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This dissertation discusses cognitive ranking methods and their machine learning
algorithms from a Bayesian perspective. Ranking methods play a fundamentally
important role in a variety of modern information retrieval systems and can of-
tentimes be powered by machine learning algorithms. Machine learning is a data-
driven method that addresses the question of how to build computer programs that
improve their performance at some task through experience and has become cen-
tral to many areas of interest in computer science, engineering, social sciences and
other human endeavors involving information processing domains. The ranking
methods discussed in this dissertation are cognitive, in the sense that knowledge
representation regarding domain-specific ranking rationales is highly emphasized
and mathematically formulated. Knowledge representation enriches the application
of machine learning in the construction of agent-based ranking models for informa-
tion retrieval systems. As a methodology of statistical inference, Bayesian approach
has its own theoretical and practical advantages, especially when domain-specific
knowledge is available and needs to be incorporated into a learning process.

Chapter 1 first explains the reasons why this dissertation prefers a ranking method
that is Bayesian, cognitive and machine-learning driven. Then, Chapter 1 introduces
the problems of our interest regarding consumer data analysis and molecular bioin-
formatics.

Chapter 2 analyzes a real-world dataset containing millions of smartphone users’
behavior records. Two ranking methods are proposed to rank smartphone apps ac-
cording to their quality assessment from a user’s perspective, one for extracting su-
perior apps and the other for arranging the extracted apps into a linear order by
learning users’ preferences from users’ behavioral information. The former model
is constructed by introducing a cognitive process of pointwise comparison, while
the latter is a pairwise-comparison-based method that can refine the ranking results
of the former. In both methods, we transform context-dependent information and
domain-specific knowledge regarding ranking rationales into representational struc-
tures and construct computational procedures that operate on those structures. The
resulting knowledge representation plays an important role in the construction of
app quality assessment measures that can be used to mine useful knowledge from
users’ behavioral information. The computational procedures are simple and suit-
able for big data processing.

Chapter 3 presents a method for discovering the knowledge of item rank from
consumer reviews. The basic idea of the method is to construct a cognitive ranking
model and then to build it in the framework of computational learning theory in
order to estimate its parameters. This idea formulates the questions of interest as a
single biconvex optimization problem which has a relationship with SVM(Support
Vector Machines). To facilitate the process of knowledge discovery, we develop a
two-stage learning algorithm. In the first stage, we extract as much information as
possible from the observed data, while in the second stage, the extracted informa-
tion is further summarized into knowledge. Particularly, the learning algorithm is
essential Bayesian, combined with Frequentist learning theory. The Frequentist ap-
proach is adopted to deal with the difficulty that the likelihood function cannot be
explicitly formulated, while the Bayesian approach is used to incorporate scientific
hypotheses into the ranking model.

Chapter 4 details a Bayesian framework for the problem of detecting consecutive
positives in pooling experiments. More concretely, a Bayesian machine learning al-
gorithm is proposed to decode the multi-leveled pooling results given by random
designs. The choice of important parameters is also discussed within the frame-
work. It shows some happy coincidences between theoretical computation results
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and previously known simulation results. Numerical simulation results show that
the Bayesian framework is promising to deal with the uncertainty in real settings
and that the prior information is helpful to reduce the number of pools needed to
detect the positives. One final point to make here is that the framework can be used
as a component of an expert system for pooling experiments, so as to making the
screening procedure automatic and interactive.
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Chapter 1

Introduction

1.1 Background

Ranking items is a fundamental task in a variety of applications where information
of priority relationship between a set of items is required for comparison purposes.
For example, in politics, rankings focus on the comparison of economic, social, en-
vironmental and governance performance of countries [126]; in sports, individuals
or teams are ranked for comparison of relative chance to win a game [23]; in docu-
ment retrieval systems, documents are ranked in agreement with user preferences
and processed queries [16]. In addition, ranking is also pivotal for many other in-
dustrial and commercial systems, such as question answering in Q&A systems [143],
multimedia retrieval in multimedia search systems [188], text summarization in nat-
ural language understanding systems [119], online advertising in modern marketing
systems [186] and product recommendation in e-Commerce systems [108].

Because of its central role, great attention has been paid to the research and de-
velopment of ranking technologies and a variety of ranking models are developed
to express application-specific ranking rationales and produce rankings of items in
an efficient and effective way. In general, a ranking model of a ranking process gives
a mathematical description of the operating behavior of a ranker, as well as its qual-
itative and quantitative operating conditions, by specifying the principal quantities
of the process, namely: input, system parameters and output. The analysis of a
given process via the corresponding mathematical model may be divided into three
distinct types of problems [17]:

• Direct problem: Given the input and the system parameters, find out the out-
put of the model.

• Reconstruction problem: Given the system parameters and the output, find
out which input has led to this output.

• Identification problem: Given the input and the output, determine the sys-
tem parameters which are in agreement with the relation between input and
output.

Reconstruction problem and identification problem are called inverse problems, be-
cause they consist of finding out unknown factors of known consequences.

Machine learning is a useful tool for studying those problems, and successful
algorithms have been invented that are effective for certain types of inverse prob-
lems. Then, what is machine learning? Machine learning is a data-driven method
that addresses the question of how to build computer programs that improve their
performance at some task through experience and has been central to many areas of
interest in computer science, engineering, social sciences and other human endeav-
ors involving information processing domains. An overview of machine learning
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disciplines can be found in the standard textbooks [15, 54, 67, 86, 102, 122, 127].
Driven by information revolution, the recent advent of increasingly fast comput-
ing devices with large-scale storage capacity has resulted in the availability of un-
precedented amounts of data. The availability of cost effective computing power
and massive databases creates both opportunities and challenges, which has been
motivating software researchers and practitioners to solve large-scale problems in
the data-driven approach by developing efficient and effective machine learning al-
gorithms. Some machine learning algorithms have proven to be of great practical
value in a variety of modern applications [51, 115, 120]. They are especially useful in
(1) data mining problems where massive databases from heterogeneous information
sources may contain valuable implicit regularities that can be discovered through an
automatic process of hypothesis formulation and hypothesis testing (e.g., to analyze
outcomes of medical treatments from patient databases [91, 103] or to learn gen-
eral rules for credit worthiness from financial databases [104, 150]); (2) less well un-
derstood or highly empirical domains where humans might not have enough well-
formulated knowledge that is needed to develop effective algorithms (e.g., spam
email detection [110], handwriting recognition [138], speech recognition [140], face
recognition from images [162]) or highly specialized domains where it is extremely
tedious or infeasible to directly translate domain-specific human knowledge into ex-
plicit algorithms with good performance (e.g., transaction fraud detection [4], strate-
gic investment decision [169] or new drug discovery [2]); and (3) domains where the
program must dynamically adapt to changing conditions (e.g., controlling manu-
facturing processes under changing conditions [123], online learning to rank[153] or
adapting to the changing of reading interests of individuals [66]).

Without knowing the ranking process of the ranker, a successful machine learn-
ing algorithm is able to produce a permutation of items in a way that mimics the
behavior of the ranker. This application of machine learning technologies to ranking
problems has led to many innovative and effective ranking models, and also has led
to the emerging of a new research area named learning to rank [22, 31, 32, 33, 109,
183, 191]. However, in majority of the methods of learning to rank, prediction is the
focus, and as a consequence the ranking process is approximated by a class of simpli-
fied hypotheses and then evaluated by measures such as Spearman’s and Kendall’s
rank correlation coefficients [96], with both hypotheses and evaluation measures in-
dependent of prior knowledge of the ranking rationale behind the ranking process.
So the resulting model, though perhaps good at mimicking for prediction tasks, may
not be helpful to further explain or understand the behavior of the ranker.

In real-world applications, there will present a large quantity of information re-
garding experimental uncertainty, domain-specific prior knowledge and experimen-
tal observations. Therefore, scientific discovery is commonly conducted in an inter-
active way and involves the task of experiment design again and again by taking
into consideration a variety of domain-specific knowledge back and forth. This of-
tentimes requires an automatic knowledge discovery system to process the domain-
specific structures in the mind and the computational procedures that operate on
those structures. In this dissertation, we are concerned with the cognitive aspect of
ranking models and emphasize on domain knowledge representation. More specif-
ically, we show (1) how domain-specific prior knowledge can be represented and
incorporated into a ranking model, (2) how this knowledge representation can be
used for automatic knowledge discovery, (3) why and to what extent this knowledge
representation will work. Unlike the techniques such as learning to rank that fit data
with commonly used loss functions that stress more on the mathematical or statisti-
cal senses, we are more interested to construct application-specific ranking models,
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serving as rational decision-making agents for ranking tasks. To this end, the rank-
ing methods discussed in this dissertation will borrow conceptual ideas and analyt-
ical tools from a diverse set of fields, to name a few but not limited to, probability
and statistics [148], Bayesian methods[8, 53, 166], artificial intelligence [117], mathe-
matical programming [152, 159, 167], information theory [111], economics [24], psy-
chology [151] and cognitive science [43]. These ideas and tools are employed, on the
one hand, to construct learning algorithms for searching through a space of possi-
ble hypotheses to find the hypothesis that best fits the available observed data and
other prior constraints or knowledge; and on the other hand, to establish theoretical
results of why and how these learning algorithms might work.

Specifically, this dissertation discusses ranking methods and their machine learn-
ing algorithms from a Bayesian perspective. Then, why the Bayesian is preferred?
As a methodology of statistical inference, Bayesian approach has its own theoretical
and practical advantages. The pioneering works of Cox [37] and Pólya [139] opened
up new worlds of thought, whose exploration laid a theoretical foundation for ex-
plaining plausible reasoning and its relationship with Bayesian system of probabil-
ity theory [90]. In particular, the Bayesian system of probability theory is consistent
with that of Kolmogorov. The standard mathematical rules of probability theory can
be seen as uniquely valid principles of logic for plausible reasoning in general, so
their range of applications can be vastly extended beyond conventional usage for
calculating frequencies of "random variables". As a result, the imaginary distinction
between "probability theory" and "statistical inference" disappears. In this sense, if
well-designed, a learning machine implementing Bayesian inference is to use proba-
bility theory as the extended logic that is in accordance with the logic of science. This
would give a learning machine great technical power and flexibility when applied
in modern applications, not only capable of dealing with uncertainty in a variety of
situations but also transparent for human to explain or assess its inference result.

Then, how does a Bayesian approach learn? The essence of applying Bayesian
approach to a problem is to express all form of uncertainty in terms of probability.
More concretely, beliefs about the unknowns of events or outcomes of interest are
quantified by a probability measure conditional on the knowns including observed
data and prior information. There are mainly three technical ingredients needed to
implement Bayesian inference:

• prior probability distribution

• likelihood function

• decision making strategy

Bayesian inference starts with converting available prior information into a quan-
titative expression of prior probability distribution. Prior information may include
pre-determined hypotheses to be tested, domain-specific information of the problem
at hand, and accumulated beliefs derived from past experience. Hence, the selection
of prior distribution usually requires technical and application-specific knowledge,
making it somewhat case-dependent. However, the selection is not arbitrary, espe-
cially when one would construct a prior in some sense of optimality that incorpo-
rates and only incorporates the prior beliefs but nothing else. Next, a likelihood
function is required to be constructed for describing the uncertainty of the observed
data when a specific instance of the prior is fixed and known. A posterior distri-
bution for these unknowns can be obtained by applying Bayes’ rule, which takes
account of both the prior and the training data. From the posterior distribution, a
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predictive distribution can be obtained by, for example, sampling methods or ap-
proximate inference methods. Finally, a decision making strategy is constructed for
translating the information of the predictive distribution into the prediction of the
future data. More detailed discussions of Bayesian methods can be found in the
books [13, 18, 19, 38, 59, 114].

In summary, designing a Bayesian machine learning algorithm involves a num-
ber of design choices, including translating subjective prior beliefs into a mathemat-
ically formulated model and prior, constructing posterior probability distribution
as the model of performance metric to be learned, and an algorithm for learning
the model from observed data. Although Bayesian approach has simple process in
theory, technically, it is nontrivial to design an effective Bayesian machine learning
algorithm. This may be due to the following difficulties: (1) the selection of the prior
in the context of complex prior information would be challenging; (2) in some case, it
is impossible to construct an explicit likelihood function of the observed data condi-
tional on the parameters of the model of prior beliefs; and (3) when likelihood func-
tion cannot be explicitly formulated, the computational difficulties with Bayesian
approach may not be overcome with sampling methods or approximate inference
methods. One may face these difficulties when applying Bayesian approach to real
world problems. Methodological solutions to ease these difficulties proposed in this
work have been applied in the field of smartphone app quality assessment by an-
alyzing users’ behavioral data, in the field of customer opinion mining by analyz-
ing textual data obtained from consumer reviews, and in the field of DNA library
screening with non-adaptive group testing techniques.

The rest of the first chapter is organized as follows. Section 1.2 discusses the
problem of ranking smartphone apps from a user’s perspective. In the consumer
data analysis project, smartphone users’ behavioral records are used for predicting
the rankings of smartphone apps. Chapter 2 details the descriptive process of data
inspecting, cleansing and transforming processes, and then proposes two ranking al-
gorithms, one for extracting superior apps and the other for arranging the extracted
apps into a linear order. Section 1.3 presents the problem of discovering useful
knowledge from consumer reviews. Chapter 3 details a Bayesian framework for
this problem with a two-stage learning algorithms, and particularly attempts to dis-
cuss a theoretical question "is it possible to make machine learning transparent, by
making prediction task and explanation task simultaneously?" Section 1.4 1.4 gives
a general introduction of group testing and shows how ranking approach and its
machine learning algorithm can power group testing techniques, and Chapter 4 will
continue the topic of Section 1.4 and present a Bayesian framework for the problem
of pooling experiments in the presence of consecutive positives.

1.2 Preference learning machine

In economics and other social sciences, a preference usually refers to an ordering re-
lation between two or more items that, among a set of possible choices, is the one in
a decision making process. Preference information plays a key role in automated de-
cision making, and reasoning with preferences has been recognized as a particularly
promising direction for artificial intelligence research and applications[55]. Pref-
erence learning is concerned with the automated acquisition of preference models
from empirical data, to reveal preferences of an individual or a group of individuals.
Emerging as a new branch of machine learning and data mining, preference learning
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problems in general, ranking problems in particular, arise naturally in many applica-
tions such as information retrieval [81, 109, 163] and recommender systems [39, 118,
142, 141] where an increasing trend toward personalization of products and services
can be recognized.

As smartphone usage has grown remarkably in recent years and become a most
popular choice for communication and mobile computing, a huge amount of smart-
phone apps have also been developed and distributed via online markets such as
Google Play Android app store and Apple app store. Correspondingly, new prob-
lems and challenges arose. Among them, how to conduct app quality assessment
from a user’s perspective is a fundamental problem and ongoing challenge. It is fun-
damental because quality assessment is expected to be able to provide reliable sug-
gestions that are useful in various problem-solving and decision-making processes
involved in app development and management. For example, quality assessment
would be helpful for users to discover potentially useful apps, for content providers
to improve information quality of content, for developers and product managers to
monitor and improve app performance, for app stores to investigate user preferences
and then recommend relevant apps to relevant users. Unfortunately, the explosion
in variety and number of apps makes it an ongoing challenge. Correspondingly,
ranking methods that could perform removal of non-relevant apps and sorting of
relevant apps according to their quality assessment are desired in various practical
applications concerning app development and management.

Chapter 2 discusses the problem of ranking smartphone apps according to their
quality assessment from a user’s perspective based on large-scale users’ behavioral
information which can automatically be collected without the requirement of users’
active participation. The rankings of smartphone apps are understood as a prefer-
ence learning process. In an application-specific project, we use a dataset of user
profiles provided by FULLER Inc. From the data, it can be learned that which An-
droid device installed what Android app(s) at what month during the period from
October 2012 to June 2013. Each piece of the data is called an Android users’ be-
havior record. Particularly, a device’s sequential states of whether it has a specific
app installed over a period of time can be represented as a binary sequence, called a
usage record. The full dataset contains millions of the users’ behavior records. With
automatic data collection process, a growing number of such data become available,
and new data will periodically arrive. The dataset of user profiles we use for app
quality assessment is essentially different from those typically collected from de-
veloper self-reports, questionnaires, textual contents or star-ratings. This not only
brings an opportunity to develop new insights into app quality assessment from a
different angle but also cause new technical problems:

1. Users’ behavior records are simply binary row sequences. But, as new data ar-
rive periodically, the dataset expand rapidly in rows and columns. Therefore,
we need to summarize the information and control the information loss.

2. To measure the predictive performance of a ranker, a loss function on rankings
is usually needed. Apart from the type of ranking loss, which compares a
predicted ranking with a given target ranking, it is also possible to compare a
predicted ranking with a single class label. Unfortunately, since neither target
ranking nor a single class label is available, there is no immediate performance
measure to calibrate a learning procedure.

With this dataset, Chapter 2 proposes two ranking methods, one for extract-
ing superior apps and the other for ordering the extracted apps. In each method,
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a cognitive process of comparison is proposed and used for modeling the corre-
sponding ranking rationale. The former ranking method produces rankings of apps
in a pointwise way; the latter ranking method arranges a collection of apps into
a linear order by pairwise comparisons. The pairwise-comparison-based method
can be seen as a refinement of the point-comparison-based method. In both meth-
ods, context-dependent prior information as well as domain-specific knowledge was
summarized and represented by the Bayesian approach. The resulting knowledge
representation helps ease the technical problems mentioned above and also plays
an important role in the preference learning phase and in the interpretation phase.
Since the former ranking method is aimed at removing non-relevant apps efficiently
and the latter is constructed for linearly ordering relevant apps effectively, the two
ranking methods can work together to provide workable ranking results that might
be useful for mining knowledge from users’ behavioral information.

1.3 Knowledge discovery machine

Knowledge discovery in databases is an automatic, exploratory analysis and model-
ing of large data repositories. Knowledge discovery is the organized process of iden-
tifying valid, novel, useful, and understandable patterns from large and complex
data sets. A full process of knowledge discovery involves several steps, depending
on the specific problem at hand, while data mining is the core of the process, in-
volving the inferring of algorithms that explore data, develop model and discover
previously unknown patterns. A model is used for understanding phenomena from
data, analysis and prediction. The accessibility and abundance of data today makes
knowledge discovery and data mining a matter of considerable importance and ne-
cessity. There is a lot of hidden knowledge waiting to be discovered, which is the
challenge created by today’s abundance of data. Discovering and extracting knowl-
edge from the complexity of available data is an intriguing task attracting many
researchers and practitioners to accomplish. An overview of knowledge discovery
and mining can be found in the books [57, 75, 158, 172, 171, 194].

Machine learning is a powerful tool in knowledge discovery process and learn-
ing algorithms have been invented that are effective for certain types of learning
tasks. However, some data scientists criticized that machine learning is not trans-
parent enough to be any practical in serious applications. Indeed, the philosophy of
science is primarily interested in explanation and hence theorizing, while the area
of machine learning and data mining is primarily interested in prediction and hence
modeling. When explanation is the focus, one is theorizing; when prediction is the
focus, the process is better described as modeling. Then, the general form of rea-
soning that encompasses both theorizing and modeling is sometimes called discov-
ery [182]. Consequently, in some application areas concerning knowledge discovery,
the question was not only how to learn but also what to learn and why. The need
for explanations cannot be replaced by simply establishing the classes of each exam-
ples falling in. Sometimes, what is more interesting to know is to know the reasons
behind the classification.

Motivated by this idea, we attempt to discuss whether it is possible to construct
a learning machine that can make prediction and explanation simultaneously. In
particular, when observing a collection of items ranked in a linear order, we are
interested in the questions of why and how one item is ranked over another. Since
ranking problems arise quite naturally in many application areas, and processing
knowledge in terms of ranking is appealing as it allows one to specify desires in a
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declarative way, to combine qualitative and quantitative modes of reasoning, and
to deal with inconsistencies and exceptions in a quite flexible manner, this research
direction may help us to develop insights into a ranking process when rankings of
items are observable and prior knowledge is available.

E-commerce websites have proliferated at a rapid rate and improve customer
experience and online businesses largely. Customers purchase products based on
reviews provided by the consumers of the product, by finding out how other con-
sumers have recommended the product based on its quality, usefulness and many
other parameters. However, The explosion in number and variety of product rank-
ings also brings new challenges in the way information is retrieved and knowledge
is discovered. For example, it is oftentimes hard for a customer to determine the
products that best match their requirements in an effective and efficient way. To
ease this difficulty, e-Commerce service systems and information sharing platforms
provide useful information such as the main attributes commented upon by cus-
tomers and a variety of product rankings. For a variety of reasons, most of ranking
systems and information sharing platforms don’t provide the rationale behind their
ranking results in an explicit and expressive way. Without such knowledge, when
comparing similar products that provide almost the same functionality customers
might wonder why and how one product is ranked over another. This gives rise
to the need of discovering useful knowledge of product rankings from consumer
reviews.

When consumer reviews of the ranked items are observed, Chapter 3 presents
a method for discovering the knowledge of the rank of the items from the con-
sumer reviews. The basic idea of the method is to construct a choice model and
then to build it in the computational learning theory. This idea formulates the ques-
tions of interest as a biconvex optimization problem which has a relationship with
SVM(Support Vector Machines). To facilitate the process of knowledge discovery, we
develop a two-stage learning algorithm. In the first stage, we extract as much infor-
mation as possible from the observed data, while in the second stage, the extracted
information is further summarized into knowledge. Particularly, the learning algo-
rithm is essential Bayesian, combined with Frequentist learning theory. Frequentist
approach is adopted to deal with the difficulty that the likelihood function cannot
be explicitly formulated, while Bayesian approach is used to incorporate scientific
hypotheses into predicting model. Generalizing beyond the observed data given,
the acquisition of this kind of knowledge and models may be useful for preference
prediction, for example, to predict the preferences of a new individual or the same
individual in a new situation.

1.4 Group testing machine

Group testing was proposed by Robert Dorfman [45] during World War II in order
to efficiently test a large number of blood samples for a rare disease. The goal of
group testing is to discover defective items in a large population with the minimum
number of tests. Each test is applied to a subset of items, called pools, instead of
testing these items one by one. When the outcome of a group test is negative, then all
samples in the pool are good. Otherwise, there exists at least one defective sample,
also called positive (but we do not know which one) in the pool and further testing
on them is necessary. When the proportion of positives is relatively small, many of
the outcomes of the pools are expected to be negative, and hence the total number of
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tests is reduced. This powerful theory has been applied to many fields such as multi-
access channel communication [12], coding theory [47], sparse signal recovery [65],
network defective diagnosis [79], network security [165] and molecular biology [49].
The efficiency of pooling experiments has been studied by Barillot et al. [9], Berger
et al. [11], Bruno et al. [21] and Sham et al. [155]. Here we refer to the books [164] by
Thai and [84, 85] by Du and Hwang for an overview.

In general, group testing can be classified into two types: sequential (also called
adaptive) and non-adaptive. A sequential group testing conducts the tests one by
one by using the results of previous tests to determine the pool for the next test. At
the end of each round, items in negative pools are identified as negative, while those
in positive pools require to be further tested. Note that an item is identified as posi-
tive if and only if it is the only item in a positive pool. Thus sequential group testing
requires several testing rounds to finish a whole procedure. thereby completing the
test within several rounds. In contrast, A non-adaptive group testing completes the
test within one round by conducting all tests simultaneously, thus output results of
the previous tests cannot be used to design the latter test. However, by taking ad-
vantages of previous testing results, sequential group testing requires fewer tests in
general and was frequently used in the design of group testing since the main goal
of group testing, historically, is to minimize the number of such tests in identifying
all the positive samples. Group testing has been introduced to the molecular biol-
ogy research field such as the DNA sequencing and DNA library screening, and thus
emerging new requirements. Although minimizing the number of tests is still very
important, the time required to finish the whole testing procedure must be consid-
ered since each single test may take from several hours to a day. The focus has then
shifted to non-adaptive group testing where we can conduct all tests simultaneously,
thus minimizing the testing time.

Formally, a non-adaptive group testing consisting of m pools and n items includ-
ing d positive items can be represented by a m× n binary matrix A = (aij), called
a pooling design, where rows represent the pools and columns represent the items.
An entry aij = 1 if and only if the ith pool contains the jth item; otherwise, aij = 0.
Given pooling design A, a test result of these m pools can be represented by a m-
dimensional column vector r, called the test outcome vector. r is a binary vector,
in which 1-entry represents a positive outcome and 0-entry represents a negative
one. A positive result indicates that at least one positive item exists within this pool,
whereas a negative one means that all the items in the current pool are negative.
That is, if ri = 0 then all items in row i of A are negative; if ri = 1 then there exists at
least one positive item in row i. Note that in the non-adaptive group testing, an item
can be tested in several pools at the same time. Once items are arranged into pooling
design, a decoding algorithm is required, aiming to identify the positive items by us-
ing the test outcome vector r, pooling design A and other available prior knowledge
such as the upper bound of the number of positives d.

Group testing can further be classified as either combinatorial or probabilistic,
according to the classification rule whether the decoding algorithm is combinatorial
or probabilistic. In combinatorial group testing, it is often assumed that the upper
bound of the number of positives and that of experimental errors in pooling results
are known a priori. The essence of combinatorial group testing is to construct pool-
ing designs with desired combinatoric structures that guarantee a positive detecting
algorithm to be efficient and effective as long as the prior knowledge is accurate.
Related studies can be found in Du and Hwang [84], [85], [29], Dyachkov et al.
[46] , Macula [113], and Ngo and Du [128]. Although combinatorial group testing
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is very useful in well-controlled situations, constructing a non-adaptive combina-
torial group testing with the minimum number of pools is very challenging, espe-
cially when one expects a pooling design with extra desired properties such as error-
tolerant ability. Moreover, uncertainty prevails and application-specific prior infor-
mation is available in real applications. For example, in the problem of screening a
clone map where pooling experiments are used to detect positive DNA segments,
the uncertainty and prior information can be summarized as following:

• The exact value of d is usually not known with full certainty. Instead, some
broad prior information about d may be known.

• There may be a connective relationship between the items, making the positive
items tend to appear in a consecutive way, and the prior information of the
consecutiveness may be known.

• In order to facilitate testing automations implemented by robots, random pool-
ing design are preferred. For example, instead of using a pooling design with
complicated mathematical structure,

• There may exist some errors in experiments. The test may return some false
negative or false positive results. In the false negative, the pool contains some
positive items but the test result is negative due to some testing errors. Like-
wise, in the false positive, the pool contains all negative items.

• In order to extract as much information from pooling experiments as possible,
observed pooling results could be multi-leveled, for example, r : {0, 1}n →
{0, 1, 2, 3}, meaning negative, weak positive, medium positive and strong pos-
itive.

In this situation where various kinds of uncertainty and prior information arise,
probabilistic group testing strategy may be welcomed and useful as a complement
to combinatorial approaches. Specifically, Bayesian approach is adopted to deal with
the experimental uncertainty and the prior information. Motivated by this idea, we
reformulate the problem of non-adaptive group testing as a learning problem. In
a simplest version of the non-adaptive group testing problem, we have some un-
known function, r : {0, 1}n → {0, 1} where r(a) = a · c, where a represents a
row of pooling design of A, c ∈ {0, 1}n represents the state vector of the items to
be positive or negative, and the logic addition summation of logic multiplication
a · c = (a1 ∧ c1) ∨ (a2 ∧ c2) · · · ∨ (an ∧ cn). The aim is to construct the functional r
using m evaluations, each of which corresponds to a group test. More specifically,
this aim is equivalent to recovering c, that is, the set of positives. To reconstructed
c, one may rank each item according to their posterior probabilities of being posi-
tive after observing m group evaluations. This probabilistic view opened a potential
to reformulate a group testing problem as a Bayesian ranking problem. Unlike a
typical machine learning problem in which {a1, . . . , am} is a random sample with
large m, pooling design A has a constrained combinatorial structure that m should
be as small as possible. This makes it impractical to assume that {a1, . . . , am} is a
large sample. In the presence of consecutive positives, to design a Bayesian learning
algorithm, we also need to consider the following questions:

1. How to appropriately express the prior information of the consecutive struc-
ture of the positives? how to translate the prior information of d and that of
consecutive structure into a mathematical prior of the positives?
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2. How to construct a decoding algorithm for detecting the positives from error-
prone pooling results? How can the prior of the consecutive positives guide
the detecting process? When random pooling designs are used, is the decoding
algorithm still applicable?

3. What is the strategy for choosing the parameters that controls the generating
procedure of random pooling designs? As the parameters of pooling designs
vary, how can the variation influence the performance of the decoding algo-
rithm? How many pooling results are least necessary to identify the consecu-
tive positives?

4. Is the prior information of consecutive positives helpful to reduce the number
of pools needed, compared with the case where the positives are consecutive
but no prior information of consecutiveness is used?

Probabilistic group testing is developed by Bruno et al. [21], Knill et al. [101],
Mezard and Toninelli [116] and Uehara and Jimbo [174]. In particular, Knill et al.
[101] proposed a positive detecting algorithm called MCPD by using Markov chain
Monte Carlo simulation method, in which questions 1-2 are partially discussed. To
answer questions 1-4, we extend their work to the cases in which prior information
of consecutive positives is available. Chapter 4 details a Bayesian framework for
the problem of pooling experiments for detecting consecutive positives, in which
a Bayesian machine learning algorithm is proposed to decode error-prone multi-
leveled pooling results given by random designs. The choice of important param-
eters are also discussed within the framework. It shows some happy coincidences
between theoretical computation results and previously known simulation results.
Numerical simulations show that the Bayesian framework is promising to deal with
the uncertainty in real settings and that the prior information is helpful to reduce the
number of pools needed to detect the positives.
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Chapter 2

Ranking smartphone apps based
on users’ behavior records

2.1 Background

Smartphone usage has grown remarkably and become a most popular choice for
communication and mobile computing. Supported by an increasing convergence of
mobile telecommunication devices, smart sensors and personal computers, smart-
phones are no longer only a modern form of cell phone, but also based on encap-
sulated pieces of computer program software called smartphone applications - or
simply "apps" - to provide diverse functionalities and mobile services to their users.

In company with the prosperity of smartphone market and the prevalent usage
of apps across smartphone users, a huge amount of interface-friendly apps have
been developed to provide diverse functionality and extended capabilities of smart-
phones. Smartphone apps were primarily offered for general productivity, mobile
entertainment and information retrieval. Users’ demand and the availability of in-
creasingly powerful hardware and user-friendly developer tools drove a rapid ex-
pansion of app development into other categories, such as health care, business,
finance, tourism and education. App development has brought many profits and
opportunities to app vendors and relevant business companies, and still expands
at an amazing growth. A plethora of studies have focused on understanding app
development and management from different perspectives for a wide range of con-
texts. Tucker [173] discussed the economic value of various online data for market-
ing, product development and so on. Recently, user reviews, comments, votes, and
the like are extensively considered as elements of measures for various evaluation
purposes. Chen and Liu [28] employed machine learning techniques for predict-
ing popularity of online distributed applications based on the data collected from
iTunes App Store. Other related work can be found, for example, in Bredican and
Vigar-Ellis [20], Bomhold [145], Charani et al. [27], d’Heureuse et al. [42], Gavalas
et al. [61], Gupta, et at. [72], Holzer and Ondrus [82], Khan et al. [97], Mo Kwon et
al. [121], Oreku [131], Yan et al. [185], Yan et al. [187] and Yin, et al. [189].

However, new problems and challenges arose. Among them, how to assess the
quality of smartphone apps from a user’s perspective is a fundamental problem and
ongoing challenge. It is fundamental because quality assessment is expected to be
able to provide reliable suggestions that are useful in various problem-solving and
decision-making processes involved in app development and management. For ex-
ample, quality assessment would be helpful for users to discover potentially useful
apps, for content providers to improve information quality of content, for develop-
ers and product managers to monitor and improve app performance, for app stores
to investigate user preferences and then recommend relevant apps to relevant users.
Unfortunately, the explosion in variety and number of apps makes it an ongoing
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TABLE 2.1: Example of Users’ Behavior Records

Device ID App Dec Jan Feb Mar Apri

5048· · · a94d com.google.android.apps.plus 1 1 1 1 1

5048· · · a94d com.twitter.android 1 1 0 0 0

5048· · · a96e com.facebook.katana 1 1 1 1 0

5048· · · a96e jp.mixi 1 1 1 1 1

5048· · · a96e com.co_mm 1 1 0 0 0

5048· · · a96e jp.ameba.candy 0 1 1 1 1

5048· · · a96e com.twitter.android 0 0 1 1 1

challenge. Correspondingly, ranking methods that could perform removal of non-
relevant apps and sorting of relevant apps according to their quality assessment are
desired in various practical applications concerning app development and manage-
ment.

This chapter first develops a ranking method for assessing app quality from a
user’s perspective by using user behavioral information extracted from big data of
app usage. The usage data of our interest is essentially different from those that are
collected from developer self-reports or user questionnaires. This brings a potential
to assess app quality from a different angle and leads to a new and complementary
insight. This ranking method can be used to distinguish relevant apps from non-
relevant ones for further study. Then, this chapter presents another ranking method
for arranging relevant apps into a linear order with their usage information. This
ranking method produces an explanation-based quality assessment and can be used
to mine useful knowledge from user behavioral information.

2.2 Dataset Used

App developers usually trace and study users’ behaviors for management purpose
in order to improve the quality of their apps as well as their service. In this section,
we describe the dataset that we will use through this chapter.

FULLER Inc. provided a variety of datasets concerning app development and
management. We used one of the datasets to conduct app quality assessment. From
the data, it can be learned which Android device installed what Android app(s)
at what month during the period from Oct. 2012 to Jun. 2013. Each piece of the
data is called a user’s behavior record. Particularly, a device’s sequential states of
whether it has a specific app installed over a period of time can be represented as a
binary sequence, called a usage record. Notice that it may happen that an Android
smartphone user has more than one devices and hence several computer generated
device IDs. Since each device corresponds to a unique computer generated device
ID, we assume that each user has only one device and hence can be labeled by a
unique computer generated ID. So far, the dataset contained millions of users’ be-
havior records, and its size is still increasing due to the arrival of new data. With
focus on Android apps, we show in Tab. 2.1 a small part of the data.

Next, we introduce some notation that will be consistently used throughout this
chapter, to describe the structure of the dataset. Let D and A be collections of n
devices (users) and m apps, respectively. The structure of the time range consisting
of l consecutive time intervals can be described as an ordered set T = (∪l

i=1{Ti},≺t),
where Ti ≺t Ti+1 for i = 1, . . . , l − 1.
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Let r(D, A, T) be indicate function of D ∈ D, A ∈ A and T ∈ T such that
r(D, A, T) = 1 if app A can be found installed on device D at T, otherwise 0. This
allows us to define the usage record of D with respect to A during T , denoted by
r(D, A, T ), as a binary sequence (r(D, A, Ti))

l
i=1 ∈ {0, 1}l . Moreover, without loss

of generality, A is assumed to contain the apps that are installed by as least one user
during T . That is, for any A ∈ A, it holds that ∑D∈D ∑T∈T r(D, A, T) ≥ 1. Similarly,
D is assumed to contain the users who have ever installed as least one app of A
during T . That is, for any D ∈ D, it holds that ∑A∈A ∑T∈T r(D, A, T) ≥ 1.

For any application A, let D(A) be the collection of active users with respect to
A, i.e.,

D(A) =
{

D ∈ D : ∑
T∈T

r(D, A, T ) ≥ 1
}

.

Let D(A, X) be the collection of active users of usage pattern X ∈ U \ {I I} with
respect to A, i.e.,

D(A, X) =
{

D ∈ D : r(D, A, T ) ∈ X
}

.

Particularly,
D(A, I I) = D \D(A).

As usage records accumulate and have a sufficient length (here, we assume l ≥
4), though simple in form, they could be informative and expressive. However, the
number of all possible usage records is also exponentially large, that is, 2l . This
makes it less appropriate to classify users if users’ usage records are directly used,
especially when l is large.

To ease this difficulty, the concept of usage pattern was introduced, which can
be used to reduce the number of user types. The basic idea is to classify users’ us-
age records into a small number of classes, each of which is called a usage pattern.
The basic observation is that, the 1s or 0s near the end of a user’s usage record can
be given a more detailed meaning, capable of summarizing the user’s historical be-
havior records. For example, given r(D, A, T ) = (0, 0, 0, 0, 1, 1), the 1 at the fifth
coordinate can be interpreted as a state that A is newly installed by D with respect
to T and the following 1 means a state of that app A is continuously installed.

This example also casts a light on the basic idea for classifying user types accord-
ing to their usage records. Formally, given r(D, A, T ) and some integer h (1 ≤ h ≤
l − 3), for each l − h + 1 ≤ i ≤ l, r(D, A, Ti) will be associated with a state pi taken
from the symbol set {N, R, C, I, U}, such that

pi =



N, if r(D, A, Ti) = 1 and
i−1
∑

j=1
r(D, A, Tj) = 0,

R, if r(D, A, Ti) = 1, r(D, A, Ti−1) = 0, and
i−2
∑

j=1
r(D, A, Tj) ≥ 1,

C, if r(D, A, Ti) = 1 and r(D, A, Ti−1) = 1,

I, if r(D, A, Ti) = 0 and
i−1
∑

j=1
r(D, A, Tj) = 0,

U, if r(D, A, Ti) = 0 and
i−1
∑

j=1
r(D, A, Tj) ≥ 1.
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TABLE 2.2: Classification of Usage Records With h = 2

1 2 · · · l − 2 l − 1 l Usage Pattern

All zeros 0 0 II

All zeros 0 1 IN

All zeros 1 1 NC

At least a one 0 1 1 RC

Any 1 1 1 CC

At least a one 0 1 UR

All zeros 1 0 NU

At least a one 0 1 0 RU

Any 1 1 0 CU

At least a one 0 0 UU

The resulting symbol sequence pl−h+1 pl−h+2 · · · pl is called the h length usage pat-
tern of r(D, A, T ). Intuitively speaking, N represents the state of new installation
with respect to T , R re-installation, C continuous installation, U uninstallation and
I ignorance (the state of being unknown, or already known but not yet installed)
with respect to T . Therefore, any possible usage record r(D, A, T ) ∈ {0, 1}l can
be classified by their usage patterns of a prescribed length h, as long as l ≥ 4 and
1 ≤ h ≤ l − 3. Denote by C(h) the set of all usage patterns of length h. Obviously,
C(1) = {N, R, C, I, U}. C(2) is shown in Tab. 2.2. Let P(A, X) = |D(A, X)|/|D| be
the proportion of usage pattern X with respect to A. We denote by PA the distri-
bution of usage patterns with respect to A, such that PA(X) = P(A, X), for X ∈ U ;
moreover, let P denote the space of all possible distribution of usage patterns, that
is,

P = {P = (P1, . . . , P|U |) ∈ R|U | :
|U |

∑
i=1

Pi = 1, Pi ≥ 0, i = 1, . . . , |U |}.

It is not hard to see that C(h) can be constructed from C(h − 1) and hence re-
cursively from C(1). For the sake of convenience, let C1 = C(1) \ {I} and C2 =
C(2) \ {I I}

This classification method is sensitive to both users’ historical behavior records
and their present records (with respect to a time range). With this classification
method, users’ changes of usage behavior during a period of time can be summa-
rized and represented. By choosing a proper value of h, the total number of us-
age patterns 5× 2h−1 can be much smaller than that of all possible usage records,
2l . Hence, h can be regarded as a trade-off between completeness of information
and efficiency in expressiveness. Without loss of generality and for the sake of
simplicity, we set h = 2 throughout this paper. Let U = U+ ∪ U−, where U+ =
{IN, NC, RC, CC, UR} and U− = {NU, RU, CU, UU, I I}. A usage pattern is said to
be positive if it belongs to U+, otherwise negative. Each usage pattern X ∈ U can
be represented as a subset of {0, 1}l according to Fig. 2.2. With this classification, we
can continue to obtain the distribution of usage patterns for each app.
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2.3 A ranking method for app extraction

This section constructs quality assessment measures based on users’ behavior records.
These measures can be used to build pointwise ranking methods for extracting rele-
vant apps with high quality assessment.

2.3.1 Related works and new contributions

Recent studies discussing the problem of app quality assessment can be found in,
for example, Chen et al. [28], Choe [30], Hale et al. [74], Huckvale et al.[83], Noh
et al. [129], Patel et al. [134], Reynoldson et al. [146], Stippig et al. [160], Stoyanov
et al. [161], Van Singer et al. [176] and Väätäjä [175]. Besides, there is a great effort
to address the problem of how to measure the quality of use, or "usability". Sev-
eral different standards or models for assessing app usability have been proposed,
and relevant studies can be found, for example, in Ahmad et al. [3], Bevan [14], Fin-
stad [50], Harrison et al [78], Noh et al. [129] and Verkasalo et al. [178]. In these
studies, the prevailing methodology is mainly based on questionnaire investigation
or other similar processes in which volunteers are required to response to a series
of previously designed tasks. Questionnaire-based methods have an advantage in
allowing users to fully express their personal evaluation on specific aspects of apps
and hence lead to meaningful and reliable measurements within specific context of
study. However, it is impractical to apply questionnaire-based methods to large-
scale study, in consideration of the cost and time consumption of the survey process.

To conduct large-scale assessment of app quality, some authors proposed to col-
lect user feedback data such as user reviews and star-ratings from app stores and to
construct feedback-based measures. See Yin et al [189] for an example. However,
feedback-based measures also rely on users’ active involvement. However, in the
absence of any incentive, it is not practical to expect users’ active participation. In
particular, there are few users who would regularly update their feedback during
their use of apps.

Moreover, to construct appropriate measures for assessing the objects to be man-
aged is usually one of the key ingredients in various domain-specific management
issues. However, how to construct such measures is often nontrivial and case-dependent.
Particularly, unlike ordinary commodity goods, smartphone apps have their own
particularities. One obvious particularity is that most of the smartphone apps are
free to install and use. In addition, smartphone apps can also be reinstalled or unin-
stalled repeatedly free from any restriction whenever users would like to. This al-
lows users to change their opinions and behaviors of app usage from time to time.
With these particularities, smartphone apps are essentially different from many or-
dinary commodity goods that we are familiar with. Consequently, how to define
the semantics of goodness of free apps and how to measure the degree of goodness
are the new challenges. To avoid potential shortcomings of questionnaire-based and
feedback-based measures, new quality assessment measures are needed for compar-
ative or complementary use.

In order to assess the quality of free apps, the basic idea is to convert the struc-
tural information of user resource into quality assessment measures. The rationale
behind this idea is that the structure of an app’s user resource is closely related to
the app’s degrees of popularity, attractivity and usability and hence reflects its qual-
ity assessment. With automatic data collection process, growing amounts of users’
behavior records become available. This may open an opportunity to conduct large-
scale assessment of app quality from a user’s perspective.
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The rest part of this section will be organized as follows. In section 2.3.2, we begin
with a discussion of the semantics of goodness and introduce the concept of random
user in order to construct a standard of comparison. Then, we give a mathematical
formulation of the standard of comparison that will be used for quality assessment.
In section 2.3.3, with the mathematical formulation of the standard of comparison,
we propose a ranking method for extracting superior apps by constructing quality
assessment measures with desirable properties. Section 2.3.4 shows the extraction
results of the ranking method.

2.3.2 Standard of comparison and random user

Given a collection of apps subjected to be assessed, when we think of that a subset
of apps are superior in terms of quality assessment to the other apps, the cognitive
process of the judgement-making activity may roughly be expressed as follows: At
the first stage, we inherently compare all the apps with a selected app, either a real
one in the app store or an imaginary one in our mind, that serves as a standard
of comparison. At the second stage, the apps whose quality assessment is judged
above that of the standard of comparison are extracted as the superior ones, while
the rest are considered inferior. In summary, judgments of quality assessment are
made with reference to a contextually determined standard. In this application, we
do not assume the standard app for comparison has to be real and only focus on the
case where the standard app is cognitively imaginary.

If judgments of quality assessment are understood as a cognitive process, imme-
diate questions follows:

1. How to determine the standard of comparison?

2. How to make comparison to the standard?

Here, we discuss the first question; the second one will be discussed in Section 2.3.3.
In this data-driven application, we compare apps based on users’ behavior records,

and hence determining the standard of a comparison should also rely on users’ be-
havior records to decide which possible standard of comparison is the relevant one
in this context. Since as is mentioned that app quality will be assessed by using PA,
the distribution of usage patterns, for A ∈ A, the standard of comparison should
also be expressed in the form Pa, for some imaginary app a. If we say a user’s
behavior record with respect to app A associated with a positive (negative) usage
pattern as the user’s expression of a positive (negative) attitude toward app A, then
PA can be seen as a numeric summary of all users’ positive and negative attitudes
toward app A; moreover, if a neutral state is assumed to be between positiveness
and negativeness, then we may define the standard of comparison Pa as a numeric
summary of users’ neutral attitudes toward the imaginary app a. Then, the key to
determining the standard of comparison is to model users’ neutral state of attitudes.

To this end, we introduce a notion called random user. A random user is an imag-
inary user, denoted by R, who follows a random process to install or uninstall app
A ∈ A during time range T . The random process serves a mathematical description
of the neutral state of attitudes. More concretely, behavior records r(R, a, T ) can be
randomly generated, from which we can obtained Pa.

Determining a standard of comparison and hence a corresponding random pro-
cess is a pragmatic matter concerning application-dependent context such as prior
information and domain-specific knowledge. In this application, we discuss a possi-
ble construction by presenting a bayesian random process consisting of two random
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FIGURE 2.1: Two stages of the random process

stages: knowing stage and usage stage. The usage stage will proceed only if the
knowing stage ends within time range T as is shown in Fig. 2.1.

At the knowing stage, a coin Cθ with hyper-parameter θ is first created, where θ
is randomly and independently drawn from uniform distribution U[0, 1]. Let Xθ be
random variable of coin Cθ , such that

Xθ =

1, if Cθ shows a head,

0, if Cθ shows a tail,

and Pr(Xθ = 1) = θ. Then, Cθ will be randomly and independently flipped until a
head is shown, but at most |T | times. Correspondingly, r(R, a, Ti) = 0 if Cθ shows a
tail. If no head is shown during T , the knowing stage ends and the usage stage does
not proceed. The resulting usage record is thus r(R, a, T ) = 0.

The usage stage will proceed if and only if for some integer t(θ) between 1 and l
such that at Tt(θ) ∈ T , Cθ shows the first head. When the knowing stage ends at Tt(θ)
and the usage stage proceeds, a fair coin C f will be used instead. Let Y be random
variable of coin C f , such that

Y =

1, if C f shows a head,

0, if C f shows a tail,

and Pr(Y = 1) = 0.5. Denote by y the random value of Y. Then, C f will be ran-
domly and independently flipped, but at most |T | − i + 1 times. Correspondingly,
r(R, a, Tj) = yj, for j = t(θ), . . . , |T |.

For the sake of clarity, we denote by Q the standard distribution of usage patterns
obtained from the random process that the random user follows. Let Qθ be the
conditional probability distribution of usage patterns of the random user given θ
is fixed and known. Noting that

Qθ(X) = ∑
T∈T

Qθ(X|Tt(θ) = T)Pr(Tt(θ) = T),

we have

Qθ(IN) =
l−1
∑

i=0
0.5l−i(1− θ)iθ;

Qθ(I I) = Qθ(IN) + 1−
l−1
∑

i=0
(1− θ)iθ ;

Qθ(NC) = Qθ(NU) =
l−2
∑

i=0
0.5l−i(1− θ)iθ;

Qθ(RC) = Qθ(RU) =
l−4
∑

i=0
(0.53 − 0.5l−i)(1− θ)iθ;

Qθ(UR) = Qθ(UU) =
l−3
∑

i=0
(0.52 − 0.5l−i)(1− θ)iθ;
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Qθ(CC) = Qθ(CU) =
l−3
∑

i=0
0.53(1− θ)iθ.

Then, using the assumption that θ is randomly and independently drawn from
U[0, 1], for X ∈ U , we have

Q(X) =
∫

θ∈[0,1]
Qθ(X) fU(θ)dθ,

where fU(θ) = 1 is the density function of the uninformative kernel U[0, 1]. In this
way, we can obtain the closed form of expression about Q.

In summary, to determine a context-dependent standard of comparison, we first
interpret the standard of comparison as a neutral state with which each app will be
compared, and then interpret the neutral state as a random process that captures the
context-dependent characteristics of the comparison process. Consequently, there
could be a variety of possible formulations to specify the random process, depend-
ing on how we incorporate our prior knowledge and beliefs into interpreting and
quantifying the cognitive process of comparison. This brings a potential to construct
a variety of structural null hypotheses concerning cognitive process of comparison
for further study.

2.3.3 Score Function

In this part, we discuss the question of how to compare PA with the standard Q and
present the quality assessment measure we used for ranking and extracting apps.

When testing a statistical hypothesis, a null hypothesis is used as a standard to
be compared, and a significance score is derived from observation data and param-
eters of the null hypothesis to decide whether or not to reject the null hypothesis.
As has been previously mentioned, Q can be viewed as a metaphorically structured
null hypothesis. With this idea, analogously, one possible way to compare PA with
the standard Q is to derive a score from PA and Q that can produce a measurement
of how much PA deviates from the standard Q. More concretely, we may construct
such a measure by introducing a function S : P ×P → R such that if S(PA, Q) has a
larger score value of deviation measurement, then we may say that it is more likely
that PA is different from Q; moreover, also taking into account that positive (nega-
tive) attitudes U+ (U−) make positive (negative) contribution to the measurement of
deviation, we may construct the score function in a ratio form in order to stress the
contribution of positive attitudes over that of the negative ones. Then, if S(PA, Q)
has a larger score value, we may not only say that it is more likely that PA is different
from Q but also say that the positive part of PA contributes more to the deviation
measurement and hence app A is more likely an app of higher quality assessment.

If we follow the idea and clues mentioned above to construct S(PA, Q), then we
need to separate and measure the contributions of positive and negative parts of PA

with respect to Q.
We first consider the separation issue. To this end, let

PA
+ = ∑

X∈U+

PA(X)

and
PA
− = ∑

X∈U−

PA(X),
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and define

PA
+,Q(X) =

PA(X) + Q(X)PA
− if X ∈ U+

Q(X)PA
− if X ∈ U−,

and

PA
−,Q(X) =

Q(X)PA
+ if X ∈ U+

PA(X) + Q(X)PA
+ if X ∈ U−,

where PA
+,Q and PA

−,Q are called the positive augmentation and the negative aug-
mentation of PA with respect to Q, respectively.

The rationale behind the construction of PA
+,Q can be intuitively interpreted as

follows: to separate the contribution of the positive part of PA from that of the neg-
ative part, we removed the negative part PA

− from PA in the sense that the negative
attitudes were first substituted by neutral attitudes, and then the neutral attitudes
were converted back into positive attitudes and negative attitudes in proportion to
Q. As a consequence, for a positive usage pattern X ∈ U+, its proportion increased
by Q(X)PA

− and hence increased to PA(X) + Q(X)PA
−; for a negative usage pattern

X ∈ U−, its proportion decreased to Q(X)PA
−. The resulting PA

+,Q augmented PA

in the sense that the positive part of PA was enriched while its negative part was
diluted. The construction of PA

−,Q follows a similar rationale.
Next, we consider the measurement issue. Since PA

+,Q, PA
−,Q ∈ P , the contribu-

tions of the positive part and negative part of PA with respect to Q, denoted by SA
+

and SA
−, can be measures by the l2 distance between the augmented distributions of

PA and Q,

SA
+ =

(
∑

X∈U
|PA

+,Q(X)−Q(X)|2
) 1

2

and

SA
− =

(
∑

X∈U
|PA
−,Q(X)−Q(X)|2

) 1
2

,

respectively. Finally, one possible construction of the score function S in the ratio
form can be given by

S(PA, Q) =
SA
+

SA
−

.

The score function S has two desirable properties.

Property 1 For any Q ∈ P ,
S(Q, Q) = 1.

Property 2 For any Q ∈ P ,

S(PA, Q) =

0, if PA
+ = 0,

∞, if PA
+ = 1.

Property 1 means that the constructed score function will keep the discrimination
threshold constant and invariant for any selected standard of comparison.
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App 12.10-13.3 12.11-13.4 12.12-13.5 13.1-13.6
Facebook 0.83 0.80 0.78 0.77

Twitter 0.75 0.76 0.77 0.78
Mixi 0.38 0.35 0.32 0.29
Gree 0.17 0.20 0.21 0.23

Comm 0.16 0.15 0.13 0.11
Ameba 0.13 0.12 0.12 0.12
Bump 0.09 0.08 0.07 0.07
Mbga 0.05 0.05 0.05 0.05

Instagram 0.05 0.05 0.05 0.05
Sockets Live 0.03 0.03 0.03 0.03

Twicca 0.03 0.03 0.02 0.02
MixiSH 0.03 0.02 0.02 0.02
Saitosan 0.02 0.02 0.02 0.02
2chMate 0.02 0.02 0.02 0.02

TABLE 2.3: The apps with highest score values of S

Property 2 means that the constructed score function will assess an app as one of
the worst apps in terms of quality assessment in any sense of standard of compari-
son, if no user has a positive attitude toward the app; similarly, the constructed score
function will assess an app as one of the best apps in terms of quality assessment in
any sense of standard of comparison, if all users have a positive attitude toward the
app.

Ideally, with properties 1 and 2, we can use the score function S and a properly
constructed Q to assign a score value to each app. The apps whose score value is
larger than 1 are extracted as the superior ones, while the rest are considered inferior.

2.3.4 Experimental Result

The dataset used is a collection of Android users’ behavior records obtained dur-
ing the period from Oct. 2012 to Jun. 2013, provided by FULLER, Inc. It con-
tained over three millions of users’ behavior records. For the sake of convenience,
the dataset was divided according to the categories of apps, and the social cat-
egory was used for numeric experiment. In the experiment, we set l = 6 and
h = 2. The average probability mass of the random user is that Q(IN) = 0.0447,
Q(I I) = 0.1876, Q(RC) = Q(RU) = 0.0755, Q(NC) = Q(NU) = 0.0328 and
Q(CU) = Q(CC) = 0.1. The top fourteen apps assessed by the score function were
extracted and shown in Table. 2.3.

By comparing the rank result given by Google play, we found that eight out
of the fourteen apps were ranked within top ten on the Google play’s ranking re-
sult. our ranking result might be improved if we removed from consideration the
pre-installed apps such as MixiSH, because these apps were excluded from Google
play’s ranking results. This ranking method produces pointwise quality assessment
measurements according to which superior apps can be extracted.
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2.4 A ranking method for app ordering

This section will present a ranking method for arranging a collection of apps into
a linear order by using the same dataset of users’ behavior records. The rank-
ing method incorporates the knowledge of life cycle management of app develop-
ment as prior information and produces pairwise quality assessments between apps,
which in return can be used to mine useful knowledge from user behavioral infor-
mation.

2.4.1 Related works and new contributions

The work in this section is inscribed within an emerging body of work that analyzes
user behavior and mining useful knowledge from user behavioral data of apps. For
example, the studies investigating the possibilities of characterizing and predicting
user behavior using user behavioral information can be found in Benbunan [10], Do
and Gatica-Perez [44], Taylor and Levin [56], Liao et al. [106] and Xu et al. [184].
Based on user behavioral data analysis, there are also other useful applications,
such as discovering associations between user interactions, inferring social network
structure, tracking network information flow, modeling user preferences, character-
izing human mobility and designing app recommender system. These studies can
be found in, for example, Costa-Montenegro et al. [35], Eagle et al. [48], Perunani
and Tabourier [137], Shi and Ali [157], Zarmpou et al. [190] and Zhu et al. [193].

In the previous section, we have discussed a pointwise-comparison-based rank-
ing method for extracting superior apps. In this section, we will discuss a pairwise-
comparison-based ranking method for app quality assessment by using the dataset
of users’ behavior records. Instead of converting distributions of usage patterns into
a series of numeric scores, this ranking method will consider more detailed infor-
mation of usage patterns and then produce a linear order of apps according to their
quality assessments. More importantly, domain-specific knowledge and common
sense, serving as prior information, can be incorporated into the ranking process,
which provides an opportunity to produce interpretable ranking results that may be
useful for mining knowledge from users’ behavioral information. As a consequence,
the pairwise-comparison-based ranking method can be seen as a refinement of the
previously proposed pointwise-comparison-based ranking method.

It can be learned from the dataset what usage pattern each user assigns to each
app. With this observation, if usage patterns themselves can be properly ordered,
then the information of how each user will rank the apps is also available. As a
consequence, in order to arrange a collection of apps into a linear order from the
users’ perspective, one possible idea is to view the desirable linear order of apps
as an observable representation of users’ latent aggregate preference obtained by
balancing users’ conflicting individual preferences as far as possible. To realize this
idea, we have to discuss the following three questions:

• How to assign a linear order to usage patterns?

• How to get a pairwise comparison between two apps by balancing users’ con-
flicting individual preferences?

• How to merge all pairwise comparisons between apps into a linear order?

The rest part of this section will be organized as follows. In section 2.4.2, we dis-
cuss the first question by taking into consideration domain-specific knowledge and
common sense about life cycle management of app development, and then based on
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the linear ordering of usage patterns we propose a model of users’ individual prefer-
ences. In section 2.4.3, the second question is discussed from a Bayesian perspective.
That is, users’ conflicting individual preferences of a pair of apps are formulated as
a pair of probability distributions that summarize users’ posterior degree of beliefs
about the comparison between the pair of apps. With this knowledge representa-
tion of users’ conflicting individual preferences for a pair of apps, the third question
is interpreted as a stochastic acyclic subgraph problem on a complete digraph with
each arc associated with a constant weight obtained from a known probability dis-
tribution that summarizes users’ posterior degree of beliefs about the comparison
between the pair of apps. Section 2.4.4 shows the extraction results of the ranking
method.

2.4.2 Users’ individual preferences

This section introduces a deterministic model of users’ individual preferences of the
apps to be ranked. The main idea is to give an ordinal structure to the set of usage
patterns, which can be used to reflect users’ satisfaction level during their usage
of the apps. And, the preference relation of a user’s preference of a pair of apps
that the user has ever installed within a given period of time can be determined by
comparing the user’s satisfaction level of the two apps.

Linear ordering of usage patterns

To model a user’ individual preferences of apps based on the user’s usage records,
one possible way is to introduce an ordinal structure on {0, 1}l . With this ordinal
structure, a user’s individual preferences of two apps can be obtained by reading the
user’s usage patterns of the apps. Recall that usage pattern is a compact expression
of a user’s behavior record. Thus, it would be more convenient to assign an ordinal
structure to C(h). In particular, we discuss the ordinal structure of C(2). Let ≺2 be
the order relation on C(2). At the vey beginning, however, it can be noticed that
what order I I should be assigned under ≺2 has to be discussed. Without having
ever installed A within T , user D may hardly make any meaningful comparison
between A and those apps that the user has ever been installed within T . Therefore,
it may be reasonable to remove usage pattern I I from our consideration. Denote
C2 = C(2)\{I I}. Similarly, we can also define Ck with other values of k. With this
presumption, we give two possible ordinal structures restricted to C2.

The first construction of the linear order of C2 is given as follows:

UU ≺2 NU ≺2 RU ≺2 CU ≺2 IN

≺2 UR ≺2 NC ≺2 RC ≺2 CC.

This construction is due to a lexicographic order ≺L on the set of all possible usage
records (i.e., {0, 1}l ), that is, for any two distinct vectors r, r′ ∈ {0, 1}l , we say r ≺L r′

if there exists a l0 , where 0 ≤ l0 ≤ l− 1, such that (r)j = (r′)j , for j = l0 + 1, ..., l, but
(r)l0 = 0 and (r′)l0 = 1. Then, recalling that usage pattern p ∈ C2 can be viewed as a
subset of {0, 1}l , for any two distinct usage patterns p, p′ ∈ C2 we say p ≺2 p′ if and
only if ∀r ∈ p and ∀r′ ∈ p′, we have r ≺L r′ . In other words, this construction can
be viewed as a lexicographic order on C2, which is obtained by using a linear order
on C1, that is,

U ≺1 N ≺1 R ≺1 C.
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More concretely, for any two distinct usage patterns p2 p1, p′2 p′1 ∈ C2, where p1, p2, p′1, p′2 ∈
C1, we say p2 p1 ≺2 p′2 p′1 if and only if p1 ≺1 p′1 , or p1 = p′1 and p2 ≺1 p′2.

The second construction of the linear order of C2 is given as follows:

CU ≺2 RU ≺2 NU ≺2 UU ≺2 CC

≺2 RC ≺2 NC ≺2 UR ≺2 IN.

In this construction, usage pattern is thought of as the observable reflection of the
change of satisfaction level in the last two consecutive time intervals. Notice that, the
usage patterns representing a transition from uninstallation (or ignorance) to instal-
lation will be associated with higher ranks than any other patterns, and that those
patterns representing a transition from installation to uninstallation (or ignorance)
will be associated with lower ranks. Moreover, if a usage pattern represents fewer
installation states in a near past period, then it will be associated with a higher rank.
We call the first construction and the second one the lexicographic order of C2 and
the jump order, respectively.

The basic idea of constructing the linear orders of C2 comes from pattern analysis
of product life cycle. An overview of the theory of product life cycle can be found
in [80, 99, 105, 130, 147]. To explain the basic idea of the orders, we employ the clas-
sical theory of product life cycle where entire industry of product life cycle can be
roughly divided into four stages, based on a bell-shaped curve of sales volume. As
a digital product of information technology, sales volume is not a standard measure
to evaluate the successfulness of smartphone apps. Instead, quantitative indices of
market share and structure of new users and loyal users are usually more mean-
ingful measures for evaluating smartphone apps. Therefore, we divide the product
life cycle of smartphone apps into similar four stages: market development, market
growth, market maturity and market decline.

In the market development stage, when a new product is first released to market,
before there is a proved demand for it, and often before it has been fully proved out
technically in all respects. The number of users is low and creeps along slowly. In
this stage, new smartphone apps usually need a period of time to self-iteratively
update in order to adjust themselves for meeting the needs of targeted users, so
smartphone app vendors not only pay attention to absorbing new users while losing
as few new users as possible. In the stage of market growth, demand begins to
accelerate and the size of the total market expands rapidly. In this stage, smartphone
app vendors simultaneously would like to expand the market share of their products
and also make profits from loyal users. Hence, absorbing new users and loss of loyal
users are attached to great importance. This observation thus gives the jump order
to capture the characteristics of app market growth,

CU ≺2 RU ≺2 NU ≺2 UU ≺2 CC

≺2 RC ≺2 NC ≺2 UR ≺2 IN.

In the mature stage, market demand levels off and grows at a low rate. In this stage,
market segmentation has been reinforced and targeted users are converted into loyal
users. To increase profits, smartphone app vendors pay more attention to improving
usage experience of loyal users instead of absorbing new users. This observation
thus gives the lexicographic order to capture the characteristics of mature market,

UU ≺2 NU ≺2 RU ≺2 CU ≺2 IN
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≺2 UR ≺2 NC ≺2 RC ≺2 CC.

In the decline stage, the product begins to lose consumer appeal and sales drift
downward. In this stage, loyal users begin to lose their interest to old apps and
seek for modern substitutes, while in order to maximize profit, app vendors also
stop to update smartphone apps at some point where margin profit decreases fast
but cost steadily increases. At the time being of our analysis, we are interested in
analyzing popular smartphone apps and they are not in their decline stage, so we
may focus on the lexicographic order and jump order for further analysis.

As there could be a variety of possible formulations to specify the random pro-
cess for a standard of comparison discussed in the previous section, there could also
be a variety of possible formulations to specify a meaningful ordinal structure as-
signed to C2 , depending on how we incorporate our prior knowledge and beliefs
into interpreting the cognitive process of ordering. This knowledge representation
brings a potential to construct a variety of structural hypotheses concerning cogni-
tive process of comparison for further study.

A model of a user’s individual preferences

This part will propose a model of a user’s individual preferences of two apps with
the ordinal structure of C2. If a ordinal structure of Ck for other values of k can be ob-
tained, then this method can be generalized to model a user’s individual preferences
with the ordinal structure of Ck.

Let ϕ2 : {0, 1}l → C2 be the classification function of behavior records, that is,
mapping a behavior record to its usage pattern of length 2. Denote by ≺D,T (with-
out causing confusion, short for≺D) the preference relation of D’s individual prefer-
ences of two apps with respect to T and by ∼D,T (without causing confusion, short
for∼D) the relation of user D’s indifference between two apps with respect to T . We
say that

Ai ≺D Aj ⇔ r(D, Ai, T ) 6= 0, r(D, Aj, T ) 6= 0, and

ϕ2(r(D, Ai, T )) ≺2 ϕ2(r(D, Aj, T )),

and that

Ai ∼D Aj ⇔ r(D, Ai, T ) 6= 0, r(D, Aj, T ) 6= 0, and

ϕ2(r(D, Ai, T )) = ϕ2(r(D, Aj, T )).

Similarly, we can also define �D. Intuitively speaking, we say there exists a pref-
erence relation of a user’s individual preferences between two apps with respect to
T only if the user has, at least once, ever installed both applications within T (but,
needless to have to install both in the same time interval). Let D(Ai, Aj) = {D ∈
D : r(D, Ai, T ) 6= 0 and r(D, Aj, T ) 6= 0} be the collection of the active users with
respect to Ai and Aj.

2.4.3 Users’ aggregate preference

Denote by ≺ the relation of users’ aggregate preference between two application.
A ≺ A′ means A′ is preferred to A by D. Our goal is to find a linear order Aσ(1) ≺
. . . ≺ Aσ(m), for some permutation σ on the set {1, 2, . . . , m}, which is consistent
with users’ behavior records as far as possible. In this section, we first model users’
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TABLE 2.4: Divergences of users’ individual preferences

Scenario 1 aij = 70 bij = 10 cij = 10

Scenario 2 aij = 2 bij = 0 cij = 0

Scenario 3 aij = 0 bij = 0 cij = 0

Scenario 4 aij = 21 bij = 50 cij = 20

aggregate preference between two apps from a Bayesian view, and then interpret the
app ranking problem as a stochastic acyclic subgraph problem.

Divergence of users’ individual preferences

As has been discussed, usage patterns can be viewed as ordinal numbers, which
leads to a deterministic model of the preference relation of users’ individual prefer-
ences between two apps. However, when we proceed to discuss the relation of users’
aggregate preference between two apps, uncertainties arise due to the divergence of
users’ individual preferences. Therefore, a compromise between users’ conflicting
preferences has to be introduced. This raises the problem of how to summarize and
represent the preference relation of users’ aggregate preference between two apps
that could meet users’ divergent individual preferences as far as possible.

In this application, due to the existence of the neutral users and the ignorant
users, we have to deal with users’ conflicting preferences in the context of permitting
users’ indifference and ignorance. To investigate with this problem, we begin with
considering several artificial scenarios. For convenience, define aij = |{D ∈ D :
Ai ≺D Aj}|, bij = |{D ∈ D : Ai ∼D Aj}|, and cij = |{D ∈ D : Ai �D Aj}|.
Imagine that, Ai and Aj are compared by |D(Ai, Aj)| = 100 users. Then, we discuss
the scenarios shown in Tab. 2.4.

In Scenario 1, since 70 out of the 90 users prefer Aj to Ai , Aj is more likely to
be preferred. It also allows a degree of possibility that Ai could be preferred to Aj .
In Scenario 2, however, we would have few confidence in concluding so with only
two observations, even though the users both prefer Aj to Ai . Scenario 3 looks
extreme but is still possible to happen, for example, if both apps are relatively new.
In this case, we can hardly say anything since no evidence is available to support
any conclusion. In scenario 4, it is more comfortable to conclude that Ai is almost
as good/bad as Aj, although the number of the users who prefer Aj to Ai is slightly
larger. From these scenarios, we can observe that : (1) the percentage aij

aij+bij+cij
is not

always practical to reflect the relation of users’ aggregate preference; (2) the number
of the ignorant users will influence the degree of our certainty to draw a conclusion;
(3) Ai ≺ Aj and Aj ≺ Ai are not mutually exclusive events due to the appearance of
the neutral users.

Comparison of two applications

We assume that there is an underlying but unknown probability pij that the relation
of users’ aggregate preference is Ai ≺ Aj. The relations of users’ individual pref-
erences obtained from their behavior records are thought of a random sampling of
|D(Ai, Aj)| independent Bernoulli trials with an identical probability of success pij.
Formally, for any D ∈ D(Ai, Aj), let RD

ij be a Bernoulli trial with respect to Ai and Aj

such that
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RD
ij =

1, if Ai ≺D Aj,

0, otherwise,

and Pr(RD
ij = 1) = pij, where 1 means ”success” and 0 means ”failure”. If we further

assume that Ai and Aj are independently compared, then the likelihood function of
s successes and f failures (notice that |D(Ai, Aj)| = s + f ) given pij = x can be given
in the form

l(s, f |pij = x) = xs(1− x) f .

And we would like to estimate pij with s and f .
When the value of s + f is very small, however, the naive estimate of pij by the

percentage s
s+ f could be misleading. Here, we take Scenario 2 for an example. In this

case, based only on two observations, p̂ij = 1 is nevertheless a bad estimate. This is
because we usually begin our estimation with an amount of prior belief concerning
prior expectations and uncertainties. For example, before estimating pij we may
have thought of that one app is quite unlikely to be completely preferred to another
one, unless sufficiently convincing evidence has already been provided before our
estimation. To overcome this difficulty, we adopt a Bayesian approach to deal with
users’ conflicting individual preferences. For an overview of Bayesian statistics, we
refer the books [72] and [93].

To begin with, pij is assumed to be distributed according to a beta distribution.
Suppose that a continuous random variable X has a beta distribution with parameter
α and β, where α > 0 and β > 0. Then the probability density function of X has the
following form

f (x|α, β) =
xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1,

where B(α, β) = Γ(α+β)
Γ(α)Γ(β)

is the beta function and where Γ(α) is the gamma function:

Γ(α) =
∫ ∞

0
xα−1e−xdx.

The mean and variance of the beta random variable X are µ = α
α+β and σ2 =

αβ
(α+β)2(α+β+1) , respectively.

The beta distribution is often viewed as a probability distribution of probabili-
ties, and plays a crucially important role in many Bayesian statistical analyses. Here
we refer the book [72] for an overview. Since the beta distribution can take a vari-
ety of forms, it can be used for summarizing our prior belief of pij to be estimated.
More concretely, the values of α and β can be thought of as α successes and β fail-
ures that have been imaginarily observed, and thus it allows us to express our prior
expectations and uncertainties with properties specified by the values of α and β.

Moreover, it is also very convenient to update our expectations and uncertainties
after a collection of observations is obtained, due to the fact that beta distribution is
a conjugate prior with respect to the likelihood function of Bernoulli trials. Assume
that the prior probability distribution of pij is beta(αij, βij). After aij successes and
bij + cij failures are observed, the posterior probability distribution of pij is given by
Bayes’ theorem (in the form of density probability function),
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f (pij = x|aij, bij + cij)

=
f (x|αij, βij)l(aij, bij + cij|x)∫
f (x|αij, βij)l(aij, bij + cij|x)dx

=

xαij−1
(1−x)βij−1

B(αij,βij)
xaij(1− x)bij+cij∫ 1

0
yαij−1

(1−y)βij−1

B(αij,βij)
yaij(1− y)bij+cij dy

=
xαij+aij−1(1− x)βij+bij+cij−1

B(αij + aij, βij + bij + cij)
,

which is another beta distribution with parameters αij + aij and βij + bij + cij, sum-
marizing our posterior expectations and uncertainties. In this way, each relation of
users’ aggregate preference can be associated with a beta distribution, representing
our posterior belief of the underlying probability that the relation will happen.

If the preference relation between Ai ≺ Aj and Aj ≺ Ai has to be decided, then
their associated beta distributions may be useful for a comparison. For example,
if both distributions are highly concentrated at their mean values with distinguish-
ably non-overlapping support, then one may conclude that the one with smaller
mean value is unlikely to be preferred to the other. This measure usually called
mean-variance ratio MVR, written as µ

σ , seems proper to be used to capture this idea
and hence may provide a useful criterion for dealing with the case where the non-
overlapping support is less distinguishable. For example, if beta(1, 1) is used as the
priors of the relations Ai ≺ Aj and Aj ≺ Ai, then the MVRs of Ai ≺ Aj and Aj ≺ Ai

are
√

(3+aij+bij+cij)(1+aij)
1+bij+cij

and
√

(3+aij+bij+cij)(1+cij)
1+aij+bij

, respectively. Notice that, if aij > cij

is assumed, then 1+aij
1+bij+cij

>
1+cij

1+aij+bij
suggests that Ai ≺ Aj be chosen since it is more

likely to happen. This choice coincides with the majority rule if the neutral users are
removed from consideration.

Stochastic acyclic subgraph problem

Before discussing how one may rank the apps into a linear order based on pairwise
comparisons of the apps, we first introduce some necessary notation concerning di-
graphs. A strict digraph G = (V, E) consists of a finite nonempty set V of nodes
and a set E of arcs that are ordered pairs of different elements of V without any loop
or parallel arc. If (u, v) is an arc then (u, v) is said to go from u to v. We also say u
dominates v.

If G = (V, E) is a digraph, then every digraph G′ = (V ′, E′) with V ′ ⊆ V and
E′ ⊆ E is called a subdigraph of G. A nonempty set of arcs

P = {(v1, v2), (v2, v3), . . . , (vk−2, vk−1), (vk−1, vk)}

in G = (V, E) such that vi 6= vj for i 6= j is called a (v1, vk)-dipath of length k− 1. If
P is a (v1, vk)-dipath and (vk, v1) ∈ E then C = P ∪ (vk, v1) is called a k-dicycle. A
digraph G = (V, E) which contains no dicycle is called acyclic. A standard instance
of (weighted) acyclic subgraph problem can be described as follows. We are given a
digraph G = (V, E) with constant arc weight wij for every (i, j) ∈ E, and we look for
an acyclic subdigraph G′ = (V ′, E′) of G such that w(B) := ∑(i,j)∈E′ wij is maximized.
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With the model of users’ aggregate preference of two apps, we interpret the app
ranking problem as a stochastic acyclic subgraph problem on a complete digraph
with each arc associated with a weight distributed according to a beta distribution.
To see this, let G = (V, E) be a complete digraph, where |V| = |A|, node vi of G
represents app Ai, and arc (vi, vj) ∈ E represents the relation Aj ≺ Ai, for all i 6= j.
Each arc (vi, vj) ∈ E is associated with a beta distribution Beta(αji + aji, β ji + bji + cji),
representing our posterior belief of that Aj ≺ Ai will hold, where αji and β ji specify
our prior belief. Based on the information of the beta distributions associated to the
arcs, we are to find an acyclic subgraph G′(V ′, E′) and hence a linear order of A
that meets our posterior belief of users’ aggregate preference as far as possible. This
problem is stochastic, since each arc weight is a random variable of beta distribution;
it is combinatorial, since for all i 6= j either (ui, uj) ∈ E′ or (uj, ui) ∈ E′ will be chosen,
but not both.

Deterministic reformulation method is often used to obtain a workable solution
of stochastic combinatorial problem. In this application, a possible way of doing
this is to provide a reasonable criterion of ”optimality” for choosing the optimal
acyclic subgraph. Recall that MVR is a criterion for comparing two apps, reflecting
our posterior degree of ”expectation per unit of uncertainty”. Therefore, MVR may
be used as a measure for choosing the linear order between apps based on their
pairwise comparisons. To do this, each arc (vi, vj) ∈ E is associated with weight wij,
which is the the MVR of the beta distribution associated to the relation Aj ≺ Ai, that
is,

wij =

√
αji + aji

β ji + bji + cji
(αji + β ji + aji + bji + cji + 1).

Then, the stochastic acyclic subgraph problem can be converted to a deterministic
acyclic subgraph problem, given by

max
2

m(m− 1) ∑
i 6=j

wijxij

s.t. xij + xji = 1, for all distinct pairs of i and j, (Type I)

xij + xjk + xki ≤ 2, for all distinct triples of i, j and k, (Type II)

xij ∈ {0, 1}, for all distinct pairs of i and j, (Type III)

where Type I together with Type III constraints means a binary choice has to be made
between each pair of apps; Type II constraints are used to remove cyclical relations
between any subset of apps and hence restrict the search of optimal solution within
the space of all possible linear orders. The problem has been well studied and has
many important applications. The study of acyclic subgraph problem can be found
in, for example, Garey and Johnson [60], Grötschel et al. [69], [70] and [71], and
Pedings et al. [136].

2.4.4 Experimental result

This part shows the experimental results of the ranking method for app ordering
and also explains how the ranking results can be used to mine potentially use-
ful knowledge from the users’ behavior records. As has been mentioned, since
the pairwise-comparison-based ranking method can be seen as a refinement of the
previously proposed pointwise-comparison-based ranking method, we apply the
pairwise-comparison-based ranking method to sort the superior social apps extracted
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TABLE 2.5: The ranking results of SR, LR and JR

App SR LR JR

Twitter 1 3 2

Facebook 2 2 4

Mixi 3 4 8

Gree 4 10 12

Ameba 5 7 9

Comm 6 14 14

Bump 7 8 11

Mbga 8 13 10

Instagram 9 12 1

PersonalSpace 10 6 3

Sockets Live 11 1 7

Twicca 12 9 5

MixiSH 13 11 13

2chMate 14 5 6

Saitosan 15 15 15

by the pointwise-comparison-based ranking method. The ranking result obtained by
the pointwise method assigned a score ranking (SR) number to each of the extracted
apps; the ranking results obtained by the lexicographic order and by the jump order
are denoted by LR and JR, respectively. In the experiment, the data collected from
January 2013 to June 2013 were used for extracting superior social apps; moreover,
uninformative priors were used for specifying our prior, that is, αij = βij = 1, for all
distinct i, j = 1, ..., 15. Then, the MVRs between the extracted apps can be efficiently
obtained, due to the fact that most of the Android users only use a few of the apps of
the same category. Finally, to obtain LR and JR of the extracted apps, we solved the
acyclic subgraph problem on a weighted complete digraph of 15 nodes by using the
commercial software Xpress. In the experiment, the exact solutions can be obtained
within 0.1 second on a regular PC. Tab. 2.5 shows the results of SR, LR and JR.

First of all, from the experiment results, it can be seen that the ranking results ob-
tained by the pairwise-comparison-based method are different from those obtained
by the pointwise-comparison-based method. This suggests that the two ranking
methods may be essentially different and hence may be for complementary use. Sec-
ondly, the ranking results obtained by LR are also different from those obtained by
JR, which suggests that different ordinal structures may lead to different ranking
results, even with the same ranking process and algorithm. This observation is de-
sirable and appealing, because LR and JR are constructed to incorporate different
prior knowledge and hence to reflect different aspects of app quality assessment.

However, since neither target ranking nor a single class label is available, there
is no immediate performance measure to calibrate the ranking procedure. This is,
to testify the statistical significance of the ranking results is not possible. To over-
come this problem and evaluate our ranking method, we turn to testifying practical
significance of the ranking results by using public open information. In particular,
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this strategy may be possible since the extracted apps are daily used social apps
with great popularity and hence useful information may be available for evaluation
purpose. Since the lexicographic order and the jump order correspond to mature
stage and growth stage, respectively, they can be used in a complementary way
to identify potentially promising apps of high quality assessment, especially those
ones still in their rapid growth stage. From Tab. 2.5, Twitter, Facebook and Insta-
gram can be identified as the superior apps. Especially, Instagram seemed to be the
most promising one as it probably still experienced a fast growth far from maturity.
In particular, we are interested in the question of whether Instagram was indeed a
promising one in the real-world sense. We investigated public information source to
verify whether our method works. According to [52] and other related commercial
reviews, we learned the following news about Instagram:

• In April 2012, Facebook, the social network giant was about to merge with
the photo-sharing platform Instagram, a company that only employed 13 peo-
ple and so far did not generate any revenue. However, Mark Zuckerberg, the
founder and CEO of Facebook believed that the company he was about to ac-
quire was of great value to his own firm. In previous negotiations, the sum of
1 billion was mentioned as a price for Instagram. The 28-year-old Zuckerberg
had to act quickly. He wanted to finish the merger before the Initial Public
Offering of Facebook scheduled for May 2012. Zuckerberg knew that other
services like Google and Twitter were also interested in Instagram.

This information supports the hypothesis that Instagram was indeed a promising
app of high quality assessment. The ranking method seems able to provide a work-
able ranking result for mining useful knowledge from the dataset of users’ behavior
records.

2.5 Conclusion

In this chapter, we discussed the problem of ranking smartphone apps according
to their quality assessment from a user’s perspective based on large-scale users’ be-
havioral information which can automatically be collected without the requirement
of users’ active participation. The dataset we used contained millions of users’ be-
havior records. At the data preprocessing stage, we proposed a method to classify
users into a controllable number of types, called usage patterns, based on their be-
havioral data of app usage. With the processed data, two ranking methods were
proposed, one for extracting superior apps and the other for ordering the extracted
apps. In both methods, context-dependent prior information as well as domain-
specific knowledge was summarized and represented from a Bayesian perspective.
The resulting knowledge representation played an important role both in the pref-
erence learning phase and in the interpretation phase of the ranking methods.

In order to extract superior apps, a cognitive process of pointwise comparisons
was first discussed and mathematically formulated by introducing the notions: stan-
dard of comparison and random user; then, a score function with desirable proper-
ties were constructed and used to assign a value of quality assessment measurement
to each of the apps to be ranked. More concretely, the rationale behind this ranking
method is that (1) an app’s distribution of usage patterns is an observable reflection
of quality assessment; (2) if a standard of comparison can be constructed, then the
apps whose distribution is "above" the distribution of the standard can be extracted
as the desirable superior apps; (3) a score function with desirable properties is thus
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needed to quantify how much a distribution deviates from another. Data experiment
showed that the pointwise-comparison-based ranking method is efficient and effec-
tive to extract superior apps. Specifically, the score function S(P, Q) can be seen as a
class of dissimilarity distance functionals used in a clustering analysis, where Q are
the parameters specifying the standard of comparison. Although the construction of
S and Q is an application-specific matter, the basic idea and rationale for construct-
ing a class of context-dependent score functions with desirable properties may be
analogously applied and hence properly generalized for other similar applications.
This provides a potential to construct a functional space of application-specific hy-
potheses for various knowledge-driven ranking tasks of automatic knowledge dis-
covery.

In order to arrange the extracted apps into a linear order, a cognitive process of
comparisons from an end-user’s perspective was first discussed and mathematically
formulated by assigning an ordinal structure to the set of usage patterns, and then
based on the results of pairwise comparisons between the extracted apps, the ag-
gregate preference into which users’ individual preferences merged can be obtained
and used as the ranking result. Because the dataset we used provided neither tar-
get observations nor class labels, the ranking algorithm we proposed to learn users’
preferences from the data is essentially unsupervised. The basic idea and rationale
for this learning algorithm is to construct an application-specific loss function which
serves as a rational decision-making agent to judge app quality assessment, instead
of blindly fitting data with commonly used loss functions that stress more on the
mathematical or statistical senses. More concretely, the desirable linear order of
the extracted apps is the one that least violates the users’ individual preferences,
which can be formulated and solved as a stochastic acyclic subgraph problem on a
complete digraph with each arc associated with a weight distributed according to
a known distribution. Data experiment showed that the ranking results given by
the pairwise-comparison-based method are different from the ranking result given
by the the pairwise-comparison-based method; moreover, they can work together to
provide workable ranking results that might be useful for mining knowledge from
users’ behavioral information.
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Chapter 3

Discovering the knowledge of item
rank from consumer reviews

3.1 Background

E-commerce websites have proliferated at a rapid rate over the last decade, which
improves customer experience and online businesses largely. Customers purchase
products based on reviews provided by the consumers of the product, because with-
out any physical look-and-feel experience of a product, prospective consumers have
to rely on the feedback from past consumers to make the final decision of whether
or not to purchase the product. Consumers try to find out how other consumers
have recommended the product based on its quality, usefulness and many other pa-
rameters. Since opinion of consumers plays an important role in decision making
for business, information processing techniques that can discover useful knowledge
from consumer reviews are desired in a variety of business applications involving
consumer analytics. As the number of consumers shifting to online platforms in-
creases, the number of consumer reviews available online also increases at a rapid
rate and presents new opportunities in the way information is searched and knowl-
edge is discovered.

With the ever increasing competition in product development, consumers have
numerous options to choose from. As a consequence, it is also hard for a user to
determine those products that best match their requirements in an effective and effi-
cient way. To ease this difficulty, e-Commerce service systems and information shar-
ing platforms employ opinion mining techniques to classify and extracting useful
information such as the main features commented upon by customers from a variety
of information sources of online consumer reviews. The processed information that
contains the knowledge of consumer preferences is usually further summarized and
presented in a ranking form. Therefore, a variety of rankings regarding consumer
reviews and products can be found online. Good product rankings constructed from
multi-attributive, semantic-based and consumer-centric features will often enrich a
customer’s knowledge and experience of products and hence help prospective con-
sumers improve their efficiency of decision-making by reducing their cost of search.
This makes the role of consumer reviews and product rankings regarding a product
highly critical to businesses.

The explosion in number and variety of product rankings also brings new chal-
lenges in the way information is retrieved and knowledge is discovered. For a va-
riety of reasons, most of ranking systems and information sharing platforms don’t
provide the rationale behind their ranking results in an explicit and expressive way.
Without such knowledge, when comparing similar products that provide almost the
same functionality customers might wonder why and how one product is ranked
over another. The case may be even worse if customers unfortunately find several
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conflicting ranking results at different information sources. This gives rise to the
need of discovering useful knowledge of product rankings from consumer reviews.
From a practical perspective, a deeper knowledge of product rankings will not only
help customers find only those products that suit their individual needs best but
also help e-Commerce vendors better understand the ranking rationale used by oth-
ers including their competitors.

Motivated by this observation, we present a novel method for discovering the
knowledge of rank information from consumer reviews. The proposed method in-
tegrates a general cognitive process of comparison and hence may be used to under-
stand the rationale of a general ranker as well as to learn its preferences simultane-
ously.

3.2 Related works and new contributions

Our work is inscribed within the body of consumer reviews mining. Online con-
sumer reviews, functioning both as informants and as recommenders, provide prod-
uct information and recommendations from the customer perspective and thus are
important in making purchase decisions and for product sales. Related studies can
be found in [133, 5, 132, 154, 192]. This literature mainly discusses the impact of
product reviews on purchasing intention and sales volumes based on numeric mea-
sures representing the valence and volume of reviews or semantic measures rep-
resenting quality of reviews, demonstrating how textual data can be used to learn
consumers’ preferences or used for predictive modeling of future changes in sales.
In this chapter, we use textual information regarding product descriptions in con-
sumer reviews to reveal the ranker’s preferences.

Our work is also related to preference learning. Roughly speaking, preference
learning is about inducing predictive preference models from empirical data. In the
literature on choice and decision theory, two main approaches to modeling prefer-
ences can be found, namely in terms of utility functions and in terms of preference
relations. From a machine learning point of view, these two approaches give rise
to two kinds of learning problems: learning preference relations and learning utility
scoring functions. Related works in learning utility functions can be found in [73, 76,
77, 92, 180]. In particular, we notice the work by Dembczyński et al. [40], in which
they proposed a methodology based on learning of an ensemble of decision rules.
Since decision rule models are "glass box" providing a clear justification of decisions,
their work emphasized on explanation.

The method we proposed in this chapter is an inverse problem of the ranking
method proposed in the section 2.3 of Chapter 2 where we proposed a ranking model
by introducing a cognitive process of comparison. Recall that a ranking model of
a ranking process gives a mathematical description of the operating behavior of a
ranker, as well as its qualitative and quantitative operating conditions, by specify-
ing the principal quantities of the process, namely: input, system parameters and
output. The ranking method for app extraction is direct, in the sense that given the
input of users’ behavior records and the system parameters Q, we computed a score
for each app by using a specific score function S and hence find out the output of the
ranking model. Because there isn’t any system parameter, target observation or class
label in that dataset we used for app quality assessment, we had to construct Q and
S manually and hence were left with no alternate but the direct approach. The con-
structions of Q and S are essentially domain-specific and context-dependent, making
it less convenient in automatic knowledge discovery.
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In the cases where rankings of items are observable and known, but other prin-
cipal quantities of ranking process are unknown or only partially known, we may
be interested to know how the items are ranked by the ranker and thus the ranking
rationale behind the ranking process. When explanation is also the focus, a the-
ory of the ranking rationale, taking account of available prior knowledge, should
be developed and useful to guide the direction of explanation. The general form of
reasoning that encompasses both modeling and theorizing is called discovery, and
the endeavor of discovering previously unknown knowledge is related to knowl-
edge discovery. In general, knowledge discovery is the organized automatic process
of identifying valid, novel, useful, and understandable patterns from complex data
sets, involving formulating hypotheses, developing model and algorithms, and dis-
covering previously unknown patterns. In particular, we define the knowledge dis-
covery problem, in a more specific sense, as the combination of the reconstruction
problem and the identification problem, emphasizing that the system parameters
are used to extract as much as information as possible, namely:

• Knowledge discovery problem: Given the output and some prior knowledge
of the input and the system parameters, find out input and determine the sys-
tem parameters simultaneously, such that the input has led to this output and
the system parameters are in agreement with the prior knowledge and the re-
lation between input and output.

Equipped with target observation, the problem of constructing Q and S is an
identification problem of finding out unknown parameters of known consequences.
That is, given the input data and the output target observation, determine the system
parameters Q and S which are in agreement with the relation between input and
output.

Motivated by this idea, this chapter discusses a method for discovering the knowl-
edge about the rank of items by constructing a learning machine that makes pre-
diction and explanation simultaneously. To concretize the discussion, a collection
of books ranked in a linear order are used as the observed output, and consumer-
generated product reviews of these books are used as the input. The observed rank-
ing of the books is assumed to be the ranking result of a ranking process, in which
consumer reviews are used as input. The ranking rationale is that the ranker com-
pares positive and negative aspects of different book features with its expectations
of those features and gives higher ranks to the books exceeding its expectations. A
theory of the ranking rationale is formulated, which leads to a semantic space of hy-
potheses described by system parameters. With the input, system parameters and
observed output, we are interested in the questions of why and how one book is
ranked over another. This actionable knowledge may be helpful to give a better un-
derstanding of the behavior of the book ranker and hence the ranking of the books.

3.3 Problem description

Observing k ranked items (books) I1 ≺ . . . ≺ Ik as well as their consumer reviews,
we think of that the item rank is determined by a ranker, who evaluated the qualities
of item attributes based on the consumer reviews. Reviews in itself are not sufficient.
The entire content posted by consumers may not be relevant or useful. We need to
display the content that is most relevant and useful. Filtering out key attributes out
of this plethora of content is a task that requires critical analysis. Here, assume that
we have discovered a set of relevant and useful attributes. To describe the problem,
we first show how to process the data and introduce some notation and symbols.
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Let { f1, . . . , fm} be the set of item attributes. For simplicity, each attribute f is
described either positively or negatively, denoting respectively by f+ and f−. Let
T = (t+1 , . . . , t+m , t−1 , . . . , t−m) ∈ {0, 1}2m be a vector of a consumer review,

t+s =

{
1, if a positive description of fs is observed,

0, otherwise.

We define t−s in a similar way. In addition, t+s + t−s ≤ 1, for s = 1, . . . , m.
For each item, let Ti = {Ti,1, . . . , Ti,N(i)} be the set of vectors of consumer reviews

of item i and define pi =
∑

N(i)
j=1 Ti,j

∑
N(i)
j=1 |Ti,j|

as the ranker’s impression vector towards item i,

where |T| is the number of ones in T. It can be seen pi ∈ P , where

P =
{

p = (p+1 , . . . , p+m , p−1 , . . . , p−m) ∈ [0, 1]2m :
m

∑
j=1

(p+j + p−j ) = 1
}

.

To process the data of ranked items, associate item Ii with label yi, such that
yi = 1 if and only if i ≤ r for some r < k, otherwise yi = −1. Rewriting the
rank into binary classification will great simplify our discussion and will not lose
the generality of the method.

Given the data (p1, y1), . . . , (pk, yk), our goal is to simultaneously explain and
predict the behavior of the ranker.

3.4 Problem formulation

To explain and predict the behavior of the ranker, this section first introduces a gen-
erative ranking model. Then, with this model we formulates the questions of interest
as a learning problem.

3.4.1 A generative model of comparison

Recall that in section 2.3 of Chapter 2, a cognitive process of comparison is intro-
duced to model the process of ranking. Rankings are made with reference to a
contextually determined standard in a pointwise way. Because there isn’t any ob-
servation of ranking results in that case, we had to construct Q manually. Therefore,
the construction of Q involved strong assumptions, making it less convincing for a
general use. Besides this, the construction of S was also specified manually, making
it inconvenient for automatic knowledge discovery, although S is proved to have
desirable properties. In this work, we employ the same cognitive process to model
a ranker’s ranking behavior, and also discuss the constructions of the standard of
comparison and score functions, but from a new perspective.

To establish a dependency relationship between p and y, we introduce a latent
and unknown vector q called anchor vector, serving as the role of Q. That is, q is the
neutral standard to be compared with p. Unlike what was done before, we construct
a class of score functions by considering what desirable properties a score function
should have.

First of all, S should be in the form S(p, q) to summarize the cognitive process
of comparison. Since the semantics of q plays a role of the standard of comparison,
it is also comfortable to have q ∈ P . Otherwise, p and q may not be comparable.
Second, given a fixed standard of comparison q, if a product receives more positive
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comments on every attribute than another product does, then the product with more
positive comments should have a larger score value. Third, if q is served as the
standard and p is ranked higher than q, then it is intuitive to say q is ranked lower
than p when p is served as the standard; in the numerical sense, when p and q
exchange their positions in S, the score value should change its sign. Fourth, score
functions with a linear structure should be investigate first, because they are easy to
understand and also useful for approximating other functions.

We say p � p′ if and only if a product receives more positive comments on every
attribute, that is, p+j ≥ p′+j and p−j ≤ p′−j , for j = 1, . . . , m. Then, a class of scoring
functions S : P × P → R can be constructed from the properties mentioned above
as follows:

B1 q ∈ P (existence)

B2 S(p, q) ≥ S(p′, q) if p � p′ (monotonity)

B3 S(p, q) + S(q, p) = 0 (asymmetry)

B4 S(θp + (1− θ)p′, q) = θS(p, q) + (1− θ)S(p′, q), ∀θ ∈ [0, 1] (linearity).

It can be verified each S is a bilinear function, that is, S(p, q) = pT Aq, for some
asymmetric matrix A,

A =

[
A++

m×m A+−
m×m

A−+m×m A−−m×m

]
called interaction matrix, satisfying a system of equalities and inequalities derived
from B2 to B4 such as A++

m×m ≤ A+−
m×m and A−+m×m ≤ A−−m×m entry-wisely. For simplic-

ity, let p = (p+, p−) and q = (q+, q−). In addition, S(p, q) also has the following
appealing properties:

P1 S(q, q) = 0, for any q ∈ P . It is an immediate result from B3.

P2 S
(
(p+, 0), (0, q−)

)
≥ 0. This can be seen as follows: by B2 and P1, we have

S
(
(p+, 0), (0, q−)

)
≥ S

(
(0, q−), (0, q−)

)
= 0

since (p+, 0) � (0, q−).

P3 S is continuous on P ×P . This can be seen by treating S as a bilinear function of
R×R restricted on P ×P .

P4 S is bounded, say |S(p, q)| ≤ M, for some M > 0 and for all p, q ∈ P . To see
this, by B2 it suffices to maximize S subject to p = (p+, 0) and q = (0, q−).
Then, S(p, q) = p+A+−(q−)T. Suppose M = A+−

i0,j0
= max

i,j=1,...,K
A+−

ij , we have

S(e+i0 , e−j0 ) = M and S(e−j0 , e+i0 ) = −M by definition of A+− and B3, which
implies |S(λ, µ)| ≤ M.

This construction of S brings a potential to incorporate more a priori information
into a ranking model, for example, by specifying the range and sign of each entry
of the interaction matrix. Hence, it presents a general method to construct a class
of flexibly context-dependent hypotheses for a variety of learning purposes. Let
A be a convex set of all possible interaction matrices constructed from available
a priori information. In this ranking model, it can be seen that the ranker’s behavior
is described by A and q. Therefore, given (p1, y1), . . . , (pk, yk), we say our goal is to
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estimate the values of the interaction matrix A and the anchor vector q. However,
the immediate challenges are that (i) under what inductive principe to infer A and q,
(ii) how to obtain robust estimation even when k is small, and (iii) how to compute
A and q.

3.4.2 Problem reformulation with learning theory

We provide a possible answer to challenges (i) and (ii) with learning theory. As-
sume that p1, . . . , pk are random independent observations generated according to
a fixed but unknown distribution F (p) and that y1, . . . , yk are random independent
observations generated according to a fixed but unknown conditional distribution
F (y|p). Therefore, it follows that (p1, y1), . . . , (pk, yk) can be seen as a sample drawn
randomly and independently according to a fixed but unknown joint distribution
F (p, y), where F (p, y) = F (p)F (y|p).

Let γ(p, α), α ∈ Λ be a set of functionals, where Λ is determined by available
a priori information. Given (p1, y1), . . . , (pk, yk), the goal is to choose from γ(p, α),
α ∈ Λ, the one which best predicts F (y|p).

More concretely, consider the loss function

L(y, γ(p, α)) =

{
0 if y = γ(p, α)

1 if y 6= γ(p, α)

and the expected value of the loss, given by the risk function

R(α) =
∫

L(y, γ(p, α))dF (p, y).

Then, the goal is to find the function γ(p, α∗) that minimizes the risk function R(α),
α ∈ Λ. To minimize risk function R(α) for unknown F (p, y), we may consider to
employ the Empirical Risk Minimization(ERM) Principle or the Structural Risk Mini-
mization(SRM) Principle [177]. The empirical risk functional is defined as Remp(α) ,
1
k ∑k

i=1 L(yi, γ(pi, α)). According to ERM principle, one chooses γ(p, α∗k ) by mini-
mizing Remp(α), α ∈ Λ. However, this principle suggests that the only strategy we
should adopt is to minimize the empirical risk, which may be unfavorable when k is
small. Instead, given the size of empirical data is fixed, SRM principle seems more
appropriate since it finds the function that achieves the minimum of the guaranteed
risk by optimizing the relationship between the quality of approximation of empiri-
cal data and the complexity of the set of functionals γ(p, α), α ∈ Λ. We apply SRM
principle to estimate A and q and adopt the support vector estimation strategy of
SRM principle that keeps the value of the empirical risk fixed and then minimizes
the complexity of the set of the functionals. We consider the case where p1, . . . , pk
can be separated by a hyperplane pTw− b = 0, for some w ∈ R2m and b ∈ R. In
particular, we use a special type of hyperplane, the so-called maximal margin hy-
perplane [177]. A set of vectors is separated by a maximal margin hyperplane if it
is separated without error and the distance between the closest vector to the hyper-
plane is maximal. The maximal margin hyperplane is given by

min
1
2
||w||2

s.t. yi(pT
i w− b) ≥ 1, i = 1, . . . , k.

In this case γ(p, α) = pTw− b, where ff = (w, b). Noting that S(p, q) = pT Aq is
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linear in p, we replace Aq with w and let b = 0. This leads to the support vector
estimation of A and q and formulates the questions of interest as a biconvex opti-
mization problem (for the definition of biconvex problem, see [68])

min
A,q

1
2
||Aq||2

s.t. yi(pT
i Aq) ≥ 1, i = 1, . . . , k

q ∈ P ,
A ∈ A.

To simplify computations, one can introduce a generalized concept of maximal mar-
gin hyperplane which is determined by the following problem Q,

Q : min
1
2
||Aq||2 + C

k

∑
i=1

ηi

s.t. yi(pT
i Aq) ≥ 1− ηi, i = 1, . . . , k

q ∈ P ,
A ∈ A,
ηi ≥ 0, i = 1, . . . , k.

Here C is a fixed positive value.

3.5 Two-stage learning algorithm

Although the questions of interest have been formulated into a single optimization
problem, how to obtain robust estimation of A and q is a challenging task. It is
because (1) biconvex minimization problems are global optimization problems in
general, thus it is hard even to find one global optimal solution; (2) however, it is ex-
pected to find several distinguished optimal solutions if possible, since there might
be several competing explanations that predict the behavior of the ranker.

To ease the difficulty of estimation of A and q, a two-stage learning algorithm is
proposed. In the information extraction stage, we extract as many high-quality sub-
optimal solutions as possible by making use of the biconvex structure of Q. Then, in
the knowledge formation stage, the elite suboptimal solutions are further processed
and summarized into knowledge.

3.5.1 Information extraction stage

Stage 1.1 Given a fixed integer N, draw a random sample of q(1), . . . , q(N) indepen-
dently and uniformly from P .

Stage 1.2 For each q(j), solve Q(q(j))

Q(q(j)) : min
1
2
||Aq(j)||2 + C

k

∑
i=1

ηi

s.t. yi(pT
i Aq(j)) ≥ 1− ηi, i = 1, . . . , k

A ∈ A,
ηi ≥ 0, i = 1, . . . , k.
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to obtain the optimal value v(j) and the unique solution A(j).

Stage 1.3 Sort the v(j)’s, say v(j1) ≤ · · · ≤ v(jN). Then find q(j1), . . . , q(jN) and
A(j1), . . . , A(jN), for some fixed integer N < N.

3.5.2 Knowledge formation stage

Stage 2.1 Group the elite samples of q’s and A’s obtained in stage 1.3 into Kq and KA

clusters Cq = {Cq
1, . . . , Cq

Kq
} and CA = {CA

1 , . . . , CA
KA
}, respectively, by solving

min
Cq={Cq

1 ,...,Cq
Kq}

Kq

∑
h=1

∑
q∈Cq

h

||q− qh||2,

min
CA={CA

1 ,...,CA
KA
}

KA

∑
l=1

∑
A∈CA

l

||A−Al ||2,

where Kq and KA are fixed and relatively small integers. This is exact the stan-
dard formulation of K-Means clustering [95, 107, 144].

Stage 2.2 Denote by q∗h and A∗l the clustering centers obtained in step 2.1. More-
over, let wF be the optimal solution of the following problem

min
1
2
||w||2 + C

k

∑
i=1

ηi

s.t. yi(pT
i w) ≥ 1− ηi, i = 1, . . . , k

ηi ≥ 0, i = 1, . . . , k.

For each center q∗h, let

Aq∗h = arg min
A∈{A∗1 ,...,A∗l }

||Aq∗h −wF||.

The obtained Kq pairs of q∗h and Aq∗h are defined as the desired knowledge of
the rank of the items.

The two-stage learning algorithm inherently incorporates both Bayesian approach
and Frequentist approach. The rationale of the algorithm is framed from a Bayesian
perspective and can be interpreted as follows: Given prior information I about S,
P and A as well as consumer reviews T and target observation data R, in order to
estimate the pair of A and q, we calculate the posterior probability of system pa-
rameters A and q that best suit the relation between consumer reviews data T and
the target observation data R. Let D = (T ,R) be the total data available. The idea
mentioned above can be formulated as

Prob(A, q|D, I)
∝Prob(A, q, I)Prob(D|A, q, I)

Prob(q, I)Prob(A|q, I)Prob(D|A, q, I)
∝Prob(q|I)Prob(A|I)Prob(D|A, q, I).
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Then, if A and q are respectively assumed to distribute on A and P uniformly, then
Prob(q|I) and Prob(A|I) are both constants and hence it follows

Prob(A, q|D, I) ∝ Prob(D|A, q, I).

In this formulation, however, Prob(D|A, q, I) is hard to derive explicitly, since I in-
volves the information of structure of S and hence seems very complicated. This mo-
tivates us to employ Frequentist learning approach to ease this difficulty. The basic
idea is to approximate the likelihood in a functional space with learning techniques,
instead of giving it an explicit expression. The biconvex minimization problem we
proposed can capture this idea and integrate the axiomatic, Bayesian and Frequen-
tist approaches together within a single model. The biconvex minimization problem
also serves a sampler drawing samples according to an approximation of the pos-
terior probability Prob(A, q|D, I). That is the reason why after drawing a random
sample of q uniformly from P , we continue to solve a series of convex optimization
problems specified by q and then only keep the pairs of A and q with a smaller op-
timal value as the elite samples. In fact, since Prob(q|I) is a constant, the estimation
of the posterior probability of A and q is reformulated by

Prob(A, q|D, I) ∝ Prob(q|I)Prob(D|A, q, I).

From a computation perspective, the biconvex minimization problem accelerates
the estimation of posterior probability. This is because, instead of drawing random
samples of A and q separately, we only draw a random sample of q, and then find
out the best approximation A with respective to q by solving a convex optimization
problem and hence make a random sample of A needless. Because there are math-
ematical structures underlying A and q, instead of averaging the samples directly,
clustering method was employed to summarized the posterior probability based on
the elite samples.

3.6 Simulation

The main purpose of this section is to inspect the effectiveness of the two-stage learn-
ing algorithm. Particularly, we would like to see how the a priori information helps
to predict the behavior of the ranker and whether the knowledge discovered by the
two-stage learning algorithm is useful to explain the behavior of the ranker.

3.6.1 Simulation procedure

Step 1 Generate underlying true interaction matrix AT and anchor vector qT.

Step 2 For pre-fixed k and ∆, generate k random samples p independently and uni-
formly drawn from P with balanced numbers of labels given by

yi =

{
1, if pT

i ATqT ≥ ∆,

−1, if pT
i ATqT ≤ −∆,

otherwise, regenerate p. These p’s are used as the simulation data. It can be
seen that the simulation data are linearly separable.

Step 3 Determine A. First, for each A ∈ A, it should have the properties derived
from B1− B4. Then, we give a box constraint for each non-diagonal entry of
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A by letting (AT)ij− B ≤ Aij ≤ (AT)ij + B, for i 6= j. Here, B is a fixed positive
number serving as a measure the amount of a priori information.

Step 4 Apply the two-stage learning algorithm to the randomly generated simula-
tion data under various parameter settings.

Step 5 Compare (1) {q∗h}
Kq
h=1 with qT, (2) {Aq∗h}

Kq
h=1 with AT and (3) {Aq∗h q∗h}

Kq
h=1 with

ATqT and wF.

3.6.2 Parameter setting

In the simulation, the 2-stage learning algorithm was tested under the parameter set-
tings: m = 4, k ∈ {10, 100, 950}, ∆ ∈ {1, 1.5}, B ∈ {0.1, 1, 5, 10}, N ∈ {100, 1000, 3000, 10000},
N = N/5 and Kq = KA = 4.

3.6.3 Simulation result

Summary of simulation result

Result 1 Even when ∆ = 1, k = 10 and B = 10, the learning algorithm still tends to
give a good estimation of q and A. This result is appealing since it suggests a
validation of the effectiveness of the algorithm. When ∆ = 1.5 (the maximal
margin gets larger) while keeping the other parameters unchanged, the quality
of the estimation of q and A seems unaffected. When B = 0.1, the quality of
the estimation of q has a noticeable but limited improvement. When k = 950,
the quality of the estimation of q has a slight improvement. N = 3000 seems a
good trade-off between estimation quality and computation time.

Result 2 In the simulation under various parameter settings, the learning algorithm
tends to find q∗h0

and Aq∗h0
such that

||ATqT − Aq∗h0
q∗h0
|| < ||ATqT −wF||.

This appealing result seems to provide a numerical evidence that the knowl-
edge of underlying behavioral structure of the ranker would help to improve
the accuracy of the prediction.

Instances of simulation result

From Fig. 3.1 to 3.20, we show ten instances of computer simulation. The parameters
in these instances are fixed as follows: m = 4, ∆ = 1, k = 10, B = 10, C = 1000,
N = 3000 and Kq = KA = 4. In each instance, qT is randomly generated and
AT is randomly modified as needed. In the figures, the values of qT and AT (AT
has 28 free variables since AT is asymmetric) are connected by the black lines, and
the dots represent the support vector estimations of the values of qT and AT given
by ten data. The following ten simulation results show the learning ability of the
two-stage learning algorithm in the linear separable case where only small data are
available. In each simulation, {q∗h}4

h=1 and {Aq∗h}
4
h=1 are compared with qT and AT,

respectively.



3.7. Experiment 43

2 4 6 8

0.1

0.2

0.3

q *
1

2 4 6 8

0.1

0.2

0.3
q *
2

2 4 6 8

0.1

0.2

0.3

q *
3

2 4 6 8

0.1

0.2

0.3

q *
4

FIGURE 3.1: Simulation 1 of comparisons between {q∗h}
4
h=1 and qT

3.7 Experiment

We used the data collected from the website[1] which consisted of a list of ranked
python books and their consumer reviews. These consumer reviews evaluated the
python programming books mainly from four attributes: readability, beginner-friendliness,
content highlight and content coverage. After removing the books less focused on
the topic of python programming, the data set consisted of ten data as shown in
Table.1. In the column of attribute description are the unnormalized impression vec-
tors. The books 4 and 8 are removed from the data set since they had few consumer
reviews. In addition, the book 10 is removed since it is an outlier.

However, the data obtained are not linearly separable. Moreover, there are zeros
in some unnormalized impression vectors. To deal with the nonlinearity, we tried
to reduce the value of C from 1000 to 10. To deal with the zeros, we consider the
impression vectors given by

pi =
S1 + ∑N(i)

j=1 Ti,j

2mS + ∑N(i)
j=1 |Ti,j|

,

where S is a positive number and 1 is the all-ones vector. In this experiment, we set

S = 15, C = 10, m = 4, N = 3000, B = 10, Kq = KA = 4 and AT =

[
0 5J
−5J 0

]
.

Here, AT represents the a priori information of A and J is the all-ones matrix.
Applying the two-stage learning algorithm, the experiment result of

q∗ .
= (0.35, 0.1, 0.1, 0.1, 0.13, 0.07, 0.06, 0.09)
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FIGURE 3.2: Simulation 1 of comparisons between {Aq∗h
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h=1 and AT

showed that the ranker seems to have much higher expectation for positive read-
ability and also have a slightly higher tolerance for negative readability. This implies
that the positive evaluation of readability may be an important factor to produce a
high rank but a low rank may not be the result of the negative evaluation of read-
ability. Moreover, the first row of interaction matrix (0, 1.1, 2.0, 2.6, 1.0, 1.2, 2.0, 2.6)
implies that positive readability is relatively more important. However, since the
data are not linearly separable, we caution that the behavioral model may suffer
from being falsified.

3.8 Conclusion

We proposed a method of how to discover the knowledge of item rank by learning
the behavior of the ranker. This method also showed a possibility that the ques-
tions concerning explanation and prediction may be simultaneously answered un-
der some conditions.

More specifically, the basic idea behind the method is to construct a choice model
and then to build it in a computational learning framework to learn its parame-
ters. This idea formulates the questions of interest as a single biconvex minimization
problem which has a relationship with SVM(Support Vector Machines). To facilitate
the process of knowledge discovery, we develop a two-stage learning algorithm.
In the first stage, we extract as much information as possible from the observed
data, while in the second stage, the extracted information is further summarized
into knowledge.

The main ideas behind the algorithm design are that (1) the cognitive process of
comparison proposed in section 2.3 of Chapter 2 is reformulated from an axiomatic
perspective and produces a generative model of comparison; (2) the identification
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problem is then formulated from a Bayesian perspective, aiming to incorporate the
cognitive process of comparison into prior knowledge; (3) since it is hard to derive
an explicit likelihood function, Frequentist learning perspective is employed to ease
the difficulty. After the parameters of the ranking model are learned, the ranking ra-
tionale can be interpreted by using these parameters and hence the knowledge of the
rankings can be discovered; moreover, the preferences of the ranker can be obtained
from generalization beyond the observed data given. The simulation result gave a
positive support to this possibility. An experiment is designed to test the proposed
method using consumer reviews collected from websites online for book reviews.
Although, as the data experiment showed, this method needs further extensions to
deal with more general nonlinearly separable case, it still seems promising.

The proposed method is not limited to e-Commerce applications, but also works
for more general topics as well. For example, for a consumer analysis concerning
behavioral data, there will positive and negative behavioral patterns suggesting a
consumer’s positive and negative attitudes, and hence this method may discovered
useful knowledge from the behavioral data as well as a collection of target obser-
vations expressed in the form of rankings. It can also be generalized in other ap-
plications where positive and negative attributes are involved in a decision-making
process. With the knowledge of the rankings of interest discovered, it may assist po-
tential customers to make a better decision based on the attributes being commented
up by past consumers. It can also help companies understand which attribute of the
product is well received by the audience and which is not.
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h=1 and

randomly generated qT
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TABLE 3.1: Experiment Data

Item Attribute description Label
1 (27, 17, 35, 24, 6, 6, 12, 25) 1
2 (18, 8, 16, 9, 2, 3, 3, 4) 1
3 (3, 3, 7, 1, 4, 0, 2, 3) 1
4 (1, 0, 3, 1, 0, 2, 1, 1) removed
5 (17, 20, 36, 33, 33, 14, 6, 2) −1
6 (8, 0, 14, 6, 1, 7, 1, 0) −1
7 (2, 5, 11, 2, 0, 0, 1, 3) −1
8 (1, 1, 3, 0, 1, 0, 1, 1) removed
9 (14, 20, 17, 6, 1, 1, 0, 5) −1
10 (6, 6, 4, 2, 0, 0, 0, 0) removed
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Chapter 4

Pooling experiments for
consecutive positives

4.1 Background

Group testing was proposed by Robert Dorfman during World War II in order to
efficiently test a large number of blood samples for a rare disease. Since then, a
large body of literature has enriched this problem, and various applications of group
testing have been found in many fields such as multiple communication, coding
theory, information security, sparse signal recovery and others. Particularly, biology-
motivated group testing has been developed into one of the most important tools in
the study of gene functions. For example, in Human Genome Project, well-designed
group testing schemes have been proved to be useful in both saving materials and
accelerating the process of reconstructing high-quality DNA libraries. These high-
quality libraries have been frequently and repeatedly used for extensive studies.

A DNA library is a collection of cloned DNA segments taken from a specific
organism. Those DNA segments are called clones. Determining whether a clone
contains a particular DNA sequence of interest can be accomplished by screening
it with a probe. The clone is called a positive for the probe if it contains a partic-
ular DNA sequence of interest, and a negative otherwise. Due to the large size of
the library and the cost of time and materials of screening, in order to identify and
isolate the clones containing the DNA sequence, instead of screening each clone in-
dividually, combinations of the clones are screened. The combinations of the clones
are called pools. Each pool is screened with the probe to learn whether any of the
clones in the pool contain the DNA sequence. Screening pools in this way is called
a pooling experiment. Ideally, if a pool gives a negative outcome, then all clones in
the pool are negatives, and otherwise the pool contains at least one positive. Gen-
erally speaking, when the proportion of positives is relatively small compared with
the library size, many of the outcomes of the pools are expected to be negative, and
hence the total number of tests is reduced.

Since the procedure of library screening is error prone and only a broad prior
knowledge of the positives is available, a trade-off between complete identifiability
and maximal efficiency has to be made and hence the goal of group testing for DNA
library screening is to identify as many positives as possible by screening as few
pools as possible.

In molecular biology, there will present a large quantity of information regard-
ing experimental uncertainty, domain-specific prior knowledge and experimental
observations. Therefore, scientific discovery is conducted in an interactive way and
involves the task of experiment design again and again by taking into consideration
a variety of domain-specific knowledge back and forth. This oftentimes requires
an automatic knowledge discovery process to represent domain-specific structures
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in the mind and computational procedures that operate on those structures. This
chapter discusses a ranking method for detecting consecutive positives in a pool-
ing experiment based on group testing techniques. We are more concerned with the
cognitive aspect of the ranking model and emphasize on domain knowledge repre-
sentation. More specifically, we show (1) how domain-specific prior knowledge re-
garding pooling experiments can be represented, (2) how this knowledge represen-
tation can be used for automatic knowledge discovery, (3) why and to what extent
this knowledge representation will work for screening a structured DNA library.

4.1.1 Classification of group testing

Any group testing consists of a pooling procedure and a positive detecting proce-
dure. A pooling procedure is a procedure of constructing a collection of pools called
pooling design, determining which clones are put into which pools. A positive de-
tecting procedure is a procedure of determining which clones are positives from
the outcomes of group tests. While minimizing the number of tests is still impor-
tant, biology-motivated group testing is simultaneously concerned with three other
goals: (i) time consumption is minimized, (ii) error-tolerant ability is expected, and
(iii) prior knowledge of positives is used to full capacity. Those goals usually merge.
Depending on different experimental situations, various group testing schemes have
been proposed to achieve a balance between those goals.

Group testing can be classified as either adaptive or nonadaptive, based on how
a pooling design is constructed in the pooling procedure. In adaptive group testing,
a pooling design is constructed in multiple-stage. In each stage, the outcomes of the
group tests from previous stages are learned to construct the pools in the next stage.
In nonadaptive group testing, a pooling design is constructed in one-stage. This is to
say, pools are determined before any outcome of the group test is known. From the
perspective of minimizing the number of tests, adaptive group testing is preferred
to nonadaptive group testing, because adaptive group testing takes advantages of
utilizing more information. However, things change if other goals are simultane-
ously considered. It is preferable to screen pools in parallel or with as few stages
as possible in order to save time. Between fully adaptive and nonadaptive, Knill
[100] proposed trivial two-stage pooling procedures of considerable interest. In the
first stage, pools are screened in parallel, and a set of candidate positives is selected
based on the outcomes of tests; in the second stage, each of the candidate positives
is subject to an individual confirmatory test.

Group testing can be also classified as either combinatorial or probabilistic.To im-
plement a combinatorial group testing, we have to construct a pooling design with
desirable combinatorial properties such that all positives can be distinguished from
negatives under the assumption on the maximum number of positives and that of
experimental errors. Related studies can be found in Du and Hwang [84], [85], [29],
Dyachkov et al. [46] , Macula [113], and Ngo and Du [128]. To implement a proba-
bilistic group testing, not only stochastic models for positives and for pooling results
are needed but also an efficient positive detecting algorithm to infer positives from
erroneous pooling results based on a stochastic inference model. Probabilistic group
testing is developed by Bruno et al. [21], Knill et al. [101], Mezard and Toninelli
[116] and Uehara and Jimbo [174]. Bruno et al. [21] and Knill et al. [101] proposed
a positive detecting algorithm called MCPD by using Markov chain Monte Carlo
simulation method. Uehara and Jimbo [174] proposed another efficient algorithm
called BNPD by using Bayesian network inference. Provided a proper pooling de-
sign, BNPD converges much faster than MCPD does. As far as we know, MCPD and
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BNPD are the only known efficient positive detecting algorithms when experimental
errors exist.

Probabilistic group testing has several merits in practice. First, from the perspec-
tive of detecting procedure, probabilistic group testing may perform stable when
a relatively larger number of positives or/and experimental errors occur than ex-
pected. Second, probabilistic group testing can make good use of information and
reduce information loss by interpreting a measurement of a test into a multilevel
state such as ”negative”, ”weak positive”, ”medium positive” or ”strong positive”.
Third, from the perspective of pooling procedure, implementing probabilistic group
testing requires fewer or no restriction on the combinatorial structure of pooling de-
signs. Particularly, random pooling designs are allowed. In fact, random pooling
designs are often preferred in a real setting. This is because (i) a well-designed ran-
dom pooling design may have a satisfactory efficiency with desirable error-tolerant
ability, (ii) it is unrealistic to expect to be able to find an appropriate combinatorial
pooling design for every new pooling experiment, and (iii) random pooling designs
facilitate robot automation and thus are efficient to construct.

4.1.2 Linear DNA library and consecutive positives

Motivated from applications to DNA library screening, Balding and Torney [7] con-
sidered the problem of pooling experiments for screening unique-sequence on a
1530-clone map of Aspergillus nidulans. The clone map has the properties that the
clones are, with possibly a few exceptions, linearly ordered and no more than two of
them cover any point on the genome. The goal of screening clone maps is to identify
where a particular DNA segment occurs on a clone map.

In this problem, since the clones are overlapped, it may happen that one segment
of interest occurs in a relatively large number of clones, but typically the number
is predictable as it is related to the clone coverage. By introducing the assumption
that the DNA segment occurs only once, Colbourn [34] introduced the d-consecutive
property saying that the set of positives forms a consecutive set under the linear or-
der and contains at most d positives, and applied combinatorial group testing to this
problem. Following his work, related studies can be found, for example, in Müller
and Jimbo [124] and[125], Juan and Chang [94] and Ge et al. [62]. By using het-
erogeneous priors, Bruno et al. [170] discussed optimization issues of nonadaptive
random pooling designs on the assumption that an effective detecting procedure
exists and experimental errors do not exist.

However, to our best knowledge, when experimental errors exist, probabilistic
group testing for consecutive positives has not yet been studied. In this chapter, we
study this problem to fill the gap.

4.1.3 Related works and new contributions

Since group testing is useful for finding genes and other features of interest on clone
maps and probabilistic group testing is very helpful when experimental errors ex-
ist, we are motived to seek probabilistic group testing algorithms with consecutive
positives. To this end, we make several contributions to this topic. First, we intro-
duce a prior probability distribution for consecutive positives. This is done by first
translating the d-consecutive positives property proposed by Colbourn [34] into a
probability prior. Then, enlightened by the work of Uehara and Jimbo [174] where
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Bayesian network is used as a probabilistic inference engine, we construct a reason-
able prior probability distribution for consecutive positives with the overlap struc-
ture. This prior plays an important role both in constructing positive detecting al-
gorithm and in optimizing pooling designs. Second, we apply Knill et al. [101]’s
method to construct a positive detecting algorithm called MMCPD for identifying
consecutive positives. It contains MCPD as a special case, depending on what form
of the prior knowledge of positives is given.

Moreover, in order to optimize the positive detectability of MMCPD, we discuss
how the presence of consecutive positives and experimental errors will affect the
construction of random pooling designs. Our discussion leads to an efficient algo-
rithm for explicitly estimating the information-theoretic lower bound of the minimal
number of pools required for complete identifiability with high probability. This not
only leads an efficient algorithmic procedure for choosing the parameters that con-
trols the generating procedure of random pooling design, but also may be used to
explain how these parameters influence the performance of the decoding algorithm.
Our computation method shares some commonplaces either in purpose or in for-
mulation with prior work such as Bruno et al. [170], Knill et al. [100], Wang et al.
[181] and Wainwright [179]. However, the algorithmic consideration of consecutive
positives and experimental errors makes our method different from any of them.

4.2 Stochastic models

This section first discusses how to collect and express prior knowledge of consecu-
tive positives, and introduces a prior probability distribution which approximately
incorporates the prior knowledge. Then, we show how Knill et al [101]’s method
can be applied to detecting consecutive positives.

4.2.1 Prior knowledge of consecutive positives

The following notations will be consistently used throughout. Let C = {c1, c2, ..., cn}
be a set of clones. C is called a DNA library. Each clone ci has an associated state
σi ∈ {0, 1}. ci is a positive if σi = 1, otherwise a negative. Let P = {ci : σi = 1}
and XP = (σ1, . . . , σn) be the set of positives and its vector form corresponding to
P, respectively. For convenience, P and XP are used interchangeably, referred to the
positive set. Denote by xi the random variable of σi such that

xi =

0, if σi = 0,

1, if σi = 1,

and by X = (x1, . . . , xn) the random vector of the associated states of C.
When a DNA library is constructed by uniformly and randomly cloning of DNA

segments, the expected number of positives E
[ n

∑
i=1

xi
]
= d is used as the prior knowl-

edge, for some positive number d. This prior knowledge appeared in Knill [100],
Knill et al. [101] and Uehara and Jimbo [174]. The overlap information can anal-
ogously be collected and expressed in a similar form. The basic idea is to extend
the d-consecutive positives property proposed by Colbourn [34] into a broader and
probabilistic version.
C is said to be linear if it is associated with an linear order ci ≺ ci+1, for 1 ≤ i < n.

The positive set of linear C is said to have the multi-d-consecutive property if any
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subset of P that forms a consecutive set (under the ordering ≺) contains at most
d positives. A subset of positives P′ is said to be a maximum consecutive subset,
if P′ is a consecutive set but P′ ∪ {c} is not a consecutive set for any c ∈ P \ P′.
Notice that P corresponds to a unique partition with maximum consecutive subsets.
The positive set with the multi-d-consecutive property is allowed to have more than
one maximum consecutive subsets, each of which contains at most d consecutive
positives.

Without loss of generality and for the sake of simplicity, we analyze the over-
lap structure of the clone map of Aspergillus. When the clone map is screened, if
the positive set is believed to approximately have the multi-2-consecutive positive
property, then the following prior knowledge of the positives can be collected:

Info 1: the portion of positives among all clones is relatively small;

Info 2: although the positives are sparse, some of the positives tend to be consecu-
tive;

Info 3: although some of the positives tend to be consecutive, maximum consecu-
tive subsets tend to not get close to each other;

Info 4: no more than two of the positives tend to form a maximum consecutive sub-
set.

Therefore, based on Info 1 through Info 4, we can express the prior knowledge
of consecutive positives as follows:

E
[ n

∑
i=1

xi
]
= d1

E
[ n−1

∑
i=1

xixi+1
]
= d2

E
[ n−2

∑
i=1

xixi+2
]
= d3

E
[ n−2

∑
i=1

xixi+1xi+2
]
= d4

(I)

for some positive numbers d1, d2, d3 and d4. However, the values of d1 through d4
depend on both segments of interest and structures of clone maps, and is not within
our present concern. Formally, we introduce the following assumption.

Assumption 1. Appropriate values of d1 through d4 have been given as parameters.

Generally, we denote by D a family of polynomials of σ1, . . . , σn, where

D =

{ t

∑
i=1

∏
cj∈Ci

σj : ∃t ∈N and ∃ t distinctive sets

C1, . . . , Ct ∈ 2C \ {∅} such that C ⊆
t⋃

i=1

Ci

}
.

Each polynomial of D is called an overlap polynomial of C. We can collect and ex-
plicitly express prior knowledge of consecutive positives by using overlap polyno-
mials in accordance with overlap information. If s overlap polynomials D′j have been
chosen from D, P is said to have positive pattern ddd if (ddd)j= D′j(XP), for j = 1, . . . , s.
In addition, we denote by |ddd| the number of positives in positive pattern ddd.
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4.2.2 Prior probability distribution of consecutive positives

In this part we seek a prior probability distribution that, in some sense of approxi-
mation, incorporates the prior knowledge of consecutive positives (I).

The principle of maximum entropy

Since Shannon’s theorem [156] established the uniqueness of entropy as an infor-
mation measure of uncertainty, the principle of maximum entropy has been wildly
used to derive prior probability distributions. Intuitively speaking, more informa-
tion means less uncertainty. Any probability distribution satisfying the constraints
that has less uncertainty will contain more information, and thus implies something
stronger than what the prior knowledge means. The principle of maximum entropy,
as a method of statistical inference, is due to Jaynes [87], [88] and [89].

Based on the principle of maximum entropy, to derive the prior probability dis-
tribution P(X) which incorporates (I) but is free from any other knowledge, is to
solve the following problem,

maximize
P(X)

− ∑
X∈{0,1}n

P(X) log P(X)

subject to



EP

[
D1(X)

]
= d1

EP

[
D2(X)

]
= d2

EP

[
D3(X)

]
= d3

EP

[
D4(X)

]
= d4

∑X∈{0,1}n P(X) = 1.

(II)

As is well-known, Lagrange multiplier method leads to the solution

Pθ(X) =
1

Z(θ)
exp

{
−

4

∑
j=1

θjDj(X)

}
, (III)

for some constant vector θ = (θ1, θ2, θ3, θ4) and constant Z(θ). In literature, (III)

is called a Gibbs measure with energy function −
4
∑

j=1
θjDj(X). The normalization

constant

Z(θ) = ∑
X∈{0,1}n

exp
{
−

4

∑
j=1

θjDj(X)

}
is called the partition function. It connects θ with the constants di by simultaneous
equations

∂− log Z(θ)
∂θi

= di, (IV)

for i = 1, . . . , 4. Before discussing how to derive θ from (IV), we first point out three
useful properties of (III).

Property 1 (Consistency property). If E
[ n

∑
i=1

xi
]
= d (d > 0) is the only prior knowledge

of positives, then the prior probability distribution determined by the principle of maximum
entropy is

P(X) =

(
d
n

) n
∑

i=1
xi(

1− d
n

)n−
n
∑

i=1
xi

.
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The proof can be found in Jaynes [89]. From this property, we see that, provided
proper prior knowledge of positives, the principle of maximum entropy can be used
to obtain the prior probability used in Bruno et al [21], Knill [101], Knill et al [100]
and Uehara [174], where the DNA library is considered to have been constructed
by uniformly and randomly cloning of DNA segments. Hence, maximum-entropy
distributions may be reasonable extensions for describing the overlap structure of
clone maps.

Denote by Nj the set of neighbors of j. Define N1 , {2, 3}, N2 , {1, 3, 4}, Nn−1 ,
{n− 3, n− 2, n}, Nn , {n− 2, n− 1} and Ni , {i− 2, i− 1, i + 1, i + 2}, for 3 ≤ i ≤
n− 2. For any configuration of xi by assigning xi = σi for each i ∈ [n] according to
Pθ(X), (III) has the following Markov-type property.

Property 2 (Local Markov property). For any j ∈ [n],

Pθ(xj|σi, i ∈ [n] \ {j}) = Pθ(xj|σi, i ∈ Nj).

We show a sketch of the proof. A more general one can be found in Kindermann
and Snell [98] and Pearl [135]. To see this, we rewrite the Gibbs measure into the
product form:

Pθ(X) =
1

Z(θ)

n

∏
i=1

exp{−θ1xi}
n−1

∏
i=1

exp{−θ2xixi+1}

n−2

∏
i=1

exp{−θ3xixi+2}
n−2

∏
i=1

exp{−θ4xixi+1xi+2}.

For σj = 0, 1, the condition probability on the left side is,

Pθ(xj = σj|σi, i ∈ [n] \ {j})

=
Pθ(σ1, . . . , σj−1, xj = σj, σj+1, . . . , σn)

1
∑

σj=0
Pθ(σ1, . . . , σj−1, xj = σj, σj+1, . . . , σn)

.

Thus, after canceling out the normalization constant, terms of Pθ(σ1, . . . , σn) that do
not contain σj cancel from both the numerator and denominator of the condition
probability and therefore this probability depends only on the random value of xj
and those of its neighbors.

This property serves a probabilistic interpretation of multi-2-consecutive prop-
erty, saying that the state of a clone is only influenced by the states of its previous
two and also next two neighbors, if the clone has such neighbors.

Property 3 (Heterogenous property). Given X1, X2 ∈ {0, 1}n, if Di(X) = Di(X2), for
i = 1, . . . , 4, then Pθ(X1) = Pθ(X2).

The proof is obvious. Notice that, for any fixed positive pattern ddd, Pθ is the
heterogenous prior with the greatest uncertainty.

Estimation of lagrange multiplier

The constants θj are called Lagrange multipliers. As the same values of dj’s may
come from different information sources, different estimation methods may be needed
to derive θ from (IV). Here we discuss two cases. In the first case, the values of dj’s
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represent the degrees of belief. The belief is needless to be relevant with the out-
comes of any random experiment. While in the second case, the values are obtained
from the observation of the data Y = {Y1, . . . , YN}.

In the former case, we define

f (θ) = −
4

∑
j=1

djθj − log Z(θ).

From (IV), we see that θ can be any stationary point of f (θ). Therefore, to obtain θ is
to solve a gradient-square-minimization problem.

minimize
θ∈R4

‖∇ f (θ)‖2. (V)

However, in the latter case, we may fit a model chosen from {Pθ : θ ∈ R4} to
the given data. Assuming that the data Y1, . . . , YN are i.i.d (independent and iden-
tically distributed) random sample drawn from Pθ with unknown parameter θ, we
estimate θ by applying maximum likelihood estimation method. The log-likelihood
is defined by

log P({Y1, . . . , YN}|θ)

= log
N

∏
i=1

P(Yi|θ)

=
N

∑
i=1

(
−

4

∑
j=1

Nj(Yi)θj − log Z(θ)
)

.

(∗)

Let lY(θ) = 1
N log P({Y1, . . . , YN}|θ) and dj =

1
N

N
∑

i=1
Dj(Yi), for j = 1, . . . , 4. To

obtain a maximum likelihood estimate of θ is to maximize (∗). Equivalently, we solve

maximize
θ∈R4

lY(θ) = −
4

∑
j=1

djθj − log Z(θ). (VI)

Both problems are very difficult to solve, because the partition function Z(θ) in-
volves exponentially many computations and usually cannot be known thus. With-
out calculating the partition function, Geyer and Thompson [64] developed a method
to numerically solve (VI) by using importance sampling and Monte Carlo simula-
tion. Descombes et al [41] further demonstrated an efficient conjugate gradient al-
gorithm. Motived by their work, we employ their methods to solve (V). Here we
sketch that (V) is also solvable (see [64] and [41] for detailed discussions).

The key idea is to estimate, for any fixed θ, ‖∇ f (θ)‖2 and its gradient by using
importance sampling.

By employing

Pψ(X) =
1

Z(ψ)
exp

{
−

4

∑
j=1

ψjDj(X)

}
,

we reformulate f (θ) as follows:

f (θ) = −
4

∑
j=1

djθj − log
Z(θ)
Z(ψ)

− log Z(ψ).
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It follows that

Z(θ) = ∑
X

exp
{
−

4

∑
j=1

(θi − ψi)Dj(X))

}

· exp
{
−

4

∑
i=j

ψjDj(X)

}

= Eψ

[
exp

{
−

4

∑
j=1

(θi − ψi)Dj(X)

}
Z(ψ)

]
,

where Eψ refers to the expectation with respect to Pψ. Then, we obtain

Z(θ)
Z(ψ)

= Eψ

[
exp

{
−

4

∑
j=1

(θj − ψj)Dj(X)

}]
. (2.1)

The significance of (2.1) lies in that although Z(θ) is unknown, Z(θ)
Z(ψ) can be esti-

mated by a sampling of the known probability distribution Pψ.
Following this observation, we continue to reformulate the partial derivatives of

Z(θ) up to multiplicative constant 1
Z(ψ) , that is,

1
Z(ψ)

∂Z(θ)
∂θj

= Eψ

[
− Dj(X) exp

{
−

4

∑
j=1

(θi − ψi)Dj(X)

}]
. (2.2)

Similarly, higher-order derivatives of Z(θ) up to multiplicative constant 1
Z(ψ) can

also be obtained. For example,

1
Z(ψ)

∂2Z(θ)
∂θj∂θk

= Eψ

[
Dj(X)Dk(X) exp

{
−

4

∑
j=1

(θi − ψi)Dj(X)

}]
. (2.3)

Next, with (2.1), (2.2) and (2.3) we have,

∂

∂θk
‖∇ f (θ)‖2

=2
4

∑
j=1

(
dj +

Z(ψ)
Z(θ)

1
Z(ψ)

∂Z(θ)
∂θj

)(
−
(

Z(ψ)
Z(θ)

)2( 1
Z(ψ)

∂Z(θ)
∂θk

)(
1

Z(ψ)
∂Z(θ)

∂θj

)
+

Z(ψ)
Z(θ)

(
1

Z(ψ)
∂2Z(θ)
∂θj∂θk

))
.

(2.4)

By using the Gibbs sampler (Geman and Geman [63]), for any fixed θ, by Pψ we can
theoretically estimate (2.1), (2.2), (2.3) and hence even higher-order partial deriva-
tives of Z(θ) up to constant 1

Z(ψ) . This allows us to learn local variation of ‖∇ f (θ)‖2

at any fixed θ. Those estimations will be helpful to numerically sovle (V) if they can
be obtained efficiently. The local markov property of Pψ will make the sampling
procedure efficient as long as every random variable has few neighbors. We refer to
Descombes et al [41] for other algorithmic details.
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In fact, (VI) is stronger than (V) in the sense that any optimal of (VI) is also an
optimal of (V), but not the reverse. Therefore, we may also formulate the first case
in the stronger sense,

maximize
θ∈R4

f (θ) = −
4

∑
j=1

djθj − log Z(θ). (VII)

From this formulation, we can see that both cases are numerically solvable, but
the first case is more general than the second one. By estimating a numerical solu-
tion of (V) within a given tolerance, the model can be approximately determined,
and it can be served as the desired prior probability distribution that approximately
incorporates our prior knowledge derived from the available information.

Assumption 2. Given the values of d1 through d4 under Assumption 1, θ̂ is an approximate
optimal of (V). P̂(X) is the desired prior probability distribution.

4.2.3 Stochastic model of pooling results

The response to a screening test is the outcome of the screening test, called pooling
result. The following notations concerning pooling experiments will be consistently
used. Let A = {p1, . . . , pm} be a pooling design. Each pool pi is a subset of C
corresponding to the clones in the pool. The pooling design A constructed by deter-
mining each of n clones is put into which of m pools, can be represented by an m× n
binary matrix A = (aij). Each entry aij is defined as follows:

aij =

{
1, if cj ∈ pi,

0, if cj 6∈ pi.

Then, A is called the incidence matrix of pooling design A and m the size of A. For
convenience, A and A are interchangeably referred to a pooling design.

The pooling result of screening pool pi is denoted by r(pi). Sine r(pi) is auto-
matically measured by a fluorescence sign and an actual observation of r(pi) is often
given in multilevel measurement, taking any value from a set of test outcomes V,
such as ”negative”, ”weak positive”, ”medium positive” or ”strong positive”. Un-
fortunately, the pooling results are typically corrupted due to the inclusion of addi-
tional clones in a pool or to the failure of screening test. Therefore, we need infer P
from erroneous pooling results.

To begin with, we introduce the stochastic model of pooling results given in Knill
et al. [101]. The following assumptions will be used.

Assumption 3 (Knill et al. [101]). The distribution of r(pi) depends only on the number
of positives, |pi ∩ P|, in pi.

Assumption 4 (Knill et al. [101]). Since the PCR was used for screening, we assume that
Pr(r(pi)||pi ∩ P|) depends only on |pi ∩ P| = 0 or |pi ∩ P| ≥ 1.

For any integer b, we define

b =

{
0 if b = 0,
1 if b ≥ 1.

Notice that, for each i, the number of positives in pool pi can be represented by
the ith coordinate of AXP, that is, |pi ∩ P| = (AXP)i. Let Ri be a random variable of
pooling result r(pi),
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Ri =


0 if r(pi) is negative,
1 if r(pi) is weak positive,
2 if r(pi) is medium positive,
3 if r(pi) is strong positive.

Rewrite Pr(Ri = ri|(AXP)i) into f (ri, (AXP)i) for short, and denote by PrA(R =
r|XP) the likelihood for the pooling results r(∈ {0, 1, 2, 3}m) obtained from pooling
design A with m pools. By using Assumptions 3 and 4 and the chain rule, it can be
expressed as a product:

PrA(R = r|XP) =
m

∏
i=1

f (ri, (AXP)i). (VIII)

Let f = { f (j, i) : j = 0, . . . , 3, and i = 0, 1}. In real applications, f can be appro-
priately estimated. In this application, we are more concerned with how different
values of f (j, i) will affect identifiability of pooling experiments. Therefore, we as-
sume that f have been estimated and provided as parameters.

Assumption 5. The values of f (j, i) are known a priori, but f (j, i) 6= 0, for j = 0, . . . , 3,
and i = 0, 1.

Particularly, notice that f (1, 0) + f (2, 0) + f (3, 0) is the likelihood of a false posi-
tive, whereas f (0, 1) is that of a false negative. Moreover, due to Assumption 3 and
Assumption 4, the model does not require any restriction on the structure of posi-
tives, and thus is compatible with the overlap structure of consecutive positives.

4.2.4 Bayes inference model

To infer the consecutive positives, Bayes inference model is used to decode the er-
roneous pooling results. Denoting by PrA(XP|r) the posterior probability that XP is
the positive set given the pooling results r under the pooling design A, by Bayes’
rule we have

PrA(XP|r) ∝ PrA(XP)PrA(r|XP),

where PrA(XP) denotes the probability that XP is the positive set given pooling de-
sign A is chosen to use. Prior knowledge of positives will affect the construction of
pooling design A. However, the reverse does not reasonably hold, because know-
ing the construction of pooling design A will not add any information to the prior
knowledge of positives. Therefore, we introduce the following assumption.

Assumption 6. Given any A ∈ A, PrA(X) = Pθ̂(X), for all X ∈ {0, 1}n.

From Assumption 2, Assumption 5, Assumption 6 and (VIII) , it follows that
the posterior probability is computable up to a multiplicative constant, and can be
written as,

PrA(XP|r) ∝ Pθ̂(XP)
m

∏
i=1

f (ri, (AXP)i).

If we are interest in PrA(c ∈ P|r) for each clone c, this probability can be written
as the marginal

PrA(xj = 1|r) ∝ ∑
P⊆C :
cj∈P

Pθ̂(XP)
m

∏
i=1

f (ri, (AXP)i). (IX)



66 Chapter 4. Pooling experiments for consecutive positives

Substituting Binomial distribution for Pθ̂ , the inference model turns out to be
the one used in Knill et al. [101]. Actually, this is least surprise, since they had al-
ready pointed out the possibility that other distributions can be used in the inference
model.

4.3 Detecting algorithm for consecutive positives

This section presents a positive detecting algorithm for consecutive positives, called
modified Markov chain Monte Carlo pool result decoder (MMCPD). MMCPD can
be seen as a natural extension of MCPD, depending on the prior knowledge of pos-
itives.

Our primary goal is to compute PrA(xj = 1|r), for each j, and to choose the clones
with highest posterior probability of being a positive for confirmatory individual
tests. Those clones are called candidate positives. However, as it stands in (IX), every
exact computation will involve exponential work in n, making our primary goal
impractical when n is very large. Instead, we estimate the posterior probabilities by
drawing samples approximately according to PrA(X|r). This idea works as long as a
sampling method exists and is able to efficiently produce sufficiently many samples
according to PrA(X|r).

To sample from PrA(X|r), we can use the Gibbs sampler, since the full conditional
distributions PrA(xi|σ1, . . . , σi−1, σi+1, . . . , σn, r) are easy to obtain for each i, due to
the local markov property of Pθ̂(X) and to the product expression of Pr(r|X).

In this way, Knill et al. [101]’s method can be extended for detecting consecutive
positives. Mimicking their approach, we construct a Markov chain X0, X1, . . . on the
family of all configurations of C with PrA(X|r) as its stationary distribution. Denote
by XS the vector form of the positive set S. Let XS be the configuration of C at the
end of step t − 1, that is, state Xt−1. Step t of the chain updates XS by making a
random decision for each of the n clones on whether to add it to or remove it from
S. At the end of step t, that is, after all clones have been processed, state Xt is the
final XS. In the Gibbs sampler, for clone ck, the probability of changing from XS to
XS4{ck} equals to

1

1 +
PrA(XS|r)

PrA(XS4{ck}|r)

,
(X)

where 4 is the symmetric difference, that is, A4B , (A \ B) ∪ (B \ A). Notice
that with this probability of changing from XS to XS4{ck} , Xt and hence XS tend in
distribution to PrA(X|r). From Bayes’ Theorem, Pθ̂(X) and (VIII) we obtain,

PrA(XS|r)
PrA(XS4{ck}|r)

=
Pθ̂(XS)

Pθ̂(XS4{ck})

∏
i∈[m]:
ck∈pi

f (ri, (AXS)i)

∏
i∈[m]:
ck∈pi

f (ri, (AXS4{ck})i)
.

Notice that, for i such that ck ∈ pi, we have

(AXS4{ck})i =

{
(AXS)i + 1, if ck 6∈ S,
(AXS)i − 1, if ck ∈ S.
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The prior ratio P
θ̂
(XS)

P
θ̂
(XS4{ck})

can also be efficiently updated and we will see that it

only depends on the associated states of ck’s neighbors. For convenience, let XS =
(σS

1 , . . . , σS
k , . . . , σS

n ) and σS
−1 = σS

0 = σS
n+1 = σS

n+2 = 0, for any S. If ck 6∈ S, then

Pθ̂(XS)

Pθ̂(XS4{ck})
= exp

{
θ̂S

1 + θ̂2σS
k−1 + θ̂2σS

k+1 + θ̂3σS
k−2

+θ̂3σS
k+2 + θ̂4σS

k−2σS
k−1 + θ̂4σS

k−1σS
k+1 + θ̂4σS

k+1σS
k+2
}

.

If ck ∈ S, then

Pθ̂(XS)

Pθ̂(XS4{ck})
= exp

{
− θ̂1 − θ̂2σS

k−1 − θ̂2σS
k+1 − θ̂3σS

k−2

−θ̂3σS
k+2 − θ̂4σk−2σS

k−1 − θ̂4σS
k−1σS

k+1 − θ̂4σS
k+1σS

k+2
}

.

From Assumption 4 and that Pθ̂ is strictly positive (that is, Pθ̂(X) > 0 for any
X), we can see that the Markov chain is aperiodic, since it has a positive probability
of remaining in the same state, and that the Markov chain is also irreducible, since
it is possible to go from any state to any other state. This assures uniqueness of and
convergence to the stationary distribution PrA(X|r) as well as the ergodic property.
For discussions of the Gibbs sampler, we refer to Roberts and Smith [149] and Tier-
ney [168]. Hence, starting with any state and running Gibbs sampler algorithm after
a suitable warmup period, samples obtained from a realization of the Markov chain
can approximately be regarded as the desired ones drawn according to PrA(X|r).
By taking sufficiently many samples from the Markov chain, the proportion of the
samples with σi = 1 can be thus a Bayesian estimation of PrA(xi = 1|r).

As an extension of MCPD, MMCPD has two attractive merits. First, only local
neighborhood relations and state values are needed to update the prior ratio and
likelihood ratio, making the computation efficient. Second, its implementation re-
quires no explicit restriction on the structure of pooling designs. This provides us a
considerable freedom to choose and optimize the pooling designs we want to use,
rather than the ones we have to use. Particularly, MMCPD is able to decode the
pooling results obtained by screening random pooling designs.

4.4 Random k-set design

This section discusses random pooling designs in the presence of consecutive posi-
tives and experimental errors.

4.4.1 Motivation and related works

Among all, we are particularly interested in random k-set designs. A is said to be
a random k-set design if each column of A is a k-subset of [m] that is generated in-
dependently and uniformly at random. k is called the replication number, deciding
how many pools each clone will be put into. Since there may exist other positive
detecting algorithms for consecutive positives, a practical lower bound of the op-
timal value of m, independent of any positive detecting algorithm, will be attrac-
tive. This motivated us to seek a nontrivial information-theoretic lower bound of
m. Information-theoretic bounds have been extensively studied in many fields. For
example, related studies can be found in Atia and Saligrama [6], Chan et al [25] and
[26], Wang et al. [181] and Wainwright [179]. Our computation method shares some
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commonplaces either in purpose or in formulation with prior work such as Bruno
et al. [170], Knill et al. [100], Wang et al. [181] and Wainwright [179]. However,
the algorithmic consideration of consecutive positives and experimental errors with
random k-set designs makes our method different from any of them.

4.4.2 Problem formulation

Notice that the Gibbs sampler (Geman and Geman [63]) allows us to estimate the
distribution of the positive patterns of Pθ̂ . Hence, to choose proper values of m and
k for Pθ̂ and f , we begin by fixing a positive pattern ddd and formulate the subproblem
in terms of ddd and f .

Let Ω(ddd) ⊆
{
(σ1, . . . , σn) ∈ {0, 1}n :

n
∑

i=1
σi = |ddd|

}
be the nonempty subset con-

sisting of all the vectors with positive pattern ddd. If XP belongs to Ω(ddd), due to the
heterogenous property of Pθ̂ , we think of XP randomly and uniformly distributed
over Ω(ddd). Denote by Am,k the set of all k-set designs with size m. Similar to As-
sumption 6, only knowing the k-set design does not change the distribution of XP
over Ω(ddd). We formally states this by introducing Assumption 7.

Without causing confusion, when ddd is fixed and known, we denote by Pr(X)
the probability that X is chosen from Ω(ddd) as the positive set and by PrA(X) the
probability that X is the positive set given k-set design A.

Assumption 7. When ddd is given and the values of m and k have been decided, given any
k-set design A ∈ Am,k, PrA(X) = Pr(X), for all X ∈ Ω(ddd).

Given any instance of random k-set design A, a positive detecting algorithm φ
with respect to A is a mapping from the m-vector observation r to an estimated vec-
tor of positives, say of the form XP̂ = φA(r). Accordingly, based on the k-set design
A, the average probability of decoding error of any positive detecting algorithm is
defined as

perr(A) =
1

|Ω(ddd)| ∑
X∈Ω(ddd)

Pr[φA(r) 6= X|X].

We apply Fano’s lemma [36] to lower bound the average probability of decoding

error. Notice that X A−→ AX
f−→ r forms a Markov chain, we can arrive at the form

used in Wang et al. [181]

perr(A) ≥ 1− HA(r)− HA(r|X) + 1
log |Ω(ddd)| .

The average probability of decoding error over Am,k can be lower bounded as fol-
lows:

EA[perr(A)] ≥1−
EA

[
m
∑

i=1
HA(ri)

]
−EA[HA(r|X)] + 1

log |Ω(ddd)| .
(XI)

4.4.3 A lower bound of EA[perr(A)]

Provided n, ddd and f are fixed and known, we begin by stating a set of lemmas and
a necessary condition on m and k for EA[perr(A)] = 0, on the conditions that the
positive set X with positive pattern ddd is randomly and uniformly distributed over
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Ω(ddd) and A is random k-set design, independently and uniformly from Am,k. The
lemmas and hence Necessity Theorem are also based on the Assumptions 3, 4 and 7.

Lemma 1. For any h ∈ [m],

EA[HA(rh)] ≤ −
3

∑
j=0

fddd,m,k(j) log fddd,m,k(j),

where

fddd,m,k(j) =
1

∑
i=0

λ1−i
ddd,m,k(1− λddd,m,k)

i f (j, i),

and
λddd,m,k = (1− k

m
)|ddd|.

Proof of lemma 1
Notice that EA

[
HA(rh)

]
can be written into

∑
A∈Am,k

Pr(A)

(
−

3

∑
j=0

PrA(rh = j) log PrA(rh = j)
)

.

Also Notice that −x log x defined on R+ is a concave function. Hence, by using
Jensen’s inequality we can obtain an upper bound of EA

[
HA(rh)

]
, that is,

EA
[
HA(rh)

]
=

3

∑
j=0

∑
A∈Am,k

−Pr(A)PrA(rh = j) log PrA(rh = j)

≤
3

∑
j=0
−
(

∑
A∈Am,k

Pr(A)PrA(rh = j)
)

· log
(

∑
A∈Am,k

Pr(A)PrA(rh = j)
)

Hence, to end our proof it suffices to calculate ∑A∈Am,k
Pr(A)PrA(rh = j). Since

the sample space Ω(ddd) is fixed and known, due to the fact that X A−→ AX
f−→ r forms

a Markov chain we have

PrA(rh = j) = ∑
X∈Ω(ddd)

PrA(X)PrA(rh = j|X).

Due to Assumptions 3 and 4, we have
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PrA(rh = j|X)

=
1

∑
i=0

PrA(rh = j, (AX)h = i|X)

=
1

∑
i=0

Pr(rh = j|(AX)h = i)Pr((AX)h = i|X)

=
1

∑
i=0

f (j, i)Pr((AX)h = i|X).

(A. 1)

Since PrA(X) = Pr(X) is assumed in Assumption 7, we further have

∑
A∈Am,k

Pr(A)PrA(rh = j)

= ∑
A∈Am,k

Pr(A) ∑
X∈Ω(ddd)

PrA(X)PrA(rh = j|X)

= ∑
X∈Ω(ddd)

Pr(X) ∑
A∈Am,k

Pr(A)PrA(rh = j|X).

(A. 2)

Since for any fixed X with |ddd| positives, Pr((AX)h = i|X) = 1 if pooling design
A contains at least one positive in the hth pool, otherwise 0. When the hth pool is
considered, if X is fixed and A is random k-set design constructed by independent
column generation of uniform random k-sets and hence A is chosen independently
and uniformly from Am,k, then Pr((AX)h = 0|X) = 1 with probability (1− k

m )|ddd| .
Therefore, we have

∑
A∈Am,k

Pr(A)PrA(rh = j|X)

=
1

∑
i=0

f (j, i) ∑
A∈Am,k

Pr(A)Pr((AX)h = i|X)

=
1

∑
i=0

f (j, i)
(

1− k
m

)|ddd|(1−i)(
1−

(
1− k

m

)|ddd|)i

.

(A. 3)

Consequently, we finish the proof by combining the results of (A. 1), (A. 2) and (A.
3).

We introduce some notations for an exact computation of EA[HA(rh|X)]. Let
|AX| = |{h ∈ [m] : (AX)h = 1}|. Given an X with positive pattern ddd, denote
by P|ddd|X,m,k(t) the probability that a k-set design A, uniformly chosen at random from
Am,k, satisfies |AX| = t. Recall that the columns of random k-set design are inde-
pendent and uniformly chosen at random. This suggests that P|ddd|X,m,k(t) = P|ddd|X′,m,k(t)

for any X and X′ with ddd. Thus, we can write P|ddd|m,k(t) for short. For any integers a and
b, we define an indicate function of a and b as follows:

δ(a, b) =

{
0 if a < b,
1 if a ≥ b.
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Lemma 2. P|ddd|m,k(t) can be iteratively computed, for t = k, . . . , |ddd|k.

P|ddd|m,k(t) =
k

∑
w=0

µm,k,t(w)P|ddd|−1
m,k (t− k + w),

where

µm,k,t(w) = δ(t− k + w, k)
(t−k+w

w )(m−(t−k+w)
k−w )

(m
k )

,

and in particular

P1
m,k(k) = 1.

Proof of lemma 2
We assume |ddd|k ≤ m. For a fixed XP with |ddd| positives and a fixed t, letA|ddd|XP,m,k(t)

be the subset of all the k-set designs of size m satisfying |AXP| = t. Obviously, the
value of t can range from k to |ddd|k, and it is determined by the columns correspond-
ing to the positive set P. Since the columns of random k-set designs are randomly
and independently generated, it follows that P|ddd|XP,m,k(t) only depends on |ddd|, m and

k. Therefore, any XP with |ddd| positives can be used to derive P|ddd|m,k(t). Let u|ddd|XP,m,k(t)
be the number of ways of choosing columns corresponding to XP such that any k-
set design with those columns belongs to A|ddd|XP,m,k(t). Due to construction method of
random k-set designs, we have

P|ddd|m,k(t) =
|A|ddd|XP,m,k(t)|

(m
k )

n =
u|ddd|XP,m,k(t)

(m
k )

ddd .

Hence, to end our proof it suffices to give an iterative expression of u|ddd|XP,m,k(t).

Without loss of generality and for the sake of simplicity, we express u|ddd|XP,m,k(t) by

u|ddd−1|
XP′ ,m,k(t

′)s, for some P′ ⊂ P with |ddd| − 1 positives.
Let v1, . . . , v|ddd|−1 be the columns of a k-set design A corresponding the posi-

tive set P′ and v|ddd| be the column corresponding to P \ P′. Notice that, for w =

0, 1, . . . , k, if there are t− k + w positive coordinates in the vector ∑|d
dd|−1

j=1 vj, then we

have (t−k+w
w )(m−(t−k+w)

k−w ) ways to choose v|ddd| such that ∑|d
dd|−1

j=1 vj + v|ddd| has t positive
coordinates. This implies that

u|ddd|XP,m,k(t) =
k

∑
w=0

δ(t− k + w, k)
(

t− k + w
w

)
·
(

m− (t− k + w)

k− w

)
u|ddd|−1

XP′ ,m,k(t− k + w).

Dividing by (m
k )
|ddd| on both sides, the proof ends.

Using Lemma 2, we can obtain a closed expression of EA[HA(r|X)].

Lemma 3.

EA[HA(r|X)] =
|ddd|k

∑
t=k

P|ddd|m,k(t)
[
tH f (1) + (m− t)H f (0)

]
,
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where

H f (i) = −
3

∑
j=0

f (j, i) log f (j, i),

for i = 0, 1.

Proof of lemma 3
By the definition of conditional entropy and Assumption 7, we have

EA
[
HA(r|X)

]
= ∑

A∈Am,k

Pr(A) ∑
X∈Ω(ddd)

PrA(X)HA(r|X)

= ∑
X∈Ω(ddd)

Pr(X) ∑
A∈Am,k

Pr(A)

(
∑

r∈{0,1,2,3}m

−PrA(r|X)

· log PrA(r|X)

)
.

(C. 1)

Given any X ∈ Ω(ddd), we have the partition

Am,k =
|ddd|k⋃
t=k

A|ddd|X,m,k(t).

Moreover, recall that PrA(r|X) =
m
∏

h=1
f (rh, (AX)h) due to Assumptions 3 and 4.

Therefore, this implies when X ∈ Ω(ddd) is fixed, for any given A ∈ A|ddd|X,m,k(t),

HA(r|X) =
m

∑
h=1

H(rh|(AX)h)

= t
3

∑
j=0
− f (j, 1) log f (j, 1)

+ (m− t)
3

∑
j=0
− f (j, 0) log f (j, 0)

= tH f (1) + (m− t)H f (0).

(C. 2)

Using the result of (C. 2) and Lemma 3, it follows that
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(C.1) = ∑
X∈Ω(ddd)

Pr(X)
|ddd|k

∑
t=k

∑
A∈A|ddd|X,m,k(t)

Pr(A)

·
(

tH f (1) + (m− t)H f (0)
)

= ∑
X∈Ω(ddd)

Pr(X)
|ddd|k

∑
t=k

P|ddd|m,k(t)
(

tH f (1)

+ (m− t)H f (0)
)

=
|ddd|k

∑
t=k

P|ddd|m,k(t)
(

tH f (1) + (m− t)H f (0)
)

.

Respectively substituting the results of Lemma 1 and Lemma 3 for EA[HA(r)]
and EA[HA(r|X)] in (XI), we can easily compute an information-theoretic lower
bound of the average probability of decoding error, that is,

EA[perr(A)] ≥ 1− I(ddd, f , m, k) + 1
log |Ω(ddd)| , (XII)

where

I(ddd, f , m, k) = −m
3

∑
j=0

fddd,m,k(j) log fddd,m,k(j)

−
|ddd|k

∑
t=k

P|ddd|m,k(t)
[
tH f (1) + (m− t)H f (0)

]
.

For convenience, we denote by ILB(|Ω(ddd)|, f , m, k) the information-theoretic lower
bound of (XII). By letting EA[perr(A)] = 0, (XII) derives a necessary condition on m
and k.

Theorem 4 (Necessity Theorem). EA[perr(A)] vanishes to 0 only if m and k satisfy the
condition

log |Ω(ddd)| ≤ I(ddd, f , m, k) + 1.

In each subproblem where ddd is fixed and known, the Necessity Theorem implies
that roughly m = O(log |Ω(ddd)|) pools are least required for complete identifiability.
This casts a light on the usefulness of knowing the overlap structure of clone maps.
Prior knowledge of consecutive positives shrinks the size of the sample space of pos-
itives, which hence reduces the size of pooling design. This observation is consistent
with the original motivation of Balding and Torney [7] and Colbourn [34].

Additionally, ILB(|Ω(ddd)|, f , m, k) can be used to predict the influence of f and k
on the positive detectability of random k-set designs. To show this, we re-examine
one of the screening problems studied by Knill et al. [101] and Uehara and Jimbo
[174]. In the problem, the DNA library consists of 1298 clones without linear orders,
among which there are four positives, and thus |Ω(ddd)| = (1298

4 ). Assigning two set
of values to f , we fix f1 and f2 as shown in TABLE 4.1 and TABLE 4.2, respectively.
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TABLE 4.1: f1: Knill et al. [101]

f (0, 0) = 0.871 f (0, 1) = 0.05

f (1, 0) = 0.016 f (1, 1) = 0.11

f (2, 0) = 0.035 f (2, 1) = 0.27

f (3, 0) = 0.078 f (3, 1) = 0.57

TABLE 4.2: f2: Uehara and Jimbo [174]

f (0, 0) = 0.856 f (0, 1) = 0.02

f (1, 0) = 0.126 f (1, 1) = 0.155

f (2, 0) = 0.016 f (2, 1) = 0.288

f (3, 0) = 0.002 f (3, 1) = 0.537

By fixing the value of m (m = 47, 60, 131), Fig. 4.1 shows the variation of ILB(|Ω(ddd)|, f , m, k)
as the values of f and k vary.
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FIGURE 4.1: Comparison of ILB(|Ω(ddd)|, f , m, k) subject to f1 and f2

Similar to the LDPC (Low-Density Parity-Check) codes (see Gallager [58] and
Mackay and Neal [112]), random k-set designs demonstrates a degree of error-tolerant
ability, which is closely related with the value of k. The U-shaped curve of k is
in accordance with our expectation, since either too small or too large a value of
k will weaken the positive detectability of random k-set designs. As Uehara and
Jimbo [174] mentioned, we also observe that there is a big gap between the values of
ILB(|Ω(ddd)|, f , m, k) when k = 3 and k = 4.

Comparing Fig. 4.1 (a) with Fig. 4.1 (b), the influence of f is also noticeable. Ue-
hara and Jimbo [174] proposed f2 for repairing the unnatural monotonicity of f1 in
which f (1, 0) < f (2, 0) < f (3, 0). They also simulated the positive detectability
of BNPD and MCPD subject to f2 and showed that the seemingly slight modifica-
tion remarkably improves the performance of MCPD and BNPD. Interestingly, as is
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shown in Fig. 4.1, the variation of ILB(|Ω(ddd)|, f , m, k) implies that f1 is more difficult
to cope with, which also coincides with their simulation results.

4.4.4 Random pooling designer

Given a positive pattern ddd it is often over complicated to obtain the exact |Ω(ddd)|.
Instead, we estimate a lower bound of |Ω(ddd)|.

Particularly, we consider the positive pattern of the form ddd = (d1, d2, 0, 0) for
some positive integer d1 and nonnegative integer d2 such that

Ω(ddd) = {X ∈ {0, 1}n|D1(X) = d1, D2(X) = d2, D3(X) = 0, D4(X) = 0}.

Letting |Ω(ddd)| = (d1−d2
d2

)
d1−d2

∏
i=1

(n− d1 + d2 − 3i + 4), we claim that |Ω(ddd)| is a lower

bound of |Ω(ddd)|. This can be seen as follows. To begin with, it is obvious that there
are d1 − 2d2 maximum consecutive subset with a single positive and d2 maximum
consecutive subset with 2 consecutive positives, and therefore we can treat each sin-
gle positive as a red ball and each pair of consecutive positives as a blue ball. To
calculate |Ω(ddd)|, it is equivalent to counting how many ways these d1− d2 balls with
distinguishable colors can be put into n− (d1 − d2) + 1 urns such that any two ball
have at least an urn between. This constraint implies that each ball will occupy at
most 3 urns. Thus, to place the ith ball, at least (n− (d1 − d2) + 1− 3(i − 1)) urns
are left to choose from, for i = 1, 2, . . . , d1 − d2. Noticing that (d1−d2

d2
) is the number

of ways to color these balls without repetition, the desired lower bound is obtained.
With |Ω(ddd)| and f , we give the algorithm called RPD (Random Pooling Designer)

for exhaustive search of the least value of m and some value of k that satisfy the
Necessity Theorem. mddd, f and kddd, f denote by the least value of m and by the value of
k with respect to |Ω(ddd)| and f , respectively. With the values of mddd, f and kddd, f , various
strategies can be used to choose the proper values of m and k for θ̂ and f .

Random Pooling Designer

Input: |Ω(ddd)| and f
Output: mddd, f and kddd, f

mddd, f ← 1
kddd, f ← 1
temp← ILB(|Ω(ddd)|, f , mddd, f , kddd, f )
while temp > 0 do

mddd, f ← mddd, f + 1
kddd, f ← 1
while temp > ILB(|Ω(ddd)|, f , mddd, f , kddd, f ) and k ≤ m do

temp← ILB(|Ω(ddd)|, f , mddd, f , kddd, f )
kddd, f ← kddd, f + 1

end while
end while

4.5 Simulation

This section shows the performance of MMCPD with random k-set designs chosen
by RPD.
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4.5.1 Simulation Method

The simulations are performed as follows.

1. Letting n = 1298 be the size of C, the prior knowledge of consecutive positives
is set to d1 = 6, d2 = 2.4, d3 = 0.01 and d4 = 0.001.

2. The likelihoods of experimental error f are set to f1 given in TABLE 4.1.

3. Find an approximate prior probability distribution Pθ that incorporates the
prior knowledge by solving (V).

4. Estimate the distribution of positive patterns of Pθ .

5. Choose proper positive patterns, and compute |Ω(ddd)|, mddd, f and kddd, f , for each
chosen ddd.

6. Choose mθ, f and kθ, f such that mθ, f is the least value with ILB(|Ω(ddd)|, f1, mθ, f , kθ, f ) <
0, for all the chosen positive patterns.

7. The positive set P is given in two ways.

• Fix {240, 241, 890, 891, 1001, 1002} as the positive set.

• Randomly choose a positive set approximately according to Pθ .

8. Generate a random k-set design A with some proper values of k and m.

9. Compute the number of positives in each pool.

10. Based on 11), determine the pooling results r randomly according to f1.

11. Implement MMCPD to decode the corrupted pooling results r. The posterior
probability of being a positive is estimated for each clone.

12. Clones are sorted in a decreasing order according to their posterior probabili-
ties.

4.5.2 Preprocess of pooling procdedure

Solving (VII) with Descombes et al. [41]’s method, we find that θ̂ = (6.96,−7.65, 4.955, 2.01)
is a suitable approximation for the the desired prior distribution. However, the es-
timation based on MCMC simulation is costly and hence a good initial θ will accel-
erate the convergence of Descombes et al [41]’s method. In implementation, to find
a proper initial θ involves some guesswork and it can be done in a bisection way by
using trial and failure method.

Next, we take 10000 samples for estimating the distribution of positive patterns
of Pθ̂ and list the positive patterns with sample mean above 0.0025 in TABLE 4.3. It
also lists the corresponding mddd, f s and kddd, f s with respect to the positive patterns of
our consideration and f1. Particularly, ddd = (0, 0, 0, 0) is trivial and we remove it from
our consideration. The total positive patterns of our consideration roughly account
for 95% of the positive patterns of the samples.
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TABLE 4.3: Estimated Distribution of ddd with respect to Pθ̂ and Values
of mddd, f and kddd, f with respect to f1

ddd Sample Mean mddd, f kddd, f

(0, 0, 0, 0) 0.0286 - -
(1, 0, 0, 0) 0.0307 17 7
(2, 0, 0, 0) 0.0192 33 9
(2, 1, 0, 0) 0.065 17 4
(3, 0, 0, 0) 0.0075 48 10
(3, 1, 0, 0) 0.0798 33 6
(4, 1, 0, 0) 0.0470 48 8
(4, 2, 0, 0) 0.0791 31 5
(5, 1, 0, 0) 0.0191 63 8
(5, 2, 0, 0) 0.0925 46 6
(6, 1, 0, 0) 0.006 96 9
(6, 2, 0, 0) 0.0617 61 7
(6, 3, 0, 0) 0.0618 44 5
(7, 2, 0, 0) 0.0232 75 7
(7, 3, 0, 0) 0.0717 58 6
(8, 2, 0, 0) 0.0071 88 8
(8, 3, 0, 0) 0.0459 72 6
(8, 4, 0, 0) 0.0385 55 4
(9, 3, 0, 0) 0.0189 85 7
(9, 4, 0, 0) 0.0446 69 5
(10, 3, 0, 0) 0.0048 98 7
(10, 4, 0, 0) 0.0272 82 6
(10, 5, 0, 0) 0.0181 65 4
(11, 4, 0, 0) 0.0118 95 6
(11, 5, 0, 0) 0.0217 78 5
(12, 4, 0, 0) 0.0041 108 6
(12, 5, 0, 0) 0.0128 91 5
(12, 6, 0, 0) 0.0059 74 4
(13, 5, 0, 0) 0.0040 104 6
(13, 6, 0, 0) 0.0087 86 5
(14, 6, 0, 0) 0.0048 99 5
(14, 7, 0, 0) 0.0028 82 4
(15, 7, 0, 0) 0.0038 95 4

Others 0.0216 - -
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4.5.3 Simulation 1: fixed positive set

Of all the chosen positive patterns, ddd = (6, 3, 0, 0) attracts our attention because it has
relatively high frequency, contains relatively large number of positives, but requires
few pools with small value of k. By fixing the positive set P = {240, 241, 890, 891, 1001, 1002},
500 simulations are implemented to show MMCPD’s positive detectability with ran-
dom 5-set designs of size 44.

In each simulation, beginning with the state drawn from i.i.d Bernoulli trials
with parameter q = 6

1298 , the warmup period includes 5000 steps. After the warmup
period, another 15000 steps are run, and the states obtained in every 3 steps are used
as samples to estimate the posterior probability of being positive for each clone, that
is, approximately the proportion of the obtained states including the given clone.
We subsample the Markov chain in hope of weakening potential autocorrelations
among the samples. Denote by CP the set of candidate positives. MMCPD outputs
CP which consists of the six clones with the highest mean posterior probabilities.
TABLE 4.4 shows the number of times among 500 simulations that |P∩CP| positives
can be identified by using MMCPD.

TABLE 4.4: Positive Detectability of MMCPD for Fixed Positive Set

|P ∩ CP| Times

6 98

5 39

4 149

3 37

2 112

1 23

0 42

During the simulations, we observed that MMCPD detects the underlying true
positives in a pairwise way, which can also be seen from the TABLE 4.4. Successfully
decoding one underlying true positive will remarkably improve the performance of
detecting the consecutive one. Besides, we can also conclude that the lower bound
ILB(|Ω(ddd)|, f1, mddd, f , kddd, f ), though underestimates the underlying true minimal num-
ber of pools required, is nontrivial and useful.

4.5.4 Simulation 2: random positive set

By using the TABLE 4.3, we can verify that mθ̂, f = 108 is the least value with

ILB(|Ω(ddd)|, f1, mθ̂, f , kθ̂, f ) < 0

, for all the chosen positive patterns, where kθ̂, f = 6.
1000 simulations are implemented to show MMCPD’s positive detectability. In

each simulation, a nonempty positive set is first randomly generated approximately
according to Pθ̂ and then a random 6-set design of size 108 is independently con-
structed. The decoding procedure of random positive set is the same with that of the
fixed positive set except for the choice of the set of candidate positives. To evaluate
the detectability of MMCPD for randomly generated positive set P, we introduce the
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FIGURE 4.2: Detectability of MMCPD for Random Positive set

success ratio Suc(P) , |P∩CP|
|P| , where CP is the candidate positive set of |P| clones

which have the highest mean posterior probabilities. Obviously, the complete iden-
tifiability occurs when Suc(P) = 1. This measurement is nevertheless strict. Fig. 4.2
shows the simulation results.

In the simulations, MMCPD showed a stable and reliable performance with ran-
dom designs. Its novel efficiency, as expected, is due to the prior knowledge of con-
secutive positives and also due to the proper choice of values of m and k suggested
by RPD. Actually, there are 593 instances where MMCPD completely identified all
the randomly generated positives, which to some extend achieve our expectation
and also validates our theoretical analysis.

However, if too many positives or/and errors occur, MMCPD may not perform
as well as expected. Denote by EFN and EFP the number of false negative errors and
that of false positive errors, respectively. TABLE 4.5 lists all the instances with the
success ratio less than 0.4.

TABLE 4.5: Instances Where MMCPD Performed Badly

Index ddd EFN EFP Suc(P)

1 (1, 0, 0, 0) 0 21 0

2 (2, 0, 0, 0) 4 17 0

3 (1, 0, 0, 0) 0 14 0

4 (15, 6, 0, 0) 4 7 0.133333

5 (21, 10, 0, 0) 7 6 0.285714

6 (3, 0, 0, 0) 1 13 0.333333

7 (3, 0, 0, 0) 2 18 0.333333

8 (12, 5, 0, 0) 1 13 0.333333

9 (11, 4, 0, 0) 6 7 0.363636

10 (16, 7, 0, 0) 4 4 0.375

11 (8, 3, 0, 0) 3 17 0.375

Typically, these instances are hard. If too many positives and/or experimental
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errors occur, or if the positive pattern of consecutive positives deviates from our
prior knowledge too far, or a concurrence of some of these difficulties, will weaken
the positive detectability of MMCPD. To overcome this, we may either enlarge the
set of candidate positives or use a pooling design with more pools, or both.

4.6 Conclusion

This Chapter studied the problem of screening clone maps in the presence of exper-
imental errors. We propose a probabilistic ranking algorithm for identifying con-
secutive positives. The rationale behind the method can be summarized as follows.
First, we expressed the prior information regarding consecutive structure in a com-
binatorial way and then transform the prior information into a prior distribution
by applying maximum entropy principle. Second, the posterior probability that a
clone is positive is estimated and ranked by Markov Chain Monte Carlo method.
The MCMC method incorporated the structure of potential positive clones and gave
a robust performance even when experimental uncertainty presented and random
pooling designs were used. Third, to maximize the detectability of the ranking al-
gorithm with random k-set designs, we give an information-theoretic framework to
choose proper size and replication number of random k-set design. This framework
supports the conjecture of Balding and Torney [7] that prior information regarding
the structure of a DNA library will help improve the efficiency of experiment de-
signs in terms of the number of pools least necessarily needed in order to identify all
the positive clones.
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Chapter 5

Conclusion

As a methodology of statistical inference, Bayesian approach plays an important
role in constructing useful machine learning algorithms that can implement consis-
tent and plausible reasoning, including both modeling for prediction and theorizing
for explanation. This dissertation discussed ranking methods and their machine
learning algorithms from a cognitive and Bayesian perspective. These methods are
applied to consumer data analysis and molecular bioinformatic problems. In each
application, we showed (1) how domain-specific knowledge can be transformed
and represented for learning purposes, (2) how to construct an effective ranking
algorithm that take advantage of the representation of the domain-specific knowl-
edge, and (3) how and why the knowledge representation would improve the per-
formance of the learning process of the ranking algorithm.

5.1 Preference learning machine

In Chapter 2, we discussed the problem of ranking smartphone apps according to
their quality assessment from a user’s perspective based on large-scale users’ behav-
ioral information which can automatically be collected without the requirement of
users’ active participation. With a commercial dataset, two ranking methods were
proposed, one for extracting superior apps and the other for ordering the extracted
apps.

In order to extract superior apps, a cognitive process of pointwise comparisons
was first discussed and mathematically formulated by introducing the notions: stan-
dard of comparison and random user; then, a score function with desirable proper-
ties were constructed and used to assign a value of quality assessment measurement
to each of the apps to be ranked. In order to arrange the extracted apps into a lin-
ear order, a cognitive process of comparisons from an end-user’s perspective was
first discussed and mathematically formulated by assigning an ordinal structure to
the set of usage patterns, and then based on the results of pairwise comparisons
between the extracted apps, the aggregate preference into which users’ individual
preferences merged can be obtained and used as the ranking result.

Because the dataset we used provided neither target observations nor class la-
bels, the ranking algorithm we proposed to learn users’ preferences from the data is
essentially unsupervised. Data experiment showed that the ranking results given by
the pairwise-comparison-based method are different from the ranking result given
by the the pairwise-comparison-based method; moreover, they can work together to
provide workable ranking results that might be useful for mining knowledge from
users’ behavioral information.
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5.2 Knowledge discovery machine

Chapter 3 discussed a method for discovering the knowledge of the rankings of
items by constructing a learning machine that makes prediction and explanation si-
multaneously. The cognitive ranking model proposed in Section 2.3 of Chapter 2
was examined but from a new perspective. The ranking model was formulated
with a class of desirable properties, which produced a class of hypotheses with prior
knowledge incorporated. With this model, the knowledge discovery problem was
formulated as a single biconvex optimization problem which has a relationship with
SVM(Support Vector Machines). To facilitate the process of knowledge discovery,
we developed a two-stage learning algorithm. In the first stage, we extracted as
much information as possible from the observed data, while in the second stage,
the extracted information was further summarized into knowledge. Particularly, the
learning algorithm is essential Bayesian, combined with Frequentist learning theory.
Frequentist approach is adopted to ease the difficulty that the likelihood function
cannot be explicitly formulated.

Given a small number of input data as well as a moderate amount of prior infor-
mation about the input and the systems parameters, simulation results showed that
the two-stage learning algorithm is able to discover the unknown patterns. More-
over, the explanation improved the accuracy of prediction. The predictive model
seemed also useful for finding out the best explanations in agreement with the prior
and the output.

5.3 Group testing machine

Chapter 4 proposed a Bayesian framework for pooling experiments when consecu-
tive positives present. The prior knowledge of the consecutiveness of positives was
transformed into a mathematical prior by using Maximum Entropy Principle. A
ranking algorithm was constructed for detecting consecutive positives. The learn-
ing process of the ranking algorithm is based on MCMC method, using both prior
knowledge and error-prone pooling results generated by random pooling designs.
Given prior knowledge of consecutive positives and experimental errors, the neces-
sity theorem of random k-set designs was developed in order to choose the values
of the key parameters of pooling design that might most reinforce the performance
of the decoding algorithm. Moreover, with the necessity theorem, we gave a theo-
retical explanation why the prior knowledge of consecutive positives might reduce
the number of pools to recover the positives.
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Chapter 6

Future Work

6.1 Preference learning machine

When target rankings of smartphone apps are available, it would be interesting to
compare the resulting rankings with the target rankings. Moreover, we may be in-
terested in the problem, namely: given a target ranking, which ordinal structure of
usage patterns has led to the target ranking. Notice that the problem of linear or-
dering is computationally hard, in this case, how to solve this inverse problem of
preference learning?

Automatically judging the quality of rankings based on observable user behavior
holds promising for making ranking evaluation faster, cheaper, and more user cen-
tered. In real applications, statistical testing of significance may not be available, and
even so, it seems less possible to fully understand the relationship between observ-
able user behavior and ranking quality. Instead, we should seek for practical testing
procedures in which significance of practice could be tested. This research direction,
involving open information processing and understanding, seems interesting and
promising.

6.2 Knowledge discovery machine

A hierarchical structure of choice models would be more desired, with each associ-
ated a class of system parameters. In this way, automatic knowledge discovery can
be implemented in a larger space of hypotheses with more freedom of parameters.
Then, how to arrange the structure of axioms would be a challenging task. More-
over, it seems that there should be a trade-off between prediction and explanation,
just as in the cases of bias-variance trade-off or approximation-capacity trade off. If
so, how to balance the explaining ability and predicting ability of a learning?

When SRM principle is applied, only the linearly separable case is considered
and thus the application would be very limited. Extension to nonlinear cases would
involve theorizing problems, computation problems and interpretability problems.
Then, how to overcome these difficulties?

The two-stage learning algorithm is solved by half-random-half-deterministic
method in the fist algorithmic stage. Although it may be favored by a parallel imple-
mentation, a pure deterministic algorithm is desired, to evaluate the performance of
the half-random-half-deterministic one. Moreover, it is also interesting to know the
relationship between the two-stage learning algorithm and EM algorithms.
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6.3 Group testing machine

Fano’s inequality plays the key role in formulating the necessity theorem. It is be-
lieved that Fano’s inequality is found sharp in many cases. Then, is it possible to
improve the necessity theorem of random k-sets designs by improving the upper
bound of EA

[
HA(r)

]
?

EM algorithms are believed faster than MCMC methods in some applications. Is
it the case for probabilistic group testing? Can other approximate inference methods
be applied to probabilistic group testing?

Motivated by the development of graph-constrained group testing, we may be
interested to extend probabilistic group testing algorithms to the graph-constrained
cases.
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