
Real-Time Stereo Matching System for
High Resolution Images on GPU

March 2019

Qiong Chang

Real-Time Stereo Matching System for
High Resolution Images on GPU

Graduate School of Science and Engineering,
University of Tsukuba

March 2019

Qiong Chang

Abstract

Real-time stereo vision is attractive in many areas such as outdoor mapping
and navigation. As a popular accelerator in the image processing field, GPU
is widely used for the studies of the stereo vision algorithms. Recently, with the
improvement of camera hardware, the resolution of the images is greatly improved.
On the other hand, the research on acceleration methods for the stereo matching
is being developed slowly. Many algorithms has been developed expecting the
performance improvement of processors, but, its improvement speed cannot meet
the that of increase of image size. This research aims to contribute in this regard
by proposing a general stereo matching acceleration method, faster than current
algorithms, that can work for high resolution system in real-time on GPUs.

Through the study of principle of stereo matching and a variety of algorithms,
we propose an acceleration method that reduces the amount of computation of
the system by reducing the original image before the processing and interpolating
properly after the processing, thereby realizing the real-time processing. First,
we verify the feasibility of our method for high-resolution images through a basic
algorithm. Then we combine it with two other different algorithms. Each work
uses a new idea from the image processing algorithm or acceleration method based
on GPU, which helps to improve the processing speed over other systems.

We evaluate the performance of our three systems by using the Middlebury [16]
and KITTI [27] benchmarks. Both of the benchmarks provide many types of
datasets and corresponding ground truths. Images in these datasets have different
sizes, different maximum disparities, different brightness, different textures, and
different occlusion relationship. All of these can help us evaluate the performance
of systems more comprehensively. Additionally, we run our systems on various of
GPU platforms to ensure the versatility of our method.

According to the evaluation results, our second system achieves real-time pro-
cessing for images with 2888 ×1920 pixels and a maximum disparity of 760. At
the same time, we also improve the accuracy of the original Multi-Block Matching
(MBM) algorithm that was used in this system. It mainly thanks to the combi-
nation of the image resizing and a secondary matching, which we propose in this
paper. In our third system, we also run a more complex algorithm on an embedded
GPU and apply it to the real world. By analyzing the relationship between GPU
memory bandwidth and data accessing, we find an effective way to hide latency
and achieve the real-time processing.

The main contribution of this work is to present a GPU method to accelerate
the stereo matching for the high resolution images. This method can be applied
to various GPUs and even other platforms to improve processing speed while

maintaining a certain accuracy. By using this method, our stereo matching system
achieve the fastest speed in the world, which can save more time to do other works.

ii

Acknowledgments

First of all, special thanks are due to my thesis supervisor Professor Maruyama,
who supervised my work by providing me with valuable comments on major out-
comes of the work. This thesis could not have been possible without him.

Second, I extend my gratitude to professor Onishi, who belongs to the Na-
tional Institute of Advanced Industrial Science and Technology, Social Intelligence
Research Team for financing my study. The conducive environment that the de-
partment created during my study also deserves lots of appriciation.

Thrid, I would especially like to thank my family. My parents and my wife
have been extremely supportive of me throughout this entire process and has make
countless sacrifices to help me get to this point.

Finnaly, I would like to thank all my friends in Tsukuba and around for the
great moments we spent together.

iii

Contents

Abstract i

Acknowledgments iii

List of figures vii

List of tables viii

1 Introduction 1
1.1 Stereo Matching . 2

1.1.1 Stereo Matching Theory . 2
1.1.2 Stereo Matching Flow . 3

1.2 Background . 7
1.2.1 GPUs . 7
1.2.2 Hardware Acceleration for Stereo Matching 7
1.2.3 Problem Statement . 9

1.3 Purpose of this Research . 9
1.4 Thesis Outlines . 10

2 Algorithms for Stereo Matching 11
2.1 Matching Cost Calculation . 11

2.1.1 Census Transform . 11
2.1.2 Absolute Difference and Mini-Census Transform 12
2.1.3 Normalized Cross Correlation 13

2.2 Matching Cost Aggregation . 14
2.2.1 Cross-Aggregation . 14
2.2.2 Multi-Block Matching . 15
2.2.3 Domain Transformation . 17

2.3 Disparity Refinement . 18
2.3.1 GCP Detection . 18
2.3.2 Non-GCPs Filling . 19

iv

3 Approach for Reducing the Calculation 21
3.1 Algorithm Overview . 21

3.1.1 Processing Flow . 21
3.1.2 Scaling Down . 22
3.1.3 Calculation Reduction . 23

3.2 Implementation on GPU . 23

4 Approach for Accuracy Improvement 32
4.1 Algorithm Overview . 32

4.1.1 Processing Flow . 32
4.1.2 Secondary Matching . 33

4.2 Implementation on GPU . 37
4.2.1 System Pipeline . 37
4.2.2 Task Assignment and Data Mapping on GPU 37
4.2.3 Effective Matching Processing on GPU 38
4.2.4 Subsequent processing on GPU 43

4.3 Experimental Results . 44
4.3.1 Middlebury Benchmark . 44
4.3.2 KITTI Benchmark . 51
4.3.3 Accuracy Comparison between Different Systems 53
4.3.4 Speed Comparison between Different Systems 53

5 Approach for Latency Hidden 55
5.1 Algorithm Overview . 55

5.1.1 Processing Flow . 55
5.2 Implementation on GPU . 56

5.2.1 System Pipeline . 56
5.2.2 Latency Hidden . 56

5.3 Experimental Results . 59

6 General Discussion 62

7 Conclusions and Future Directions 64
7.1 Contributions of this Work . 64
7.2 Future Directions . 65

References 66

Publications 73

v

List of Figures

1.1 Stereo matching: Depth is calculated from the disparity of the cor-
responding pixels . 2

1.2 Generation of Disparity map: Disparty map is generated from two
images taken by stereo camera . 3

1.3 Local matching under the epipolar restriction 3
1.4 Global matching under the epipolar restriction 5
1.5 Occlusion areas cannot be matched correctly 6
1.6 Nvidia GPU Architecture . 8

2.1 Mini-census Transform . 13
2.2 Cross-Aggregation . 15
2.3 Multi-Block Matching . 16
2.4 Cross-Check . 19
2.5 Single Matching Phase . 19
2.6 Non-GCPs Filling . 20

3.1 Image Scaling . 22
3.2 Task assignment of each step . 25
3.3 Mapping pixels to the threads . 26
3.4 Processing results . 31

4.1 Stereo-Matching in Different Scale. 33
4.2 Secondary Matching. 34
4.3 Fine-Tune. (a) Normal Matching. (b) Invalid Matching: The result

of SAD is inconsistent with MBM. (c) Valid Matching: The results
on the same side. (d) Valid Matching: The results on different sides. 36

4.4 System Pipeline . 38
4.5 Task assignment to each step on GPU. Step1: Smoothing & Scaling

Down. Step2: NCC calculation & Cost Aggregation along the x-
axis. Step3: Cost Aggregation along the y-axis. Step4: WTA, Sec-
ondary Matching & Scaling Up. Step5: Cross-Check & Improvement. 39

4.6 Multi-Block Matching . 40
4.7 System Pipeline . 42

vi

4.8 Effective Scaling-up (K=4) . 45
4.9 Accuracy Comparison. Scaling-MBM+SAD : Result of MBM on

scaled down images with a secondary SAD matching. Original-
MBM : Result of MBM on original images. Scaling-MBM : Result
of MBM on scaled down images without secondary matching. (H):
H-size dataset. (F): F-Size dataset. 46

4.10 Matching Result. (a) Adirondack (b) Playtable (c) Pipes (d) Vin-
tage. A: Repetitive patterns. B: Perspective distortions & Uniform
regions. C: Uniform regions. D,E,F : Gradient regions. 46

4.11 Processing Speed Comparison. 50
4.12 Evaluation results using the KITTI benchmarks. 52

5.1 Task assignment to each step on GPU. Step1 : Cost Aggregation
from left to right along the x-axis. Step2 : Cost Aggregation along
the y-axis. Step3 : Cost Aggregation from right to left, WTA & SMP. 57

5.2 Matching Result(KITTI2015) . 60
5.3 Matching Result(Zed) . 60

vii

List of Tables

3.1 Error rate when the cost aggregation range is changed (average error
rate (%)) . 30

3.2 Execution Time For The Middlebury Benchmark Set (ms) 30
3.3 Comparison With High-Speed Stereo Vision Systems 30

4.1 Memory Sharing in The Ncc Cost Calculation 41
4.2 Accuracy Comparison on Middlebury Benchmark 48
4.3 Execution Time With the Middlebury Benchmark Set (ms) 49
4.4 Processing Speed Comparison (sec) 50
4.5 KITTI2012 . 51
4.6 KITTI2015 . 51
4.7 Accuracy Comparison . 52
4.8 Comparison With High-Speed Stereo Vision Systems 54

5.1 Parameters to access single precision data 58
5.2 KITTI2015 . 60

viii

Chapter 1

Introduction

The aim of stereo vision sytems is to reconstruct the 3-D geometry of a scene from
images taken by two separate cameras. Because the principle of stereo matching
is similar to the human eyes, as a key technology, it can be widely used in 3D-
reconstruction [22] [23], robot vision [24], self-driving cars [25] and mechanical
parts inspection. However, because of the high computational complexity of stereo
matching, many applications [49] [50] based on it usually match for low resolution
images to keep running smoothly. Since the lower resolution represents the larger
actual distance between adjacent pixels, the accuracy of the systems which use the
low resolution images is not high. Hence, other devices such as radors have been
widely used to reconstruct 3-D reconstruction.

Recently, thanks to the development of the hardware, it makes it possible to use
high resolution images for fast stereo matching. Many acceleration systems based
on GPUs, FPGAs and delicated hardware have been developed [1] [2]. All of them
succeeded in real-time processing of high resolution images, but their accuracy is
not good enough because they simplified their algorithms to reduce the amount of
calculation. Therefore, it is necessary to optimize high matching accuracy algo-
rithms so that they can achieve high processing speed for high resolution images
by fully utilizing target hardware architectures while maintaining their original
matching accuracy.

Many algorithms on GPU have been developed. Because thousands of cores
which run at faster than 1GHz are mounted on GPU chips, drastic performance
gain can be expected. However, the processing speed of the stereo vision by GPUs
is usually slower than FPGAs such as [3]. This is caused by the various limitations
of GPU memory accessing. On the other hand, due to the higher freedom of soft-
ware programming, more sophisticated algorithms can be implemented on GPUs
than FPGAs, and lower error rates can be achieved. In recent years, the perfor-
mance of GPUs is being improved continuously, and it becomes necessary to study
how much speed up is possible by fully optimizing stereo matching algorithms on

1

GPU by using several techniques that can hide the memory access limitations.

1.1 Stereo Matching

1.1.1 Stereo Matching Theory

Stereo matching is a technique aimed to infer depth from two images taken by
two separate cameras. As shown in Fig.1.1, when the two cameras are calibrated
properly, epipolar restriction can be used for the pixels in the two images (left and
right) to match with each other. The matching of pixels is searched to reconstruct
the 3-D geometry of the scene. In Fig.1.1, P represents an object, PL and PR

are the corresponding points where P is projected on the two images. P
′
L is the

projection of PL on the right image. f is the focal length of both cameras, and B
is the distance between the two cameras. According to triangulation, if we know
the disparity between the two points P

′
L and PR, the distance Z from object P to

the baseline B of the two cameras can be calculated using the following equation:

Z = f
B

d
. (1.1)

Therefore, the main job in the stereo matching is to calculate the disparity of the
pixels in the two images correctly.

Figure 1.1: Stereo matching: Depth is calculated from the disparity of the corre-
sponding pixels

To evaluate the matching result, a disparity map Dmap is usually generated as
shown in Fig.1.2. In this disparity map, the pixel values are represented by the
disparity values of the corresponding pixels. The smaller the d, the darker the
pixel, which means that the object is farther away from the cameras. d = 0 means
that the object is at infinity. Fig.1.3 shows how to calculate a disparity map using

2

Stereo Camera

Left image

Righ image

Disparity Map

Figure 1.2: Generation of Disparity map: Disparty map is generated from two
images taken by stereo camera

the left image as the base. A pixel in the left image L(x, y) (or a window centered
by L(x, y)) is compared with D pixels R(x−d, y), d = [0, D−1] in the right image
(or D windows centered by those pixels), and the most similar pixel to L(x, y) is
searched. D is the maximum disparity value. Suppose that R(x−d, y) is the most
similar to L(x, y). Then, this means that L(x, y) and R(x − d, y) are the same
point of an object.

epipolar line

window

x

y

L(x,y) R(x-D+1,y) R(x,y)

D

x

y

x-D+1

L:left image R:right image

Figure 1.3: Local matching under the epipolar restriction

1.1.2 Stereo Matching Flow

Matching Cost Calculation

To detect whether two pixels L(x, y) and R(x− d, y) are the same object point is
a very complicated process. The similarity between any two pixels is quantified

3

as a cost C(x, y, d). As mentioned earlier, D costs are calculated for each pixel.
These costs are calculated using the color difference, the absolute value of the
difference, and/or the square differences and so on. Here, because the information
obtained from a single pixel is limited, the matching costs obtained from only two
pixels cannot reflect the true relationship between them. In general, the values
of adjacent pixels are usually close, thus, it usually needs to combine the pixels
in a window around them to determine if they are the same object point. This
combination can be the sum of the color differences (SAD [15], SSD [56]), or a
sequence of their size relationship (Census [57]), or cross-correlation between them
(NCC [58]). The size of the window is usually small during this step.

Matching Cost Aggregation

Although the matching cost calculation relies on a small window to add informa-
tion for each pixel, it is still a point-to-point matching, which cannot meet the high
accuracy requirement. Therefore, higher accuracy matching unit based on line or
plane is expected to improve the accuracy. Fortunately, for each pixel, the trans-
formation can be easily performed by aggregating the costs C(x, y, d) calculated
earlier in a larger scope S. The new costs CS(x, y, d) are aggregated for each d to
represents the similarity between the two regions, which are centered on the two
matching pixels L(x, y) and R(x − d, y) respectively. Obviously, the aggregation
greatly improves the accuracy of matching. Therefore, how to determine the scope
S around each target pixel L(x, y) and aggregate all the costs CS(x, y, d) are the
most important issues, which are related to the overall amount of calculation and
system precision.

For these issues, many algorithms have been proposed to date. According to
the definition of the scope S, the algorithms can be categorized into two groups:
local algorithms and global algorithms.

• Local Algorithm

Only the local information around the target pixel L(x, y) is used to decide
the disparity Dmap(x, y). As shown in Fig.1.3, the scope S is defined as a
small window (square window in general). The costs belong to this square
window are aggregated based on different conditions, which are defined by
different algorithms. Although the content and effect of these algorithms
are different, the central idea of them is the same to try to find the pixels
that belong to the same object. However, due to the limitations of local
algorithm, it is difficult to handle repetitive patterns, perspective distortions
and uniform regions.

• Global Algorithm

4

epipolar line

L(x,y) R(x,y)
R(x-D+1,y)

R:right imageL:left image

y

x-D+1 xx

y

D

Figure 1.4: Global matching under the epipolar restriction

The disparities in Dmap are decided considering the mutual effect of all pixels
of L in the global algorithms as shown in Fig.1.4. Each pixel accepts the
propagation of costs from surrounding pixels, and also spreads its own cost to
the surrounding. For each target pixel L(x, y), the degree of influence from
other pixels is different, depending on the distance and color difference be-
tween them. Because the whole image is always handled for the matching of
each pixel, it can usually achieve a good effect for the repetitive patterns and
uniform regions. Accordingly, it needs more calculation and larger memory
index range for each pixel.

Thus, it can be easily known that the system with global algorithms can achieve
lower error rates than the system with local algorithms, but requires longer com-
putation time. People can choose the appropriate algorithm according to their
own needs.

After the cost aggregation, the disparity of each pixel is decided by Winner-
Take-All (WTA). It means that for each pixel L(x, y), the maximum(or minimum)
cost C(x, y, d) is chosen, and then the corresponding disparity d is set as the
disparity of L(x, y).

Disparity Refinement

Through the above steps, an initial disparity map Dmap can be obtained. However,
many outliers are contained for a variety of reasons. Among them, an important
problem is caused by occlusion. As shown in Fig.1.5, when an object is taken by
two cameras, some parts (the area in the red box) only appear in the left image
but not in right side, depending on the positions and angles between the cameras
and the object. The occlusion is the major source of outliers in the stereo vision
systems. Some other outliers usually occur in the region of uniform or repetitive
patterns, especially when the system is based on local algorithms. In such regions,
the same cost are often obtained for different disparities, which leads to miss
matching.

5

Figure 1.5: Occlusion areas cannot be matched correctly

The refinement is usually divided into two steps. One is the GCP Detection
and the other one is Non-GCP Filling. The GCP is an abbreviation for Global
Control Points, which refers to the reliable disparity, and those unreliable dis-
parites, called outliers, are considered as Non-GCPs. The GCPs can be detected
by checking whether the matching on both sides is consistent [59], or whether there
is a contradiction between the matching results of any two pixels [60]. To fill the
Non-GCPs, most of the methods use the surrounding disparities of GCPs. Some of
them use the smallest disparity on the left and right sides [14], and some of them
use the closest disparity [14]. Furthermore, some more complex algorithms correct
the outliers by Histogram Voting [62] or calculating the Least-squares Minimiza-
tion [63] of the surrounding disparities that belong to the same plane. In general,
the more complex the algorithm, the higher the accuracy and the more time it
takes. After that, in some cases, the disparity maps are simply refined by means
of image filtering techniques like Median filtering, Bilateral filtering [64] without
enforcing any constraint.

6

1.2 Background

1.2.1 GPUs

A graphics processing unit (GPU) is a specialized electronic circuit designed to
rapidly manipulate and alter memory to accelerate the creation of images in a
frame buffer intended for output to a display device. Modern GPUs are used
in many areas like the personal computers, workstations, embedded systems and
game consoles. Their highly parallel structure makes them more efficient than
general-purpose CPUs for algorithms that process large blocks of data in parallel.
Fig.1.6 shows the image of the architecture of Nvidia GPUs, which are widely
used in the world. Although for different series of GPU, the number of streaming
multi-processors (SMs) and the memory sizes are different, the hierarchy and the
attribute of the memories have not any changed. Each SM has two types of
memory: register memory and shared memory. The sizes of them are usually
limited, but their access delay is very short. However, the data cached in the
register memory are visible only to the thread that wrote them and last only for
the lifetime of that thread, while the data cached in the shared memory are visible
to all threads in the same SM and last for the duration of the kernel function which
declared the threads. Each GPU also has the global memory, constant memory,
and texture memory in the off-chip. The global memory is usually used to hold all
data that are required for the processing, and the constant memory and texture
memory are usually used to reduce the memory traffic to the global memory. By
the reason of the long access delay to the off-chip memory, the most important
technique to achieve high performance on GPU is how to cache a part of the data
on the on-chip memory, and to hide the memory access delay to the global memory.
The shared and the global memory have the restriction on the access to them. In
the CUDA, which is an abstracted architecture of NVIDIA GPUs, 32 threads are
managed as a set. When accessing the global memory, 32 words can be accessed
in parallel if the 32 threads access to continuous 32 words on 32 word-boundary.
Otherwise, the bank conflict happens, and several accesses to the global memory
are issued. The shared memory consists of 32 banks, and the 32 words can be
accessed in parallel if they are placed in different banks (the addresses of the 32
words do not need to be continuous).

1.2.2 Hardware Acceleration for Stereo Matching

Recently, many algorithms for stereo vision have been developed on different hard-
ware. For global algorithms, [1] and [8] implemented the minimal spanning tree
(MST) and dynamic programming (DP) on FPGA respectively. They achieved the
real-time processing (30fps) for the high resolution images, but all of their dispar-

7

Figure 1.6: Nvidia GPU Architecture

ities are smaller than 64, which is not suitable to the modern requirements. [11]
implemented a Semi-Global Matching (SGM) method on a low-end embedded
GPU Tegra X1. According to the evaluation results in the KITTI Benchmark
2015, its error rate is 8.24% without the disparity refinement steps. However, it
still has not achieved the real-time processing. [10] implemented a Recurrent Neu-
ral Network (RNN) aggregation method on a high-end GPU Geforce GTX Titan
X in real-time. As the evaluation results of the KITTI Benchmark, its error rate
is 6.34%, which is not very satisfied for a algorithm based on Neural Network.
This is mainly caused by the simplification of the algorithms, in order to fit the
hardware architecture.

For local algorithms, because only the local information around the target pixel
is used to decide the disparity of the pixel, it is suitable for their acceleration on
GPUs because the small and fast memory on GPU works efficiently owing to the
high locality of the memory access. Cross-Based Aggregation (CROSS) is one
of the most effective local algorithms. [13] and [12] implemented the CROSS on
GPU and FPGA, and achieved real-time processing respectively. Although both
of them achieved a low error rate, their input sizes are smaller than 640×480. [13]
also runs their system for the high resolution images of Middlebury Benchmark.
However, their speed is slower than 3fps for the large image set (2888 × 1920
pixels×760 disparities). [4] implemented the Segmentation method on GPU for

8

high resolution images, which is used in the cost aggregation step. The same
as [10] and [11], it also simplified the original algorithms in order to implement it
on GPU, which resulted in decreased accuracy.

1.2.3 Problem Statement

As described previously, the existing stereo vision systems developed on hardware
are facing limitations such as small image size, low processing speed or low accu-
racy. None of them can obtain a good balance. Some of these problems are due
to the flaws of the algorithms themselves. Some are due to the fact that the al-
gorithms cannot fit well to the hardware architecture. Additionally, some of them
are caused by the low utilization of hardware. Because of all of these problems, the
stereo matching technology cannot be used efficiently, and must be combined with
other ancillary equipment. This not only increases the cost of the stereo vision
system, but also limits the development of other related technologies.

1.3 Purpose of this Research

The main purpose of this research is to propose an method to accelerate the stereo
matching for high resolution images by using GPU. This method is expected to
solve the following problems: 1), It should be run in real-time. 2), The error rate
should be at least maintained consistent with the original one running on CPU.
3), It must has high portability.

To achieve this purpose, first, we have to optimize the most computationally
intensive part Matching Cost Aggregation by means of reducing the amount of
computation or replacing it with other methods which can achieve the same ef-
fect. Generally, it is impossible to achieve real-time matching directly on the high
resolution images, because the amount of image data is too large for the on-chip
memory of the current GPU. We have to consider some new ideas to replace this
original operation. Second, it is necessary to fully parallelize this part so that the
architecture of GPU can be fully utilized. For local algorithms, they are easily
processed by the GPU cores in parallel. However, we have to find the ways to
keep the on-chip memory is not over-committed to ensure the high parallelism of
threads. For the global algorithms, due to the high dependence between the pixels,
we have to find the ways to increase the parallelism of the algorithms, while also
minimizing the effect by the GPU limitation during the memory accessing.

Therefore, taking all the before mentioned requirements into consideration,
we propose and implement three stereo vision systems with different algorithms.
For these three algorithms, we accelerate them from different perspective, then
evaluate them by using the popular benchmarks and the real world.

9

1.4 Thesis Outlines

This thesis is organized as follows. In chapter 2, we introduce the algorithms we
researched for stereo matching. These algorithms are the base for all our GPU
methods that are detailed starting from chapter 3 through the end of chapter 6.
In chapter 3, we present our first acceleration method based on a local algorithm,
which can reduce the amount of calculation significantly. In chapter 4, we present a
new matching method based on the first one, which can maintain a high matching
accuracy. In chapter 5, we present an acceleration method based on a global
algorithm, and a method which can help us cover the latency of memory accessing
effectively. Finally, in chapter 6 we summarize all the results achieved and discuss
about them. Foll.owing this, in chapter 7, we mention the overall conclusions and
talk about the future work.

Parts of this thesis have already been published. Most of the first method from
chapter 2 has been published as a conference paper in [66]. Most of the second
method from chapter 3 has been published as a journal paper in [65]. Finally,
most of the third method from section 4.3 of chapter 4 has been published as a
conference paper in [67].

10

Chapter 2

Algorithms for Stereo Matching

In Section 1.1.2, we have introduced the flow of stereo matching. There are many
different algorithms, and they can be used in each step. Different combination of
the algorithms leads to the disparity maps with different effects. In this section,
we introduce the algorithms that were used in this thesis in detail.

2.1 Matching Cost Calculation

Here, we discuss three methods to calculate matching costs between two pixels.

2.1.1 Census Transform

In stereo matching, Census transform is widely used to determine the degree of
similarity between two pixels. In the Census transform, the difference of brightness
between the target pixel and its surrounding pixels are used. Equation 2.1 and 2.2
show the census equation and comparison process between the pixels.

SL(x, y) = ⊗
x′,y′∈W

ξ(L(x, y), L(x′, y′)) (2.1)

ξ(L(x, y), L(x′, y′)) =

{
1, if L(x, y) < L(x′, y′),

0, if L(x, y) ≥ L(x′, y′),
(2.2)

For each target pixel L(x, y), a square window W is defined around it. Then the
relationships between the center pixel L(x, y) and its surrounding pixels L(x′, y′)
is encoded in a bit string SL(x, y), which shows whether each pixel in the window
is greater or less than the center pixel L(x, y). By comparing the bit strings for
the pixel L(x, y) and R(x − d, y) during the stereo matching, the matching cost

11

CL(x, y, d) which represents the degree of similarity between them can be given
by Equation 2.3:

CL(x, y, d) = H(SL(x, y), SR(x− d, y)). (2.3)

Here, SL(x, y) and SR(x − d, y) are the census transforms (bit strings) of pixels
L(x, y) and R(x − d, y). Function H represents the Hamming Distance between
the two census transforms, and it is used to represent the matching cost of L(x, y)
in corresponding disparity d. The size of window W can be freely defined. In this
thesis, we define it as 9× 7.

One of the benefits of using the Census Transform is that the value of matching
cost can be guaranteed as integer, which makes it possible to use faster logical
operations instead of slower arithmetic operations.

2.1.2 Absolute Difference and Mini-Census Transform

Another simple cost calculation method is Absolute Difference (AD). In the ab-
solude difference, not like the census transform, the brightness of only the center
pixels are used. This method is very simple, but it does not give good result
because of the very limited information, and it is combined with other cost calcu-
lation method in general. In our approach, the absolute difference and mini-census
are used for calculating the matching cost between two pixels. When the census
transform is combined with other method, the size of the census window can be
kept small (called mini-census). When the left image L(x, y) is used as the base,
the matching cost of the disparity = d is given by

CL(x, y, d) = CL
AD(x, y, d) + CL

MC(x, y, d). (2.4)

CL
AD(x, y, d) is the cost by the absolute difference of the brightness of the two

pixels, and given by

CL
AD(x, y, d) = 1− exp(−|L(x, y)−R(x− d, y)|

λAD

) (2.5)

where λAD is a constant, In the same way, CL
MC(x, y, d), the cost by mini-census

transform, is given by

CL
MC(x, y, d) = 1− exp(−MC(SL(x, y), SR(x− d, y))

λMC

) (2.6)

where λMC is a constant, and Function MC represents the Hamming distance
between the two mini-census transforms SL(x, y) and SR(x − d, y). Mini-census
transform used in our approach is shown in Fig.2.1.

12

x

y

L

S(x,y)={L(x,y-2)>L(x,y),

L(x-2,y)>L(x,y),

L(x-3,y)>L(x,y),

L(x+2,y)>L(x,y),

L(x+3,y)>L(x,y),

L(x,y+2)>L(x,y)}

Figure 2.1: Mini-census Transform

The center pixel L(x, y) is compared with its six neighbors, and a six bit string
is generated as shown in Fig.2.1. This method is based on the hypothesis that the
relative values of the brightness are kept in both images.

The advantage of this method is that the amount of calculation and data-width
required are kept small, and this advantage is suitable for the GPUs with small
on-chip memory.

2.1.3 Normalized Cross Correlation

The same as Census Transform, Normalized Cross Correlation (NCC) is also a
method for matching two windows around the target pixels L(x, y) and R(x−d, y).
The normalization within the window compensates differences in gain and bias.
The cross correlation between L(x, y) and R(x− d, y) is given by:

CL(x, y, d) =∑
x′,y′∈Wp

(L(x′, y′)− L̄(x, y))(R(x′ − d, y′)− R̄(x− d, y))

|Wp| · σL(x, y) · σR(x− d, y)
(2.7)

where

L̄(x, y) =
1

|Wp|
∑

x′,y′∈Wp

L(x′, y′), (2.8)

and

σL(x, y) =

√
1

|Wp|
∑

x′,y′∈Wp

(L(x′, y′)− L̄(x, y))2 (2.9)

13

In this equation, Wp is the window used to calculate the NCC. L(x′, y′) and R(x′−
d, y′) are the pixels in each NCC window, while L̄(x, y) and R̄(x − d, y) are the
averages of them. R̄(x−d, y) and σR(x−d, y) are given in the same way as L̄(x, y)
and σL(x, y).

The main advantage of NCC is that it is less sensitive to linear changes of the
intensity in the two matching images. Furthermore, The NCC cost is confined in
range of [−1, 1], which can ensure the cost value after the Cost Aggregation does
not become too large.

2.2 Matching Cost Aggregation

As described in section 1.1.2, the Matching Cost Aggregation is the most important
step during the stereo matching flow. Hence, we mainly focus on the acceleration
methods for this step. In this thesis, we accelerated three algorithms on GPU,
Cross-Aggregation, Multi-Block Matching, and Domain Transformation. The first
two are local algorithms and the last one is a global algorithm. Each of them is
widely used in many stereo vision systems.

2.2.1 Cross-Aggregation

In the Cross-Aggregation, the matching costs are aggregated as much as possible
considering the similarity of the brightness of the pixels to compare the pixels
as a block of the similar brightness. Fig.2.2 shows how the matching costs are
aggregated. First, the matching costs CL(x, y, d) are aggregated along the x-axis.

CAL
x (x, y, d) =

+n∑
dx=−m

CL(x+ dx, y, d) (2.10)

Here, m and n are the number of the continuous pixels with the similar brightness
to L(x, y) (|L(x, y) − L(x + dx, y)| < δ) on the left and right-side of L(x, y). For
example, in Fig.2.2, m = 3 and n = 3, because all pixels from L(x − 3, y) to
L(x + 3, y) are similar to L(x, y). Then, CAL

x (x, y, d) are aggregated along the
y-axis as

CAL(x, y, d) =
+N∑

dy=−M

CAL
x (x, y + dy, d). (2.11)

Here, M and N are the number of the continuous pixels with similar brightness
to L(x, y) on the upper and lower side of L(x, y). In Fig.2.2, M is 4 and N is 4,
because the pixels from L(x, y − 4) to L(x, y + 4) are similar to L(x, y).

Then, d which minimizes or maximizes CAL(x, y, d) depending on the cost cal-
culation method, is chosen as the disparity at L(x, y), and disparity mapDL

map(x, y)

14

-3

-2

-1

-4

+2

+3

+4

+1

(A) (B)

-5 -4 -3 -2 -1 x +1+2+3+4+5 -5 -4 -3 -2 -1 x +1+2+3+4+5

y

Figure 2.2: Cross-Aggregation

is obtained.
DL

map(x, y) = min or max
d∈Dmax

CAL(x, y, d). (2.12)

By enlarging the range for summing up along the x- and y- axes, we can obtain
more accurate disparities, though it requires more computation time.

2.2.2 Multi-Block Matching

The standard Block-Matching (BM) approach is widely used in the matching cost
aggregation step. In this method, the matching costs of the pixels in a rectangular
block centered at the target pixel are added, and the sum is used as the matching
cost of the target pixel:

CL
b (x, y, d) =

∑
(x′,y′)∈b(x,y)

CL(x′, y′, d). (2.13)

where b(x, y) is a rectangular block centered at (x, y).
However, the standard BM usually generates disparity maps with strong fat-

tening. In order to obtain better disparity maps, [9] proposed the Multi-Block
Matching (MBM) approach. It combines matching blocks of different shapes and
sizes and has shown significant improvement compared to the standard BM. In the
MBM, a multiplicative function of block set B is used to calculate the matching
cost of each pixel:

CL
MBM(x, y, d) =

∏
b∈B

CL
b (x, y, d). (2.14)

where CL
b (x, y, d) is the matching cost calculated by standard BM for a block b.

Fig.2.3(a) shows the cost aggregation in the standard BM. The matching costs of

15

A B C D E F G

H I J K L M N

O P Q R S T U

V W X Y Z 1 2

3 4 5 6 7 8 9

A B C D E F G

H I J K L M N

O P Q R S T U

V W X Y Z 1 2

3 4 5 6 7 8 9

A B C D E F G

H I J K L M N

O P Q R S T U

V W X Y Z 1 2

3 4 5 6 7 8 9

A B C D E F G

H I J K L M N

O P Q R S T U

V W X Y Z 1 2

3 4 5 6 7 8 9

(a)

(b)

(c)

(d)

P
a
tc

h
 C

o
rr

e
la

ti
o
n

P
a
tc

h
 C

o
rr

e
la

ti
o
n

B
lo

c
k
-m

a
tc

h
in

g

M
u
lt

ip
ly

Disparity

B
lo

c
k
-m

a
tc

h
in

g

Cost

Cost

Cost

Cost

Disparity

Disparity

Disparity

Figure 2.3: Multi-Block Matching

16

the pixels in the block are simply added. This approach often lacks the sensitivity
because of the cost averaging in the large block. Fig.2.3(b) and (c) show the
matching costs obtained when a vertical and horizontal block are used. In this
example, as shown in Fig.2.3(c), a horizontal bock shows higher sensitivity because
the texture changes sharply along the horizontal direction in the image. In this
case, in the original BM, the sensitivity that could be obtained by the aggregation
along only the x-axis is lost by the averaging of the pixels in the square block.
However, it is preserved in the MBM in which the aggregated cost of each block
is multiplied as the final matching cost (Fig.2.3(d)).

Finally, the disparity of each pixel DL
map(x, y) is decided by Winner-Take-All

(WTA) as follows:

DL
map(x, y) = max or min

d∈Dmax

CL
MBM(x, y, d). (2.15)

2.2.3 Domain Transformation

The main idea of Domain Transformation is roughly the same as Cross-Aggregation.
Both of them are trying to aggregate the costs together in the same area (the area
with similar brightness). The difference is that in Cross Aggregation, the maxi-
mum range of exploration around each center pixel is fixed, so it is called local
algorithm. On the other hand, The Domain Transformation does not limit this
range, but maximizes the cost aggregation from all four directions. Obviously, it
is not cost-effective to aggregate all the costs belong to the same area from four
directions for each pixel. [68] proposed a separate addition method which given by
the following equation 2.16-2.19 to solve this problem.

CL(x, y, d) = C(x, y, d) + CL(x− 1, y, d) · exp (−|I(x, y)− I(x− 1, y)|
δ

) (2.16)

CR(x, y, d) = CL(x, y, d) + CR(x+ 1, y, d) · exp (−|I(x, y)− I(x+ 1, y)|
δ

) (2.17)

CD(x, y, d) = CR(x, y, d) + CD(x, y − 1, d) · exp (−|I(x, y)− I(x, y − 1)|
δ

) (2.18)

CU(x, y, d) = CD(x, y, d) + CU(x, y + 1, d) · exp (−|I(x, y)− I(x, y + 1)|
δ

) (2.19)

According to these equations, the cost is continuously propagated along each di-
rection, and the color difference between two adjacent pixels is used to weight the
cost to distinguish different areas.

17

Although this method usually works well, the amount of calculation is still
larger. To reduce the computational complexity, we reduce the aggregation along
the y-axis to

CU(x, y, d) =

∆y=W∑
∆y=−W

CR(x, y +∆y, d). (2.20)

In this way, the amount of calculation can be greatly reduced, and the problem
caused by the excessive sensitivity of the image to the color can also be reduced.

2.3 Disparity Refinement

2.3.1 GCP Detection

Cross-Check

To pick out the outliers, Cross-Check has been widely used in many researches as
an effective method. For performing the Cross-Check, twoDmap are calculated [59]:
once using the left image L as the base, and another using the right image R as
the base. Then, the two disparity maps DL

m and DR
m can be generated and the

reliable disparities (called the ground control points, or GCPs) can be judged as
following:

Dmap(x, y) ={
DL

map(x, y), if DL
map(x, y) = DR

map(x−DL
map(x, y), y)

0, if DL
map(x, y) ̸= DR

map(x−DL
map(x, y), y),

(2.21)

As shown in Fig.2.4, if any disparity DL
map(x, y) is equal to the corresponding

disparity DR
map(x −DL

map(x, y), y), it is assigned to the Dmap(x, y) as a GCP (the
red matching), otherwise the Dmap(x, y) is set as 0 (the blue matching) and be
filled according to the surrounding GCPs afterward.

Single Matching Phase

Single Matching Phase (SMP) [60] as a computationally efficient method, also
works well. By checking whether two correspondences fall in the same point of
the target image, the outliers can be detected. As shown in Fig.2.5, point C is
matched to points A and B at the same time, which are on the same line. It
means that at least one of them makes a mismatching. Hence, by comparing their
matching costs, the correspondence with a smaller (or larger) cost is kept, then the

18

GCP

Non-GCP

Left Right

Figure 2.4: Cross-Check

Left Right

A

B
C

Figure 2.5: Single Matching Phase

other correspondence is discarded. Because this method only needs to calculate
the disparity map of the target image, the calculation amount is only half of the
Cross-Check. However, when the outliers are included on the same line, they may
give the best matching score that leads to a mismatching.

2.3.2 Non-GCPs Filling

Sample Filling

To fill the disparity of non-GCPs, two simple methods are often used [14]. In both
methods, for each non-GCP, the closest GCPs on the left and right hand-side along
the x-axis are searched first. Then, in the first method, as shown in Fig.2.6(a), the
closer GCP in the distance is chosen as the disparity of the non-GCP because the
non-GCP and the closer GCP can be considered to belong to the same object with

19

a higher probability. In the second approach, as shown in Fig.2.6(b), the smaller
disparity is chosen as the disparity of the non-GCP assuming that the non-GCP
is caused by the occlusion. The disparity of the occluded region is smaller than
that of the foreground object because the disparity of the closer object is larger,
and the non-GCP should have a smaller disparity. Both of these two methods can
be easily implemented on GPU because of their high parallelism.

P

Non-GCPs closest

P

Non-GCPssmaller

lling lling

(a) method 1 (b) method 2

Figure 2.6: Non-GCPs Filling

Bilateral Filling

Here, we propose to use a bilateral estimation methods to fill the non-GCPs as
following steps:

1. Suppose that the disparities of L(x − i, y) and L(x + j, y) are GCPs, and
they are defined as Dmap(x− i, y) and Dmap(x+ j, y).

2. If |Dmap(x − i, y) − Dmap(x + j, y)| ≤ T , where T is the threshold for the
difference of disparity, it can be considered that the disparity is changing
continuously in this range, and Dmap(x, y) is filled as:

Dmap(x− i, y) + i · ((Dmap(x− i, y)−Dmap(x+ j, y))/(i+ j)). (2.22)

3. If |Dmap(x − i, y) − Dmap(x + j, y)| > T , which means that the disparity
changes rapidly in this range, it can be considered that an edge exists in this
range. Thus Dmap(x, y) is chosen as the Dmap(x− i, y) if L(x− i, y) is closer
to L(x, y) than L(x + j, y) in color, and otherwise, Dmap(x, y) is chosen as
Dmap(x+ j, y).

With this approach, we can fill each non-GCP area properly, and an accurate
disparity map can be expected.

20

Chapter 3

Approach for Reducing the
Calculation

3.1 Algorithm Overview

We implemented a local search algorithm, which is an improved version of the
algorithm on FPGA [12]. In this algorithm, AD (absolute difference) and mini-
Census transform (Section 2.1.2) [69] are used to calculate the matching costs of
the pixels in the two images, and they are aggregated along the x- and y-axes
by using the Cross-Aggregation (Section 2.2.1) [70] [71]. In order to keep a high
matching accuracy, Cross-Check is used to remove the effect by outliers.

In this method, we scale down the images to reduce the computational com-
plexity. As shown in Fig.3.1, to reduce the computational complexity, we scale
down the input images into a small size, and then scale up the disparity map
to the original size. The images are scaled down to 1/4 by reducing the width
and height by half, and the disparities are calculated on the scaled down images.
The maximum disparity is also reduced to half, which means that the total com-
putational complexity can be reduced to 1/8. This approach typically worsens
the matching accuracy, but in our approach, an bilateral interpolation method is
performed during the scaling up step, and a high matching accuracy can be main-
tained. This approach becomes possible because of the high quality of the high
resolution images.

3.1.1 Processing Flow

Our algorithm consists of the following steps.

1. the two input images are gray-scaled

2. scaling down the two images

21

Stereo Matching

In
p
u
t

S
c
a
li
n
g
 D

o
w

n

O
u
tp

u
t S

c
a
lin

g
 U

p

Figure 3.1: Image Scaling

3. calculating matching cost of each pixel using the AD-Census

4. cost aggregation along the x- and y-axes

5. generating two disparity maps

6. detecting GCPs (ground control pixels) by cross-checking the two disparity
maps

7. refinement by a median filter and filling the non-GCPs by using a bilateral
estimation method

8. scaling up the disparity map

3.1.2 Scaling Down

In order to reduce the computational complexity, the two images are scaled down
linearly in both horizontal and vertical directions using the mean-pooling method.
Here, take the left image as an example:

L(x, y) =

1

(2m+ 1)2
×

m∑
j=−m

m∑
i=−m

Lorg(K · x+ i,K · y + j) (3.1)

22

where Lorg(K · x + i,K · y + j) is the pixel in the original image, and K is the
factor for the scaling down (in our implementation, K = 2). L(x, y) is the pixel
of the left scaled down image, and is smoothed by a mean-filter the size of which
is (2m + 1)2. By choosing the block size carefully, we can avoid the loss of the
matching accuracy, and can improve the processing speed.

3.1.3 Calculation Reduction

As described in Section 2.1.2, when the right image R(x, y) is used as the base,
the matching cost is given as follows.

CR(x, y, d) = CR
AD(x, y, d) + CR

MC(x, y, d)

= 1− exp(−|R(x, y)− L(x+ d, y)|
λAD

) +

1− exp(−MC(SR(x, y), SL(x+ d, y))

λMC

)

= CL(x+ d, y, d).

(3.2)

This equation means that all CR(x, y, d) are already calculated when CL(x, y, d)
are calculated, and CL(x, y, d) can be reused as CR(x− d, y, d).

3.2 Implementation on GPU

We have implemented the algorithm on Nvidia GTX780Ti. GTX780Ti has 15
streaming multi-processors (SMs). Each SM runs in parallel using 192 cores in it
(2880 cores in total). For reducing the memory accesses to the global memory, the
order of the calculation on GPU is different from the one described in the previous
section.

• Step1 transfer the input images onto the GPU and scale down them

• Step2 compare the brightness of the pixels along the x-axis

• Step3 calculate the matching costs and aggregate them along the x-axis

• Step4 compare the brightness of the pixels along the y-axis

• Step5 aggregate the cost along the y-axis, and generate two disparity maps

• Step6 find GCPs by cross-checking

• Step7 apply median filter to remove noises and estimate the disparity map
using bilateral method

23

• Step8 scale up the disparity map and transfer back to the CPU.

In the following discussion, Xorg × Yorg is the image size (Xorg is the width,
and Yorg is the height), and Lorg[y][x] and Rorg[y][x] are the pixels in the left and
right images. L[y][x] and R[y][x] are the pixels in the scaled-down images, and
X × Y is the image size of them (X = Xorg/2, Y = Yorg/2). Fig.3.2 shows the
task assignment and input/output of each step. The details are discussed in the
following subsections.

Step1

The inputs to this step are Lorg[y][x] and Rorg[y][x], and they are transferred onto
the global memory of the GPU, and are processed in parallel using 15 SMs.

1. Yorg/15 lines of both images are assigned to each SM as shown in Fig.3.3.

2. Xorg columns in the Yorg/15 lines are processed using X ′ (Xorg ≤ X ′) threads
in the SM (X ′ must be a multiple of 64 because of the reason described
below). When X ′ > Xorg, X

′ − Xorg threads work in the same way as the
Xorg threads, but generate no outputs.

3. When Xorg is larger than the maximum number of the threads in one SM
(1024), each thread processes more than one columns. In our implementa-
tion, because the resolution of the input images are greater than 1024, each
thread processes 2 columns during the scaling-down step.

For each pixel Lorg(xeven, yeven), both of the vertical and horizontal coordinates
of which are even, and all of the surrounding pixels Lorg(xeven + dx, yeven + dy)
(dx ∈ [−1, 1], dy ∈ [−1, 1]) are added together. Then, as the pixel value of the
scaled-image, the average of the summation is stored in the global memory.

Step2

For Y/15 pixels in one column (let the pixels be L[yb + k][xb](k = 0, 14)), each
thread compares its pixel’s value with its neighbors along the x-axis (L[yb+k][xb+
dx] (dx = 1,Wx) and L[yb + k][xb − dx] (dx = 1,Wx)). The data type of L[y][x] is
8b (unsigned char). Therefore, four continuous pixels are packed in one 32b word,
and stored in the same memory bank of the shared memory. This means that these
four continuous pixels can not be accessed in parallel owing to the memory access
restriction of the shared memory. In order to avoid the bank conflict, Threadi
processes column (i/(X/4) + (i× 4)%X) as shown in Fig.3.3. In Fig.3.3, the first
four pixels of each line (L[y][0], L[y][1], L[y][2], L[y][3]) are stored in the first bank,
and next four pixels (L[y][4], L[y][5], L[y][6], L[y][7]) in the second bank. Thread0

24

xorg

Y
o
rgLorg[Yorg][Xorg] Rorg[Yorg][Xorg]

Left Right

S
te

p
1

SM0
SM1
SM2

SM14
S
te

p
2 SM0

SM1
SM2

SM14

x
Y

L[Y][X] R[Y][X]

SM0
SM1
SM2

SM14

L*[X][Y] R*[X][Y]

SM0
SM1
SM2

SM14

WL
-[Y][X]

WL
+[Y][X]

WR
-[Y][X]

WR
+[Y][X]

CA*L
x[D][X][Y] CA*R

x[D][X][Y]

WL
-[X][Y]

WL
+[X][Y]

WR
-[X][Y]

WR
+[X][Y]

SM0
SM1
SM2

SM14

SM0
SM1
SM2

SM14

DL
map[Y][X] DR

map[Y][X]

D+L
map[Y][X]

SM0
SM1
SM2

SM14

DfL
map[Y][X]

S
te

p
3

S
te

p
4

S
te

p
5

S
te

p
6

S
te

p
7

S
te

p
8

SM0
SM1
SM2

SM14

DfL
org[Yorg][Xorg]

Task Assignment Arrays in the global memory

Figure 3.2: Task assignment of each step

25

X

th
re

a
d
-0

th
re

a
d
-0

th
re

a
d
-0

th
re

a
d
-1

2
8

th
re

a
d
-1

2
8

th
re

a
d
-1

2
8

th
re

a
d
-2

5
6

th
re

a
d
-2

5
6

th
re

a
d
-2

5
6

th
re

a
d
-3

8
4

th
re

a
d
-3

8
4

th
re

a
d
-3

8
4

th
re

a
d
-1

th
re

a
d
-1

th
re

a
d
-1

th
re

a
d
-1

2
9

th
re

a
d
-1

2
9

th
re

a
d
-1

2
9

th
re

a
d
-2

5
7

th
re

a
d
-2

5
7

th
re

a
d
-2

5
7

th
re

a
d
-3

8
5

th
re

a
d
-3

8
5

th
re

a
d
-3

8
5

th
re

a
d
-2

th
re

a
d
-2

th
re

a
d
-2

th
re

a
d
-1

3
0

th
re

a
d
-1

3
0

th
re

a
d
-1

3
0

th
re

a
d
-2

5
8

th
re

a
d
-2

5
8

th
re

a
d
-2

5
8

th
re

a
d
-3

8
6

th
re

a
d
-3

8
6

th
re

a
d
-3

8
6

th
re

a
d
-3

9
9

th
re

a
d
-3

9
9

th
re

a
d
-5

2
7

th
re

a
d
-5

2
7

th
re

a
d
-5

2
7

th
re

a
d
-6

5
5

th
re

a
d
-6

5
5

th
re

a
d
-6

5
5

th
re

a
d
-7

8
3

th
re

a
d
-7

8
3

th
re

a
d
-7

8
3

th
re

a
d
-3

9
9

Y
/1

5
Y
/1

5
Y
/1

5

...

...

......

......

......

Y

SM0

SM1

SM14

0 1 2 3 4 5 6 7 8

Figure 3.3: Mapping pixels to the threads

processes Y/15 pixels on x = 0 (L[yb + dy][0] (dy = 0, 14)) sequentially, and
Thread1 processes Y/15 pixels on x = 4 (L[yb + dy][4] (dy = 0, 14)) sequentially.
By changing the order of the computation like this, bank conflict can be avoided.
In our algorithm, all pixels can be processed independently, and the same results
can be obtained regardless of the computation order.

In this method, four continuous pixels are stored in the same bank, and 16
threads are executed at the same time in CUDA. Therefore, X must be a multiple
of 64 (4× 16). When X is not the multiple of 64, larger X which is the multiple
of 64 is chosen, and the computation results for the extended part are discarded.

The outputs of this step are two integer values for each pixel, which show how
many pixels are similar to the center pixel to the plus/minus direction of the x-
axis. These values for L[y][x] are stored in WL

− [y][x] and WL
+ [y][x], and those for

R[y][x] are stored in WR
− [y][x] and WR

+ [y][x]. The data width of these arrays is 32b,
and the direct access to these values causes no bank conflict. L[y][x] and R[y][x]
are transposed here, and stored in L∗[x][y] and R∗[x][y] respectively.

Step3

In this step, first, two matching costs (CL(x, y, d) and CR(x, y, d)) are calcu-
lated, and then, they are aggregated along the x-axis using the range informa-
tion in WL

− [y][x], W
L
+L[y][x], W

R
− [y][x] and WR

+ [y][x] to calculate CAL
x (x, y, d) and

CAR
x (x, y, d). Here, actually, we do not need to calculate CR(x, y, d) as described

in Section 3.1.3 because CL(x + d, y, d) can be used as CR(x, y, d). Therefore,

26

all SMs are used to calculate CL(x, y, d) as shown in Fig.3.2-step3, and each SM
processes Y/15 lines as follows.

1. For each of the Y/15 lines, repeat the following steps.

2. Set d = 0.

3. Calculate CL(x, y, d) for all x in the current line. CL(x, y, d) is stored in
C[x] (an array in the shared memory). For this calculation, 3 lines of L[y][x]
and R[y][x] are cached in the shared memory for calculating the mini-census
transform, and they are gradually replaced by the next line as the calculation
progresses.

4. Calculate CAL
x (x, y, d) as follows.

(a) Set CAx[x] = C[x].

(b) Add C[x+ dx] to CAx[x] starting from dx = 1 to the position given by
WL

+ [y][x].

(c) Add C[x− dx] to CAx[x] starting from dx = 1 to the position given by
WL

− [y][x].

(d) Store CAx[x] into CA∗L
x [d][x][y] in the global memory (note that this

array is transposed).

5. Calculate CAR
x (x, y, d) as follows.

(a) Set CAx[x] = C[x+ d].

(b) Add C[x+d+dx] to CAx[x] starting from dx = 1 to the position given
by WR

+ [y][x].

(c) Add C[x+d−dx] to CAx[x] starting from dx = 1 to the position given
by WR

− [y][x].

(d) Store CAx[x] into CA∗R
x [d][x][y] in the global memory (note that this

array is transposed).

6. Increment d if d < D, and go to step 3.

In this step, D arrays are stored in the global memory.

Step4

L[y][x] and R[y][x] have been transposed and stored as L∗[x][y] and R∗[x][y] in
step2. By using these arrays, the brightness of the pixels are compared efficiently
along the y-axis. In this case, the pixel data (for example L∗[x][y]) are compared

27

horizontally (parallel memory accesses are allowed only in this direction), and
this means that L∗[x][y] are compared with L∗[x][y + dy] (dy = −Wy,Wy). The
range of the similar pixels are stored in W ∗L

− [x][y] and W ∗L
+ [x][y] for L∗[x][y], and

in W ∗R
− [x][y] and W ∗R

+ [x][y] for R∗[x][y]. L∗[x][y] and R∗[x][y] are processed in
parallel as shown in Fig.3.2-step4, and each SM processes X/15 columns. The Y
lines in each column are assigned to Y threads in the same way shown in Fig.3.3
though x and y are transposed.

Step5

In this step (Fig.3.2-step5), CA∗L
x [d][x][y] and CA∗R

x [d][x][y] are aggregated along
the y-axis in parallel using W ∗L

− [x][y], W ∗L
+ [x][y], W ∗R

− [x][y] and W ∗R
+ [x][y], and

then DL
map[y][x] and DR

map[y][x] (disparity maps when L[y][x] and R[y][x] are used
as the base) are also generated as follows.

1. Each SM processes X/15 columns.

2. Y threads in each SM processes Y pixels in each of the X/15 columns.

3. Each thread repeats the following steps (in the following, only the steps for
the left image are shown).

(a) Read W ∗L
− [x][y] and W ∗L

+ [x][y] from the global memory.

(b) Set d = 0.

(c) Min[y] =MAX VALUE and Dmap[y] = 0.

(d) Calculate CAL(x, y, d) as follow.

i. Set CA[y] = CA∗L[d][x][y].

ii. Add CA∗L
x [d][x][y+dy] to CA[y] starting from dy = 1 to the position

given by W ∗L
+ [x][y].

iii. Add CA∗L
x [d][x][y−dy] to CA[y] starting from dy = 1 to the position

given by W ∗L
− [x][y].

(e) If CA[y] < Min[y] then Min[y] = CA[y] and Dmap[y] = d.

(f) Increment d if d < D, and go to step 3(c).

(g) Store Dmap[y] in DL
map[y][x] in the global memory (note that his array

is re-transposed).

Step6

In this step (Fig.3.2-step6), DL
map[y][x] and DR

map[y][x] are read from the global
memory line by line, and the condition for the GCP (described in Section 2.3.1)

28

is checked. In this step, each SM processes Y/15 lines. Threadx first accesses
DL

map[y][x], and then DR
map[y][+k] if DL

map[y][x] = k. k is different for each thread,
and bank conflict happens in this step.

Step7

The median filter is applied using 15 SMs for the left image at first. Then, the
bilateral estimation is used to fill the non-GCPs. If DL

map[y][x] is not a GCP,
threadx scans DL

map[y][x] to the +/− direction of the x-axis in order, and finds
two GCPs (the GCPs closest on the left- and right-hand side). Then, the difference
of the disparities of the two GCPs is calculated. If the difference is smaller than
the threshold, the DL

map[y][x] is filled linearly according to the disparities of the
two GCPs. If the different is larger than the threshold, the brightness of the two
GCP are compared with the target pixel, and the disparity of the target pixel is
replaced by the one which has similar brightness. Then, the improved disparity
map D+L

map[y][x] is stored in the global memory.

Step8

Finally, the disparity map D+L
map[y][x] is scaled up by using the 15 SMs. In order

to maintain a high accuracy, during the scaling-up along the x-axis, the bilateral
estimation method described above is used again. On the other hand, the estima-
tion along the y-axis is applied linearly. Then, the final disparity map DfLorg [y][x]
is transferred back to the CPU.

sectionExperimental Results
The error rate and the processing speed are evaluated using Middlebury bench-

mark set [16].
In this evaluation, all parameters mentioned above affect the performance of

the accuracy. According to our tuning results, we first set λAD = 0.3, λMC = 2.3
and T = 3 to ensure a good accuracy. In the cost aggregation step, lower error rates
can be expected by adding more cost along the x- and y- axes, though it requires
more computation time, and makes the system slower. The maximum range of
the cost aggregation (Wx,Wy) can be changed when calculating DL

map and DR
map.

By changing them, the different criteria are used for the left and right image, and
the GCPs can be more reliable. Table 3.1 shows the error rate (%) when the cost
aggregation range is changed. In Table 3.1, Wx are the maximum aggregation
range along the x-axis for the left and right images, and Wy is the maximum
aggregation range along the y-axis (Wy is common to the left and right images).
As shown in Table 3.1, by enlargingWy, the error rates can be improved whenWx is
small. We have fixed Wx = 21 and Wy = 31. To our best knowledge, the accuracy
of our system is higher than other real-time systems (like [6]) which are listed in
Middlebury Benchmark [16]. Additionally, we also compared our error rates with

29

Table 3.1: Error rate when the cost aggregation range is changed (average error
rate (%))

WL\WR Wy = 9 Wy = 11 Wy = 15 Wy = 21 Wy = 27 Wy = 31
Wx = 5 25.10 24.98 24.83 24.68 24.62 24.61
Wx = 9 24.67 24.55 24.4 24.3 24.26 24.26
Wx = 21 24.39 24.34 24.21 24.13 24.1 24.09
Wx = 41 24.53 24.38 24.29 24.21 24.19 24.17
Wx = 61 24.53 24.5 24.41 24.32 24.31 24.28
Wx = 141 24.6 24.55 24.48 24.42 24.38 24.28

Table 3.2: Execution Time For The Middlebury Benchmark Set (ms)
Image Size Dmax SD WLR

± W ∗LR
± CA Post SU Overall

Adirondack(H) 1436× 992 145 0.035 0.149 0.317 24.386 0.681 0.09 25.595
Pipes(H) 1482× 994 128 0.038 0.135 0.289 31.24 0.744 0.09 32.536
Vintage(H) 1444× 960 380 0.038 0.143 0.315 62.536 0.313 0.087 63.432

Size: WLR
± = 21, W ∗LR

± = 31, TC = 13 Dmax: Maximum Disparity SD: Scaling-Down.
WLR

± : Edge detection along the x-axis. W ∗LR
± : Edge detection along the y-axis CA:

Aggregation. Post: Cross check, MedianFilter&Bilateral estimation. SU: Scaling-up. Overall:
The overall time taken on GPU.

that obtained using the original size image set, which are processed using larger
window ranges Wx = 41 and Wy = 61. According to our evaluation, the error rate
(Bad 2.0) of our system (24.09%) is higher than that by the original size images
(32.82%). One of the reasons is that we didn’t tuned the parameters λAD and
λMC for the original image set. The other one is that in the scaling down images,
some information that makes the matching difficult in the original size images,
such as repetition of patterns and a serious of similar pixels, are discarded, and
better matching becomes possible.

Fig.3.4 shows the results of our system for the two benchmark sets: Adirondack,
Pipes and Vintage.

The processing speed of our system is almost proportional to the window size

Table 3.3: Comparison With High-Speed Stereo Vision Systems
System Size Dmax Hardware Benchmark FPS MDE/s
RT-FPGA [1] 1920× 1680 60 Kintex 7 Middlebury v2 30 5806
FUZZY [2] 1280× 1024 15 Cyclone II Middlebury v2 76 1494
Low-Power [8] 1024× 768 64 Virtex-7 Middlebury v2 30 1510
ETE [3] 1242× 375 256 GTX TITAN X KITTI 2015 29 3458
EmbeddedRT [11] 640× 480 128 Tegra X1 KITTI 2012 81 3185
MassP [4] 1440× 720 128 GPU Middlebury v3 128 3981
Our system 1436× 992 145 GTX 780 Ti Middlebury v3 40 7849

30

A
d
ir

o
n
d
a
c
k

P
ip

e
s

V
in

ta
g
e

Left Image Ground Truth Our results Errors

Figure 3.4: Processing results

and the maximum disparity. Therefore, the computation time for ’Vintage’ be-
comes the slowest. Table 3.2 shows the processing speed of our system and its
details. We ignore the time for CPU-GPU data transfers (less than 3% of the
total elapsed time) since it can be overlapped with the computation. As shown
in Table 3.2, most of the computation time is used for the cost calculation and
its aggregation (CA). WLR

± , W ∗LR
± , Post, SD, SU show the computation time

for finding the cost aggregation range along the x- and y- axes, cross checking,
post-processing and the image scaling. Unfortunately, for the ’Vintage’ set, its
processing speed is 16fps due to the large disparity, and we cannot achieve the
real-time processing.

Table 3.3 compares the processing speed of our system with other hardware
systems. In Table 3.3, all of the systems achieved a real-time processing, but their
target image size (Size) and disparity range (Dmax) are different. According to the
mega disparity evaluation per second (MDE/S), it can be noted that our system
is much faster than other systems.

31

Chapter 4

Approach for Accuracy
Improvement

4.1 Algorithm Overview

In this chapter, we aim to construct a higher accuracy stereo system for the high
resolution image set (2888×1920 pixels×760 disparities) in the Middlebury Bench-
mark. In order to achieve the balance of the processing speed and the accuracy, we
continue the acceleration approach proposed in chapter 3. In addition, we added
a secondary matching approach to improve the matching accuracy. The matching
algorithm we used is the combination of NCC and MBM described in Section
2.1.3 and Section 2.2.2. The reason for choosing this combination is that it shows
a good performance of processing speed and accuracy on CPU, and it can be easily
combined with other methods to achieve a better performance, which makes our
acceleration research more meaningful.

4.1.1 Processing Flow

In this system, the input images are processed as follows.

1. the two input images are gray-scaled,

2. the two images are scaled down,

3. the Normalized Cross-Correlation (NCC) is calculated as the matching cost
of each pixel,

4. they are aggregated using three different shape and size blocks,

5. the Multi-Block Matching (MBM) is applied, and a disparity map is gener-
ated,

32

Figure 4.1: Stereo-Matching in Different Scale.

6. the secondary matching are performed, and then a disparity map is scaled
up by the bilateral estimation,

7. step 4) to 6) are executed again to obtain two disparity maps using left and
right image as the reference,

8. Ground control point (GCPs) are chosen using the two disparity maps, and

9. the disparity map is improved using the GCPs.

4.1.2 Secondary Matching

As described above, in order to reduce the computation complexity, the input
images are scaled down to be processed. Fig.4.1 shows the stereo matching along
one line on different scaling images. In Fig.4.1, all images on the left are the
reference images, and those on the right are the target images. In Fig.4.1(a), the
matching is performed on the original size images Lorg and Rorg, and an accurate
disparity (da in this figure) can be found for each pixel Lorg(x, y). Fig.4.1(b) and
(c) show the matching on the scaled down images. In these cases, only a fuzzy
disparity (df) can be found due to the following factors:

1. During the scaling down step, part of the pixels in the target images R are
discarded, illustrated by the blank space.

33

2. During the scaling up step, the disparity of each discarded pixel can only be
estimated by using the disparities of the retained pixels, which may not be
consistent with the truth value.

Accordingly, in order to improve the accuracy, we propose two methods to deal
with these issues: a secondary matching method to find an accurate disparity for
each pixel in the scaled down images, and a bilateral estimation method to fill in
the disparities for the discarded pixels during the scaling up step.

As the analysis above, the accurate disparity da cannot be found by using the
scaled down images. According to equation (3.1), K times the fuzzy disparity df is
closest to the accurate disparity da and in most cases, da should be in (K ·(df − 1),
K ·(df + 1)). Based on this assumption, in order to obtain a higher accuracy, after
the MBM matching, a secondary stereo matching is performed.

Figure 4.2: Secondary Matching.

As shown in Fig.4.2, for the pixel L(x, y) in the scaled down image (K = 4),
when the fuzzy disparity dMBM is found by using the MBM, the corresponding
pixel Lorg(xk, yk) in the original image (xk = K · x and yk = K · y) is matched
again with the original size target image Rorg. Correspondingly, the discarded
pixels in the range of (K · (dMBM − 1), K · (dMBM + 1)) are retrieved and used to
find the accurate disparity. For this secondary matching, although many matching
methods can be used such as MBM, in order to reduce the amount of computation,
the simple matching method SAD [15] is chosen and the accurate disparities are

34

found as following:

CLSAD(xk, yk, d) =

|Sq| · Ivol −
∑

xk,yk∈Sq

|Lorg(xk, yk)−Rorg(xk − d, yk)| (4.1)

and

DLSAD(xk, yk) = max
d

CLSAD(xk, yk, d). (4.2)

In (4.1), CLSAD(xk, yk, d) is the matching cost of pixel Lorg(xk, yk). Sq is the window
used to calculate the cost of SAD, and Ivol is the maximum value in the gray-scale
images (in our implementation, simply, 255 is used as Ivol). In (4.2), DLSAD(xk, yk)
is the disparity of Lorg(xk, yk) that maximizes the value of CLSAD(xk, yk, d).

Fig.4.3 shows how the disparities are fine-tuned by using the secondary match-
ing. First, Fig.4.3(a) shows a typical case of two matching costs for pixel L(x, y);
the matching cost by MBM and that by SAD. In this figure, dMBM gives the best
matching cost CLMBM(x, y, dMBM), and in the range of dMBM ± 1, the secondary
matching costs CLSAD(x, y, d) by SAD are calculated (K = 4 in this example).
The x-axis represents the disparities for the scaled down and original size image.
The disparity dMBM ± 1 in the scaled down image corresponds to K · (dMBM ± 1)
in the original size image. In order to ensure the robustness of this method, it is
necessary to confirm that for each pixel, whether the result by SAD is consistent
with that by MBM or not. If it is consistent, dSAD, the disparity that maximizes
CLSAD(x, y, d), should be between (K ·(dMBM − 1), K ·(dMBM + 1)), but should not
be on K · (dMBM − 1) or K · (dMBM + 1), because CMBM(x, y, dMBM ± 1) is smaller
than CMBM(x, y, dMBM). In Fig.4.3(a), this requirement is satisfied, but it is not in
Fig.4.3(b). In the former case, the disparities are fine-tuned as described below,
but in the later case, the matching cost by SAD is not used for fine-tuning, and
dMBM is used as the result.

In our approach, to fine-tune the disparities, a sub-pixel estimation method pro-
posed by [14] is used. In [14], it is supposed that the curve of the matching costs
is continuous on the disparities and each small fragment of the matching costs can
be approximated by a quadratic function. In our system, using CLMBM(x, y, dMBM)
and CLMBM(x, y, dLMBM ± 1), a quadratic function that goes through these three
points is calculated, and the distance from dMBM to the disparity that gives the
peak to the quadratic function, ∆dMBM, is obtained. In the same way, a quadratic
function that goes through CLSAD(xk, yk, dSAD) and CLSAD(xk, yk, dSAD ± 1) is cal-
culated, and the distance from dSAD to the disparity that gives the peak to the
quadratic function, ∆dSAD, is obtained. Then, the disparity is fine-tuned as fol-
lows.

35

dMBM-1 dMBM+1 disparity

cost
MBM

SAD

K·(dMBM-1) K·(dMBM+1)K·dMBM

dMBMScaling-Down:

Original:

dMBM-1 dMBM+1 disparity

cost
MBM

SADInvalid matching

K·(dMBM-1) K·(dMBM+1)K·dMBM

dMBMScaling-Down:

Original:

dMBM-1 dMBM+1 disparity

cost
MBM

SAD

K·(dMBM-1) K·(dMBM+1)K·dMBM

dMBMScaling-Down:

Original:

�dMBM

�dSAD

dMBM-1 dMBM+1 disparity

cost
MBM

SAD

K·(dMBM-1) K·(dMBM+1)K·dMBM

dMBMScaling-Down:

Original:

�dMBM

�dSAD

(a)

(b)

(c)

(d)

dL_s

dL_s

Figure 4.3: Fine-Tune. (a) Normal Matching. (b) Invalid Matching: The result
of SAD is inconsistent with MBM. (c) Valid Matching: The results on the same
side. (d) Valid Matching: The results on different sides.

36

1. If ∆dMBM and dSAD + ∆dSAD − K · dMBM have the same sign as shown in
Fig.4.3(c), which means that both disparities are in the same side of the
center line (red dotted line in Fig.4.3(c),(d)), the new disparity dL S for pixel
L(x, y) is calculated as (dSAD +∆dSAD)/K.

2. If ∆dMBM and dSAD + ∆dSAD −K · dMBM have the different signs as shown
in Fig.4.3(d), which means that the two disparities are in different side of
the center line, the new disparity dL S for pixel L(x, y) is calculated as the
average of them (dMBM +∆dMBM + (dSAD +∆dSAD)/K)/2.

During this matching step, although the matchings are performed twice, as the
disparity range is limited in the secondary matching, only Dmax/K + 2K + 1
matches are required for each pixel. Hence, not only an accurate matching can be
ensured, but also the amount of the computation is kept small.

4.2 Implementation on GPU

We implement our algorithm on both NVIDIA GTX780 Ti and GTX1080 Ti
GPUs, which have the different architectures. Although the number of stream-
ing multi-processors (SMs) and the memory sizes are different, the hierarchy and
the attribute of the memories have not any changed.

4.2.1 System Pipeline

Fig.4.4 shows the pipeline of our stereo vision system. The original color images
are first converted to gray-scale on CPU, and then they are transferred to the
global memory of GPU. The data size can be reduced to 1/3 (24bit to 8bit), and
their transfer time also can be reduced. In our system, taking the GTX1080 Ti
as an example, for the 2888 × 1920 pixels images, the processing on CPU takes
about 4.81 milliseconds, and the processing on GPU takes about 13.7 milliseconds.
Although the delay for the first frame takes more than 18 milliseconds, as shown
in Fig.4.4, the calculation on the two devices can be run in parallel and the stream
processing makes it possible to achieve the real-time processing as its throughput.

Since the main processing of our system is on the GPU side, we focus on how
to implement our system on GPU.

4.2.2 Task Assignment and Data Mapping on GPU

Because of the high locality of the MBM algorithm, there exist many alternatives
for how to process the pixels in parallel by using many cores on GPU. In our
implementation, as shown in Fig.4.5, the image is divided by N along the y-
axis. Here, Y is the height of the image and N is the number of the SMs of the

37

CPU

GPU

GPU

Graying

Transfer to GPU

 0.22ms

Transfer to GPU

 0.22ms

Transfer to GPU

 0.22ms

Transfer to CPU

 0.42ms

Transfer to CPU

 0.42ms

Stereo matching

Graying

14ms

4.81ms

1st frame

2nd frame

3rd frame

Stereo matching

Stereo matching

14ms

14ms

Graying GPU

CPU

CPU

4.81ms

4.81ms

Figure 4.4: System Pipeline

target GPU. As shown in Fig.4.5, Y/N lines are assigned to each SM. In each
SM, Y/N lines are processed from the top to bottom line by line. In this line by
line processing, one pixel is assigned to one thread as shown in Fig.4.5-top and
the pixels on the same line are processed in parallel. In our implementation, the
whole work-flow is divided into five steps as shown in Fig.4.5, and in each step, the
outputs of the previous step are fetched from the global memory into the on-chip
memory, and the outputs of the current step are sent to the global memory for the
next step. By reducing the number of steps, higher processing speed is expected
because the number of the memory accesses to the global memory can be reduced.
However, the size of our target image is large, and only the data required for
processing one line can be held on on-chip shared memory and registers. Under this
limitation, the five steps are the minimum set. In these five steps, the procedures
that can be performed by using the data of the same line are packed in the same
step such as the calculation of NCC cost and their aggregation along the x-axis in
the step 2.

4.2.3 Effective Matching Processing on GPU

The most time consuming steps in our algorithm are step 2 and step 3, because in
these steps, D matching costs are calculated. In order to achieve high performance,
the optimization of these two steps is highly important. The following describes
the details of our methods to improve the performance of these two steps.

38

Figure 4.5: Task assignment to each step on GPU. Step1: Smoothing & Scaling
Down. Step2: NCC calculation & Cost Aggregation along the x-axis. Step3: Cost
Aggregation along the y-axis. Step4: WTA, Secondary Matching & Scaling Up.
Step5: Cross-Check & Improvement.

39

21

2
1

9

3

3

3

P

Figure 4.6: Multi-Block Matching

Making Full Use of On-chip Memory

Each SM in GPU has on-chip shared memory and registers in it. By using them
efficiently, the access to global memory can be reduced. The data in the shared
memory can be accessed from any threads in the same SM , but the data in the
registers can be accessed only by the thread that wrote them in the registers.
Table.4.1 shows the memory usage in the NCC calculation step. In this step, it
is necessary to store 3× 2 lines of the reference (left) and target (right) image in
the shared memory. σL(x, y), L̄(x, y), σR(x − d, y) and R̄(x − d, y) are used for
calculating NCC as described in Section 2.1.3, and each of them is accessed D
times for calculating all NCCs. During the computations, σL(x, y) and L̄(x, y) are
accessed by only one thread, while σR(x− d, y) and R̄(x− d, y) are accessed from
D threads. Thus, σL(x, y) and L̄(x, y) can be stored in the on-chip registers. As
shown in Table.4.1, the intermediate results for calculating NCCs (Costtemp and
Result) are stored in the shared memory and the total size of the data stored in
the shared memory reaches 42KB for calculating one line. This means that data
for one line in the original size image cannot be stored in the shared memory, and
reducing the image size is a must for the efficient computation by using only the
on-chip memory.

In our implementation, the NCCs are calculated line by line. First, two sets of
three lines y−1, y and y+1 are held in the shared memory, and the NCC costs of
the center line y are calculated. Then, the pixels of the next line y+2 are fetched
from the global memory, and the pixels of the oldest line y− 1 are replaced by the
new ones. Using the new line y + 2 and the two lines that are already held on the
chip y and y + 1, the NCC costs of the next line y + 1 are calculated.

40

Table 4.1: Memory Sharing in The Ncc Cost Calculation

Data Type Data Size

Shared Memory Register

Image Data 768×3×4×16(bit)=18(KB)

Ave(T) 768×2×32(bit)=6(KB)

SD(T) 768×2×32(bit)=6(KB)

Ave(R) 768×2×32(bit)=6(KB)

SD(R) 768×2×32(bit)=6(KB)

Costtemp 768×2×32(bit)=6(KB)

Result 768×2×32(bit)=6(KB)

Total 42KB 12KB

Image Data: The image data with integer type which are generated in the step1
(Both left and right image). Ave: The average of the image data. SD: Standard
deviation of the image data. T: Target image. R: Reference image. The “Ave”
and the “SD” of the target image are stored in shared memory. On the other
hand, those of the reference images are stored in the register. Costtemp: The
result of the NCC. Result: the costs aggregated along the x-axis.

Reusing the Intermediate Results

After the NCC cost calculation, they are aggregated using the MBM algorithm.
As described in Section 4.2.2, the NCC costs of the next line cannot be calculated
at the same time, which means that the NCC cost cannot be aggregated along
the y-axis without using the global memory. Thus, two steps are required for
the cost aggregation. In our MBM, three blocks with different size and shape are
used. By choosing the block width properly, the intermediate results of the cost
aggregation for the small blocks can be reused for larger blocks. Fig.4.6 shows a
set of the blocks, the sizes of which are 3×21, 21×3, 9×9 respectively. With this
combination, the partial sums calculated for the smallest block 3×3 can be reused
for other blocks. Additionally, according to our evaluation, this combination also
shows a good accuracy. By using larger blocks, higher matching accuracy can be
expected, but according to our experience, the improvement is marginal though it
requires more operations (addition) which may effect the processing speed.

Fig.4.7(a) shows the cost aggregation along the x-axis. For pixel L(x, y), three
cost aggregation steps are taken. First, the costs of itself C(x, y, d) and its two
neighbors, C(x − 1, y, d) and C(x + 1, y, d), are aggregated by the corresponding

41

(b) Layout of the global memory

Figure 4.7: System Pipeline

thread. Then, its sum C3(x, y, d) is kept in the shared memory to be reused for
other size blocks. Secondly, each thread aggregates C3(x, y, d), C3(x− 3, y, d) and
C3(x+3, y, d), and the C9(x, y, d) is obtained. C9(x, y, d) is stored into the register
instead of the shared memory because it is not accessed from other threads in the
following steps. Thirdly, C21(x, y, d) is calculated by adding C9(x, y, d) and its four
neighbors, C3(x± 6, y, d) and C3(x± 9, y, d). All the costs are stored in the global
memory to be used for the aggregation along the y-axis. This sequence is repeated
D times (d = [0, D)) for each pixel.

Fig.4.7(b) shows the layout of the partial sums along the x-axis in the global
memory. For each pixel, the cost of each disparity is stored in the global memory
in the order that can make the next aggregation step run efficiently. Fig.4.7(c)
shows the costs aggregation along the y-axis. Before entering this step, the cost
aggregation of all lines along the x-axis is finished, and the all sums are stored in
the global memory. For each pixel L(x, y), its three aggregation costs are given as

42

follows:

C21×3(x, y, d) =
1∑

i=−1

C21(x, y + i, d) (4.3)

C9×9(x, y, d) =
4∑

i=−4

C9(x, y + i, d) (4.4)

C3×21(x, y, d) =
10∑

i=−10

C3(x, y + i, d) (4.5)

In these equations, C21, C9, C3 are transferred from the global memory to the
shared memory and are aggregated line by line. Here, suppose that C21×3(x, y, d),
C9×9(x, y, d) and C3×21(x, y, d) are held on the shared memory. Then, the three
sums for the next line can be calculated efficiently as follows:

C21×3(x, y + 1, d) =
2∑

i=0

C21(x, y + i, d)

= C21×3(x, y, d) + C21(x, y + 2, d)− C21(x, y − 1, d) (4.6)

C9×9(x, y + 1, d) =
5∑

i=−3

C9(x, y + i, d)

= C9×9(x, y, d) + C9(x, y + 5, d)− C9(x, y − 4, d) (4.7)

C3×21(x, y + 1, d) =
11∑

i=−9

C3(x, y + i, d)

= C3×21(x, y, d) + C3(x, y + 11, d)− C3(x, y − 9, d) (4.8)

By this calculation method, the computation order of the aggregation along the
y-axis can be reduced to O(1).

4.2.4 Subsequent processing on GPU

After MBM, a series of processing shown in Fig.4.5 are executed line by line. The
task assignment to the threads is the same as the NCC cost calculation step, and
all of the steps are executed one by one in each line:

1. The costs of MBM are transferred from the global memory to the shared
memory repeatedly, and two initial disparity lines D′

LMBM and D′
RMBM are

generated by the WTA. During the WTA, when the matching cost for dc +
1, namely C(x, y, dc + 1), is calculated, C(x, y, dc − 1) and C(x, y, dc) are
being held on the registers, and the sub-pixel estimation is performed for

43

dc. With this implementation, when the integer disparity dMBM which gives
the maximum matching cost is obtained, an offset ∆dMBM is also obtained
through the sub-pixel estimation.

2. Based on dMBM, the secondary matching is executed in the range of [K ·
(dMBM − 1), K · (dMBM + 1)]. The same as the MBM, in the SAD matching,
one thread corresponds to one pixel. For each pixel, dSAD and ∆dSAD are
calculated by using the same method as 1). Unlike the first matching, in the
secondary matching, several lines of original image need to be transferred to
the on-chip memory, and the amount of the data becomes usually several
times the data that were used in the first matching. By using more data in
this step, higher matching accuracy can be expected, but it requires more
arithmetic operations and more memory space. Hence, according to the
limitation of the hardware resources and the processing speed, choosing a
suitable amount of data is very important. Here, one thing to note is that
since the image data are also used during the Scaling-up step, the number
of lines must be K at least.

3. The remaining steps are executed. During the Scaling up step, instead of
storing the scaled up disparity map data successively (Fig.4.8(a)), the inter-
polated data are stored separately as shown in Fig.4.8(b). These data are
reverted to the original order before the Cross-Check step. This method is
used to avoid shifting the disparity of the scaled down images when they are
fetched from the global memory.

4.3 Experimental Results

We have implemented the algorithm on a middle-end GPU NVIDIA GTX780 Ti
and a high-end GPU NVIDIA GTX1080 Ti respectively, and evaluated the pro-
cessing speed and the error rate using the Middlebury V3 [16], KITTI2012 [26]
and KITTI2015 [27] benchmarks. In this section, we first evaluate the accuracy
and processing speed of our system using each benchmark, and then make a com-
prehensive comparison with other systems.

4.3.1 Middlebury Benchmark

Fig.4.9 shows an accuracy comparison of our proposed method with the Original-
MBM (MBM on the original image set) and the Scaling MBM (MBM on the
scaled down image set without secondary matching). In Fig.4.9, H and F are the
image sizes. Images in F are larger than those in H. Their sizes are shown in
Table.4.3. In this evaluation, K = 2 for the H-size images, and K = 4 for F-size

44

Figure 4.8: Effective Scaling-up (K=4)

images. For achieving higher processing speed, the block size of SAD is fixed to
3×3. T (a threshold introduced in Section 2.3.2) is set to K. In Fig.4.9, the x-axis
shows several combinations of block sizes that are used in MBM. The sizes of all
blocks are chosen so that the intermediate results of smaller blocks can be reused
for larger blocks. The block sets shown in parentheses are used for the original
size images and their sizes are two times those for the scaled down images. The
y-axis shows the bad 2.0 error rate (percentage of “bad” pixels whose disparity are
different more than 2.0) of the above three algorithms for the training image set. As
shown in this graph, when the blocks are too large, their error rates become worse.
For the Scaling-MBM and Scaling-MBM+SAD, the 3× 21, 21× 3, 9× 9 block set
shows the lowest error rate, and for the Original-MBM, the 5× 53, 53× 5, 17× 17
shows the lowest error rate. Scaling-MBM shows the worst error rate (roughly
6% higher than other methods), and our method Scaling-MBM+SAD shows the
lowest for both of H-size and F-size data sets. Furthermore, the error rates for
both size images are almost the same, which shows that our methods is very
robust. Here, it can be noted that the accuracy of our methods are always better
than the Original-MBM, even though the information of original images is lost by
down-scaling.

Fig.4.10 shows the results of four H-size images in the Middlebury Benchmark
[16]. The block size used in Scaling-MBM and Scaling-MBM+SAD is 3× 21, 21×

45

Figure 4.9: Accuracy Comparison. Scaling-MBM+SAD : Result of MBM on scaled
down images with a secondary SAD matching. Original-MBM : Result of MBM
on original images. Scaling-MBM : Result of MBM on scaled down images without
secondary matching. (H): H-size dataset. (F): F-Size dataset.

Left Right Original-MBM Scaling-MBM Scaling-MBM+SAD

A A

B B

C C

D D

E E

FF

(a)

(c)

(b)

(d)

A

B

C

D

E

F

Figure 4.10: Matching Result. (a) Adirondack (b) Playtable (c) Pipes (d) Vintage.
A: Repetitive patterns. B: Perspective distortions & Uniform regions. C: Uniform
regions. D,E,F : Gradient regions.

46

3, 9× 9, and the block size of SAD is 3× 3, while the block size used in Original-
MBM is 5 × 41, 41 × 5, 17 × 17. Three areas, A, B and C, show the repetitive
patterns, perspective distortions and uniform regions respectively, which represent
the three kinds of difficult problems for the block matching method. D, E and
F show the gradient regions for which it is required to decide their disparities
considering their continuity. The white pixels represent the matching errors. As
shown in this figure, our approach shows better results than other approaches
specially in those marked areas. This means that in our approach, GCPs are
correct as well as the original-MBM, and the disparities of non-GCPs are improved
better. For A,B and C regions, because of the scaling down, some information
that makes the matching difficult in the original size images, such as repetition
of patterns and a serious of similar pixels, are discarded, and better matching
becomes possible. Furthermore, because of the secondary matching, our method,
Scaling-MBM+SAD, shows a better result than the Scaling-MBM in these regions.
For D, E and F , a secondary matching generates the continuous disparities, and
the disparities are improved to the same level as matching by Original-MBM.

Table.4.2 shows the accuracy comparison among several stereo vision systems.
In this table, systems that were evaluated using Middlebury and KITTI bench-
marks are listed by their average error rates on Middlebury benchmark. Our error
rate for F-size is listed at the bottom, because Table.4.2 is a hard copy of the
benchmark evaluation site [16], and in this site, it is not allowed to upload more
than one result at a time. Our error rates for H-size and F-size image sets are not
the top, but they are not bad compared with other systems.

Table.4.3 shows the details of the processing speed of our system on GTX1080
Ti. We select 8 representative image sets from the Middlebury Benchmark [16]. 4
sets of them are H-size, and 4 sets are F-size. In the evaluated images, for example,
Adirondack and MotorcycleE are large images with small disparity, Vintage is a
large image with large disparity, and Teddy is a small image with small disparity.
For each image set, the execution time of each processing step are shown. The
graying step (Gray) which takes the large portion of the execution time, is executed
on CPU.HtoD andDtoH steps show the data transmission time between the CPU
and GPU. DtoH, the transmission time from GPU to CPU, is roughly twice as
HtoD, CPU to GPU, because HtoD is for two unsigned char images and DtoH
is for one float image. The transmission time of F-size data set is roughly 4 times
that of H-size, because F-size images are 4 times larger than H-size images. Among
the steps executed on GPU, the cost calculation and its aggregation (NCC&AggH
and AggV) take most of the computation time, because frequent data transfer (D
times loops) between the on-chip memory and off-chip memory is required. The
execution time of the secondary matching step (WTA&SeM) is relatively small,
although several loops of matching are still needed. This is because SAD does not
require the global memory access to save/read the intermediate results owing to

47

Table 4.2: Accuracy Comparison on Middlebury Benchmark

Size(MBM): 3× 21, 21× 3, 9× 9. Size(SAD): 3× 3. iResNet ROB [29],
3DMST [41], MeshStereo [37], REAF [39], SGM [19], MSMD ROB [36], IGF [40],
HLSC cor [31], SNCC [58], ELAS ROB [21], MDP [35], CBMV [34],
MC-CNN-arct [5], ADSM [32], PSMNet ROB [38], MC-CNN-WS [18],
LAMC DSM [30], BSM [33]

48

Table 4.3: Execution Time With the Middlebury Benchmark Set (ms)

Size(MBM): 3× 21, 21× 3, 9× 9 Size(SAD): 3× 3 Dmax: Maximum Disparity Gray: Graying. HtoD: Data
transmission time from CPU to GPU. SS: Smoothing & Scaling-Down. NCC&AggH: NCC cost calculation &
Aggregation along the x axis. AggV: Aggregation along the y axis. WTA&SeM: WTA & Secondary Matching.
CC: Cross Check. DtoH: Data transmission time from GPU to CPU. Overall: The overall time taken on
GPU.

the small amount data required in this step. The overall time required on GPU is
proportional to the image size and the maximum disparity. As shown in overall
field, even for the largest image set “Vintage”, its processing time is only 18.688ms,
which makes our real-time processing possible. However, in the processing for F-
size data set, it can be noted that the time required by CPU is longer than GPU,
and the processing speed depends on the graying step on CPU.

Fig.4.11 compares the processing speed when the block sizes are changed in our
system. As shown in this figure, in all cases, more computation time is required
for larger blocks. Considering the error rate shown in Fig.4.9, the block sizes
used in our implementation, 3 × 21, 21 × 3, 9 × 9, gives the good balance of the
processing speed and the matching accuracy. Table.4.4 shows the comparison
of our processing speed with other systems listed in Table.4.2. Here, because
the image sizes and the disparity ranges are different, in order to make a clear
comparison, we chose the systems that can process the H-size image sets, and used
the Geometric Mean method [28] to compare them. Due to the space limitation,
Table.4.4 is folded into two (each system on the leftmost column is evaluated
using 15 images (8 in the upper part, and 7 in the lower part)). In this table, for
each system, two values are shown for each corresponding image. The first one
is its runtime, and the second one in the parentheses is the normalized value by
our system (GTX 780Ti). From these values, one Geometric Mean value can be
calculated for each system. Based on this value, the difference of the processing
speed among these systems can be shown obviously. As shown in the column
Geometric Mean of Table.4.4, the processing speed of our system is much faster
than other system. The processing speed by GTX 1080Ti is three times faster
than GTX 780Ti.

49

Figure 4.11: Processing Speed Comparison.

Table 4.4: Processing Speed Comparison (sec)

Geometric Mean: The Geometric Mean is calculated from “Adirondack” to “Vintage” image sets.

50

Table 4.5: KITTI2012
Error Out-Noc Out-All Avg-Noc Avg-All
2 pixels 7.86 % 9.53 % 1.2 px 1.4 px
3 pixels 5.45 % 6.88 % 1.2 px 1.4 px
4 pixels 4.38 % 5.56 % 1.2 px 1.4 px
5 pixels 3.70 % 4.67 % 1.2 px 1.4 px

Table 4.6: KITTI2015
Error D1-bg D1-fg D1-all

All / All 6.06 % 14.13 % 7.40 %
All / Est 6.06 % 14.13 % 7.40 %
Noc / All 5.41 % 12.72 % 6.62 %
Noc / Est 5.41 % 12.72 % 6.62 %

4.3.2 KITTI Benchmark

We also evaluated our system using KITTI2012 [26] and KITTI2015 [27] bench-
marks, separately. In these benchmarks, hundreds of images are divided into two
groups. For the first group (“training dataset”), their true disparity maps are
given, and this group is used to tune the parameters of the stereo vision systems.
The users are required to upload their disparity maps for the second group (“test-
ing dataset”) to the website, and their matching accuracy are evaluated on the
website. The image sizes are close to 1250× 375 and the ranges of disparities are
always 256. Here, since the numbers of lines in KITTI are small, we only scaled
down the images along the x-axis (K=2). According to our evaluation, the runtime
of our system on GTX 780Ti is roughly 0.015s (66.7 fps), and it is 0.005s (200 fps)
on GTX 1080Ti. For the “testing dataset” (the second group), our accuracy is
shown in Table.4.5 and Table.4.6, which was ranked 73rd out of 108 systems in
KITTI2012 and ranked 94th out of 119 systems in KITTI2015. This accuracy is
not good, but for this evaluation, the same parameters as Middlebury are used,
and they are not tuned for KITTI benchmarks. As for the accuracy of the “train-
ing dataset” (for this first group, we can know the error rate of each image), we
achieved the lowest error rate 0.084% for “KITTI2012-000000” and 0.058% for
“KITTI2015-000135”, while the worst error rate 20.6% for “KITTI2012-000180”
and 67.8% for “KITTI2015-000104” as shown in Fig.4.12. According to our re-
sults, except the “KITTI2015-000104” that was taken in a tunnel, most of the
error rates are kept between 1% and 5% on both benchmarks. We think that this
error rate is enough for most practical use.

51

L
e
ft

L
e
ft

R
ig
h
t

Tr
u
e

O
u
rs

E
rr
o
rs

KITTI2012-000000(best) KITTI2012-000180(worst) KITTI2015-000135(best) KITTI2015-000104(worst)

Figure 4.12: Evaluation results using the KITTI benchmarks.

Table 4.7: Accuracy Comparison

Our system(H): The sizes of Middlebury image sets are H-size. Our system(F):
The sizes of Middlebury image sets are F-size. GM 2012: The Geometric Mean of the
KITTI 2012 and Middlebury benchmarks. GM 2015: The Geometric Mean of the
KITTI 2015 and Middlebury benchmarks. GM Overall: The Geometric Mean of the
KITTI 2012, KITTI 2015 and Middlebury benchmarks.

52

4.3.3 Accuracy Comparison between Different Systems

In this subsection, we compare the error rates of all systems that are evaluated not
only by using Middlebury, but also by using at least one of KITTI benchmarks.
For this comparison, the Geometric Mean is used. As shown in Table.4.7, the 2nd,
3rd and 4th columns show the error rates (and the normalized one by our system)
for Middlebury, KITTI 2012 and KITTI 2015 benchmark sets, and 5th, 6th and
7th columns show the Geometric Mean for Middlebury with KITTI 2012, KITTI
2015, and both. According to these results, it can be noted that the accuracy of
our system in KITTI2012 and Middlebury is close to the medium level, and as
described above, the accuracy of KITTI2015 is lower, which leads to a decrease in
overall performance.

4.3.4 Speed Comparison between Different Systems

Table.4.8 compares the processing speed of stereo vision systems on different ar-
chitectures. All the systems achieved a real-time processing as shown in FPS field,
but their target image size (Size) and disparity range (Dmax) are different. MDE/s
means mega disparity evaluation per second, and shows the true processing speed
of each system. As shown in this table, MDE/s of our system is much higher
than other systems. For calculating a disparity map of large size image such as
2888 × 1920, larger Dmax (760) is required, and with GTX 780Ti, its real-time
processing cannot be achieved. However, by using faster GPU, GTX 1080 Ti, it
becomes possible by our approach, and its MDE/s is 12x to 1060x faster than
other systems. To compare the performance on different architectures, another
criterion, disparities/cycle, is calculated by using equation (4.9), which means the
number of disparities that can be processed per clock cycle on each architecture.

Disparities/cycle =
ImageSize×Dmax × FPS

Frequency
(4.9)

For GPU systems, the frequency refers to the frequency of each core, and for other
systems, it means the frequency of the overall system. By comparing dispari-
ties/cycle, we can understand the performance gain by the algorithms implemented
on each device. As shown in Table.4.8, for some systems, although their MDE/s
are similar, there exists a gap in disparities/cycle such as “FPGA-Road [7]” and
“FPGA-SOC [44]”, because their frequency is different. Our rate 116.743 (for F-
size images on GTX 1080Ti) is much faster than other GPU systems (even 18.04
for H-size images on GTX-780 Ti is faster). This means that our algorithm works
very well on GPUs. However, FPGAs shows higher rate than our system. This
comes from the fact that higher parallelism is possible on FPGAs than GPUs
because the data width required in the stereo vision systems is less than 2B in

53

Table 4.8: Comparison With High-Speed Stereo Vision Systems

many cases. To compare the performance of the systems on CPU and GPU, dis-
parities/cycle/core is also shown in Table.4.8. This comparison shows that in our
system, each core works more efficiently than other GPU systems, and even than
CPU system for H-size images.

54

Chapter 5

Approach for Latency Hidden

5.1 Algorithm Overview

This algorithm is based on the Domain Transformation described in section 2.2.3.
As a global algorithm, it has been widely used by many researchers to improve
the accuracy of their systems and achieved good results. However, this 4-way cost
propagation method has the difficulty for achieving high processing speed, because
the costs of each pixel has to be calculated one by one to propagate its cost to
its neighbor pixels. In this chapter, we aim to construct a real-time stereo vision
system based on this global algorithm by using the GPUs. Not only with the
high-end GPU used on PC, we also implemented this system with an embedded
GPU to check its effects in the real world environment.

In order to save the execute time as much as possible, we use the simple cost
calculation method Census-Transform described in Section 2.1.1. In addition, the
SMP GCP detection method described in Section 2.3.1 is also used here. Thus,
different from the previous two methods, we only need to use the left image as the
base, and do the stereo matching one time.

5.1.1 Processing Flow

The input images are processed as follows.

1. the two input images are gray-scaled,

2. the two images are scaled down,

3. the Census-Transform (CT) is calculated as the matching cost of each pixel,

4. cost aggregation from left to right along the x-axes.

5. cost aggregation along the y-axes.

55

6. cost aggregation from right to left along the x-axes.

7. Detecting GCPs while generating the disparity map.

8. refinement by a median filter and filling the non-GCPs by using a bilateral
estimation method

9. scaling up the disparity map

Here, the processing flow is basically the same as the approach described in chapter
3 except some adjustments in the order of cost aggregation. In this system, the
aggregation from right to left along the x-axes is done later, because it can be
synchronized with SMP.

5.2 Implementation on GPU

5.2.1 System Pipeline

For most of the processing steps, we followed the previous approaches. In this
section, we focus on the cost aggregation step. Fig.5.1 shows the task assignment
of the Domain Transformation aggregation. Different from the previous methods,
the pixels are not processed in parallal, but the different disparities are processed in
parallel. In Step1, for each SM, D threads are assigned to calculate the matching
cost CL(x, y, d) for each pixel in parallel. According to (2.16), each CL(x, y, d) is
aggregated one by one along the x-axis, and it is transferred to the global memory
every time. The intermediate result CL(x − 1, y, d) is propagated through the
on-chip register. In Step2, the cost CL(x, y, d) is aggregated along the y-axis,
and each SM will be transposed to be processed column by column. Although
the method described in Section 4.2.3 can be used here, it requires access to the
global memory twice for each calculation. It is not suitable for the embedded GPU
which has a large access latency. Therefore, we use the registers to create a buffer,
which follows the rules of FIFO. The buffer is used to store the costs which are
used during the aggregation. Its size is fixed at W as mentioned in (2.20). The
Step3 is basically the same as Step1, except that it no longer needs to transfer
the cost back to the global memory, but does the WTA directly. Here, because
the disparity map is generated along the x-axis, the SMP can also be done at the
same time.

5.2.2 Latency Hidden

Because the Domain Transformation approach requires access to the global mem-
ory frequently, hiding the latency is the most important point for the acceleration.
To hide the latency of the global memory, two methods can be considered:

56

Figure 5.1: Task assignment to each step on GPU. Step1 : Cost Aggregation from
left to right along the x-axis. Step2 : Cost Aggregation along the y-axis. Step3 :
Cost Aggregation from right to left, WTA & SMP.

57

Table 5.1: Parameters to access single precision data
Jetson TX2

Architecture Pascal
Global Memory Latency (clock cycles) 1051

Bandwidth (Gb/s) 59.7
Base clock cycle (MHz) 1300

SM 2
Transmission Rate (Byte/clock cycle) 46

Data Requirement (bytes) 48,356
Data Requirement/SM (bytes) 24,178

Flops/clock cycle/core 2

1. keep the operation units busy by executing more than NFMA operations (the
lowest value to make the units busy) in each SM for the current data set
until the next data set arrive from the global memory by data prefetching,
and

2. transfer a large volume of data (Vs) from the global memory continuously.

Although many kinds of operations can be used for the Domain Transformation,
we mainly use the Fused Multiply-Add(FMA) units in this system. In most cases,
the first approach is preferable, because the data loading overhead from the global
memory can be relatively reduced more by executing more number of operations
per loaded data. However, in the Domain Transformation, the amount of cost data
of each pixel is usually too small for this first approach, resulting in less number
of executable operations. Thus, the second approach is also required. Here, it
is necessary to make it clear under what conditions which method shows better
performance.

Table 5.1 shows several parameters of Jetson TX2 GPU and its performance
for accessing single precision data. As shown in Table 5.1, in Jetson TX2, 2 FMA
operations can be executed in one clock cycle in each core, namely 256 FMA
operations in each SM (each SM has Ncores = 128 cores). According to the
method proposed in [17], the global memory latency of Jetson TX2 is 1051 clock
cycles. In order to hide this 1051 clock cycles, NFMA = 269, 056 FMA operations
(269, 056 = 1051×Ncores × 2) are required in each SM for the current data set.

The volume size Vs can be calculated as follows. The Jetson TX2 has a base
clock of 1300 MHz and the bandwidth of 59.7 GB/s, which means that the transfer
rate is roughly 46 bytes per clock cycle. Therefore, the volume size which is
required to hide the latency (1051 clock cycles) becomes 48,346 = 46 × 1051
bytes. This means that the minimum volume size to make the global memory
busy is Vs = 48,356 bytes. For dividing the data, and assigning them to each SM ,

58

the following procedure should be taken:

1. Evaluate the number of FMA operations that can be executed for the data
in each SM .

2. If it is larger than NFMA, use the the first method which is based on the data
prefetching. If not, redivide the data so that the total size of data that are
transferred to all SMs becomes larger than Vs, and use the second approach.

In the Domain Transformation, the average number of operators for each pixel
is roughly 10. If we use the method 1, assuming the range of disparity is 128 and
each SM processes 8 lines in each time, the number of pixels which we need to hide
the latency is Npixel = NFMA/(128 × 8lines× 2SMs× 10) ≈ 13. On the other
hand, if we use the method 2, the number of pixels which we need to hide the
latency is Npixel = Vs/(128× 8lines× 4bytes× 2SMs) ≈ 6.

By comparing them, it can be known that method 2 is better than method
1, because it requires less number of registers which leads to the improvement of
overall degree of parallelism. Therefore, the method 2 is used in our system to
hide the latency.

5.3 Experimental Results

We have implemented the algorithm on an embedded GPU Jetson Tx2 and a High-
End GPU Nvidia GTX 1080Ti repsectively. In this system, we not only evaluated
the processing speed and the error rate using the KITTI 2015 [27] benchmark, but
also run it in the real world environment.

Here, since the numbers of lines in KITTI are small (1250×375), we only scaled
down the images along the x-axis (K=2). According to our evaluation, the runtime
of our system on Jetson TX2 is roughly 0.018s (55.6fps) and is roughly 0.00154s
(646fps) on GTX 1080Ti. In KITTI, two data-sets, training data-set and testing
data-set, are provided, and the true depth maps only for the training data-set
are given. Users tune up their algorithms using the training data-set, and upload
their results of the testing data-set to KITTI web-page, and the algorithms are
evaluated and ranked. Our accuracy for the testing data-set is shown in Table.5.2.
As for the accuracy of the training data-set, we achieved the lowest error rate
2.7% for ”KITTI2015-000147”, while the worst error rate 70% for ”KITTI2015-
000104” as shown in Fig.5.2. This accuracy is not good due to the limitations of
the algorithm, but it is already far faster than other stereo systems.

Fig.5.3 shows the matching results of the images taken by ZED stereo camera,
and our system in the real world environment. Here, the size of the input images
is 1280× 720 and the range of disparity is set as 128. This comparison shows that
our results are better than the ZED stereo camera visually, though it is not easy to

59

Table 5.2: KITTI2015
Error D1-bg D1-fg D1-all

All / All 11.55 % 19.69 % 12.91 %
All / Est 10.55 % 19.58 % 12.03 %
Noc / All 10.55 % 18.90 % 12.77 %
Noc / Est 9.47 % 18.80 % 11.86%

Left Right GroundTruth Our Result

0
0
0
1
0
4

0
0
0
1
4
7

Figure 5.2: Matching Result(KITTI2015)

Left Right Zed Ours

Figure 5.3: Matching Result(Zed)

60

compare precisely because the true depth cannot be known. Our implementation
is very simple, and its processing speed is 23 fps even when the images are not
scaled down.

61

Chapter 6

General Discussion

Our first approach (chapter 3) implemented the local stereo matching algorithm
based on Cost Aggregation for high resolution images on a GTX 780Ti GPU. In
this approach, we tried to reduce the total amount of computation by scaling down
the images and reusing the intermediate matching results. In addition, we also
focused on the ways to avoid the bank conflict of shared memory. To comparison
with other fast stereo matching systems, it can be known that the processing speed
of our system is much faster than previous ones, and its accuracy is also not bad
according to our evaluation by using the Middlebury Benchmark V3. These facts
mean that our approach is very suitable for accelerating the stereo matching for
high resolution images. However, the matching accuracy is still limited owing to
the scaling-down of the input images.

Our second approach (chapter 4) implemented the local stereo matching al-
gorithm based on Multi-Block Matching (MBM) for high resolution images on
two GPUs with different architecture. According to the evaluation results on two
Benchmark sets (Middlebury and KITTI), our system is not only fast, but also
maintains the original accuracy of MBM algorithm. Compared with other ap-
proaches including our first approach, our second approach is faster and more
precise, mainly due to our effective acceleration of MBM and the investment of
secondary matching. The acceleration method was originally designed for GTX
780 Ti, but it could be easily ported on GTX 1080 Ti, and showed good per-
formance on the two different GPU architectures. The performance gain by new
architecture is 3X, and this is that we can expect from the difference of their max-
imum throughput. This means that it can be expected that our method can also
achieve higher performance on upcoming new GPUs.

Our third approach (chapter 5) implemented the global stereo matching algo-
rithm based on Domain Transformation for high resolution images on an embedded
GPU. Different from the local algorithm, due to the high dependency between the
data in global algorithm, it cannot be parallelized easily. Hence, we have to pro-

62

cess the pixel one by one and to access the global memory frequently. Fortunately,
the synchronization between different disparities allows us to parallelize the algo-
rithm from another perspective, and we found an effective way to hide the latency
caused by memory accessing. This method can help us use different methods to
hide latency under different conditions. According our experimental results, this
method is very effective in accelerating the calculation of convolution in CNN, even
exceeding the standard library. By using it in the stereo matching, plus the ap-
proaches proposed previously, the processing speed of our system has been greatly
improved. Compared with the previous approaches, this is the fastest matching
system implemented by us. We also evaluated our system by using the KITTI2015
Benchmark. Here, due to the amount of the computation, we only chose the sim-
plest Census Transform and SMP to combine with the Domain Transformation,
resulting in an unsatisfactory accuracy. In fact, when we choose other methods
(like CNN) to combine with Domain Transformation, the accuracy of our system
can be greatly improved, of course it also takes more time. To further evaluate
this system, we first run it in a real world by using the combination of Jetson TX2
and Zed stereo camera. Compared with the sample program supported by Zed,
our results is clearer and is enough for most practical use.

In our research, we proposed different acceleration approaches for different
algorithms, mainly because different algorithms have different bottlenecks. How-
ever, the approaches proposed by us can be combined and applied to various stereo
matching systems. Scaling down a set of matching images can obviously reduce the
amount of calculation and improve the processing speed of matching. The factor
of scaling can be defined by the users according to their requirements. Generally,
it will not cause too much loss of accuracy for high resolution images because
of a large amount of information of high resolution images. However, there are
still many situations that require more precise matching. In these cases, secondary
matching is required. The secondary matching is a process to fine-tune disparities,
and it helps us to find a more precise matching result in a limited space using lim-
ited information. Therefore, it does not require too much time or memory space,
and works well with the scaling down approach. The latency hidden method helps
us to clarify the key to hide the memory access latency under different conditions
so that we can choose the most efficient way. It can be used not only in global
algorithm, but also in local algorithm such as the method described in Section
4.2.3, even the algorithms other than stereo matching. Our approaches are not
specific to a particular GPU, and they can be ported easily to other GPU systems,
even to other platforms such as FPGAs.

63

Chapter 7

Conclusions and Future
Directions

In this research we proposed and implemented a real-time stereo matching ap-
proach for high resolution images. This approach consists of three different parts,
which represent the study of acceleration methods from three different perspec-
tive. We studied them independently and implemented them on three different
stereo systems with three different stereo matching algorithms: Cross-Aggregation
(Section 2.2.1), Multi-Block Matching (Section 2.2.2) and Domain Transformation
(Section 2.2.3). Each algorithm is used in combination with other different match-
ing cost calculation algorithms (Section 2.1) and disparity refinement algorithms
(Section 2.3). In each system, we not only proposed a general method to increase
the performance of stereo matching for high resolution images, but also proposed
a specific solution for each aggregation algorithm.

We run our systems on different GPUs and evaluated the processing speed
and the accuracy of them under different conditions. According to the evaluation
results, it can be known that although the accuracy of our system is not very
stable, the processing speed is always far faster than other systems. In terms of
processing speed, the third system is the fastest among our three systems. The
processing speed of third system has achieved 646fps on GTX 1080Ti GPU for
the image sets of KITTI 2015 Benchmark, while the second one achieved 66fps on
GTX 780Ti GPU. Similarly, in terms of accuracy, our second system which focus
on improving the accuracy achieved the best precision. All of these shows that our
approach works very well.

7.1 Contributions of this Work

The main contributions of this work concern with a fast stereo matching system
for high resolution images. First, to the best of our knowledge, we first presented

64

the GPU acceleration method of real-time stereo matching for high resolution
images. The second one is that we presented a accuracy improvement method to
prevent the loss of precision caused by the first method. The third one is that we
presented a latency hidden method which can help us avoid the limitations caused
the latency and implement more complex algorithms efficiently.

In short, for the first time in the literature, an GPU stereo matching approach
that covers both the high processing speed and high accuracy for high resolution
images has been proposed. Thanks to the parallel and pipeline processing, our
approach achieves an ideal throughput for both the local and global algorithms.
In addition, our approach can be easily combined with other algorithms which can
improve the accuracy of system. Furthermore, it can easily be implemented on
other GPUs, even on other platform.

7.2 Future Directions

So far, all of our efforts are to maintain the accuracy of the original algorithm
as much as possible, resulting in a limited precision. In the future, our approach
can be combined with other more complex algorithms such as CNN to improve
the accuracy of our system. Certainly, more in-depth acceleration methods are
needed for the entire calculation. According to our evaluations, if we only use one
GTX 1080Ti to accelerate this calculation, the processing cannot be achieved in
real-time. But, it is possible to use multiple GPUs or higher performance GPUs
in future.

Moreover, during the scaling up step, we used the Bilateral Estimation method
to fill the disparity map. However, this method limits the improvement of accu-
racy. Recently, with the rapid development of deep learning, the research on super
resolution convolution neural network (SRCNN) is growing. It is mainly studied
to enlarge small images precisely, and it can be used to scale up the disparity map
in our system. This is one of our future work.

65

References

[1] Daolu Zha, Xi Jin, Tian Xiang: A real-time global stereo-matching on FPGA.
Microprocessors and Microsystems - Embedded Hardware Design 47: 419-428
(2016)

[2] Madáın Pérez Patricio and Abiel Aguilar-González and Miguel O. Arias-
Estrada and Héctor-Ricardo Hernandez-de Leon and Jorge-Luis Camas-
Anzueto and J. A. de Jesús Osuna-Coutiño: An FPGA stereo matching unit
based on fuzzy logic. Microprocessors and Microsystems - Embedded Hardware
Design 42: 87-99 (2016)

[3] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan
Kennedy, Abraham Bachrach, Adam Bry: End-to-End Learning of Geometry
and Context for Deep Stereo Regression. CoRR abs/1703.04309 (2017)

[4] Wenbao Qiao and Jean-Charles Créput: Stereo Matching by Using Self-
distributed Segmentation and Massively Parallel GPU Computing. ICAISC
(2) 2016: 723-733

[5] Jure Zbontar, Yann LeCun: Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches. Journal of Machine Learning
Research 17: 65:1-65:32 (2016)

[6] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen,
Achintya Bhowmik: Intel RealSense Stereoscopic Depth Cameras. CoRR
abs/1705.05548 (2017)

[7] Mohammad Dehnavi, Mohammad Eshghi: FPGA based real-time on-road
stereo vision system. Journal of Systems Architecture - Embedded Systems
Design 81: 32-43 (2017)

[8] Luca Puglia, Mario Vigliar, Giancarlo Raiconi: Real-Time Low-Power FPGA
Architecture for Stereo Vision. IEEE Trans. on Circuits and Systems 64-II(11):
1307-1311 (2017)

66

[9] Nils Einecke, Julian Eggert: A multi-block-matching approach for stereo. In-
telligent Vehicles Symposium 2015: 585-592

[10] Andrey Kuzmin, Dmitry Mikushin, Victor S. Lempitsky: End-to-end
Learning of Cost-Volume Aggregation for Real-time Dense Stereo. CoRR
abs/1611.05689 (2016)

[11] Daniel Hernández Juárez and Alejandro Chacón and Antonio Espinosa and
David Vázquez and Juan Carlos Moure and Antonio M. López: Embedded
Real-time Stereo Estimation via Semi-Global Matching on the GPU. ICCS
2016: 143-153

[12] Minxi Jin, Tsutomu Maruyama: Fast and Accurate Stereo Vision System on
FPGA. TRETS 7(1): 3:1-3:24 (2014)

[13] Jedrzej Kowalczuk and Eric Psota and Lance C. Pérez: Real-Time Stereo
Matching on CUDA Using an Iterative Refinement Method for Adaptive
Support-Weight Correspondences. IEEE Trans. Circuits Syst. Video Techn.
23(1): 94-104 (2013)

[14] Qingxiong Yang and Liang Wang and Ruigang Yang and Henrik Stewénius
and David Nistér: Stereo Matching with Color-Weighted Correlation, Hier-
archical Belief Propagation, and Occlusion Handling. IEEE Trans. Pattern
Anal. Mach. Intell. 31(3): 492-504 (2009)

[15] Heiko Hirschmüller and Daniel Scharstein: Evaluation of Cost Functions for
Stereo Matching. CVPR 2007

[16] D.Scharstein and R.Szeliski: http://vision.middlebury.edu/stereo/eval3/.

[17] X. Mei, X. Chu, Dissecting GPU memory hierarchy through microbenchmark-
ing, IEEE Trans. Parallel Distrib. Syst, 2016.

[18] Stepan Tulyakov, Anton Ivanov, François Fleuret: Weakly Supervised Learn-
ing of Deep Metrics for Stereo Reconstruction. ICCV 2017: 1348-1357

[19] Heiko Hirschmüller: Accurate and Efficient Stereo Processing by Semi-Global
Matching and Mutual Information. CVPR (2) 2005: 807-814

[20] Nils Einecke, Julian Eggert: A Two-Stage Correlation Method for Stereoscopic
Depth Estimation. DICTA 2010: 227-234

[21] Andreas Geiger, Martin Roser, Raquel Urtasun:Efficient Large-Scale Stereo
Matching. ACCV (1) 2010: 25-38

67

[22] Song Zhang, Peisen Huang: High-Resolution, Real-time 3D Shape Acquisition.
CVPR Workshops 2004: 28

[23] H. Nguyen, D. Nguyen, Z. Wang, H. Kieu, and M. Le: Real-time, high accu-
racy 3d imaging and shape measurement. Appl. Opt. 54, A9A17 (2015).

[24] Xióngbiao Luó and Uditha L. Jayarathne and Stephen E. Pautler and Terry
M. Peters: Binocular Endoscopic 3-D Scene Reconstruction Using Color and
Gradient-Boosted Aggregation Stereo Matching for Robotic Surgery. ICIG (1)
2015: 664-676

[25] Cuong Cao Pham, Vinh Quang Dinh, Jae Wook Jeon: Robust non-local stereo
matching for outdoor driving images using segment-simple-tree. Sig. Proc.:
Image Comm. 39: 173-184 (2015)

[26] Andreas Geiger, Philip Lenz, Raquel Urtasun: Are we ready for autonomous
driving? The KITTI vision benchmark suite. CVPR 2012: 3354-3361

[27] Moritz Menze, Andreas Geiger: Object scene flow for autonomous vehicles.

[28] Philip J. Fleming, John J. Wallace: How Not To Lie With Statistics: The
Correct Way To Summarize Benchmark Results. Commun. ACM 29(3): 218-
221 (1986)

[29] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei Chen, Linbo Qiao,
Li Zhou, Jianfeng Zhang: Learning for Disparity Estimation through Feature
Constancy. CoRR abs/1712.01039 (2018)

[30] C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, and G. Karras: On ac-
curate dense stereo-matching using a local adptive multi-cost approach. ISPRS
J. Photogram. Remote Sens., vol. 91, pp. 29-49, May 2014.

[31] Simon Hadfield, Karel Lebeda, Richard Bowden: Stereo reconstruction us-
ing top-down cues. Computer Vision and Image Understanding 157: 206-222
(2017)

[32] Ning Ma, Yubo Men, Chaoguang Men, Xiang Li: Accurate Dense Stereo
Matching Based on Image Segmentation Using an Adaptive Multi-Cost Ap-
proach. Symmetry 8(12): 159 (2016)

[33] Kang Zhang, Jiyang Li, Yijing Li, WeiDong Hu, Lifeng Sun, Shiqiang Yang:
Binary stereo matching. ICPR 2012: 356-359

[34] Konstantinos Batsos, Changjiang Cai, Philippos Mordohai:CBMV: A Co-
alesced Bidirectional Matching Volume for Disparity Estimation. CoRR
abs/1804.01967 (2018)

68

[35] Ang Li, Dapeng Chen, Yuanliu Liu, Zejian Yuan: Coordinating Multiple Dis-
parity Proposals for Stereo Computation. CVPR 2016: 4022-4030

[36] Haihua Lu, Hai Xu, Li Zhang, Yong Zhao: Cascaded multi-scale and
multi-dimension convolutional neural network for stereo matching. CoRR
abs/1803.09437 (2018)

[37] Chi Zhang, Zhiwei Li, Yanhua Cheng, Rui Cai, Hongyang Chao, Yong Rui:
MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for
View Interpolation. ICCV 2015: 2057-2065

[38] Jia-Ren Chang, Yong-Sheng Chen: Pyramid Stereo Matching Network. CoRR
abs/1803.08669 (2018)

[39] Cevahir Cigla: Recursive edge-aware filters for stereo matching. CVPR Work-
shops 2015: 27-34

[40] Rostam Affendi Hamzah, Haidi Ibrahim, Anwar Hasni Abu Hassan: Stereo
matching algorithm based on per pixel difference adjustment, iterative guided
filter and graph segmentation. J. Visual Communication and Image Represen-
tation 42: 145-160 (2017)

[41] L. Li, X. Yu, S. Zhang, X. Zhao, and L. Zhang: 3D cost aggregation with
multiple minimum spanning trees for stereo matching. Applied Optics, vol.
56, no. 12, pp. 3411-3420 (2017).

[42] Stefan K. Gehrig, Reto Stalder, Nicolai Schneider: A Flexible High-Resolution
Real-Time Low-Power Stereo Vision Engine. ICVS 2015: 69-79

[43] Wenqiang Wang, Jing Yan, Ningyi Xu, Yu Wang, Feng-Hsiung Hsu: Real-
Time High-Quality Stereo Vision System in FPGA. IEEE Trans. Circuits
Syst. Video Techn. 25(10): 1696-1708 (2015)

[44] Soenke Michalik, Soeren Michalik, Jamin Naghmouchi, Mladen Berekovic:
Real-time smart stereo camera based on FPGA-SoC. Humanoids 2017: 311-
317

[45] Kyeong-Ryeol Bae, Byungin Moon: An accurate and cost-effective stereo
matching algorithm and processor for real-time embedded multimedia systems.
Multimedia Tools Appl. 76(17): 17907-17922 (2017)

[46] Liang Wang, Ruigang Yang, Minglun Gong, Miao Liao: Real-time stereo using
approximated joint bilateral filtering and dynamic programming. J. Real-Time
Image Processing 9(3): 447-461 (2014)

69

[47] Simone Madeo and Riccardo Pelliccia and Claudio Salvadori and Jesús
Mart́ınez del Rincón and Jean-Christophe Nebel: An optimized stereo vi-
sion implementation for embedded systems: application to RGB and infra-red
images. J. Real-Time Image Processing 12(4): 725-746 (2016)

[48] Christos Ttofis, Theocharis Theocharides: High-quality real-time hardware
stereo matching based on guided image filtering. DATE 2014: 1-6

[49] Minh Nguyen, Wei Qi Yan, Rui Gong, Patrice Delmas: Toward a real-time
belief propagation stereo reconstruction for computers, robots, and beyond.
IVCNZ 2015: 1-6

[50] Vaddi Chandra Sekhar, Satyajit Bora, Monalisa Dash, Manchi Pavan Kumar,
S. Josephine, Roy Paily: Design and Implementation of Blind Assistance Sys-
tem Using Real Time Stereo Vision Algorithms. VLSI Design 2016: 421-426

[51] Kyuho Jason Lee, Kyeongryeol Bong, Changhyeon Kim, Junyoung Park, Hoi-
Jun Yoo: An energy-efficient parallel multi-core ADAS processor with robust
visual attention and workload-prediction DVFS for real-time HD stereo stream.
COOL Chips 2016: 1-3

[52] Jaco Hofmann, Jens Korinth, Andreas Koch: A Scalable High-Performance
Hardware Architecture for Real-Time Stereo Vision by Semi-Global Matching.
CVPR Workshops 2016: 845-853

[53] Lucas F. S. Cambuim and João Paulo Fernandes Barbosa and Edna Nativi-
dade da Silva Barros: Hardware module for low-resource and real-time stereo
vision engine using semi-global matching approach. SBCCI 2017: 53-58

[54] Chen Yang, Yan Li, Wei Zhong, Song Chen: Real-Time Hardware Stereo
Matching Using Guided Image Filter. ACM Great Lakes Symposium on VLSI
2016: 105-108

[55] Ratheesh Kalarot, John Morris: Comparison of FPGA and GPU implemen-
tations of real-time stereo vision. CVPR Workshops 2010: 9-15

[56] Fouzhan Hosseini, Amir Fijany, Saeed Safari, Ryad Chellali, Jean-Guy
Fontaine: Real-Time Parallel Implementation of SSD Stereo Vision Algorithm
on CSX SIMD Architecture. ISVC (1) 2009: 808-818

[57] Christian Zinner, Martin Humenberger, Kristian Ambrosch, Wilfried Kub-
inger: An Optimized Software-Based Implementation of a Census-Based
Stereo Matching Algorithm. ISVC (1) 2008: 216-227

70

[58] Nils Einecke, Julian Eggert: A Two-Stage Correlation Method for Stereoscopic
Depth Estimation. DICTA 2010: 227-234

[59] Federico Tombari, Stefano Mattoccia, Luigi di Stefano: Full-Search-
Equivalent Pattern Matching with Incremental Dissimilarity Approximations.
IEEE Trans. Pattern Anal. Mach. Intell. 31(1): 129-141 (2009)

[60] Luigi di Stefano, Massimiliano Marchionni, Stefano Mattoccia: A fast area-
based stereo matching algorithm. Image Vision Comput. 22(12): 983-1005
(2004)

[61] S Mattoccia: A locally global approach to stereo correspondence. Computer
Vision Workshops (ICCV Workshops), 2009.

[62] Z. Wang and Z. Zheng, A region based stereo matching algorithm using coop-
erative optimization. CVPR 2008

[63] M. A. Fischler and R. C. Bolles, Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartogra-
phy. Comm. of the ACM 24: 381395, June 1981

[64] Carlo Tomasi, Roberto Manduchi: Bilateral Filtering for Gray and Color
Images. ICCV 1998: 839-846

[65] Qiong Chang, Tsutomu Maruyama: Real-Time Stereo Vision System: A
Multi-Block Matching on GPU. IEEE Access 6: 42030-42046 (2018)

[66] Qiong Chang, Tsutomu Maruyama: Real-Time High-Quality Stereo Matching
System on a GPU. ASAP 2018: 1-8

[67] Qiong Chang, Masaki Onishi, Tsutomu Maruyama: Fast convolution kernels
on pascal GPU with high memory efficiency. SpringSim (HPC) 2018: 3:1-3:12

[68] Cuong Cao Pham, Jae Wook Jeon: Domain Transformation-Based Efficient
Cost Aggregation for Local Stereo Matching. IEEE Trans. Circuits Syst. Video
Techn. 23(7): 1119-1130 (2013)

[69] Lu Zhang, Ke Zhang, Tian Sheuan Chang, Gauthier Lafruit, Georgi
Krasimirov Kuzmanov, Diederik Verkest: Real-time high-definition stereo
matching on FPGA. FPGA 2011: 55-64

[70] Ke Zhang, Jiangbo Lu, Gauthier Lafruit: Cross-Based Local Stereo Matching
Using Orthogonal Integral Images. IEEE Trans. Circuits Syst. Video Techn.
19(7): 1073-1079 (2009)

71

[71] Edoardo Paone, Gianluca Palermo, Vittorio Zaccaria, Cristina Silvano, Diego
Melpignano, Germain Haugou, Thierry Lepley: An exploration methodology
for a customizable OpenCL stereo-matching application targeted to an indus-
trial multi-cluster architecture. CODES+ISSS 2012: 503-512

72

Research Achievements

Journals (First author)

• Qiong Chang, Tsutomu Maruyama: Real-Time Stereo Vision System:
A Multi-Block Matching on GPU. IEEE Access 6: 42030-42046 (2018)

International Conference Papers (First author)

• Qiong Chang, Tsutomu Maruyama: Real-Time High-Quality Stereo
Matching System on a GPU. ASAP 2018: 1-8

• Qiong Chang, Masaki Onishi, Tsutomu Maruyama: Fast convolution
kernels on pascal GPU with high memory efficiency. SpringSim (HPC)
2018: 3:1-3:12

73

