(AUAUAUCCAUAGUGAAUAA)-dTsdT-3' 
Antisense 5'-r(UUAUUCACUAUGGAUAUAU)-dTsdT-3' 
KNTC2 siRNA (KNTC2#9) 
Sense 5'-r(GACAUUGAGCGAAUAAAUU)-dTsdT-3' 
Antisense 5'-r(AAUUUAUUCGCUCAAUGUC)-dTsdT-3' 
KNTC2 siRNA (KNTC2#10) 
Sense 5'-r(UAAACAAACCGACAUCUGA)-dTsdT-3' 
Antisense 5'-r(UCAGAUGUCGGUUUGUUUA)-dTsdT-3' 
KNTC2 siRNA (KNTC2#11) 
Sense 5'-r(CAGACAUUGAGCGAAUAAA)-dTsdT-3' 
Antisense 5'-r(UUUAUUCGCUCAAUGUCUG)-dTsdT-3' 
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Table 2 List of species specific qPCR primers and probes. Small case "d" indicates 

deoxy-ribonucleotide. 

 

Human KNTC2 Sequence 
Fw primer 5'-d(GAGGTACATAAACTTGAGCCCTGTATT)-3' 
Rev primer 5'-d(TGCTGAGAATTCCAAAGGTTATGA)-3' 
Probe 5'-d(TGGCACCAGCCTCGGGATTAAACTTAA)-3' 
Human ACTB Sequence 
Fw primer 5'-d(CCTGGCACCCAGCACAAT)-3' 
Rev primer 5'-d(GCCGATCCACACGGAGTACT)-3' 
Probe 5'-d(ATCAAGATCATTGCTCCTCCTGAGCGC)-3' 
Mouse Kntc2 Sequence 
Fw primer 5'-d(GAATAAAAAGAGGCATCTGGAGGATAC)-3' 
Rev primer 5'-d(CCTCCTTCAGCATCCTCACAGT)-3' 
Probe 5'-d(CAACTGAACACCATGAAAACGGAAAGCAA)-3' 
Mouse Actb Sequence 
Fw primer 5'-d(CACTATTGGCAACGAGCGG)-3' 
Rev primer 5'-d(TCCATACCCAAGAAGGAAGGC)-3' 
Probe 5'-d(TCCGATGCCCTGAGGCTCTTTTCC)-3' 
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Table 3 List of antibodies used in immunohistochemistry. 

 

Primary antibody Clone Host Maker Number Dilution 

Anti-phospho-Histone H3 

(Ser10) XP 

D2C8 rabbit Cell Signaling #3377 1/200 

Anti-alpha-Tubulin DM1A mouse Sigma T6199 1/200 

Secondary antibody Clone Host Maker Number Dilution 

Anti-rabbit IgG (H+L),  

Alexa Fluor 568 conjugate 

poly. goat ThermoFisher A11036 1/200 

Anti-mouse IgG (H+L),  

Alexa Fluor 488 conjugate 

poly. goat ThermoFisher A11001 1/200 
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Table 4 In vitro knockdown activity of KNTC2 siRNAs. Knockdown activities of 

KNTC2 siRNAs were evaluated using human and mouse hepatocelluar carcinoma cell 

lines, Hep3B-luc and Hepa-1c1c7. IC50 values of KNTC2 siRNAs were listed 

separately for human and mouse KNTC2. 

 

 
IC50 value (pM) 

siRNA Human (Hep3B-luc) Mouse (Hepa1c1c7) 

KNTC2#1 15  94  
KNTC2#2 14  50  
KNTC2#3 3  19  
KNTC2#4 20  62  
KNTC2#5 24  >10,000 
KNTC2#6 40  1,454  
KNTC2#7 58  >10,000 
KNTC2#8 22  >10,000 
KNTC2#9 16  455  
KNTC2#10 5  >10,000 
KNTC2#11 27  >10,000 
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Figure 6 Suppression of human KNTC2 and mouse Kntc2 mRNAs by KNTC2 

siRNAs in the tumor tissues of HCC model mice. KNTC2 siRNAs (#1 or #3) 

encapsulated into LNP were intravenously administered to orthotopic HCC model mice 

of Hep3B-luc cells at the dosage of 1 mg/kg (A, B) or 0.3 mg/kg (C, D). NC#1 was 

used as a negative control. Knockdown activities were evaluated two days after the 

single administration. (A, C) Human KNTC2/ACTB mRNA. (B, D) Mouse Kntc2/Actb 

mRNA. Values were represented by mean+SD. n.s., no significant difference; **, 

p<0.01; ***, p<0.001 by Dunnett's test (N=3). 
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Figure 7 Induction of phosphorylated histone H3 by KNTC2 siRNA in the tumor 

tissues of HCC model mice. KNTC2 siRNAs (#1 or #3) encapsulated into LNP were 

intravenously administered to orthotopic HCC model mice of Hep3B-luc cells at the 

dosage of 1 mg/kg (B, C). NC#1 was used as a negative control (D). Two days after the 

single administration, orthotopic tumor tissues were dissected to stain phosphorylated 

histone H3 (red) and alpha-tubulin (green). Scale bar = 50 µm 
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Figure 8 Anti-tumor activities of KNTC2 siRNA-LNPs in orthotopic tumor model 

mice of HCC. KNTC2 siRNAs (KNTC2#1 or KNTC2#3) encapsulated into LNP were 

repeatedly (twice a week) administered to orthotopic HCC model mice of Hep3B-luc 

cells at the dosage of 1 mg/kg (A, B, E, F and G) or 0.3 mg/kg (C, D). NC#1 was used 

as a negative control. Growth inhibitory activities were evaluated by IVIS (A, C, E) and 

tumor weight (B, D). Tumor tissues were dissected at the end of evaluation (F). Body 

weights of mice were measured twice a week (G). Values were represented by 

mean+SD. n.s., no significant difference; *, p<0.05; **, p<0.01; ***, p<0.001 by 

Dunnett's test (N=5). 
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Figure 9 Hepatotoxicities of KNTC2 siRNA-LNPs in orthotopic tumor model mice 

of HCC. KNTC2 siRNAs (KNTC2#1 or KNTC2#3) encapsulated into LNP were 

repeatedly (twice a week) administered to orthotopic HCC model mice of Hep3B-luc 

cells at the dosage of 1 mg/kg. NC#1 was used as a negative control. Plasma AST level 

(A) and ALT level (B) were measured four days after the fourth administration. Values 

were represented by mean+SD. n.s., no significant difference; *, p<0.05 by Dunnett's 

test (N=5) 
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Figure 10 Effect of KNTC2 siRNA on the chromosome alignment in a HCC cell 

line. Hep3B-luc cells (1×105 cells) were seeded in 6 well-plates and cultured overnight. 

These cells were transfected with KNTC2 siRNA (KNTC2#3) at the concentration of 10 

nM using DharmaFECT1 and fixed with formalin 24 hours after the transfection. Luc#1 

was used as a negative control. Tubulin (green), DAPI (blue) and KNTC2 (red) were 

stained and observed using fluorescence microscope. 
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Figure 11 Effect of KNTC2 siRNA on the cell cycles of HCC and normal cell lines. 

Hep3B-luc cells or WI-38 cells (1×105 cells) were seeded in 6 well-plates and cultured 

overnight. These cells were transfected with KNTC2 siRNA (KNTC2#3) at the 

concentration of 10 nM using DharmaFECT1. Luc#1 was used as a negative control. 

Cells were collected using trypsin and fixed with ethanol 24, 48 and 72 hours after the 

transfection. Nuclear DNAs were stained with propidium iodide and analyzed by Cell 

Lab Quanta MPL. 
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Chapter 2 : Anti-tumor activity of KNTC2 siRNA-LNP 

against lung cancer patient- derived tumor xenografts 
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Abstract 
 

Using the KNTC2 siRNA-LNP validated in chapter 1, I next evaluated its anti-tumor 

activities against lung cancer patient-derived tumor xenografts (PDXs) that had been 

reported to be more relavant to the tumor tissues of cancer patients compared with 

conventional cancer cell lines. In this chapter, I firstly established three-dimensional 

(3D) culture systems of lung cancer PDXs (LC-45 and LC-60) and confirmed their 

correlation with in vivo subcutaneous tumor models by checking their sensitivities to an 

approved drug, erlotinib. Knockdown and anti-tumor activities of KNTC2 siRNA-LNP 

were clarified in the 3D-culture system and subcutaneous tumor model of LC-60 that 

was resistant to erlotinib. KNTC2 siRNA-LNP also exhibited in vivo knockdown and 

antitumor activity against LC-45 that was sensitive to erlotinib. These results suggest 

that KNTC2 siRNA-LNP could be widely applied to lung cancer patients. 
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Introduction 
 

Tumor tissues are highly heterogeneous. Several types of cell interact with each other 

making it difficult to predict their drug sensitivities52. Reconstruction of this 

heterogeneity in a preclinical study may provide a method to predict the efficacy of 

novel anticancer drugs in clinical study53. Patient-derived tumor xenografts (PDXs) are 

established by maintaining the tumor tissues derived from patients with cancer in the 

flank of immuno-deficient mice54,55. Compared with conventional cancer cell lines, 

PDXs have been reported to be more relevant to the original tumor tissues of patients 

with cancer in terms of drug sensitivity, heterogeneity and genetic status56-60. 

Accordingly, PDXs may be used for the evaluation of new anticancer drugs61. 

Lung cancer is categorized into small cell lung cancer (SCLC) and non-small 

cell lung cancer (NSCLC). The most common types of NSCLC are squamous cell 

carcinoma, adenocarcinoma and large cell carcinoma62. These types of NSCLC are 

further classified into several stages according to their disease status63. Several 

anticancer drugs have been developed for each type of lung cancer. Their molecular 

targets include epidermal growth factor receptor (EGFR) tyrosine kinase (erlotinib64, 

gefitinib65 and afatinib66), rearranged anaplastic lymphoma kinase (crizotinib67, 

ceritinib68 and alectinib69), folate-dependent enzymes (pemetrexed70), vascular 

endothelial growth factor (bevacizumab71), C-X-C chemokine receptor type 4 

(LY251092472) and programmed cell death protein 1 (nivolumab73). Although these 

drugs demonstrated therapeutic effects on several types of lung cancer, other treatment 

options are desired to increase their combined effects. 
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In chapter 1, I clarified the tumor-selective in vivo growth inhibitory activities 

of KNTC2 siRNA-LNPs in orthotopic tumor model mice of HCC74. However, it 

remains unclear whether KNTC2 siRNA-LNPs exhibit anti-tumor activities against lung 

cancer PDXs. 

To expand the application of KNTC2 siRNA-LNP to lung cancer PDXs, I 

investigated its anti-tumor activities in three-dimensional culture system and 

subcutaneous tumor models of lung cancer PDXs, LC-45 (sensitive to erlotinib) and 

LC-60 (resistant to erlotinib). 
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Materials and Methods 

 

Lung cancer PDXs 

Lung cancer PDXs, LC-45 (adenocarcinoma) and LC-60 (small or large cell carcinoma) 

were purchased from the Central Institute for Experimental Animals (Kanagawa, Japan). 

PDXs were maintained in the flank of BALB/c nude mice (20-25 g; 7-8 weeks old; 

female; Charles River Laboratories International, Inc., Kanagawa, Japan). When PDXs 

grew to approximately 1,000 mm3, PDXs were excised and cryopreserved in small 

pieces (40-70 μm) using Cell Banker 2 (Nippon Zenyaku Kogyo, Co., Ltd., Fukushima, 

Japan). Humane endpoint was determined by 20% weight loss and the maximum tumor 

size was 1,000 mm3. Mice were maintained in specific pathogen-free conditions with 

free access to food and water, under a constant temperature of 22±2˚C and a 12/12 h 

light/dark cycle. All experiments were approved by the Institutional Animal Care and 

Use Committee in Takeda Pharmaceutical Company Limited (Fujisawa, Japan; approval 

number 11387). 

 

Chemical modification of siRNAs 

KNTC2 siRNA and Luc siRNA (negative control) 15 were synthesized by GeneDesign 

(Osaka, Japan) and chemically modified with 2'-O-methyl ribonucleotide to prevent 

immune responses, as described previously 45. Different from chapter 1, 

phosphorothioate (PS) modifications were not used for KNTC2 siRNA to prevent 

optical isomers. The sequences and chemical modifications are listed in Table 5.  
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Encapsulation of siRNAs into lipid nanoparticles 

KNTC2 siRNA and Luc siRNA were encapsulated into lipid nanoparticles in the same 

way as described in chapter 1. 

 

Evaluation of knockdown activities in subcutaneous tumor models of 

PDXs 

Small pieces (~100 mm3) of PDXs were inoculated in the flank of BALB/c nude mice 

using a trocar needle (KN-391; Natsume Seisakusho, Co., Ltd., Tokyo, Japan). Tumor 

sizes were measured with calipers and defined as (major axis) x (minor axis)2 / 2, as 

previously described. When the tumor sizes reached between 100 and 400 mm3, 9 mice 

were selected from a total of 20 mice and divided into three groups (PBS, KNTC2 and 

Luc) using EXSUS 2014 software (version8.0, CAC Exicare Corporation, Tokyo, 

Japan). KNTC2 siRNA encapsulated into LNP (KNTC2-LNP) was intravenously 

administered at 5 mg/kg (n=3). Luc siRNA-LNP was used as the negative control. PBS 

was administered to the vehicle control group. Knockdown activity was measured 3 

days after the single administration. Total RNA was extracted from tumor tissue using 

TRIzol® (Life Technologies; Thermo Fisher Scientific, Inc.) and reverse transcribed 

(thermocycling conditions: 25˚C for 10 min; 42˚C for 1 h; and 85˚C for 5 min) using 

SuperScript VILO cDNA Synthesis kit (Thermo Fisher Scientific, Inc.). The copy 

numbers of human KNTC2, human β-actin (ACTB), mouse Kntc2 and mouse Actb 

mRNA were individually measured by quantitative polymerase chain reaction (using a 

Real-Time PCR System (Thermo Fisher Scientific, Inc.). Species-specific qPCR 

primers and probes (Thermo Fisher Scientific, Inc.) are listed in Table 6. Copy numbers 

of KNTC2 or Kntc2 mRNA were individually normalized to ACTB or Actb mRNA. 
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Evaluation of growth inhibitory activities in subcutaneous tumor 

models of PDXs 

A total of 10 or 15 mice were selected from 20 or 45 mice (total number of mice, 65), 

respectively, and divided into two (control and erlotinib) or three (control, KNTC2 and 

Luc) groups using EXSUS 2014 software. Erlotinib (Carbosynth, Ltd., Compton, UK) 

was orally administered at 100 mg/kg once a day for 11 days (LC-45) or 5 days (LC-60) 

In addition, 0.5% methylcellulose was used as the control (n=5). KNTC2-LNP was 

intravenously administered at 5 mg/kg at three time points, with three days between 

each administration. Luc siRNA-LNP was used as the negative control. PBS was 

administered to the vehicle control group. Tumor sizes were measured as 

aforementioned. Growth inhibitory rate (%) was calculated using the formula: (1- tumor 

growth of treated group / tumor growth of untreated group) x100%. 

 

Cryopreservation of PDXs for 3D culture systems 

PDXs were excised from BALB/c nude mice and cut into small pieces (~100 mm3). 

These pieces were digested in Dulbecco’s modified eagle’s medium (DMEM) high 

glucose (Thermo Fisher Scientific, Inc.) containing 75 U/ml collagenase type XI (Sigma 

Aldrich; Merck KGaA, Darmstadt, Germany), 125 μg/ml dispase type II (Thermo 

Fisher Scientific, Inc.), 2.5% (v/v) fetal bovine serum (Thermo Fisher Scientific, Inc.) 

and 100 U/ml penicillin/streptomycin at 37˚C. Digestion was terminated prior to 

complete dispersion of the PDXs. PDXs of intermediate size (between 40 and 100 μm) 

were collected using a cell strainer and cryopreserved in a Cell Banker 2 (Nippon 

Zenyaku Kogyo, Co., Ltd.) at -160˚C. 
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3D-culture of cryopreserved PDXs 

Cryopreserved PDXs were suspended in Advanced DMEM/F12 (ratio, 1:1; Thermo 

Fisher Scientific, Inc.) containing 10 mM 4-(2-hydroxyethyl)-1- piperazine 

ethanesulfonic acid, 2 mM GlutaMAX-1 (Thermo Fisher Scientific, Inc.), N2 

supplement (Thermo Fisher Scientific, Inc.), B27 supplement (Thermo Fisher Scientific, 

Inc.), 100 U/ml penicillin/streptomycin, 1 mM N-acetylcysteine, 500 nM A-83-01 and 1 

μM SB202190 as previously described 75. Subsequently, PDXs were seeded in 

U-bottom 96-well plate (Sumitomo Bakelite Co., Ltd., Tokyo, Japan) and cultured in a 

5% CO2-humidified chamber at 37˚C. Growth of PDX was monitored using Cellavista 

and Cellavista Control and Evaluation Software version 2.1.0.876 (Synentec GmbH, 

Elmshorn, Germany). Data was omitted when the shape of PDX was not recognized by 

Cellavista. 

 

Evaluation of knockdown activities in 3D-culture system of PDXs 

PDXs were cultured for four days as aforementioned. KNTC2-LNP was added at 

concentrations of 10 nM, 100 nM and 1 μM (n=6). PDXs were subsequently cultured 

for an additional three days and mixed together due to each tumor volume being too 

small to obtain a sufficient amount of total RNA for evaluating knockdown activities. 

Total RNA was extracted using RNeasy kit (Qiagen GmbH, Hilden, Germany) and 

reverse-transcribed using SuperScript VILO cDNA Synthesis kit, according to 

manufacturer’s protocols. Knockdown activities were calculated as aforementioned.  
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Evaluation of growth inhibitory activities in a 3D-culture system of 

PDXs 

PDXs were cultured for three (LC-60) or four (LC-45) days as aforementioned (n=6). 

KNTC2-LNP was added at concentrations ranging from 10 nM, 100 nM and 1 μM. 

Erlotinib (Carbosynth) was added at concentrations of 10 nM, 100 nM, 1 μM and 10 

μM using a sample-dispensing machine (HP D300 Digital Dispenser, Tecan Japan Co., 

Ltd., Kawasaki, Japan). Growth inhibitory rate was calculated using the formula as 

aforementioned. 

 

Statistical analysis 

Data was statistically analyzed using EXSUS 2014 software. Significance among 

groups was analyzed using Bartlett's test followed by Dunnett's test (in vivo studies) or 

Williams' test (in vitro studies). P<0.05 was considered to indicate a statistically 

significant difference. 
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Results 
 

Sensitivities of lung cancer PDXs to erlotinib in vitro and in vivo 

To select different types of lung cancer PDXs for the evaluation of KNTC2-LNP, the 

sensitivities of several PDXs to erlotinib (an approved drug for patients with lung 

cancer) were investigated. Among those PDXs, LC-45 exhibited relatively high 

sensitivity to erlotinib in a subcutaneous tumor model (Fig. 12A). Repeated oral 

administration of erlotinib (100 mg/kg, once a day) significantly (P<0.001) inhibited the 

tumor growth of LC-45 by 86%. In contrast, the same dosage of erlotinib did not inhibit 

the tumor growth of LC-60 (Fig. 12B). 

Sensitivities of LC-45 and LC-60 to erlotinib were also investigated in 

3D-culture systems. Erlotinib significantly (P<0.001) inhibited the growth of LC-45 by 

81% at the concentration of 1 µM (Fig. 13A). The growth of LC-60 was not inhibited 

by erlotinib at the same concentration indicating that LC-60 was less sensitive to 

erlotinib compared with LC-45 (Fig. 13B). 

 

Encapsulation of siRNAs into LNP 

The particle sizes of KNTC2 siRNA-LNP and Luc siRNA-LNP were 75 and 73 nm, 

respectively. PdIs were 0.012 and 0.022. The entrapment efficiencies were 98.2 and 

97.6%, demonstrating that each siRNA was successfully encapsulated into LNP. 
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Knockdown and growth inhibitory activity of KNTC2-LNP in 

3D-culture system of LC-60 

The knockdown activities of KNTC2-LNP were 60% at 10 nM, 79% at 100 nM and 

88% at 1 µM in 3D-culture systems of LC-60 (Fig. 14A). The knockdown activities of 

Luc siRNA-LNP (negative control) were markedly decreased compared with 

KNTC2-LNP, indicating the specificity of KNTC2 siRNA (Fig. 14B). 

Tumor growth of LC-60 was significantly inhibited by KNTC2-LNP at 100 nM 

and 1 µM (P<0.001; Fig. 15A). The growth inhibition rates were 21 and 63%, 

respectively. Luc siRNA-LNP (negative control) did not significantly inhibit the growth 

of LC-60 at the same concentrations, indicating that growth inhibition was specifically 

caused by the suppression of human KNTC2 mRNA expression (Fig. 15B). 

 

Knockdown and growth inhibitory activities of KNTC2-LNP in 

subcutaneous tumor model mice of lung cancer PDXs 

Knockdown and growth inhibitory activities of KNTC2-LNP were further investigated 

in the subcutaneous tumor model of LC-60. Single intravenous administration of 

KNTC2-LNP (5 mg/kg) significantly suppressed the expression levels of human 

KNTC2 and mouse Kntc2 mRNA in LC-60 by 27% and 46%, respectively (P<0.01; 

Figs. 16A-B). Luc siRNA-LNP (negative control) did not exhibit knockdown activities 

at the same dosage. Repeated intravenous administration of KNTC2-LNP (5 mg/kg, 

twice a week) significantly inhibited the growth of LC-60 by 67% (P<0.001; Fig. 16C). 

Luc siRNA-LNP did not inhibit the growth of LC-60 indicating that the growth 

inhibition was specifically caused by the suppression of human KNTC2 and mouse 

Kntc2 mRNA expression levels. 
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Knockdown and growth inhibitory activities of KNTC2-LNP were also 

investigated using another lung cancer PDX, LC-45. Single intravenous administration 

of KNTC2-LNP (5 mg/kg) significantly suppressed the expression levels of human 

KNTC2 and mouse Kntc2 mRNA in LC-45 by 63 and 60%, respectively (P<0.001; Figs. 

17A-B). Repeated intravenous administration of KNTC2-LNP (5 mg/kg, twice a week) 

significantly inhibited the growth of LC-45 by 63% (P<0.01; Fig. 17C) suggesting that 

KNTC2-LNP exhibits antitumor activity against various types of lung cancer PDXs. 
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Discussion 
 

To expand the application of KNTC2 siRNA-LNP, I evaluated its anti-tumor activities 

in 3D-culture systems and subcutaneous tumor models of lung cancer PDXs, LC-45 and 

LC-60. 

Lung cancer PDXs implanted into the flank of immuno-deficient mice were 

estimated to be composed of lung cancer patient-derived human cells and host 

mouse-derived stromal cells76. Stromal cells have been reported to affect the 

proliferation of cancer cells in tumor tissues77. Therefore, in the present study, KNTC2 

siRNA that suppressed not only human KNTC2 mRNA but also mouse Kntc2 mRNA 

was selected in order to clarify the involvement of KNTC2 in human-derived cancer 

cells and mouse-derived stromal cells (Figs. 16-17). The knockdown activities of 

KNTC2 siRNA were sufficient to inhibit the in vivo growth of LC-60 and LC-45. 

Negative control Luc siRNA did not inhibit the growth of these PDXs, indicating that 

their growths were dependent on KNTC2. 

Notably, KNTC2 siRNA inhibited the growth of LC-60 that was resistant to an 

approved drug, erlotinib (Figs. 15-16). According to previous studies, KNTC2 siRNA 

was estimated to impair the chromosome segregation of LC-60 leading to cell cycle 

arrest and apoptosis78,79. This molecular mechanism is distinct from that of erlotinib, 

which inhibits the auto-phosphorylation of EGFR tyrosine kinase80. Inhibitors of EGFR 

tyrosine kinase were reported to be ineffective in patients with lung cancer with 

mutations in KRAS81 or EGFR82. LC-60 exhibited a mutated KRAS gene (G12V). 

Therefore, KNTC2 may be a therapeutic target for patients with lung cancer that is 

resistant to erlotinib. 



53 
 

Several types of 3D-culture systems have been developed for PDXs to increase 

the efficiency of drug screening83-85. Efficiency of evaluating KNTC2 siRNA was 

increased by establishing 3D-culture systems of LC-45 and LC-60. In the case of 

erlotinib, the results of 3D-culture systems were similar to that of subcutaneous tumor 

models (Figs. 12-13). These results were consistent with previous reports demonstrating 

the similarities of 3D-culture systems to subcutaneous tumor models using other lung 

cancer PDXs 86,87. 

The maximum knockdown activity of KNTC2-LNP in the 3D-culture system 

was sufficient to inhibit the growth of LC-60 and predict the result of in vivo study (Figs. 

14-16). In contrast, growth inhibitory activity of KNTC2-LNP was not detected in the 

3D-culture system of LC-45 (data not shown). The reason for these results was 

speculated to be that the maximum knockdown activity of KNTC2-LNP was 

insufficient to inhibit the growth of LC-45. Applicability of the 3D-culture system to the 

evaluation of KNTC2-LNP was considered to be different between PDXs. 

In conclusion, I established in vitro 3D-culture systems of lung cancer PDXs 

and confirmed their correlation with in vivo subcutaneous tumor model mice. 

Anti-tumor activities of KNTC2 siRNA-LNP were clarified in the 3D-culture system 

and subcutaneous tumor model of LC-60 that was resistant to erlotinib. KNTC2 

siRNA-LNP also inhibited the in vivo growth of LC-45 that was sensitive to erlotinib. 

These results indicated that KNTC2 siRNA-LNP could be widely applied to lung cancer 

patients. 
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Tables and Figures 
 

Table 5 List of chemically modified siRNAs for Luc and KNTC2.  

 

siRNA Strand Sequence 

Luc siRNA 
Sense 5'-r(CUUACGCUGAGUACUUCGA)-dTsdT-3' 

Antisense 5'-r(UCGAAGUACUCAGCGUAAG)-dTsdT-3' 

KNTC2 siRNA 
Sense 5'-r(UAGUCAACUUGGUAUAUUU)-dTdT-3' 

Antisense 5'-r(AAAUAUACCAAGUUGACUA)-dTdT-3' 

r, ribonucleotide; d, deoxy-ribonucleotide; s, phosphorothioate modification; underline, 

2'-O-methyl ribonucleotide. 
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Table 6 List of quantitative PCR primers and probes specific for human KNTC2 

and mouse Kntc2 mRNAs.  

 

Gene Sequence 

Human KNTC2 
 

  Forward primer 5'-d(GAGGTACATAAACTTGAGCCCTGTATT)-3' 

  Reverse primer 5'-d(TGCTGAGAATTCCAAAGGTTATGA)-3' 

  Probe 5'-d(TGGCACCAGCCTCGGGATTAAACTTAA)-3' 

Human ACTB 
 

  Forward primer 5'-d(CCTGGCACCCAGCACAAT)-3' 

  Reverse primer 5'-d(GCCGATCCACACGGAGTACT)-3' 

  Probe 5'-d(ATCAAGATCATTGCTCCTCCTGAGCGC)-3' 

Mouse Kntc2 
 

  Forward primer 5'-d(GAATAAAAAGAGGCATCTGGAGGATAC)-3' 

  Reverse primer 5'-d(CCTCCTTCAGCATCCTCACAGT)-3' 

  Probe 5'-d(CAACTGAACACCATGAAAACGGAAAGCAA)-3' 

Mouse Actb  
 

  Forward primer 5'-d(CACTATTGGCAACGAGCGG)-3' 

  Reverse primer 5'-d(TCCATACCCAAGAAGGAAGGC)-3' 

  Probe 5'-d(TCCGATGCCCTGAGGCTCTTTTCC)-3' 

d, deoxy-ribonucleotide; KNTC2, kinetochore-associated protein 2; ACTB, β-actin. 
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Figure 12 Sensitivities of lung cancer patient-derived tumor xenografts to erlotinib in 

subcutaneous tumor model mice. LC-45 (A) and LC-60 (B) were inoculated in the flank of 

BALB/c nude mice. Erlotinib (100 mg/kg) was orally administered once a day during the test 

periods. Control group mice were treated with 0.5% methylcellulose. Values are presented as the 

mean+SD (n=5). n.s., no significance; ***, P<0.001 by Dunnett's test.  
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Figure 13 Sensitivities of lung cancer patient-derived tumor xenografts to erlotinib in 

3D-culture systems. Growth inhibitory activities of erlotinib were evaluated in 3D-culture 

systems of (A) LC-45 and (B) LC-60. The concentrations of erlotinib were 10, 100 nM, 1 and 

10 µM. Values are presented as the mean+SEM (n=4). n.s., no significance; **, P<0.005; ***, 

P<0.0005 compared with control by Williams' test.  
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Figure 14 Knockdown activities of KNTC2-LNP in 3D-culture system of LC-60. The 

knockdown activity of KNTC2-LNP (10 nM - 1 µM) was evaluated in a 3D-culture system of 

LC-60 (A). Luc siRNA-LNP was used as a negative control (B). The expression levels of 

human KNTC2 mRNAs were measured three days after the addition of lipid nanoparticles 

(n=6). 
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Figure 15 Growth inhibitory activity of KNTC2-LNP in 3D-culture system of LC-60. 

Growth inhibitory activity of KNTC2-LNP (A) was evaluated in 3D-culture systems of LC-60. 

Luc siRNA-LNP (B) was used as a negative control. These siRNAs were evaluated at 10, 100 

nM and 1 µM. Values are presented as the mean+SEM (n=5 or 6). n.s., no significance; ***, 

P<0.0005 compared with control by Williams' test.  
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Figure 16 Knockdown and growth inhibitory activities of KNTC2-LNP in subcutaneous 

tumor model mice of LC-60. Knockdown activities of KNTC2-LNP (5 mg/kg) were evaluated 

three days following a single intravenous administration. PBS and Luc siRNA-LNP were used 

as controls. The expression levels of human KNTC2 mRNA (A) and mouse Kntc2 mRNA (B) 

were investigated. Values are presented as the mean+SD (n=3). (C) Growth inhibitory activities 

of KNTC2-LNP (5 mg/kg) were evaluated during repeated intravenous administration (twice a 

week). Values are presented as the mean+SD (n=5). n.s., no significance; **, P<0.01; ***, 

P<0.001 compared with PBS/control by Dunnett's test. 



61 
 

 

 

Figure 17 Knockdown and growth inhibitory activities of KNTC2-LNP in subcutaneous 

tumor model mice of LC-45. Knockdown activities of KNTC2-LNP (5 mg/kg) were evaluated 

three days following a single intravenous administration. PBS and Luc siRNA-LNP were used 

as controls. The expression levels of human KNTC2 mRNA (A) and mouse Kntc2 mRNA (B) 

were investigated. Values are presented as the mean+SD (n=3). (C) Growth inhibitory activities 

of KNTC2-LNP (5 mg/kg) were evaluated during repeated intravenous administration (twice a 

week). Values are presented as the mean+SD (n=5). n.s., no significance; **, P<0.01; ***, 

P<0.001 compared with PBS/control by Dunnett's test. 
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General Discussion 
 

To clarify the involvement of KNTC2 in the growth of tumor tisses and show the 

possibility of developing KNTC2 siRNA drug for cancer therapy, I firstly selected 

highly potent siRNAs targeting KNTC2 in vitro and encapsulated them into a LNP for 

in vivo studies. Anti-tumor activities of KNTC2 siRNA-LNPs were confirmed in 

orthotopic tumor model mice of HCC (chapter 1) and subcutaneous tumor model mice 

of lung cancer PDX (chapter 2). 

Tumor tissues of cancer patients are rich in diversity and highly heterogenous. 

It is generally difficult to predict efficacies of anti-cancer drugs and determine the 

optimal dosage for each type of cancer patient. Therefore it was important to confirm 

the anti-tumor activities of KNTC2 siRNAs in several types of tumor models (HCC and 

lung cancer PDXs). The administration dosages of KNTC2 siRNA required to show 

anti-tumor activities were different between HCC model (0.3 mg/kg) and PDX models 

(5 mg/kg) probably because the efficiencies of deliverying KNTC2 siRNAs were 

different between these models. The in vivo knockdown efficiencies of KNTC2 siRNA 

were lower in PDX models compared with HCC model (Figs. 6, 16-17). According to a 

third-party report on a phase I clinical trial of siRNA-LNP, it seemed to be difficult to 

predict their knockdown efficiencies in cancer patients22. Predictive biomarkers were 

desired to estimate the knockdown efficiencies for each tumor type. 3D-culture systems 

of PDX as mentioned in chapter 2 might be one of the solutions to predict the 

compatibility of each cancer patient and siRNA-LNP. 

Liver is the most accessible tissue for siRNA-LNP. The first approved siRNA 

drug was designed to target transthyretin gene in the liver of patients with hereditary 
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transthyretin amyloidosis88. Among a wide variety of cancer models, HCC model 

seemed to be most suitable for the evaluation of siRNA-LNP21. Therefore I firstly 

selected orthotopic tumor model mice of HCC to evaluate the tumor selectivity of 

KNTC2 siRNA (Chapter 1). Using siRNAs that are common in human KNTC2 and 

mouse Kntc2, I could simultaneously evaluate the anti-tumor activities and 

hepatotoxicity in tumor tissues of HCC mixed with normal hepatocytes. The results 

indicated that anti-tumor activities of KNTC2 siRNAs were tumor selective (Fig. 8-9). 

To expand the application of KNTC2 siRNA-LNP, I next confirmed its 

anti-tumor activity in lung cancer PDX models that were reported to be more relevant to 

cancer patients (Chapter 2). This was the first report on the relationship between 

KNTC2 and PDX although there had been some reports on KNTC2 and commercially 

available cancer cell lines. My study indicated that KNTC2 siRNA-LNP could be 

applied to lung cancer patients who are resistant to an approved drug, erlotinib (Figs. 12, 

16). It is important for cancer patient to be suggested as much options as posssible 

because the heterogeneity of tumor tissues makes it difficult to develop anti-cancer 

drugs that were widely effective.  

Other groups have developed small molecules targeting KNTC2 and 

demonstrated their in vivo anti-tumor activities. These small molecules, such as INH178, 

TAI-189, TAI-9544 and TH-3990, were designed to inhibit the interaction between 

KNTC2 and a mitotic kinase, NIMA-related kinase 2 (Nek2) because phosphorylation 

of Ser165 in KNTC2 by Nek2 is critical for the modulation of chromosome 

segregation91. Cytotoxicities of TAI-1 and TAI-95 were checked in vitro using normal 

human fibloblast cell line, WI-38. Furthermore, hepatotoxicity and renal toxicity of 

TAI-1 were checked in vivo using CB17 SCID mice. However, its therapeutic window 



64 
 

was not clear because the dosage regimen of TAI-1 was slightly different between tumor 

xenograft models and toxicological studies. Developments of TAI-1 and its derivatives 

are not progressing by unknown reason. It is generally difiicult to control the specificity 

of small molecules. In contrast, the specificity of siRNA is generally high when used in 

low doses. I could confirm the anti-tumor acitivities of KNTC2 siRNA at the dosage of 

5 mg/kg in PDX models (Figs. 16-17). It might be possible to show the superiority of 

siRNA over small molecules in terms of specificity at therapeutic dosages. 

The mechanism of action is different between KNTC2 siRNA and small 

molecules targeting KNTC2 protein. As mentioned above, small molecules intercept the 

protein-protein interaction between KNTC2 and Nek2. They do not decrease the 

expression level of KNTC2 protein. In contrast, KNTC2 siRNA degrades KNTC2 

mRNA and decreases KNTC2 protein. There must be some biological differences such 

as downstream signaling, compensation of decreased KNTC2 by other protein or 

acquisition of drug resistance. I clarified that the phosphorylation of histone H3 

(p-HH3) is a pharmacodynamic marker of KNTC2 siRNA (Fig. 7). There is no report 

that demonstrated p-HH3 by small molecules targeting KNTC2. This marker is desired 

to be validated in clinical trials.  

In addition to KNTC2, there are many other molecules that play important role 

in chromosome segregation (Fig. 2). Some of these molecules are candidate targets for 

cancer therapy. For examples, there is a report that demonstrated in vivo anti-tumor 

activity of NUF2 shRNA using lentiviral vector and human pancreatic cancer cell line92. 

Another report demonstrated in vitro anti-tumor activitiy of Spc25 shRNA using 

lentiviral vector and human prostate cancer cell line93. Small molecules have also been 

developed targeting aurora kinases, CDK1, PLK1, EG5 CENP-E and 26S proteasome 
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complex94. Some of them were effective in clinical trials but most of their effects were 

low when used in single agent probably because tumor tissues acquire resistance. 

Severe adverse events such as neuropathies were also concerned. Considering the 

situation, KNTC2 seemed to be an ideal drug target because its expression profile was 

highly specific to tumor tissues of cancer patients. In addition, KNTC2 siRNA could be 

used in combination with pre-existing drugs because their mechanism of actions are 

different from that of KNTC2 siRNA. 

In conclusion, I clarified the tumor-selective in vivo growth inhibitory activites 

of KNTC2 siRNA in orthotopic tumor model mice of hepatocellular carcinoma (Chapter 

1)74 and expanded its application to subcutanenous tumor model mice of lung cancer 

patient-derived tumor xenografts (Chapter 2)95. These results indicated that KNTC2 

siRNA could be applied to other types of tumor models. Using the experimental 

procesure established in this study, candidate target molecules other than KNTC2 would 

be efficiently evaluated just by exchanging the sequence of siRNA. Therefore this study 

indicated the possibility of siRNA drugs for many types of cancer patients and target 

molecules.  
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