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Chapter 1. General Introduction 

 

The practical applications of rechargeable Li-ion batteries (LIBs) have run through 

our whole life, spreading from smart portable electronic devices to pure/hybrid 

electrical vehicles (EVs).1-3 In order to respond the urgent demands for higher energy 

density LIBs, extensive research efforts focus on increasing the output voltage of full-

cell while maintaining considerable specific capacity during long-term cycle life.4-5 

However, the development of high-voltage Li-ion full-cell is still severely hindered, 

due to the absence of suitable electrolyte system. Comprehensive modification 

strategies towards electrolyte system should not only guarantee a safe 

oxidative/reductive electrochemical window, but also satisfy good cathode-electrolyte 

compatibility, superior reversibility for anode electro-chemistry (conventional graphite, 

Si, etc.) and thermal stability, etc.4 Such “perfect” optimizations can hardly be achieved, 

which simultaneously cover every aspects of the practical issues highlighted above. 

Thus, trade-offs between employing high-voltage cathodes and sacrificing the cycle 

performance have essentially reduced the significance of the original motivation.4, 6-9 

Figure 1. Widely employed Li-ion battery system in our daily life. 

Generally speaking, for classic high-voltage cathode materials (Ni-rich and Li-rich 

layered oxides, LiNi0.5Mn1.5O4 spinel, etc.), the most pronounced common drawback 
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reveals to be the parasitic electrolyte oxidation, since the continuous accumulation of 

parasitic products would inevitably induce the increasing of interface resistance and 

capacity deterioration.4  

Figure 2. Typical working mechanism of currently Li-ion battery system. 

Besides, just like a very serious blood disease flowing around the whole cell 

structure, such detrimental decomposition on cathode would lead to concurrent side 

reactions within other cell organs/components.6 For instance, as a product of LiPF6 salt 

decomposition, hydrofluoric acid (HF) would aggravate the dissolution of transition-

metals (TMs) on cathode, resulting in both surface structural distortion and loss of 

reversible active capacity.10-12 Moreover, TMs dissolution-crossover-deposition process 

would result in additionally irreversible loss of active Li-ion on practical anode in full-

cell (reduction of LiC6 on lithium-intercalated graphite anode), which leads to severer 

capacity loss than half-cell system.13-15 As for remedial strategies, surface inert coating 

layer and additives would, to some extent, protect the cathode, and achieve relatively 

excellent cyclability in simplified Li foil-assembled half-cell.16-19 However, these rigid 

strategies are by no means helpful to essentially enhance the oxidative stability of 

electrolyte. What was worse, the prices of these strategies are sacrificing the specific 

capacity and coulombic efficiency, which obvious against the original intention.4 

Furthermore, in a harsher but practical full-cell environment, all of the active lithium-

ion are derived from cathode material, and trace consuming of active Li-ion (no matter 
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cathode or anode) would lead to the irreversible loss of energy density.9, 20 Thus, any 

electrolyte optimization strategy should not neglect the compatibility with cathode and 

reversibility towards commercial anode (graphite and Si), which substantially raise the 

difficulty of modification. Additionally, elevated temperature derived from practical 

cell operation environment would exacerbate the cell deterioration due to the poor 

thermal stability of typical LiPF6 carbonate-based electrolyte.16, 20-24 In a word, 

improving the energy density of cell can be likened as extend the capacity of wood 

bucket. Rigidly lengthening one piece of the boards on the bucket (e.g. introducing a 

high-voltage cathode) cannot obtain more capacity, unless comprehensive 

enhancements have been achieved, which is definitely a large project. In this case, 

although some considerable improvements have been achieved in high-voltage cathode 

half-cell systems, the corresponding full-cell system still suffer from rapid capacity 

deterioration, which is far from satisfying practical demand. 

Figure 3. “Wood Effect” for the current development of high-voltage Li-ion batteries. 

Another novel high-voltage Li-ion battery system focus on the anionic graphite 

intercalation process. Typically speaking, Owning to the interlayer gaps of the lattice, 

graphite can act as an intercalation host for either anion or cation guests at different 

redox potentials.25-27 Benefit from the low electrochemical intercalation potential of Li+ 

cation guest, graphite has been established as a classical anode material for state-of-art 

Li-ion batteries.28-29 Recently, due to the high electrochemical intercalation potentials, 

anionic graphite intercalation chemistry (GIC) behaviors have received considerable 
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attention for designing novel energy storage devices.30-34 Actually, in 1990s, the model 

of dual-graphite intercalation battery has been introduced,26 in which, simultaneously, 

anion/cation guests can intercalate into graphite-based cathode/anode respectively, and 

the output voltage of the cell can be provided by the redox potential gap between the 

pair of amphoteric GIC processes. In nonaqueous electrolyte systems, the concept of 

intercalation-based dual-graphite batteries have been further modified, wherein the Li-

GIC and anion-GIC (PF6
-, TFSI-, etc.) have been in the focus of researches.30, 35-41 

Compared with conventional Li-ion batteries, the most outstanding advantages of dual-

graphite energy storage devices can be summarized as: (I) high output voltage; (II) 

environmental safety; (III) cost benefits.30, 38 

However, a dominated drawback is concentrated on the anion-GIC process, during 

which the intercalation potential typically approaches 5 V vs. Li/Li+, while 

conventional organic electrolytes cannot endure such a high working potential, 

resulting in continuously oxidative electrolyte decomposition and low coulombic 

efficiency (CE).30, 36 Owning to their high stability vs. electrochemical oxidation, the 

employment of ionic liquids (ILs) based electrolytes can efficiently restrain the related 

cathodic degradation, which is well proved within the graphite/Li (anion-GIC) half-

cell.36, 38, 40-43 Unfortunately, as for the cation-GIC process hosted on graphite anode in 

IL electrolyte, although the inner degradation mechanism has not been clearly 

illustrated, the irreversible behavior can be ascribed to the unstable solid electrolyte 

interphase (SEI) protective film and/or harmful co-intercalation of large solvent cation 

(Pyr14
+, EMI+, etc.).38, 42, 44 As a result, due to the low CE and weak reversibility on 

anodic side, intercalated anion on the cathodic side would be trapped within graphite 

cathode, in which the active space cannot be released for subsequent anion-GIC process. 

Notably, rigidly assembling excessive cathode would, indeed, provide preparatory 

space to remedy the irreversible de/intercalation, however, breaking the balance of the 

capacity-equivalent loading proportion between cathode and anode would inevitably 

lead to the waste of output power density, which cannot essentially solve the practical 

problems. Thus, the employment of IL become a “double-edged sword” for dual-
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graphite technology. Moreover, in order to enabling the use of ILs, graphite anode is 

replaced by metal oxides and metallic anodes, only retaining the anion-GIC hosted on 

graphite cathode in the design of some dual-ion batteries.32, 45-47 Although the cycling 

stability of dual-ion batteries, to some extent, have been improved, some precious 

superiorities of dual-graphite battery have also been sacrificed. For example, the use of 

metal oxide anodes would draw down the cell voltage, and the employment of metallic 

anodes would unavoidably introduces their original defects: dendrite issue; low initial 

CE loss and volume expansion. In this case, without sacrificing the advantages, 

designing modification strategies within the dual-graphite framework is pressing.30, 38 

Figure 4. Concept of Hybrid-Electrolytes-Design (HED) strategy. 

Herein, for the 1st issue, LNMO cathode-based Li-ion battery system, without 

being limited within specific remedial modifications, we try to make a comprehensive 

optimization towards the basic cell architecture by introducing a hybrid-electrolytes 

design strategy. Typical 5 V-class spinel LiNi0.5Mn1.5O4 (LNMO) and graphite anode 

are employed as a competitive electrode couple.6, 48-50 The design principle of hybrid-

electrolytes strategy is separating the cathodic/anodic electrochemical processes within 

their adaptive electrolyte environments, and solving the certain problems without 

mixing additionally concurrent influences. Specifically, isolated by a porous sieve-like 
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MOF-based separator, ionic liquid catholyte (LiTFSI/Pyr13TFSI) exhibits outstanding 

oxidative stability and high compatibility with LNMO cathode, while an equimolar 

LiTFSI/G3 complex is employed as anolyte due to its high graphite-intercalation-

chemistry (GIC) reversibility. Besides, both of the electrolyte systems deliver superior 

thermal stability and nonflammability. As a result, the high-voltage LNMO/graphite Li-

ion full cell fabricated with hybrid-electrolytes strategy delivers ultrahigh capacity 

retention rate of 83.8% over 1000 cycles at harsh elevated temperature condition. The 

realization of long-term cycling reversibility and stability also demonstrates that the 

novel cell architecture herein can be further extended as a promising strategy to promote 

the practical development of high-voltage Li-ion full-cell systems. 

 As for the 2nd issue, dual-carbon high-voltage battery system, Recently, by adding 

anodic SEI-forming additives into IL electrolytes, Rothermel et al. provided an effective 

strategy to achieve the reversible cycling of dual-graphite cell.38 However, the long-

term cycling stability and CE still need to be further improved to offset the moderate 

energy density, which is inherently limited by specific capacity of anion-GIC. In this 

study, we introduce a specific hybrid electrolytes design into dual-graphite battery 

system, in which a Nafion-based separator segregates two different electrolyte systems 

into each of their suitable GIC environments. On the cathodic side, outstanding 

oxidative stability of IL electrolyte (LiTFSI-Pyr13TFSI) enables the high reversibility 

of anion-GIC (TFSI-GIC) process. Simultaneously, on the anodic side, specific 

aggregated ion-pair structure within a super-concentrated ether-based electrolyte 

(LiTFSI-G3) insures the highly reversible Li-GIC process. Moreover, the full-cell has 

been assembled with balanced capacity-equivalent mass loading proportion between 

cathode and anode, while this very important practical issue has also been firstly 

highlighted to the forefront in dual-graphite/ion cell systems. The hybrid electrolytes 

strategy in dual-graphite cell synergistically combines the advantages of each 

electrolyte systems, displaying a promising high CE (around 99.7%) and superior long-

term cycling stability (over 3000 cycles at 100 mA/g current density). In addition, 

spectroscopic investigations have been systematically conducted to clearly reveal 
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degradation mechanism of cation-GIC in IL electrolyte system, and elucidate the 

influence of different electrolyte features on the mechanism of Li+ intercalation (Li-

GIC) processes.  
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Chapter 2. Experimental Section 

 

Modification of LiNi0.5Mn1.5O4 (LNMO) spinel cathode 

The principle and reason for this modification of LNMO was further interpreted in 

the corresponding following section. All the chemicals employed in this synthesis 

section were purchased from Wako Pure Chemical Industries Ltd. without additional 

exception. 

(I) Synthesis of MnCO3 microspheres. Manganese sulphate (MnSO4∙H2O, 0.507 g) 

and sodium bicarbonate (NaHCO3, 2.32 g) were separately dissolved in 200 ml distilled 

water. 20 ml of ethanol was then added to the MnSO4 solution under vigorous magnetic 

stirring, and the NaHCO3 solution is continuously injected for precipitation. The 

mixture solution was maintained within thermostat (25°C) for 3 h (Mn2+ + HCO3
- + 

OH- = MnCO3↓+ H2O). The as-precipitated MnCO3 was further obtained by 

centrifuging and washed with distilled water and absolute alcohol solution for 3 times, 

and then dried at 80°C for 1 h in vacuum. 

(2) Synthesis of yolk-structured MnO2 microspheres. The as-prepared MnCO3 (0.2 

g, insoluble) microsphere powder was dispersed into 40 ml distilled water. Then 20 ml 

of 0.032 mol/L KMnO4 solution was added under vigorous stirring for 40 min to form 

a homogeneous solution (2MnO4
- + 3MnCO3 + 2H+ = 5MnO2 + 3CO2 + H2O). The 

color of the solution gradually turned from purple into dark brown, during which the 

core-shell structured MnCO3@MnO2 microsphere could be obtained. Then 20 ml of 

0.6 mol L1 HCl was added into the above suspension and the mixture was continuously 

stirring for 2 min followed by a rapid centrifuging step (2H+ + MnCO3 = Mn2+ + H2O 

+ CO2). In this case, the space between MnO2 shell and MnCO3 core can be obtained 

by HCl etching, resulting the formation of yolk-structured MnCO3 (core) @ MnO2 

(shell) micro-sphere. The as-obtained powder was washed (with distilled water and 

absolute alcohol solution) for several times and dried at 80°C for 1 h in vacuum. Finally, 

the as-prepared yolk-structured MnCO3 (core) @ MnO2 (shell) micro-sphere was 
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further oxidized to pure yolk-structured MnO2 microsphere by additional heat treatment 

(400°C for 10 hours).  

(3) Synthesis of yolk-structured LiNi0.5Mn1.5O4 microspheres. The as-prepared 

yolk-structured MnO2 microsphere was mixed and ground with lithium hydroxide mon-

hydrate (LiOH∙H2O) and Nickel nitrate hexahydrate (Ni(NO3)2∙H2O) in the 

stoichiometric molar ratio (Li:Ni:Mn=1.05:0.5:1.5). Then the mixtures were calcined 

at 800°C for 20 h. The heat treatment process was carried out in air atmosphere. It 

should be mentioned that the synthesis methods here are similar to previous report for 

LiMn2O4 synthesis.51-52 

 

Electrolytes 

Ionic liquid: 1-methyl-1-propylpipridinium, namely Pyr13TFSI, was purchased 

from Solvionic Chemicals. Tri-ethylene glycol dimethyl ether (G3) (Sigma 

Aldrich, >99%) was dried over freshly activated 4 Å molecular sieves for several days. 

Lithium bis(trifluoromethane) sulfonimide salt (LiTFSI, purity of >98 %, Wako 

Chemicals) was dried by heating under vacuum at 80 °C oven overnight. Electrolytes 

are prepared and stored in a glove box under Ar atmosphere. The water concentration 

in the electrolyte measured by Karl Fischer titration was around 30 ppm. 

 

Preparation of MOF-based Separator 

The HKUST-1 precursor solution was prepared according a process based on the 

reported procedures53-54: cupric nitrate trihydrate (Cu(NO3)2· 3H2O, 0.72 mmol, 99.5%, 

TCI, Tokyo Chemical Industry Co., Ltd.) was dissolved into 125 mL ethanol (Wako 

Pure Chemical Industries Ltd. >99.5 %) under continuously stirring, and then the equal 

volumetric 1,3,5 benzenetricarboxylic acid (0.4 mmol, 99.5%, TCI, Tokyo Chemical 

Industry Co., Ltd.) ethanol solution  was added into the above Cu(NO3)2· 3H2O 

solution. After stirring for 2 h, the mixed system changed from a blue clear state to a 
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cloudy one. The MOF-based separators were fabricated by a vacuum filtration 

method.55 The HKUST-1 precursor solution was filtered through the conventional PP 

separators firstly. It was followed by the addition of 0.05 mg mL-1 poly(vinylidene 

fluoride-co-hexafluoropropylene) (P(VDF-HFP) polymer, Mw 455000),  Sigma 

Aldrich, >99%) colloidal fluid. After drying at 60°C for 12 h in a vacuum oven, the  

MOF@P(VDF-HFP) membrane on PP with an areal loading of ~0.24 mg/cm2 were 

obtained. 

 

Preparation of Nafion-based Separator 

The pristine commercial Nafion 117 membrane (N117, in the protonated form, H-

Nafion) was purchased from Sigma Aldrich. The pre-treatment processes for the as-

received Nafion-based separator were very similar as the ones present in previous 

classic reports.56-57 In brief, firstly, in order to transfer the Nafion membrane into a form 

of –SO3H, the Nafion film was pretreated by boiling in a bath of deionized water for 

3~5 h, then transferred into another bath containing 5% hydrogen peroxide (H2O2, 

Wako Chemicals) for 3~5 hours. Then Nafion membrane was boiled in a dilute sulfuric 

acid (0.5 M, H2SO4, Wako Chemicals) solution for 2 hours and finally washed in boiling 

deionized water. For the subsequent Li+ exchange procedure, the Nafion membrane was 

boiled in a solution of 1 M LiOH (Wako Chemicals) in 1:2 volume ratio of ethanol and 

deionized water for 2 h under strong stirring. The membrane was then re-rinsed and re-

washed in boiling deionized water again to remove the residue salt and ethanol. Finally, 

after vacuum drying at 80°C for 5 days, the lithiated Nafion membrane was transferred 

into an argon-filled glove box and punched into separator plates (14 or 16 mm in 

diameter). Before assembled into the coin cell, the lithiated Nafion-based separators 

were bathed into a specific home-made device (very similar as the permeation V-type 

device shown in corresponding following section) filled with corresponding hybrid-

electrolytes for 5 days at ~55°C (for further infiltration/wetting). 

Electrodes Preparation  
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The as-prepared LNMO and graphite powder (Lion Chemical Industry Co., Ltd.) 

were employed as electrode materials. 0.2 g electrode powder was stirring into a binder 

gel solution (0.37 ml), which composed by polyvinylidene fluoride (PVDF, Du Pont-

Mitsui Fluorochemicals Co. Ltd.) powder and N-methyl pyrrolidine (NMP, Sigma 

Aldrich, 99%) solvent (PVDF:NMP=6:94 wt%). The obtained slurry was 

homogeneously coated onto current collector (Al foil for LNMO and Cu foil for 

graphite) by a scraper (0.1 mm height). After tiny pressing procedure, the active 

materials-loaded metal foil was dried at 80 °C in an air oven for 1 hour, and final 

electrode plates (11 mm in diameter) were punched out. The electrode plates were 

placed in separated glass bottles with further drying process in vacuum at 100 °C for 

10 hours, and then transferred into a glove box under Ar atmosphere. The mass loading 

for each LNMO electrode plate was 2.0-2.1 mg/cm2. Typically, the mass loading ratio 

(LNMO:graphite) was fixed at 2:1 and 1:1. The mass loading can be controlled by the 

height of scraper. 

0.2 g graphite powder (Lion Chemical Industry Co., Ltd.) was stirring into a binder 

gel solution (0.37 ml), which composed by polyvinylidene fluoride (PVDF, Du Pont-

Mitsui Fluorochemicals Co. Ltd.) powder and N-methyl pyrrolidine (NMP, Sigma 

Aldrich, 99%) solvent (PVDF:NMP = 6:94 wt%). The obtained slurry was 

homogeneously coated onto Cu (anode) or Al (cathode) foil current collector by a 

scraper (0.1 mm height). After tiny pressing procedure, the graphite-loaded metal foil 

was dried at 80 °C in an air oven for 1 hour, and final electrode plates (11 mm in 

diameter) were punched out. The electrode plates were placed in separated glass bottles 

with further drying process in vacuum at 100 °C for 10 hours, and then transferred into 

a glove box under Ar atmosphere. The mass loading for each cathode plate was 2.0-2.1 

mg/cm2. 

 

Cell Assembly 
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The typical assembly process of the 2032 coin-type cell and in-situ Raman cell 

present the same as our previous reports.58 The in-situ Raman cell herein has been 

designed and modified based on the typical cell (Hohsen Corp., Osaka, Japan).59 In 

detail, a thin quartz window (thickness, 0.5 mm) has been fixed on the top of the cell 

as a sight window. The cathode was assembled at the bottom of the cell with the active 

material-face upward. On the top of the cathode, 50-100 μL of electrolyte was 

homogeneously dropped onto the glassy fiber filter separator (GF/A, Whatman). As a 

standard two-electrode configuration cell, lithium foil (thickness, 0.4 mm) was 

assembled at the top as the reference and counter electrode. Note that, a small hole was 

punched on the center of both the separator and Li foil, through which the laser and 

Raman signals can fluidly cross. Note that the assembly of the cell was conducted in an 

Ar-filled glove box that has a dew point of around -90 °C and O2 content below 5 ppm. 

 

Electrochemical Measurements 

For coin-type cells, the galvanostatic electrochemical measurements were carried 

out under potential control using the battery tester system HJ1001SD8 (Hokuto Denko) 

at 25 °C. Typically, the characterizations of the cell were carried out under galvanostatic 

control at the specific current density from the open-circuit potential (OCP) unless other 

noted. For the in-situ Raman test, the electrochemical experiments were carried out 

under the control of a potentiostat (Potentiostat/Galvanostat PGSTAT30, Autolab Co. 

Ltd., Netherlands) at room temperature. The current and potential outputs from the 

potentiostat were recorded by a multifunction data acquisition module/amplifier 

(PGSTAT30 Differential Electrometer, Autolab), which was controlled by General 

Purpose Electrochemical Software (GPES). The cells were operated with a potential 

limit between: 2.55-4.75 V (for dual-graphite full-cell); 0.01-3.0 V (for anodic Li-GIC 

half-cell) and 2.8-5.0 V (for cathodic TFSI-GIC half-cell) in the study. The cells were 

operated with a potential limit between: 3.4-4.8 V (for LNMO || graphite full-cell); 3.0-

4.9 V (for LNMO || Li half-cell) and 0.01-3.0 V (for graphite || Li half-cell) in the study. 
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Before each electrochemical characterization, the cells were kept on open circuit for 8-

10 hours. All of the potentials in this study were referenced to Li/Li+. 

 

Characterizations 

Raman Measurements 

The Raman spectra were recorded using a JASCO microscope spectrometer (NRS-

1000DT). The excitation light of an air-cooled He−Ne laser at 632.8 nm wavelength 

was focused on the electrode surface through a 50×long working distance lens 

(Olympus America Inc.). The confocal slit was adjusted to be 4.0 μm to minimize the 

band broadening effect due to the contribution of non-confocal signal. The scattered 

light was collected in a backscattering geometry along the same optical path as the 

pumping laser. The power of laser beam delivered to the electrode surface was roughly 

10% of the maximum 30 mW laser intensity, unless specified, to avoid degradation to 

the products and/or carbon-based cathode. The Raman spectrum acquisition time varied 

from 600-800 s with 1-2 accumulations. At least 3 different places on the electrode 

surface at each cathode plate were checked to ensure the Raman spectra were credible 

and reproducible. The spectral resolution of the Raman spectra in the study was ca. 1.0 

cm−1. 

HR-TEM, SEM and X-Ray Photoelectron Spectroscopy Characterizations 

HR-TEM images were obtained using a JEM-2100 (HR) electron micro-scope. 

SEM measurements were performed on a LEO Gemini Supra 35 system, and images 

were obtained at an electron current of 50 pA with an accelerating voltage of 5 kV. X-

ray photoelectron spectroscopy (XPS) was performed using a VG scientific ESCALAB 

250 spectrometer with monochromic Al Kα excitation (1486.6 eV). Note that, in order 

to restrain the exposure time to the ambient, XPS samples (cycled Li foil anode) were 

tightly sealed into a glass bottle (fill with Ar gas), and transfered to the XPS chamber 

as quickly as possible. 
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For the pre-treatment procedures: The cycled cells were transferred into an Ar 

glove box once the discharge processes finished, and the electrodes were extracted from 

the cell and placed in a glass bottle. The cathodes were twice rinsed by dimethoxyethane 

(DME, Sigma Aldrich, 99%) to wash off the electrolyte salt and the residual solvent, 

and then evaporated in a vacuum chamber, connected to the glove box, for 15~30 min. 

The dried cathodes were moved back to glove box and placed onto a SEM or XPS 

sample holder. The sample holder was sealed in an airtight container and then 

transferred into the SEM or XPS sample loading chamber. For the HR-TEM 

observation, the dried electrodes were ultra-sounded in newly-filled DME solvent. 

After some of the electrode powders were divorced away from the bulk electrode plate, 

we employed a Cu mesh to harvest the dispersed electrode materials for HR-TME 

observation. Note that the time from open the sealed container to pump down the 

chamber was less than 3 seconds, and we assumed the morphology and the component 

of electrode surface would not change for such a short time exposure to the open air. 

Nuclear Magnetic Resonance (NMR) Spectroscopy Characterizations 

The NMR spectra were recorded using a spectrophotometer (500MHz Ultra-

ShieldTM, Bruker). Typically, 128 times were accumulated for one spectrum (both 1H 

and 19F). After corresponding electrochemical treatments, the cells were transferred to 

an Ar-filled glove box, and the electrodes and separators were extracted without further 

pretreatment, respectively. 750 µL of D2O (99.9 atom % D, Wako Chemicals) was used 

to extract the souluble products (carboxylates and fluorids) from the electrodes and the 

separators, then the solution was transferred to septa-sealed NMR tube. To quantify the 

amount of formate, acetate species (carboxylates) and/or LiF (fluoride), 1µL of benzene 

(C6H6, Sigma Aldrich, 99%) and 1uL of fluorobenzene (C6H5F, Sigma Aldrich, 99%) 

were mixed and injected through the septa and empolyed as an internal/inner standard. 

The method here is very similar as the one in our previous works.60 

Inductively-Coupled Plasma (ICP) Characterizations 
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ICP-OES (optical emission spectroscopy) results were recorded using Thermo 

Scientific iCAP 5600 and PerkinElmer Optima 4300 DV. Metal loss from the LNMO-

based electrodes were quantitatively confirmed measuring the Mn and Ni-ion 

concentrations both in the electrolyte solutions and on the lithium-metal anode.15-16, 20-

21 The cycled separators (infiltrated by cycled electrolyte solutions) and lithium 

electrodes were bathed in DME solvent for 5 hours aging. The separator was salvaged 

out, then the DME solution and Li anode were mixed with a mixture of concentrated 

hydrochloric acid and nitric acid mixture (3:1 in volume ratio). The solution was heated 

in a microwave for 2 hours (150°C). Note that, for measuring the dissolved Mn/Ni, only 

the electrolytes would be extracted by DME solution, while the Li anode would not be 

drop into acid solution anymore. The emission lines of Mn and Ni were employed for 

quantification and calibration. 
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Chapter 3. Hybrid Electrolytes Design (HED) for LiNi0.5Mn1.5O4 | 

Graphite High-Voltage Li-ion Battery 

 

3.1 Introduction 

The practical applications of rechargeable Li-ion batteries (LIBs) have run through 

our whole life, In order to obtaining higher energy density in rechargeable Li-ion 

batteries, the key point focus on increasing the output voltage, while maintaining 

considerable specific capacity during long-term cycling in a practical full-cell system. 

However, the problems cannot be simplified by introducing a high-voltage cathode and 

a stable electrolyte against oxidative decomposition in a half-cell system. Since, for a 

practical full-cell system with limited active-Li+ source, electrolyte modification 

strategies should not only guarantee a safe oxidative/reductive electrochemical window, 

but also satisfy good cathode-electrolyte compatibility, superior reversibility for anode 

electro-chemistry (conventional graphite, Si, etc.) and thermal stability, etc. Such 

“perfect” optimizations are extremely hard to be achieved, because simultaneously 

covering every aspects of these practical issues is very difficult. Thus, trade-offs 

between employing high-voltage cathodes (high energy density) and sacrificing the cell 

cyclability have essentially reduced the significance of the related 

researches/modifications. 

In this study, not rigidly limiting within additives/electrolyte/electrode 

modifications in half-cell system (a fundamental research level), we try to alleviate the 

difficulties of optimizations on high-voltage Li-ion full-cell systems (a practical aspect), 

and disperse the above-mentioned pressures into dual separated cathodic/anodic-

reaction environments. Followed by this core motivation, we introduce a novel dual-

organic hybrid-electrolytes cell architecture design strategy. A MOF-based separator is 

employed to separate the full-cell into pair of relatively independent electrolyte 

environments, while only Li+ can fluently transport through the MOF-derived sieve. 

LiTFSI/Pyr13TFSI ionic liquid-based electrolyte is rationally employed as catholyte, 
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due to its superior oxidative and thermal stabilities. Meanwhile, we introduce another 

independent anolyte system, equimolar LiTFSI/G3 complex, which reveals pronounced 

irreversibility during Li+ de-/intercalation on graphite anode. As a result, fabricated 

with this hybrid-electrolytes strategy, a 5 V-class LiNi0.5Mn1.5O4/graphite full-cell 

delivers ultra-high long-term cyclability and superior capacity retention rate at elevated 

temperature (83.8% after 1000 cycles). The achievement of outstanding 

electrochemical performance at harsh cell working condition (high-voltage and 

elevated-temperature) strongly prove the practical availability of the newly-introduced 

cell architecture. 

In a word, by specifically modifying the cell architecture, we introduced a novel 

optimization strategy (hybrid-electrolytes design) for improving the electrochemical 

performance of high-voltage Li-ion full-cell device at harsh elevated temperature 

environment. Advantages and drawbacks of dual electrolyte systems can be 

synergistically tuning within their isolated environments. We hope this feasible design 

strategy can be further developed as a universal design principle, promoting the 

practical application of high-voltage Li-ion full cells. 

 

3.2 Results and Discussion 

3.2.1 Deterioration mechanism of LNMO || Li half-cell and stable catholyte 

introduction. 

In this study, we select 5 V-class spinel LiNi0.5Mn1.5O4 (LNMO) as the targeted 

high-voltage cathode, due to its 4.7 V (vs. Li/Li+) Ni2+/Ni4+-based redox potential and 

148 mAh/g theoretical capacity, which indicates nearly 25% higher energy density 

(~650 Wh/kg) beyond conventional LiFePO4 and LiCoO2 cathodes.61 Before 

systematically discussing the electrolyte-related issues, the modification towards 

LNMO cathode would be briefly introduced. Most of the reported LNMO spinel are, 

indeed, non-stoichiometric disordered LiNi0.5Mn1.5O4-δ structures, in which the 

existence of Mn3+ would achieve a lower plateau around 4.0 V (vs. Li/Li+).61-63 More 
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importantly, the Mn3+-related Jahn-Teller effect would induce significant capacity loss, 

especially at elevated temperature, which is a specific inherent defect for LNMO spinel 

system.61 Herein, benefitting from morphology architecture and re-annealing 

calcination, an ordered spinel phase can be obtained, and the Mn3+ concentration has 

been effective controlled, which proved by the obvious restraining of Mn-related 

plateau during cycling and corresponding XRD characterization (Figure 1~6).  

Figure 1. SEM images of as-prepared MnCO3 microsphere. 

Figure 2. (a to c) SEM images, (d) XRD patterns, and (e) Raman spectrum of as-prepared yolk-

structured MnCO3@MnO2 microspheres. 
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Firstly, we obtained MnCO3 micro-sphere (Figure 1). After appropriate HCl-related 

etching treatment, the space between MnCO3-core and MnO2-shell would be achieved, 

which can be partially proved by the broken microsphere shown in b. Different from 

the MnCO3, KMnO4-oxidized surface of the microsphere presents an obvious porous 

structure, which can be attributed the evolution of CO2 gas: 2KMnO4(aq)+ 3MnCO3 + 

H2O = 5MnO2 + 3CO2 + KOH(aq). The MnO2-shell do not react with HCl, thus the 

MnCO3-core would be partially etched (the concentration/amount of HCl has been 

controlled).51 As a result, the yolk-structured MnCO3@MnO2 microspheres can be 

obtained. Based on XRD, both inner MnCO3-core and poorly crystallized MnO2 shell 

can be observed. However, due to the sheltering of MnO2-shell, Raman spectrum (a 

relative surface spectroscopy) of the yolk-structured sample do not deliver any 

characterization signal/peak assigned to MnCO3. 

Figure 3. SEM images of yolk-structured MnO2 (a to c) and Mn2O3 (d). (e) Corresponding 

XRD patterns are collected as compared with standard patterns. 

After 400°C heat treatment, the inner MnCO3-core has been totally oxidized into 

MnO2,49 which is illustrated by corresponding XRD pattern (blue trace). Compared 

with the MnO2@MnCO3, the surface morphology of MnO2 microspheres do not suffer 

from obvious change. Besides, if the heat-treat temperature increases to 530°C, the final 

oxidative product would be turned to Mn2O3.51-52 
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Figure 4. SEM and TEM image of the as-prepared yolk-structured LiNi0.5Mn1.5O4 microspheres. 

Both the SEM image of the broken microsphere (c) and TEM image (d) demonstrate the yolk 

morphology. 

Figure 5. XRD patterns of the yolk-structured (green trace) and normal (blue trace) 

LiNi0.5Mn1.5O4 spinel. 

The dominate difference between the two patterns is mainly attributed the different 

crystallographic structures: disordered face-centered spinel (Fd3m, blue) and ordered 
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cubic (P4332, green).61-63 Actually, LiNi0.5Mn1.5O4 (LNMO) with different 

morphologies and various particle sizes can be synthesized by varying synthesis routes. 

However, most of the reported LiNi0.5Mn1.5O4 spinel is a non-stoichiometric, disordered, 

Mn3+-contained and oxygen deficient one, indicates LiNi0.5Mn1.5O4-δ. (disordered 

Fd3m). For the well-ordered phase stoichiometric LiNi0.5Mn1.5O4, it can be prepared by 

prepared by using very slow cooling followed by lengthy reannealing and continuously 

O2 supplement. Typically, ordered LNMO (P4332) induced low structural reversibility 

at high current rate, while disordered LNMO (Fd3m) can maintain good structural 

reversibility.63 However, due to the presence of Mn3+ in disordered LNMO (Fd3m), the 

Mn3+ dissolution would lead to the loss of active material and dissolution-migration-

deposition, which would severely poison the anode.61 Herein, without additional O2-

purging nor slow cooling process, we successfully synthesis an ordered-phase-

contained LNMO powder. The yolk-structure facilitates the production of ordered 

phase, and further restrains the Mn3+ concentration. At the same time, the special 

morphology would also help to modify the rate performance. 

Figure 6. Galvanostatic charge/discharge curves of LNMO cathodes in half-cells assembled 

with LiPF6/EC-DEC electrolyte system in room temperature (25°C). The current rate is 0.1 C 

(1C = 148 mAh/g). 
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The normal LNMO (blue traces) delivers an additionally Mn3+-related plateau 

around 3.0 V vs. Li/Li+, while yolk-structured LNMO (green traces) dominantly 

presents typical Ni-related plateau(s) around 4.7 V (Ni2+/Ni3+/Ni4+).62-63 In this case, the 

restrained-Mn3+ concentration in yolk-structured LNMO has been well proved by 

electrochemical performance. Although, both of the LNMO samples suffer from 

irreversible capacity loss at the upper Ni-related plateau (inevitable electrolyte 

decomposition in LiPF6/carbonates), the disordered LNMO (Fd3m) presents additional 

Mn3+-related capacity loss (Jahn-Teller effect).61 Besides, the yolk-structured LNMO 

sample also exhibits relatively better coulombic efficiency and capacity retention rate. 

Notably, rigorously speaking, merely based on XRD characterization, the observation 

of ordered-phase-related peaks cannot demonstrate that the yolk-structured LNMO is a 

pure ordered structure. We speculate that the as-prepared yolk-structured LNMO is a 

mixture of the two phases, since there still present very trace part of Mn3+-based plateau 

around 3.0 V. 

Figure 7. Electrochemical behaviors and NMR analysis of cathodic half-cell (5 V-class 

LiNi0.5Mn1.5O4 (LNMO) || Li) assembled with different electrolytes at room/elevated 

temperature. Initial charge-discharge profiles collected: (a) at room T (25°C) in carbonate-

based electrolyte (LiPF6/EC-DEC); (b) at elevated T (55°C) in LiPF6/EC-DEC (blue trace) and 

ionic liquid (IL)-based electrolyte (LiTFSI/Pyr13TFSI, green trace). Cycle life of each cells are 

shown inset, in which IL-based electrolyte system demonstrates superior long term cycling 
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stability at elevated T. (c) 1H and 19F NMR spectra of D2O-extracted components from cycled 

LNMO electrodes and electrolytes. The spectra of corresponding pristine electrolytes are shown 

on the bottom (black traces). By normalizing the peak of C6H6 inner standard, the degradation 

products are quantitatively estimated. The decomposition of carbonate-based electrolyte can be 

clearly observed, which is severely deteriorated at elevated T. While, IL perform high stability 

at harsh working environment (high working voltage and elevated T). 

For the LNMO || Li half-cells assembled with conventional LiPF6/carbonate-based 

(EC-DEC) electrolyte, relatively stable cycling performance can be obtained at room 

temperature (Figure 7a). The obvious irreversible capacity during initial several cycles 

can be rationally assigned to the oxidative decomposition of electrolyte. Once a stable 

cathodic-electrolyte-interface (CEI) film has been formed, the irreversible gap between 

charging/discharging would be healed upon subsequent cycles. However, turning to an 

elevated temperature (blue trace, Figure 7b), severe irreversible capacity can be 

observed (~67 mAh/g) during 1st cycle at 0.1 C rate, and related cell also suffers from 

rapid capacity deterioration at 1 C rate. Based on the NMR spectra collected after 50 

cycles (Figure 7c), more parasitic products can be observed at elevated temperature, 

which indicates that both electrochemical and thermodynamic decomposition have 

been largely aggravated.6, 20-21, 24, 64  

Figure 8. Electrochemical oxidative and thermal stability assessments of different electrolyte 

systems: typical LiPF6/EC-DEC (carbonates) and ionic liquid-based LiTFSI/Pyr13TFSI. The 
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specific current have been collected during constant potential intermittent titration (PITT, with 

100 mV step). The floating current can be obviously observed in LiPF6/EC-DEC electrolyte at 

temperature. While, in ionic liquid-based electrolyte, the current cannot be clearly observed at 

both room and elevated temperature conditions. In this case, the superior electrochemical 

oxidative and thermal stability of LiTFSI/Pyr13TFSI electrolyte make it a very suitable 

candidate for the application of high-voltage cathode (5 V-class LNMO system) at elevated 

temperature (55°C). 

Figure 9. (a) Galvanostatic charge/discharge curves of LNMO half-cell (cycling at 0.1 C low 

current rate and elevated temperature) assembled with different electrode-electrolyte 

combinations: normal-LNMO with LiPF6/EC-DEC (red traces); yolk-LNMO with LiPF6/EC-

DEC (blue traces); yolk-LNMO with LiTFSI/Pyr13TFSI (green traces). (b) Discharge capacity 

hysteresis against cycle number harvested at high current rate (1 C rate). Corresponding 

coulombic efficiency (CE%) have also shown for clarity. 

As a comparison, ionic liquid (IL)-based electrolyte (LiTFSI/Pyr13TFSI) exhibits 

superior thermal stability (Figure 8), and holds a stable long-term cycle life for LNMO 

half-cell at elevated temperature (green trace, Figure 7b).65-67 Both the trace amount of 

decomposition products (green trace, Figure 7c) and remarkably high coulombic 

efficiency (CE%, Figure 9-10) demonstrate the stability of IL-based electrolyte against 

the current harsh cathodic environment (high-voltage and high-temperature). As shown 

in Figure 9, compared with yolk-structured LNMO, normal-LNMO, with typically 
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Mn3+-involved redox behavior, delivers serious initial capacity loss and presents rapid 

capacity deterioration during cycling at elevated temperature (55°C). More importantly, 

although replaced by modified yolk-LNMO (restrain Mn3+ concentration), the cell 

assembled with LiPF6/carbonates electrolyte (blue traces) still suffer from obvious 

initial capacity loss and capacity degradation. Once change the electrolyte into ionic 

liquid (green traces), less initial capacity loss and higher capacity retention rate can be 

achieved, which would be rationally ascribed to the superior oxidative and thermal 

stability of electrolyte. Besides, the CE% in ionic liquid electrolyte rapidly climbs up 

and well stabilized at a very high level. In a word, the electrolyte issue is the most 

important one during modification and optimization on high-voltage cathode employed 

Li-ion battery systems. 

Figure 10. The electrochemical performance of LNMO cathode with different mass loading.  

As shown in Figure 10, for the cycling performance, there presents not obvious 

difference between the cells assembled with 1.14 and 2.01 mg/cm2 LNMO. Once the 

mass loading increase to 4.1 mg/cm2, there presents a slight decrease of specific 

capacity for the LNMO cathode. In order to provide a relative fair electrochemical data, 

we chose the 2.0 mg/cm2 mass loading as the optimal value, which would both take 

care of the cycle life/retention and practical issue (requiring the mass loading as large 

as possible). 
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Figure 11. Spectroscopic analysis of the deterioration mechanism of LNMO || Li half-cell 

at elevated temperature. (a) Raman spectra of the cycled LNMO cathodes collected from 

different electrolyte systems. Compared with the well-preserved spectra harvested from IL-

based electrolyte system (green traces), the peak distortion and new-produced MnO2-related 

signals indicate the obvious structural deterioration of LNMO electrode cycled in typical 

LiPF6/EC-DEC electrolyte (blue traces). (b) Mn and Ni dissolution amount collected from 

cycled cells assembled with different electrolytes. Notably, the information of both the 

dissolved (in electrolyte) and re-deposited (on Li anode) parts have been collected for ICP 

characterizations. Compared with the IL-based condition, the detrimental loss of transition-

metal is substantially aggravated in LiPF6/EC-DEC. (c) XPS spectral region for F 1s and Mn 

2p collected from LNMO cathodes cycling in different electrolytes. The parasitic products 

derived from LiPF6 degradation (LixPOyFz and LiF) and HF corrosion (MnF2) are accumulated 
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on LNMO cathode surface within LiPF6/EC-DEC condition (upper blue dots), which are 

absence in IL-fabricated cell (middle green dots). (d) Mn 2p XPS spectra collected from 

corresponding Li foil anodes. Compared with the Mn-free Li foil surface harvested from IL-

fabricated cell, the observation of Mn-related components on cycled Li anode surface further 

exemplify the migration and re-deposition of dissolved Mn from the LNMO cathode in 

LiPF6/EC-DEC system. The photos of cycled Li anodes also visualize the transition-metal 

migration phenomenon in LNMO || Li half-cell. 

Comprehensive analysis on degradation mechanism are extended in Figure 11. 

Compared with the Raman spectrum collected from pristine LNMO (black trace, Figure 

11a), cathode do not present obvious change after cycled within IL-based electrolyte at 

elevated temperature. While, on the cathode obtained from LiPF6/EC-DEC electrolyte 

system, newly-produced MnO2 and distinct spectral distortion can be clearly observed 

(Figure 11a and Figure 12).10  

Figure 12. Raman spectra collected from the LNMO cathodes collected from corresponding 

half-cells cycled at elevated temperature (discharged states cycled in LiPF6/EC-DEC 

electrolyte system): normal-LNMO cathode (red traces); yolk-structured LNMO cathode (blue 

traces). 
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Compared with the LNMO cathodes obtained from LiTFS/Pyr13TFSI-related 

system (shown in Figure 2a, green traces), the cells cycled in LiPF6/EC-DEC system 

suffer from serious structural distortion and new phase formation (MnO2). Based on 

related reports,10, 13 the reaction mechanism can be summarized as follows: 

LiPF → LiF + PF5; PF5 + H2O → OPF3 + 2HF; OPF3 + 3H2O → PO4H3 + HF 

4LiNi0.5Mn1.5O4 + 8H+ → MnO2 + Mn2+ + Ni2+ + 4Li+ + 4H2O + 2Ni0.5Mn1.5O4. 

This can be attributed to the hydrofluoric acid (HF)-related chemical corrosion, which 

produced from decomposition of LiPF6.13 Simultaneously, the corrosion leads to 

pronounced Mn/Ni dissolution, which is well exemplified by the ICP results collected 

from cycled electrolyte and Li anode surface (blue dots, Figure 11b). Compared with 

the Mn/Ni dissolution amount record at room temperature (~0.25% of total LNMO 

cathode after 50 cycles, Figure 13), the huge amount of Mn/Ni loss (surpass 7% of total 

LNMO cathode after 200 cycles) derived from HF corrosion re-proves the poor thermal 

stability of LiPF6.13, 68  

Figure 13. Metal dissolution (Mn and Ni) information collected during cycling at room 

temperature in LNMO-based half-cells (blue dots: normal-LNMO; green dots: yolk-structured 

LNMO) assembled with LiPF6/EC-DEC electrolyte.  
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Compared with the ICP-OES results collected at elevated temperature (Figure 11b), 

the metal dissolution has been significantly mitigated in moderate room temperature 

condition. In yolk-structured LNMO, there present not obvious difference between 

dissolution amounts of Ni and Mn, which also indicate that the loss of active material 

may be ascribed to the corrosion of HF (derived from LiPF6 decomposition).13, 16, 20 

However, due to the higher Mn3+ concentration within the disordered normal-LNMO 

cathode, the Mn-dissolution delivers more serious than Ni. The difference between the 

two LNMO samples exemplify the optimization of LNMO cathode by morphology and 

annealing-condition modifications. Moreover, the accumulation of both decomposition 

products and dissolved metal-ion can be clearly illustrated by XPS spectra harvested 

from cycled LNMO cathodes (Figure 11c). Consistent with the information collected 

from electrolyte and anode, the characterization peaks of LiF, MnF2 and LixPOyFz 

components can be clearly observed on the surface of LNMO cathodes cycled in 

LiPF6/EC-DEC system.17, 69  

Figure 14. HR-TEM images of LNMO cathode cycled in different electrolytes at elevated 

temperature (after 1st charge/discharge cycle at 0.1 C rate): (a) typical LiPF6/EC-DEC 

electrolyte; (b) LiTFSI/Pyr13TFSI ionic liquid-based electrolyte. 
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Figure 15. Corresponding EIS results collected during GITT treatment on the cells assembled 

with different electrode/electrolyte combinations at elevated temperature: normal-LNMO with 

LiPF6/EC-DEC (red traces); yolk-LNMO with LiPF6/EC-DEC (blue traces); yolk-LNMO with 

LiTFSI/Pyr13TFSI (green traces). The impedance evolution (RSEI+RCT) of aging cells (during 

GITT charging) are summarized inset for clarity. 

Compared with the ionic liquid electrolyte (green traces), the Nyquist plot clearly 

demonstrate that the cells fabricated with LiPF6/EC-DEC electrolyte (red and blue 

traces) deliver higher resistance. This is also well consistent with the spectroscopy 

(Raman, XPS, ICP-OES) and image (SEM) evidences, which prove the serious 

degradation of electrode and electrolyte in LiPF6/EC-DEC condition.  

Compared with the homogeneous thin CEI film formed in Li/Pyr13TFSI condition, 

there presents thick heterogeneous layer deposited on the LNMO cathode cycled in 

LiPF6/EC-DEC electrolyte. The components of the thick CEI film (herein, can be 

regarded as a deposition of parasitic reaction products) have been further proved by 

XPS (Figure 11c) and Raman (Figure 11a) analysis in the main text: MnO2, MnF2, LiF, 
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and LixPOyFz, etc. The thicker surface deposited film would inevitably lead to higher 

surface resistance, which further proved by the EIS result revealed in the following 

sections. Furthermore, the continuously growing of inhomogeneous CEI film on 

cathode surface inevitably lead to the increasing of resistance impedance, which also 

exacerbates the capacity degeneration (Figure 14-17).20 In sharp contrast, trace amount 

of metal loss and homogeneous LiF-dominated CEI film can be obtained in IL-based 

electrolyte system. 

Figure 16. An additional electrochemical treatment on the cycled LNMO || Li half-cell (1 C 

rate at elevated temperature in LiPF6/EC-DEC electrolyte). The final target is to further analysis 

the influence of both resistance and metal-dissolution towards capacity loss. After 200 cycles 

(blue trace), the LNMO cathode was extracted and re-assembled into a new half-cell. After 

galvanostatic charging (CC mode) to the cut-off voltage (4.9 V vs. Li/Li+), the cell was 

continuously keeping at 4.9 V (CV mode) until the current density drop to 5% (7.4 mA/g) of 

initial charging current rate (1C, 148 mA/g). Then the cell was discharged to 2.0 V. 

Herein, the loss of capacity can be mainly ascribed to two reasons: 1) Ni/Mn 

dissolution (proved by GITT); 2) increasing of resistance (proved by EIS). After 200 

cycles, the discharge capacity drops to 80.8 mAh/g (~74.5% retention), however, based 

on ICP-OES, the amount of Ni/Mn loss accounts for nearly 7.5% of total active material. 

In this case, the increasing of resistance can be regarded as another importance factor, 
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which leads to the capacity deterioration. In this case, after holding at 4.9 V during 

additional CV mode (red traces), the capacity loss assigned to resistance would be 

recovered, and corresponding additional amount of capacity can be obtained during the 

subsequent discharging process.  

Figure 17. Nyquist plot showing the impedance evolution of discharged LNMO || Li half-cells 

cycled within different electrolyte conditions (at elevated temperature): (a) LiTFSI/Pyr13TFSI; 

(b) LiPF6/EC-DEC. 

The stabilized resistance observed in ionic liquid electrolyte indicate the formation 

of stable CEI film on the LNMO cathode. While, in LiPF6/carbonates, the increasing 

resistance during cycling exhibits well coincide with the continuous accumulation of 

parasitic products derived from related electrolyte decomposition. 

Besides, different from the clean Li surface collected from IL-based system, the 

deposition of dissolved metal-ion and deposition products can also be clearly observed 

on the Li foil anode surface after cycled in LiPF6/EC-DEC (Figure 11d and Figure 18-

19). In a practical full-cell system, the dissolution-crossover-deposition of metal-ions 

(Mn2+ and Ni2+) would reduce the active-Li+ within anode (react with LiC6 on Li-

intercalated graphite anode). The consumption of the limited active-Li+ reveals to be 

very harmful for full-cell operation, which is often neglected in half-cell system.4, 6, 13 

As a comparison, such a detrimental chemical shuttling can be effectively restrained by 
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the employment of IL-based electrolyte. Moreover, electrolyte decomposition-induced 

gas evolution and electrode exfoliation would also be controlled at elevated temperature 

(Figure 20-21). Consequently, owing to its high cathodic compatibility and stability, 

LiTFSI/Pyr13TFSI IL-based electrolyte can be employed as a superior candidate for 

high-voltage cathodic reaction, especially at elevated temperature. 

Figure 18. XPS spectra (F 1s region) collected from the cycled Li anode harvested form the 

LNMO || Li half-cell. Similar with the related Mn 2p region revealed in Figure 11d, the 

deposition of electrolyte decomposition products (LiF, MnF2, LixPOyFz, etc.) can be clearly 

observed on the Li anode cycled in LiPF6/carbonates electrolyte. While, within the cell 

assembled with ionic liquid electrolyte, merely trace amount of LiF can be detected. 



University of Tsukuba  Doctoral Thesis 

38 
 

Figure 19. ICP-OES results collected from the cycled LNMO Li half-cells. The results can be 

employed to quantitatively analysis the amount of Ni/Mn dissolution during cycling.  

Herein, an important issues should be clarified for the extract process. In order to 

collect the total amount of dissolved metal-ions from the LNMO cathode, both the ones 

dissolved in cycled electrolyte and the deposition part onto the Li anode side should be 

carefully extracted for ICP test. In this case, as detailed interpreted in Experimental 

Section, the dissolved part (in electrolyte) has been harvested from separator by DMC-

rinsing (highlighted by red dots). While the total amount (electrolyte dissolved + anode 

deposited) of lost Ni/Mn can be obtained by a DMC+acid-rinsing for both separator 

and Li anode (marked by blue dots). In this case, we can prove that large amount of 

dissolved Ni/Mn suffer from a “dissolution-migration-deposition” process, and finally 

deposition on anode surface. This shuttling effect would be very detrimental for anode, 

especially for half-cell system assembled with limited amount of active-Li+ stored in 

cathode materials.13-14, 70 

Figure 20. The volume variation and photos of the LNMO || Li coin-cells after cycling at 

elevated temperature. The cells are assembled with different electrolyte: LiPF6/EC-DEC (left) 

and LiTFSI/Pyr13TFSI (right), respectively. 

Obviously, the cell assembled with conventional LiPF6/carbonates electrolytes 

suffers from seriously gas inflation. While the cell assembled with ionic liquid do not 
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present obvious volume change after 200 cycles. The evolution of gas should be 

attributed to the decomposition of electrolyte and related harmful influences. The 

mechanism of gas releasement can be summarized by previous classic reports:13, 15 

C3H4O3 + 2Li+ +2e- → Li2CO3 + C2H4; 

2C3H4O3 + 2Li+ +2e- → (CH2OCO2Li)2 + C2H4; 

C4H8O3 → CH3CH2OCH3+ + 2e- + CO2; 

DEC → EtOH + CO2 + C2H4 (catalyzed by produced MnO2 catalyst); 

DEC + PF5 →C2H5OCOOPF4 + C2H4 + HF; (derived from LiPF6 decomposition) 

C2H5OCOOPF4 → PF3O + CO2 + C2H4 + HF; 

Figure 21. Photographs of cycled LNMO cathode plateaus (cut into half pieces) harvested from 

the LNMO Li half-cell after 200 cycles (1 C rate) at elevated temperature within different 

electrolyte conditions: LiPF6/EC-DEC (left) and LiTFSI/Pyr13TFSI (right), respectively. 

After cycling in typical LiPF6/carbonates electrolyte system, there presents obvious 

peel off phenomenon between LNMO layer and Al-foil current collector. The loss of 

binder adhesion would be rationally ascribed to several probable reasons: HF-related 

attack towards Al-foil current collector; Mn/Ni loss leads to the poor interface contact; 

etc.4, 6, 20-21 Undoubtedly, the delamination of current collector and LNMO active 

material would lead to poor electrical contact, resulting in severe increasing of interface 

electrical resistance and polarization. This is also well fit with the related EIS results 

revealed above. 
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3.2.2 Choosing a competent anolyte for reversible Li-GIC at elevated temperature 

Naturally, LiTFSI/Pyr13TFSI IL-based electrolyte could be directly introduced into 

a LNMO || graphite full-cell system, however, the reversible cycling cannot simply be 

achieved as predicted, which is unexpectedly mismatch with the excellent cycliability 

in corresponding LNMO || Li half-cell. The main problem focus on the huge irreversible 

capacity loss (~85 mAh/g) during the 1st cycle at both room and elevated temperatures 

(Figure 22a and Figure 23). Further electrochemical characterization (Figure 24) and 

half-cell performance eliminate the suspicion of LNMO cathode, which indicates the 

irreversible capacity may be ascribed to the improper graphite-intercalation-chemistry 

(GIC) on the anode. 

Figure 22. The failure mechanism of IL-fabricated LNMO || graphite full-cell under 

elevated temperature: an irreversible graphite-intercalation-chemistry (GIC) on anode 

side. (a) Voltage profiles of the full-cell assembled with IL-based (LiTFSI/Pyr13TFSI) 

electrolyte cycling at 55°C. Inset presents the corresponding charge/discharge capacity 
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hysteresis against cycle number harvested at 25°C and 55°C, respectively. A serious irreversible 

capacity loss can be observed during the 1st cycle. (b) Voltage profiles of the graphite || Li half-

cell assembled with LiTFSI/Pyr13TFSI electrolyte cycling at 55°C. Similar initial irreversible 

capacity loss can be observed. The distortion of dQ/dV curves are also revealed inset. (c) Raman 

spectra of discharged (de-intercalated state) graphite || Li half-cells during cycling. The 

exacerbated splitting of G-band and growing trend of G-band indicate the irreversible residual 

of intercalated compound and disordered deterioration of graphitic layer. (d) HR-TEM images 

and corresponding lattice distances of cycled graphite extracted from graphite || Li half-cells. 

The abnormal large expansion of graphitic lattice distances (~0.65 nm) observed at discharged 

(intercalated) state indicate the co-intercalation of IL (Pyr13
+ cation), which cannot reversibly 

de-intercalate after charging. In this case, the irreversible co-intercalation of IL within the 

graphite anode leads to the irreversible capacity loss of the LNMO || graphite full-cell 

assembled with IL-based electrolyte. 
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Figure 23. Typical galvanostatic charge/discharge curves (a) and corresponding 

charge/discharge capacity hysteresis against cycle number (b) harvested from the cell 

assembled with normal-LNMO (disordered) || graphite full-cells. Similar with the one observed 

in yolk-structured LNMO-assembled cell (Figure 3a), both of the full-cells fabricated by 

LiTFSI/Pyr13TFSI electrolyte suffer from serious initial capacity loss at room/elevated 

temperature. In this case, changing the LNMO cathode cannot restrain the related capacity loss, 

and the core issue should be focus on the anode side (irreversible Pyr13
+-related co-intercalation 

into graphite anode revealed in Figure 22). 

Figure 24. Additional electrochemical treatment to clarify the reason for initial capacity loss 

observed in LNMO graphite full-cell assembled with LiTFSI/Pyr13TFSI electrolyte. (a) 

Illustration of the specific-designed cell structure. Assembled with a three-electrodes cell, 

during 1st full-cell cycling, the cell was operated by a dual-electrodes mode (LNMO/graphite). 

Then, during the subsequent cycle, the graphite anode was abandoned (disconnected), and 

another Li foil was connected as a newly-assembled LNMO || Li half-cell system. This design 

can be employed to analysis the state of LNMO cathode during the 1st full-cell cycle. (b) 2nd 

charge/discharge and (c) 2nd discharge/charge curves of the LNMO || Li half-cell. 
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As a results, after the 1st full-cell cycling, the LNMO cathode cannot be fully 

recovered to its original state (Li-intercalated state), which indicates that there is not 

enough active-Li+ being provided to LNMO cathode during 1st discharging process. 

This is also well consistent with the irreversible Li-GIC process (Pyr13
+-related 

irreversible co-intercalation) observed on graphite anode in LiTFSI/Pyr13TFSI 

electrolyte. The initial capacity loss in full-cell can be ascribed to a Li-GIC anode-

related issue (not LNMO). 

In order to unravelling the anodic electrochemistry, Li-GIC process is separately 

investigated in graphite || Li half-cell system. In LiTFSI/Pyr13TFSI electrolyte system, 

distinct discharge/charge capacity gap during initial cycle and subsequent capacity 

deterioration clearly indicate an irreversible GIC process (Figure 22b), which also well 

coincide with the severe initial capacity loss revealed in full-cell system.38, 42 Figure 

22c presents the Raman spectra collected from the cycled graphite || Li half-cells. 

Typically, during cycling, the splitting/recovering of G-band (a sharp band around 1580 

cm-1, crystalline graphite E2g mode) can be ascribed to the reversible 

formation/decomposition of stage intercalation compounds.71-72 However, the residual 

splitting feature observed on discharged graphite electrodes (Li+ de-intercalated state) 

strongly indicate irreversible de-intercalation processes, after which there are certain 

amount of cation residues trapped within the graphite matrix. Besides, the growing 

trend of D-band (a broad band around 1345 cm-1, disordered finite crystalline A1g mode) 

during cycling provides clear indication for the aggravated formation of irreversible 

damage/defects within graphite structure.73 More visual evidence is illustrated by the 

distortion of lattice fringe shown in HR-TEM images (Figure 22d). Compared with the 

well-ordered lattice fringe within pristine graphite electrode (~0.33 nm interlayer 

distance), there deliver two kinds of expanded interlayer distances within the 

discharged graphene layers (cation intercalated state): ~0.37 nm (a traditional Li+ 

intercalated feature) and ~0.65 nm (an abnormally large distance expanded by huge 

cation in IL, Pyr13
+).74 After charging, although Li-ions can successfully de-intercalate, 

the co-intercalated Pyr13
+ cannot fluently get out of the interlayers. Furthermore, the co-
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intercalation of huge cation would inevitably induce the destruction of ordered 

interlayer structure and bulk phase exfoliation (Figure 25).75-76  

The HR-TEM results are well consistent with the Raman observations, which 

clearly demonstrate the harmful Pyr13
+ co-intercalation. Turning back to the full-cell 

system, because of the limited active-Li+ source derived from LNMO cathode, the co-

intercalation of Pyr13
+ in graphite anode would directly lead to the loss of active-Li+ 

(de-intercalated from cathode) into electrolyte. What was worse, due to the irreversible 

de-intercalation of Pyr13
+ (from graphite anode), this portion of active-Li+ cannot return 

back to the LNMO surface, which degenerate into inert-Li+. In another word, the 

irreversible trapping amount of co-intercalated Pyr13
+ directly determines the 

irreversible capacity during charging/discharging in LNMO graphite full-cell 

assembled with LiTFSI-Pyr13TFSI electrolyte. In this case, unfortunately, although 

owing to a high compatibility with high-voltage cathodic reaction, LiTFSI-Pyr13TFSI 

cannot be employed for the LNMO || graphite full-cell operation due to the irreversible 

anodic behavior. 

Figure 25. SEM images of (a and b) pristine graphite particle; (c and d) graphite electrodes 

collected from graphite || Li half-cells assembled with LiTFSI/Pyr13TFSI electrolyte: after 

discharging (c) and charging (d), respectively. 
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Serious irreversible exfoliation and layered swelling can be clearly observed during 

Li-GIC in LiTFSI/Pyr13TFSI electrolyte. This morphological degradation presents well 

coincide with the structural collapse unraveled by Raman and HR-TEM results shown 

in Figure 22. The co-intercalation of Pyr13
+ would inevitably exacerbate the interlayer 

stress and lead to the structural distortion. 

Then, the following target is finding a compatible electrolyte system for reversible 

Li-GIC process, and can be qualified as an anolyte candidate for the hybrid-electrolytes 

design strategy (introduce in the next section). Benefitting from its aggregated solvent 

structure, super-concentrated electrolytes have attracted considerable research attention 

to data, due to their high oxidative/reductive stability, etc.7, 9, 77-79 Herein, inspired by 

its specific solvate ionic liquid structure, equimolar LiTFSI/G3 (DEGDME) complex, 

an ether-based electrolyte has been introduced. Different from the diluted electrolyte 

composed by solvent-separated-ion-pair (SSIP), this free-style solvation state has been 

replaced by an aggregated contact-ion-pair (CIP) mode in equimolar LiTFSI/G3 

complex.77, 80-81  
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Figure 26. Reversible Li-GIC behavior in highly-solvated LiTFSI/G3 equimolar complex 

electrolyte at elevated temperature. (a) Raman spectra of varying LiTFSI/G3 solutions. The 

SNS stretch region in TFSI- are fitted by Gaussian-Lorentzian distribution functions. Different 

from the typical diluted electrolyte solution (1:4 mole ratio, blue trace), Li+ are fully sheathed 

by equimolar amount of G3 molecule with 1:1 mole ratio (green trace). Solvated [Li(G3)]+ and 

TFSI- are completely aggregated (AGG) within a contact-ion-pair (CIP) fluid network. (b) 

Voltage profiles of the graphite || Li half-cell fabricated with LiTFSI/G3 equimolar complex 

electrolyte cycling at 55°C. The well-preserved galvanostatic and corresponding dQ/dV (inset) 

curves indicate a good reversibility during Li-GIC. (c) Raman spectra of discharged (de-

intercalated state) graphite electrodes. The pristine graphitic structure has been well-maintained 

during cycling. (d) Charge/discharge capacity hysteresis against cycle number collected from 

graphite || Li half-cell assembled with different electrolytes: equimolar LiTFSI/G3 (green trace) 

and LiTFSI/Pyr13TFSI (red trace). Corresponding coulombic efficiency (CE%) are inset for 

clarity. Without the severely irreversible initial capacity loss, superior long term cycling 

stability and higher CE% can be achieved in the newly-introduced equimolar LiTFSI/G3 

electrolyte system. 

Figure 27. Discharge/charge capacity hysteresis against cycle number harvested from the 

graphite || Li half-cell assembled with different electrolytes (0.1 C at elevated temperature, 1C 

= 372 mA/g): LiTFSI/Pyr13TFSI (red traces) and equimolar LiTFSI/G3 complex (green traces), 

respectively. 

Illustrated by Raman spectroscopy (Figure 26a), the free mode of TFSI- has been 

totally restrained, while the interaction between Li+ and glyme solvent molecule has 
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been largely enhanced. As a result, the evolution of solvent structure essentially 

changed the de-solvation energy of electrolyte.81 Therefore, for Li-GIC process, the 

typical solvent co-intercalation would be suppressed at room temperature. In this study, 

the graphite || Li half-cell fabricated with this equimolar LiTFSI/G3 electrolyte is 

conducted at elevated temperature (Figure 26b).  

Encouragingly, tiny initial irreversible capacity loss and superior high CE% can be 

achieved at 0.1 C rate during Li-GIC (Figure 27). Both the galvanostatic and dQ/dV 

curves exhibit traditional feature of reversible pure Li+ de-/intercalation, which can be 

stably sustained after 50 cycles. Corresponding Raman spectra collected after cycling 

(de-intercalated states) also prove the structure stability of graphite electrodes cycled in 

equimolar LiTFSI/G3 electrolyte (Figure 26c). Moreover, both the reversible variation 

of lattice fringe and bulk structural integrity are visually demonstrated by HR-TEM and 

SEM images (Figure 28-29). 

Figure 28. HR-TEM images and corresponding lattice distances of cycled graphite extracted 

from graphite || Li half-cells assembled with equimolar LiTFSI/G3 complex electrolyte: (a) after 

discharging (Li+ intercalated state); (b) after charging (Li+ de-intercalated state). The lattice 

distance around 0.37 nm can be assigned to the typical pure Li+ intercalated state within graphite 

layer. The lattice distance basically recover back to its original state (around 0.33 nm) after 
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charging, which indicates that a reversible Li-GIC process has been achieved in equimolar 

LiTFSI/G3 complex electrolyte at elevated temperature. 

Figure 29. SEM images of cycled graphite electrodes harvested from graphite Li half-cell 

conducted at elevated temperature and 0.1 C current rate: (a) after the 1st cycle in 

LiTFSI/Pyr13TFSI electrolyte; (b) after 50 cycles in equimolar LiTFSI/G3 electrolyte. Different 

from the serious structural distortion observed after initial cycle in ionic liquid Li-GIC 

condition, the graphite electrode keeps relatively good condition after 50 cycles in the super-

concentrated equimolar LiTFSI/G3 electrolyte at 55°C, which can be ascribed to the reversible 

Li-GIC process in this newly-introduced electrolyte system. 

Furthermore, comparing with the graphite || Li half-cell performance observed in 

IL-based electrolyte, not only irreversible initial capacity loss has been controlled, but 

also outstanding long-term cycling stability can be obtained in equimolar LiTFSI/G3 

electrolyte at elevated temperature cycled with 0.5 C rate. In this case, a suitable anodic 

electrolyte for high reversible Li-GIC (especially at elevated temperature) has been 

obtained. 

 

3.2.3 Introduction of MOF-based separator for synergistical hybrid-electrolytes 

design. 

After collecting each of their appropriate electrolyte systems for cathodic/anodic 

electrochemical processes, the final step is synergistically combining them together into 

a full-cell system by the introduction of hybrid-electrolytes design strategy. 

Traditionally, the typical concept of hybrid-electrolytes system indicates an organic/ 
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aqueous combination.82-83 Separated by a Li-ion super-ionic conductor glass film 

(LISICON), lithium anode can be assembled within organic anolyte providing the most 

negative potential (-0.34 V vs. NHE), while varying aqueous electrochemical reaction 

can be operated in catholyte systems (NiOOH/Ni(OH)2 or O2/OH-electro-couples, 

etc.).84-86  

Figure 30. Design of hybrid-electrolytes strategy for 5 V-class cathode || graphite anode 

full-cell and corresponding separator introduction. (a) Schematic illustration of hybrid-

electrolytes strategy. The design target is taking full advantages of each electrolyte systems by 

assembling them into a single full-cell, and simultaneously avoiding their shortcomings by 

separately trapping them into their adept spaces. We design a MOF-based separator, which acts 

as a sieve to inhibit the shuttling of each specific electrolytes. In this case, benefit from its 

remarkable oxidative stability, LiTFSI-Pyr13TFSI would guarantee the reversibility of 5 V-class 

cathode as catholyte, while its detrimentally irreversible co-intercalation in graphite anode 

would be effectively prevented. For the anolyte, LiTFSI/G3 equimolar complex is employed to 
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achieve highly reversible Li-GIC process at elevated temperature. (b) SEM images of the MOF-

based separator. The sectional, frontal and back sides of the separator are shown for clarity. (c) 

Permeation tests conducted on MOF-based separator and conventional Celgard separator to 

assess the isolation effect towards the dual electrolytes. The specific separator is fabricated in 

the middle of a homemade V-type device, with each of its chambers filled with different 

electrolytes. By extracting trace amount of solution after certain aging times, the time-

dependent FTIR results demonstrate no obvious shuttling can be observed in MOF-based 

separator assemble device after 30 days aging, while Celgard separator cannot inhibit the 

permeation. 

Herein, inspired by this win-win strategy, we further improve it into a dual-organic 

hybrid-electrolytes design strategy for high-voltage Li-ion full-cell (Figure 30a). On the 

cathodic side, LiTFSI/Pyr13TFSI IL-based electrolyte can provide high stability against 

oxidative attack at high voltage, without worrying about irreversible co-intercalation 

on graphite anode. Simultaneously, equimolar LiTFSI/G3 electrolyte can hold reversible 

Li-GIC process on anodic side. Moreover, the superior thermal stability of both 

electrolytes have been proved in each of their corresponding half-cell system.  
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Figure 31. Flammability tests of the different electrolyte systems: typical LiPF6/EC-DEC 

(carbonates); equimolar LiTFSI/G3 complex; LiTFSI/Pyr13TFSI ionic liquid-based electrolyte 

(from top to bottom). Compared with the conventional carbonate-based electrolyte, both of the 

employed electrolytes for hybrid-electrolytes design strategy present superior 

noninflammability. 

Additionally, the non-inflammable nature of both selected electrolyte systems can 

effectively mitigate the potential safety risk of Li-ion cell architecture (Figure 31), a 

critical issue for practical application. Most importantly, owing to the narrow pore size 

window within the specific 3-D channel structure, metal-organic-framework (MOF)-

based separator can be employed to separate the dual electrolyte systems, which would 

act as a sieve to inhibit their inter-crossover. 

Figure 32. Fabrication process of the MOF-based separator. 

Herein, we fabricate the MOF-based separator by Cu3(BTC)2 (HKUST-1, MOF), 

because its network structure is composed by ordered micropores with merely 6.9-9.0Å 

size window,87-88 which is smaller than Pyr13TFSI molecule and [Li(G3)1][TFSI] ion-
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pair. After the MOF particles in-situ growing onto a piece of as-prepared commercial 

PP separator, the void space between the MOF particles boundary would be filled with 

polymer (by solution filtering, Figure 32). Finally, a compactly fabricated MOF-based 

separator can be obtained, with a MOF-layer (thickness, ~30 nm) tightly adhered onto 

the PP-layer (Figure 30b).  

The key role of the separator in hybrid-electrolytes strategy is definitely preventing 

inter-crossover of each electrolytes. We employ a homemade V-type device to simulate 

the related cell environment, within which the separator is assembled between the pair 

of electrolyte-filled chambers (Figure 30c). After injecting equi-volume of targeted 

electrolytes into each chamber, trace amount of electrolyte solution is extracted out for 

FTIR measurement after certain aging time. As a result, merely after 10 hours aging, a 

distinct shuttling crossover phenomenon can be observed in the device assembled with 

conventional Celgard separator (right red-filled block, Figure 30c). As a comparison, 

no obvious crossover can be detected after 30 days aging in the device assembled with 

as-prepared MOF-based separator (middle green-filled block, Figure 30c), which 

proved to be competent for hybrid-electrolytes design strategy.  

Figure 33. The transference numbers (TNs) of Li-ion observed in dual-electrolyte systems 

assembled by the different separators: typical Clegard separator (black traces) and MOF-based 

separator (blue traces). 
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The Li+ transference numbers are tested by a potentiostatic polarization method in 

Li|Li sysmmetric coin cells. The potentiostatic polarization processes are performed 

with a constant potential at 20 mV for 3600s to record the current at pristine (OCV) and 

steady states, respectively. EIS before and after the potentiostatic polarization are also 

collected. The Li+ transference number is calculated according to the folloing equation. 

tLi+ = Is(V-I0R0) / I0(V-IsRs). In which tLi+ stands for the Li+ transference number, I0 and 

Is present for the current obtained at initial and steady. R0 and Rs present for the 

resistance before and after the potentiostatic polarization, V is the potentiostatic 

potential. 

As a result, the Li-ion TN obtained in MOF-based spearator assembled cell (~0.65) 

is much higher than the one observed in Clegard separator fabricated cell (~0.21). In 

another word, once the crossover/diffusion of electrolytes is prevented (Li-ion can 

fluently diffuse) by the MOF-based separator, the transference of Li-ion would become 

more prepondrant. In summary, the differnece on Li-ion TN provide another evidence 

(from an electrochemical point of view) to proof the MOF-based separator can 

efficiently restrain the crossover of each electrolyte systems. 

 

3.2.4 Superior cycling performance of LNMO || Graphite full-cell at elevated 

temperature.  

Figure 34. Schematic diagram of the full-cell (hybrid-electrolytes design strategy) fabrication 

process. 
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5 V-class LNMO graphite full-cell has been fabricated followed by the hybrid-

electrolytes cell architecture strategy (Figure 34-35).  

Figure 35. Detailed discussion on anode/cathode ratio within full-cell systems. 

In detail, once the current density of full-cell system has been confirmed (0.5 C vs. 

LNMO cathode, 74 mA/g vs LNMO cathode), the selection and optimization of 

graphite/LNMO ratio in full-cell system depends on the practical capacities, which both 

electrodes can be achieved. For LNMO cathode, at a current density of 74 mA/g (vs. 

LNMO), the capacity of cathode can reach ~120 mAh/g. As for the graphite anode, the 

practical reversible specific capacities change from 310 mAh/g (0.1 C rate) to 240 

mAh/g (2.0 C rate). In this case, there should be enough capacity for graphite in the full 

cell system, and this is the primary condition for the optimization of graphite/LNMO 

ratio in full-cell system. In figure b, with the varying of graphite/LNMO ratio, the red 

trace exhibits the specific capacity, which the graphite anode can be achieved 

(calculated from the cathode current density and the capacity fitting curves shown in 

figure 35a). While, the blue trace presents for the capacity, which the graphite anode 

should be achieved (calculated from the cathode capacity and cathode/anode ratios). If 

the y-axis value on the blue trace surpass the one present on the red trace, there would 

be not enough space on the graphite anode to accept the Li-ion from the LNMO cathode. 

In another word, the minimum value of the graphite/LNMO ratio would be 0.433. In 
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this case, the current anode/cathode ratio (graphite/LNMO=0.5) would be an optimized 

and convincing value. 

Figure 36. Schematic diagram for summarizing the multi-factors and synergistic design route 

within this hybrid-electrolytes composed high voltage Li-ion full-cell system.  

The multi-factors and synergistic design route have also been introduced in other 

Li-ion battery systems (Figure 36).89-90 

1) The initial motivation and target of this study: achieving a high-voltage Li-ion 

full-cell system, which can present long-term cycling stability at harsh (high 

temperature) environment. 

2) The selection of cathode and catholyte: LiNi0.5Mn1.5O4 is selected for the 

cathode material, due to its high voltage plateau (~4.7 V vs. Li/Li+ plateau) and suitable 

specific capacity (148 mAh/g). Conventional LiPF6-EC/DEC electrolyte cannot meet 

the high polarization voltage for LNMO cathode, especially at high temperature. In this 

case, owing to its superior stability characterization, ionic liquid present to be the most 

suitable candidate as catholyte for high voltage and elevated temperature atmosphere. 
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3) The selection of anode and anolyte: Graphite is employed as the anode material, 

due to its high specific capacity and low voltage plateau. However, the ionic liquid 

would co-intercalate into the graphite anode, which cannot be employed as a suitable 

anolyte.  

4) The hybrid-electrolytes design strategy: This contradiction drives the selection 

of electrolyte system into a deadlock. For one hand, ionic liquid is the most promising 

candidate for LNMO cathode. While, for another hand, ionic liquid would lead to huge 

irreversible capacity loss on graphite anode. However, if we can build a pair of 

independent spaces for each of the electrode reactions, the ionic liquid (catholyte) 

would not influence the graphite anode anymore. 

5) The employment of MOF-based separator: Followed by the above-mentioned 

hybrid-electrolytes design strategy, we want to find a suitable separator, which can work 

as a sieve to completely restrain the inter-crossover of each electrolyte system 

(catholyte and anolyte). Benefit from the small pore window within the MOF 

framework, the Pyr13+ in ionic liquid catholyte cannot shuttle through the MOF-based 

separator. For the anolyte, we find equimolar LiTFSI:G3 electrolyte, in which the big 

solvated [Li(G3)]+ cannot go across the window in the MOF framework (without 

further de-solvated process).  

Finally, with the employment of 5V-class LiNi0.5Mn1.5O4 spinel cathode, graphite 

anode, LiTFSI-Pyr13TFSI catholyte, equimolar LiTFSI/G3 anolyte and MOF-based 

separator, the synergistic hybrid-electrolytes design strategy realizes the initial 

motivation of this study: long cycling stability of high-voltage Li-ion full cell at high 

temperature. 

At relatively low current rate, the Li-ion full-cell delivers an excellent cyclability 

at both room and elevated temperatures (Figure 37b), providing a stable high output 

voltage (beyond 4.5 V). Moreover, the initial capacity loss has been efficiently 

controlled (~10.5 mAh/g), and the subsequent cycles present very high average CE% 

(~99.6%). The rate capability at elevated temperature are also demonstrated (Figure 
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37c). Because of the sluggish Li+ diffusion kinetics in ionic liquid and super-

concentrated electrolytes, the specific capacity drops below 100 mAh/g at 2.0 C rate. 

However, once the current rate reversed back to 0.5 C, the capacity of the cell can be 

totally recovered, which still can provide an energy density of ~530 Wh/kg. Most 

encouragingly, after a low rate activation (0.2 C, 10 cycles), the hybrid-electrolytes-

assembled full-cell delivers an ultra-stable long cycling stability at elevated temperature 

(Figure 37d). The full-cell holds an outstanding capacity retention of 83.3% after 1000 

cycles at 0.5 C rate, and still presents a discharge capacity of 104 mAh/g during the 

1000th cycle with an extremely high CE% (beyond 99.7%). 

Figure 37. Elevated temperature electrochemical performance of high-voltage Li-ion full-

cell assembled with hybrid-electrolytes design. (a) Schematic illustration of the hybrid-

electrolytes full-cell structure. Anode: graphite; Anolyte: equimolar LiTFSI/G3; Separator: 

MOF-based separator; Catholyte: LiTFSI-Pyr13TFSI; Cathode: 5 V-class LiNi0.5Mn1.5O4 spinel. 

(b) Voltage profiles and corresponding charge/discharge capacity hysteresis again cycle number. 

Cell voltage range: 3.4-4.8 V. Specific current rate: 0.1 C (1C=148 mA/g) for initial 1-20 cycles 

at room T (25°C); 0.2 C for subsequent 21-70 cycles at elevated T (55°C). (c) Rate performance. 

Corresponding output voltage against energy density (Wh/kg) curves are inset for clarity. (d) 

Long-term cycling performance. Charge/discharge capacity and coulombic efficiency (CE%, 

inset) against cycle number at 0.5 C rate (0.2 C for initial 10 cycle). High CE% (>99.5%) and 
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outstanding capacity retention rate (83.8% over 1000 cycles) can be achieved in hybrid-

electrolytes full-cell at 55°C. Cycle life of typical LiPF6/EC-DEC system is shown for 

comparison (blue trace). (e) Cycle life of pouch cell assembled with hybrid-electrolyte design. 

The photo and energy density profile of the pouch cell are shown inset. Note that, for both coin 

and pouch cell, the mass ratio between LNMO cathode / graphite anode are fixed at 2:1. 

Figure 38. Typical galvanostatic charge/discharge curves of the LNMO graphite full-cell 

system collected during long-term cycling at elevated temperature: (a) typical LiPF6/EC-DEC 

electrolyte; (b) hybrid-electrolytes system (catholyte: LiTFSI/Pyr13TFSI; anolyte: equimolar 

LiTFSI/G3). 

Figure 39. The elevated temperature (55°C) electrochemical performance of the full-cell 

systems assembled with LiPF6-EC/DEC electrolyte (blue traces) and hybrid electrolytes system 
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(green traces). As a comparison, the pre-aging and pre-cycling (0.2 C rate) processes are 

conducted in both room temperature (25°C) and high temperature (55°C), respectively. As a 

result, although the room temperature pretreatment processes can, to some extent, relief the 

rapid degradation within EC/DEC cell system, the obvious decomposition and cell failure still 

cannot be restrained, especially compared with the cells fabricated by hybrid electrolytes 

system. 

Figure 40. XRD pattern and SEM image of the MOF-based separator collected from the coin-

type full-cell after 1000 cycles at elevated temperature. Compared with the pattern and image 

collected from pristine state, the cycled MOF-based separator do not suffer from obvious 

structural change, nor morphological degradation after long-term cycling, which indicates a 

superior stability and feasibility for hybrid-electrolytes design strategy in LNMO || graphite 

full-cell system. 

Besides, MOF-based separate do not present obvious structure degradation after 

long-term cycling at elevated temperature (Figure 40). As a comparison, the full-cell 

assembled with typical LiPF6/EC-DEC electrolyte suffers from serious initial capacity 

loss and rapid capacity deterioration (merely 15 mAh/g after 200 cycles). This rapid 

degeneration can be attributed to the electrolyte decomposition and dissolution-
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crossover-deposition induced anodic passivation (Figure 41), which have been 

systematically explained during half-cell discussion.  

Figure 41. SEM images of cycled graphite anodes harvested from LNMO || graphite full-cell 

conducted at elevated temperature. The details of the electrochemical treatments are shown in 

Figure 30d. 

Figure 42. Typical galvanostatic charge/discharge curves of the LNMO || graphite pouch-type 

full-cell system collected at elevated temperature. The pouch cell was also fabricated followed 

by a hybrid-electrolytes design strategy (catholyte: LiTFSI/Pyr13TFSI; anolyte: equimolar 

LiTFSI/G3). 
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The graphite anodes present very different states after cycling in different 

electrolyte environments. In typical LiPF6/EC-DEC system, the graphite anode suffer 

from serious distortion and surface passivation, which is remarkably restrained in 

hybrid-electrolytes-assembled condition. The degradation of anode is very harmful for 

the hull-cell system, which can be rationally ascribed to the dissolution-migration-

deposition of dissolved metal-ions and related aggravated electrolyte 

decomposition/reduction, etc. 

Additionally, the hybrid-electrolyte cell architecture can also be extended to a 

larger pouch cell device (Figure 37e and Figure 42), which also exhibits superior 

cyclability at elevated temperature. 

 

3.3 Conclusion 

In order to successfully achieve the practical application of high-voltage Li-ion 

full-cell, especially at harsher high temperature environment, electrolyte modification 

is a crucial but critical issue. Employment of improper electrolyte system would lead 

to detrimental influence towards electrochemical behaviors on both electrodes. 

However, it is extremely difficult for a single electrolyte systems to simultaneously 

satisfy several rigorous demands, for example: oxidative/reductive stabilities, 

compatibility and reversibility for anodic reaction, thermal stability, etc. In this study, 

we try to alleviate the difficulty for electrolyte optimization, and disperse the pressure 

into separated cathodic/anodic-reaction environments. Followed by this core principle, 

we introduce a hybrid-electrolytes cell architecture design strategy. A MOF-based 

separator is employed to separate the full-cell into pair of relatively independent 

electrolyte environments, while only Li+ can fluently transport the MOF-derived sieve. 

LiTFSI/Pyr13TFSI ionic liquid-based electrolyte is rationally employed as catholyte, 

due to its superior oxidative and thermal stabilities. Meanwhile, without bringing 

harmful influence of Pyr13TFSI into the graphite-related anodic electrochemistry, we 

introduce another independent anolyte system, equimolar LiTFSI/G3 complex, which 
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reveals pronounced improvement for irreversible Li+ de-/intercalation on graphite 

anode. As a result, fabricated with this hybrid-electrolytes strategy, a 5 V-class 

LiNi0.5Mn1.5O4 || graphite full-cell delivers ultra-high long-term cyclability and superior 

capacity retention rate at elevated temperature (83.8% after 1000 cycles). The 

achievement of outstanding electrochemical performance at harsh cell working 

condition (high-voltage and elevated-temperature) strongly prove the practical 

availability of the newly-introduced cell architecture. Finally, not just limited within 

LNMO || graphite full-cell system, we hope this feasible design strategy can be further 

developed as a universal design principle, promoting the practical application of high-

voltage Li-ion full cells. 
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Chapter 4. Hybrid Electrolytes Design (HED) for Graphite | Graphite 

Dual-Carbon High-Voltage Li-ion Battery 

 

4.1 Introduction 

Very recently, due to the high electrochemical intercalation potentials (over 4.7 V 

vs. Li/Li+), anionic Graphite-Intercalation-Chemistry (GIC) behaviors have received 

remarkable attention for designing novel energy storage devices, for example: dual-ion 

batteries. Meanwhile, combine with the low GIC potential for Li+ cation (~0.2 V vs. 

Li/Li+, as a classical/practical anode for commercial Li-ion batteries), a dual-graphite 

battery can be achieved by the redox potential gap between the pair of amphoteric GIC 

processes. The most outstanding advantages of dual-graphite energy storage devices 

can be summarized as: (i) high output voltage; (ii) environmental safety; (iii) cost 

benefits. 

However, several inherent defects have been gradually revealed, especially the 

electrolyte issues. Typical commercial electrolytes for Li-ion battery cannot bear the 

high oxidation potential on cathode, while other high oxidative-stability electrolyte 

systems (ionic liquid, etc.) would lead to irreversible capacity loss on anode. Thus, 

single electrolyte system cannot simultaneously meet the requirements on both graphite 

ectrodes, which would inevitably restrain the improvement of its cycling performance. 

In this work, we rationally introduce a specific organic/organic hybrid electrolytes 

design strategy into the dual-graphite battery system, in which a Nafion-based separator 

segregates two different electrolyte systems into each of their suitable GIC 

environments. On the cathodic side, outstanding oxidative stability of ionic liquid 

electrolyte enables the high reversibility of anion-GIC process. Simultaneously, on the 

anodic side, specific aggregated ion-pair structure within a super-concentrated ether-

based electrolyte insures the highly reversible cation-GIC process. Moreover, the full-

cell has been assembled with balanced capacity-equivalent mass loading proportion 
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between cathode and anode, while this very important practical issue has also been 

firstly highlighted to the forefront in dual-graphite/ion cell systems. The hybrid 

electrolytes strategy in dual-graphite cell synergistically combines the advantages of 

each electrolyte systems, displaying a promising high CE (around 99.7%) and superior 

long-term cycling stability (over 3000 cycles at 100 mA/g current density). In addition, 

spectroscopic investigations (in-situ Raman, HR-TEM, XPS, NMR, etc.) have been 

systematically conducted to clearly reveal degradation mechanism of cation-GIC in 

ionic liquid electrolyte system, and elucidate the influence of different electrolyte 

features on the mechanism of Li+ intercalation (Li-GIC) processes. 

In summary, for the dual-graphite battery system, after systematically elucidating 

the degradation mechanism by comprehensive spectroscopic investigations, we 

specifically introduce a hybrid electrolytes design strategy and successfully overcome 

the corresponding inherent defects in each of the separated electrolyte systems. The 

outstanding electrochemical performance not only proves the rationality of our design, 

but also regains the confidence for the development of more practical/commercial dual-

graphite (dual-ion) battery systems with high output voltage, low-cost graphite 

electrodes, long cycle life and safety superiorities over traditional Li-ion battery 

systems.  

 

4.2 Results and Discussion 

4.2.1 Electrochemical performance of GIC processes in IL-based electrolyte. 

The ideal working (charging) mechanism of a dual-graphite cell is illustrated 

schematically in Figure 1a for a typical Li-contained electrolyte system (LiTFSI as 

cation & anion donor sources). In this cell, the electrolyte not only act as a charge carrier 

(in conventional Li-ion batteries), but also be regarded as the source for GIC guests.27 

Theoretically, Li+ intercalates into the graphite anode (Li-GIC), and TFSI- intercalates 

into graphite anode simultaneously during charging. The corresponding de-

intercalation processes should irreversibly conduct during subsequent discharge 



University of Tsukuba  Doctoral Thesis 

66 
 

process, composing a cycle in typical dual-graphite cell. As introduced before, 

compared with other organic solvents (Figure 2), Li-contained IL (LiTFSI-Pyr13TFSI) 

has been predominantly employed as the electrolyte due to its superior stability towards 

oxidative decomposition upon anion-GIC.  

Figure 1. Electrochemical characterizations of dual-graphite full-cell and corresponding 

cathodic/anodic half-cells assembled with LiTFSI-Pyr13TFSI based ionic liquid (IL) 

electrolyte. (a) Schematic illustration of a typical dual-graphite full cell wherein cation (Li+) 

and anion (TFSI-) simultaneously intercalate into graphitic layered structures within the anode 

and cathode upon charging, respectively. (b) Cycling behavior of the dual-graphite full-cell 

assembled with capacity-equivalent cathode/anode mass loading proportion. Insets present the 

voltage profiles. During the initial several cycles, the seriously irreversible capacity loss leads 

to the rapid degradation of the full-cell. (c) Voltage profiles of graphite-Li half cells. The 

potential gap between the pair of cathodic (green traces) and anodic (blue traces) Graphite-

Intercalation-Chemistry (GIC) processes contributes the cell voltage of the dual-graphite full-

cell. (d) Discharge/charge capacity hysteresis against cycle number harvested from each of the 
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half-cells. Although the superior oxidative stability of IL guarantees the reversibility of TFSI-

GIC process (cathodic half-cell), the extremely low coulombic efficiencies revealed during 

initial Li-GIC cycles (anodic half-cell) inevitably lead to the irreversible capacity loss in the 

dual-graphite full-cell. The employment of IL electrolyte reveals to be a double-edge sword for 

dual-graphite cell. 

Figure 2. Galvanostatic curves of anion-GIC process observed in varying electrolyte 

systems. Typical dilute ether-based electrolyte (1:4 LiTFSI-G3, red trace); super-concentrated 

ether-based electrolyte (1:1 LiTFSI-G3, blue trace); IL-based electrolyte system (1.5 M LiTFSI-

Pyr13TFSI, black trace). 

For anionic GIC process (half-cell), the electrochemically anionic intercalation 

process requires very high working potential (surpass 4.5 V vs. Li/Li+). Typical organic 

electrolyte system (EC-DEC, EC-DMC, ether-based, etc.) cannot endure such a 

polarized potential, and inevitably suffer from oxidative decomposition. As a result, the 

charge/discharge processes present obviously irreversible capacity loss. Although the 

super-concentrated electrolyte system can, to some extent, restrain the oxidative 

decomposition (compared with the dilute system, red trace), the irreversible 

phenomenon cannot be efficiently controlled (blue trace). While the advantage of IL-

based electrolyte system has been distinctly revealed, in which the irreversible 

electrolyte decomposition has been effectively limited. 
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However, in the dual-graphite full cell (Figure 1b) assembled with balanced 

capacity-equivalent mass loading proportion, the reversible cycling cannot be achieved 

as predicted. A large irreversible capacity loss (~40 mAh/g) can be observed during the 

1st charging process, resulting in an extremely low initial CE (merely ~ 20%). Moreover, 

tuning the specific capacity-dependent mass loading ratio of graphite electrodes cannot 

essentially restrain the capacity loss Figure 3). Obviously, the severely irreversible 

degradation seriously limits the practical application of IL-based dual-graphite 

technology.  

Figure 3. Cycling behavior of the dual-graphite full-cell assembled with pure LiTFSI-

Pyr13TFSI electrolyte (cathodic/anodic mass loading, 3:1). Compared with the dual-graphite 

cell present in Figure 1b, the mass loading herein has been changed into 3:1. However, based 

on the inserted voltage profiles, the serious irreversible discharge capacity during initial cycle 

still remains to be the un-solved problem. 

In this case, modifying the mass loading ratio cannot essentially solve the problem 

of the IL-based dual-graphite cell. After deeply unraveling the corresponding 

degradation mechanism in Figure 2 (irreversible co-intercalation upon anodic anion-

GIC process in IL), the phenomenon present herein can be easily comprehended. 

Although the mass loading on the cathode (TFSI-GIC host) has been extended, the 
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irreversible capacity loss remains to be unchanged. In this case, after the initial charging, 

lot of TFSI- still trapped inside the graphite cathode, which cannot reversibly de-

intercalate out during the subsequent discharging process. In a word, without solve the 

problem(s) during anion-GIC, the change of mass loading ratio cannot essentially 

improved the cell performance. 

Figure 4. Rate performance of dual-ion half-cell (TFSI-GIC process) assembled with IL-

based electrolyte (1.5 M LiTFSI-Pyr13TFSI). (a) Voltage profiles of galvanostatic curves 

observed at various current rates (5.0 V vs. Li/Li+ upper cut-off voltage). (b) Discharge/charge 

capacity hysteresis against cycle number harvested from the cell. 

The dual-ion half-cell (graphite/Li, TFSI-GIC) presents good rate performance. 

Particularly, after turning back to 50 mA/g current density, the corresponding cell can 

still exhibit very stable cycling performance (over 500 cycles). Notably, based on very 

classic explanation proposed by M .Winter and co-workers, the low coulombic 

efficiency (CE) during the initial cycle can be assigned to a kinetic/dynamic hindrance 

during the 1st TFSI- (anion) intercalation process between the graphene sheets, which 

would disappear after few cycles until the graphite particles are completely wetted.38, 91 

In order to revealing the crucial drawback, anion- and cation-GIC processes are 

separately investigated in corresponding metallic Li/graphite half cells (Figure 1c and 

1d, Figure 4). For the TFSI (anion)-GIC process (green traces, Figure 1c), the initial 

capacity loss is only about 11 mAh/g, and the subsequent cycling exhibits an excellent 

stable performance over 400 cycles at 100 mA/g current density (Figure 1d). The stable 
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reversible TFSI-GIC capacity is mainly attributed to the superior oxidative stability of 

Pyr13TFSI electrolyte, which is also well consistent with the motivation on the 

employment of IL electrolyte in dual-graphite system. However, turning to the Li-GIC 

process in anodic half cell (blue traces, Figure 1c), although the capacity can be stably 

preserved during the subsequent hundreds of cycles with a high CE, the charge capacity 

loss within the initial several cycles (especially merely 37.6% CE during the 1st cycle) 

indicates an irreversible de/intercalation behavior. However, this phenomenon is 

essentially different from the 1st cycle CE loss consumed by SEI-formation during 

typical Li-GIC (observed in EC-DMC related environments), in which the discharge 

capacity should not keep constant, nor the charge capacity present an obvious 

increasing trend (Figure 5).28  

Figure 5. Voltage profiles of graphite-Li half cells (cation-GIC) assembled with 

LiTFSI/Pyr13TFSI IL-based electrolyte cycling at different current density rates: (a) high 

rate 100 mA/g; (b) low rate 10 mA/g. 

The most obvious difference between the two rates presents on the variation trends 

of charge capacity (corresponding Li de-intercalation process). At 100 mA/g (high rate), 

the charge capacities increase, while, on the contrary, the charge capacities decrease at 

10 mA/g (low rate). Compared with the typical SEI-formation mechanism observed in 

carbonated-based electrolyte system (EC/DMC, etc.), the increasing charge capacities 

are quite abnormal. In IL-based electrolyte, due to the dynamics reason, the 

intercalation of Li+ present very sluggish. Especially at high current rate, the 
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intercalation capacity (merely around 50 mAh/g) present far from theoretical value (372 

mAh/g, LiC6) at 0.01 V cut-off voltage. In another word, take into the irreversible Pyr13
+ 

co-intercalation, there is still enough space (active site within graphite layer) for cation 

intercalation during 2nd discharging. However, due to the gradually obstructed layer 

space (filled by irreversible Pyr13
+), the intercalation of Pyr13

+ become more and more 

difficult than smaller Li+. The reversible Li- intercalation gradually become dominate, 

and the related coulombic efficiency finally reaches nearly 99.8% after 20 cycles 

(Figure 1d). However, at low current rate (10 mA/g), the discharge capacity increase to 

240 mAh/g, and the irreversible Pyr13
+ co-intercalation reaches its limitation during the 

very initial several cycles. As a result, the Li-intercalation quickly become dominate, 

and the abnormal increasing trend of charge capacity cannot be observed at low current 

rate. Notably, no matter how quickly the pure/irreversible Li-intercalation become 

dominate, the irreversible co-intercalation of Pyr13
+ still occupy the limited active layer 

spaces within graphite, which is essentially harmful in the full cell. 

Figure 6. Investigation on the mechanism of irreversible capacity loss observed in IL 

(LiTFSI-Pyr13TFSI) electrolyte during Li-GIC. (a) Time dependent in-situ Raman spectra 

collected from graphite-Li half-cell during Li-GIC process (current density, 30 mA/g). Both of 

the unrecoverable variation trends of G-band and residue disordered feature (newly-produced 

D-band) indicate an irreversible change of graphitic structure during Li+ intercalation. (b-d) 

HR-TEM images of graphite electrodes with each of their corresponding lattice distances: (b) 

pristine state; (c) after discharge (intercalated state) and (d) after charge (de-intercalated state). 

HR-TEM analysis exemplifies that the co-intercalation of IL (Pyr13
+ cation) leads to large 
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expansion of graphitic lattice distance, which cannot fully recover due to the residual Pyr13
+ 

after charge process. (e) XPS spectra (C 1s and F 1s) of cycled graphite electrodes harvested 

after 1st discharge (black trace), 1st charge (red trace) and 2nd discharge (blue trace) processes, 

respectively. After 1st charge process, the re-exposure of graphite electrode (newly-observed 

graphite and PVdF-related peak) indicates that the de-intercalation process damage the SEI film 

formed during 1st discharging. Therefore, in IL electrolyte, the irreversible capacity loss during 

Li-GIC can be rationally assigned to the irreversible co-intercalation of large organic cation 

(Pyr13
+), which can also inevitably result in exfoliation of graphite layer and instability of SEI 

surface film. 

This abnormal behavior indicates some trapped cations may not able to de-

intercalate during charging. Subsequently, due to the discharge capacity is far more 

below the theoretical Li-GIC limitation (372 mAh/g for LiC6 compound),92 Li+ can 

continuously intercalates into residual free site in graphite layer during the following 

discharge process. The final stable state is determined by a complicated SEI-

formation/saturation and IL co-intercalation processes, which would be exemplified in 

the subsequent section (Figure 6).  

Notably, in the Li-GIC based graphite/Li half-cell, the irreversible de-intercalation 

during 1st cycle would not essentially influence the 2nd discharge capacity, since Li+ 

would be sustainably supplied from excessive metallic Li foil and there is plenty of 

spaces between graphite layers for cationic intercalation. Differently, in dual-graphite 

full-cell, the irreversible cation de-intercalation during on anode would directly lead to 

the similar irreversible de-intercalation of TFSI- anion on cathode, resulting in some 

TFSI- residue trapped inside discharged cathode. However, during the 2nd charging, 

owning to the limited TFSI-GIC capacity (~50 mAh/g limitation for TFSI-GIC in pure 

IL),36 the capacity of TFSI-intercalation would be restrained by the residual TFSI- after 

1st cycle. In another word, the amount of re-intercalated TFSI- during 2nd charging 

process wholly depends on the spaces released during the 1st discharging process. Thus, 

it can also explain why the 2nd charging capacity presents very close to the 1st 

discharging capacity in dual-graphite full cell (Figure 1b and Figure 3). As a result, the 
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cell assembled with balanced capacity-equivalent cathode/anode loading proportion 

would rapidly failed due to the irreversible filling with un-deintercalated anion on 

cathode side.  Moreover, in order to make preparatory space to remedy the irreversible 

de/intercalation, rigidly fabricating excessive cathode would break the balance of the 

capacity-equivalent loading proportion principle, and bring no help for essentially 

solving this practical issue. Also, to the best of our knowledge, this is the first time that 

this very practical issue has been revealed as a criterion. Consequently, the large 

irreversible capacity observed during cation-GIC process on graphite anode has been 

proved as the crime culprit for the degradation of dual-graphite full cell in IL electrolyte 

system.  

 

4.2.2 Degradation mechanism of cation-GIC process in IL-based electrolyte. 

After locking in the dominate drawback within IL-based dual-graphite cell, 

revealing the irreversible mechanism during cation-GIC would be remarkably 

important for designing further modification strategy to remedy the defect. To the best 

of our knowledge, the current explanations for the related irreversible behavior are 

mainly speculated based on electrochemical behaviors, while there present very limited 

amount of spectroscopic evidence to clearly demonstrate this process.42, 44 Herein, with 

the collections of several spectroscopic evidences, we conduct the analysis on both 

graphite structural variation and surface SEI formation. 

Figure 6a shows the overview of in-situ Raman spectra recorded during cation-GIC 

in Li/graphite half-cell. The most prominent changes exhibited in Raman spectra is the 

splitting of the G-band (a sharp band around 1582 cm-1 assigned to highly crystalline 

graphitic E2g mode) and the appearance of the D-band (a broad band at 1343 cm-1 

assigned to disordered finite crystalline A1g mode).73, 76 During cation intercalation 

(discharging), the blue shift and splitting of G-band can be attributed to the well-known 

formation of stages intercalation compounds.93 The increasing of peak at higher 

wavenumber (E2g(b), mode of boundary graphene layers adjacent to intercalation layers) 
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indicates the growing amount of intercalated cations.71 However, at the end of 1st charge, 

the blue shift of G-band do not store back and the spectrum still presents two splitting 

E2g modes, which exhibits strong indication that the de-intercalation of cation is not 

complete, implying the residual cations remain in the graphite matrix. What was worse, 

the appearance of D-band after 1st charging indicates the formation of irreversible 

defects and disorder in the graphite structure.76 Moreover, this irreversible structure 

degradation can be accumulated and become more aggravated after 2nd and 3rd cycles. 

Such an irreversible de/intercalation behavior is further visually illustrated by HR-TEM 

analysis (Figure 6b to 6d). Compared with the well-ordered lattice fringe (~0.33 nm, 

Figure 6b) observed on pristine graphite,74 the graphene layers become wrinkled and 

exhibit two kinds of expanded interlayer distances: ~ 0.38 nm (a traditional Li+ 

intercalated distance) and ~ 0.68 nm (intercalated by big Pyr13
+ cation) after discharging 

(Figure 6c). However, after charging (Figure 2d), only Li+ de-intercalates out from the 

graphite layer, while the Pyr13
+ still remains residual within the interlayer. Thus, the 

irreversible capacity loss and low CE can be assigned to the irreversible co-intercalation 

of big IL cation. Notably, partial Pyr13
+ intercalated into near-surface layered region 

maybe reversibly de-intercalated, but the related irreversible residue is clearly 

illustrated. Besides, the co-intercalation behavior inevitably exacerbates the stress and 

induces the exfoliation of graphite structure, which is demonstrated by SEM images of 

exfoliated graphite after cycled in IL electrolyte Figure 7). 
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Figure 7. SEM images of the graphite electrodes. (a-b) Pristine graphite particles. Cycled 

graphite electrodes harvested from the Li-GIC graphite/Li half-cell assembled with IL 

electrolyte (1.5 M LiTFSI-Pyr13TFSI): (c) after discharging (cation intercalated state); (d) after 

charging (cation de-intercalated state). 

On the commercial graphite particles, well-distributed and homogeneous graphite 

galleries can be clearly observed. However, after discharged in Pyr13TFSI-based 

electrolyte, Li co-intercalation leads to serious exfoliation of graphite layer. This 

irreversible destroy cannot be restored after charging, which present well coincide with 

the irreversible behavior of the co-intercalation of huge organic cation (Pyr13
+) revealed 

by spectroscopic characterizations (shown in Figure 6). The SEM images also present 

as a visualized evidence to prove the related degradation mechanism proposed in the 

discussion section of Figure 6. Also, the graphite exfoliation behaviors have also been 

reported during various Li-GIC processes, which have been assigned to PC-related 

irreversible solvent co-intercalation and long-term cycling degradation, respectively.75-

76 

SEI formation is another core section within the discussion of GIC processes. 

Based on the pioneer explanations proposed in previous studies, owning to the superior 

reductive stability of IL, SEI cannot be stably formed during Li-GIC, and IL co-

intercalation cannot be restrained.38, 42 However, the contradiction point is although 

irreversible IL co-intercalation leads to the low CE during initial cycles in Li-GIC half-

cell, the high reversibility during the subsequent hundreds of cycles indicates a stable 

irreversible process has been gradually achieved (blue traces, Figure 1c and 1d). Herein, 

based on XPS harvested from 1st discharged graphite electrode, the formation of LiF-

based SEI can be clearly observed (bottom black trace, Figure 6e), which can be 

rationally ascribed to the reduction of another electrolyte component, LiTFSI salt. 

However, it is noteworthy that the LiF-composed SEI film suffer from an obvious 

damage after 1st charging process (cation de-intercalation), resulting in the re-exposure 

of fresh graphite surface (also PVdF binder), which proved by the observation of 

corresponding peaks in XPS spectrum (red trace, Figure 6e). Then, the surface of 
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exposed graphite is re-covered by the newly-produced LiF-based SEI film after 2nd 

discharging (blue trace, Figure 6e). Moreover, both the destruction and re-construction 

of SEI are also clearly confirmed by NMR and HR-TEM results (Figure 8-10).  

Figure 8. NMR analysis for SEI components during Li-GIC in IL electrolyte. 1H and 19F 

NMR spectra of D2O-extracted components from discharged IL-based Li-GIC half-cells (un-

rinsed graphite electrode and separator). Both the carboxylates (formate and acetate, etc.) and 

flouride (LiF, etc.) are quantitatively estimated based on the normalized peaks of C6H6 and 

C6H5F internal/inner standards. 

Corresponding XPS analysis performed in Figure 6e has qualitatively confirmed 

the components of SEI film formed on graphite surface (in IL-based electrolyte system). 

Herein, quantitative NMR analysis would be very helpful to further clarify the SEI-

formation mechanism. Herein, NMR results also indicate the formation of LiF and the 

absence of carboxylates component within SEI, which is consistent with the XPS results 

(Figure 6e). More importantly, the amount of LiF increases after 2nd discharging. This 

is a strong evidence to prove the proposed re-construction of LiF-based SEI film. The 

abnormal formation of SEI during 2nd discharge process also indicates the unstable 

nature of Li-GIC process conduct in IL-based electrolyte system. 
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Figure 9. Normalized LiF-related 19F NMR peaks collected from the graphite electrodes 

harvested from Li-graphite half cells (Li-GIC) assembled with LiTFSI-Pyr13TFSI IL-based 

electrolyte.  

Firstly, the difference between the peaks collected from washed and un-washed 

electrodes should be noted. Some of the loose LiF fragments (due to the destruction of 

SEI film after 1st charging/de-intercalation) would be washed off/away. In this case, 

there is obvious difference between washed (62%) and un-washed (92%) electrodes 

after 1st charging. Only 62% of SEI film stably deposited after de-intercalation, while 

the total amount of SEI components nearly do not change (92%, unwashed). In this 

case, the “damage/destruction” of SEI film after 1st charging/de-intercalation can be 

clearly revealed in IL-based electrolyte system upon Li-GIC process. 

After 2nd discharging/intercalation, the “re-construction” of SEI film can be clearly 

exemplified by the increasing of SEI component (the newly-produced 70% SEI film). 

The amount of loose LiF fragments stay constant (around 30%) after 2nd discharging. 

Traditionally, once produced after the 1st discharging process, SEI film cannot be 

destructed during subsequent discharging (pure Li+ de-intercalation) in typical 

electrolytes (EC/DMC system, etc.).94 However, in IL electrolyte system, some co-

intercalated Pyr13
+ within partial near-surface interlayer region would dynamically de-

intercalate, and such a large cation cannot go through the SEI film, which unavoidably 

leads to the related destroy. With the accumulation of SEI fragment during cycling, both 
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intercalation and de-intercalation of Pyr13
+ is gradually restrained, and the pure Li-GIC 

process become dominated during subsequent cycles. In this case, the stable reversible 

GIC process during the hundreds of cycles in anodic half-cell can be rationally 

explained. 

Figure 10. HR-TEM images of the cycled graphite electrodes harvested from the Li-

graphite half-cell (cation-GIC) assembled with LiTFSI-Pyr13TFSI IL-based electrolyte. 

(a) after 1st discharging (intercalated state); (b) after 1st charging (de-intercalated state). 

After the formation of homogeneous SEI film after discharging, the local 

destruction of the SEI film can be clearly observed after subsequent cation de-

intercalation (charging process). This destroy phenomenon can be rationally attributed 

to the de-intercalation of huge Pyr13
+ cation (near the surface region). Besides, the 

visual HR-TEM results also coincide with the quantitative analysis performed based on 

NMR spectroscopy (Figure 8-9). 

In summary, this is the first time that the details of the cation-GIC mechanism in 

IL electrolyte has been illustrated. The irreversible capacity observed during initial 

several cycles have been assigned to both co-intercalation of IL cation and abnormal 

re-construction behavior of SEI-film, pair of inherent defects tightly correlated with 

each other. Even though the employment of specific additives would help the building 

of stable SEI protecting film, the co-intercalation of IL cation would not be immediately 

prevented during the initial cycles, which still remains the GIC process suffer from 

irreversible threaten. In this case, introducing a separated hybrid electrolytes system 

would be a solution, in which the cathodic GIC process is conducted in IL electrolyte 
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and the anodic GIC process can be reversibly conducted in another specific electrolyte 

system. 

 

4.2.3 Discovering a reversible Li-GIC process in super-concentrated ether-based 

electrolyte. 

Ethers have been widely employed as electrolyte solvents for Li batteries (Li-ion, 

Li-air, Li-S, etc.).95-96 However, although ethers own high Li salt solubility and good 

reductive stability for accommodating Li metal, ether-based electrolytes have been 

limited into primary Li batteries only assembled with Li metal. This embarrassment can 

be attributed to their intrinsically incompatible nature with graphite anode in 

corresponding full cells.75 The co-intercalation of ether molecules would lead to the 

destruction of graphite layer and unstable SEI-formation.97 

Figure 11. Reversible Li-GIC mechanism in super-concentrated ether electrolyte (1:1 

mole ratio, LiTFSI:G3). (a) Voltage profiles of graphite-Li half-cells. Compared with the IL 

system (red trace), the cell assembled with super-concentrated G3 (green trace) exhibits 

improved reversible capacity during the initial cycle. Inset shows the Raman spectra of 

LiTFSI/G3-based electrolyte with different mole ratios: typical diluent (1:4) and super-

concentrated (1:1). The blue shift of TFSI-related peak observed in super-concentrated 
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electrolyte indicates the evolution of electrolyte structure, which directly leads to the essential 

difference on Li-GIC mechanisms. (b) Long-term cycling performance of graphite-Li half-cell 

at 50 mA/g. (c) Time dependent in-situ Raman spectra harvested during Li-GIC process (current 

density, 35 mA/g). The reversible variation trend of G-band indicates a reversible change of 

graphitic structure during Li+ de/intercalation. (d, e) HR-TEM images of cycled graphite 

electrodes with each of their corresponding lattice distances: (d) after discharge (intercalated 

state) and (d) after charge (de-intercalated state). Compared with the lattice distance (~0.335 

nm) observed in pristine graphite (Fig. 6b), the reversible Li+ de/intercalation have been 

achieved. (f) XPS spectra (C 1s and F 1s) of cycled graphite electrodes harvested after 1st 

discharge (black trace), 1st charge (red trace) and 2nd discharge (blue trace) processes, 

respectively. Without re-exposure of graphite electrode, the LiF-dominated SEI film stably 

covered on the electrode surface and do not suffer from obvious change once it form after the 

initial discharge process. 

Figure 12. Raman spectra of ether-based electrolytes with various LiTFSI concentrations. 

Herein, based on Raman spectroscopy analysis, we want to demonstrate the 

different electrolyte structures and various Li+ solvation degrees in LiTFS-G3 

electrolytes with different LiTFSI salt concentrations. Different from the typically 

dilute electrolyte composed by solvent-separated-ion-pair (SSIP), super-concentrated 

electrolyte system (equimolar complexation of G3 solvent and LiTFSI salt) is composed 

by a structure of contact-ion-pair (CIP), [Li(G3)1][TFSI]. Both the TFSI- and G3 do not 
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freely exist in the CIP-composed system. A G3-based solvated shell tightly wrap around 

the Li+ cation, resulting in the formation of highly solvated [Li(G3)1]+. On the other 

hand, the soften behavior of Li+ (based on the classic H) induces the interaction between 

solvated Li+ and TFSI-, resulting in the essential evolution of solvent structures. The 

formation of specific CIP structure has been exemplified by the blue shift of SNS 

stretching mode (variation of TFSI state) and increasing intensity of Li+-glyme related 

peak (variation of Li+ solvated state). The further discussion on the features of these 

“glyme-LiTFSI solvate ionic liquids” electrolyte systems had been extended by 

previous studies.77, 80, 97-98 

For example, the typically dilute LiTFSI-ether electrolyte is mainly composed by 

solvent-separated ion-pairs (SSIP), in which both the ether molecule and TFSI- anion 

exist in a relative free state.80, 99 Different from dilute system, within super-concentrated 

electrolyte, the freedom of ether (for example: triglyme ether, G3) molecule can be 

largely restrained by the equimolar complexation (LiTFSI:G3, 1:1) with LiTFSI salt, 

which indicates a formation of  contact-ion-pair (CIP) structure, [Li(G3)1TFSI]. The 

formation of the specific solvated structure (Li+ surrounded by a G3 shell) has been 

exemplified by Raman observation, the blue shift of SNS stretching mode (Figure 11a 

inset) and increasing of Li+-G3 related peak Figure 12).80 Without free G3 molecule, the 

aggregated CIP structure effectively restrain the G3 co-intercalation, which 

demonstrated by the pure Li+-intercalation plateau (below 0.5 V vs. Li/Li+) and 

disappearance of co-intercalation-related plateau (around 0.8 V vs. Li/Li+) during GIC 

process (Figure 11a and Figure 13).75, 81  

Contrary to the low CE (merely around 70%) and limited cycling stability observed 

in typical diluted ether electrolytes, both the cycle life (over 700 cycles) and CE 

(stabilized around 99.8%) have been remarkably improved in CIP-composed super-

concentrated electrolyte (Figure 11b and Figure 14). This essentially change can be 

assigned by completed determining factors for both de-solvation and co-intercalation 

processes, which are discussed in Figure 14. More importantly, although sharing the 

similar IL-related structural features (consisting of large [Li(G3)]+ cation and TFSI- 
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anion), the irreversible capacity loss has been well controlled in super-concentrated 

electrolyte system, and the 1st CE has been largely improved (Figure 11a and Figure 

15), performing a superior Li-GIC reversibility. 

Figure 13. Li-GIC (graphite/Li half-cell) cycling performance of cells assembled by ether-

based electrolytes with various LiTFSI concentrations. (a) Voltage profiles of the initial 

cycle. (b) Charge capacity and coulombic efficiency (CE) hysteresis against cycle number 

harvested from the corresponding cells. 

The discharge/charge curves observed in typical dilute ether-based electrolytes 

present a traditional ether co-intercalation plateau around 0.8 V vs. Li/Li+.81 Compared 

with the subsequent Li+ intercalation stage, the solvent co-intercalation contributes 

dominate discharge capacity. However, in typical dilute ether-based electrolyte system, 

the low CE (merely around 70%) indicates the existence of irreversible de/intercalation 

behavior in this system. Based on Kang and co-workers, the pure co-intercalation 

behavior observed in typical ether-based electrolyte can achieve very stable cycling 

performance (cycling with ~0.2 V vs. Li/Li+ cut-off voltage, not extend to Li-

intercalation region), which can be attributed to a SEI-free Li-GIC process.75 However, 
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once extended to a lower intercalation potential (0.01 V cut-off voltage), the irreversible 

behavior can be clearly observed. The related degradation mechanism would be further 

explained based on related spectroscopic evidences revealed below. 

Figure 14. Proposed determining factors for co-intercalation or de-solvation behaviors 

during Li-GIC.  Cyclic voltammetry (CV) curves collected during scanning in typical dilute 

G3-based electrolyte (red trace) and super-concentrated G3-based electrolyte (green trace). The 

half-cells are assembled with graphite/Li for Li-GIC investigations. Then, proposed 

determining factors for co-intercalation or pure Li+ intercalation (firstly de-solvation) 

behaviors during Li-GIC are discussed by corresponding equilibrium equations. 

The related CV curves fit well with the corresponding galvanostatic curves shown 

in Figure 13. Notably, there is a very important step before pure Li+ intercalation (GIC) 

process, Li+ de-solvation process. However, there presents no de-solvation process for 

co-intercalation. The essential determining factor would be the activity of free G3 

solvent molecule in electrolyte, which can directly determine the order of co-

intercalation and de-solvation processes.80-81 For super-concentrated electrolyte, the 
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activity of free G3 solvent molecule has been largely restrained, which would lead to 

the de-solvation process takes the lead of solvent co-intercalation. 

Figure 15. Voltage profiles of Li-GIC (graphite/Li half-cell) processes observed in different 

electrolyte systems. (a) IL-based electrolyte system (1.5 M LiTFSI-Pyr13TFSI); (b) Super-

concentrated ether-based electrolyte system (LiTFSI-G3, 1:1 mole ratio). GIC processes are 

performed at various current density: 50 mA/g (black traces); 18.4 mA/g (blue traces). 

Corresponding discharge/charge capacities have been summarized in the inset bar graphs. 

Based on the discharge/charge capacities summarized above, several differences 

between the two electrolyte systems have been revealed. With the reduction of current 

rate, the discharge capacity observed in IL system has been extended (from ~50 mAh/g 

to ~150 mAh/g). However, the irreversible discharge capacity also simultaneously 

increases (from 33 mAh/g to 57 mAh/g). With the increasing of discharge capacity, 

more Pyr13
+ has been trapped within graphite layer, which can be well explained by the 

degradation mechanism proposed in Figure 6. However, for the newly-introduced 

super-concentrated system, the discharged capacity can be enlarged to ~270 mAh/g at 

smaller current rate. At the same time, the irreversible capacity loss during the initial 

cycle do not suffer from obvious increasing trend. In another word, the 1st cycle 

irreversible capacity loss has not relationship with the discharge capacity (amount of 

intercalated cation), which is very similar as the fixed SEI-formation related 

consumption observed in typical EC/DMS based electrolyte systems. The SEI-

consumed irreversible capacity would be further proved by related characterizations. 
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Actually, as a pioneering work, Watanabe and co-workers have reported the related 

phenomenon by XRD analysis on graphite layer structure.81 In this study, not only the 

long-term cycling stability in super-concentrated electrolyte system has been further 

improved for practical application, but also, on mechanism level, the intercalation 

behavior and SEI-formation process are systematically illustrated with the comparison 

of typical systems (dilute electrolyte and IL). For in-situ Raman observation, the 

reversible splitting of G-band observed in super-concentrated system (Figure 11c) 

exhibits sharp difference against the irreversible splitting in IL (Pyr13
+ residue, Figure 

6a) and remaining D-band in diluted ether (disordered layer defects, Figure 16).  

Figure 16. In-situ Raman observation of Li-GIC (graphite/Li half-cell) process conducted 

in typical dilute ether-based electrolyte (1:4 LiTFSI/G3). 

Compared with the reversible variation trend of G-band observed during Li-GIC 

process in super-concentrated electrolyte system (Figure 3c), there present an obvious 

difference in the related process conducted in typical dilute ether-based electrolyte 

system: the irreversible formation of D-band after de-intercalation. The splitting and 

restoration of G-band indicate the reversible intercalation of Li+ cation. However, the 

irreversible formation of D-band indicates the formation of irreversible defects and 

disorder in the graphite structure during 1st discharging.76 What was worse, the 



University of Tsukuba  Doctoral Thesis 

86 
 

defects/destroy of the graphite structure become more and more serious during the 

subsequent cycles. Moreover, after several cycles, the formation of a small shoulder 

(band D’) can be also attributed to the formation of defects in the crystal structure of 

graphite.71-72, 76 

More visual HR-TEM images further exemplify the related reversible Li-GIC, in 

which the pure Li+-intercalated layer displays a single expanded interlayer distance 

around 0.37 nm after discharging (Figure 11d). After charging, the graphene layers 

reversibly restore back to the pristine state (around 0.34 nm distance, Figure 11e), which 

indicates a reversible de-intercalation process has been achieved in super-concentrated 

electrolyte system. As a comparison, in diluted electrolyte system, the larger distance 

observed at intercalated state (~0.47 nm, Figure 17) and related irreversible behavior 

present well coincide with the classic co-intercalation explanation. Moreover, shown in 

SEM images collected after cycling Figure 18), the tightly layered structure can be well 

maintained in CIP-composed ether electrolyte, while the wrinkled interlayers and 

exfoliation of graphite structure can be clearly observed in diluted electrolyte condition. 

Turning to another important issue, the formation of stable LiF-composed SEI in CIP-

composed electrolyte can be illustrated by corresponding XPS spectra (Figure 11f).  

Figure 17. HR-TEM images and related lattice distances of graphite electrodes harvested 

after cycling (Li-GIC half-cell) in typical dilute ether-based electrolyte. (a) After 

discharging (intercalated state); (b) After charging (de-intercalated state). 
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Although the expansion/restoration of graphitic lattice distance (0.372 nm: Li+ 

intercalated; 0.333 nm: Li+ de-intercalated) proves the existence of reversible Li+-

related intercalation behavior during Li-GIC process, the irreversible lattice expansion 

(0.4~0.5 nm: solvent co-intercalated) also indicates the irreversible structure variation 

during cycling. The irreversible destroy of graphite layer structure can also be proved 

by the corresponding exfoliation phenomenon observed in SEM images. 

Figure 18. SEM images of the graphite electrodes collected after Li-GIC cycling. Graphite 

electrodes harvested from the Li-GIC graphite/Li half-cell assembled with typical dilute ether-

based electrolyte (1:4 LiTFSI-G3): (a) after discharging (intercalated state) and (b) after 

charging (de-intercalated state); super-concentrated ether-based electrolyte (1:1 LiTFSI-G3): 

after (c) discharging and (d) charging. 

Severely exfoliation of graphite galleries can be clearly observed on the graphite 

electrodes cycled in dilute ether-based electrolyte. The irreversible morphological 

degradation can be attributed to the commonly-accepted solvent (ether) co-intercalation 

upon Li-GIC process. This is also well consistent with the evidences exhibited in Figure 

17-18. As a comparison, no obvious gallery exfoliation can be observed on the cycled 

graphite electrode harvested from the super-concentrated electrolyte system, which also 
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indicates a reversible and stable Li-GIC behavior can be conducted in this specific 

electrolyte system. 

Figure 19. XPS spectra (C 1s and F 1s) of cycled graphite electrodes harvested from Li-GIC 

half cells cycled in typical dilute ether-based electrolyte. After 1st discharging (black trace); 

after 1st charging (red trace); after 2nd discharging (blue trace). 

Different from IL and super-concentrated ether electrolytes, ether solvent 

molecules (relative free state) can also be reduced on graphite surface during 

discharging. In this case, the components of SEI film formed in dilute ether electrolyte 

system include carboxylates and carbonate species. This is very different from the SEI 

film (dominate by LiF) observed in IL (Figure 6e) and super-concentrated ether 

electrolyte (Figure 11f) systems. However, the abnormal re-constrution of SEI can be 

observed, which is very similar as the one revealed in IL system (Figure 6e). Notably, 

the destroy of SEI film (exposure of graphite cathode) after 1st charging can be 

attributed to the de-intercalation of co-intercalated species. Thus, SEI cannot stably 

exist due to co-intercalation behavior observed in dilute ether-based electrolyte system. 

This phenomenon also well coincide with the low CE (keeps around 70%) observed in 

the specific system. Further quantitative analysis (NMR, Figure 20) can confirm this 

phenomenon. 
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Figure 20. NMR analysis for SEI components during Li-GIC. (a) In typical dilute ether-

based electrolyte system; (b) In newly-introduced super-concentrated ether-based electrolyte 

system. 1H and 19F NMR spectra of D2O-extracted components from discharged Li-GIC half-

cells (un-rinsed graphite electrode and separator). Both the carboxylates (formate and acetate, 

etc.) and flouride (LiF, etc.) are quantitatively estimated based on the normalized peaks of C6H6 

and C6H5F internal/inner standards. 

Corresponding XPS analysis performed in Figure 11f and Figure 19 have 

qualitatively confirmed the components of SEI film formed on graphite surface in 

corresponding systems. For dilute ether-based electrolyte system, NMR results indicate 

the formation of both LiF and carboxylates component within SEI, which is consistent 

with the XPS results (Figure 19). More importantly, the amount of SEI components 

increase after 2nd discharging. This is a strong evidence to prove the proposed destory 

and re-construction of SEI film. As for super-concentrated ether-based electrolyte 

system, NMR results indicate the formation of LiF and the absence of carboxylates 

component within SEI, which is consistent with the XPS results (Figure 11f). Notably, 

the amount of LiF keeps constant after 2nd discharging. This is also a strong evidence 

to prove the superior stability of LiF-based SEI film formed in this specific system.  

While, in diluted electrolyte condition, the re-exposure of graphite electrode and 

re-building of new SEI can be revealed upon 1st charging and subsequent discharging 

processes, respectively Figure 19). Furthermore, this negative destroy and re-
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construction of SEI film during co-intercalation can be further proved by quantitative 

NMR characterizations Figure 20). Besides, the component of SEI present different. In 

diluted electrolyte system, the carbonate/carboxylates-related components in SEI can 

be assigned to the decomposition of free G3 molecules. While in CIP-composed 

condition, all of the G3 molecules tightly surround Li+ (equimolar) and the related 

reductive stability has been largely enhanced. Thus, similar as the IL-based electrolyte 

system (Figure 6e), the dominate component of SEI formed in CIP-composed ether 

electrolyte system is LiF, which produced from reduction of TFSI-. In conclusion, 

super-concentrated ether-based electrolyte can be regarded as a superior electrolyte 

system during Li-GIC process, and the reversible Li+-related de-/intercalation profit 

from the formation of stable LiF-composed SEI and restraining effect against solvent 

co-intercalation. 

 

4.2.4 Synergistical hybrid electrolytes design for dual-graphite battery with 

capacity-equivalent electrodes loading. 

Turning back to the dual-graphite battery technology, combining the advantages of 

each electrolytes together and avoiding their inherent defects would be a promising 

modification target, which obviously cannot be achieved by rigidly mixing of the 

different electrolyte system. Herein, we want to introduce a specific hybrid electrolytes 

design strategy to realize the target. Typically, the concept of liquid-based hybrid 

electrolytes system has been introduced by integration of aqueous and organic 

electrolytes into a single battery.82, 84, 100 Separated by a lithium super-ionic conductor 

glass film (LISICON), lithium metal can provide the most negative potential (-0.34 V 

vs. NHE) on the organic anodic side, while an aqueous system can be conducted on the 

cathodic side (oxygen reduction in Li-air system, NiOOH/Ni(OH)2 couple in Li-

NiOOH battery, etc.).85, 101-102 Herein, we want to further design a dual-organic hybrid 

electrolytes strategy for dual-graphite battery. As illustrated in Figure 21a, super-

concentrated LiTFSI-G3 electrolyte system is employed within the anodic side, insuring 

the high reversibility of Li-GIC process. While on the cathodic side, the high oxidative 



University of Tsukuba  Doctoral Thesis 

91 
 

stability of IL-based electrolyte system (LiTFSI-Pyr13TFSI) enables the achievement 

of reversible TFSI-GIC process. In this case, both the IL co-intercalation on anode and 

electrolyte oxidation on cathode can be restrained. By simultaneous taking advantages 

and avoiding drawbacks of each electrolyte systems, this synergistical hybrid 

electrolytes design would become a promising strategy to realize the reversible long-

term cycling of dual-graphite battery systems. 

Figure 21. Nafion-based separator introduction into a dual-graphite cell fabricated with 

a hybrid electrolytes design. (a) Schematic illustration of hybrid electrolytes design strategy. 

The core of the design is taking full advantage of each electrolyte systems during 

cationic/anodic GIC processes by combining them into a single full-cell system, and 

simultaneously avoiding their shortcoming by separated them apart into different regions. 

Based on its excellent oxidative stability against high voltage decomposition, we hire IL 
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(LiTFSI-Pyr13TFSI) as cathodic electrolyte, and try to obtain high TFSI-GIC reversibility. 

Without worrying about its irreversible co-intercalation on anodic side, we can employ a 

specific separator to restrain its diffusion to anode side. Similarly, due to its high Li-GIC 

reversibility, we use super-concentrated LiTFSI-G3 as anodic electrolyte, and the separator 

should also prevent its shuttling to the cathodic side. (b-c) Permeation tests to assess the 

separation effect of Nafion-based separator. (b) For the homemade V-type device, each 

chambers are isolated by a fixed middle-layer separator and injected with different electrolytes 

(side-A: super-concentrated LiTFSI-G3; side-B: LiTFSI-Pyr13TFSI). Certain trace amount of 

electrolyte can be take out for IR observation after aging. (c) Separation effect comparison 

between Nafion-based separator and typical Celgard (as comparison). After 20 days aging, 

based on time-dependently collected IR spectra, no obvious shuttling can be observed on both 

sides in Nafion-based separator-assembled device. However, Celgard separator cannot 

effectively prevent the interpenetration of electrolyte, since obvious shuttling can be observed 

after only 2 days aging. 

Inspired by the newly-designed organic/organic hybrid electrolytes strategy, 

introducing a suitable separator to separate each electrolytes becomes the final core 

issue. Compared with the conventional solid-state electrolytes (LISICON, etc.) and 

polymer electrolytes (PEO, etc.), perfluorinated sulfonate ionomer, namely Nafion, has 

been selected to obstruct the pair of electrolyte systems, due to its higher flexibility and 

lower cost than LISICON, and higher conductivity than PEO.103-104 Benefit from the 

internal narrow channel structure, the barrier property of Nafion has been well accepted 

in Li-S batteries by effectively restraining the shuttling of polysulfide compound.103, 105 

However, introducing Nafion as an independent separator to isolate pair of different 

electrolyte systems still remains a challenging attempt. The permeation assessment of 

related isolation effect has been performed in a home-made V-type device (Figure 21b), 

in which the Nafion-based separator is fixed in the middle of device after traditional 

lithiation pretreatment. After certain period of aging, the probable inter-permeation can 

be well assessed by FTIR observation. Fabricated by Nafion-based separator, each of 

the selected electrolytes (side A: super-concentrated LiTFSI-G3; side B: LiTFSI-
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Pyr13TFSI) can be well restricted in each of their corresponding chamber after 20 days 

aging. No obvious inter-permeation can be detected by sensitively spectroscopic 

characterization (left pair of groups in Figure 21c). As comparison, assembled with 

typical Celagrd separator, clear shuttling can be proved by the observation of ether-

related adsorption peaks (around 2840 cm-1, right group in Figure 21c) within counter 

side (IL side) after merely 2 days aging. In this case, Nafion-based separator can be 

regarded as an appropriate separator to achieve the design of hybrid electrolytes system. 

Figure 22. Electrochemical performance of dual-graphite cell fabricated by the hybrid 

electrolytes design strategy. Long term cycling performance of dual-graphite full cell 

fabricated with hybrid electrolytes strategy and capacity-equivalent cathode/anode mass 

loading proportion. Cell voltage range: 2.6-4.8 V. Specific current density: 10 mA/g for initial 

1-3 cycles; 50 and 100 mA/g for subsequent cycles, respectively. (a) Voltage profiles. 

Charge/discharge and coulombic efficiency hysteresis against cycle number at (b) 50 mA/g and 

(c) 100 mA/g current rates. 

Finally, fabricated by hybrid electrolytes and Nafion-based separator, dual-graphite 

full cell performance has been shown in Figure 22a to 22c. Due to the similar GIC 

capacities (around 50 mAh/g) on both electrodes, the full-cells are assembled with equi-

mass of graphite electrodes (1:1 mass loading), which follow the basic criterion of 

practical capacity-equivalent loading proportion. The current density for the initial 3 

cycles has been fixed at 10 mA/g, while the following cycles are performed at 50 and 

100 mA/g, respectively. Based on collected voltage profiles (Figure 22a), the obvious 

irreversible capacity can be clearly observed during the first cycle, which is mainly 
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related to the SEI-formation on anode and “kinetic hindrance” on cathode during very 

initial cycles.36-37 As for the subsequent cycles, the hybrid electrolytes system exhibits 

stable long-term cycling stability at 50 mA/g over 1200 cycles, with a high CE (average 

value of 99.9%). Furthermore, although suffer from more polarization at higher current 

density (100 mA/g), the related system still keeps high CE and high capacity retention 

rate after over 3000 cycles (over 3 months cycling, Figure 22c).  

 

4.3 Conclusion 

In this study, after systematically revealing the intrinsic defect of IL during anodic 

Li-GIC process within dual-graphite full-cell system, we introduce a novel 

organic/organic-combined hybrid electrolytes design strategy. By retaining the IL 

electrolyte within the cathodic side, the anodic electrolyte has been replaced with CIP-

composed super-concentrated ether-based electrolyte, in which the reversibility of Li-

GIC can be largely enhanced. More importantly, a Nafion-based separator has been 

employed to successfully separate each of the specific electrolyte systems. Benefited 

from the synergistical hybrid electrolytes design, the advantages of both electrolyte 

systems can be sufficiently utilized (strong oxidative stability of IL and good Li-GIC 

reversibility of CIP-composed ether electrolyte), while simultaneously, each of their 

drawbacks can be well restrained (irreversible co-intercalation of IL on anode and 

oxidative decomposition of ether on cathode) by spatially isolated away from 

corresponding electrodes. Profit from this hybrid electrolytes design, the long-term 

cycling stability of dual-graphite batteries have been largely enhanced (over 3000 

cycles at 100 mA/g), exhibiting a capacity close to 50 mAh/g and a CE exceeding 99.9% 

during cycling. Moreover, as a basic criterion of practical application, the full-cells 

herein have been assembled with balanced capacity-equivalent loading proportion, 

which is firstly highlighted to the forefront in related dual-graphite/ion cell systems.  

Besides, on mechanism level, the cation-GIC processes conducted in various electrolyte 

systems have been carefully revealed by the employment of systematical 

characterization methods (in-situ Raman, HR-TEM, XPS, NMR, etc.), which is also 
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essential important for providing fundamental insights into the future development of 

graphite-intercalation-chemistry (GIC). Overall, despite of its moderate specific 

capacity intrinsically limited by anion-GIC process, the dual-graphite technology 

fabricated by hybrid electrolytes design strategy would still act as a promising candidate 

for practical stationary energy storage devices, since it owns high output voltage, ultra-

stable cycling, low-cost graphite-based electrodes and safety superiorities over 

traditional Li-ion battery systems. 
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Chapter 5. General Conclusion and Perspective 

 

In this thesis, a unique organic/organic-combined hybrid electrolytes design 

strategy has been specifically introduced into two high-voltage Li-ion full-cell system.  

For the first system, related research focus on typical cathode for Li-ion battery. 

The superior oxidative stability of ionic liquid (catholyte) can support the 5 V-class 

LiNi0.5Mn1.5O4 cathode working at harsh elevated temperature, while a good Li-GIC 

reversibility of super-concentrated ether electrolyte (anolyte) can guarantee the 

operation of graphite anode. Simultaneously, drawbacks of each electrolytes can be well 

restrained (irreversible co-intercalation of ionic liquid on anode and oxidative 

decomposition of ether on cathode) by spatially isolated away from corresponding 

electrodes by the employment of sieve-like MOF-based separator. 

As for the second system, dual-carbon/graphite battery system. The advantages of 

both electrolyte systems can be sufficiently utilized (strong oxidative stability of ionic 

liquid and good Li-GIC reversibility of super-concentrated ether electrolyte), while 

simultaneously, each of their drawbacks can be well restrained (irreversible co-

intercalation of ionic liquid on anode and oxidative decomposition of ether on cathode) 

by spatially isolated away from corresponding electrodes. 

Benefit from the advantages of each electrolyte systems (cathodic and anodic), the 

separator fully separate them into each of their own spaces. This desgin strategy would 

be empolyed into varying battery systems, for example, Li-O2 battery system with 

soluble redox mediators, and Na/K-ion battery systems.  
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