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Abstract 

  



Protein–protein interactions (PPIs) are central to the control of all biological processes. Therefore, studies of 

PPI inhibitors are critical for the progress of biological sciences and drug discovery. However, PPIs are commonly 

regarded as intractable targets because they do not possess small cavities for small molecule binding, and interfacing 

surfaces of PPIs are often large and flat. 

The objective of this study was to identify PPI inhibitors and elucidate the mechanisms of their interactions 

using biophysical methods that are feasible for the discovery of compounds that inhibit PPIs. To identify PPI 

inhibitors, I used a screening method that exploits PPI properties. In chapter I, I report fragment-based screening 

against B-cell lymphoma 6 (BCL6), which interacts with BCL6 corepressor (BCoR) and has predicted hot spots. In 

chapter II, I present a phage display screen against V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), 

which interacts with son of sevenless 1 (SOS1) and causes conformational changes. These screens led to the discovery 

of active inhibitors against 2 PPI targets. The resulting compounds have unique properties and can binding to hot 

spots and allosteric sites, indicating that PPIs can be considered a drug target class during the early stages of drug 

discovery. Finally, I suggest a work-flow for discovering PPI inhibitors on the basis of the evidence presented herein. 

This study is a contribution to drug discovery research and biology, and the reported methods could be exploited to 

discover novel compounds against other PPIs. 
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BCL2 

BCL6 

B-cell lymphoma 2 

B-cell lymphoma 6 

BCoR BCL6 corepressor 

DMSO dimethyl sulfoxide 

DTT dithiothreitol 

EDTA ethylenediaminetetraacetic acid 

ELISA enzyme-linked immunosorbent assay 

Et3N triethylamine 

EtOAc ethylacetate 

EtOH ethanol 

FADD fragment-assisted drug discovery 

FBDD fragment-based drug discovery 

FRET 

Fsp3 

fluorescence resonance energy transfer 

fraction sp3 

GAP GTPase-activating protein 

GDP guanosine 5'-diphosphate 

GEF guanine nucleotide exchange factor 

GPCR G-protein coupled receptor 

GST glutathione S-transferase 



GTP guanosine 5'-triphosphate 

HPLC high-performance liquid chromatography 

HTS high throughput screening  

IPE diisopropyl ether 

i-PrOH 2-propanol 

ITC isothermal titration calorimetry 

K-Ras V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

LE ligand efficiency 

M2H mammalian two hybrid assay 

MeCN acetonitrile 

MeOH methanol 

MS mass spectrometry 

MT mutant 

NCoR nuclear receptor corepressor 

NMR nuclear magnetic resonance  

NMP N-methyl-2-pyrrolidone 

PAINS pan-assay interference compounds 

PCR polymerase chain reaction 

PPI protein-protein interaction 



RBD Raf-Ras binding domain 

RU resonance unit 

SA streptavidin 

SAR structural-activity relationships 

SBDD structure based drug design 

SMART silencing mediator of retinoic acid and thyroid hormone receptor 

SOS son of sevenless 

SPR surface plasmon resonance 

STD saturation transfer difference 

TEA triethylamine 

TEV Tabacco etch virus 

TFA trifluoroacetic acid 

TSA thermal shift assay 

WT wild-type 

  



 

 

 

 

 

 

 

 

General Introduction 

  



1. Importance of PPIs in drug discovery and biological sciences 

PPIs are central to the control of biological processes,1 and compounds that can selectively inhibit PPIs could 

be used to investigate biological systems in chemical and biological analyses. PPI inhibitors that are related to 

diseases could also directly lead to drug discovery. Therefore, studies of PPI inhibitors will greatly facilitate the 

progress of biological sciences and drug discovery. However, PPIs are commonly regarded as intractable targets 

because they do not carry cavities for small molecule binding, and their interfacing surfaces are often flatter and 

larger than traditional drug targets, such as enzymes and GPCRs.2  

Since the 1990s, large pharmaceutical companies have generally conducted HTS using combinations of 

chemical compound libraries and biochemical assays on microplates to discover novel drugs. Whereas these HTS 

methods are suitable for enzymes and GPCRs, which have small pockets where small molecules tend to bind, they 

have so far failed to provide validated potential compounds that inhibit PPIs. Thus, to overcome these hurdles, 

pharmaceutical companies and academic institutions have developed screening methodologies and compound 

libraries. 

With regard to screening methodologies, biophysical techniques that directly detect binding of compounds 

would be more feasible for PPIs, because these have higher sensitivity and greater accuracy than biochemical assays.3 

Moreover, to generate compound libraries, fragments, high Fsp3 compounds, and peptides may offer the most feasible 

approaches for PPIs,4-6 because fragments have good physicochemical properties and vast chemical diversity, high 

Fsp3 compounds are adjustable for various PPIs surfaces, and peptides are flexible for dynamic PPIs. In 2016, the 

BCL2 inhibitor Venetoclax was launched as the first small molecule PPI inhibitor that was discovered from a screen 



of library compounds.7 This progress has motivated further research in this area, and the ensuing discoveries of PPI 

inhibitors are expected to contribute to drug discovery. However, more rational strategies may be required to discover 

PPI inhibitors because the success of Venetoclax may reflect serendipitous conditions compared with traditional 

target classes. 

2. Evidence of PPIs as drug targets 

2-1. Classification of PPIs  

Previous drug discovery studies have been directed at classifying PPIs, and among these, Smith and colleagues 

classified PPIs with buried surface areas and defined the affinities of their inhibitors.8 They also classified known 

PPIs into tight narrow, tight wide, loose narrow, and loose wide categories with standards of 2500 Å2 for buried 

surface areas and 200 nM for affinity. Some inhibitors of tight narrow, tight wide, and loose narrow types have been 

identified using conventional HTS, whereas only Ras–SOS interactions have been classified as loose wide, indicating 

that drug discovery of PPI targets in the loose wide category is extremely challenging. Hence, the discovery of 

inhibitors for PPI targets of this category will require more sophisticated strategies. 

Arkin and colleagues previously classified PPIs with epitopes of their partner proteins9 and described primary 

peptide, secondary structure, and tertiary structure classifications of PPIs. High affinity inhibitors against PPIs of the 

primary peptide category tend to be discovered readily. Among these, several bromodomain inhibitors have been 

considered for clinical trials, including Apabetalne and GSK525762. In contrast, PPIs of the other types are refractory 

to the generation of compounds that are worthy of clinical trials. Over 60% of PPIs in the PDB are classified as 

secondary-structure interactions.10-11 Whereas conventional HTS have revealed PPI inhibitors of the secondary-



structure type, these inhibitors have poor affinity compared with those of the primary-peptide category. The discovery 

of compounds that can interact with PPIs of tertiary structure remains extremely difficult using HTS, and further 

approaches are necessary to find inhibitors for this category of PPIs. In addition to the above-mentioned 

classifications, Duncan and colleagues classified PPIs from the perspective of recognition structures of proteins as 

follows: globular–globular, globular–peptide, and peptide–peptide.12 These investigators suggested that drug 

discovery approaches employing FBDD and in silico screening of apo-structures will likely fail to reveal PPIs that 

undergo conformational changes during their interactions. 

2-2. Discovery of various PPI disrupters in basic research 

Previous studies have generated various kinds of compounds that inhibit PPIs.6 In addition to orthostatic and 

allosteric inhibitors, PPI regulators with new mechanisms have been found. 13 Among these, stabilizers disrupt PPI 

signals by stabilizing PPIs, as reviewed comprehensively by Ottmann and colleagues.14 

2-3. Hot spots 

Hot spots are a type of structure that occurs in interaction surfaces of PPIs, and provide most of the binding 

free energy in PPIs. Mutational analysis using an alanine scanning technique identified hot spots on both sides of 

PPIs. These tended to comprise hydrophobic residues at a central site with hydrophilic residues peripherally.15-16 

These distinctive structures likely limit access of water molecules to central hydrophobic sites and contribute to the 

binding free energy, as demonstrated by DeLano and colleagues with the proteins Fc and IgG.17 Accordingly, 

compounds that bind hot spots would likely do so with high affinity, because hot spots are much smaller than buried 

surface areas of PPIs, thus facilitating binding of small molecules.18 The above-mentioned compound Venetoclax 



was optimized from several fragments that bind to hot spots, which were identified using NMR screening, which is 

a biophysical method. 

3. Biophysics  

3-1. Biophysical techniques and roles in drug discovery 

Biophysical analyses provide detailed information about interactions among compounds, proteins, and other 

molecules and can be used to determine binding affinities, kinetics, thermodynamics, and structures. Such biophysical 

techniques include NMR, SPR, ITC, TSA, and X-ray spectral analyses, and in drug discovery, these are often used 

to validate hits and remove false positives of HTS.3, 19-20 Recent studies have also used the interaction parameters 

obtained using biophysical techniques to investigate medicinal chemistry and pharmacokinetics.21-22 

3-2. Applications to compound screening 

As the roles of biophysics in drug discovery increase, sensitivity and throughput of the required 

instrumentation has been improved.19 In the following sections, these concepts are exemplified in applications of 

biophysics to compound screening, particularly with an introduction to fragment-based and phage display screening. 

3-2-1. Fragment-based screening 

FBDD has been widely practiced in both industry and academia to identify novel scaffolds, binding sites, and 

compounds with good physiological profiles.23 Initially, molecule fragments with low affinity are identified using 

high concentration screening and their affinities are then improved by linking or growing them. Biophysical methods 

such as SPR, NMR, and thermal shift assays have been used in FBDD because they are more sensitive than 

biochemical assays.24-25 Of these, SPR biosensing is the most cost-effective and widely used, with low protein 



consumption and quick assay development. This technique provides high-content information on binding affinities 

and kinetics, and can be used to identify PAINS. PPIs represent a challenging target for biophysics-driven FBDD 

approaches because the targets do not have deep binding pockets.18, 26 

3-2-2. Phage display screening 

Phage display screening is one of the most powerful techniques for generating peptides that bind to target 

proteins, and is performed using phage display libraries that are constructed by bacteriophages displaying > 10 billion 

distinct peptides on their outer surfaces. In these procedures, phages that bind target proteins are isolated from the 

libraries using an affinity selection technique called biopanning, and the displayed amino acid sequences are deduced 

by sequencing DNA from bound phages. Because false positives occur frequently when identifying peptides from 

phages, biophysical techniques are required to directly determine binding of peptides to target proteins, and thereby 

identify false positives. In combination with these methods, phage display screening generates peptides with high 

affinity, selectivity, and allostery for target proteins, reflecting large and diverse libraries. Several peptides have been 

discovered using phage display screening against various target classes, including PPIs.27-29 

4. Objective of this study 

The objective of this study was to identify PPI inhibitors and investigate their interactions using biophysical 

techniques, and then identify candidate PPI-inhibitory compounds. To identify PPI inhibitors, I conducted a screening 

method that is suitable for PPI properties.  

Initially, 1) FBDD was performed for PPIs with hot spots using a compound library comprising various small 

fragmented compounds. 2) Phage display screening was then performed using discovery peptides for PPIs that are 



not affected by hot spots and instead interact via conformational changes. In these experiments, binding modes of 

selected compounds were elucidated from binding analyses using SPR and X-ray crystallography. 

The results of these studies show that compounds can be generated against individual PPIs to identify potential 

drugs, and that if optimal strategies can be predicted based on the properties of specific PPIs properties, significant 

contributions to drug discovery research and biology will be made. 

  



 

 

 

 

 

 

 

Chapter I: 

Discovery of a B-Cell Lymphoma 6 Protein–Protein Interaction Inhibitor  

by a Biophysics-Driven Fragment-Based Approach 

  



Abstract 

B-cell lymphoma 6 (BCL6) is a transcriptional factor that expresses in lymphocytes and regulates the 

differentiation and proliferation of lymphocytes. Therefore, BCL6 is a therapeutic target for autoimmune diseases 

and cancer treatment. This chapter presents the discovery of BCL6-corepressor interaction inhibitors by using a 

biophysics-driven fragment-based approach. Using the surface plasmon resonance (SPR)-based fragment screening, 

I successfully identified fragment 1 (SPR KD = 1200 µM, ligand efficiency (LE) = 0.28), a competitive binder to the 

natural ligand BCoR peptide. Moreover, I elaborated 1 into the more potent compound 7 (SPR KD = 0.078 µM, LE 

= 0.37, cell-free protein-protein interaction (PPI) IC50 = 0.48 µM (ELISA), cellular PPI IC50 = 8.6 µM (M2H)) by a 

structure-based design and structural integration with a second high-throughput screening hit. 

 

  



Introduction 

BCL6 is a transcriptional factor that belongs to the bric-a-brac, tramtrack, broad complex/poxvirus zinc finger 

(BTB/POZ) family of proteins. It has BTB, RD2, and zinc finger domains and interacts with three corepressors, i.e., 

BCoR, SMRT, and NCoR.30 It drives germinal center B-cell formation and differentiation of T lymphocytes.31-34 It 

is also involved in the differentiation and proliferation of diffuse large B-cell lymphomas.35-36 Consequently, it is 

thought to be a potent therapeutic target for the treatment of autoimmune diseases and cancer.  

The crystal structure of the BCL6 BTB domain (BCL6BTB) complexed with the SMRT peptide has already 

been reported.37 The crystal structure of the cocomplex with the BCL6 inhibitor 79-6 has also been solved.38 These 

ligands bind in the lateral groove of the BCL6BTB homodimer. Parekh et al. have suggested that the lateral groove of 

the BCL6BTB homodimer could be an effective therapeutic target to develop effective small-molecule inhibitors.35 

Several compounds and peptides, other than 79-6, have been reported as BCL6BTB inhibitors, including RI-BPI with 

a KD of ~10 µM, Rifamycin SV with a KD of ~1 mM, and FX1 with a KD of 7 µM, all of which have binding affinities 

weaker than 1 µM (Figure 1-1).39-41 Recently, I reported the peptide F1324, which inhibits the BCL6-BCoR 

interaction with a KD of 0.57 nM (Figure 1-1).28 Peptide F1324 also binds to the lateral groove of the BCL6BTB 

homodimer. These data suggest that the lateral groove of the BCL6BTB homodimer could be a potent site for inhibitors 

to bind with high affinity. 

In this study, SPR-based fragment screening was performed against BCL6 to discover BCL6-cofactor 

interaction inhibitors. As a result, I successfully found triazine fragment 1, which binds to the lateral groove of the 

BCL6BTB homodimer where BCoR also binds. Furthermore, fragment 1 was elaborated into the more potent inhibitor 



7, which exhibits cellular activity and two-digit nanomolar binding affinity, by structure-based drug design using X-

ray analysis and structural integration with a second HTS hit. This process represents a highly successful FADD.42-

43 

 

Materials & Methods 

Preparation of BCL6. 

The fragments of His, avi, SUMO (LifeSensors), Flag, TEV protease recognition sequence, and BCL6BTB 

(human BCL6 from 5 to 129 aa) were amplified by the PCR and ligated into pET21 vector (Merck). The MT BCL6BTB 

(C8Q, C67R, C84N) was constructed by the overlap PCR method. The proteins were expressed in E. coli BL21 

(DE3) (NIPPON GENE) and partially biotinylated on avi-tag by endogenous BirA. The proteins were purified using 

Ni-NTA (QIAGEN) and Superdex200 (GE healthcare) columns. For Flag-tagged WT BCL6BTB, SUMO was digested 

by ULP1 (LifeSensors). To remove ULP1, His-avi-SUMO, and uncleaved protein, the digested solution was passed 

through an Ni-NTA column in 50 mM Tris-HCl pH 8.0, 300 mM NaCl, 5% glycerol, and 1 mM DTT. To increase 

the purity, ion-exchange chromatography (monoQ, GE Healthcare) was conducted. The purified proteins were 

concentrated to 2 mg/mL for storage at −80°C. 

Fragment Library. 

The library contained 1494 fragments. All fragments in the library had a clogP <3.5, the number of 

Hydrogen-bond acceptors and donors were <6 and <3 respectively, and rotatable bonds were <3. Heavy atom count 

ranged between 8 and 15. The molecular weight of the fragments was <350 Da (average 180 Da), and the average of 



the aromatic rings was 1.5. Fragments were dissolved at 200 mM in 100% DMSO and stored at −30 °C. 

SPR. 

SPR biosensing experiments were performed at 22°C on Biacore 4000 and Biacore S200 instruments 

equipped with SeriesS CM5 and SA sensor chips (GE healthcare). HBS-P+ (10 mM Hepes pH 7.4, 150 mM NaCl, 

0.05% Surfactant P20, GE healthcare) supplemented with 1 mM DTT was used as the running buffer for 

immobilization. NeutrAvidin (Thermo Fisher Scientific Inc.) was covalently coupled onto spots 1, 2, and 3 of a CM5 

sensor chip following the standard amine coupling procedure according to the manufacturer's instructions. Typical 

immobilization levels of NeutrAvidin ranged from 10,000 to 13,000 resonance units (RUs). Subsequently, avi-tagged 

WT BCL6BTB and avi-tagged MT BCL6BTB were injected to spots 1 and 2, respectively. The surfaces were blocked 

by injecting biocytin (Thermofisher) to spots 1, 2, and 3. Approximately 13,000 RUs of each BCL6BTB were captured 

by NeutrAvidin. Furthermore, WT BCL6BTB was immobilized on spot 5 via the standard amine coupling procedure, 

resulting in immobilization levels of around 4,000 RUs.  

For the interaction studies, binding experiments were performed in 20 mM Tris, pH 8.0, 150 mM NaCl, 

0.01% Surfactant P20, 1 mM DTT, and 5% DMSO. Different concentration sample solutions were injected for 30 or 

60 s at a flow rate of 30 or 50 µL/min, and the dissociation was thereafter followed for up to 30, 60, or 150 s. Data 

processing and analysis were performed using the Biacore 4000 and Biacore S200 evaluation software (GE 

healthcare). Solvent correction was included as described in the Biacore software handbook. Sensorgrams were 

double referenced prior to fitting the concentration series to a steady-state affinity model. The dissociation constant 

KD was calculated using the equation: 



KD = Rmax × C/R − C 

where Rmax, R, and C correspond to the sample binding capacity of the surface (RU), the normalized response of test 

sample (RU), and the concentration of the test solution (M), respectively. LE was calculated using the equation: 

LE = ∆G/HA = (−2.303 × R × T) × log (KD)/HA 

where ∆G, HA, R, and T correspond to the Gibbs free energy (kcal/mol), heavy atom count, the ideal gas constant 

(1.987 × 10−3 kcal/K/mol) and the temperature in Kelvin (K).44 

For the primary screen, Takeda's fragment library was diluted to 1 mM in the running buffer and injected for 

30 s. Then, the dissociation was followed for 30 s. Every 33rd cycle, a positive control containing 100 µM BCoR 

peptide ((Arg498-Pro514)-Lys, acetyl-RSEIISTAPSSWVVPPK-OH, chemically synthesized by Toray Research 

Center) and running buffer as a blank were injected. Data processing and analysis were performed using the Biacore 

4000 evaluation software. Solvent correction was included as described in the Biacore 4000 software handbook. The 

binding responses were normalized by the positive control and the molecular weight of each sample. Fragments with 

a normalized binding response that exceeded median + median absolute deviation were selected as primary hits. As 

for NeutrAvidin, fragments with a normalized response that was more than 90% against their theoretical Rmax were 

selected.  

For competition studies, data were acquired for test compounds binding to BCL6 in the presence of 100 µM 

BCoR peptide in the running buffer and samples. When a compound binds to the same site as the BCoR peptide, the 

response for the compound decreases.45 

X-ray Crystallography. 



Crystals of unliganded BCL6BTB for soaking experiments were obtained as described previously.28 

Crystallization was by vapor-diffusion using the sitting-drop method from 0.1 M Bis-Tris pH 6.5, 0.7 M 

potassium/sodium tartrate at 20°C. To generate protein-ligand complexes, crystals were typically soaked for 2 h in a 

reservoir solution containing 1 mM ligand(s). Prior to data collection, crystals were immersed in the reservoir solution 

with the addition of 30% glycerol as a cryoprotectant and were flash-frozen in liquid nitrogen. Diffraction data were 

collected from a single crystal using the CCD detector Quantum 315 (ADSC) at beamlines 5.0.2 and 5.0.3 of the 

Advanced Light Source (Berkeley) under a 100 K nitrogen cryostream. The data were reduced and scaled with 

HKL2000.46 The structures were solved by the molecular replacement method with Molrep47 of the CCP4 software 

suite48 using the BCL6BTB structure (PDB code: 1R28) as a search model. The structures were refined through an 

iterative procedure utilizing REFMAC,49 followed by model building in COOT.50 The final models were validated 

using Molprobity.51 Crystallographic processing and refinement statistics are summarized in Table 1-4. All structural 

figures were generated using PyMOL (Schrödinger).  

STD-NMR. 

1H NMR spectra were recorded using a 3 mm NMR tube on a 600 MHz Avance spectrometer (Bruker Biospin) 

equipped with a 5 mm TCI cryoprobe. All NMR samples were prepared in 50 mM phosphate D2O buffer at pH 7.4 

containing 150 mM NaCl, 1 mM DTT-d10, and 0.2% DMSO-d6 in D2O solvent. The STD spectrum was acquired 

from a sample containing 400 µM of fragment 1 and 20 µM BCL6BTB at 15°C with 32 scans with on- and off-

resonance saturation frequencies of 0.4 and 30 ppm, respectively, and a total saturation time of 2.0 s. The decrease 

in signal intensity for on-resonance irradiation results from the transfer of saturation from BCL6BTB to fragment 1. 



The STD spectrum of fragment 1 was obtained by subtracting the on-resonance spectrum from the off-resonance 

spectrum. A positive signal in the STD spectrum indicates binding of fragment 1 to BCL6BTB. 

ELISA. 

Biotinylation of the ε-amino group of the C-terminus Lys on the BCoR peptide was carried out with the Biotin-

(AC5)2 Sulfo-OSu (DOJINDO) according to the protocol recommended by the manufacturer. The wells of a Nunc 

Maxisorp microplate (460-518) were coated with SA (Wako) and were blocked with phosphate-buffered saline (PBS) 

that contained 1.0% Casein. The biotinylated BCoR peptide was captured by the SA, and a WT BCL6BTB (0.5 nM) 

solution in PBS that contained 0.05% Tween20 and 1 mM DTT (PBST) was added to the wells. After washing with 

PBST, bound BCL6BTB was detected using horseradish peroxidase (HRP)-conjugated anti-FLAG antibody (Sigma). 

The amounts of HRP in the wells were measured using a chemical luminescent regent (Thermo Fisher Scientific 

Inc.).28 Percent inhibition was calculated based on wells without BCL6BTB as a high control and without compound 

as a low control. 

M2H. 

The assay was performed according to a procedure described previously.30 The vectors pGL4.35, pBind, and 

pACT were obtained from Promega Corp. As template DNA, human BCL6 cDNA was isolated by PCR from a 

human skeletal muscle cDNA library (TAKARA Bio), and human BCoR cDNA was purchased from GeneCopoeia 

Inc. Each cDNA fragment was granted a restriction site by PCR and digested with restriction enzymes to insert into 

pBIND or pACT, respectively. M2H was performed in HEK293T cells that were transfected with the reporter 

constructs pGL4.35 containing GAL4 special response element of firefly luciferase (9×GAL4UAS); pBIND/GAL4-



BCL6 (Ala5–Glu129); and pACT/VP16-BCoR (Leu112–Ala753) by Fugene HD (Promega). The transfected cells 

were seeded at 1 × 104 cells/15 μL/well on 384-well plates (CORNNING) in Dulbecco’s modified Eagle’s medium 

that contained 10% fetal bovine serum. After incubation for 20 h at 37°C under 5% CO2, cells were lysed to measure 

luciferase activity using the Bright-Glo luciferase assay system (Promega).28 Percent inhibition was calculated based 

on the well without transfection of pBIND/GAL-BCL6 (Ala5–Glu129) as the high control and the well without the 

compound as a low control. 

 

Results 

SPR Assay Development. 

For my SPR-based screening, I used a Biacore 4000 high-throughput instrument with five detection areas for 

protein immobilization and four flow cells for compound injection. This parallel immobilization enables the 

evaluation of selectivity and nonspecific binding simultaneously.52-54 I also screened against both wild-type (WT 

(Ala5-Glu129)) and mutant (MT (Ala5-Glu129, C8Q, C67R, and C84N)) BCL6BTB by SPR. Figure 1-2A, 1-2B 

shows the layout of the sensor chip used in this screening. Avi-tagged WT BCL6BTB and avi-tagged MT BCL6BTB 

were captured onto spots 1 and 2, respectively, by NeutrAvidin. In addition, WT BCL6BTB was covalently 

immobilized onto spot 5 by an amine coupling reaction (Figure 1-2). This configuration enabled us to evaluate 

binding to captured WT BCL6BTB, captured MT BCL6BTB, coupled WT BCL6BTB, and coupled NeutrAvidin. 

To verify the activity of each immobilized BCL6BTB, I evaluated the binding of the BCoR peptide as a positive 

control (Figure 1-3C to 1-3F). The BCoR peptide successfully binds with each BCL6BTB in a dose-dependent manner. 



The KD values for the BCoR peptide with each BCL6BTB are in the two-digit micromolar range. Since there are no 

significant differences in the binding affinities among the different BCL6BTBs, the mutation of the Cys residues is not 

thought to affect the interaction between BCL6 and BCoR, and I concluded that each BCL6BTB is immobilized while 

retaining its activity. 

For performing high-quality SPR-based screening, maintaining the stability of the immobilized protein is 

important.55-57 Therefore, selection of a suitable buffer is critical to retain stability. Compared with that used in 

biochemical assays, the concentration of DMSO required for SPR-based screening is generally higher to solubilize 

the fragments at high concentration. Accordingly, the influence of DMSO on the activities of the immobilized 

BCL6BTBs was evaluated (Table 1-1 and Figure 1-4). The KD and Rmax values for the BCoR peptide are unaffected 

by the concentration of DMSO. Moreover, both WT BCL6BTB and MT BCL6BTB are stable for 36 h (500 injections) 

under buffer conditions of 1% or 5% DMSO. Therefore, I decided to perform screening with a 5% DMSO buffer to 

ensure a 1 mM solubility for the fragments.  

Primary Fragment Screening. 

In a primary SPR-based screening of Takeda’s in-house fragment library, I was able to obtain the screening 

data for captured WT BCL6BTB, captured MT BCL6BTB, coupled WT BCL6BTB, and NeutrAvidin simultaneously 

using the Biacore 4000 apparatus. As a result, I identified 266 fragments for captured WT BCL6BTB, 256 fragments 

for captured MT BCL6BTB, 273 fragments for coupled WT BCL6BTB, and 50 fragments for NeutrAvidin (Figures 1-

5A to 1-5C). The Venn diagram in Figure 1-5E summarizes the results of this fragment screening. A total of 64 

compounds bind to all the BCL6BTBs, hence these fragments were selected as the priority for the follow-up dose-



response tests. 

Discovery and Characterization of Fragment 1. 

To confirm the reproducibility and dose-responsivity of the 64 fragments, I performed dose-titration 

experiments. All the fragments show binding responses in a dose-dependent and reversible manner (data not shown). 

Next, I performed STD-NMR experiments to prioritize the 64 fragments. Seven out of the 64 fragments exhibit 

binding to BCL6 (data not shown). Of seven binding fragments, I focused on fragment 1 (Figure 1-6A), which shows 

binding to BCL6 by STD-NMR (Figure 1-6B) and furthermore competition with the BCoR peptide by SPR 

competition experiments (Figure 1-6C). The KD value for 1 was determined to be 1.2 mM by SPR, and its LE was 

calculated to be 0.28 from its KD value. An LE of at least 0.29 is necessary to develop an orally available candidate.58 

Therefore, 1 is a good starting point for elaboration into potent BCL6 inhibitors. 

For further optimization of fragment 1, I attempted to determine its binding mode by determining the co-crystal 

structure of 1 with WT BCL6BTB. Co-crystals of 1 with BCL6BTB were obtained by soaking into unliganded BCL6BTB 

crystals in which the biological homodimer is related by crystallographic two-fold symmetry. Electron density 

indicated that 1 binds to the lateral groove at the dimer interface and exhibits alternate conformations of the 

aminotriazine moiety (Figures 1-7 and 1-8). The linker nitrogen forms a hydrogen bond with the main-chain oxygen 

of Met51. Comparison with the binding mode of 79-6 shows that 1 occupies the same site with a similar interaction 

pattern (data not shown). Therefore, I evaluated the BCL6 binding affinities of several pyrimidine derivatives that 

are structurally related to 1. 

Structure-Activity Relationships of Compounds Related to Fragment 1. 



Table 1-2 summarizes the structure-activity relationships of the pyrimidine derivatives along with the original 

fragment 1. Pyrimidine derivative 2 exhibits a weak binding potency (KD = 3000 µM), while the introduction of 

fluorine (3) or chlorine (4) atoms onto the 5-position of compound 2 results in significantly improved binding 

affinities (KD = 180 and 68 µM, respectively). Chloropyrimidine 4 exhibits good LE (0.38) and may be a promising 

compound for further optimization with the aim to develop more potent BCL6 inhibitors. 

Structural Integration with a Second HTS hit. 

Simultaneously, an independent HTS campaign for BCL6 inhibitors identified the weak BCL6 inhibitor 5 (KD 

= 88 μM, LE = 0.16), which also has a pyrimidine core structure, as shown in Figure 1-5; compound 5 was discovered 

by the HTS campaign using the ELISA assay monitoring the interaction between the BCL6BTB and the BCoR peptide. 

The structural resemblance of 5 to 4 prompted us to integrate these two structures, forming the “hybrid compounds” 

shown in Figure 1-9. Co-crystal structure determination of compounds 4 and 5 with BCL6BTB confirmed that these 

compounds exhibit the same binding modes as that of the initial triazine fragment 1 (Figures 1-10 and 1-11). As 

expected, the two aromatic rings connected by the amine linker in the two structures significantly overlap. The co-

crystal structure of 4 reveals that the chlorine atom at the 5-position of the pyrimidine core occupies a small lipophilic 

region of BCL6BTB. The binding mode information on the HTS-derived pyrimidine derivative 5 shows that the 

carbonyl oxygen of the right-hand-side cyclic amide moiety interacts with Glu115 of BCL6BTB. Therefore, based on 

the structural superposition of 5 with 4, the hybrid compounds 6 and 7 were designed and synthesized (Table 1-3). I 

selected a simple unsubstituted pyridinylmethyl substituent for compound 7 while taking synthetic tractability into 

account. 



The pyrimidine derivatives 6 and 7 exhibit significantly improved BCL6 binding affinities (KD = 9.3 and 0.078 

μM, respectively) compared to those of the fragment derivative 4 and HTS hit 5. To confirm the binding modes, the 

co-crystal structures of compounds 6 and 7 were determined as well as those of the other compounds (Figures 1-12 

and 1-13). The electron density map shows that the pyridine moiety of compound 7 is exposed to solvent and mostly 

disordered. Both compounds bind to BCL6BTB in the same binding mode as those for compounds 1, 4, and 5. The 

linker nitrogen forms a hydrogen bond with the main-chain oxygen of Met51, and the carbonyl oxygen of the cyclic 

amide moiety interacts with Glu115. The reasons for the significant improvement in binding affinity by introduction 

of the pyrimidine ring are unclear because no specific structural features are observed.  

As compound 7 exhibits two-digit nanomolar binding affinity along with good LE (0.37), I also evaluated the 

BCL6-BCoR PPI inhibitory activity of 7 in cell-free and cellular assays (Figure 1-14B to 1-14E). To evaluate the PPI 

inhibitory activities in cells, previously reported M2H assay was used.13 Briefly, HEK293T cells were transfected 

with the GAL4-responsive reporter plasmid, the bait expression plasmid (GAL4 DNA-binding domain fused to WT 

BCL6, Ala5-Glu129), and the VB expression plasmid (VP16 activation domain fused to BCoR, Leu112-Ala753). 

Then, the PPI activities were evaluated by monitoring luciferase activities in the transfected HEK293 cell lysates. 

Compound 7 exhibits potent cell-free PPI inhibitory activity (ELISA IC50 = 0.48 µM) along with moderate cellular 

potency (M2H IC50 = 8.6 µM). Taken together, compound 7 is a promising BCL6 inhibitor candidate for further 

exploration.  

 



Discussion 

To find novel and promising starting points for the discovery of potent BCL6 inhibitors, I adopted an FBDD 

approach, which represents a challenge given that the target is a PPI. I found 64 novel binding fragments using SPR-

based fragment screening, and among them, fragment 1 showed moderate LE (0.28) and competition with the BCoR 

peptide. Moreover, BCL6 binding affinities of several structurally related pyrimidine derivatives were also measured, 

and I identified the more potent fragment-like pyrimidine derivative 4 (KD = 68 μM). Consolidation of the structural 

information on compound 4 with the independently obtained HTS hit 5 led to the identification of the potent BCL6 

inhibitor 7 (KD = 0.078 μM, LE = 0.37), which is >15,000-fold more potent than the initial fragment 1. Compound 7 

also exhibited an efficacy in cell-free and cellular PPI assays (ELISA IC50 = 480 nM, M2H IC50 = 8.6 μM). 

BCL6BTB is approximately 15 kDa in size, but despite its small size, its domain contains five cysteine residues. 

I speculated that the high proportion of Cys residues would cause instability, which was reinforced by the fact that 

the co-crystal structure of BCL6BTB has been obtained using the Cys mutant to prevent aggregation.37 In addition, I 

needed to consider that the high concentration (mM) required for SPR screening can cause false positives. In an 

attempt to mitigate this tendency for false positives, I decided to use the Cys-mutation protein for SPR-based 

screening. In the screening with the captured MT BCL6BTB, the sensorgrams against most of the fragments show a 

reasonable box-shape, indicating fast binding (Figure 1-5B). Conversely, captured WT BCL6BTB presents many plots 

that indicate slow binding (Figure 1-5A). These data suggest that many fragments reversibly reacted with the Cys 

residues on WT BCL6 due to a concentration as high as 1 mM. Regarding the immobilization method, the binding 

responses of the positive control (BCoR) to coupled WT BCL6BTB decrease depending on the injection number, while 



the binding responses of the positive control to each captured BCL6BTB are stable (Figures 1-5A to 1-5C). These 

results indicate that captured MT BCL6BTB is optimal for stable screening. 

The total process of the fragment-based approach was summarized in Figure 1-15. Scaffold hopping of the 

initial triazine fragment yielded the pyrimidine fragment 2, which enabled an introduction of a substituent occupying 

the small lipophilic region of BCL6BTB. Structure-based modification of the resulting compound 4 along with the 

consolidation of HTS hit 5 led to the discovery of the cell-active compound 7. The HTS hit 5 had a poor ligand 

efficiency (LE = 0.16), and its complex chemical structure made its modification rather difficult. Conversely, the 

fragment-derived compound 4 was a very good step for further modification due to its good ligand efficiency (LE = 

0.38) and small molecular size. These findings suggest that the combination of biophysics-driven FBDD, SBDD, and 

FADD is a promising strategy for hit identification and lead generation against challenging targets such as PPIs. 

  



Tables & Figures 

Table 1-1. Binding Affinities Between BCoR Peptide and BCL6BTBs 

 

DMSO 

 WT BCL6BTB  MT BCL6BTB  

  KD 

(µM) 

Rmax 

(RU) 

 KD 

(µM) 

Rmax 

(RU) 

 

 1%  7.5 245  17 311  

 3%  9.3 242  21 302  

 5%  12 243  25 304  

  



Table 1-2. Structure-Activity Relationships of the Pyrimidine Derivatives 

 

 compd X Y Z 
KD

 a 

(µM) 
LE  

 1 - NH2 N 1200 0.28  

 2 H NH2 C 3000 0.25  

 3 F NH2 C 180 0.34  

 4 Cl NH2 C 68 0.38  

aKD values are reported as the arithmetic mean of at least two separate runs (n = 2). 
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Table 1-3. BCL6 Binding Affinities of the Hybrid-Type Compounds 

 
 

compd Y 
KD

 a 

(µM) 
LE 

 

 6 H 9.3 0.38  

 
7 

 
0.078 0.37 

 

aKD values are reported as the arithmetic mean of at least two separate runs (n = 2). 
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Table 1-4. Data collection and refinement statistics 

Crystal BCL6BTB/1 BCL6BTB/4 BCL6BTB/5  BCL6BTB/6 BCL6BTB/7 
Data collection    
Space group P6122 P6122 P6122 P6122 P6122 
Unit cell dimensions 
a, b, c (Å) 66.4, 66.4, 152.2 66.6, 66.6, 154.6 66.4, 66.4, 152.8 66.7, 66.7, 155.3 66.9, 66.9, 153.8 
α, β, γ (°) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 
Resolution (Å) 50–1.65 (1.68–1.65) 50–1.94 (1.97–1.94) 50–2.05 (2.09–2.05) 50–2.06 (2.10–2.06) 50–2.00 (2.03–2.00) 
Observed reflections 307212 205900 87052 149914 160248 
Unique reflections 24802 15813 13221 13032 14486 
Redundancy 12.4 (5.4) 13.0 (8.7) 6.6 (5.3) 11.5 (8.7) 11.1 (9.4) 
Completeness (%) 99.8 (96.6) 100.0 (100.0) 99.8 (100.0) 97.5 (86.0) 100.0 (100.0) 
I/σ 36.2 (1.2) 37.2 (1.5) 23.9 (1.9) 28.5 (1.3) 29.0 (1.3) 
Rsym

a 0.057 (>1.000) 0.063 (>1.000) 0.059 (0.704) 0.069 (>1.000) 0.067 (>1.000) 
Refinement 
Resolution (Å) 40–1.65 (1.69–1.65) 40–1.94 (1.99–1.94) 40–2.05 (2.10–2.05) 40–2.06 (2.12–2.06) 40–2.00 (2.05–2.00) 
Reflections 23303 14958 12503 12329 13687 
Rwork

b 0.179 (0.299) 0.188 (0.283) 0.195 (0.254) 0.193 (0.272) 0.198 (0.293) 
Rfree

b 0.206 (0.300) 0.209 (0.303) 0.233 (0.272) 0.219 (0.374) 0.230 (0.286) 
Number of atoms 
Protein 1064 1042 1042 1042 1042 
Ligand/Ion 21 19 35 18 31 
Water 98 40 31 25 31 
Average B factor (Å2)c 30.6 51.0 50.6 58.6 53.4 
Rms deviation from ideal geometry 
Bond lengths (Å) 0.010 0.010 0.010 0.010 0.010 
Bond angles (°) 1.520 1.419 1.620 1.514 1.534 
Ramachandran plot (%)d 
Preferred regions 97.6 97.7 97.7 96.6 98.4 
Allowed regions 2.4 2.3 2.3 3.9 1.6 
Outliers 0.0 0.0 0.0 0.0 0.0 
PDB code 5X4M  5X4N 5X4O 5X4P 5X4Q 

a Rsym = ΣhΣi|I(h)I–<I(h)>|/ΣhΣi<I(h)>, where <I(h)> is the mean intensity of symmetry-related reflections. b Rwork = Σ||Fobs|–|Fcalc||/Σ|Fobs|. Rfree was calculated for randomly 

chosen 5% of reflections excluded from refinement. c B-factor includes contributions from TLS parameters. d Calculated with Coot. Values in parentheses are for the highest 

resolution shell.



Figure 1-1. Known BCL6 inhibitors. a Determined by microscale thermophoresis.10 b Determined by Fluorescence 

polarization assay.12 c Determined by SPR.13 d All D-amino acids; TAT means cell penetrating peptide sequence, and 

Fu means fusogenic peptide sequence.11 e Determined by DLBCL cell growth inhibition.11 
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(A)                                        (B) 

Figure 1-2. SPR sensorgrams for parallel immobilization of BCL6BTBs. (A) WT BCL6BTB was immobilized on spot 

5 (green) via the standard amine coupling procedure. (B) Avi-tagged WT BCL6BTB (brown) and avi-tagged MT 

BCL6BTB (red) were immobilized on spots 1 and 2, respectively via the SA–biotin binding.  



Figure 1-3. Layout of the sensor chip. (A) Four independent flow cells (Fc), each with five detection spots. (B) 

Protein immobilized in each flow cell. Binding responses of captured WT BCL6BTB, captured MT BCL6BTB, coupled 

WT BCL6BTB, and NeutrAvidin are detected on spots 1–3, spots 2–3, spots 5–4, and spots 3–4, respectively. 

Sensorgrams of BCoR peptide binding to (C) captured WT BCL6BTB, (D) captured MT BCL6BTB, (E) coupled WT 

BCL6BTB, and (F) NeutrAvidin. Lower graphs indicate the fit plots of the response measured at equilibrium plotted 

against BCoR peptide concentration. Top concentration is 100 µM; dilution step is 2-fold. 

  



Figure 1-4. Evaluation of stability and DMSO effect. For every 52nd cycle, the BCoR peptide was injected at 50 µM 

over each captured BCL6BTB. 
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Figure 1-5. SPR-based screening of 1494 fragments tested against (A) captured WT BCL6BTB, (B) captured MT 

BCL6BTB, (C) coupled WT BCL6BTB, and (D) NeutrAvidin. The color of each plot indicates fast binding (blue-circle), 

slow binding (red-circle), and 100 µM BCoR peptide as a positive control (gray-square). (E) Venn diagram showing 

the number of fragments selected at each BCL6BTB screening and the overlap of fragments found by each screening. 

  



Figure 1-6. Characterization of fragment 1. (A) Chemical structure of fragment 1. (B) STD-NMR experiments. 1H 

spectra of fragment 1 for off-resonance (black line) and on-resonance (red line), and the STD spectrum of fragment 

1 (difference). (C) SPR competition experiments. Sensorgrams of fragment 1 to MT BCL6BTB in the absence or 

presence of 100 µM BCoR peptide. Top concentration is 1 mM; dilution step is 2-fold. (D) Co-crystal structure of 

fragment 1 in complex with BCL6BTB. 

  



Figure 1-7. Consolidation of the fragment-based inhibitor 4 with hit compound 5. 

  



Figure 1-8. Structural superposition of the complex structures with compounds 4 (orange) and 5 (yellow). 

  



Figure 1-9. (A) Co-crystal structure of compound 7 in complex with BCL6BTB. (B) Chemical structure of 7. (C) 

Equilibrium plot and sensorgrams (insert) of 7 binding to BCL6. (D, E) PPI inhibitory activities in cell-free (ELISA) 

and cellular (M2H) assays.   

  



Figure 1-10. SPR sensorgrams (insert) and equilibrium plots for compounds 2–6. Top concentration is 50 µM; 

dilution step is 2-fold. 

  

0

10

20

30

40

50

0 1e-4 2e-4 3e-4 4e-4 5e-4

RU

Concentration M

T-3818117

-10
0

10
20
30
40
50
60

-100 -50 0 50 100 150 200 250

Time s

RU T-3818117

Compound 3 

0
10
20
30
40
50
60
70

0 6e-6 1.8e-5 3e-5 4.2e-5 5.4e-5

RU

Concentration M

T-3789854

-10
0

10
20
30
40
50
60
70

-100 -50 0 50 100 150 200 250

Time s

RU T-3789854

Compound 5 

0

20

40

60

80

0 1e-4 2e-4 3e-4 4e-4 5e-4

RU

Concentration M

T-3047935

-20

0

20

40

60

80

100

-100 -50 0 50 100 150 200 250

Time s

RU T-3047935

Compound 4 

-2
0
2
4
6
8

10
12

0 1e-4 2e-4 3e-4 4e-4 5e-4

RU

Concentration M

T-3821707

-5

0

5

10

15

20

-100 -50 0 50 100 150 200 250

Time s

RU T-3821707

Compound 2 

0

10

20

30

40

50

60

0 1e-4 2e-4 3e-4 4e-4 5e-4

RU

Concentration M

T-3811888

-10
0

10
20
30
40
50
60
70

-100 -50 0 50 100 150 200 250

Time s

RU T-3811888

Compound 6 

(A) (B) 

(C) (D) 

(E) 



Figure 1-11. Summary of the FBDD approach for identification of the compound 7. 

  

 

N N

H
N

4

Cl

N

N

F3C
HN

H
N

N
H

O

N

N
Me

S
Me

O O

N N

HN

H
N

N
H

O

N

Cl

KD
 = 68 µM

HA = 14
LE = 0.38

KD
 = 88 µM

HA = 35
LE = 0.17

NH2

N N

N
H
N

1 (fragment hit)
KD

 = 1200 µM

HA = 14
LE = 0.28

NH2

N N

H
N

2
KD

 = 3000 µM

HA = 14
LE = 0.28

NH2

SBDD

7

KD
 = 0.078 µM

HA = 26
LE = 0.37

5 (from HTS)

Consolidation with HTS hit



(A)                                     (B) 
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Figure 1-12. Fobs–Fcalc electron density omit maps contoured at 3σ (magenta) and 6σ (cyan) for the vicinity of the 

compounds. (A) compound 1, (B) compound 4, (C) compound 5, (D) compound 6, and (E) compound 7.  



 

 

 

 

 

 

Chapter II: 

Discover of K-Ras(G12D)-Selective Inhibitory Peptide  

by Random Peptide T7 Phage Display Technology and Its Structural 

Characterization 

  



Abstract 

Amino-acid mutations of Gly12 (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene 

homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. 

Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated 

K-Ras inhibitors have not been marketed. 

Here, I report novel and selective inhibitory peptides to K-Ras(G12D). I screened random peptide libraries 

displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to 

wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH2) as a consensus sequence. KRpep-2 

showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP 

exchange enzyme assay. KD and IC50 values were 51 and 8.9 nM, respectively. After subsequent sequence 

optimization, I successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH2) whose KD and IC50 values 

were 8.9 and 1.6 nM, respectively and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), 

along with A427 cancer cell proliferation at 30 μM peptide concentration. Furthermore, the crystal structure of the 

human K-Ras(G12D) mutant was determined in complex with GDP and KRpep-2d at 1.25 Å resolution. This 

structure revealed that the peptide binds near Switch II and allosterically blocks protein–protein interactions with the 

guanine nucleotide exchange factor. This discovery of a unique binding pocket provides valuable information that 

will facilitate the design of direct Ras inhibitors. To my knowledge, this is the first report of a K-Ras(G12D)-selective 

inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. 

  



Introduction 

Somatic mutations in small GTPase Ras drive neoplasia in various cancers. The K-Ras isoform is most 

frequently mutated in 86% of Ras-driven cancers 59, with 83% of K-Ras amino-acid mutations at residue Gly12 where 

G12D is the major substitution.60 Therefore, development of anti-cancer drugs targeting mutated K-Ras will benefit 

several patients. 

Despite being a promising drug target for cancer therapeutics, effective drugs targeting mutated K-Ras have 

not been marketed.61 K-Ras remains a challenging target, and the generation of direct inhibitors remains difficult, 

because the K-Ras molecular surface is round and has less druggable pockets for conventional small molecules; 

furthermore, no allosteric regulatory sites have been reported to date.62 Moreover, K-Ras changes its structure in the 

presence/absence of GDP or GTP, and binding affinities between K-Ras and GDP/GTP are too strong (picomolar 

affinity) to be inhibited by small molecules.63 

In this context, some direct K-Ras inhibitors, based on novel approaches, were reported, such as covalent 

inhibitors or peptide inhibitors.64 The former strategy involves an irreversible binding to Cys12 of K-Ras(G12C). For 

example, Ostrem et al. screened 480 disulfide-fragment compounds by protein mass spectrometry and identified 

several fragments that react with the G12C mutant but not with the wild-type (WT) K-Ras, in the presence of GDP.65 

The latter strategy involves using a peptide alternative to small molecule compounds. Patgiri et al. extracted a K-

Ras-binding sequence from son of sevenless 1 (SOS1), which catalyzes the transition of K-Ras/GDP (inactive-form) 

to K-Ras/GTP (active-form), and stabilizes its alpha-helix structure through a hydrocarbo-staple method to inhibit 

protein-protein interactions (PPI) between K-Ras and SOS proteins.66 The SAH-SOS1 peptide bound to both WT K-



Ras and mutants with equal affinity, and the binding activity was not dependent on the presence of GDP or GTP. 

Instead of using natural protein sequences, Pei et al. identified artificial cyclic peptide inhibitors from a random 

peptide displayed beads library.67-69 They prepared recombinant K-Ras(G12V) as a fusion protein with GST, and 

introduced a chemical label to GST via fluorescent dye Texas Red on a Lys. By using this fluorescent labeled K-Ras 

mutant, 6 × 106 various cyclic peptides were screened, and sequences binding K-Ras with submicromolar affinity 

were identified. 

These approaches successfully generated K-Ras inhibitors. However, Cys-reactive small molecules present 

concerns regarding undesirable side effects due to their potential for promiscuous inhibition. Moreover, the 

aforementioned peptide inhibitors did not display sufficient inhibition activities and showed poor selectivity toward 

mutated K-Ras. In this study, I focused on K-Ras(G12D) as the target molecule, since G12D is the most common 

substitution in many K-Ras-driven cancers and the side-chain structure/size of Asp has greater potential for selectivity 

compared to other substitutions such as Cys (G12C) or Val (G12V). I screened random peptide libraries displayed on 

T7 phage against recombinant K-Ras(G12D) in GDP states. By using phage display, I can screen 1011 distinct clones, 

which is much greater than that included in Pei et al.'s aforementioned peptide beads library. Furthermore, I 

thoroughly subtracted phages bound to WT K-Ras in the phage panning process. As a result, I successfully discovered 

K-Ras(G12D)-selective inhibitory peptides. Here, I demonstrate the notable selectivity and inhibition activities of 

the peptides to K-Ras(G12D) through cell-free and cell-based assays. For further characterization, I performed 

structural determination of K-Ras(G12D) in complex with GDP and KRpep-2d, which allowed an investigation of 

the protein binding site and peptide binding conformation. This structural analysis indicated a unique binding site for 



small molecules, and it might therefore provide a valuable basis for the future design of K-Ras inhibitors. 

 

Materials & Methods 

Preparation of recombinant K-Ras proteins. 

Human KRAS(Met1–Lys169) (NCBI Reference Sequence: NM_004985) DNA sequence was isolated from 

human cDNA clone (GeneCopoeia, Rockville, MD) and was ligated into a pET21a vector (Merck Millipore, 

Darmstadt, Germany) with a C-terminus His-Avi-tag. Expression plasmids were co-transfected with the BirA 

expression plasmid, which is constructed internally and encodes a biotin protein ligase, into E. coli BL21(DE3) 

(Nippon Gene, Toyama, Japan). Protein expression was induced with 0.1 mM IPTG, followed by addition of 50 μM 

D-biotin and culture for 16 h at 16°C. Cells were harvested by centrifugation, suspended in lysis buffer (50 mM Tris 

(pH 8.0), 1 mM DTT, 150 mM NaCl, 5 U/mL Nuclease), and centrifuged at 15000 × g for 20 min. The proteins were 

purified by NiNTA superflow column (QIAGEN, Hilden, Germany) and HiLoad 26/60 Superdex 200 pg column (GE 

Healthcare, Piscataway, NJ). 

Phage library construction and panning. 

T7 phage libraries displaying random peptides, which were generated by mixed-oligonucleotides as template 

DNA, were constructed by using T7Select 10-3 vector from Merck Millipore, according to methods described 

previously70-71 . Biotinylated Avi-tagged K-Ras protein was preincubated with 1 mM GDP in reaction buffer (0.5% 

BSA, 10 mM MgCl2 in PBS) at 4°C overnight to prepare the GDP-form, and then immobilized onto Dynabeads 

M280 SA (Invitrogen, Carlsbad, CA). After washing the beads by PBS containing 0.1% Tween20 (PBST), the beads 



were incubated with phage libraries for 1 h with 1 mM GDP and 50 μg/mL non-tagged WT K-Ras in reaction buffer, 

and subsequently washed with PBST. The bound phages were eluted with 1% SDS and transfected into E. coli 

BLT5615 cells (Merck Millipore) in log-phase growth for phage amplification. After bacteriolysis, phages were 

recovered from the culture supernatant by centrifugation and PEG-precipitation, dissolved in PBS, and used for the 

next round of panning. 

Peptide synthesis. 

Peptide synthesis was conducted using Fmoc-chemistry on a Symphony X peptide synthesizer (Protein 

Technologies, Inc., Tucson, AZ, USA). The resin for peptide synthesis and Nα-Fmoc (and side chain) protected amino 

acids were purchased from Novabiochem-Merck Millipore (Darmstadt, Germany) and Watanabe Chemical Industries, 

Ltd. (Hiroshima, Japan). The following side-chain protections were used: Arg(Pbf), Asp(OtBu), Cys(Trt), Ser(tBu) 

and Tyr(tBu). Solvents and other reagents were reagent-grade and were used further purification unless otherwise 

noted. N,N'-Diisopropylcarbodiimide (DIPCDI), OxymaPure, and TFA were purchased from Wako Pure Chemical 

Industries, Ltd. (Osaka, Japan). Piperidine was purchased from Watanabe Chemical Industries. Crude peptides were 

purified to homogeneity by reverse phase (RP)-HPLC with the following conditions: YMC-Actus Triart Prep C8-S 

S-10 μm 20 nm column (30 × 250 mm); solvent gradient A, 0.1% TFA in water; B, 0.1% TFA in acetonitrile with 

gradient indicated below; flow rate, 15 mL/min; and UV detector, 220 nm. The purity of the products was 

characterized by analytical HPLC. Reverse phase analyzes were performed using a Shimazu gradient system with a 

YMC Triart C8 column (4.6 × 100 mm). The peptide molecular weights were confirmed by matrix-assisted laser 

desorption ionization−time of flight (MALDI−TOF) MS on a Bruker Autoflex Speed system (Bruker Daltonics, 



Kanagawa, Japan). 

Sieber amide resin (0.71 mmol/g, 140.8 mg, 0.1 mmol) was swelled with NMP. Sequential peptide chain 

elongation via Fmoc/OxymaPure®/DIPCDI (6 eq. of reagents) chemistry was performed in NMP, followed by N-

terminal acetylation and vacuum drying on a Symphony X peptide synthesizer to yield the desired peptide resin: Ac-

Arg(Pbf)-Arg(Pbf)-Arg(Pbf)-Arg(Pbf)-Cys(Trt)-Pro-Leu-Tyr(tBu)-Ile-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Pro-Val-

Cys(Trt)-Arg(Pbf)-Arg(Pbf)-Arg(Pbf)-Arg(Pbf)-NH-Sieber amide resin (762 mg). The dried resin was suspended in 

7 mL of TFA/m-cresol/thioanisole/H2O/triisopropylsilane/ethandithiol (80:5:5:5:2.5:2.5) and stirred for 180 min at 

room temperature. Diethyl ether was added to the reaction solution, after which the precipitate was centrifuged and 

the supernatant was removed. After repeating this washing procedure, the residue was extracted with an aqueous 

acetic acid solution and filtered to remove the resin. The filtrate was applied to preparative HPLC with a linear density 

gradient elution (60 min) was performed using eluent A/B ratios of 77/23−67/33 (eluent A: 0.1% TFA in water and 

eluent B: 0.1% TFA-containing acetonitrile) on a YMC-Actus Triart Prep C8-S S-10 μm 20 nm column (30 × 250 

mm) with a flow rate of 15 mL/min. The product-containing fractions were collected and lyophilized to yield 100.4 

mg of the desired peptide, Ac-Arg-Arg-Arg-Arg-Cys-Pro-Leu-Tyr-Ile-Ser-Tyr-Asp-Pro-Val-Cys-Arg-Arg-Arg-Arg-

NH2, as a white powder with a mass spectrum of (M + H) + 2562.41 (calc. 2562.40). The RP-HPLC elution time 

was 6.89 min, and the elution conditions were as follows: YMC Triart C8 column (4.6 × 100 mm), linear density 

gradient elution with eluent A/B ratios of 80/20−30/70 (25 min; eluent A: 0.1% TFA in water and eluent B: 0.1% 

TFA-containing acetonitrile), and a flow rate of 1 mL/min. 

Ac-Arg-Arg-Arg-Arg-Cys-Pro-Leu-Tyr-Ile-Ser-Tyr-Asp-Pro-Val-Cys-Arg-Arg-Arg-Arg-NH2 (5 mg) was 



dissolved in 1.0 mol/L Tris-HCl buffer (pH 8.5, 4 mL) and acetonitrile (2 mL). DMSO (2 mL) was added to this 

solution, which was stirred for 36 h at room temperature. The solution was then filtered and applied to the preparative 

HPLC column, and a linear density gradient elution (60 min) was performed with eluent A/B ratios of 75/25−65/35 

(eluent A: 0.1% TFA in water and eluent B: 0.1% TFA-containing acetonitrile) on a YMC-Actus Triart Prep C8-S S-

10 μm 20 nm column (30 × 250 mm) at a flow rate of 15 mL/min. The product-containing fractions were collected 

and lyophilized to yield 3.1 mg of the desired KRpep-2d peptide, Ac-Arg-Arg-Arg-Arg-Cys(&)-Pro-Leu-Tyr-Ile-Ser-

Tyr-Asp-Pro-Val-Cys(&)-Arg-Arg-Arg-Arg-NH2 (disulfide), as a white powder with a mass spectrum of (M + H) + 

2560.66 (calc. 2560.38). The elution time on RP-HPLC was 8.00 min, and the elution conditions were as follows: 

YMC Triart C8 column (4.6 × 100 mm), linear density gradient elution with eluent A/B ratios of 80/20−30/70 (25 

min; eluent A: 0.1% TFA in water and eluent B: 0.1% TFA-containing acetonitrile), and a flow rate of 1 mL/min. 

Peptide binding evaluation by SPR. 

SPR biosensing experiments were performed on Biacore3000 and BiacoreS200 equipped with Sensorchip SA 

at 25°C (GE Healthcare). 

For immobilization, HBS-P+ (10 mM Hepes, 150 mM NaCl, 0.05% surfactant P20, pH 7.4, GE Healthcare) 

was used as the running buffer. Apo-, GDP-, and GTP-form K-Ras were prepared by pretreatment with 5 mM EDTA, 

1 mM GDP, or 1 mM GTP, respectively. For immobilization, each biotin-K-Ras was injected over the sensorchip 

surface. Typical immobilization levels were around 5000 RUs. 

For the interaction study, HBS-P+ supplemented with 1% DMSO and with/without 10 μM GDP or GTP was 

used as a running buffer. Peptides diluted in series were injected at a flow rate of 50 µL/min for 120 s, and the 



dissociation was thereafter followed for up to 240 s. Data processing and analysis were performed by Biaevaluation 

software ver. 4.1.1 and BiacoreS200 evaluation software (GE Healthcare). Sensorgrams were double-referenced prior 

to global fitting the concentration series to 1:1 binding with the mass-transport model. Dissociation constant KD was 

calculated from the following equation KD = koff/kon. 

Competition experiments were performed by sequential injection of peptide solutions either individually, or as 

mixtures of two peptides, each for 120 s at a flow rate of 50 µL/min. When peptides occupied different sites, the 

response observed for the mixture was the sum of the 2 individual responses observed for the peptides. 

In vitro enzyme assay. 

BODIPY-FL-GDP, Terbium-labeled SA (Tb-SA), and human SOS1 protein (Exchange Domain 564-1049) 

were purchased from Life Technologies (Carlsbad, CA), Cisbio (Codolet, France), and Cytoskeleton (Denver, CO), 

respectively. 

TR-FRET assay was carried out using 384-well plates (784075, Greiner Bio-One, Frickenhausen, Germany) 

and the signal was measured using an EnVision plate reader (PerkinElmer, Waltham, MA). The solution in each well 

was excited with a laser (λ=337 nm) reflected by a dichroic mirror (D400/D505), and fluorescence from Tb and 

BODIPY were detected through two emission filters (CFP 486 nm for Tb, Emission 515 nm for BODIPY). Biotin-

K-Ras mutants (WT, G12C, and G12D) were diluted to 2 μM in EDTA buffer (20 mM HEPES, 50 mM NaCl, 10 mM 

EDTA, and 0.01% (w/v) Tween20) and preincubated for 30–60 min at room temperature. The EDTA pretreated K-

Ras proteins were diluted to 3 nM in Ras assay buffer (20 mM HEPES, 50 mM NaCl, 10 mM MgCl2, 0.01% (w/v) 

Tween20) containing 0.5 nM Tb-SA and 30 nM BODIPY-GDP and further incubated for over 6 h at room temperature. 



Various concentrations of 45 nL peptides (100-fold concentration) in DMSO were dispensed in each well of the assay 

plate using Access Echo555 (Labsite, Sunnyvale, CA). Next, 1.5 μL of Ras assay buffer with/without 3 mM DTT 

was dispensed into each well. The plate was sealed with a plate sealer and incubated for over 1 h. Subsequently, 1.5 

μL of K-Ras/Tb-SA/BODIPY-GDP premix was added to the assay plate and the TR-FRET signal was measured with 

the plate reader to obtain TR-FRET signal at t = 0. GDP-GTP exchange reaction was initiated by addition of 1.5 μL 

of Ras assay buffer containing 30 μM GTP and 150 nM SOS1 protein, and TR-FRET signal was measured at an 

arbitrary time. Final concentrations of K-Ras protein, Tb-SA, BODIPY-GDP, SOS1, GTP, and DTT were 1 nM, 0.17 

nM, 10 nM, 50 nM, 10 μM, and 1 mM, respectively. 

To obtain the GDP-GTP exchange rate (kobs) for 0% inhibition, time course of TR-FRET signal was fitted with 

equation (1). 

∞∞ +−−=− YtkYY )exp()(signal FRETTR obs0  (1) 

where Y0 and Y∞ represent the TR-FRET signal at initial and completion of the reaction, respectively. The kobs of 

100% inhibition was determined by TR-FRET signal change in the absence of SOS1 protein. TR-FRET signal was 

fitted with equation (1) by fixing the Y∞ value to that obtained by 0% inhibition. kobs values at each concentration 

of peptides were obtained by using the same fitting procedure as for 100% inhibition. The inhibition rate of K-Ras 

activity was calculated according to equation (2). 
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where kH and kL are kobs of the 0% and 100% inhibition, respectively. The dose-response data were then fitted to a 

logistic curve using GraphPad Prism 5 (GraphPad Software, San Diego, CA) to determine IC50 values. 



In vitro cell-based assays. 

For western blot, cells were seeded at 5 × 104 cells/well into 24-well plates, and were serum-starved for 16 h 

on the following day. Cells were treated with the peptides diluted in FBS-free medium for 30 min, followed by 

treatment with peptides in FBS-containing medium for 1 h, washed briefly with ice-cold saline, and scraped in SDS 

sample buffer (Wako Pure Chemical Industries, Ltd., Osaka, Japan). Proteins were separated by 7.5–15% gradient 

SDS polyacrylamide gel electrophoresis (Perfect NT gel, DRC) and were electrophoretically transferred onto a 

nitrocellulose membrane. The membranes were blocked in StartingBlock T20 (PBS) Blocking Buffer (Thermo Fisher 

Scientific Inc., MA, USA), and labeled with a primary anti-pERK1/2 antibody (Cell Signaling Technology, #9101), 

and an anti-ERK1/2 antibody (Cell Signaling Technology, #9102), both diluted in Can Get Signal Solution I (Toyobo, 

Osaka, Japan), at 4°C overnight. The labeled membrane was washed with PBST and incubated for 30 min with a 

secondary antibody linked to horseradish peroxidase diluted in Can Get Signal Solution II (Toyobo). The protein 

bands were visualized using an ImmunoStar LD (Wako) with a bioimaging analyzer LAS3000 (GE Healthcare), and 

quantified using ImageQuant TL (GE Healthcare). 

For the growth inhibition assay, A427 and A549 cells were seeded at 4000 and 2000 cells/well in 96-well plates, 

respectively. Cells were treated with the peptides on the following day. For the 3-day treatments, medium containing 

the peptides was replaced every day. Relative cell numbers were estimated using CellTiter-Glo (Promega, Madison, 

WI) according to the manufacturer's instructions. Luminescence was measured using an EnVision plate reader. 

Percent inhibition was calculated based on cell numbers at Day 0 as low control and at Day 3 without peptide as high 

control. 



X-ray crystallography. 

The complex of K-Ras(G12D) with GDP and KRpep-2d was prepared by incubating 3-fold molar excesses of 

ligands on ice for 2–3 h prior to the crystallization experiments. The complex was crystallized from a reservoir 

solution containing 0.1 M Hepes (pH 7.5) and 50% (v/v) PEG 200 at 20°C via the sitting-drop vapor diffusion method. 

Prior to data collection, crystals were immersed in reservoir solution containing 30% ethylene glycol as a 

cryoprotectant and flash-frozen in liquid nitrogen. Diffraction data were collected from a single crystal using the 

DECTRIS Pilatus3-S6M PAD detector (Baden-Daettwil, Switzerland) with a BL-17A beamline (Photon Factory, 

Tsukuba, Japan) under a 100-K nitrogen cryostream. The diffraction data were reduced and scaled using HKL2000.72 

The structure was solved according to the molecular replacement method using Phaser 73 from the CCP4 software 

suite 74 and the K-Ras structure (PDB code 4QL3) as a search model. Refinement was performed using REFMAC5 

49 and individual isotropic restrained B factors. Progress was monitored using Rfree, and 5% of the data were set aside 

for cross-validation before refinement. For TLS refinement, the protein and ligands were set as a single rigid body.50 

Interactive model building was performed using COOT, 75 and the final models were validated using Molprobity.51 

All graphical figures were generated using PyMOL (Schrödinger LLC, Cambridge, MA, USA). A schematic diagram 

of protein–ligand interactions was generated using LIGPLOT.76 

 

Results 

Identification of K-Ras(G12D)-binding sequences by phage display screening. 

To obtain K-Ras(G12D)-binding peptide sequences, random peptide libraries displayed on T7 phage were 



screened against recombinant biotin-K-Ras(G12D) immobilized onto SA magnetic beads in the presence of 1 mM 

GDP, 10 mM Mg2+ ion, and 50 μg/mL non-tagged WT K-Ras. After subsequent phage cloning, binding screening, 

and DNA sequencing of phages, two major clusters possessing Y/W-M/L-C-Y/F/W-P-M/L/I/Y-K/R/V/A-L/M-X-X-

X-C or R/K-C-P/M/L/I/V-L/I/M-Y/F/K/R-I/V/T/L/S-S/T/R/K-X-D-P/K/R-V/M/L-C, and one minor cluster 

possessing C-M/R-W-W-R-E-I/V-C-P-V/E-W/T-W were found. Three consensus sequences: KRpep-1 (Ac-

PPWYMCYPMKLKPDC-OH), -2 (Ac-RRCPLYISYDPVCRR-NH2), and -3 (Ac-CMWWREICPVWW-OH) were 

chemically synthesized (Table 2-1). 

Binding analysis and characterization of synthetic peptides by SPR. 

To determine binding kinetics of peptides, an evaluation system using SPR was constructed. First, the 

interactions between K-Ras and SOS1 proteins were evaluated to confirm immobilized Ras protein activity. 

Interestingly, the SOS1 protein bound to the GDP-form more strongly than to the apo-form of K-Ras (results from 

representative G12D-mutant are shown in Figure. 2-1A). Furthermore, the SOS1 protein was released from K-Ras 

by addition of free GTP in solution. These data suggest that the GDP-form of K-Ras is selectively recognized by the 

SOS1 protein and K-Ras function is allosterically controlled by the SOS1 protein and GTP abundance. 

Next, I evaluated the binding activities of peptides to K-Ras proteins. Remarkably, KRpep-2 presented KD 

value of 51 nM to K-Ras(G12D) with 9-fold selectivity to G12C K-Ras and 14-fold selectivity to WT K-Ras (Figure. 

2-1B, Table 2-1, and 2-2). In contrast, KRpep-3 exhibited KD value of 65 nM to K-Ras(G12D), but displayed a 

reduced binding selectivity (Table 2-1, Figure. 2-2, and Table 2-2). KRpep-1, that belongs to the other major cluster, 

showed weak binding affinities (>µmol range) (Table 2-1). Interestingly, KRpep-2 and -3 bound to the GDP-/GTP-



forms but not to the apo-form of K-Ras proteins (Figure. 2-3). 

To characterize the binding of KRpep-2 and -3, a competition experiment was performed using SPR. In this 

evaluation, after injecting solutions of each peptide at a single concentration (>90% occupancy), a mixture of two 

peptides was subsequently injected. When peptides occupied different sites, the response observed for the mixture 

was the sum of the 2 individual responses observed for the peptides.77 As shown in Figure 2-1C, the response 

observed for the KRpep-2/-3 mixture was similar to the signal of each peptide alone, predicting that KRpep-2 and -

3 bind in a similar fashion or possess overlapped binding sites on K-Ras(G12D). 

Since KRpep-2 exhibited K-Ras(G12D) selectivity and a stronger binding activity than that of KRpep-3, I 

focused on KRpep-2 and evaluated its binding capacity in competition against the SOS1 protein. The binding activity 

of the SOS1 protein to K-Ras(G12D) in the presence of KRpep-2 was monitored through SPR. As a result, the binding 

response was significantly decreased (Figure 2-1D). However, the negative control peptide did not show such an 

effect. These results indicate that KRpep-2 and SOS1 protein could have overlapped binding sites on K-Ras(G12D). 

Peptide sequence optimization by KRpep-2-derived phage library. 

For affinity enhancement, a KRpep-2-derived T7 phage library (XXRRCPLYISYDPVCXXXX, X = random 

amino acid residues, under line = 20% expression of indicated amino acids) was constructed and re-screened against 

K-Ras(G12D) with stricter panning conditions than those applied to the first one. As a result, KRpep-2d (Ac-

RRRRCPLYISYDPVCRRRR-NH2) was found as the consensus sequence. Namely, there is no sequence changes 

except for an additional Arg extension at the N- and C-termini. The KD value of KRpep-2d was determined to be 8.9 

nM to the GDP-form of K-Ras by using SPR (Table. 2-3). 



Enzyme inhibition activities of synthetic peptides. 

The SOS1 protein interacts with the GDP-form of K-Ras and mediates the GDP-GTP exchange reaction on the 

K-Ras protein leading to the GTP-form of K-Ras.66 Therefore, I evaluated the inhibition activities of KRpep-2 and 

KRpep-2d against the exchange reaction of BODIPY-GDP to GTP on K-Ras proteins by TR-FRET (Figure 2-4A). 

As a result, both peptides inhibited the exchange reaction in a peptide concentration-dependent manner, with G12D-

mutant selectivity against other K-Ras variants (WT and G12C) (Figure 2-4B and Table 2-4). The IC50 values were 

estimated at 8.9 nM and 1.6 nM, respectively. However, their inhibition activities were decreased in reducing 

conditions, suggesting that the disulfide bond was cleaved and the peptides could not retain their constrained cyclic 

structure (Figure 2- 4B and Table 2-4). 

To examine peptide-cyclization by non-disulfide-bonds, I tested o-xylene-cyclization, which proved to be 

effective as an alternative to disulfide bond cyclization in the previous study.27 However, it significantly reduced the 

K-Ras inhibitory activity (Table 3, KRpep-2(ox)). One possible reason is that o-xylene-cyclization provides a larger 

cyclic form of peptide, and the difference in ring size might influence its binding activity. Furthermore, the bulkier 

structure of o-xylene, compared to that of a disulfide bond, might disturb the binding to K-Ras. 

K-Ras(G12D)-selective inhibition of peptides in cell-based assays. 

To evaluate the cellular K-Ras inhibitory activity and selectivity of the synthetic peptides (KRpep-2d and 

KRpep-2dL (negative control)), I investigated the effects of the peptides on the phosphorylation levels of ERK1/2, 

which is a downstream signal of K-Ras, in A427 (lung, G12D mutant) and A549 (lung, G12C mutant) cells. In these 

cells, K-Ras-dependent phosphorylation of ERK has been reported.78 Western blot analysis revealed that KRpep-2d 



selectively inhibited the phosphorylation levels of ERK1/2 in A427 cells at a peptide concentration of 30 μM (Figure 

2-5A). Furthermore, KRpep-2d significantly suppressed cell proliferation of A427 cells but not that of A549 cells at 

a peptide concentration of 30 μM (Figure 2-5B), suggesting that this growth inhibitory activity was not caused by 

non-specific cytotoxicity of the peptide. In contrast, KRpep-2dL did not inhibit the ERK signal or cell proliferation 

at 30 μM. Collectively, these results suggest that KRpep-2d entered cells, bound to intracellular K-Ras(G12D), and 

inhibited the signaling cascade. 

Determination of the crystal structure of K-Ras(G12D) in complex with GDP and KRpep-2d. 

The crystal structure of K-Ras in complex with GDP and KRpep-2d was determined at 1.25 Å resolution. The 

crystallographic processing and refinement statistics are summarized in Table 2-5. One molecule was included per 

asymmetric unit. Except for two N-terminal residues derived from the expression tag, the K-Ras(G12D) polypeptide 

chain is sufficiently well-ordered to allow structural feature interpretation. The crystal structure revealed that KRpep-

2d binds near Switch II and the α3 helix in an extended and shallow cleft composed of two α-helices (Figure 2-6). 

The main-chain atoms of KRpep-2d were well-ordered in crystal packing, although the electron densities of the side-

chain atoms of N- and C-terminal arginine residues (Arg1–Arg4 and Arg16–Arg19) were relatively ambiguous 

(Figure 2-7). Four arginine residues at each terminus were exposed to solvent, and therefore, they did not interact 

specifically with K-Ras, except for crystal-packing interactions (Figure 8A). Notably, the inhibitory activity (IC50) 

and binding affinity (KD) of KRpep-2d were approximately 5-fold stronger than those of KRpep-2 (Ac-

RRCPLYISYDPVCRR-NH2), a lead peptide of KRpep-2d (Table 2-1 to 2-4). It was suggested that these arginine 

residues at both termini participate in indirect KRpep-2 interactions. The crystal structure showed that KRpep-2d has 



an intramolecular hydrogen bond between the acetyl oxygen of the N-terminus and the main-chain nitrogen of Arg19 

of the C-terminus (Figure 2-8A). Along with the intramolecular disulfide bond, the hydrogen bond between terminal 

residues might contribute to stabilizing the overall peptide conformation to adopt favorable direct interactions with 

K-Ras. 

The loop conformation of KRpep-2d results from the formation of an intramolecular disulfide bond between 

Cys5 and Cys15. Both hydrophilic and hydrophobic interactions were observed at the binding interface between 

KRpep-2d and K-Ras(G12D) (Figures 2-8A and 2-8B). The main-chain nitrogen and oxygen of Leu7 form hydrogen 

bonds with the side-chain oxygen and nitrogen of Gln99 in the α3 helix, respectively. The main-chain nitrogen and 

oxygen of Tyr8 form hydrogen bonds with the main-chain oxygen of Gln61 and the side-chain nitrogen of Arg68 in 

the α2 helix. The main-chain nitrogen and side-chain oxygen of Ser10 interact via hydrogen bonding with the side-

chain oxygens of Asp69 in the α2 helix. The side chain of Pro6 interacts hydrophobically with the side chain of Tyr96 

in the α3 helix. The side chain of Leu7 occupies a small hydrophobic pocket involving Val9, Thr58, Arg68, Met72, 

and Tyr96. The side chain of Ile9 interacts hydrophobically with the side chain of Met72 in the α2 helix. The side 

chain of Tyr11 forms a water-mediated hydrogen bond with the main-chain oxygen of Val103 in the α3 helix. The 

side chain of Asp12 forms hydrogen bonds with the side-chain nitrogens of Gln99 and Arg102 in the α3 helix. The 

side chain of Val14 interacts via van der Waals stacking with the side chain of Arg102. Together, these results indicate 

that the conformation of KRpep-2d, when anchored by the intramolecular disulfide bond, is optimal for interaction 

with the shallow and extended cleft of K-Ras. Alanine scanning of KRpep-2d prior to the structural analysis revealed 

that Leu7, Ile9, and Asp12 are especially critical for the inhibition of K-Ras(G12D). 79 SPR binding analysis also 



demonstrated that replacement of Leu7, Ile9, and Asp12 with alanine significantly attenuated the peptide binding 

affinity for K-Ras (Table 2-6). The structural information regarding the binding interaction is highly consistent with 

the structure-and-activity relationships. 

 

Discussion 

Herein, I produced the first K-Ras(G12D)-selective binding/inhibitory peptides designed from random peptide 

T7 phage display technology. Especially, KRpep-2d presented a remarkable selectivity toward K-Ras(G12D), not 

only in cell-free enzyme assay, but also in cell-based assays. My peptides recognized a single point mutation of Gly12 

on K-Ras that may cause subtle differences in the protein structure.80 Furthermore, KRpep-2 bound to GDP-/GTP-

forms of K-Ras(G12D) while it did not bind to its Apo-form, indicating that the binding site is not the GDP/GTP 

binding site, an undruggable pocket. The binding competition assay revealed that the main mechanism involves the 

inhibition of PPI between K-Ras(G12D) and the SOS1 protein. Binding affinity and selectivity characteristics are 

possible through the capacity of a peptide to form an ideal shape against the target surface and interact with it by 

multi-point binding. 

Patgiri et al. and Pei et al. reported K-Ras inhibitory peptides obtained by de novo design or screening peptide 

library on beads, respectively.66-69 However, these do not have K-Ras mutant-selectivity. I could discover KRpep-2 

because the diversity of the screening library. My library contains a hundred billion distinct clones possessing 

different ring size peptides. Furthermore, I performed a thorough subtraction of WT K-Ras-binding phages. Although 

KRpep-1 and -3, for which the K-Ras(G12D)-selectivity was low, were isolated, the subtraction would lead to an 



enrichment of KRpep-2 related peptide sequences in the phage panning process. Therefore, display technology 

represented by phage display is an extremely powerful strategy to generate molecules possessing high-affinity and -

selectivity. 

To evaluate structural rearrangement of K-Ras, the K-Ras(G12D)–GDP–KRpep-2d complex structure was 

compared with the active GTP-bound and inactive GDP-bound K-Ras(G12D) structures, as guanine nucleotide 

exchange was reported to induce large conformational changes in the Switch I and Switch II regions. The structural 

comparison revealed that the Switch II region resembles the GDP-bound state (Figure 9A). In the K-Ras(G12D)–

GDP and K-Ras(G12D)–GDP–KRpep-2d complexes, the side chain of Asp12 formed a direct or water-mediated 

hydrogen bond with Gln61 of Switch II, whereas in the K-Ras(G12D)–GMPPCP and K-Ras(G12D)–GMPPNP 

complexes, the side chain of Gln61 was exposed to solvent, resulting in a loss of interaction with the side chain of 

Asp12 (Figures 2-9B and 2-9C). In the K-Ras(G12D)–GTP analog complexes, the α2 helix of Switch II overlapped 

with the KRpep-2d binding site. Although the Switch II conformation significantly differs between the GDP- and 

GTP-bound states, the binding affinity of KRpep-2d for both states is approximately equivalent (Table 2-3). The 

increased structural flexibility of Switch II in the GTP-bound state may be tolerable to KRpep-2d binding. 

Intriguingly, KRpep-2d exhibits inhibitory selectivity against K-Ras(G12D) compared with the G12C mutant 

and WT for both states. To understand the specificity, my ternary K-Ras(G12D) complex was compared with the K-

Ras(G12C)–GDP and K-Ras(WT)–GDP complexes. The Switch II conformation in the K-Ras(WT)–GDP complex 

is similar to that of K-Ras(G12D) in the GDP state (Figure 10A), whereas the Switch II conformation in the K-

Ras(G12C)–GDP complex is similar to that of K-Ras(G12D) in the GTP state (Figure 2-10B). Despite of the 



structural differences of Switch II between K-Ras(WT) and K-Ras(G12C), the binding affinity of KRpep-2d for both 

K-Ras proteins is relatively weak in comparison with that for K-Ras(G12D) to the same extent. Structural comparison 

indicated that a hydrogen-bonding interaction between Asp12 and Gln61 likely stabilizes the Switch II conformation 

for peptide binding. As a result, the stabilized conformation of Switch II may facilitate the binding capability of 

KRpep-2d. 

To explore the inhibitory mechanism of KRpep-2d, my structure was compared with the Ras–GEF complex. 

GEFs such as SOS1 catalyze the release of GDP and permit the binding of GTP. Therefore, Ras–GEF inhibition could 

feasibly decrease the proportion of GTP-bound Ras. An SPR binding competition assay demonstrated that KRpep-2 

competes for binding to SOS1, and indicated that KRpep-2 and SOS1 could share binding sites on K-Ras(G12D). 

The αH helix within the helical hairpin motif of SOS1 is known to play an important role in the nucleotide-exchange 

mechanism.81 Structural comparison with the H-Ras–SOS1 complex showed that the binding site of KRpep-2d is 

distal to the binding region of the αH helix of SOS, which displaces Switch I and Switch II to mediate GDP release 

(Figure 2-11). KRpep-2d binding stabilized the Switch II conformation and caused steric hindrances with the SOS1 

αH helix, suggesting that KRpep-2d is likely a non-orthosteric inhibitor of the nucleotide-exchange reaction that 

interferes allosterically with nucleotide binding or release. Although the helical hairpin of SOS1 is critical for its 

function, other regions of the catalytic cdc25 domain of SOS1 also interact with Ras.82-83 As the binding site of 

KRpep-2d is adjacent to the αB, αD, and αK helices of the cdc25 domain, the inhibitory mechanism of KRpep-2d 

remains controversial (Figure 2-12). 



The PPIs between Ras–GTP and its effectors, which initiate various downstream signaling cascades, are also 

challenging targets. Structural information may facilitate a detailed understanding of the binding capabilities of 

inhibitors. KRpep-2d also binds to the GTP-bound state of K-Ras with comparable affinity (KD = 11 nM; Table 2-3). 

It remains to be determined whether KRpep-2d inhibits Ras–effector interactions. One orthosteric inhibitor of Ras–

effector interactions, Kobe2061,84 is known to bind to a similar site adjacent to Switch II as compound 13 (Figure 2-

13A), indicating the importance of the Switch II conformation for Ras-effector binding.85 According to one plausible 

hypothesis, KRpep-2d could prevent Switch I and Switch II from adopting the correct conformations for Raf-RBD 

binding (Figure 2-13B). However, preliminary analysis of K-Ras(G12D) binding with Raf-RBD is still under 

investigation. Further investigation may facilitate an understanding of the mechanism of action of KRpep-2d. 

Here, fortunately, KRpep-2d had consecutive Arg residues in the N-/C-termini, resulting in an effective cell 

penetration activity of the peptide, as shown in the previous study.27 As expected, KRpep-2d (30 μM) inhibited the 

downstream signal of K-Ras (ERK-phosphorylation) and suppressed A427 cell proliferation with K-Ras(G12D)-

selectivity. Nevertheless, its efficacy was not sufficient for in vivo experiments. KRpep-2d possesses the hydrophilic 

residue Ser10 and acidic residue Asp12 in its sequence, and these residues may decrease the cell-membrane 

permeability of the peptide. To increase cell penetration activity, I examined palmitoylation of the N-terminus of 

KRpep-2d, since a combination of oligo-Arg and hydrocarbon moieties enhances cellular membrane affinity and 

subsequent cell-internalization ability.86 However, C16-KRpep-2d showed non-specific binding and strong 

cytotoxicity in preliminary experiments (data not shown). A combination with drug delivery systems such as 

liposomes or nanoparticles may be effective to deliver KRpep-2d into cells. 



In addition to cell-membrane permeability, disulfide bond cyclization is another disadvantage of KRpep-2d, 

since the inhibition activity was decreased in reducing conditions (Figure 2-4B). Unfortunately, o-xylene bridging 

caused a loss in K-Ras inhibitory activity. I need to assess other bridging modifications such as carba 87 and lactam 

88 bridging pathways, that would provide resistance to reducing conditions and thereby, retain the inhibition activity 

of KRpep-2d, even in cytosolic reducing conditions. 

As described above, the characteristics of KRpep-2d can still be improved. Nevertheless, it represents the first 

K-Ras(G12D)-selective inhibitor to date, whose inhibition activity and selectivity were demonstrated in both cell-

free and cell-based assays; KRpep-2d will mark a new chapter in the study of K-Ras direct inhibitors. 



Tables & Figures 

Table 2-1. Sequences and KD values of peptides. 

Peptide Sequence 

KD (nM) 

GDP-form  GTP-form 

G12D G12C WT  G12D G12C WT 

KRpep-1 Ac-PPWYMCYPMKLKPDC-OH 1000 2300 17000  1400 2000 2500 

KRpep-2 Ac-RRCPLYISYDPVCRR-NH2 51 480 700  100 920 1300 

KRpep-3 Ac-CMWWREICPVWW-OH 65 210 77  93 350 220 

WT means wild type. 

  



Table 2-2. Binding kinetic parameters of KRpep-2 and -3. 

Peptide K-Ras Ligand KD (nM) 
kon 

(M-1s-1) 

koff 

(s-1) 

Chi2 

(RU2) 

Binding 

t1/2 (s) 

KRpep-2 

G12D 

GDP 

8.9 1.3 × 106 1.1 × 10-2 2.52 61 

G12C 35 1.0 × 106 3.5 × 10-2 3.21 20 

WT 58 1.6 × 106 9.3 × 10-2 1.39 7.5 

G12D 

GTP 

11 2.8 × 106 3.0 × 10-2 9.95 23 

G12C 250 3.7 × 105 9.2 × 10-2 7.29 7.5 

WT 200 6.1 × 105 1.2 × 10-1 1.93 5.8 

KRpep-3 

G12D 

GDP 

8.9 1.3 × 106 1.1 × 10-2 2.52 61 

G12C 35 1.0 × 106 3.5 × 10-2 3.21 20 

WT 58 1.6 × 106 9.3 × 10-2 1.39 7.5 

G12D 

GTP 

11 2.8 × 106 3.0 × 10-2 9.95 23 

G12C 250 3.7 × 105 9.2 × 10-2 7.29 7.5 

WT 200 6.1 × 105 1.2 × 10-1 1.93 5.8 

WT means wild type.  



Table 2-3. Kinetic parameters of KRpep-2d binding. 

Peptide K-Ras Ligand KD (nM) 
kon 

(M-1s-1) 

koff 

(s-1) 

Chi2 

(RU2) 

Binding 

t1/2 (s) 

KRpep-2d 

G12D 

GDP 

8.9 1.3 × 106 1.1 × 10-2 2.52 61 

G12C 35 1.0 × 106 3.5 × 10-2 3.21 20 

WT 58 1.6 × 106 9.3 × 10-2 1.39 7.5 

G12D 

GTP 

11 2.8 × 106 3.0 × 10-2 9.95 23 

G12C 250 3.7 × 105 9.2 × 10-2 7.29 7.5 

WT 200 6.1 × 105 1.2 × 10-1 1.93 5.8 

WT, wild-type; t1/2, half-life 

  



Table 2-4. Inhibition activities of peptides assessed through enzyme assay. 

 

                IC50 (nM) (-/+ DTT) 

Name  Sequence             Cyclization     Structure           G12D          G12C  WT 

KRpep-2  Ac-RR-Cys-PLYISYDPV-Cys-RR-NH2   Disulfide       -S-S-  8.9 / 1500          130  170 

 

KRpep-2d         Ac-RRRR-Cys-PLYISYDPV-Cys-RRRR-NH2         Disulfide       -S-S-  1.6 / 87          18  42 

 

KRpep-2d(ox) Ac-RRRR-Cys-PLYISYDPV-Cys-RRRR-NH2  o-xylene        -S        S- 2600 / 1200        25000  31000 

 

 

KRpep-2dL Ac-RRRR-Nle-PLYISYDPV-Nle-RRRR-NH2  None (linear)   N.D. / N.D.        N.D.           N.D. 

N.D. means not determine 

 



Table 2-5. Data Collection and Refinement Statistics. 

Crystal K-Ras(G12D)−GDP−KRpep-2d 

Data collection 

Space group P3121 

Unit cell dimensions 

a, b, c (Å) 51.5, 51.5, 129.6 

α, β, γ (°) 90, 90, 120 

Resolution (Å) 50−1.25 (1.27−1.25) 

Unique reflections 56366 (2780) 

Redundancy 9.3 (7.3) 

Completeness (%) 100.0 (99.7) 

I/σ 54.4 (1.9) 

Rsym a 0.041 (0.964) 

Molecules in ASU 1 

Refinement 

Resolution (Å) 45−1.25 (1.28−1.25) 

Reflections 53531 (3866) 

Rwork b 0.171 (0.273) 

Rfree b 0.194 (0.293) 

Number of atoms 

Protein 1431 

Ligand/Ion 211 

Water 138 

Average B factor (Å2) c 19.1 

Rms deviation from ideal geometry 

Bond lengths (Å) 0.011 

Bond angles (°) 1.592 

Ramachandran plot (%) d 

Preferred regions 97.7 

Allowed regions 2.3 

Outliers 0.0 

PDB code 5XCO 
a Rsym=ΣhΣi|I(h)i–<I(h)>|/ΣhΣi<I(h)>, where <I(h)> is the mean intensity of symmetry-related reflections. b 

Rwork=Σ||Fobs|–|Fcalc||/Σ|Fobs|. Rfree was calculated for randomly chosen 5% of reflections excluded from refinement. 
c B-factor includes contributions from TLS parameters. d Calculated with Coot. Values in parentheses are those for 

the highest resolution shell.



Table 2-6. Binding Affinities of KRpep-2d and Amino-acid Substituted Derivatives. 

 KD (nM) 

Modification from KRpep-2d K-Ras−GDP K-Ras−GTP 

 G12D G12C WT G12D G12C WT 

(KRpep-2d) 8.9 35 58 11 250 200 

Arg1,2,18,19 → deletion (KRpep-2)  51 480 700 100 920 1300 

Arg1,2,3,4,16,17,18,19 → deletion 770 680 > 1000 > 1000 > 1000 > 1000 

Arg1,19 → D-Arg 10 290 140 11 560 260 

Pro6 → Ala 55 520 560 260 > 1000 > 1000 

Leu7 → Ala 920 > 1000 > 1000 > 1000 > 1000 > 1000 

Tyr8 → Ala 89 740 910 190 > 1000 > 1000 

Ile9 → Ala > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 

Ser10 → Ala 78 570 990 160 > 1000 > 1000 

Tyr11 → Ala 220 > 1000 > 1000 470 > 1000 > 1000 

Asp12 → Ala > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 

Pro13 → Ala 26 170 320 33 750 670 

Val14 → Ala 8.9 38 83 9.9 240 210 

 



(A) 

(B) 

  



(C)                                 

(D) 

Figure 2-1. Binding activity of peptides toward each K-Ras protein determined through SPR. (A) Binding activities 

of SOS1 to Apo- or GDP-form of K-Ras(G12D). (B) Binding activities of KRpep-2. The colored and black solid 

lines indicate the experimental (from top 2 μM, 2-fold dilution) and fitting (1:1 binding model) data, respectively. 

(C) Competition experiments between KRpep-2 (2 µM) and -3 (2 µM) that occupy overlapped binding sites on K-

Ras(G12D). (D) Binding competition between KRpep-2 and SOS1 on K-Ras(G12D) protein. SOS1 was injected in 

K-Ras(G12D)-immobilized cell in the presence or absence of peptide.  



 

Figure 2-2. Binding activity and selectivity of KRpep-3 determined through SPR. The colored and black solid lines 

indicate the experimental (from top 2 μM, 2-fold dilution) and fitting (1:1 binding model) data, respectively. 

  



 

Figure 2-3. Binding activities of KRpep-2 and -3 toward apo-form K-Ras proteins. The colored indicates the 

experimental (from top 2 μM, 2-fold dilution) data. 

  



(A) 

 

(B) 

Figure 2-4. Enzyme inhibition activities of peptides. (A) Assay scheme. (B) Inhibition-activity and -selectivity of 

synthetic peptides.  



(A) 

 

(B) 

 

Figure 2-5. Inhibition activities of peptides towards K-Ras in A427 (K-Ras(G12D)) and A549 (K-Ras(G12C)) cells. 

Inhibition activity of synthetic peptides on (A) phosphorylation of ERK and (B) cell-proliferation. Data are means ± 

SD (n = 3, **P < 0.005, ***P < 0.0005 by Williams test). 

  



Figure 2-6. A ribbon diagram of the K-Ras(G12D)–KRpep-2d complex. GDP and KRpep-2d are depicted as yellow 

stick models, with Switch I, Switch II, and the P-loop indicated in orange, magenta, and blue, respectively. 

  



(A)      

(B) 

 

Figure 2-7. The Fobs−Fcalc electron density omit map contoured at 3σ within the vicinity of (A) GDP and (B) KRpep-

2d.  



(A) 

 

(B) 

 

Figure 2-8. Binding interaction of KRpep-2d with K-Ras(G12D). (A) The color scheme is as described for Figure 1. 

Orange dashed lines indicate hydrogen bonds. Arginine residues at both termini of the peptide were excluded for 

clarity. (B) Schematic diagram of the K-Ras(G12D)−KRpep-2d interactions. Hydrogen bonds are depicted 

as dot lines.  



(A)            (B) 

(C) 

 

Figure 2-9. Structural comparison of the K-Ras(G12D)−GDP−KRpep-2d (green) complex with other K-Ras 

complexes (cyan). (A) The K-Ras(G12D) −GDP complex (PDB code 4EPR). (B) The K-Ras(G12D)−GMPPCP 

complex (PDB code 4DSN). (C) The K-Ras(G12D)−GMPPNP complex (PDB code 5USJ). All six monomers in the 

crystallographic asymmetric unit are superimposed. KRpep-2d is shown transparently for clarity. The magnesium 

ions are represented as magenta spheres.  



(A) 

(B) 

Figure 2-10. Structural comparison of the K-Ras(G12D)−GDP−KRpep-2d (green) complex with other K-Ras 

complexes (cyan). (A) The K-Ras(WT)−GDP complex (PDB code 4LPK). (B) The K-Ras(G12C)−GDP complex 

(PDB code 4LDJ). KRpep-2d is shown transparently for clarity. The magnesium and calcium ions are represented as 

magenta and green spheres, respectively.  



 

 

Figure 2-11. Structural comparison of the K-Ras(G12D)–GDP–KRpep-2d (green) complex with other Ras 

complexes (cyan). The H-Ras–SOS complex (PDB code 1NVW). 

  



Figure 2-12. Structural comparison of the K-Ras(G12D)−GDP−KRpep-2d (green) complex with the H-Ras−SOS 

complex (cyan) (PDB code 1NVW). KRpep-2d is shown transparently for clarity. Only the cdc25 domain of SOS 

(residues 750−1046) is drawn for clarity. The carbon atoms of the cdc25 domain of SOS are drawn with a spectrum 

of colors ranging from blue to red. 

  



(A) 

 

(B) 

 

Figure 2-13. Structural comparison of the K-Ras(G12D)−GDP−KRpep-2d (green) complex with other K-Ras 

complexes (cyan). (A) The H-Ras(T35S)−GMPPNP−Kobe2601 complex (PDB code 2LWI). (B) The H-Ras–

GMPPNP−Raf-RBD complex (PDB code 4G0N). The magnesium ions are represented by magenta spheres. KRpep-

2d is shown transparently for clarity. The carbon atoms of Kobe2601 and Raf-RBD are colored pink.  



 

 

 

 

 

 

 

 

General Discussion 

  



In this study, I identified inhibitors against 2 PPIs with distinct properties using a screening method that was 

optimized for the properties of these PPIs. In chapter I, I describe fragment-based screening against BCL6, which 

interacts with BcoR and has predicted hot spots, and in chapter II, detail the results of phage display screening against 

K-Ras, which interacts with SOS1 via conformational changes. Both of these proteins are associated with cancer and 

BCL6 has also been associated with autoimmune disease. 

PPIs are an attractive class of target for drug discovery. However, the discovery of inhibitors that disrupt PPI 

functions remains extremely difficult in contrast with typical drug targets, and functional inhibitors of PPIs are 

commonly produced as antibodies. Herein, I identify potent compounds that can target PPIs in cells. In the last 20 

years, various trials have been performed with molecules that target PPIs, and considerable progress has been made 

in the identification of small molecule-based PPI inhibitors. However, this research area requires more sophisticated 

strategies to discover more effective and versatile inhibitors. 

The BCL6–BcoR PPI is widely considered a therapeutic target for cancer and autoimmune disease, and the 

following biophysical properties have been described: 1) the PPI buried surface area is moderate at approximately 

2000 Å2, 2) BCL6 interacts with a loop region of BCoR without causing conformational changes, 3) the affinity of 

BCL6–BCoR binding is weak at about 10 µM, 4), reported HTS resulted in low affinity compounds only. Taken 

together, these data suggest the absence of hot spots on BCL6. 

In contrast, the present phage display screen identified a high affinity linear peptide that binds to BCL6, and 

the high affinity binding of this peptide remained after truncation.28 Hence, fragment-based screening against BCL6 

is a feasible approach to searching for hot spots on BCL6. In subsequent SPR-based fragment screens, I identify 



fragment 1 and SPR and X-ray analyses revealed that fragment 1 competes with the BcoR peptide and binds to a 

hotspot on BCL6. Using iterative synthesis with information regarding complex structures, I generated compound 7, 

which has a KD value in the nanomolar order and inhibits PPIs in cells.  

In a previous study, I identified the BCL6-binding peptide with high affinity using a phage display screen and 

expected to find compounds with high affinity. In particular, although the affinity of BcoR peptide for BCL6 is weak 

(2-digit micromolar), I found compound 7 with an affinity of 2-digit nanomolar. Therefore, the affinity of the 

endogenous ligand will not indicate the required affinity of artificial ligands, especially if the target PPI has hot spots.  

The present experiments identified BCL6 binding fragments apart from fragment 1, but complex structures of 

these fragments were not solved and although SAR were investigated, these were poorly elucidated in the absence of 

complex structures. Because fragments generally have extremely low binding affinities (around 1 mM), related 

compounds are expected to have low affinity, and the resulting nonspecific binding effects and insolubility at high 

concentrations hampers accurate quantitative measurements of binding affinities. Hence, future analyses of complex 

structures will be central to the discovery of potent PPI inhibitory compounds from fragment-based screening. 

The K-Ras–SOS1 PPI has potential as a therapeutic target for cancer and has 1) a large buried surface area of 

over 3000 Å2 and 2) is mediated in part by conformational changes. However, 3) SAR of screened inhibitory 

fragments have not been reported. I selected phage display screening to identify inhibitors of this target and 

considered allosteric mimetics of the SOS1 peptide as likely candidates. Accordingly, I conducted phage display 

screening against K-Ras (G12D) to generate linear and cyclic peptides that bind K-Ras. These experiments revealed 

several cyclic peptides, and among them, KRpep-2d had nanomolar binding affinity for K-Ras (G12D) in SPR 



experiments. Furthermore, the present data show that this peptide competes with SOS1 and is selective of K-Ras 

forms (G12C, WT, and GTP-form). To elucidate binding modes of KRpep-2d, I conducted alanine scanning and X-

ray crystal structure analyses and showed that KRpep-2d binds the allosteric site of K-Ras. 

The present study identified unique cyclic peptides that bind the allosteric site of K-Ras, but these were not 

linear peptides that bind allosteric or the orthosteric sites, suggesting that K-Ras does not have hot spots that can be 

targeted by selective small molecules. K-Ras binding compounds were discovered previously, and although SAR 

were investigated, no improvements of affinity were reported,64, 66, 89 further indicating the absence of hot spots in K-

Ras. The cyclic peptide KRpep-2d is more complex than other typical small molecule inhibitors, and high affinity 

and selective compounds such as KRpep-2d will need to have complexity. Hence, macrocyclic libraries or small 

molecular mimetics of KRpep-2d will be useful for the generation of compounds that bind K-Ras with high affinity 

and selectivity. 

In this study, I discovered inhibitors of 2 PPI targets using biophysics-based screening methods that monitor 

binding activity. In contrast with typical inhibitors of drug targets, compound 7 and KRpep-2d both have unique 

properties, and bind hot spot and allosteric sites, respectively. These observations indicate that PPIs are feasible drug 

targets in the early stages of drug discovery. Hector Gracis-Seisdedos et al. previously suggested that hot spots play 

important roles in the self-assembly of proteins.90 Thus, compounds that bind these sites may be important tools for 

further investigations of protein interactions.  

Strategies for drug discovery depend on the properties of target PPIs, particularly because the properties of 

PPIs are more varied than typical target classes. In the schematic below (Figure 3-1), I suggest a work-flow for the 



discovery of PPI inhibitors on the basis of the evidence provided in this study. Target PPIs can be classified according 

to the presence of hot spots and these can be predicted according to preferences for conformational changes, and with 

respect to epitopes of partner proteins, in addition to buried surface areas. When the presence of hot spots remains 

unclear, phage display screening can be used to discover linear peptides and to shorten them for fragment-based 

screening, which is suitable because high affinity compounds are likely for hot spot sites. Conversely, when cyclic 

peptides are considered in isolation, targeted proteins tend to identify steric ligands. Therefore, libraries of 

macrocyclic compounds and peptide mimetics are suitable for compound screening against these PPIs. 

In this work-flow, biophysical methods play important roles in screening and analysis of interactions, and 

recent developments of these methods have been remarkable. In the future, the possibility of discovering PPI 

inhibitors will increase, and the next step is to optimize identified PPI inhibitors and develop them to the clinical 

stage. Due to the use of distinct discovery strategies, it is likely that compounds with distinct profiles will be 

discovered, and these will be more complex than those of typical drug targets. Therefore, novel medicinal chemistry 

approaches will be necessary. 

  



 

Figure 3-1. Work-flow to discover PPI inhibitors. 
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