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General Abstract 

 

 Various types of biological reactions are critical for maintaining the functions of cells, the 

fundamental units of our body. Biological molecules such as DNA and proteins play an important role 

in these reactions. Furthermore, biomolecular dysfunction caused by cellular stresses, such as DNA 

mutations, lead to the overactivation or suppression of molecular functions, resulting in the disruption 

of cellular homeostasis. This disruption gives rise to diseased states, and drugs are utilized to 

ameliorate these molecular dysfunctions. Recently, genetic technologies such as siRNA and CRISPR 

have been used widely to clarify the functions of molecules and pathogenic mechanisms. Additionally, 

chemical compounds that specifically regulate the functions of target proteins are powerful tools to 

understand biological phenomena. 

In drug discovery research, drug candidates are developed to effectively ameliorate 

biological dysfunctions occurring in diseased states. However, recent post-marketing surveillances 

and clinical studies have revealed that some marketed drugs and candidates are withdrawn due to 

unexpected adverse effects through the induction of detrimental cellular phenotypes. These 

detrimental phenotypes are considered to be caused by unintentional/off-target interactions of the 

drugs/candidates. In addition, it is still difficult to predict and detect these adverse phenotypes in the 

non-clinical research stages due to the lack of highly physiologically relevant in vitro models. For the 

development of safer drugs, it is critically important to accurately detect adverse drug effects in the 

early phase of drug discovery research. From this point of view, I considered that there were two 

critical issues to be solved in in vitro toxicology. The first one is the difficulty of identifying off-target 

molecules, and the second is the lack of in vitro models recapitulating drug toxic responses in human 

bodies. 

In my study, to address the first issue, I developed a pathway profiling system to identify 

drug off-targets with a simple and efficient method. In one example, 2-amino-4-(3,4-
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(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine, a Wnt agonist, was identified as a 

senescence inducer through phenotypic screening. To identify its target proteins, I compared a series 

of cellular assay results with those of a pathway profiling database comprising the activities of 

compounds as determined using simple assays of cellular reporter genes and cellular proliferation. In 

this database, compounds were classified based on the statistical analysis of their activities, which 

corresponded to the mechanism of action of representative compounds. In addition, the mechanisms 

of action of the compounds of interest could be predicted using the database. Based on my database 

analysis, the compound was predicted to be a tubulin disruptor, and this prediction was subsequently 

confirmed from its inhibition of tubulin polymerization. 

To address the second issue, I developed a highly physiologically relevant assay system for 

the specific detection of drug-induced renal toxicities. As drug candidates are sometimes withdrawn 

owing to renal toxicity, the accurate prediction of drug-induced renal toxicity is necessary for the 

development of safer drugs. Cellular assay systems that recapitulate physiologically relevant 

microenvironments have been proposed for obtaining a good estimation of drug responses in the 

human body. However, establishment of such assay systems for accurate prediction of renal toxicity 

is challenging due to the lack of readily available in vitro assay systems. In my study, I investigated 

the cellular response to fluid shear stress, a characteristic of physiological environments in the kidney 

proximal tubules, using microfluidic devices. The global gene expression profiles of human primary 

proximal tubule cells under the fluidic conditions revealed the upregulation of MATE2-K and 

activation of Nrf2 signaling in response to the fluid shear stress. Moreover, a bioinformatic analysis 

and cellular biological assay revealed that the expression of MATE2-K is regulated by Nrf2 signaling. 

These results strongly suggest that fluid shear stress, a major physical stress in tissues, is involved in 

the expression and functional maintenance of tissue-specific drug transporters in the proximal tubule, 

where the cells are exposed to continuous shear stress by primary urine.  
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My first study emphasizes that the pathway profiling database is a simple and potent tool 

for revealing off-targets, that induce adverse drug effects of drugs and drug candidates. My second 

study demonstrates that the microfluidic culture of human proximal tubules could be a useful system 

to accurately predict drug renal toxicities under physiologically relevant conditions. I conclude that 

both of my developed platforms provide researchers tools to detect cellular toxicities and off-targets. 

This consequently contributes to the selection of appropriate drug candidates to develop safer and 

more effective drugs. Moreover, these platforms can be applied not only to detect drug responses, but 

also to reveal novel gene functions, in combination with current molecular biological methods such as 

gene-editing technologies. 
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Abbreviations 

AMBMP 2-amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine 

BARD bardoxolone methyl 

CRISPR clustered regularly interspaced short palindromic repeats 

dPPA 12-deoxyphorbol 13-phenylacetate 20-acetate 

ECM extracellular matrix 

FDA The Food and Drug Administration 

FSS fluid shear stress 

HCS high-content screening 

hERG human Ether-a-go-go Related Gene (KCNH2) 

HNF hepatocyte nuclear factor 

HTS high-throughput screening 

iPS cell induced pluripotent stem cell 

MOA mechanism of action 

NECA N-ethylcarboxamidoadenosine 

OAT organic anion-transporting protein 

PDD phenotypic drug discovery 

PDE phosphodiesterase 

PMA phorbol 12-myristate 13-acetate 
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PTEC proximal tubule epithelial cell 

ROS reactive oxygen species 

SLC solute carrier proteins 

WGCNA weighted gene co-expression network analysis 
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General Introduction 
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Numerous biological reactions maintain the functions of cells, which are the fundamental 

units of our body. Biological molecules such as DNA and proteins play an important role in these 

reactions. Although the complete human genome sequence has been revealed, functions of several 

genes remain to be clarified. To identify their functions in cells, genetic techniques such as siRNA and 

CRISPR have been utilized widely [1]. Additionally, chemical probes that modulate the function of 

target proteins are powerful tools for understanding biological phenomena [2]. 

Biomolecular dysfunctions caused by cellular stresses, such as DNA mutations, lead to the 

overactivation or suppression of molecular functions. This results in the disruption of cellular 

homeostasis. This disruption gives rise to diseased states, and drugs are generally utilized to ameliorate 

these molecular dysfunctions. For instance, a genetic mutation of NLRP3, which is an inflammasome 

component and participates in eliminating pathogens, causes the overactivation of inflammatory 

reactions such as IL1 production and secretion, causing autoinflammatory diseases [3]. To treat these 

diseases, NLRP3 inhibitors and anti-IL1 antibodies have been developed as anti-autoinflammatory 

drugs to restore inflammasome homeostasis [4]. In basic research, these drugs, especially small 

molecule compounds, are utilized as chemical probes to understand inflammasome signaling [5]. 

In drug discovery research, drug candidates are developed to potently normalize the 

functions of target molecules whose dysfunctions causes the diseased states. In general, these small 

molecules regulate biological functions by acting as inhibitors or activators of target molecules. 

However, post-marketing surveillance and clinical studies have revealed that some drugs and 

candidates exert not only primary pharmacological effects, but also some adverse effects through the 

induction of detrimental phenotypes such as apoptosis [6]. These detrimental phenotypes are 

considered to be caused by interaction with off-target molecules [7]. So far, small molecules have been 

believed to regulate only the functions of their target molecule, but recently it has been revealed that 

drug candidates likely have multiple targets in our bodies [8].  
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The off-target molecules that interact with drug candidates are not readily identified under 

regular research strategies. Thus, it is particularly difficult to detect detrimental phenotypes using 

typical animal and cell models, as they do not completely recapitulate the conditions in human bodies 

[9-13]. Therefore, translational research has recently attracted attention with increased focus on 

connecting basic research and clinical events [14, 15]. In particular, adverse drug reactions caused by  

unknown off-target molecules have been primary cause of failures in drug discovery research [16]. 

An analysis of the reasons for failure of drug candidates has revealed that a large number of candidates 

are withdrawn owing to safety issues [17]. This analysis showed that non-clinical toxicology and 

clinical safety were the main reasons for termination, portions of which were over 50% in total [17]. 

In addition, some drugs were withdrawn after launch due to severe side effects. For example, the 

antihistamine terfenadine, a predecessor of fexofenadine, was withdrawn because it caused 

arrhythmias, which have been attributed to the off-target inhibition of the hERG channel [18]. 

Similarly, haloperidol, presently treated as a typical antipsychotic medication, is an inverse agonist of 

the dopamine D2 receptor. The compound is reported to bind other dopamine receptors, 5HT receptors, 

and adrenergic receptors, leading to adverse effects such as akathisia and hypotension [19]. 

Furthermore, haloperidol was found to inhibit mitochondrial complexⅠ in an off-target interaction, 

generating adverse effects involving the extra-pyramidal tract [20]. 

Although numerous cutting-edge technologies, such as induced pluripotent stem (iPS) cells 

and next-generation sequencing, have been employed in drug discovery research, it is still difficult to 

predict the off-target molecules responsible for specific adverse effects in the body. Recently, other 

than experimental efforts, some researchers have also attempted to utilize biological assay data of a 

large number of compounds to predict adverse effects. Lounkine et al. [21] employed the Similarity 

Ensemble Approach (SEA), which calculates whether a molecule will act on a target based on the 

chemical structure it shares a known ligand. This analysis predicted the activity of 656 marketed drugs 
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on 73 unintended off-target molecules. However, only half of the predictions were found to be accurate 

[21]. At present, deep learning, a representative artificial intelligence (AI) technology, has been 

introduced to predict drug toxicities using databases of chemicals and drugs analyzed by various 

bioassays, but the toxicity prediction rate needs further improvements [22]. 

To effectively develop safer drugs, it is essential to accurately detect adverse drug effects 

and reveal their molecular mechanisms in the early phase of drug discovery research. From this point 

of view, I considered that there are two critical issues to be addressed in in vitro toxicology. The first 

is the difficulty of identifying unknown off-target molecules, because there are many kinds of off-

target candidates that could cause adverse effects in our bodies. To date, the target identification 

methods developed are all based on chemical proteomics. These methods have revealed many unique 

target proteins associated with bioactive compounds. For example, by using this technology, 

thalidomide, a drug for morning sickness during early pregnancy, was proven to bind to cereblon, an 

E3 ligase, thereby clarifying the molecular mechanism of its teratogenic effects [23]. However, 

because this method is based on an affinity pull-down assay, it requires further chemical synthesis to 

add chemical tags to compounds of interest without decreasing their biological activities [24]. For 

tagless determination of the target molecules of compounds, Petrone et al. developed the chemical 

biological descriptor “high-throughput screening finger print (HTS-FP)”, which employs accumulated 

HTS data [25]. From the perspective of the pharmaceutical industry, target identification methods with 

a simple system are highly desirable. 

The second issue is the difficulty of recapitulating toxic drug responses in human bodies 

using in vitro cellular assay systems. In toxicology, animal models and in vitro models comprising 

human cell lines are commonly employed. However, these typical systems do not accurately mimic 

tissue functions. This is due to species-specific differences in gene sequences and expression patterns 

in animal models and the lack of functional proteins in cellular models [9, 13]. Regarding studies on 
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drug-induced nephrotoxicity, the expression of mRNA for kidney-specific drug transporters in HK2 

cells, a widely used human proximal tubule cell line, was reported to be much lower than that in kidney 

cortex tissue samples [26]. With the advancement of stem cell technologies such as iPS cells and ES 

cells have, researchers can easily access various types of human cells that are not technically fresh 

human primary tissues such as neuronal cells [27, 28]. These stem cell-derived cells are confirmed to 

express some tissue-specific genes, but they still have some limitations regarding the diversity of iPS 

cell characteristics, iPS cell differentiation efficiency, and their cellular functions [28-30]. Currently, 

these cells are differentiated using only humoral factors, including various kinds of growth factors. 

Considering the tissue environments, each cell should be cultured in conditions facilitating interactions 

with other types of cells and exposure to physical stresses such as shear stress induced by the 

bloodstream. These stresses are now believed to be important factor for the recapitulation and 

maintenance of the physiological functionality of human organs and for committing the stem cells to 

a specific lineage [31-33]. Therefore, other than humoral factors, the physical environmental factors 

in tissues must be taken into account when establishing microphysiological organ models.  

Organ-on-chips, one of the in vitro organ models, are microengineered biomimetic systems 

that represent key functional units of human organs and recapitulate cell-cell interactions and 

mechanical microenvironments. These systems are used as specialized in vitro models to investigate 

pharmacological and toxicological modulation of complex biological processes. For instance, to 

predict hepatotoxicity, one of main reasons for clinical trial failures, many research groups and biotech 

companies have made efforts to develop ex vivo hepatic culture systems, i.e., liver-on-a-chip, with  

nutrient and oxygen gradients and shear stress, which are important for maintaining hepatocyte 

functions [34, 35]. 

In my study, to address the above two issues related to the high attrition rates in drug 

discovery, I developed two systems to evaluate drug adverse effects in the early phase of drug 
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discovery. In chapter I, I describe the development of the pathway profiling system, which identifies 

off-target molecules inducing cell toxicities, with a simple target identification approach involving 

tag-free compounds. Also, I reveal an off-target molecule of AMBMP, a widely used Wnt signaling 

activator, using this system. In chapter II, I describe the development of a highly physiologically 

relevant cellular assay system to detect adverse drug effects in kidney proximal tubules. Using the 

assay system, I reveal that the expression of MATE2-K is regulated by Nrf2 signal induced by shear 

stress. 

  



15 

 

Chapter I 

 

Tubulin is a molecular target of the Wnt-activating chemical probe 

  



16 

 

Abstract 

In drug discovery research, cell-based phenotypic screening is an essential method for 

obtaining potential drug candidates. Revealing the mechanism of action is a key step on the path to 

drug discovery. However, elucidating the target molecules of hit compounds from phenotypic 

screening campaigns remains a difficult and troublesome process. Simple and efficient methods for 

identifying the target molecules are essential. 

2-Amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine 

(AMBMP) was identified as a senescence inducer from a phenotypic screening campaign. The 

compound is widely used as a Wnt agonist, although its target molecules remain to be clarified. To 

identify its target proteins, I compared a series of cellular assay results for the compound with my 

pathway profiling database. The database comprises the activities of compounds from simple assays 

of cellular reporter genes and cellular proliferations. In this database, compounds were classified on 

the basis of statistical analysis of their activities, which corresponded to a mechanism of action by the 

representative compounds. In addition, the mechanisms of action of the compounds of interest could 

be predicted using the database. Based on my database analysis, the compound was anticipated to be 

a tubulin disruptor, which was subsequently confirmed by its inhibitory activity of tubulin 

polymerization. 

These results demonstrate that tubulin is identified for the first time as a target molecule of 

the Wnt-activating small molecule and that this might have misled the conclusions of some previous 

studies. Moreover, the present study also emphasizes that my pathway profiling database is a simple 

and potent tool for revealing the mechanisms of action of hit compounds obtained from phenotypic 

screenings and off targets of chemical probes. 
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Introduction 

Drug candidate selection through small-molecule screening is a rational and widespread 

method in the current drug discovery cascade. Initially, drug discovery research involved cell-based 

phenotypic screening as a core approach to obtaining drug candidates [36]. However, since the 

completion of the Human Genome Project in 2003 and the finding that sequences include numerous 

potential target proteins for drug discovery, target-based drug screening has been pursued actively [37, 

38]. In addition, target-based drug screening procedures were initially accelerated to increase the 

research and development productivity of drug discovery in pharmaceutical companies. However, the 

number of FDA-approved drugs screened from the target-based approach was much less than expected 

because a large number of drug candidates failed during drug development owing to safety issues and 

a lack of efficacy [16]. In contrast, recent analysis of all first-in-class new molecular entities showed 

that phenotypic screening approaches accounted for 37% in comparison with 23% from target-based 

approaches [36]. Accordingly, classical cellular phenotypic screenings, also called phenotypic drug 

discovery (PDD), are being reevaluated as complementary and efficient strategies for probing drug 

candidates. 

Chemical probes are powerful tools for target validation of hit compounds from PDD. 

However, some well-known chemical probes have been used incorrectly and have resulted in 

misleading biological conclusions [39]. Therefore, target identification of these compounds is 

essential for PDD. To date, target identification methods that use chemical proteomics or activity-

based proteomics have been developed, and they have uncovered many unique target proteins 

associated with bioactive compounds [24, 40]. Although this is certainly a useful method, it requires 

mass spectrometry instrumentation and further chemical syntheses to add tags to compounds of 

interest without deteriorating their activities. To determine the target molecules of compounds without 

affinity tags, Petrone et al. developed the chemical biological descriptor “high-throughput screening 
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finger-print (HTS-FP)” that employs accumulated HTS data [25].On the other hand, Frederick et al. 

developed a screening platform that consists of a series of reporter gene assays to disclose the 

mechanism of actions (MOAs) of compounds and by conducting assays in a quantitative HTS format 

[41, 42]. To develop a much simpler target identification approach with tag-free compounds, I 

exploited a pathway profiling database using only tens of cellular assays representing cellular signaling 

cascades through evaluation of compounds at a single concentration. 

Oncology has become one of the largest therapeutic areas in the pharmaceutical industry. 

Various kinds of molecular targets and cellular signals have been reported to inhibit cancer growth. 

Among them, cellular senescence is considered to be the most important cellular phenotype for 

permanently arresting the cell cycle [43]. To date, reports have shown that genetic mutations and 

cellular stressors such as oxidative stress enhance cellular senescence and that some small molecules 

induce cellular senescence [44, 45]. In particular, compounds that induce cellular senescence are 

expected to be potent drugs for suppressing cancer growth [46]. Here I conducted a phenotypic 

screening campaign based on high-content cellular imaging to probe small molecules that induce 

cellular senescence. 
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Results 

Pathway profiling database classifies compounds according to their MOA 

The pathway profiling database mainly comprises reporter gene assays using firefly 

luciferase that cover 13 different signaling pathways and cellular proliferation assays with 7 

commercially available cell lines (Table 1). These types of cellular assays are widely used in cell 

biology research and are highly accessible because of their simple procedures and low cost. In addition, 

these assays are very robust and demonstrate high throughput, which enabled us to detect subtle signal 

changes in an HTS-compatible format. The assays were functionally validated using the dose-

dependent response of a native ligand or known inhibitors/activators.  

Through the development of this database, I evaluated 1,910 compounds from 3 commercial 

compound libraries that contained compounds with well-characterized MOAs and common 

experimentally used reference compounds. I evaluated these libraries at a single concentration of 3 

g/mL for the Natural Product Library and at 3 M for the other libraries. After obtaining all data, the 

database was analyzed using hierarchical clustering of the activities using Ward’s method in TIBCO 

Spotfire software (Figure 1A). As a result of the hierarchical clustering analysis, compounds that had 

similar activities in most assays were classified into the same cluster, enabling me to visually 

determine that they have similar molecular targets and signaling pathways.  

Forskolin (Figure 2), an adenylate cyclase activator [47], was included in each library, and 

all were grouped into one cluster (Figure 1B). In the cluster, N-ethylcarboxamidoadenosine (NECA) 

(Figure 2), an adenosine receptor agonist [48], was also included. This cluster was shown to gather 

compounds stimulating cAMP production via adenylate cyclase activation. This result indicates that 

the pathway profiling database classifies compounds according to their MOA. Similarly, phorbol 12-

myristate 13-acetate (PMA) [49] and its structural analogs phorbol 12,13-dibutyrate [50], 13-O-

acetylphorbol [51], and 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA) [52] (Figure 2) were 
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classified into the same cluster (Figure 1C). In other words, the structural analogs that had the same 

effect on cellular signaling were categorized into one cluster, as expected. 

Following these analyses, I investigated structurally diverse compounds that affect the same 

target proteins. I focused on the phosphodiesterase (PDE) inhibitors [53-56] (Figure 2) contained in 

my database. To quantitatively compare differences in the structures and activities of each compound 

in my database, I employed Tanimoto structural similarity calculated by Daylight’s fingerprints and 

Pearson’s correlation coefficients (activity versus activity), respectively. The Tanimoto similarities 

ranged from 0.16 to 0.65, strongly indicating the broad structural diversity between the compounds in 

my database (Figure 1D). In contrast, Pearson’s correlation coefficients (activity versus activity) in 

my database ranged from 0.64 to 0.83 (Figure 1D), showing their high bioactive similarities, despite 

their low structural similarities. These results indicate that my pathway profiling database based on 

the biological activities of compounds led to classifications corresponding to not only their structural 

similarities but also their MOAs. 

 

Wnt-activating small molecule is identified as a cellular senescence inducer  

Triple-negative breast cancer has been a focus among the various cancer classes because of 

its lack of response to hormonal therapies, and new drugs with distinct MOAs are absolutely required 

to cure breast cancer patients [57]. Therefore, I employed MDA-MB-231 cells with triple-negative 

features to obtain cellular senescence inducers as anticancer agents [58]. In this strategy, I performed 

phenotypic screening on the basis of high-content cellular imaging, which is a very useful method to 

analyze altered cellular morphology. The cellular senescence morphology was reported to lead to a 

topologically enlarged appearance [43]. Sodium butyrate is a well-known senescence inducer [59], 

and I confirmed that it provoked the reported senescence phenotype in MDA-MB-231 cells and 

expanded cell shapes (Figure 3A). In my study, this cellular morphology was defined as an indicator 
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of cellular senescence. 

For high-content screening (HCS) of senescence inducers, I developed a cell-based assay to 

analyze cellular phenotypic changes in MDA-MB-231 cells. To determine the activities of compounds 

in this HCS, the cellular area, which plays a key role in the selection of senescence inducers, was 

calculated using a custom-made image analysis algorithm. I screened 1,408 compounds in Tocriscreen 

(TOCRIS Bioscience) and StemSelect Small Molecule Regulators (Merck Millipore) at concentrations 

of 3 M and obtained 20 compounds that induced a ≥2-fold enlargement of the cytosolic area (Figure 

3B). Of these 20 compounds identified as senescence inducers (Figure 3C), molecular targets of 19 

compounds have been clarified in past studies, but that of 2-amino-4-(3,4-

(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine (AMBMP) (Figure 2) has not been 

revealed yet. Thus, I focused on AMBMP to elucidate its molecular target, which is described further 

in this report.  

It is generally considered that Wnt signaling pathways play important roles during 

embryonic development [60]. AMBMP was first identified as a Wnt signal agonist through Wnt signal 

activator screening using a common reporter gene assay [61]. To date, the first report of AMBMP has 

been cited in 68 papers, and the compound itself and its 10 applications have been patented 

(SciFinder®). However, its binding proteins have not yet been identified. I initially measured the 

activity of AMBMP using a Wnt reporter gene assay, as reported previously by Liu et al. [61]. 

Unexpectedly, using the Wnt reporter assay, I detected a much lower efficacy of AMBMP than that 

of a widely known Wnt signal activator glycogen synthase kinase 3 (GSK3) inhibitor (SB216763) 

[62] (Figures 2 and 3D). In contrast, GSK3 inhibitors were not observed to induce the senescence 

morphology (Figure 3E, Figure 4). These results strongly suggest that Wnt signal activation is not 

directly related to its cellular senescence and that AMBMP has binding proteins responsible for 

inducing cellular senescence. 
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Pathway profiling database identifies tubulin as a target protein of AMBMP 

To identify an AMBMP target molecule, I compared the cellular assays with my pathway 

profiling database and calculated each Pearson’s correlation coefficient (activity versus activity) 

between AMBMP and other all compounds in my database. As a result, 12 compounds demonstrated 

values above 0.8, which indicated high similarities (Figure 5A). Moreover, 10 of the 12 compounds 

involved classical tubulin disruptors such as nocodazole (Figure 2) and were thus known from 

previous reports to bind to tubulin [63-65]. Of these 10 compounds, only 2, KF 38789 and 

chromeceptin, had not been reported to induce tubulin depolymerization. The analyzed data allowed 

me to predict that AMBMP would directly interact with tubulin. To test this hypothesis, I measured 

the tubulin disruption activity of AMBMP in a tubulin polymerization assay. Consequently, tubulin 

polymerization was detected by fluorescence enhancement following uptake of a fluorescent reporter 

molecule into the polymerized tubulin during polymerization [66]. 

I observed tubulin polymerization inhibition by AMBMP and nocodazole with IC50 values 

of 0.33 M and 0.34 M, respectively (Figure 5B, Figure 6A). In this fluorescence-based 

polymerization assay, AMBMP was confirmed not to mediate the fluorescence interference through 

the observation of its UV-vis and fluorescence spectrum (Figure 7). In addition, intrinsic fluorescence 

quenching was used to study the potential interaction between AMBMP and tubulin. The fluorescence 

intensity of tubulin was decreased gradually with increasing concentrations of AMBMP, confirming 

its binding to tubulin. (Figure 5C). To determine the effects of these 2 compounds on the cellular 

microtubule network, I conducted a cell-based assay using cellular imaging techniques and fluorescent 

staining of tubulin. In the confocal image analysis, AMBMP and nocodazole were observed to clearly 

disrupt the intracellular microtubule network compared to control and SB216763-treated cells (Figure 

8A). Disturbance of the microtubule network by AMBMP and nocodazole was detected with IC50 
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values of 0.34 M and 1.7 M, respectively (Figure 6B). Furthermore, AMBMP as well as nocodazole 

was observed to inhibit cell proliferation and induce a cell cycle arrest in MDA-MB-231 cells (Figure 

9A, 9B). The effect of AMBMP on mitotic spindles was also observed with slightly shortening the 

spindle and astral microtubule at the low concentration of 30 nM and with significantly disrupting 

mitotic spindles at the higher concentrations of 0.3 and 3 M (Figure 8B), which was consistent with 

previous reports showing the effect of microtubule disruptors on mitotic spindles [67]. These results 

indicate that AMBMP had a strong inhibitory effect on tubulin polymerization, comparable to that of 

nocodazole. In addition, I had previously observed in my screening campaign that common tubulin 

disruptors induce cellular senescence (Figure 3C) [68, 69]. 
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Discussion 

In my study, the pathway profiling database based on the biological activities of compounds 

was confirmed to lead to classifications corresponding to both their structural similarities and their 

MOAs. Through operating the system, I will both maintain and obtain data at a lower cost and in a 

shorter period than the HTS-FP database and BioMAP™ (DiscoveRx), in which primary cells were 

utilized. However, my prediction method is limited to the range of target molecules of the reference 

compounds; however, to overcome this limitation, I will add various reference data for compounds 

that affect different types of target proteins other than those of the current compounds. In general, the 

accuracy of clustering analysis increases with a larger collection of datasets. Therefore, I will expand 

the cellular assays in the pathway profiling database to improve the accuracies of predicting both target 

molecules and cellular signaling properties. With these improvements in my system, I am attempting 

to perform target identification of other compounds, including my in-house compounds, with unknown 

targets. 

In addition, I estimated the extent of cellular signaling pathways covered by my database 

through a computational approach. With Reactome Pathway Database [70], my pathway profiling 

database has the potential to detect cellular events involved in more than 200 canonical biological 

pathways. Moreover, 70% of the tested compounds with well-characterized MOAs had detectable 

activity in at least one assay in my database. Consequently, my simple system is a promising and cost-

effective tool for profiling phenotypes and for predicting molecular targets of hit compounds from 

PDD.  

By applying my profiling system for target identification of AMBMP, I have revealed that 

AMBMP is a tubulin disrupting molecule for the first time since the compound was reported as a Wnt 

agonist. The Tanimoto similarities between AMBMP and tubulin disruptors ranged from 0.12 to 0.26 

(Figure 5A), which means that these compounds are apparently not structural analogs of AMBMP. 
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Because of their low scores, the structural similarities did not lead me to hypothesize whether AMBMP 

could inhibit tubulin polymerization. The achievement of AMBMP target identification supports the 

result that my pathway profiling database was extremely useful for predicting various pharmacological 

targets of compounds with unknown mechanisms. On the other hand, I consider that it is important to 

reveal the molecular mechanisms inhibiting tubulin polymerization by AMBMP. To address the issue, 

in future study, I will clarify its binding site on tubulin through a cocrystal structural analysis for 

AMBMP and tubulin complex. 

Chemical probes are widely used to demonstrate target molecule proof-of-concept in drug 

discovery [71]. To this end, the selectivity of chemical probes against the intended targets is a key 

factor. If these chemical probes interact with unintentional molecules and induce cellular phenotypes 

through their off-target effects, then both time and money might be lost in the process of drug 

discovery research. Some past research that used AMBMP as a chemical probe for Wnt signal 

activation might have incorrectly generated misleading results due to inhibition of tubulin activity. 

Recently, the met proto-oncogene (c-MET) inhibitor tivantinib was confirmed to inhibit tubulin 

polymerization as well as AMBMP [72]. Through my study, KF 38789 and chromeceptin were also 

shown to have similar bioactive profiles to tubulin disruptors (Figure 5B), generating the possibility 

that both compounds interact with tubulin. These compounds will be the subject of a future publication. 

In addition, a previous report revealed that the structural similarities of compounds do not provide 

sufficient information to speculate on their biological activities [73]. For an efficient drug discovery 

process, it is important to evaluate and profile chemical probes using various types of cellular assays, 

such as my pathway profiling database. 
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Conclusion 

My pathway profiling database determined tubulin to be a target of AMBMP, which was 

unknown since the discovery of AMBMP, and my simple and efficient system proved to be a powerful 

method for predicting compound MOAs. AMBMP has been widely used as a chemical probe for Wnt 

signal activation, but the results for studies that used the compound might have been influenced by its 

modulation of tubulin activity and not Wnt signal activity. For proper utilization of chemical probes, 

it is potentially valuable to investigate their cellular profiles using multiple cellular assays, such my 

pathway profiling database, which provides beneficial information about representative cellular 

signaling processes. Moreover, in drug discovery, off-target interactions are strongly thought to lead 

to low efficacy and significant side effects in clinical trials; therefore, the development of target 

identification and prediction methods is now definitively required to determine not only on-target 

molecules but also off-target molecules. The system will certainly keep providing us with useful 

information for various stages of the drug discovery process through target prediction and drug safety 

research. 
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Methods 

Chemical compounds  

Tocriscreen (TOCRIS Bioscience), Natural Product Library (ENZO Life Sciences), and 

StemSelect Small Molecule Regulators (Merck Millipore) were all dissolved in DMSO (10 mM for 

Tocriscreen and StemSelect and 10 mg/mL for the Natural Product Library). AMBMP was obtained 

from Merck Millipore. Sodium butyrate, nocodazole, and SB216763 were sourced from Wako. 

 

Cell cultures 

HEK293T, MRC5, A549, PC3, LNCaP, Jurkat, MDA-MB231, NIH-3T3, and SW480 cells 

were purchased from ATCC. HEK293T, A549, MRC5, and MDA-MB-231 cells were cultured in 

DMEM containing 4.5 g/L glucose, 10% fetal bovine serum (FBS), and penicillin/streptomycin. Jurkat, 

LNCaP, SW480, and PC3 cells were cultured in RPMI 1640 media containing 10% FBS and 

penicillin/streptomycin. NIIH-3T3 cells were cultured in DMEM containing 1.5 g/L glucose, 10% 

FBS, and penicillin/streptomycin. All cell culture reagents were purchased from Wako. 

 

Reporter gene assays in pathway profiling 

I developed reporter gene assays using a firefly luciferase system purchased from Promega. 

Detailed assay conditions such as cell lines, cell densities, corresponding ligands, incubation time with 

compounds, and materials are shown (Table 2). All assays were performed in a 384-well plate format. 

Plasmids were constructed by inserting each response element sequence at a multi-cloning site 

upstream from firefly luciferase. Transient transfections of all plasmids were performed in 

corresponding cell lines with Fugene HD (Promega) according to the manufacturer’s instructions. In 

each assay, we validated the assay condition with its ligand to perform a stable screening campaign 

(data not shown). In all assays, all compounds were diluted in complete media at a concentration of 3 
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g/mL (Natural Product Library) and 3 M (other libraries) and treated for the appropriate durations. 

After the addition of Steady-Glo (Promega) according to the manufacturer’s instructions, 

luminescence signals were measured using a luminescence plate reader (EnVision; PerkinElmer). We 

typically obtained 2 parameters calculated from each assay: one was the compound’s inhibitory 

activity with ligand activation and the other was its agonistic activity without ligand activation. 

 

Cellular proliferation assays used in pathway profiling 

Cell lines, cell densities, and incubation times with compounds are shown (Table 3). Cellular 

proliferation was detected with CellTiter-Glo (Promega). All assays were performed in a 384-well 

plate format. Luminescence signals were readout using a luminescence plate reader (EnVision; 

PerkinElmer). The proliferation assays with HEK293T cells and Jurkat cells were used as the counter-

screen against reporter gene assays. 

 

Cell-based phenotypic assays for cellular senescence inducers 

MDA-MB231 cells were seeded in a 384-well plate (3,000 cells/well) for 20 h before the 

treatment of compounds. After seeding, the tested compounds were diluted in complete media and 

incubated with cells for 24 h, followed by cytosol and nuclear staining for 1 h with CellTracker Green 

CMFDA and Hoechst 33342 (Invitrogen), respectively. For cellular tubulin staining, tubulin tracker 

green was used according to the manufacturer’s instructions (Invitrogen). Cellular images were 

recorded with an IN Cell Analyzer 6000 (GE Healthcare). After obtaining the images, the nuclear 

locations and cellular areas were stained with Hoechst 33342 and CMFDA, respectively, and 

quantitative signals from the images were calculated using a custom-made image analysis algorithm 

with IN Cell Developer Toolbox (GE Healthcare). 
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Cluster analysis in the pathway profiling system 

All compounds were utilized at a concentration of 3 g/mL (Natural Product Library) or 3 

M (other libraries) in the pathway profiling assays. All calculated data, including percent inhibition 

and percent activation number, were first normalized in each assay using the Z-scoring method and 

then analyzed by hierarchical clustering analysis (Ward’s method) with TIBCO Spotfire software 

(TIBCO). 

 

Calculating Pearson’s correlation coefficients 

Pearson’s correlation coefficients (Rp) were calculated using the following equation: 

Rp =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦)𝑁

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 √∑ (𝑦𝑖 − 𝑦)2𝑁

𝑖=1

 

where N equals 39 assay results and xi and yi are the activity values of each assay in my pathway 

profiling database for compounds A and B, respectively. 

 

Tubulin polymerization assay 

Tubulin polymerization was performed using a tubulin polymerization assay kit (BK011P, 

Cytoskeleton). Compounds were evaluated according to the manufacturer’s instructions. 

 

Tubulin binding assay with its intrinsic tryptophan fluorescence 

4 M of purified tubulin (Cytoskeleton) dissolved in general tubulin buffer (80 mM PIPES, 

pH 6.9, 2 mM MgCl2, 0.5 mM EGTA) was pretreated with certain concentrations of compounds for 

30 min. The intrinsic fluorescence spectra (320 – 400 nm) was measured with a fluorescence plate 

reader (EnVision; PerkinElmer) with the excitation wavelength 295 nm. 

 



30 

 

Immunofluorescence microscopy 

MDA-MB231 cells were incubated with compounds for 6 hours and 24 hours to observe the 

cellular microtubule network and the mitotic spindles respectively. Thereafter, the cells were fixed 

and permeabilized as described in the past report [74]. After blocking nonspecific binding with 1% 

donkey serum/PBS, the cells were incubated with the mouse monoclonal anti--tubulin antibody (Cell 

Signaling Technology) (1:1000 dilution) followed by the Alexa-488 conjugated anti-mouse IgG 

antibody (Invitrogen) (1:500 dilution). To visualize nuclei, the cells were incubated with 

Hoechst33342. For staining phospho-Histone H3, the fixed cells were treated with the rabbit 

monoclonal anti-phospho-Histone H3 (Ser10) antibody (Cell Signaling Technology) (1:1000 dilution) 

followed by the Alexa-594 conjugated anti rabbit IgG antibody (Invitrogen) (1:500 dilution). Cellular 

images were obtained with SP8 confocal microscopy (Leica). 

 

Flow cytometric analysis 

MDA-MB-231 cells were treated with compounds for 24 hours and fixed with ethanol. After 

fixation, cells were washed with PBS containing 2% FCS, and, subsequently, treated with Guava Cell 

Cycle reagent (Merck Millipore) according to the manufacturer's instructions. The DNA contents were 

determined using a Guava easyCyte HT software (Merck Millipore). 
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Tables and Figures 

 

Table 1. Constituents of the pathway profiling database. The types of cellular signals for the reporter 

gene assays and cell lines of the proliferation assays are shown.  
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Cellular reporter gene assays 

 

Cellular proliferation assays 

cAMP response element (CRE) 

signal 

 

HEK293T 

Nuclear factor of activated T-cells 

(NFAT) signal 

 

MRC5 

Nuclear factor kappa- light-chain-

enhancer of activated B cells (NF-

kB) signal 

 

MRC5 

Serum response element (SRE) 

signal 

 

A549 

Serum response factor (SRF) signal 

 

PC3 

p53 signal 

 

LNCaP 

E2F signal 

 

Jurkat 

Activating transcription factor 6 

signal 

 

MDA-MB-231 

Hedgehog signal 

  
Hypoxia-inducible factor 1 (HIF1) 

signal 

  
Nuclear factor erythroid 2-related 

factor 2 (Nrf2) signal 

  
SMAD signal 

  
Wnt signal 
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Table 2. Assay conditions such as cell lines, cell densities, corresponding ligands, incubation time 

with compounds, and materials for reporter gene assays in pathway profiling.  
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Cellular signal Cell lines Cell 

density 

(cells/well) 

Ligand Incubation 

time with 

compounds 

Original 

materials 

or 

references 

cAMP response 

element (CRE) 

signal 

HEK293T 5,000 Forskolin (1 M) 5 h pGL4.29  

(Promega) 

Nuclear factor of 

activated T-cells 

(NFAT) signal 

HEK293T 5,000 Ionomycin (1 M) 

PMA (10 ng/mL) 

5 h pGL4.30 

(Promega) 

Nuclear factor 

kappa-light-chain-

enhancer of 

activated B cells 

(NF-B) signal 

HEK293T 10,000 TNF (3 ng/mL) 20 h pGL4.32 

(Promega) 

Serum response 

element (SRE) 

signal 

HEK293T 20,000 FBS (15 %) 

PMA (30 ng/mL) 

20 h pGL4.33 

(Promega) 

Serum response 

factor (SRF) signal 

HEK293T 20,000 FBS (15 %) 5 h pGL4.34 

(Promega) 

p53 signal HEK293T 10,000 Doxorubicin 

(1 M) 

20 h [75] 
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E2F signal HEK293T 20,000 FBS (15%) 20 h [76] 

Activating 

transcription factor 

6 signal 

HEK293T 5,000 Thapsigargin 

(30 nM) 

5 h [77] 

Hedgehog signal NIH3T3 7,500 mouse sonic 

hedgehog 

20 h [78] 

Hypoxia-inducible 

factor 1 (HIF1) 

signal 

HEK293T 10,000 hypoxia 20 h [79] 

Nuclear factor 

erythroid 2-related 

factor 2 (Nrf2) 

signal 

HEK293T 5,000 tert-

butylhydroquinone 

(20 M) 

20 h pGL4.37 

(Promega) 

SMAD signal HEK293T 10,000 TGF(0.2 ng/mL) 20 h [80] 

Wnt signal HEK293T 10,000 Wnt3a 20 h [81] 

Wnt signal SW480 10,000 no ligand 

(constitutive active) 

20 h [81] 

IL17 signal Jurkat 5,000 Ionomycin (400 nM) 

PMA (4 ng/mL) 

5 h [82] 
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Table 3 Assay conditions such as cell lines, cell densities, and incubation times for cellular 

proliferation assays in pathway profiling. 

Cell lines Cell density (cells/well) Incubation time with compounds 

HEK293T 5,000 20 h 

Jurkat 5,000 20 h 

MRC5 1,000 72 h 

MRC5 3,500 72 h 

A549 1,000 72 h 

PC3 1,000 72 h 

LNCaP 600 72 h 

MDA-MB-231 500 72 h 
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Figure 1. Analysis of the pathway profiling database. (A) The heat map was visualized with TIBCO 

Spotfire software for clustering analysis. This figure represents the entire heat map of the pathway 

profiling database. The activities of each assay are displayed as a gradient from minimum activities 

(blue) to maximum activities (red). For details of the assay lists, see Table 1. (B) This cluster contained 

forskolin derived from each commercial compound library and NECA, a potent adenosine receptor 

agonist. (C) PMA and its structural analogs were grouped in the cluster shown. (D) The Tanimoto 

structural similarities and Pearson’s correlation coefficients (activity versus activity) were calculated 

for PDE4 inhibitors. 
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Figure 2. Chemical structures of the compounds discussed in this study. 
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Figure 3. A cell-based assay for a screening campaign of cellular senescence morphology inducers by 

fluorescence microscopy. (A) MDA-MB231 cells were treated with 1 mM sodium butyrate. Hoechst 

33342 was used as a nuclear marker (blue) and CMFDA was used to mark cytosols (green). Scale bar, 

10 m. (B) A compound selection scheme for the discovery of senescence inducers. AMBMP was 

obtained as a hit compound through the screening campaign. (C) Hit compound results from the 

screening campaign. Fold changes in the cellular area at 3 M concentrations were calculated for the 

compounds with a custom-made image analysis algorithm. (D) Activity of the Wnt reporter gene assay 

with a potent GSK3 inhibitor, SB216763, and AMBMP is shown. The results are the mean of 3 

replicate experiments (mean ± SD). (E) MDA-MB231 cells were treated with 3 M SB216763, 3 M 

AMBMP, and 1 mM sodium butyrate. Hoechst 33342 was used as a nuclear marker (blue) and 

CMFDA was used to mark cytosols (green). Scale bar, 10 m. 
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43 

 

Figure 4. Measurements of fold changes in the cellular area 

MDA-MB231 cells were treated with 3 M SB216763, 3 M AMBMP, and 1 mM sodium butyrate. 

To measure the cellular area, cell cytosol was stained with CMFDA and detected by IN Cell Analyzer 

6000 (GE Healthcare). Fold changes in the cellular area were calculated using a custom-made image 

analysis algorithm with IN Cell Developer Toolbox (GE Healthcare). The results are the mean of 2 

replicate experiments (means ± SD). 
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Figure 5. Target identification of AMBMP and its binding activity to tubulin. (A) The Tanimoto 

structural similarities and Pearson’s correlation coefficients (activity versus activity) were calculated 

against AMBMP. (B) SB216763, AMBMP, and nocodazole were evaluated in a tubulin 

polymerization assay. The results are the mean of 3 replicate experiments (with SD not shown for 

graphical simplicity). (C) AMBMP induced intrinsic tryptophan fluorescence spectra changes of 

tubulin. The results are the mean of 3 replicate experiments (with SD not shown for graphical 

simplicity). 
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Figure 6. Inhibitory activity on the tubulin polymerization and the cellular microtubule network 

(A) IC50 values of SB216763, AMBMP, and nocodazole were determined in a tubulin polymerization 

assay. The values were calculated using GraphPad Prism (GraphPad Software). (B) The fluorescence 

intensities of tubulin stained with a tubulin tracker (Invitrogen) were measured by IN Cell Analyzer 

6000. IC50 values of SB216763, AMBMP, and nocodazole were determined using a custom-made 

image analysis algorithm with IN Cell Developer Toolbox. The values were calculated by GraphPad 

Prism. Both results are the mean of 3 replicate experiments (mean ± SD). 
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Figure 7. The absorbance and fluorescence profiles of AMBMP. 

(A) UV-Vis spectra of AMBMP were observed with NanoDrop 1000 (Thermo Fisher Scientific). 

(B) Emission spectra of AMBMP. The excitation wavelength was 350 nm and emission spectra were 

acquired by scanning from 380 to 500 nm using EnVision (Perkinelmer). 
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Figure 8. Effect of AMBMP on the cellular tubulin network and mitotic spindles. (A) The cellular 

tubulin network (green) was observed by fluorescence microscopy. Hoechst 33342 was used as a 

nuclear marker (blue). (a) control. (b) 3 M SB216763. (c) 3 M AMBMP. (d) 3 M Nocodazole. 

Scale bar, 10 m. (B) Control and compounds-treated MDA-MB-231 cells were stained with -tubulin 

(green), phospho-histone H3 (red), and nuclei (blue). Phosphorylation at a highly conserved serine 

residue (Ser10) in the histone H3 is a key marker during the mitotic phase of the cell cycle. (a) control. 

(b) 30 nM nocodazole. (c) 0.3 M nocodazole. (d) 3 M nocodazole. (e) 30 nM AMBMP. (f) 0.3 M 

AMBMP. (g) 3 M AMBMP. Scale bar, 10 m. 
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Figure 9. Measurements of growth inhibitory activity, cell cycle distribution, and mitotic spindle of 

MDA-MB231 cells treated with AMBMP 

(A) The growth inhibitory activity of AMBMP and nocodazole were detected in a cell proliferation 

assay with the half-maximal inhibition of proliferation (IC50) values of 58 nM and 43 nM, respectively. 

The values were calculated using GraphPad Prism (GraphPad Software). The results are the mean of 

3 replicate experiments (means ± SD).  

(B) MDA-MB-231 cells were treated with DMSO control, 3 M AMBMP, 3 M nocodazole. The 

cellular DNA contents were determined with flow cytometric analysis. The results are the mean of 4 

replicate experiments (means ± SD). 
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Chapter II 

 

Fluid shear stress stimulates MATE2-K expression via Nrf2 pathway 

activation 
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Abstract 

Accurate prediction of drug-induced renal toxicity is necessary for development of safer 

drugs for patients. Cellular assay systems that recapitulate physiologically relevant 

microenvironments have been proposed for correct estimation of drug responses in the human body. 

However, establishment of such assay systems for accurate prediction of renal toxicity is challenging 

because of the lack of readily available in vitro assay systems. In this study, I investigated the cellular 

response to fluid shear stress, which is a characteristic of the environment in the kidney proximal 

tubules, using microfluidic devices. The global gene expression profiles of human primary proximal 

tubule cells under the fluidic conditions revealed upregulation of MATE2-K and activation of Nrf2 

signaling in response to fluid shear stress. Network and cell biological analysis additionally showed 

that expression of MATE2-K is regulated by Nrf2 signaling. These results strongly suggest that fluid 

shear stress is involved in the expression and maintenance of function of tissue-specific drug 

transporters in the proximal tubule, where the cells are exposed to continuous shear stress by primary 

urine. Furthermore, the microfluidic culture of human proximal tubules was demonstrated to be a 

useful system to analyze the regulatory mechanisms of gene expression in physiologically relevant 

cell conditions. 
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Introduction 

The kidney is one of the major target organs for drug-induced toxicity, as it receives 25% of 

the cardiac output and is exposed to circulating xenobiotics [83]. Renal toxicity has been reported for 

various types of drugs such as antibiotics and anticancer agents [84, 85]. In drug development, accurate 

prediction of drug-induced nephrotoxicity is critical to obtain safer drugs efficiently and to reduce the 

costs arising from high attrition rates. Therefore, great efforts have been directed towards the 

improvement of predictive models for nephrotoxicity [86]. 

Drugs are considered to exert toxic effects against various sites within the kidney. Among 

them, the proximal tubule, where drug excretion, reabsorption, and accumulation occur, is considered 

the main target of nephrotoxicity. The proximal tubule is equipped with several important xenobiotic 

transporters, namely members of the solute carrier proteins (SLC) family, which mediate renal influx 

and efflux of compounds. Influx is mediated by the organic cation transporters 2 and the organic anion 

transporters 1 and 3 at the basolateral membrane of proximal tubule epithelial cells (PTECs) [87], 

whereas efflux is mediated at the apical membrane of PTECs by ATP-binding cassette transporters 

such as P-glycoprotein and multidrug resistance-associated proteins 2 and 4 [88]. The multidrug and 

toxin extrusion transporters 1 (MATE1, SLC47A1) and 2 (MATE2-K, SLC47A2) also play an 

important role in the renal excretion of drugs in the efflux phase [89]. These transport activities should 

be carefully considered when accurately evaluating the nephrotoxicity of drugs. 

To date, drug-induced nephrotoxicity has been evaluated using kidney-derived cell lines (e.g. 

HK-2, OK, and MDCK) seeded on plastic plates. Although such assay systems are highly accessible 

and enable high throughput, they do not fully recapitulate the biological functions of human PTECs 

[26]. For example, the expression of mRNA for kidney-specific drug transporters in HK2 cells was 

reported to be much lower than that in kidney cortex tissue samples [90]. Recently, microfluidic 

technology has been introduced for reconstituting the physiological conditions of the proximal tubule, 
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such as fluid shear stress (FSS), to enable recreation of the proximal tubule with physiologically 

relevant toxin sensitivity and active transport of substrates [91, 92]. Furthermore, commercially 

available primary PTECs of human origin are easily manageable cell materials suitable for the 

reconstitution of human PTEC models.   

In the present study, I developed physiologically relevant assay systems mimicking a FSS 

by using commercially available microfluidic chips, where human primary PTECs were cultured. 

Using the combination of microfluidic systems and human primary PTECs, I profiled the changes in 

gene expression under flow culture conditions relative to those under static conditions. In my study, I 

focused on the MATE2-K gene, as this gene plays an important role in the secretion of cationic drugs 

into the urine at the proximal tubules. Furthermore, bioinformatics analyses and biochemical assays 

were performed to show that the expression of MATE2-K was regulated by the Nrf2 pathway. To my 

knowledge, the mechanism underlying the expression of MATE2-K has not been revealed to date; 

therefore, the present study is the first report to clarify the mechanisms that regulate the expression of 

MATE2-K. 
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Materials and methods 

Chemical compounds 

Pyrimethamine, butylated hydroxyanisole, 2-acetoamidofluorene, and DAPI were obtained 

from Wako (Osaka, Japan). AI-1 and bardoxolone methyl were purchased from Sigma (MO, USA). 

 

Cell cultures and flow culture system 

Human primary PTECs purchased from Lonza were cultured in renal epithelial basal 

medium (REBM, Lonza, Basel, Switzerland) with growth supplement (REGM supplement, Lonza) 

according to the manufacturer's instructions. PTECs were seeded on a type 4 collagen-coated -

slideVI 0.4 (ibidi GmbH, Bavaria, Germany) for 24 hours and subsequently cultured under FSS of 0.5 

dyne/cm2 using a peristaltic pump system (ATTO, Tokyo, Japan). Cells from passages two to eight 

were used. 

 

Quantitative real-time PCR (qPCR) analysis and AmpliSeq transcriptome analysis 

Total cellular RNA was purified using an RNeasy mini kit (QIAGEN, Hilden, Germany). 

The purified RNA was reverse-transcribed using PrimerScript RT Master Mix (Takara, Shiga, Japan). 

qPCR analysis was conducted using an Applied Biosystems ABI Prism 7700 sequence detection 

system with TaqMan universal PCR master mix (Thermo Fisher Scientific, MA, USA). Expression 

levels of all genes of interest were normalized to that of cellular -actin. qPCR primers and probes are 

shown in Table 4. In my study, human primary PTECs were characterized via Ion AmpliSeq 

Transcriptome gene expression analysis (Thermo Fisher Scientific), which enables the simultaneous 

measurement of the expression levels of over 20,000 human genes in a single assay. For Ampliseq 

analysis, 10 ng of the cDNA samples was used to prepare the barcoded libraries using the Ion 

AmpliSeq Library Kit 2.0 (Thermo Fisher Scientific) according to the manufacturer's instructions.  
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DAPI uptake assay for measurement of MATE transport activity 

Human primary PTECs were cultured under FSS for 48 hours, followed by treatment with 

100 nM DAPI (Wako) for 60 min. In this assay, all reagents were diluted in DAPI uptake assay buffer 

(4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2, 120 mM NaCl, and 25 nM NaHCO3, 

pH 8.0) [93]. Thereafter, to stop the assay, the cells were fixed with 4% paraformaldehyde and 

incubated with SYTOX green (Thermo Fisher Scientific) according to the manufacturer's instructions 

to visualize nuclei in all cells. We improved the assay system by using SYTOX green, which is widely 

used as a nuclear staining dye for accurate recognition of nuclear shape and location, with modification 

of the image analysis algorithm. Cellular images were recorded using the IN Cell Analyzer 6000 (GE 

Healthcare, IL, USA). Then, quantitative signals from the images were calculated with a custom-made 

image analysis algorithm using IN Cell Developer Toolbox (GE Healthcare).  

 

Weighted gene co-expression network analysis (WGCNA) 

WGCNA is a method that constructs a gene network based on the similarity of expression 

profiles among samples, and defines modules of consistently co-expressed genes and correlates them 

to a trait. Co-expression network analysis was performed using the R WGCNA package [94, 95] by 

signed network analysis. The data set was constructed using the following method: genes with Log2 

RPM (read per million) values > 1 in more than 2 samples, for all samples, were only used for 

clustering. In the analysis, a soft-threshold power of 18, minimum module size of 30, deepSplit 

parameter of 0, and a merge threshold of 0.2 were used. As a result, I identified 15 modules as 

summarized by the eigengene (Figure 12).  
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Pathway analysis by Ingenuity Pathway Analysis (IPA) 

The 'Core Analysis' function included in IPA (QIAGEN) was used to interpret the modules 

in the context of biological processes, pathways, and networks.  

 

Immunofluorescence microscopy 

The cells cultured under static and fluidic conditions were fixed and permeabilized as 

described in a previous report [74]. After blocking of nonspecific binding with 1% donkey serum/PBS, 

cells were incubated with a mouse monoclonal anti-heme oxygenase 1 (HO-1) antibody (Thermo 

Fisher Scientific) (1:100 dilution) followed by incubation with an Alexa488-conjugated anti-mouse 

IgG antibody (Thermo Fisher Scientific) (1:500 dilution). To visualize nuclei, cells were incubated 

with Hoechst33342 (Thermo Fisher Scientific). Cellular images were obtained using a SP8 confocal 

microscope (Leica, Wetzlar, Germany) at a magnification of 20 ×. 

 

Short interfering RNA (siRNA) transfection 

KEAP1 siRNA (s18983), NRF2 siRNA (s9943), and negative control siRNA were obtained 

from Thermo Fisher Scientific (Silencer select pre-designed RNAi). Cells were seeded and cultured 

for 24 hours in growth medium. Subsequently, KEAP1- and NRF2-specific siRNA was introduced 

into the cells using RNAiMAX (Thermo Fisher Scientific) for 24 hours according to the 

manufacturer's instructions.  

 

Statistical analysis 

Two-tailed Student’s t-test was used to analyze difference between groups. A p-value <0.05 

was considered statistically significant. 
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Results 

Expression profiles of PTEC-specific genes in primary PTECs under normal and fluidic culture 

conditions 

Under the static culture conditions as recommended in the manufacturer's instructions for 

primary PTECs, the expression patterns of some PTEC-specific genes such as MATE and OATs in 

PTECs were qualitatively different from those in intact kidney cortex tissues as observed in Body 

Atlas gene chip data (NextBio database) (Figure 10). In paticular, the expression levels of MATE2-K 

and organic anion-transporting proteins (OATs) in PTECs were close to zero, in contrast to the 

expression in kidney cortex tissues. To elucidate the effect of FSS, I analyzed the gene expression 

under both static and fluidic culture conditions using AmpliSeq transcriptome analysis. My data 

indicate that 12 genes were highly induced, with a ≥ 3-fold change in expression levels, by exposure 

to shear stress under fluidic conditions (Table 5). In the following study, I focused on MATE2-K 

because of its importance in the renal tubular secretion of cationic drugs. 

 

Induction of MATE2-K expression by FSS on PTECs 

Using the present fluidic system, the expression level of MATE2-K was increased in a time-

dependent manner in response to FSS by qPCR (Figure 11A). To evaluate the transport activity of 

MATE2-K, I established a cell-based assay using DAPI, which has been shown to be a specific 

substrate of MATE transporters [93]. Fluorescence image analysis revealed increased uptake of DAPI 

under fluidic culture conditions (Figure 11B). In addition, to confirm the MATE-dependent uptake of 

DAPI, I used the potent and specific MATE inhibitor pyrimethamine [96]. Pyrimethamine exerted a 

strong inhibitory effect on DAPI uptake (Figure 11C), suggesting that DAPI was taken up by primary 

PTECs through the MATE-dependent transport function. Additionally, the expression of MATE2-K 

was found to be increased under 24-hour fluidic conditions and then restored to baseline under 
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subsequent 24-hour static conditions, suggesting that MATE2-K expression is reversibly regulated by 

FSS (Figure 11D). These results indicate that the expression and transport activity of MATE2 are 

highly dependent on FSS. 

 

Network analysis of global gene expression data under fluidic conditions 

To identify the mechanisms by which MATE2-K expression is regulated in fluidic cell 

culture, I first performed WGCNA and constructed a co-expression network for different static and 

fluidic culture conditions at three time points. Under the conditions of softpower threshold = 18, 

deepSplit = 0, all genes were classified into 15 co-expression modules (Figure 12). Some modules 

showed expression patterns associated with flow conditions; among them, the black module, which 

included MATE2-K and 891 other genes, was found to be upregulated in a flow- and time-dependent 

manner (Figure 13A). I next examined pathway enrichment using the IPA core analysis module. 

Pathway analysis revealed the Nrf2 pathway to be a potential candidate related to the black module 

for MATE2-K expression (Table 6), as 22 genes regulated by the Nrf2 pathway were enriched in the 

black module with the lowest P value (Table 6 and Figure 14). I also discovered that the mRNA 

expression and protein level of HO-1, a representative Nrf2-responsive gene, in PTECs were enhanced 

by FSS in human primary PTECs (Figure 13B, 13C). These results suggest that the Nrf2 pathway is 

upregulated by FSS and plays an essential role in the expression of MATE2-K. 

 

Regulation of MATE2-K expression by Nrf2 signal activation 

To investigate the mechanism by which MATE2-K expression is activated by Nrf2 signaling, 

I measured the mRNA expression levels of MATE2-K following treatment with commonly used Nrf2 

activators such as bardoxolone methyl (BARD) [97], AI-1 [98], butylated hydroxyanisole (BHA) [99], 

and 2-acetoamidofluorene (2-AAF) [100]. These Nrf2 activators were found to induce the expression 
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of MATE2-K as well as HO-1 (Figure 15A, 15B) and to elevate MATE2-K transport activity in the 

DAPI uptake assay (Figure 15C). In addition, I conducted loss-of-function analysis using siRNA for 

Kelch-like ECH associating protein 1 (KEAP1) and NRF2 to confirm the relationship between 

MATE2-K and the Nrf2 pathway. As previously reported [101], siRNA knockdown of KEAP1 or 

NRF2 increased or decreased the expression of NRF2 target genes such as HO-1. The mRNA and 

protein levels of KEAP1 and NRF2 following siRNA knockdown of KEAP1 or NRF2 were measured 

by qPCR and Western blotting, respectively (Figure 15D, 15E, and Figure 16). MATE2-K expression 

was highly enhanced by KEAP1 knockdown (Figure 15D) and suppressed by NRF2 knockdown 

(Figure 15E). Similarly, I detected changes in DAPI uptake in PTECs treated with KEAP1 or NRF2 

siRNA, and confirmed that DAPI uptake mediated by MATE2-K was inhibited by pyrimethamine 

(Figure 15F). These results strongly indicate that Nrf2 signaling controls the expression of MATE2-

K. 
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Discussion 

Advances in microfluidic technology have enabled the application of microfluidic devices 

by both engineers and biologists to elucidate the mechanisms underlying biological phenomena under 

biomimetic conditions [102]. An organ-on-a-chip is a widely accepted model for reconstituting 

cellular microenvironments using microfluidic technology [103]. Although Jang et al. developed 

PTEC-on-a-chip [92], they did not clarify the specific gene expression changes in these cells under 

microfluidic conditions. In my study, gene expression profiling in primary human PTECs under fluidic 

environments revealed that the expression of several genes was modulated in response to FSS (Table 

5). MATE2-K, a key transporter of cationic drugs in the proximal tubules, was found to be highly 

upregulated in response to FSS. To date, there have been no reports describing FSS-induced 

upregulation of MATE2-K or its underlying mechanism. Therefore, I analyzed the upregulation of 

MATE2-K in response to FSS. In this study, SLC47A1 (MATE1) of the MATE family was not 

investigated, as its expression was found to be minimally responsive to FFS with a fold change of 1.3 

under the present experimental conditions (Table 5). WGCNA, an effective analysis method for 

identifying gene co-expression modules, was used to reveal candidate signals related to the expression 

of MATE2-K. I analyzed these candidates further to identify the signal responsible for MATE2-K 

expression; in particular, I focused on the Nrf2 pathway as this signal showed the lowest P value 

(Table 6). 

The Nrf2 pathway is the major regulator of cytoprotective responses to oxidative stresses 

caused by reactive oxygen species (ROS) and electrophiles. When this pathway is activated by stress, 

the transcription factor NRF2 binds the antioxidant response element in the regulatory regions of target 

genes [104]. The Nrf2-responsive proteins HO-1 and NQO1 have been shown to respond to FSS in 

vascular endothelial cells [105-107]. My results also demonstrated upregulation of HO-1 and NQO1 

in response to FSS in PTECs (Table 5). To my knowledge, my study is the first to report that the 
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expression of these Nrf2-responsive genes is enhanced by FSS in PTECs as well as in vascular 

endothelial cells. A possible explanation underlying the observation of the same response to FSS in 

different cell types is that the similar vascular structure in both tissue types is exposed to fluid flow, 

i.e., primary urine in PTECs and blood in blood vessels. Although the detailed mechanisms of Nrf2 

signal induction under fluidic culture are not understood, Nrf2 signaling is definitively responsible for 

retention of function under stresses such as ROS caused by FSS. To elucidate these detailed 

mechanisms, further studies are needed. 

To clarify the relationship between the Nrf2 pathway and MATE2-K expression, I 

conducted biochemical assays using Nrf2 activators and loss-of-function analysis using siRNA. In my 

study, four compounds widely used as Nrf2 activators were found to increase HO-1 and MATE2-K 

expression. Additionally, I confirmed that MATE2-K upregulation by bardoxolone increased its 

transport activity in the DAPI uptake assay. Furthermore, I demonstrated that the MATE2-K 

expression was increased by the treatment with KEAP1 siRNA and decreased by NRF2 siRNA. These 

results suggest that expression of MATE2-K is regulated by the Nrf2 pathway. Recent studies have 

revealed that Nrf2 activation increases the expression of drug efflux pumps [108] and drug-

metabolizing enzymes [109, 110], demonstrating that Nrf2 plays a possible role in regulating the genes 

involved in drug metabolism and disposition. Accordingly, these results imply that Nrf2 signal 

activation by FSS represents an important mechanism for maintaining physiological function in 

proximal tubules. However, I did not attempt to identify the Nrf2-binding sites in the MATE2-K 

promoter region in this work. I aim to perform MATE2-K promoter analysis using cell biological 

approaches in future studies. 

In contrast, the expression of MATE1 and OATs was not increased under the present 

microfluidic conditions. Their transcription is reportedly regulated by hepatocyte nuclear factors 

(HNF) [111, 112]. Recently, the expression of HNF4 has been shown to be affected by the stiffness 
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of the extracellular matrix (ECM), which is a physical parameter characteristic of tissue type [113]. 

This finding highlights the importance of scaffold stiffness for recreating physiologically relevant in 

vitro models. My present system did not reconstitute appropriate ECM stiffness for PTECs. To fully 

recapitulate cellular microenvironments, microfluidic technology should be integrated with soft 

biomaterial scaffolds such as hydrogels that possess appropriate stiffness and incorporate ECM 

components. 

In summary, I showed that FSS enhances MATE2-K expression in human primary PTECs, 

and that this enhanced expression results from FSS-induced Nrf2 activation. My study indicates that 

reconstitution of cellular microenvironments, such as physical stresses, is critical for the development 

of in vitro proximal tubule models to study drug-induced renal toxicity in drug discovery research. 
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Tables and Figures 

 

Table 4. Taqman probes for qPCR analysis 

Species Assay Assay ID 

Human HO-1 Hs01110250_m1 

Human MATE2-K Hs00945650_m1 

Human KEAP1 Hs00202227_m1 
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Table 5. List of genes whose expression is FSS-responsive with a ≥ 3-fold change in expression level 

Gene symbol Gene description Fold change P value 

HMOX1 heme oxygenase (decycling) 1 18.1  3.8 × 10-3 

NQO1 NAD(P)H dehydrogenase, quinone 1 7.4  6.6 × 10-3 

ANGPTL4 angiopoietin-like 4 5.7  7.0 × 10-6 

SLC47A2 

solute carrier family 47 (multidrug and toxin 

extrusion), member 2 5.3  1.3 × 10-3 

SLC44A2 solute carrier family 44 (choline transporter), member 2 4.5  1.3 × 10-4 

SEMA7A 

semaphorin 7A, GPI membrane anchor (John Milton 

Hagen blood group) 4.3  1.9 × 10-4 

CPT1A carnitine palmitoyltransferase 1A (liver) 3.8  1.3 × 10-3 

SRXN1 sulfiredoxin 1 3.4  7.8 × 10-3 

GCLM glutamate-cysteine ligase, modifier subunit 3.3  1.4 × 10-3 

PDK4 pyruvate dehydrogenase kinase, isozyme 4 3.3  1.1 × 10-3 

AKR1C3 aldo-keto reductase family 1, member C3 3.2  5.0 × 10-3 

GPR56 G protein-coupled receptor 56 3.0  8.7 × 10-4 

SLC47A1 

solute carrier family 47 (multidrug and toxin 

extrusion), member 1 1.3 5.2 × 10-1 
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Table 6. Candidate pathways regulating MATE2-K expression 

Canonical pathway P value 

NRF2-mediated oxidative stress response 7.0 × 10-6 

Axonal guidance signaling 6.9 × 10-6 

Hepatic fibrosis/hepatic stellate cell activation 1.0 × 10-5 

Glutathione biosynthesis 5.9 × 10-5 

Ethanol degradation IV 3.3 × 10-4 
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Figure 10. Gene expression levels of major transporters in the kidney cells and tissues. (A) AmpliSeq 

transcriptome analysis of commercially available primary PTECs under the static culture condition. 

The results are the mean of 3 replicate experiments; (means ± SD). (B) Affimetrix GeneChip analysis 

of human kidney cortex, according to the Body Atlas in the NextBio database. 
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Figure 11. MATE2-K expression and transport activity in PTECs under the static and fluidic culture 

conditions. (A) MATE2-K mRNA expression changes in PTECs cultured in the microfluidic system 

compared to those in the static condition. The expression levels were analyzed by qPCR and fold 

changes were normalized to the levels in static control samples. (B) MATE2-K transport activity was 

evaluated by DAPI uptake assay. Scale bar, 50 m. (C) Pyrimethamine, a MATE-specific inhibitor, 

suppressed MATE2-K transport activity. DAPI uptake activity was indicated as intensity values 

measured by IN Cell Analyzer. (D) MATE2-K expression was reversibly modulated in response to 

FSS. The results shown are the value from qPCR and the mean of 3 replicate experiments (mean ± 

SD). Significant difference between static and fluidic groups were represented by asterix: *p<0.01. 
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Figure 12. WGCNA classified genes into 15 co-expression modules based on their expression patterns. 
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Figure 13. Upregulation of the Nrf2 pathway under fluidic conditions. (A) The expression profiles of 

the eigengene for a co-expression cluster involving MATE2-K, generated by WGCNA. (B) HO-1 

mRNA expression changes in PTECs cultured in the microfluidic system were significantly higher 

than those in cells cultured in static conditions. Fold changes were normalized to the levels in static 

control samples. The results are the mean of 3 replicate experiments (mean ± SD). (C) 

Immunofluorescence microscopy analysis revealed FSS-induced upregulation of HO-1. Scale bar, 50 

m. Significant difference between static and fluidic groups were represented by asterix: *p<0.01. 
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Figure 14. Pathway analysis. (A) WGCNA-derived list of Nrf2-responsive genes comprising the black 

module. (B) Network analysis map for the black module. 

  



80 

 

(A) 

Symbol Entrez Gene Name 

ABCC2 ATP binding cassette subfamily C member 2 

ATF4 activating transcription factor 4 

CAT catalase 

DNAJB5 DnaJ heat shock protein family (Hsp40) member B5 

DNAJB7 DnaJ heat shock protein family (Hsp40) member B7 

DNAJC11 DnaJ heat shock protein family (Hsp40) member C11 

EPHX1 epoxide hydrolase 1 

FTH1 ferritin heavy chain 1 

FTL ferritin light chain 

GCLC glutamate-cysteine ligase catalytic subunit 

GCLM glutamate-cysteine ligase modifier subunit 

GSR glutathione-disulfide reductase 

GSTM4 glutathione S-transferase mu 4 

GSTP1 glutathione S-transferase pi 1 

HMOX1 heme oxygenase 1 

MGST2 microsomal glutathione S-transferase 2 

NQO1 NAD(P)H quinone dehydrogenase 1 

PIK3CD phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta 

PPIB peptidylprolyl isomerase B 

PRDX1 peroxiredoxin 1 

PRKCQ protein kinase C theta 

SQSTM1 sequestosome 1 
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(B)  
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Figure 15. Regulation of MATE2-K expression. mRNA expression changes of HO-1 (A) and 

MATE2-K (B) were measured following treatment of PTEC with Nrf2 activators: AI-1 (10 M), BHA 

(100 M), 2-AAF (100 M), and BARD (10 nM) (C) Pyrimethamine suppressed MATE2-K transport 

activity induced by 10 nM bardoxolone. mRNA levels of KEAP1, NRF2, HO-1, and MATE2-K 

expression in PTEC samples following treatment with KEAP1 (D) and NRF2 (E) siRNA were 

determined by qPCR. (F) Pyrimethamine suppressed MATE2-K transport activity modulated by 

treatment with KEAP1 and NRF2 siRNA. These results are the means of 3 (A, B, C, and F) and 5 (D 

and E) replicate experiments (mean ± SD). Significant difference between control and treatment 

groups were represented by asterix: *p<0.05, **p<0.01. 
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Figure 16. Protein expression levels of Keap1 (A), Nrf2 (B), and -actin (C) following treatment with 

Keap1 and Nrf2 siRNAs, as determined by western blot analysis. 
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General Conclusion 
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In my study, I focused on the development of research platforms to detect adverse drug 

effects in the early phase of drug discovery research. Non-clinical toxicity and clinical safety are 

critically important for the discovery of safer and more effective drugs. These aspects are also primary 

reasons for candidate drug terminations. To effectively and accurately detect adverse drug effects, I 

considered two main issues: how to identify unknown off-target molecules of drugs and how to 

recapitulate drug-induced responses with in vitro systems in laboratories. To solve these issues, I 

developed the pathway profiling system to easily identify drug off-target molecules (chapter I) and a 

physiologically relevant cellular system with PTEC (chapter II). 

Currently, to improve the success rate of drug discovery, a number of researchers focus on 

drug toxicology because a large number of drug candidates have failed owing to safety issues. My 

developed platforms provide researchers with tools to detect cellular toxicities and off-target 

molecules, consequently contributing to the selection of appropriate drug candidates for the 

development of safer and more effective drugs. Moreover, although the complete human genome has 

been sequenced and analyzed in detail using NGS technologies, the functions of several genes have 

not been identified. My platforms can be applied not only to detect drug responses but also to reveal 

gene functions, and can be used in addition to current molecular biological methods, such as gene-

editing technologies. 
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