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Abstract 

   Staphylococcus aureus (S. aureus) is a commensal bacterium which behaves as an 

opportunistic pathogen. Its genome possesses various kinds of mobile genetic 

elements (MGE) carrying pathogenic factors and antibiotic resistance genes. This 

thesis focuses on one of the horizontal gene transfer (HGT) systems, the natural 

transformation, which had not been demonstrated for a long time in S. aureus.  

   This thesis consists of four chapters. Chapter 1 is the general introduction, 

especially focusing on the S. aureus natural transformation that is triggered by the key 

regulator, sigma factor H (SigH). In Chapter 2, I demonstrate the natural 

transformation does not require any phage components, excluding the argument that 

natural transformation might be due to the phage-dependent “pseudo-competence”. In 

Chapter 3, the environmental factors affecting the natural transformation efficiency are 

described, especially about the effect of an autolysis inhibitor, Sodium Polyanethol 

Sulfonate (SPS). In Chapter 4, I discuss the significance of the natural transformation 

in the evolution of S. aureus including the acquisition of drug-resistant genes.        

 

 

 

Copyright 

This thesis includes reuse of published articles. The chapter 2 is adapted from 

“Expression of a cryptic secondary sigma factor gene unveils natural competence for 
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Chapter 1	  

 

Introduction 

 

1-1. Staphylococcus aureus 

Staphylococcus aureus (S. aureus), first discovered and described over 130 

years ago (Ogston. 1882), belongs to the low G+C % Gram-positive Bacilli class of 

Firmicutes that also includes Bacillus subtilis (B. subtilis) and Streptococcus 

pneumonia (S. pneumonia). Known as a commensal bacterium, often colonizing 

mammalian nasal cavities	(Wertheim et al. 2005), S. aureus is also a major human 

pathogen causing a broad spectrum of infections ranging from food poisoning and 

superficial skin abscesses to more serious diseases such as pneumonia, meningitis, 

osteomyelitis, septicemia, toxic shock syndrome and sepsis	(Lowy. 1998). It has 

acquired resistance to a wide variety of antibiotics	(Lowy. 2003; Ito et al. 2003), and 

methicillin-resistant strains (MRSA), the most common cause of nosocomial 

infections, are now spreading into the community	(Chambers and Deleo. 2009). 

   The S. aureus genome contains several mobile genetic elements (MGE) such as 

transposons, bacteriophages, insertion sequences, pathogenicity islands and a 

staphylococcal cassette chromosome (SCC) (Lindsay. 2010; Malachowa and DeLeo. 

2010). SCC	carries many of the toxin and antibiotic resistance genes such as 

enterotoxin, and mec encoding resistance to any types of β-lactam antibiotics 

including methicillin. Whole genome sequencing analysis of S. aureus genomes 

revealed that closely clustered organisms have remarkably different MGE profiles, 

indicating frequent transfer and loss of MGE (Lindsay. 2014; Lindsay. 2010). Thus, 

horizontal gene transfer (HGT) plays a critical role in the evolution of this human 

pathogen.  

 

1-2. The horizontal gene transfer in S. aureus  

   In bacteria, HGT is known to be mediated by three major mechanisms; 

conjugation, transduction, and natural transformation (Figure 1). Conjugation is 

cell-to-cell DNA transfer via the bridge encoded by conjugative plasmids. Conjugation 
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requires a series of tra genes, which are only found in limited parts of isolates in S. 

aureus (Novick. 1991). Transduction is mediated by phages. Most S. aureus strains 

are lysogenized with temperate phages, which can enter a lytic cycle that leads to 

generalized transduction, i.e., any part of the host DNA mispackaged into the phage 

particle is transferred to a recipient cell upon the following infection. In addition, 

unusual phage-like infectious particles are involved in the efficient transfer of 

staphylococcal pathogenicity islands (Novick et al. 2010). 

Natural genetic competence for transformation involves the binding and uptake 

of extracellular DNA by the DNA incorporation machinery (also known as 

competence machinery) expressed at the cell surface (Claverys et al. 2009). Following 

a publication in 1972 reporting the existence of a transformation-like phenomenon in S. 

aureus (Lindberg et al. 1972), numerous reports investigating this process appeared 

over the ensuing decade. It was finally shown that this was in fact not natural genetic 

competence, but a type of HGT that requires contaminating phage tail fragments in the 

DNA preparation, which bind to the host cell and allow entry of DNA (Birmingham 

and Pattee. 1981). This unique DNA transfer in staphylococci is now termed 

“pseudo-transformation” or “pseudo-competence, which will be demonstrated to be 

distinct from the genuine natural competence in this thesis.   

 

1-3. Competence genes for natural transformation  

Orthologues of competence genes encoding the DNA uptake machinery are 

conserved in staphylococcal genomes (Kuroda et al. 2001; Morikawa et al. 2003) 

(Figure 2). Competence machinery consists of proteins encoded by comG, comE and 

comF operons in Firmicutes bacteria (Chen and Dubnau. 2004; Claverys et al. 2009; 

Fontaine et al. 2015).  

      The comG operon, first discovered in S. pneumoniae, encodes three genes, 

comGA, comGB and comGC (Albano et al. 1989; Blokesch. 2016). These three genes 

are required for the transport of transforming DNA in S. pneumoniae and B. subtilis 

(Peterson et al. 2004; Chen et al. 2006). In these bacteria, ComGC (comGC) compose 

the essential part of transformation pilus, which allows the exogenous double-strand 

DNA (dsDNA) to access to the dsDNA receptor (ComEA) (Provvedi and Dubnau. 

1999; Chen and Dubnau. 2004). ComGA (comGA) is known as an ATPase localized 
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on the cytoplasmic side of the membrane, while ComGB (comGB) is a polytopic 

membrane protein (Chen and Dubnau. 2004; Chung et al. 1998). S. aureus possesses 

homologous genes to comGA, comGB and comGC (Laurenceau et al. 2013; Cehovin 

et al. 2013). In addition to these three genes, the staphylococcal comG operon contains 

three additional open reading frames (comGD, comGE and comGF) encoding minor 

pilin subunits (Mann et al. 2013). Processing of the pre-pilins to mature pili requires 

the ComC signal peptidase (Chen and Dubnau. 2004; Chen et al. 2006; Fagerlund et al. 

2014). 

   The comE operon consists of three genes, comEA, comEB, and comEC. ComEA 

(comEA) is the dsDNA receptor, which presumably delivers dsDNA to a protein that 

generates single-strand DNA (ssDNA) for internalization (Provvedi and Dubnau. 

1999; Chen and Dubnau. 2004). ComEC (comEC) forms a channel for the internalized 

DNA (Burton and Dubnau. 2010). The role of ComEB (comEB) is still unclear; the 

deficient mutants in B. subtilis show a normal transformation rate. S. aureus and B. 

subtilis possess those there genes, while S. pneumoniae has only the comEA and 

comEC genes (Provvedi and Dubnau. 1999; Peterson et al. 2004).  

   The comF operon consists of the comFA, comFB, and comFC genes in B. subtilis.  

S. aureus and S. pneumoniae possess only comFA, and comFC genes. ComFA 

(comFA) and ComFC (comFC) are thought to form the machinery for the transfer of 

ssDNA into the cytoplasmic membrane. ComFA is located on the inside of the 

cytoplasmic membrane and controls the rate of DNA uptake. (Takeno et al. 2011; 

Fagerlund et al. 2014). ComFB (comFB) assembles with the DNA uptake machinery 

at the cell poles in B. subtilis (Kaufenstein et al. 2011; Fagerlund et al. 2014), but its 

function is still unclear. 

   In addition, other competence related factors are also involved in natural 

transformation. ssDNA binding proteins (Ssb, DprA, RecA, and CoiA) are responsible 

for the protection of DNA from intracellular degradation in S. pneumoniae (Fontaine 

et al. 2015). S. aureus possesses homologous genes encoding Ssb, DrpA, RecA, CoiA.  

 

1-4. RNA polymerase Sigma factor H (SigH) to transcribe the genes for 

competence machineries in S. aureus 
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   RNA polymerase consists of core enzyme subunits (α2ββ’) that engages in all 

transcription, and one of sigma factors that recognize the specific promoter sequences 

(Wösten. 1998). Most bacteria possess multiple kinds of sigma factors. Each sigma 

factor recognizes distinct consensus promoter sequences, allowing bacteria to express 

different sets of genes. The sigma factors are grouped into two families, the σ70 and 

the σ54 families, that share little sequence similarity. The majority of the sigma factors 

belong to σ70 family that is further divided into subfamilies. 

   In S. aureus, four σ70-family sigma factors have been identified. SigA, σA, is 

conserved as the primary sigma factor in all bacteria (Deora et al. 1997). SigB, σB, is a 

homologue of SigB of B. subtilis (Wu et al. 1996; Kullik and Giachino. 1997). SigH, 

the focus of this thesis, was found in 2003 (Morikawa et al. 2003). SigS, σS, is similar 

to the extra-cytoplasmic function (ECF) sigma factors (Shaw et al. 2008; Burda et al. 

2014). 

   Staphylococcal SigH has a unique evolutionary characteristic in that it shares 

exceptionally low sequence similarity between different bacterial species (Morikawa 

et al. 2003; Morikawa et al. 2008). It belongs to a large group also including SigH of B. 

subtilis, and ComX of S. pneumoniae. These related sigma factors are widely 

distributed among Firmicutes, with diverse physiological roles: in B. subtilis, SigH 

(Spo0H) is required for transcription of early sporulation genes (Jaacks et al. 1989; 

Predich et al. 1992) whereas in S. pneumoniae, ComX (SigX) directs the expression of 

late genetic competence genes in response to a peptide quorum-sensing regulatory 

pathway (Lee and Morrison. 1999; Luo et al. 2003; Luo and Morrison. 2003). 

Staphylococcal SigH is responsible for transcription of the comG and comE operons 

(Morikawa et al. 2003).  

 

1-5. SigH expression mechanisms   

Although its artificial overexpression induces expression of the comE and comG 

operons, the sigH gene appears to be cryptic since its expression could not be detected 

under standard laboratory culture conditions (Morikawa et al. 2003). Because true 

bacterial cryptic genes are more akin to pseudogenes, likely to be lost through “use it 

or lose it” evolutionary constraints (Hall et al. 1983; Tamburini and Mastromei. 2000), 
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the conservation within S. aureus strains of SigH and the competence gene 

orthologues it controls suggested that they must be expressed and play a role under 

certain specific growth conditions. 

We had reported two distinct SigH expression mechanisms (Morikawa and 

Takemura et al. 2012) (Figure 3). SigH expresses via the transient duplication of sigH, 

generating a chimeric gene with the downstream gene (Kugelberg et al. 2006). The 

duplication unit as well as the chimeric gene partner can vary among SigH active 

clones. The emergence frequency of SigH expressing cells by this mechanism is less 

than 10-5. Another SigH expression mechanism involves post-transcriptional 

regulation, and independent of the duplication mechanism described above. The 

post-transcriptional regulation involves the 13-base inverted-repeat (IR) sequence 

lying just upstream of the start codon of sigH. This second mechanism requires 

specific growth conditions. SigH-dependent production of GFP reporter is induced 

under aerobic growth in a complete synthetic medium (CS2 medium; Table 1), while 

anaerobic conditions are essential in other synthetic media (CS1 medium, -GS 

medium). Thus, environmental factors seem to be important for the SigH expression.  

 

1-6. DNA transfer into SigH expressing cells   

   Using CS2 medium and the strain over-expressing SigH, our lab developed a 

protocol through which reproducible DNA transfer can be achieved (Morikawa and 

Takemura et al. 2012). The plasmid pT181 was transferred at the frequency of 10-9. 

We also demonstrated the transfer of chromosomal 52 kilo base pair (kbp) SCCmecII 

element. Since the comE and comG operon were essential for this transfer (Less than 

10-10), it was considered to be the natural transformation. Nevertheless, considering 

the long historical arguments in terms of “pseudo-transformation”, and the impact of 

the finding of staphylococcal transformation, there remained a challenge to 

demonstrate that SigH-dependent DNA transfer does not require any phage 

components.   

 

1-7. This thesis  

	 This thesis focuses on the SigH-dependent DNA transfer, and the environmental 

factors modulating it.  
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   Chapter 2 focuses on the transformability of SigH active cells without phage 

factors. Plasmid DNA transformation was possible without any trace of the bacterial 

phage, demonstrating the genuine transformation. Genomic DNA transformation was 

also confirmed without phage factors.  

   Chapter 3 focuses on environmental conditions affecting the SigH-dependent 

natural transformation. The importance of cell wall metabolism was implicated by a 

series of experiments using the SigH-expressing cells.  

   In Chapter 4, I discuss the significance of natural transformation in S. aureus 

evolution, especially focusing on the transformation of large size DNA, and its impact 

on the emergence of multi-drug resistant bacteria.   
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Chapter 2 

 

Sigma Factor H Dependent Natural Competence for DNA Transformation in 

Staphylococcus aureus 

 

 

2-1. Abstract 

In this chapter, the requirement of phage factors for sigma factor H (SigH) 

mediated transformation was investigated. As the result, SigH mediated 

transformation of plasmid DNA did not require the phage factors, indicating that 

Staphylococcus aureus (S. aureus) cells expressing SigH develop the genuine natural 

transformation. Genomic DNA was also transformable without phage factors. Taken 

together with the previous findings, a unique model for staphylococcal competence 

regulation by SigH was proposed, which could help explain the acquisition of 

antibiotic resistance genes through horizontal gene transfer (HGT) in this important 

pathogen. 
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2-2. Introduction  

An alternative sigma factor SigH is responsible for transcription of the comG and 

comE competence operon orthologues in S. aureus (Morikawa et al. 2003) (Chapter 1). 

Transformation protocol was developed using SigH expressing cells and complete 

synthetic medium, CS2, and both plasmid DNA and genome DNA were successfully 

transferred (Morikawa and Takemura et al. 2012). This transfer required comE operon 

and comG operon genes, suggesting that it is through the natural genetic competence. 

However, the strain initially used for the transformation assay carried a lysogenic 

phage. Considering the long arguments in 1970’s regarding the phage dependent 

pseudo-transformation, and the impact to propose the natural transformation in S. 

aureus for the first time, it was necessary to demonstrate that the SigH dependent 

DNA transfer is distinct from the phage dependent transduction or 

pseudo-transformation. To achieve this, this chapter aimed to establish a DNA transfer 

system that does not contain any phage component.  

 

2-3. Material and Methods 

2-3-1. Bacterial strains and culture conditions 

S. aureus strains and oligonucleotides used in this study are listed in Table 2 

and 3. S. aureus was grown in Brain Heart Infusion (BHI) medium, Trypticase Soy 

Broth (TSB), Nutrient Broth (NB) No. 2 (OXOID) supplemented with 3.6 mM CaCl2 

(NBCaCl2), or complete synthetic media, CS2. CS2 synthetic medium was based on 

the HHWm medium (Toledo-Arana et al. 2005) with the following modifications: 30 

mg/l of guanine, 15 mg/l of adenine hemi-sulfate, 8.9 mg/l of CaCl2, 0.08 mg/l of 

CuSO4, 0.17 mg/l of ZnSO4, 0.12 mg/l of CoCl2·6H2O, 0.12 mg/l of Na2MoO4·2H2O 

(See Table 1 for full composition). 

When using synthetic media, cells were collected from overnight cultures by 

brief centrifugation, and washed with the appropriate medium to be inoculated.  

 

2-3-2. Elimination of N315 prophage from strain N315ex 

S. aureus N315 has one prophage in its genome (Kuroda et al. 2001). The 

N315 prophage is integrated at an att site located within the hlb β-hemolysin gene, 
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inactivating the gene and abolishing beta-hemolysis. We used the pMAD system 

(Arnaud et al. 2004) to precisely excise the phage from the N315ex genome. A set of 

primers, up-att and down-att, was designed upstream and downstream of hlb (See 

Table 3 and Figure 4C). The target region encompassed by these primers is 46 kbp 

when phage N315 is present, and 2.4 kbp when the phage is excised. We noted that 

N315 spontaneously excise the prophage from the genome in a minor fraction of the 

cells, and the intact hlb gene can be amplified by polymerase chain reaction (PCR) 

(data not shown). The amplified 2.4 kbp hlb fragment was cloned into the EcoRI - 

BglII site of pMAD-tet (Morikawa and Takemura et al. 2012), generating 

pMAD-tet-att (Figure 4A). The plasmid was then introduced into the strain N315ex 

and the phage-cured N315ex (N315ex w/oφ) strain was selected as previously 

described (Arnaud et al. 2004). In addition, beta-hemolysin activity was also 

monitored. The absence of the SA1765 and SA1792 (ssb) phage genes in the resultant 

N315ex w/oφ was confirmed by PCR (primers 1765F and 1765R for SA1765, and 

1792ssbR and 1792ssbF for ssb) and Southern blot analysis using the 1765F-1765R 

PCR-generated DNA fragment as a probe (Table 3 and Figure 4B and C). 

 

2-3-3. Construction of comG and comE mutants from N315ex w/oφ 

Deletion/replacement mutants of the comG and comE regions from N315ex 

w/oφ strain were constructed by double-crossover homologous recombination as 

described (Morikawa and Takemura et al. 2012). Briefly, plasmids pMADcomEII (for 

comE mutant) or pMADtetcomGII (for comG mutant) were introduced into N315ex 

w/oφ by electroporation, after the passage through the strain RN4220. Mutants 

(tetracycline sensitive, β-galactosidase negative) were selected as described.  

 

2-3-4. DNA extraction  

    The L54a prophage was cured from the COL strain by ultraviolet light treatment 

as described (McNamara PJ. 2008; Morikawa and Takemura et al. 2012). Plasmid 

pT181 DNA was then purified from strain COL without phage (COLw/oφ), using the 

QIAfilter Plasmid Midi kit (QIAGEN). Plasmid pHY300 was also purified from 
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Escherichia coli (E. coli) HST04 dam-/dcm-, using the QIAfilter Plasmid Midi kit 

(QIAGEN). 

    Genomic DNA was extracted by a standard protocol. Cells were collected from 1 

ml of overnight culture and suspended with 50 mM Tris- 50 mM NaCl- 1 mM 

ethylenediaminetetraacetic acid (EDTA). Lysostaphin was added and incubated at 

37°C for 20 minutes. After the addition of 200 µl of 0.25 M EDTA-50 mM Tris and 

240 µl of 10% sodium dodecyl sulfate (SDS), the sample was incubated at 60°C with 

occasional inversion and then centrifuged. The supernatant was collected and DNA 

was harvested by phenol/CHCl3 purification and ethanol precipitation. The DNA 

suspended in 100 µl of 1/10TE buffer was a treated with 0.5 µl of RNase for 20 min at 

37°C. phenol/CHCl3 purification and ethanol precipitation were performed again, the 

sample was suspended with water and kept at -20°C until use.  

 

2-3-5. Southern hybridization analysis 

S. aureus genomic DNA was purified using above procedures. DNA was 

digested with SmaI and separated by electrophoresis on a 1% agarose gel. The 

separated DNA fragments were transferred to a Hybond-N+ membrane (Amersham 

Biosciences). Analysis was carried out using the AlPhos Direct labeling kit and the 

CDP star detection reagent system according to the manufacturer’s instructions 

(Amersham Biosciences). DNA fragments used to prepare the probes were amplified 

by polymerase chain reaction (PCR) with oligonucleotides sets (SA1765F and 

SA1765R, see Table 3). 

 

2-3-6. Natural transformation of S. aureus cells 

    Competent S. aureus recipient cells were prepared by overnight growth in TSB 

containing chloramphenicol (12.5 µg/ml) with shaking at 37˚C. Cells were harvested 

from 500 µl of overnight culture, washed with CS2 medium, resuspended in 10 ml of 

CS2 medium and grown at 37˚C with shaking. After 8 hours, cells were harvested by 

centrifugation, and resuspended in 10 ml of fresh CS2 medium. 10 µg of plasmid 

DNA (pT181 or pHY300 isolated from E. coli HST04 dam-/dcm-) was added to the 

suspension, and incubation was pursued at 37˚C with shaking for 2 hours. Cells were 
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mixed into melted BHI-agar pre-cooled to 55˚C together with 5 µg/ml tetracycline and 

5 µg/ml erythromycin, and incubated at 37˚C for 2 days. Colonies were tested for their 

characteristics to confirm that they were bona fide recipient cell transformants (e.g. 

kanamycin resistance and plasmid species). For transformation with chromosomal 

DNA, 10 µg of N315 genomic DNA was added to the cells. Transformants were 

selected with 100 µg/ml kanamycin. To check the transfer of genes on the SCCmec II, 

kanamycin gene (aadD), mecA, and ccrA were amplified by PCR using the primer 

pairs described in Table 3. To detect the entire SCCmec II, Long PCR analysis was 

performed. Three primer sets that cover whole SCCmec II sequence were used; Xsaw 

325 / mecA-F, ccrA-A-R / 3.0-R, and mecA-R / ccrA-F.  

 

2-3-7. Strain-to-strain plasmid transformation 

Cells were grown overnight in TSB with shaking at 37˚C. One hundred µl of 

donor (COL) and 400 µl of recipient cells (N315 derivative) were mixed and washed 

with CS2 medium. Cells were resuspended in 10 ml of CS2 medium, and grown at 

37˚C for 8~10 hours with shaking. CFU values of N315 derivatives (larger colonies 

than COL derivatives) after co-cultivation were counted on drug-free BHI-agar plate. 

Co-cultivated cells were mixed into melted BHI-agar pre-cooled to 55˚C together with 

5 µg/ml tetracycline and 5 µg/ml erythromycin, and incubated at 37˚C for 2 days. 

Colonies were tested for susceptibility to kanamycin to verify the transformants and 

kanamycin resistant clones were regarded as N315 derivatives. 

 

2-3-8. Pseudo-transformation assays 

Phage particle-dependent pseudo-transformation assays were carried out based 

on the CaCl2 washing method previously described (Pattee and Neveln. 1975) with 

some modifications. In brief, S. aureus cells were grown in TSB medium at 37˚C 

overnight with shaking (180 rpm, BR-23UM: TAITEC). Cells were recovered by 

centrifugation and washed once with 0.1 M Tris-malate (pH 7.0). The cells were 

resuspended in 0.1M Tris-malate (pH 7.0) supplemented with 0.1 M CaCl2. 24 µg of 

purified N315 genomic DNA was added to 1 ml of the cell suspension, and incubated 

at room temperature for 40 min. Cells were recovered by centrifugation and suspended 

in drug-free BHI medium. Following 1 h incubation at 37˚C with shaking, cells were 
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mixed with molten BHI-agar medium pre-cooled to 55˚C and supplemented with 5 

µg/ml erythromycin and poured into plates. After two days incubation at 37 ˚C, 

colonies were counted and checked for the presence of the erm gene by PCR with 

primers ErmA1 and ErmA2. 
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2-4 Results 

 

2-4-1. Eliminating phage sequence  

    The SigH dependent DNA transfer requires both comG and comE operons, 

suggesting that this is not so-called “pseudo-transformation” that depends on phage 

tail components. Since strains COL and N315 have resident prophages (phage L54a 

and phage N315, respectively), it was necessary to eliminate any possible contribution 

of phage-components in the experiments of the SigH dependent DNA transfer. 

Therefore, the prophage was eliminated from N315ex to generate N315ex w/oφ as 

described in Materials and Methods and Figure 4. The phage elimination was 

confirmed by southern blotting (Figure 4B). 

 

2-4-2. The SigH mediated transformation is independent of lysogenic phage 

    Table 4 is the summary of the transformation frequencies (Morikawa and 

Takemura et al. 2012). N315ex w/oφ h (carrying pRIT-sigH, SigH over-expression 

plasmid) was transformable with pHY300 plasmid DNA isolated from an E. coli 

dam-/dcm- strain (see Materials and Methods), while the vector control strain, N315ex 

w/oφ v, gave no detectable transformants. This experimental system does not contain 

any phage particles or phage genes, indicating that SigH-dependent natural 

competence is phage-independent. 

    Genomic DNA transformation (SCCmec typeII, see methods) was also performed 

with strain N315ex w/oφ carrying pRIT-sigH. Selected transformants showed aadD 

positive. The PCR analysis of SCCmec II of the transformants from phage deletion 

strains demonstrated that all those Long PCR fragments were positive (Figure 5A and 

B).  

    It was also demonstrated that unlike natural genetic competence, 

phage-dependent pseudo-transformation does not require the competence machinery. 

In strain RN4220, which has no resident prophages, no transformant was obtained 

using chromosomal DNA (Table 5). In contrast, when RN4220 lysogenized with 

phage 11 was used with the CaCl2 washing procedure, transformants were obtained at 

a very low frequency (between 10-8 ~ 10-9) through phage-mediated 

“pseudo-transformation” (Table 5). In this same strain, when either the comG or comE 
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genes were deleted (strains RKCG and RKCE, respectively; See Materials and 

Methods and Table 3), there was no significant difference in the number of 

transformants obtained  (Table 5). This indicates that the comG and comE operons 

are not required for phage-mediated “pseudo-transformation”, in sharp contrast to their 

essential role in SigH-dependent natural genetic competence as shown in Table 4. 

Taken together, above results have demonstrated for the first time that natural 

genetic competence develops in a SigH-dependent manner in S. aureus, allowing 

transformation by extracellular plasmid or chromosomal DNA as well as HGT 

between different strains. 

 

2-5. Discussion  

Since F. Griffith’s pioneering discovery of DNA-mediated transformation in 

Streptococcus pneumoniae (S. pneumoniae) (Griffith. 1928), natural genetic 

competence in low GC % Gram-positive bacteria has been extensively studied in 

Bacillus subtilis (B. subtilis) and S. pneumoniae and shown to involve the assembly of 

a complex DNA-binding and uptake machinery, made up of a competence pseudopilus 

and a DNA translocase (Chen and Dubnau. 2004; Claverys et al. 2009). During the 

1970’s, although several reports described “pseudo-transformation” of S. aureus, this 

was revealed to be due in fact to contaminating phage tail fragments mediating DNA 

entry and HGT (Birmingham and Pattee. 1981). Despite many subsequent attempts, 

natural genetic competence was never successfully demonstrated in S. aureus even 

though sequence analysis readily reveals that its genome carries a practically full 

repertoire of the required competence gene orthologues, suggesting that specific 

conditions must exist allowing natural transformation by DNA in S. aureus.  

Strong similarities and interesting differences exist between the competence 

pathways of B. subtilis and S. pneumoniae. Indeed, although in both cases the initial 

triggering event involves a peptide quorum-sensing two-component signal 

transduction pathway controlling expression of competence genes encoding the DNA 

uptake machinery, the steps in between are quite different (Dubnau et al. 1994; Chen 

and Dubnau. 2004; Claverys et al. 2006). In Streptococcus species, competence genes 

are regulated by ComX (also known as SigX) (Lee and Morrison. 1999), a secondary 

sigma factor related to staphylococcal SigH (Morikawa et al. 2003) and encoded by 
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duplicated genes (comX1 and comX2) whose expression is directly controlled by the 

ComDE two-component system (Lee and Morrison. 1999). Interestingly, in B. subtilis, 

late competence genes are transcribed by the vegetative form of RNA polymerase 

holoenzyme, EσA, and instead positively controlled by a specific transcription 

activator, ComK (van Sinderen et al. 1994). Other similarities between the two 

bacteria include the fact that many additional factors play a part in the production of 

active ComK or ComX, both of which involve two-component signal transduction 

networks (Dubnau et al. 1994; Msadek. 1999; Claverys et al. 2006) and the 

post-transcriptional control of the levels of these two regulatory proteins by the Clp 

ATP-dependent protease (Msadek et al. 1994; Msadek et al. 1998; Turgay et al. 1998; 

Msadek 1999; Chastanet et al. 2001; Opdyke et al. 2003; Sung and Morrison. 2005; 

Claverys et al. 2006). 

In S. aureus, the situation appears to be more closely related to that of 

S. pneumoniae. Indeed, although a protein bearing some similarities to ComK is 

present (SA0882), Morikawa et al. have previously identified the SigH secondary 

sigma factor, analogous to ComX, and shown that it acts specifically to direct 

transcription of the comE and comG operons that encode orthologues of the DNA 

uptake machinery (Morikawa et al. 2003). 

Whereas in S. pneumoniae all of the cells become competent for a short 

period in time, in B. subtilis only a maximum of 10% of the cell population achieves 

competence (Claverys et al. 2006), a fact that has been attributed to the positive 

autoregulatory feedback loop controlling comK expression, generating a 

heterogeneous bistable response in the cell population (Maamar and Dubnau. 2005; 

Smits et al. 2005; Maamar et al. 2007). However, it is important to recall that natural 

undomesticated strains of B. subtilis are in fact considered to be non-competent 

(Nijland et al. 2010), and that transformation of B. subtilis at levels of 10% could be 

demonstrated only for a few strains isolated following extensive UV and X-ray 

mutagenesis (Burkholder and Giles. 1947; Spizizen. 1958), with the highly 

transformable 168 strain then chosen for most studies (Anagnostopoulos and Spizizen 

1961). B. subtilis strains derived from 168 rapidly became “domesticated” once 

exposed to the accelerated lifestyle imposed in the laboratory, accumulating multiple 
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mutations affecting competence development and biofilm formation (Earl et al. 2007; 

Zeigler et al. 2008; McLoon et al. 2011). 

Thus, the situation for Staphylococcus aureus appears highly reminiscent of 

that of undomesticated B. subtilis, with a cryptic DNA uptake apparatus presumably 

allowing only a very low level of natural transformation in its natural habitat, with the 

possibility that specific conditions may be required for competence development. 

Limiting the number of competent recipient cells in a population would be important 

to sustain genome integrity, minimizing risks and maximizing evolutionary gain by 

allowing only a fraction of the cells to access genetic variability. Among the many 

barriers to uptake of foreign DNA, restriction-modification systems are known to play 

an important role (Waldron and Lindsay. 2006; Veiga and Pinho. 2009; Corvaglia et al. 

2010), and tight control of competence gene expression is also required to limit 

potentially detrimental HGT with other species (Claverys et al. 2006). In this respect it 

is tempting to speculate, given the observed population heterogeneity with respect to 

SigH activity, that natural competence in S. aureus has evolved as a bet hedging 

strategy (Veening et al. 2008), with most of the cells protected against the dangers of 

HGT, while a fraction are able to increase genetic variability through natural genetic 

competence. 

As ComK and SigX (ComX) are the end products of the regulatory cascades 

controlling competence development in B. subtilis and S. pneumoniae, several 

attempts have been made to overproduce these proteins in non-competent bacteria in 

order to obtain genetic transformation. In Streptococcus pyogenes (S. pyogenes), 

which is not known to become competent, SigX has been shown to control expression 

of femB and cinA (Opdyke et al. 2003), as well as competence gene orthologues 

(Woodbury et al. 2006). Likewise, overproduction of SigX in Lactococcus lactis (L. 

lactis) also led to increased expression of competence gene orthologues (Wydau et al. 

2006). The recent discovery among Streptococcus species of a second quorum-sensing 

pathway allowing activation of sigX expression (Fontaine et al. 2010; 

Mashburn-Warren et al. 2010; Okinaga et al. 2010) has led to the suggestion that 

members of the pyogenic streptococci group may in fact be able to develop 

competence under specific conditions (Havarstein, 2010; Mashburn-Warren et al. 

2010). 
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In a similar approach, overproduction of the ComK transcription activator 

from B. subtilis was used to induce competence in otherwise non-competent bacteria. 

This approach was successful both in undomesticated strains of B. subtilis (Nijland et 

al. 2010) as well as in Bacillus cereus, previously considered to be non-competent 

(Mironczuk et al. 2008; Kovacs et al. 2009). Interestingly, B. cereus carries two copies 

of the comK gene, reminiscent of the comX situation in S. pneumoniae, although 

ComK1 and ComK2 appear to play different roles (Mironczuk et al. 2011).  

In S. aureus, sigH has also been reported to direct transcription of phage 

integrase genes to stabilize the lysogenic state (Tao et al. 2010). This study has shown 

that SigH is required for competence development in a minor fraction of the cell 

population. SigH may also protect the subpopulation from phage-induced lytic death, 

allowing survivors to utilize dead cell materials, including DNA, with a higher 

probability of acquiring new genes through HGT. 

The demonstration that natural genetic transformation of S. aureus cells 

occurs in a SigH-dependent manner helps provide an explanation for the notorious 

acquisition of antibiotic resistance genes by this major pathogen. Indeed, even at very 

low natural competence levels, the selective pressures would ensure the survival and 

rapid spread of strains acquiring antibiotic resistance genes, as currently observed for 

methicillin-resistant S. aureus (MRSA) strains (Chambers and Deleo. 2009). 

Importantly, a large chromosomal region conferring methicillin resistance 

(SCCmec type II) could be transferred by transformation. However, it should be noted 

that N315ex cell was used as the recipient, which had lost the SCCmec element, 

resulting in a methicillin-sensitive S. aureus (MSSA) phenotype. The transfer of 

SCCmec into naive MSSA strains needs to be tested, but will require optimization of 

the transformation protocol.  
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Chapter 3  

 

Sodium Polyanethol Sulfonate Modulates Natural Transformation of 

SigH-Expressing Staphylococcus aureus 

 

 

3-1. Abstract 

   Expression of genes required for natural genetic competence in Staphylococcus 

aureus (S. aureus) was controlled by an alternative transcription sigma factor, SigH. 

However, even in the SigH-expressing cells, the DNA transformation efficiency 

varied depending on culture conditions. This chapter shows that cells grown in the 

competence-inducing medium (CS2 medium) exhibits enlarged morphology with 

disintegrated cell walls. Notably, an autolysis inhibitor, Sodium Polyanethol Sulfonate 

(SPS), facilitated transformation in CS2 medium in a dose-dependent manner, 

suggesting the involvement of the cell wall metabolism in transformation. The 

transformation efficiency was not improved by physical or enzymatic damage on the 

cell walls. 
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3-2. Introduction  

   Subpopulations of S. aureus can develop the competence for natural DNA 

transformation under the control of the alternative sigma factor, SigH (See Morikawa 

and Takemura et al. 2012. and Chapter 2). In addition to SigH expression (and 

SigH-dependent expression of the comE and comG operon genes encoding the DNA 

incorporation machinery), environmental factors are thought to be required for natural 

transformation, because the transformation frequency of SigH-expressing cells is 

variable depending on the culture conditions. Cell wall-affecting antibiotics were also 

found to affect the transformation in SigH-expressing cells (Nguyen et al. 2016). 

Bacitracin, which interferes with peptidoglycan synthesis, increased the 

transformation frequency at low concentrations and decreased the frequency at higher 

concentrations. Other cell wall-targeting antibiotics, vancomycin and fosfomycin, 

increased the transformation frequencies. In contrast, an antibiotic interfering protein 

synthesis, streptomycin, and antibiotics targeting DNA gyrase such as ciprofloxacin 

and norfloxacin showed no significant effect. Since bacitracin, vancomycin and 

fosfomycin are cell wall-affecting antibiotics, the cell wall integrity or metabolism 

could be important for transformation.  

   This chapter shows that the autolytic enzyme inhibitor, Sodium Polyanethol 

Sulfonate (SPS), affects the transformation efficiency of SigH-expressing S. aureus, 

supporting the idea that cell wall metabolism is an important factor in the modulation 

of transformation. 

 

3-3. Material and Methods 

3-3-1. Bacterial Strains 

   The S. aureus strains used in this study are listed in Table 6. The strain N315ex 

w/oφ h was used in most experiments. In this strain, the prophage was eliminated to 

exclude the possibility of “pseudo-competence” DNA transfer with the help of phage 

components, which is distinct from real competence (Chapter 2). SigH is expressed by 

a plasmid, pRIT-sigH (Morikawa and Takemura et al. 2012.). 

 

3-3-2. Natural Transformation Assay 
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   Transformation assay was carried out as described in Chapter 2 with some 

modifications. Tryptic soy broth (TSB; Becton Dickinson Company), brain heart 

infusion broth (BHI; Becton Dickinson Company), nutrient broth (NB) (Oxoid) 

supplemented with 70 µM CaCl2 (NBCaCl2), and the complete synthetic medium, 

CS2 (composition is available in Table 1), were tested for the efficiency of 

transformation in N315ex w/oφ h cells. Transformation protocol was the same for all 

the media tested. Glycerol stocks of S. aureus were inoculated in 5 ml of tryptic soy 

broth with 12.5 µg/ ml chloramphenicol (TSBcm) and grown overnight at 37 °C 

with shaking at 180 rpm. Cells were collected by centrifugation and suspended into 

the appropriate medium to be used (1:20 dilution in 10 ml medium), and grown for 8 h. 

Sodium polyanethol sulfonate (SPS) (Sigma) was added prior to the 8-hour growth. 

Medium was replaced with fresh medium, and 10 µg of purified plasmid, pT181 from 

S. aureus COL, or pHY300 from E. coli HST04 dam−/dcm−, was added. Following 

2.5-h incubation at 37 °C with shaking, transformants were selected in BHI-agar 

medium supplemented with 5 µg/ml tetracycline. 

   Transformants were tested for the presence of plasmid and for tetR by colony 

polymerase chain reaction (PCR). In line with our previous experiences, no 

spontaneous tetR mutants were detected throughout the study. Transformation 

frequency was calculated as the ratio of total number of transformants to total colony 

forming unit (cfu) after the 2.5-h incubation with DNA. Cfus were counted on 

TSB-agar (TSA) plates. 

 

3-3-3. Electron Microscopy 

   Overnight cultures of bacteria (N315 h, N315 v, COL h, COL) in TSBcm or TSB 

were inoculated into drug-free TSB or CS2 to a final optical density (OD600) of 0.2. 

After 8 h culture, cells were harvested by centrifugation. After a complete wash in 

ice-cold phosphate buffered saline (PBS), cells were fixed with 2% glutaraldehyde in 

PBS followed by post-fixation with 1% OsO4, dehydrated, embedded, and thin 

sectioned by conventional method described elsewhere (Anderson et al. 2004). The 

specimens were observed using a JEOL JEM-1400 electron microscope. The cell 

surface roughness was evaluated from electron microscopy images by measuring the 
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ratio of the length of the cell surface to the corresponding linear distance (i.e., the ratio 

1.0 means completely smooth, and larger value means rough morphology). 

 

3-3-4. Whole Cell Autolysis Assay 

   Whole cell autolysis assay was performed as described by Mani et al. (Mani et al. 

1993). Cells from the overnight TSBcm culture of N315ex w/oφ h were inoculated 

with 1:20 dilution in 10 ml TSB or CS2 with or without 0.1% SPS. For CS2, cells 

were washed once with fresh CS2 prior to inoculation. After 8 h (in CS2) or 5 h (in 

TSB), cells were harvested by centrifugation. Cells were washed twice with 10 ml of 

ice- cold water and resuspended in 10 ml of 0.05 M Tris–HCl buffer (pH 7.2) 

containing 0.05% (v/v) Triton X-100. Two hundred microliters of the cell suspension 

was distributed into a 96-well plate, and then incubated at 30 ˚C with shaking at 180 

rpm. The changes in OD600 were measured at 30 min intervals using the EnSpire® 

Multimode plate reader (PerkinElmer®). 

 

3-3-5. Zymographic Analysis 

   The supernatant from 8-h culture of N315ex w/oφ h in CS2 or 5-h culture in TSB 

was recovered by centrifugation at 6000×g for 15 min at 4 ˚C, filtered through 

0.22-µm cellulose acetate membrane filter (Advantec®, Toyo Roshi Ltd.), and 

concentrated 10-fold using Ultracel® 10K Centrifugal filter unit (Merck Millipore). 

Sodium dodecyl sulfate (SDS) extracts were prepared as previously described (Sugai 

et al. 1990). Protein concentrations were determined by the Bradford assay (Bio- Rad 

Laboratories). Twenty micrograms of total proteins were analyzed by zymogram as 

described by Qoronfleh and Wilkinson using Micrococcus luteus (Sigma) as a 

substrate (Qoronfleh and Wilkinson. 1986). 

 

3-3-6. Mechanical and Enzymatic Disruption of Cell Walls 

   Fastprep® (MP Biomedicals) was used to physically disrupt bacterial cell walls. A 

TSBcm overnight culture of N315ex w/oφ h was diluted 20-fold with fresh TSBcm 

(total 10 ml) and cultured for 8 h. Cells were harvested, suspended in 0.4 ml TSB, and 

transferred to 2-ml tube containing 0.1- mm silica beads (MP Biomedicals). The tube 
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was shaken in Fastprep® at 4 m/s for 10, 20, and 30 s, once or twice, at 4 ˚C. After 

beating, cells were collected by centrifugation (10,000 rpm, 10 min) and cell-bead 

mixture was resuspended in 1 ml TSB. The cell suspension was transferred to a new 

tube, and 10 µg of purified plasmid pHY300 was added to test the transformation 

frequency. 

   For lysostaphin treatment, cells grown in 5 ml TSBcm were harvested at the 

mid-log phase. Cells were then suspended in 10 ml TSB medium containing 

lysostaphin at different concentrations and incubated for 5 h at 37 °C with shaking. 

After treatment, cells were washed and mixed with purified pHY300 for 

transformation. 
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3-4. Result 

3-4-1. CS2 Medium is Important for the Transformation of SigH-Expressing 

Cells 

   In the transformation protocol reported previously, SigH-expressing cells (N315ex 

w/oφ h) were growth in CS2 medium (Table 1). The medium dependency was 

confirmed here and summarized in Table 7. Transformation was undetectable (less 

than 10−11) in TSB, BHI, and NBCaCl2 (Nutrient broth supplemented with 70 μM 

CaCl2) but it reached 10−9 order in CS2 medium, when pT181 plasmid purified from S. 

aureus. COL was used as the donor DNA. A shuttle vector, pHY300, purified from 

Escherichia coli (E. coli), was also tested and observed the similar dependency on the 

CS2 medium (Table 7). 

 

3-4-2. S. aureus Cells in CS2 Medium Exhibit Disintegrated Cell Walls 

   N315 derivative strains including N315ex w/oφ h tend to generate cell debris in 

CS2 medium, but not in other media, irrespective of the presence of prophage and the 

SigH expressing plasmid. This was not the case in COL and COL h strains, of which 

transformation was undetectable in the same CS2 protocol. The strains N315h (Figure 

6A, B), N315v (Figure 6C), N315 (Figure 7A), and COL (Figure 7B) were observed 

by transmission electron microscopy. N315 overexpressing SigH (N315 h) grown in 

CS2 medium (Figure 6B), but not in TSB (Figure 6A), exhibited irregular morphology 

and enlarged cell size with partly disturbed cell wall. Such morphological features 

were unique in N315 background (Figure 7A), not observed in COL (Figure 7B), and 

are not attributed to the artificial expression of SigH, since cells carrying the vector 

control (N315 v) showed similar changes when grown in CS2 medium (Figure 6C). 

 

3-4-3. Inhibitor of Murein Hydrolases Increases Transformation in CS2 Medium 

   The autolytic rate of the cells grown in CS2 medium was higher than those grown 

in TSB medium (Figure 8A), and zymogram analyses indicated that autolytic enzymes 

in CS2 medium are at a comparable level with TSB medium (Figure 8B). The effect of 

a murein hydrolase inhibitor, SPS (Wecke et al. 1986) was tested. The inhibitory 

effect of SPS on the autolysis of the CS2-grown cells was confirmed as shown in 
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Figure 6A. Zymogram indicated that the autolysin Atl (51 and 62 kDa) and LytM (35 

kDa) were strongly reduced by SPS in the SDS extract, and it was undetectable in 

culture supernatant (Figure 8B). Strikingly, SPS increased transformation frequency in 

a dose- dependent manner in CS2 medium (Figure 8C), but not in TSB medium 

(Figure 8D). The addition of 0.1% SPS in CS2 medium resulted in 10-fold increase in 

the transformation frequency (p < 0.01) (Figure 8C). 

   To exclude the possibility that SPS somehow induced plasmid incorporation 

without competence machinery, SigH-active cells lacking the comE or comG operon 

(N315ex w/oφ ΔcomE h, N315ex w/oφ ΔcomG h) were tested. No transformant 

was detected from these strains. Thus, SPS can affect natural transformation in CS2 

medium. 

 

3-4-4. Physical Damage on Cell Wall Does Not Facilitate Transformation of SigH 

Expressing S. aureus in TSB 

   To address whether the increase in transformation of SigH-expressing cells would 

be simply attributed to the physically disturbed cell wall, the effect of physical 

disruption by silica beads on the transformation of cells grown in TSB was tested. Cfu 

was measured at different time points of bead beating. Beating twice for 10, 20, and 

30 sec (10×2, 20×2, and 30×2) resulted in 30, 45, and 60% reduction in cfu. None of 

the treatments improved the transformation efficiency (Figure 9A). In addition, the 

effect of lysostaphin, an enzyme that cleaves S. aureus cell wall (Kumar. 2008) was 

also tested. Any increment in the transformation frequency by lysostaphin treatment 

up to the concentration that reduced the cfu by half (0.1 µg/ml) was not observed. 

Higher concentrations of lysostaphin resulted in undetectable transformants due to cell 

death (Figure 9B). Thus, external physical damage on the cell wall does not simply 

facilitate the transformation. 
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3-5. Discussion 

   Regulatory mechanisms and signals for the development of natural competence are 

diverse among species (Johnston et al. 2014). In 2012, S. aureus natural 

transformation is dependent on SigH (Chapter 2). The transcription factor ComK was 

also found to enhance the expression of the SigH regulon (Fagerlund et al. 2014). 

However, the regulation of competence development and the following transformation 

are still largely unknown. This chapter aimed to gain insight into the regulation of 

staphylococcal competence, of which frequency is still low in laboratory settings. 

Although the SigH-expressing strain had to be used to evaluate the transformation 

frequency, the distinct transformation efficiencies of SigH-expressing cells in different 

culture media was clarified, and the effect of SPS on the transformation was firstly 

described. 

   Transformation in SigH-expressing cells is facilitated in CS2 medium compared 

with other complex rich media (BHI, TSB, LB). The growth rate decreases and the 

cell size increases in CS2 medium (Figure 10 and 11). SigH in normal cell (N315ex) is 

expressed in up to 10% subpopulation in CS2 (Morikawa and Takemura et al. 2012), 

but the increase of the cell size is observed for almost all N315ex cells. In addition, the 

cell size increase was at comparable level between N315ex, N315ex h, and N315ex 

ΔsigH (Figure 11). Therefore, such a morphological change is not under the control 

of SigH. The addition of 0.1% SPS did not change the cell size in CS2 and TSB 

(Figure 11), suggesting that impaired autolytic activity is not the sole reason for the 

cell size difference. 

   The slow growth during competence, and delayed cell division is also observed in 

Bacillus subtilis, where ComGA and Maf interfere with rRNA synthesis and cell 

division, respectively (Briley et al. 2011; Hahn et al. 2015). It is thought that the arrest 

of growth could permit cells to express competence machinery genes and internalize 

exogenous DNA. It could also permit the repairing of the bacterial genome after the 

recombination during transformation (Briley et al. 2011; Hahn et al. 2015). Whether 

the enlarged cell size is a prerequisite for the staphylococcal transformation is elusive, 

but in general, it is conceivable that optimal growth conditions where cells divide at 

high rate are not suitable for competence development. 
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   SPS affects cell wall turnover due to the inhibition of the cross wall separation 

(Wecke et al. 1986). Although the direct mechanism by which SPS inhibits the release 

of autolytic enzymes is not well understood yet, it was suggested that SPS binds to 

wall teichoic acids and changes the molecular conformation of the cell wall matrix 

resulting in the inhibition of not only the septum but also the peripheral wall autolytic 

enzymes. This binding might cause a considerable shift in the net charge of the cell 

wall since SPS is negatively charged (Wecke et al. 1986). Therefore, this study will 

not conclude that the effect of SPS on the transformation is through the inhibition of 

autolytic enzymes: it might be due to such a drastic change of the physical 

characteristics of the cell walls or other unknown reasons. Nonetheless, taken together 

with our previous report that some cell wall-affecting antibiotics modulate 

transformation of SigH-expressing cells, it is likely that cell wall metabolism plays an 

important role in natural genetic competence in S. aureus. The importance of cell wall 

metabolism in transformation is also recognized in other Gram-positive species 

including B. subtilis, S. pneumoniae, and other streptococci (Bayles. 2007; Ranhand. 

1973). 

   The physical disruption of the cells did not increase the transformation efficiency 

in TSB medium. This suggests that the increase in transformation frequencies of SigH- 

expressing cells cannot simply be attributed to the damages in the cell wall alone. In 

this context, it is valuable to note that the ComC disulfide bond is necessary for the 

maturation of ComG pseudopilin (van der Kooi-Pol et al. 2012). A study in S. 

pneumoniae reported that competence accessories (EndA nuclease and the DNA 

receptor ComEA) are recruited near the septum and the DNA uptake could occur at 

this position (Berge et al. 2013). Thus, the present data are consistent with the idea 

that the DNA uptake would be finely controlled through such multiple processes. 

   In conclusion, this study added new information that SPS can facilitate natural 

transformation in SigH-expressing S. aureus. Together with the previous report that 

cell wall-affecting antibiotics can affect transformation (Thi le et al. 2016), this study 

supports the idea that cell wall metabolism plays an important role in the DNA 

incorporation process by the competence machinery expressed by SigH. 
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Chapter 4  

 

Future directions 

 

Relevance of transformation in S. aureus 

   In bacterial kingdom, horizontal gene transfer (HGT) is the strong driving force for 

species evolution, and ubiquitous strategy to sustain genetic diversity and dynamics. 

Among the three major mechanisms of HGT, natural genetic competence alone is the 

ability of recipient-side cells. The development of natural competence is highly risky 

decision for bacteria, because incoming genetic information, once it is stably acquired, 

is often unnecessary burden or even toxic. Therefore, each bacterial species evolved a 

series of regulation in terms of extracellular DNA incorporation. A series of 

species-specific regulation for the competence gene expression has been described, e.g. 

absolute dependency on the catabolite regulator cyclic AMP receptor protein (CRP) in 

Haemophilus influenzae (H. influenzae) (Redfield et al. 2005), requirement of low 

level CO2 condition in Helicobacter pylori (H. pylori) (Moore et al. 2014), chitin in 

Vibrio cholerae (V. cholerae) (Meibom et al. 2005.), or high cell density 

(quorum-sensing) in some Gram positive bacteria. Furthermore, some bacteria have 

established systems that selectively incorporate the DNA from its own species; H. 

influenzae and Neisseria gonorrhoeae (N. gonorrhoeae) have receptors for the specific 

“DNA uptake sequence”, while H. pylori utilizes extracellular restriction-modification 

system (Seitz and Blokesch. 2013). This study firstly found that S. aureus natural 

competence is regulated by the cryptic sigma factor that expresses in minor cell 

population, thereby protecting majority of cells from the risky trial to incorporate 

extracellular DNA. It is likely that S. aureus might have evolved to utilize natural 

competence as a kind of hedge-betting strategy, rather than nutrient acquisition, or 

DNA repair mechanism, which must be clarified in future studies.   

 

Role of transformation in transfer of large DNA segments.  

   The bacteriophages in staphylococci can transduce up to 45 kbp DNA, suggesting 

that most types of mobile genetic elements could be transduced by bacteriophages. In 

other bacteria such as Bacillus and Pseudomonas, large phages with DNA contents of 
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over 200 kbp called as ‘‘jumbo bacteriophages’’ have been reported (Drulis-Kawa et 

al. 2014). Similarly, environmental giant phage that can accommodate up to ca. 270 

kbp DNA was fond to transduce DNA to S. aureus (Uchiyama et al. 2014). 

   In spite of these evidences, transduction of SCC (size ranges from a few kbp to 60 

kbp) has long been difficult and only a few reports describes type IV and I SCC 

transduction (Ito et al. 2001; Scharn. 2013). Moreover, there are evidences of 

horizontal transfer of much larger DNA segments that cannot be accommodated even 

in giant phages: In certain lineage termed ST239 (distinguished based on multilocus 

sequence typing (MLST; Enright et al. 2000)), the genome possesses 240 ~ 550 kbp 

DNA insertion which is considered to be of evolutionary distinct lineage ST30 

(Robinson and Enright. 2004). In this context, the natural transformation found in this 

study is the potential pathway for these large DNA to be transferred (Figure 12). 

However, the transformation frequency described is extremely low. Further efforts is 

necessary to explore for unknown conditions for efficient natural transformation, and 

to test if it is responsible for large DNA transfer including each type of SCC.  

 

The contribution of this study to the world wide problem in the antibiotic 

resistance 

	 	 As World Health Organization (WHO) has pointed out, the emergence of 

antibiotics-resistant bacteria is a global assignment. Even though human race has 

developed antibiotics, antibiotics-resistant bacteria have emerged one after another, 

telling us how difficult to control the emergence of resistant bacteria. 

Penicillin-resistant Staphylococcus was reported three years before the introduction of 

penicillin into the market. Two years after methicillin developed in 1960, 

methicillin-resistance Staphylococcus was reported. While some resistances are due to 

gene mutation (such as resistance against rifampicin and quinolones), many 

resistances are due to HGT of resistance genes on mobile genetic elements (such as 

against β-lactam, chloramphenicol, tetracycline, glycopeptide).  

	 	 The incidence of the antimicrobial resistance is increasing year by year. In the 

case of Staphylococcus spp., a significant increase in the isolation of nosocomial 

Methicillin resistant Staphylococcus aureus (MRSA) strains has been observed; the 
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percentage increased from 2.4% in 1973 to 35% in 1996 in the United States and from 

1.7% in 1990 to 8.4% in 1995 in Germany (Martins et al. 2007; Witte. 1999). The 

incidence of methicillin-resistant Staphylococcus epidermidis (S. epidermidis) in 

Finland also increased from 28% in 1983 to 77% in 1994. According to WHO, 

mortality of patients infected with MRSA is estimated to be 64% higher than that of 

patients infected with non-resistant S. aureus, and around ten thousand people die due 

to MRSA infections in one year. In 2007, it was found that, in certain US regions, the 

death rate due to MRSA was higher than the death rates due to AIDS (Klevens et al. 

2007). Furthermore, recent MRSA isolates are resistant to many antibiotics besides 

β-lactam antibiotics (Hiramatsu et al. 1998). Such multi-drug resistance bacteria called 

as “superbugs” are now spreading, being the fear of returning to the “pre-antibiotics” 

era. In addition to the antimicrobial resistance (AMR) action plans from WHO (World 

Health Organization, 2015), and each region/ country (United States, 2015; Japan, 

2016), research on the evolutionary ability of pathogens might give us new ways to 

cope with the AMR issue. Through the present study, the HGT by the natural 

competence was understood as the tightly regulated process, and indeed, 

environmental factors were found to regulate the HGT efficiency. Further study is 

necessary to get the hint for us to live well together with this evolutionary successful 

opportunistic human pathogen. 
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Figures	and	Tables	



Horizontal	gene	transfer	in	S.	aureus.		
Natural	 transformation	 is	 through	 the	 DNA	 uptake	 machinery	 (termed	
competence	machinery)	expressed	at	 the	 cell	 surface.	Conjugation	 is	 cell-to-
cell	 DNA	 transfer	 mediated	 by	 conjugative	 apparatus.	 Transduction	 is	
mediated	 by	 phages.	 In	 addition,	 distinct	 phage-dependent	 gene	 transfer	
systems	are	also	known	(pseudo-competence	etc.).		

Natural		
transformation		

DNA	uptake		
machinery	

DNA	

Conjugative		
plasmid	

Conjugation		

Pseudo-competence	

Phage	

Transduction		

Figure	1.	
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Figure	2.	
The	orthologous	of	competence	related	genes.		
The	 top	 table	 shows	 the	 presence	 or	 absence	 in	 S.	 aureus	 of	 	 competence	
related	 orthologous	 genes	 of	B.	 subtilis	or	 S.	 pneumoniae.	 Percent	 identities	
were	calculated	by	the	Lasergene	software	package	after	pairwise	alignment.		
The	figure	shows	the	similar	gene	organization	of	the	comG,	comE,	and	comF	
operons	in	B.	subtilis,	S.	aureus,	and	S.	pneumoniae.		

B.	subtilis		

B.	subtilis		

S.	pneumoniae		

S.	pneumoniae		

S.	aureus	

S.	aureus	

S.	aureus	

B.	subtilis		

S.	pneumoniae		

B. subtilis S. pneumonia S. aureus

% aa identity
(S. aureus vs
B. subtilis)

Prepilin peptidase comC SP1808 SA1486 27.4

DNA receptor, transprot comGA SP2053(cglA) SA1374 36.7
(see text for details) comGB SP2052(cglB) SA1373 21

comGC SP2051(cglC) SA1372 41.4
comGD SP2050(cglD) SA1371 27.8
comGE SP2049(cglE) SA1370 18.5
comGF SP2048(cglF?) SA1369 21.3
comGG SP2047(cglG?) ×
comEA SP0954(celA) SA1418 37.8
comEB × SA1417 67.5
comEC SP0955(celB) SA1416 31

comFA SP2208(cflA) SA0705 39.6
comFB × ×
comFC SP2207(cflB) SA0706 29.9

Single-strand DNA binding protein ssb SP1540 SA1792 63.6

DNA processing smf SP1266(dprA) SA1092 38.4

Competence protein yjbF SP0978(coiA) SA0858 23.2

Competence damage inducible protein cinA cinA(SP1941) cinA 43.8

Recombination recA recA(SP1940) recA 74

Mismach repair mutS mutS mutS1137 54.8

Nuclease nucA SA1964(endA) ?
Alanine recemase dal SP1698 alr 40

UDP-N-acetylglucosamine 1-carboxyviny transferase murA SP1081 murA(1902) 67.9
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Figure	3.	
Competence	development	in	S.	aureus	involves	two	distinct	mechanisms.		
(right)	 A	 rare	 SJ-duplication	mechanism	generates	 a	 chimeric	 sigH	 gene,	 and	
SigH	 is	 produced	 as	 a	 fusion	 protein.	 The	 duplication	 is	 cured	 at	 a	 high	
frequency.	(left)	Under	the	specific	culture	conditions,	SigH	was	expressed	at	a	
frequency	of	ca.	10-2	through	a	post-transcriptional	regulatory	mechanism.	The	
inverted	 repeat	 sequence	upstream	of	 the	 translation	 initiation	site	prevents	
SigH	 expression,	 likely	 forming	 a	 secondary	 structure	 trapping	 the	 ribosome	
binding	 site,	 and/or	 serving	 as	 a	 post-transcriptional	 regulatory	 target,	
restricting	SigH	expression	to	a	minor	fraction	of	the	cell	population.		
(bottom)	 In	 either	 case,	 SigH	 active	 cells	 express	 genes	 for	DNA-binding	 and	
uptake	machinery.		
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stock conc. final conc. 1000 ml

Sterile MilliQ water 710 ml

Solution A 100 ml

  Na2HPO4 71.4 g/L 7.1 g/L

  KH2PO4 30 g/L 3 g/L

  (NH4)2SO4 20 g/L 2 g/L

Solution B-1 10 ml

  MgSO4･7H2O 5 g/L 50 mg/L

  MnSO4･5H2O 0.54 g/L 5.4 mg/L

Solution B-2 10 ml

  FeSO4･7H2O 0.28 g/L 2.8 mg/L

Solution C 25 ml

  Glucose 40 %(w/v) 1 %

Solution D 10 ml

  Biotin 10 mg/L 0.1 mg/L

  Nicotinic acid 200 mg/L 2 mg/L

  D-Panthothenic acid 200 mg/L 2 mg/L

  Pyridoxyne hydrochloride 400 mg/L 4 mg/L

  Riboflavin 200 mg/L 2 mg/L

  Thiamine hydrochloride 200 mg/L 2 mg/L

Adenine Solution 50 ml

  Adenine･1/2H2SO4 300 mg/L 15 mg/L

Guanine Solution * 50 ml

  Guanine 592 mg/L 30 mg/L

Trace element solution 10 ml

  CaCl2 109.9 mg/L **

  ZnSO4 17 mg/L 0.17 mg/L

  CuSO4 8 mg/L 0.08 mg/L

  CoCl2･6H2O 12 mg/L 0.12 mg/L

  Na2MoO4･2H2O 12 mg/L 0.12 mg/L

Amino Acids Solution  *** 20 ml

Glutamine Solution 10 ml

  L-Glutamine 29.2 g/L 0.29 g/L

Solution Ca 0.14 ml

  CaCl2 55.5 g/L **

* in 0.05N NaOH
** total 8.9 mg/L
*** RPMI1640 amino acids solution (50X) (Sigma, R7131)



Composition	of	CS2	medium.		
CS2	was	based	on	the	HHWm	medium	with	the	modifications	showing	
as	red	letters.	Each	stock	solution	was	mixed	(see	the	right	column	
about	the	amount	of	each	solution)	for	making	CS2	medium.					

Table	1.	
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Figure 4.

Phage sequence was eliminated from N315ex genome.
(A) Map of plasmid pMAD-tet-att for construction of N315ex w/oφ. The
upstream region A and down stream region B encompassing the intact hld
sequence was inserted into BglII and EcoRI site of pMAD-tet. (B) Southern
blot analysis with SA1765 probe for the phage region. The genome was
digested with SalI and EcoRI. SA1765 signal was undetectable in N315ex
w/oφ sample, meaning that the region was eliminated. (C) Phage locus in
N315ex genome. hlb sequence is interpreted by phage N315. Red:
Interpreted hlb. Green: SA1765. Black: phage genome.
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ccrA-attL 24364 bp

mecA-ccrA 19966 bp

attR-mecA 12983 bp

N
3

1
5

ex
 h

N
3

1
5

e
x 

w
/o
φ

h

N
3

1
5N315ex w/oφ h

Transformants

A

attRattL

SCCmec type II

24364 bp

19966 bp

12983 bp

52kbp

Xsau325mecA-F

mecA-RccrA-F

ccrA-R3.0-R

B

SigH mediated genome transformation was independent from the lysogenic
phage.
(A) Map of SCCmec type II. The primers are shown by allows. (B) Long-PCR
analysis of transformants in phage eliminated strain. Genome transformation
assay with phage-less strains was performed. Donor DNA: N315 genome that
contain SCCmec type II. The isolated transformants by kanamycin selection
were checked. N315 genome was used for positive control. Three fragments,
attR-mecA, mecA-ccrA, and ccrA-attL were detected.

Figure 5.



Strains used in chapter 2.

Strains Description Source

COL MRSA, carrying tetracycline resistance plasmid pT181 McNamara PJ et al, 
2008

COL w/oφ COL strain cured of the L54a prophage This study

N315 pre-MRSA, KmR, ErmR Dyke KG et al, 1966

N315h N315 carrying pRIT-sigH Morikawa K et al, 2003

N315ex SCCmec cured derivative of N315, KmS Kuwahara-Arai K et al, 
1996

N315ex-h N315ex pRIT-sigH Morikawa K, Takemura
AJ et al, 2012

N315ex w/oφ N315ex cured of N315 phage, KmS This study

N315ex w/oφ h N315ex w/oφ carrying pRIT-sigH This study

N315ex w/oφ v N315ex w/oφ carrying pRIT5H This study

N315ex w/oφ ΔcomE N315ex w/oφ ∆comE mutant This study

N315ex w/oφ ΔcomEh N315ex w/oφ ΔcomE pRIT-sigH This study

N315ex w/oφ ΔcomG N315ex w/oφ ΔcomG mutant This study

N315ex w/oφ ΔcomGh N315ex w/oφ ΔcomG pRIT-sigH This study

RN4220 derivative of 8325-4, restriction minus, modification 
plus

Sjostrom JE et al, 1973

RKCG RN4220 ∆comG mutant, CmR This study

RKCE RN4220 ∆comE mutant, CmR This study

E. coli HST04 dam-/dcm-

pHY300
E. coli strain lacking the genetic factors dam and dcm
that are necessary for DNA methylation, carrying 
pHY300PLK (AmpR, TetR)

Morikawa K, Takemura
AJ et al, 2012
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Table 2.



Name Nucleotide sequence (5’-3’)

3.0-R CTCAGACAGCAATTTCCCG

ccrA-F ACGTCAAAGTACGATGAAACAAC

ccrA-R CTGACTTGTTCTCCAATGTTATCTG

ErmA1 CACGAATATCAGTAAACAAGACAAC

ErmA2 TGCTTCAAAGCCTGTCGGAATTGGT

lena007 GGACCAATAATAATGACTAGAGAAG

lena008 CTGAAGGAAGATCTGATTGCTTAAC

mecAF GTAGTTGTCGGGTTTGGT

mecAR GGTATCATCTTGTACCCA

Xsaw 325 GGATCAAACGGCCTGCACA

phage F GGAATGTACACCCCAAAAGCTAGACTGAAA

phage R TTGCTATCATTATCGAATCCACAACCGC

1765F CCTTGGTTGTATGTCGAAAGAGGGTTTGAA

1765R TTTCGTGCCAGCACCAACCCAACCTTTT

up att CGAATTCGGAACTTGATAGTTTCTTTTAGC

down att CTAGATCTATTGGTCTGGTGAAAACCATGT

Chapter 2

Oligonucleotides used in chapter 2.

Table 3.



N315h
N315∆comE

h
N315∆comG

h
N315

N315ex 
w/oφ

h

N315ex 
w/oφ

v

Plasmid DNA
(10 µg pT181)

4.0 x 10-9

± 3.0 x 10-9

(n = 11)

ND
(n = 1)

ND
(n = 3)

ND
(n = 3)

ND
(n = 3)

Plasmid DNA
(10 µg 

pHY300)

2 x 10-6

± 6.3 x 10-7

(n = 3)

ND
(n = 2)

Chapter 2

Table 4.

SigH mediated transformation does not require phage components. 
Transformation frequencies: the number of transformants / cfu of recipient 
strain; mean ± SD.  ND: none detected (< 2 x10-10). Purified plasmid pT181 
and pHY300 were used as donor DNA.

Recipient 
Strains

Donor
DNA
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Table 5.

Phage-dependent “pseudo-transformation” is distinct from the genuine natural
genetic competence.
Lysogenic φ11 in strain RN4220 could mediate “pseudo-transformation” in line with
previous studies. N315 genome (carrying 5 copies of erm genes) was used as donor
DNA. In contrast to natural competence, the comG or comE operon genes were
found to be dispensable; lysogenic strains of RKCG and RKCE gave the same number
of Erythromycin resistant colonies. φ11: lysogenized with phage 11. ND: none
detected (<1.5×10-10). For the details, refer to the classical phage-dependent
pseudo-transformation method (Pattee et al. 1975; Morikawa and Takemura et al.
2012).

Frequency

RN4220 ND (n = 3)

RN4220 φ11 3.9×10-9 ± 4.0×10-9  (n = 3)

RKCG φ11 3.3×10-9 ± 3.0×10-9  (n = 2), ND (n = 1)

RKCE φ11 3.7×10-9 ± 1.1×10-9  (n = 3)
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A	

B	

C	
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Figure	6.	

Transmission	 electron	 microscopy	 of	 cells	 grown	 in	 CS2	 medium	 and	 TSB	
medium.		
N315	 overexpressing	 SigH	 (N315	 h)	 grown	 in	 TSB	 (A)	 and	 CS2	 (B);	 (C)	 N315	
carrying	 the	 control	 vector	 (N315	 v)	 grown	 in	 CS2.	 Scale	 bar	 =	 1	µm.	 The	 cell	
surface	roughness	(mean	ratio	±	SD,	see	Material	and	Method)	in	N315	h	in	TSB	
was	1.1±0.03,	while	those	were	1.25±0.07	for	N315	h	in	CS2	(p	<	0.01),	and	1.21	±	
0.04	for	N315	v	in	CS2.		
	



Transmission	electron	microscopic	images.	
Transmission	electron	microscopic	images	of	N315	(A),	and	COL	(B).	
Cells	were	cultured	for	8	hours	in	CS2	medium.	Scale	bar	=	0.5	µm	
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Figure	7.	



0	

20	

40	

60	

80	

100	

0	 0.5	 1	 1.5	 2	 2.5	 3	 3.5	 4	 4.5	

%
	In
iti
al
	O
D 6

00
	

Time	(h)	

Control	(TSB)	
+SPS	0.1%	(TSB)	
Control	(CS2)	
+	SPS	0.1%	(CS2)	

A	

kDa	
30	

40	
50	
60	
80	
100	
150	

0.1	%	
SPS	

Culture	sup.		 SDS	extract	

CS2	
-	 +	

TSB	
-	 +	 -	 +	

CS2	
-	 +	
TSB	

B	

-7	

-8	

-9	

C	

**	 *	

0	 0.05	 0.1	 0.5	 1	

Lo
g	
(c
fu
)	

Lo
g	
(T
ra
ns
fo
rm

at
io
n	
fr
eq

ue
nc
y)
	

SPS	conc.	(%)		

12	

10	

9	

11	

ND	(	<	2	x	10-11)	

-10	

-8	

-9	

-11	

D	
12	

10	

9	

11	

0	 0.05	 0.1	 0.5	 1	

Lo
g	
(c
fu
)	

Lo
g	
(T
ra
ns
fo
rm

at
io
n	
fr
eq

ue
nc
y)
	

SPS	conc.	(%)	

138	
115	

62	
51	

35	

(kDa)	

Chapter	3	

Figure	8.	

Effects	of	autolytic	activity	on	S.	aureus	transformation.		
(A)	Whole	cell	autolysis	of	 cells	grown	 in	CS2	and	TSB	with	 (+)	or	without	 (−)	0.1%	
SPS.	 Data	 represent	 the	 averages	 of	 two	 independent	 experiments.	 (B)	 Zymogram	
analysis	of	murein	hydrolases	in	the	culture	supernatant	and	SDS	extract.	Cells	were	
grown	in	CS2	or	TSB	with	or	without	0.1%	SPS.	138	kDa:	uncleaved	autolysin	Atl;	115	
kDa:	 intermediately	 processed	 Atl;	 51	 kDa:	 completely	 processed	 endo-β-N-
acetylglucosaminidase;	 62	 kDa:	 completely	 processed	 N-acetylmuramoyl-l-alanine	
amidase;	35	kDa:	LytM	(Dubrac	S	et	al.	2007).	(C)	Effects	of	SPS	on	transformation	in	
CS2	medium.	Mean	and	SD	values	are	shown	(**p<0.01;	*p<0.05;	n=4).	(D)	SPS	has	
no	positive	effect	on	transformation	in	TSB	medium	(n=3).	ND:	none	detected.	Bars:	
Log10	(transformation	frequency);	dotted	lines:	Log10	(cfu).	
	



Transformation	frequencies	in	bead	beating	or	lysostaphin	treated	cells.		
(A)	Cells	were	treated	by	Fastprep	device	for	the	indicated	periods	(0	sec,	10	sec,	
20	 sec,	 30	 sec	 and	 time	 double	 10x2	 sec,	 20x2	 sec,	 30x2	 sec)	 prior	 to	
transformation.	 (B)	 Cells	 were	 incubated	 with	 lysostaphin.	 The	 values	
correspond	 to	 mean	 and	 SD	 obtained	 from	 three	 independent	 experiments.	
Bars:	Log10	(Transformation	frequency);	dotted	lines:	Log10	(cfu).		
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Figure	9.	



Growth	curves	of	N315ex	in	different	media.		
Cells	were	grown	in	different	culture	media	on	a	96-well	plate	
and	OD600	was	measured	with	plate	reader.			
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Figure	10.	
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Microscopy	analysis.		
Phase-contrast	microscopic	images	of	N315ex	derivative	strains	cultured	8	hours	in	CS2	
medium	 (A-D)	 or	 TSB	 (E-F)	 with	 (D,	 F)	 or	 without	 (A-C,	 E)	 0.1%	 SPS.	 No	morphology	
difference	could	be	observed	between	N315ex-GFP	(A),	N315ex	h-GFP	(B)	and	N315ex	
ΔsigH-GFP	(C)	grown	in	CS2.	N315ex	cells	grown	in	CS2	supplemented	with	0.1%	SPS	(D)	
show	cell	aggregation	but	were	not	changed	in	cell	size	compared	to	N315ex	in	normal	
CS2	(A).	No	difference	could	be	observed	when	N315ex	was	cultured	in	TSB	with	0.1%	
SPS	(F)	compared	to	TSB	alone	(E).	Scale	bar	=	5	µm	
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Figure	11.	
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Bacterial strains and plasmids used in chapter 3.

Table 6.

Strains Description Source

COL MRSA, carrying pT181 Dyke KG et al, 1966

COLh COL carrying pRIT-sigH Morikawa K, Takemura
AJ et al, 2012

N315 pre-MRSA Kuwahara-Arai K et al, 
1996

N315h N315 carrying pRIT-sigH Morikawa K et al, 2003

N315v N315 carrying pRIT5H Morikawa K et al, 2003

N315ex SCCmec cured derivative of N315 Ito, T et al, 1999

N315ex-GFP N315ex carrying pMK3-com-gfp Morikawa K, Takemura
AJ et al, 2012

N315ex h-GFP N315ex carrying pRIT-sigH and pMK3-com-gfp Morikawa K, Takemura
AJ et al, 2012

N315ex ΔsigH-GFP sigH mutant of N315ex carrying pMK3-com-gfp This study

N315ex w/oφ N315ex cured of the N315 prophage Morikawa K, Takemura
AJ et al, 2012

N315ex w/oφ h N315ex w/oφ carrying pRIT-sigH Morikawa K, Takemura
AJ et al, 2012

N315ex w/oφ
ΔcomG h

N315ex w/oφ ΔcomG pRIT-sigH Morikawa K, Takemura
AJ et al, 2012

N315ex w/oφ
ΔcomE h

N315ex w/oφ ΔcomE pRIT-sigH Morikawa K, Takemura
AJ et al, 2012

E. coli HST04 dam-

/dcm- pHY300
E. coli strain lacking the genetic factors dam and dcm that are 
necessary for DNA methylation, carrying pHY300PLK

Morikawa K, Takemura
AJ et al, 2012

Plasmids

pHY300PLK Shuttle vector, ori-pAMa1, AmpR (E.coli), TetR (S. aureus) Takara, Japan

pT181 tetK tetracycline resistance plasmid from COL Dyke KG et al, 1966

pMADtetsigH Vector for deletion of sigH, AmpR (E.coli), ErmR, TetR (S. 
aureus)

This study
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Table 7.

Transformation frequencies of N315ex w/oφ carrying SigH expression plasmid
in different media.
Transformation frequencies were checked under the various mediums, TSB, BHI,
NBCaCl2, and CS2. Purified plasmid pT181 and pHY300 were used as donor DNA.
Frequencies: the number of transformants / cfu of recipient strain; mean ± SD.
ND: none detected (c.a. <10−11). This indicate that environmental conditions are
important for SigH derived transformation.

TSB BHI NBCaCl2 CS2

Plasmid DNA
pT181

ND
(n = 2)

ND 
(n = 2)

ND 
(n = 2)

4.0

±3.0×10−9

(n = 11)

Plasmid DNA
pHY300

5.0
±4.7×10−11

(n = 2)

ND
(n = 2)

5.0

±6.0×10−11

(n = 2)

3.0

±1.4×10−11

(n = 2)

1.6

±1.4×10−9

(n = 8)

Medium

Donor 
DNA
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Summary	of	S.	aureus	HGT	systems	
This	work	reveals	that	S.	aureus	can	develop	the	natural	transformation	with	
the	 ability	 to	 uptake	 various	 sizes	 of	 DNA.	 Transduction	 by	 typical	
staphylococcal	phage	is	though	to	transfer	DNA	under	45	kbp,	since	the	DNA	
has	to	be	packed	into	the	phage	head.	Size	of	SaPIs	that	requires	helper	phage	
is	 around	 16	 kbp	 (see	 Novick	 et	 al.	 2010).	 Conjugation	 allow	 to	 transfer	
SCCmec	type	II,	however,	not	whole	size	was	transferred	(see	Ray	et	al.	2016).	
In	contrast,	the	natural	transformation	was	able	to	transfer	whole	size	of	52	
kbp	SCCmec	type	II.		

Natural	gene	
transformation		

Pseudo-competence	

SaPIs	by	helper	phage	

<45	kbp	size	DNA	

Conjugation		

Genes	on	the	plasmid	

Transduction		

Wide	range	size	of	
DNA	(even	50	>kbp)	

Figure	12.	

SCCmec	II	(52	kbp)	
in	vitro	

SCCmec	II	(30.8	kbp)		
in	vitro		

SCCmec	I	
SCCmec	IV				
in	vitro	

Chapter	4	
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Figure	13.	
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Summary	of	the	natural	transformation	in	S.	aureus.		
S.	 aureus	 can	 develop	 the	 natural	 transformation	 by	 expressing	 the	 sigma	
factor,	 SigH,	 via	 two	 mechanisms;	 SJ	 duplication	 and	 post-transcriptional	
regulation.	The	transformation	occur	with	genomic	DNA	and	plasmid,	without	
any	phage	factors	(Chapter	2).		
The	 fact	 that	 transformation	 is	dependent	on	CS2	medium	strongly	suggests	
the	 involvement	 of	 inducing	 signals.	 SPS	 and	 antibiotics	 targeting	 cell	 wall	
synthesis	 affect	 the	 transformation	 frequency,	 suggesting	 the	 possible	
involvement	of	the	cell	wall	metabolism	(Chapter	3).	Simple	external	physical	
damage	does	not	facilitate	the	transformation.		
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