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Chapter 1 
 

 

Introduction 
 

 

Cancer is acknowledged as one of the top threats to human health. Within the 

diagnostic methods for a variety of cancers, advanced image diagnosis technologies 

such as computed tomography (CT), magnetic resonance imaging (MRI) and 

positron emission tomography (PET), along with more and more credible 

biomarkers are evolving rapidly and becoming broadly used. Meanwhile, pathology 

diagnosis is still realized as the gold standard to finally assess cancer’s presence or 

absence, type, and malignance degree.  

Pathology diagnosis may be conducted before or after the surgical procedure, or 

sometimes as an intraoperative examination as well. However, since the 

examination in all cases can only be performed by pathologists, the number of 

pathologists is showing a huge shortage to respond all of the needs. Since more than 

a decade ago, new technologies such as digital pathology has widely spread and 

facilitated faster and cheaper diagnosis due to its operational ease. Nevertheless, 

because the new device is still unable to alter the fact that the pathology diagnosis 

completely depends on the pathologist’s observation and judgement, diagnosis 

correctness and pathologist workload alleviation remain challenges.  



2 

 

 

In order to give more substantial solution to help reduce the burden of 

pathologists, more and more researchers are concentrating on further assistance. 

Among the researches, computer-aided diagnosis (CAD), such as pre-diagnosis 

“screening” and pro-diagnosis “double check” based on image classification 

technologies are greatly expected to play a key role to facilitate more smart 

pathology diagnosis. In earlier researches, many of the approaches using image 

features or tissue’s structural feature combined with statistical classifiers have 

presented applicability in some degree, but often subjected to the variability of 

pathological images. Recently, deep learning based approaches using convolutional 

neural networks (CNN) has been demonstrated unprecedented power, even beyond 

human for many of image classification tasks. Subsequently, high expectations of 

computer-aided diagnosis (CAD) for pathology image has been placed on these 

deep learning based approaches. However, because of extremely high cost of 

pathologist's professional work, the lack of well annotated pathological image data 

to train deep neural networks is currently becoming a new problem.  

Aiming at the issue above, this dissertation introduces the concept of stepwise 

transfer learning, making use of a pre-trained model for the task of another 

relational domain is often adopted, with the goal of improving the lack of data when 

adopting pathological image recognition using deep learning based approaches. 

Even in the case using a limited number of well-annotated pathology images, the 

proposed stepwise transfer learning manages to establish a systematic procedure to 

gradually transfer the domain knowledge of general object recognition to the 

domain of pathology image recognition, so that construct a more specialized deep 

learning model and boost the recognition performance. According to our 

investigation, it is found that newly-introduced knowledge can be transferred in the 

form contained on the carrier of unannotated pathology image data. One kind is 

supposed to be acquired based on human observation, while another kind is 

considered available to obtain based on automatic measurement according to 

human understanding.  

In accordance with the concepts above, the remainder of this dissertation is 

organized as follows. The relevant materials of the background of research, starting 

from the brief introduction of cancer and its diagnostic methods, will be presented 

in Chapter 2. In Chapter 3 researches of pathology image recognition using deep 

learning and the main challenges will be introduced. Chapter 4 will give clear 

explanation of the concept of the proposed scheme, involving the basis of transfer 
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learning and the structural design of the stepwise transfer of domain knowledge for 

CAD in pathology. Next, in Chapter 5 and 6, statements of how to obtain and 

transfer the newly-introduced pathology-relevant knowledge in a stepwise way will 

be unfolded and described in detail. In both of the chapters, several representative 

deep learning models will be employed together with other experimental materials. 

The effectiveness of the proposed scheme will be discussed in separated cases. 

Following in Chapter 7, this dissertation also explore and discuss about the 

feasibility of the extended form of the proposed scheme, for example, one of the 

most concerned form is the one when multiple domains of knowledge are used and 

transferred within a whole process. Chapter 8 follows at the end of the dissertation 

and gives the conclusions according to all the methodologies and experimental 

results. Moreover, based on the results present solid evidence for the effectiveness 

denoted in the foregoing chapters. 
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Chapter 2 
 

 

Cancer and Pathology Diagnosis 
 

 

2.1 Cancer and Diagnostic Methods 

Cancer is acknowledged as one of the top threats to human health. According to 

the International Agency for Research on Cancer (IARC), in 2012, there were 

approximately 14.1 million new cancer cases and 8.2 million deaths around the 

world [1]. This number is estimated to increase to 24 million by 2035 and the deaths 

will continually rise. In Japan, according to the data provided by government in 

2015 (Figure 2.1.1, [2]), cancer (or called malignant growth) is occupying 27.8% 

of all of the annual cancer-caused death, much more than that of heart disease 

(15.2%) and cerebrovascular disease (8.2%). Moreover, if we have a look at the 

annual trend of deaths of major diseases (Figure 2.1.2), it must be more seriously 

realized that compared to relatively controlled trend in the growth of deaths of other 

major diseases, cancer is still showing the momentum of growth. One of the reasons 

that best explains this phenomenon is the continuing Japan's aging process, with the 

consequent increase numbers of cancer patients and death. 
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Figure 2.1.1 Percentage of major diseases by cause of death in Japan. 

 

 

Figure 2.1.2 Annual trend of deaths of major diseases in Japan. 

 

Aiming at diagnosing various kinds of cancers, more and more approaches have 

been developed. Commonly used approaches [3] can be categorized as below. 

(1) Physical exam 

Medical doctor may look for abnormalities by observing the changes in skin 

color or touching the enlargement of an organ. Physical exam is usually performed 

as the most preliminary diagnosis step. 

  (2) Laboratory tests 

     Biomarkers sampled from the urine and blood of the patient often help to 

identify the occurrence of cancer. For example, abnormal rise CA19-9 
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(carbohydrate antigen 19-9) may suggest pancreatic cancer, colon cancer or biliary 

tract tumor, while another type of biomarker CEA (Carcinoembryonic antigen) is 

checked when colorectal cancer, lung cancer and breast cancer are suspected. More 

than the biomarkers, a common blood test called complete blood count also belongs 

to laboratory test. Since the complete blood count may reveal an unusual number 

or type of white blood cells, it is deemed as an effective diagnosis approach of 

leukemia. 

(3) Imaging tests 

Well-known advanced image test technologies such as X-ray, computed 

tomography (CT), magnetic resonance imaging (MRI), Ultrasound and positron 

emission tomography (PET) makes accurate and noninvasive examination of 

organs possible. In many cased when cancers are in early stages before the patient 

has symptoms, image test technologies is used as the most powerful means to screen 

the small cancer that has not spread. 

(4) Biopsy 

Biopsy involves taking a small piece of tissue sample so that it can be examined 

under a microscope. Generally, two types of biopsy, cytology diagnosis and 

pathology diagnosis [4], are included in the field of biopsy. Cytology diagnosis is 

usually performed to examine the individual cells, which are coming out of the body 

and may infer the lesion where the cell resides, for example, lung cells appearing 

in sputum, cells of bladder appearing in urine, etc. As opposed to cytology diagnosis, 

pathology diagnosis is the study of whole tissue. Due to the sampling method that 

tissues may collected by puncture, endoscopy or even from the organ under 

operation, pathology diagnosis usually have a wider range of applications. In most 

cases, pathology diagnosis is treated as the gold standard to definitively diagnose 

cancer, and assess cancer’s type and malignance degree. 

 

2.2 Pathology Diagnosis 

The procedure of pathology diagnosis is illustrated in Figure 2.2.1 [5]. It starts 

from tissue sampling during operation or endoscopy examination. Specimens (or 

organs) from the operating room are submitted to the pathological examination 

department as raw. Next, specimens need to be pre-prepared. Processes include 

fixation, taking photos, cutting off and embedding (replace fat and moisture in 

specimens with paraffin). The embedded specimens are then stained by special dyes.  
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Figure 2.2.1 Procedure of pathology diagnosis. 

 

Here, different kinds of dyes are adopted to meet different needs. The most 

commonly-used dye is HE (Hematoxylin-Eosin). For many of the cases, since 

tumors are largely classified as epithelial and mesenchymal, by making the whole 

tissue stained with HE (Hematoxylin-Eosin), malignant or benign tissues can be 

fully represented. In some other cases, cancerous cells need to be observed and 

accessed after the antigens are bonded with specific antibodies. These antibodies, 

which may be high molecular weight glycoprotein or enzyme, can be stained by 

corresponding dyes or have fluorescent property. Such kind of staining is named as 

“immunohistochemistry”. Representative staining substances used in 

immunohistochemistry include DAB (Diaminobenzidine, dye staining), PE 

(Phycoerythrin, fluorescent stain) [6], etc. After the procedures above, specimens 

are finally set under microscope and diagnosed by pathologists. According to 

pathologist’s findings, finally, reports are created and provided to the attending 

doctors. In this desertion, methodology centered on HE pathology images will be 

discussed in detail. 

  In earlier days, all specimens were directly observed under microscope. Although 

this is right suitable in the case of need for a rapid examination during a surgical 

procedure, there comes out a vital issue that one specimen can only be seen and 

understood by one pathologist once. What is more, since the specimens to be 

observed need to be reloaded under the microscope every time before examination, 

and the field of view often needs to be adjusted to fit the focus and location, it was 

deemed waste of diagnostic time. In a later period, as a transitional solution, digital 

microscope [7] was developed. It that enables specimens to be observed on a display 

through a digital camera mounted on microscope. In terms of configuration, the 
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eyepiece section, which was indispensable for the conventional microscope, has 

been omitted. Such kind of design has given answer to the simultaneous observation, 

data sharing and storage, nevertheless, the problem of slide loading is still not fully 

solved. Since the end of 1990s, another technology named virtual microscope or 

virtual slide has been developed [8]. Virtual microscope is a scanner system that 

can load tens of tissue specimens once and transform them into digital images at 

high speed and high resolution. On the PC side, the pathologist can easily perform 

arbitrary enlargement / reduction at any arbitrary position from macro to micro of 

the entire tissue sample and freely observe any part of the virtual microscope image 

(also known as whole slide image, WSI). Presently, virtual microscope is widely 

used and has shown its power in more than one aspects, such as remote rapid 

pathologic diagnosis, education of pathologists and diagnosis standardization. 

 

2.3 Computer-Aided Diagnosis in Pathology 

New technology have indeed brought convenience and innovation to 

pathological diagnosis. However, another severe problem, the shortage of 

pathologists, is now representing as great restriction to pathologic diagnosis and 

causes social problems. In the United States, the lack of pathologist workforce is 

become more and more concerned [9]. In japan, the number of pathologist 

normalized by the general population is even smaller than 1/3 of that in the United 

States (one pathologist per 19,000 people) [10]. The situation is even more severe 

in China. As reported, China has approximately one pathologist per 74,000 people 

[11]. On one hand, such serious shortage is now consequently leading to immense 

working burden on pathologists and possible errors and oversights in diagnosis. On 

the other hand, the number of pathological diagnosis cases continues to increase as 

the number of patient increases. Compared with in 2005, the number of all 

pathological diagnosis cases and intra-operative pathological diagnosis cases in 

Japan has respectively risen up to 1.7 times and 3 times by 2012. Until 2017, there 

were approximately 30 million cases of annual pathological examination in Japan. 

On contrast, there were only 2,483 pathologists approved and registered at the Japan 

Pathological Society [12]. From these numbers, it can be inferred that the work 

volume per pathologist is about 33 cases / day. Assuming that the 10 specimens 

need to be examined for each case, one pathologist need to observe and drawing 

conclusions about 330 microscopic specimens every day. Moreover, whole slide  
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Figure 2.3.1 Whole slide image (WSI) 

 

 

(a) Screening 

 

 

(b) Double-check 

Figure 2.3.2 Computer-aided diagnosis in pathology. 

 

image sometimes own a huge size of more than 1 billion pixels (Figure 2.3.1). 

Observing such images poses a challenge to pathologists, and diagnosis quality as 

well.  

In order to reduce the burden of pathologists and improve the quality and 

efficiency of the diagnosis, computer-aided diagnosis is expected to play a key role 

to facilitate more advanced pathology diagnosis. In simple terms, computer-aided 

diagnosis benefits from pattern recognition technologies may automatically judge 

the presence or absence of cancer in the image and suggest the position if there 

cancer exists.  
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Specifically, computer-aided diagnosis can mainly help in two forms: screening 

and double check (Figure 2.3.2) Screening is performed prior to the doctor's 

diagnosis. When doctors begin to observe pathology images, it can prompt doctors 

to quickly prioritize the images and areas with high suspiciousness in order to get 

diagnostic results as quickly as possible. This is also considered to be an effective 

solution to shorten the pathologist’s diagnosis time and reduce pathologist’s 

workload. Double-check is used to rescreen pathology images that have been 

diagnosed by a pathologists, and ensure that there are no undiscovered anomalies 

in these images. Double-check is regarded able to help control the quality of the 

diagnosis, especially in high-intensity working conditions, and can also be used in 

the training of inexperienced pathologists. 
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Chapter 3 
 

 

Pathology Image Recognition Using 

Deep Learning 
 

 

3.1 Pathology Image Recognition  

Many of early pathological image recognition methods employed specified 

histologically-concerned features or generalized texture image features. The 

specific histologically-concerned features, such as nuclei’s area and nuclei-

cytoplasmic ratio (N/C) etc. are subtly calculated from unknown images [13]. These 

features are compared with predefined criteria to judge whether the target image is 

benign or malignant. Unfortunately, such process usually meets a big issue that it is 

a hard task to make adequate definition for the morphological characteristics, 

because cancerous cells usually lack control for regular division. Thus, shape 

extraction failures for cells could become a direct reason for classification failures.  

After 2000s, approaches using artificial image feature quantities and classifiers 

based on statistical models to classify a variety kinds of images became a 

mainstream trend. Many of the approaches have shown their effectiveness. 
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Compared to methods using histologically-concerned features, artificial image 

features seemed able to provide more robustness and adaptability to various 

pathological tissue appearance. For instance, one of the focused texture feature is 

grey-level co-occurrence matrix (GLCM). For example, Esgiar et al. [14] employed 

GLCM to obtain texture features corresponding to contrast, entropy, angular second 

moment, dissimilarity and correlation from colon biopsy, and employing linear 

discriminate analysis (LDA) and k-nearest neighbour algorithm (KNN) to realize 

the categorization of normal and cancerous colon mucosa. Likely, James Diamond 

et al. [15] employed Haralick features (a kind of texture features developed from 

GLCM) for identifying tissue abnormalities in prostate pathology images. Another 

mighty rival is local binary patterns (LBP). In the study of Masood et al. [16], a 

scheme consisting of LBP and support vector machines (SVM) are proposed and 

demonstrated effective for colon pathology images. In another work, O. Sertel et 

al.[17] developed a classification methods for neuroblastoma H&E stained whole-

slide images, using co-occurrence statistics and local binary patterns similar as the 

above study. A recent report by Kather et al. [18] gave a relatively comprehensive 

investigation of texture analysis for colorectal cancer histology image. Besides of 

LBP and GLCM, Lower-order and higher-order histogram features, Gabor filters 

and Perception-like features are involved as well. In our earlier studies [19], another 

texture features called Higher-order Local Auto Correlation (HLAC) bonded with 

linear statistical models such as principal component analysis (PCA) based 

subspace method, were also demonstrated capable to indicate the anomaly degree 

of gastric pathology images. Apart from straightforward benign/malignant 

classification, some other methods in pathology image domain have been put 

forward with texture features as well, to settle similar classification-correlative 

tasks such as gland segmentation and grade estimation [20, 21, 22, 23, 24, 25].  

While all of these texture-feature-based approaches shown promising feasibility, 

intractable issues still existed between the research and practical application. One 

particular instance is that confirming how suitable the hand-crafted geometric 

features are for certain tasks is quite difficult [26]. Meanwhile, the uneven H&E 

staining among images brings adverse impact on classification performance and 

makes the tasks more challenging [27, 28, 29].  
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3.2 Deep Learning in Image Recognition 

2012 is the year when it became a breakthrough of deep learning. In the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) held in the this year, the 

group of Prof. Hinton of Toronto University, using the 8-layer Convolutional Neural 

Networks (CNN) [30] to classify 1,000 categories of objects, won over all the other 

teams using non-deep-learning approaches with over 10% the error rate of 

discrimination. After that, image recognition related researches shifted from the 

conventional image feature based approaches to the deep learning based approaches 

in a stroke. Furthermore, since 2015, newer deep learning approaches even 

achieved a higher recognition accuracy than the human average level (Figure 3.2.1). 

 

Figure 3.2.1 Winning methods of object classification task in previous 

ImageNet Large Scale Visual Recognition Competition (ILSVRC). 

 

Convolutional Neural Networks (CNN) is currently the most remarkable success. 

The prototype of CNN can be found in Neocognitron [31] devised based on the 

neurophysiological findings on the visual cortex of living organism’s brain. It is a 

neural network that alternately arranges a convolution layer corresponding to the 

cells for feature extraction and a pooling layer corresponding to the cells having a 

function to allow positional deviation hierarchically (Figure 3.2.2, [32]). Intuitively, 

it can be interpreted as a network that takes co-occurrence of adjacent features on 

different scales little by little and selectively gives information effective for 

identification to upper layers. Practically, refinement of such information is usually 

implemented by minimizing the cost function (Equation 1):  
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L(W) =
1

𝑁
 ∑ 𝑙(𝑦(𝑥𝑖; 𝑊), 𝑦𝑖)𝑁

𝑖=1                   (1) 

 

Figure 3.2.2 Framework of image recognition using CNN. 

 

In Equation 1, while L(W) indicates the total cost (difference between prediction 

upon current configuration and the ground truth) over a dataset of N training 

samples, corresponding to weights W. 𝑦𝑖  denotes the label of training data 𝑥𝑖 . 

𝑦(𝑥𝑖; 𝑊) is the predicted label of 𝑥𝑖, while 𝑙 is the lost function. 

Due to more domain agnostic approach combining both feature discovery and 

implementation to maximally discriminate between the classes of interest [33], deep 

learning shows unprecedented adaptability for various kinds of images [34, 35, 36]. 

Accordingly, high hope are placed on deep learning to exert great power in 

pathology image and other medical image fields [37, 38, 39, 40, 41]. 

 

3.3 Pathology Image Recognition Using Deep Learning 

Specifically within the pathology image domain, many researchers have been 

inspired to develop deep learning based approaches of classification and 

segmentation [42, 43, 44, 28, 45, 46]. Worldwide contests, such as “CAMELYON”, 

the goal of which is to evaluate new and existing algorithms for automated detection 

of metastases in hematoxylin and eosin (H&E) stained whole-slide images of lymph 

node sections [47], have attracted the participation of many top researchers. In 2016, 

around 70% of the participating methods took advantage of deep learning based 

approaches, leaving a small number of those using classical machine learning 

approaches. One of the representative approach, the 1st place one submitted by 

Harvard Medical School and Massachusetts Institute of Technology [48] presented 

a typical processing flow of pathology image recognition using deep learning. As 

illustrate in Figure 3.3.1. In the training phase, training data include a number of 



15 

 

 

  

Figure 3.3.1 The champion approach using deep learning in  

CAMELYON 2016. 

 

whole slide images, within which the tumor existing areas are circled to distinguish 

from normal areas. Both areas are divided into millions of normal patches and 

tumor patches. In the next, deep learning model then gets trained with these patches. 

Here, among several state-of-the-art deep learning models, the architecture based 

on GoogLeNet (developed by Szegedy et al. and won in ILSVRC 2014, [49]) has 

been validated as the most capable one. In the test phase, the trained deep learning 

model is adopted to categorize all patches of an unlearned image. According to the 

map of normal-tumor probability, suspected tumor area can be eventually figured 

out.  

Apart from approaches of classification and segmentation, deep learning are also 

utilized in new patulous applications for pathology diagnosis. Examples include 

staining normalization [50], assessment of tumor proliferation [51], and 

comprehensive multimodal mapping between medical images and diagnostic 

reports [38].  

 

3.4 Issues and Challenges 

In order to adopt deep learning based approaches, large datasets are always 

indispensable to train more capable deep neural models and raise their performance 
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[52]. However, unlike natural image datasets which can be acquired based on 

internet and automated categorizing techniques, building up high quality pathology 

image datasets, anyhow, requires professional observation and annotation by 

pathologists. As foregoing statement, because of the lack of the number of 

pathologists, a tremendous work burden is placed on daily diagnosis and 

educational activities. Accordingly, well-annotated data usually cost vast financial 

resources and manpower. In this situation, how to maximize the recognition 

performance with limited data becomes a very realistic and urgent problem when 

the amount of data cannot fully meet the requirements of training deep learning 

networks. 
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Chapter 4 
 

 

Proposed Method 
 

 

4.1 Transfer Learning 

4.1.1 Foundation 

Transfer learning is a common countermeasure against training data shortage. 

When there is a model to be trained for the task of a certain domain, transfer 

learning making use of a pre-trained model for the task of another relational domain 

is often adopted (as shown in Figure 4.1.1). This is based on the acknowledgment 

that knowledge gained from the source domain is conductive to help solve the target 

task. Generally speaking, several advantages of transfer learning can be cited. 

(1) It is possible to achieve higher recognition performance even when there are 

few learning data in the target domain.  

(2) Compared to learning from a random initial state (learn-from-scratch), 

recognition performance when using transfer learning is advantageously dominant 

in many cases. 

(3) Computational resources are saved because the learning time until equivalent  



18 

 

 

 

Figure 4.1.1 Fundamental framework of transfer learning. 

 

recognition performance is short. 

These advantages are due to an important trait of deep neural networks. Deep 

neural networks (for instance, CNN) strongly depend on its initial status, thus it is 

significant to obtain appropriate initialization as much as possible in order to avoid 

over-fitted learning or local minimum traps. Generally, the forepart layers of a CNN 

are considered analogous to the conventional texture features and applicable to 

many of related tasks, while the later layers capture more abstract image content by 

combining low-layer features involving more specific information corresponding 

to the target task [53]. Based on this fact, compared with the random initialized state 

of a deep learning network, the final state of part of the deep learning network pre-

trained in the task of the source domain is considered relatively closed to the optimal 

solution for the task of the target domain, and therefore, a positive effects reflect in 

saving of required data amount of target domain, shortening of training time and 

improvement of accuracy.  

Practically, it is a common way to adopt transfer learning that for a task with only 

a small amount of target domain data that can be used for training, using a model 

trained with a task with a large amount of source domain data. For instance, rather 

than training from scratch, researchers choose to train a deep neural network which 

has been pre-trained with large-scale image datasets (e.g. ImageNet) to obtain a 

more specialized network corresponding to target tasks can usually yield more 

advantageous results [54, 55, 56]. Transfer learning is also deemed particularly 

useful when training deep learning networks for medical image recognition. 
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4.1.2 Difficulties in Implementing Transfer Learning 

In general image recognition tasks, training is performed on the premise that the 

training data and test data have the same or similar distribution, but in actual world 

data it is not so often. For various kinds of images, it is necessary to consider various 

differences of the accessible features in line with their contents. For example, the 

color of beak is an important characteristic when categorize a bird image, while 

texture and direction information is distinctive to recognize a remote sensing image. 

Therefore, it is a practical issue how to train properly to match the distribution of 

source and target on the feature space.  

Actually, it is quite hard for us to understand the correlation between these tasks. 

This issue is exactly arising in pathology image classification. On one hand, in light 

of common human’s perception, pathology images usually have more complicated 

appearances than natural images because it is difficult to figure out the intuitionistic 

difference between benign and malignant images at a glance due to their color 

uniformity of H&E stain and componential similarity of tissues. On the other hand, 

pathologists are able to distinguish various pathological components and structures 

within the image, owing to professional knowledge. Based on this knowledge, 

pathologists can precisely tell where abnormality is occurring. Nevertheless, natural 

image datasets for pre-training rarely contain relevant information. From this 

perspective, it is believed that it’s crucial to build a bridge which can reasonably 

transfer the neural networks from the task of pre-training classification to the final 

benign/malignant judgment of the well-annotated pathological images. 

 

4.2 Stepwise Transfer of Domain Knowledge for 

Computer-aided Diagnosis in Pathology 

Aiming at the issue of domain adaption mentioned above, in this dissertation, 

stepwise transfer of domain knowledge for computer-aided diagnosis in pathology 

has been proposed. Similar approach adopting stepwise transfer has been presented 

in other domain [57]. The core motivation is that it is believed to be necessary and 

possible to make deep neural networks learn to understand pathology images in a 

rational way. With regard to the perception manner and learning progress of 

recognizer (which can be imagined as a human), before drawing 
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Figure 4.2.1 Basic concept of the proposed stepwise transfer of domain 

knowledge for computer-aided diagnosis in pathology. 

 

conclusions of benign or malignant for a pathology image, usually, it should 

understand the difference of general visual characteristics, such as color and texture. 

Such kind of knowledges are deemed acquirable from natural image domain. 

Afterwards, the recognizer may concentrate more on structural and morphological 

characteristics, including but not limited to the spreading status and density of the 

specified contents which need to be understood. As to the pathology field, the size 

of cell, the degree of nucleus distortion, nucleus size and nuclear-cytoplasmic ratio 

are considered to be involved. At this step, obviously, knowledge is needed to be 

acquired by make the recognizer cope with a task in a more professional (or say 

pathology-related) domain. On account of all of the above steps, the recognizer 

finally become competent to classify benign and malignant images. In line with this 

procedure, the deep neural network is expected to gradually acquire and get 

optimized with the knowledge corresponding to different levels of target-task 

correlation, so that finally become highly adaptive to the task of target domain. 

  For deep neural networks themselves, this approach above is deemed able to 

reduce the difficulty of optimization of internal weights when re-training deep 

neural networks after knowledge transfer. Compared to the coping with two tasks 

with huge gaps, proper fine-tuning often leads to good adaptability when deep 

neural networks are placed in similar but non-identical tasks. This is also the 

premise and an important reason that the above-mentioned stepwise transfer of 

knowledge is considered to be applicable to deep neural networks. 

Practically, as shown in Figure 4.2.1, in the case when using a limited number of 

well-annotated pathology images, the proposed stepwise transfer learning [58] can 
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manage to establish a systematic procedure starting by transferring the domain 

knowledge of natural image recognition. The large-scale object recognition (e.g. 

ImageNet) tasks is a reasonable choice. Next, according to our investigation, it is 

found that two types of pathology-relevant knowledge can be transferred in the 

form contained on the carrier of unannotated pathology image data. One kind is 

supposed to be acquired based on human observation, while another kind is 

considered available to obtain based on automatic measurement according to 

human understanding. After all, the well-annotated pathology images are finally 

employed to conduct the last optimization and finish the domain adaption procedure. 

  In the following parts, the proposed stepwise transfer of domain knowledge for 

computer-aided diagnosis in pathology will be discussed in detail. In Chapter 5, 

knowledge acquired based on human observation will be realized by introduce 

tissue-wise datasets. In Chapter 6, knowledge acquired based on automatic 

measurement according to human understanding will be introduced via cell-wise 

datasets. Moreover, in Chapter 7, I will give additional discussion on the hyper-

parameter of the proposed stepwise transfer scheme, including the number of steps 

involved, and the availability of different kinds of pathology images. 

 

 

  



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 
 

 

Transfer of Pathological Knowledge 

Based on Human Observation 

 

 

5.1 Concept and Formation 

As mentioned in last chapter, in order to make the deep neural networks gradually 

acquire and transfer the knowledge corresponding to different levels of target-task 

correlation, and finally become adaptive to the task of target domain, naturally, deep 

neural networks demand to be assigned different tasks of relational domains in a 

proper flow. To be intuitive, a practical model of stepwise transfer of domain 

knowledge is shown in Figure 5.1.1. In general, the proposed stepwise transfer of 

domain knowledge conclude three main steps.  

Before all, in order to get the common basics of image recognition, classification 

of large-scale ImageNet data is set as the initial task. For convenience, the 

knowledge to be transferred is named as “low-level” knowledge, which means its 

target-task correlation is relatively low. Meanwhile, the ultimate task, classification 

of benign/malignant pathology images, is undoubtedly placed at the last. At this  
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Figure 5.1.1 Practical procedure of the proposed stepwise transfer of domain 

knowledge for computer-aided diagnosis in pathology. 

 

step, all of the knowledge which have been transferred from foregoing steps are 

combined together and directly applied to the optimization of the final task. Here, 

the knowledge involved is called “low-level” knowledge. Between these two 

domains, according to the proposed conception, within the relational domain, 

knowledge owing medium level target-task correlation are supposed to be learned 

by deep neural networks via appropriate tasks so that bridge the source domain and 

the target domain. In this scheme, since knowledge to be acquired and transferred 

are all introduced by corresponding data without exception, thus, data employed to 

train the deep neural networks can be called “low-level” data, “medium-data” and 

“high-level” data, respectively. 

In terms of the configuration above, what needs to be done is to train the deep 

neural networks with datasets of different levels in succession. As illustrated in 

Figure 5.1.1, after each time knowledge transfer is done, nodes colored darker in 

CNN models denote that CNN has learned a more specified (deeper) representation 

for the pathology image classification task. When the number of output classes 

changes, definitely, the network architecture needs to be adjusted accordingly. 

Under this framework, what needs to be solved next is to propose a task in the 

relevant domain to introduce relevant knowledge. As stated in Chapter 4, structural 
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and morphological characteristics, such as distribution of tissue, size of cell, degree 

of nucleus distortion, and nuclear-cytoplasmic ratio are regarded as promising clues. 

Therefore, modeling the task of benign/malignant classification, this dissertation 

will focus on characteristics that are relevant to these aspects and that are easy to 

be introduced via new datasets and tasks. 

As for the “medium-level” datasets, it is necessary to meeting the prerequisite 

requirement that they could be acquired at much lower cost than the datasets 

annotated by pathologists, and meanwhile. Hence, this dissertation proposes the 

following two ideas. The first idea is to make use of the existing characteristics of 

the pathological images directly by employing the different components of the 

tissue structure as the natural classes. The classes utilized to create artificial tasks 

and achieve knowledge transfer is then totally based on human observation. The 

second idea is to take over image recognition tools to classify pathology images 

which containing different but more abstract characteristics. Afterwards, above-

formed classes are chosen within the scope of human understanding to form the 

data to be transferred.  

 

5.2 Tissue-wise “Medium-Level” Data 

In this chapter, I would like to discuss about the specific implementation of the 

first above-stated idea: to make use of the existing characteristics of the 

pathological images directly by employing the different components of the tissue 

structure as the natural classes, with which artificial tasks and achieve knowledge 

transfer are then realized based on human observation. Based on the investigation, 

this paper presents a feasible stroma-epithelium datasets which can be made by non-

professional annotator with only a little pathologist’s direction. Epithelium and 

stroma are two tissue types that can be found in every organ [59]. In gastric 

pathology domain, epithelial tissues line the outer surfaces of gastric mucosa, while 

stroma tissue locates right under epithelium. Since cancer metastasis between 

epithelium and stroma is deemed as inextricable to cancer’s progression [60], both 

of the two types of tissue are usually extracted during biopsy examinations and 

revealed in the pathology images. Although it is quite difficult to identify if the two 

types of tissue are in order for non-professional workers, actually, it is found that 

stating the visual difference between them is quite an undemanding work. As shown 

in Figure 5.2.1, the upper area encircled by dashed contour indicates epithelium  
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Figure 5.2.1 Stroma and epithelium appear in gastric pathology image. 

tissue, while the remaining lower area denotes stroma tissue. Because of their 

respective functions, obviously, epithelium tissue appears as organized arrangement 

but stroma tissue seems scattered and disordered. Such distinct difference is 

considered quite beneficial to our “non-professional” work. Without pathologist’s 

expensive annotation, it would be encouraging if these epithelium and stroma 

images can impart the pathology knowledge to the deep neural networks on the 

basis of our assumption. Practically, I have managed to collect a large amount of 

images of epithelium and stroma, segment them with stroma area and epithelium 

and manually and separate into three classes (epithelium, stroma and background). 

 

5.3 Experiments and Discussion 

(1) Experimental Procedures 

In order to evaluate the effectiveness of our proposed scheme, with the tissue-

wise “medium-level” data, stepwise knowledge transfer will be implemented on 

several representative CNN architectures. The performances will be compared to 

the learn-from-scratch scheme that using well-annotated pathology data only, and 

the common used one-stage scheme within which knowledge transfer is directly 

conducted from “low-level” domain to “high-level” domain. Furthermore, this 

dissertation will talk over how the proposed stepwise knowledge transfer scheme 

performs upon well-annotated datasets of different sizes, so that to produce more 

evidence to validate the adaptability of the conception. 
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(2) Datasets 

This dissertation employs three types of data including “low-level”, “medium-  

Table 5.3.1 Datasets used in experiments (tissue-wise). 

Data Type Category Training Validation Test 

Tissue-wise 

Data 

Background 15,000 1,000 - 

Epithelium 15,000 1,000 - 

Stroma 15,000 1,000 - 

Well-

annotated 

Data 

Small 540 + 540 

1620 + 1620 2,700 + 2,700 

Large 5400 + 5400 

 

 

Figure 5.3.1 “Non-professionally” annotated tissue-wise datasets.  

 

level” and “high-level” data, respectively used for the initial training, the first stage 

of knowledge transfer and the 2nd stage of knowledge transfer. In practice, 

ImageNet data [61] containing approximately 1.2 million images in 1,000 separate 

categories are customary utilized to initialize the CNN models. As to gastric 

pathology images, all the datasets utilized are illustrated in Table 5.3.1. By depicting 

maps of epithelium and stroma, this dissertation succeeded in collecting 48,000 

tissue-wise patches (256×256) separated into “background”, “epithelium” and 

“stroma” categories (Figure 5.3.1). In each category, 15,000 patches are used as 

training data, while the remained 1,000 patches are used for validation. As to the 

well-annotated “high-level” datasets, in order to evaluate the efficacy and 

generalization of the proposed two-stage scheme, I have prepared well-annotated 

datasets in two different sizes. One is a small train dataset including 540 benign and 
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540 malignant patches. Another one is a non-augmented large dataset of 5,400 

benign and 5,400 malignant patches within which the small dataset is included. 

Except from the former datasets, this paper additionally use a validation dataset 

including 1,620 benign and 1,620 malignant patches to select the best model 

configuration, and a test dataset of 2,700 benign and 2,700 malignant patches to 

finally evaluate the performance in each optional case. It is noteworthy that there is 

no overlap between the “medium-level” datasets and the “high-level” datasets and 

no overlap among the training, validation and test datasets. 

 

(3) Deep Neural Networks Adopted in Experiments 

This dissertation employs three representative deep neural networks: AlexNet 

[30], VGG-16 [36] and GoogLeNet (Inception V3) [49]. 

AlexNet, named after its developer, is the regarded as the representative CNN 

model. It won the ILSVRC in 2012 and led the boom of deep learning approaches. 

AlexNet consists of a convolution neural network with 5 convolutional layers and 

3 full-connected layers (Figure 5.3.2 (a)). Currently, opportunities to use AlexNet 

itself have decreased, but the original concept and techniques, such as ReLU 

activation function, training with multi GPUs, data augmentation and dropout are 

still widely adopted in the subsequent deep neural networks. 

VGG-16 is another famous CNN model. The 16-layer structure model (Figure 

5.3.2 (b)) has high applicability to image recognition, with the features such as 

structural clarity and small scale. VGG-16 won the second place of image 

classification in ILSVRC 2014. 

GoogLeNet (Inception V3) was the winner of ILSVRC 2014. The significant 

feature of GoogLeNet is that it defines a small micro networks called an “inception 

module”, which composes of multiple convolution layers and pooling layers. These 

inception modules build up one large CNN by overlapping it like a normal 

convolution layer. In the inception module, the micro networks are branched, after 

convolution with different sizes is performed. At the end of the module the outputs 

are all connected. This configuration is considered contributive to make the weight 

of the convolution layer sparse and improve the efficiency of optimization. 
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    (a) AlexNet 

 

(b) VGG-16 

(c) GoogLeNet (Inception V3) 

 

Figure 5.3.2 Deep neural networks employed in experiments. 

 

(4) Experimental Results 

This part will specifically discuss about our proposed stepwise scheme when 

tissue-wise data are employed for the 1st-stage knowledge transfer and well-

annotated datasets are used for the 2nd-stage knowledge transfer. The performances 

are collected from the experiments performed with well-annotated pathology image 

datasets in different sizes, and different deep neural network architectures. In this 

paper, this paper concurrently adopts AUC, ACC, Precision and Recall as the 

evaluation criteria [62].  
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Table 5.3.2 Performances of the proposed two-stage knowledge transfer using 

tissue-wise data. 

 

Firstly, the AUC = 0.922 is achieved by adopting VGG-16 and learn-from-

scratch approach upon the large well-annotated pathology data. In comparison, both 

schemes using one-stage and two-stage knowledge transfer have achieved better 

performance. As a reference, this result also confirms that rather than learn-from-

scratch, using large-scale data to initialize deep neural networks often lead to more 

expected accuracy. On the basis of confirming the need to use knowledge transfer, 

results are discussed in correspondence to various case. In Table 5.3.2, among all 

of the couples of rival schemes, the proposed two-stage knowledge transfer using 

tissue-wise data has yield notable promotion. Specifically, in the results of small 

data group, AUC value is raised by 0.035, 0.016 and 0.039, when CNN 

architectures VGG-16, AlexNet and Inception V3, are adopted, respectively. In the 

large data group, the corresponding AUC values is raised by 0.027, 0.053 and 0.053. 

Although the performance using smaller training data are expected to be more 

boosted, according to AUC values, it is found that our proposed scheme has actually 

brought slightly more benefit to the large well-annotated dataset groups.  

Meanwhile, if the focus is moved to ACC values, the fact is acknowledged that the 

greatest improvement happens when our proposed scheme using Inception V3 is 

adopted upon the large dataset. The accuracy has remarkably increased from 0.779 

to 0.862. Besides, precision and recall, which are commonly used for medical image 

classification, are appearing with the similar trend to AUC and ACC. As more 

intuitively illustrated in Figure 5.3.3, three CNN architectures combined with two 

datasets have produced six ROC Figures. The red curve denotes the two-stage 

scheme using tissue-wise “medium-level” dataset, while the green curve denotes 

the conventional one-stage scheme. It is clear at a glance, in each figure, our 

proposed scheme possesses overwhelming area all along both the false positive rate  
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Figure 5.3.3 Performances of the proposed two-stage knowledge transfer using 

tissue-wise data presented by ROC. 

 

Figure 5.3.4 A set of filtered response images outputted by the stepwise trained 

VGG-16 model. 

 

axis and true positive rate axis. These results have proved that our proposed scheme 

is adaptable and rarely dependent on the amount of well-annotated data. In addition, 

a set of filtered response images exported by the stepwise trained network are 

displayed in Figure 5.3.4 Considering the practical and intuitive facility, I 
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investigate on VGG-16 model and obtain some of the outcomes of the first 

convolutional layers from all of the convolutional blocks as shown. 

In line with the common sense, larger training data yield larger absolute AUC 

value. Nevertheless, if this paper makes comparison between the data size crosswise, 

it can be noticed that when use the proposed two-stage scheme with the small 

dataset, the proposed stepwise scheme has actually boosted the performance up to 

the level approaching to that when only one-stage knowledge transfer is 

implemented with the large dataset which is 10 times that of the small one. By 

viewing the two rows “Small-Two stage (tissue)”and “Large-One stage” (right the 

two rows in the middle of Table 5.3.2), it is not hard to see that the differences of 

AUC values between the two rows are no larger than 0.023 (AlexNet), while the 

largest difference of ACC values is only 0.033 (AlexNet). These results can fully 

prove that the introduction of tissue-wise information has indeed contributed to 

making the deep neural networks “understand” pathology images in line with the 

ascending target-domain relevance. Hence, it is reasoned to infer that the proposed 

two-stage knowledge transfer scheme can be used as an alternative method to boost 

the performance when the number of well-annotated pathology image data is 

limited, but “non-professional” annotation is practicable even simply based on 

human observation. 

 

5.4 Summary 

This chapter has discussed about feasible type of knowledge that can be 

transferred to bridge the source domain and target domain. A novel idea is to make 

use of the existing characteristics of different components of pathological images 

directly based on human observation. Specifically, background-stroma-epithelium 

datasets is presented that can be generated by non-professional work with only a 

little pathologist’s direction. The datasets are utilized to create artificial tasks and 

conduct knowledge transfer. Comparative experiments implemented among 

different deep neural networks and well-annotated pathology images of two sizes, 

it is noticeably found that the proposed two-stage knowledge transfer scheme is 

most contributive to boosting the classification accuracy. 
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Chapter 6 
 

 

Transfer of Pathological Knowledge 

Based on Automatic Measurement with 

Human Understanding 

 

 

6.1 Concept and Formation 

In last chapter, the first type of knowledge to be transferred using characteristics 

of different components of pathological images directly based on human 

observation has been discussed. Therefore, this chapter will concentrate on the 

realization of another idea: to take over image recognition tools to classify 

pathology images which containing different but more objective characteristics and 

form the data to be transferred within the scope of human understanding. 

  Within the tissue-wise domain, human observation and judgment objects are 

placed on some intuitive and easy to judge features. Such kinds of features may 

include presence or absence of the gland, arrangement and distribution of the cells. 

Meanwhile, non-professional workers only need to roughly point out where belongs 
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to which class. However, compared to tissue-wise information, morphological 

characteristics of the cells, which may include the shape and size of cell, and nuclei-

cytoplasmic ratio (N/C), usually appears to reveal in a more abstract state. This is 

because that one can hardly tell which parts of the images should be categorized 

into which class without any absolute criterion. Therefore, in order to make use of 

these information, the proposed scheme has to introduce specialized tools for 

traversing a large number of images to give uniform and considerable criteria of 

measurement.   

  Another motivation for achieving the above-stated idea is that when there is a 

serious shortage of manpower, if the data involving knowledge to be transferred can 

be generated in an automatically generated method, then as the amount of unlabeled 

pathology increases, it is possible to generate more and more data for knowledge 

transfer at zero cost. At the same, if it can be proved that the involved knowledge 

is beneficial to improve the effect of knowledge transfer between source and target 

domains, and ultimately improve the accuracy of benign/malignant classification, 

then it will be more evadible to suppose that the scheme presented will have a 

broader and more determined applicability.  

 

6.2 Automatically Generated Cell-wise “Medium-

Level” Data 

6.2.1 Processing Flow 

In the light of out aforesaid conception, it is considered to adopt a reliable way 

to provide with rough and robust, but weakly pathology-related information based 

on automatic statistical measurement to fulfil this demand. According to my earlier 

study [63], color index local auto-correlation (CILAC, [64]) has been evidenced as 

an independently competent hand-crafted feature in pathology image classification. 

Notice that feature extraction with CILAC can only be implemented to indexed 

pathology images possess three color levels: background, nuclei and cytoplasm. 

These three components are deemed to contain most of the crucial information for 

morphological analysis. Meanwhile, because the color indexing process is 

equivalent to normalizing the color space in an extremely rough way, the color 

indexed images are regarded more robust to uneven staining intensity. Therefore,  
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Figure 6.2.1 Procedure of generating “medium-level” dataset with color index 

local auto-correlation (CILAC). 

 

in this paper, the proposed scheme takes advantage of CILAC based feature 

extraction on color-indexed images and expect to collect sufficient anatomical 

pathology information with less noise. 

Accordingly, the proposed approach denoted in Figure 6.2.1, applies a string of 

steps including image processing, feature extraction and unsupervised clustering. 

First, 3-level quantitation is implemented on original pathology images so that 

obtain 3-level images including only three components: nuclei, cytoplasm and 

background. The details will be instructed in the next section. Afterwards, with the 

3-level images, CILAC features are extracted to establish a feature space. Next, 

unsupervised clustering approach is employed to separate images into several 

clusters. After all, based on human observation, clusters far apart are finally selected 

as the cell-wise dataset for knowledge transfer. 

 

6.2.2 Image Pre-processing 

The proposed processing of pathological image avoids the influence of uneven 

staining to the anomaly detection. In order to concentrate on the area with high 

target-domain correlation, pathological images are segmented into three regions, 

including nuclear, cytoplasm and background. The process of this part will be 

explained in the following.  

From the preliminary experiments, it is found that there is significant difference  
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Figure 6.2.2 Generation method of 3-level images. 

 

between the nucleus region and other areas in the R channel of RGB color space. H 

(Hue) channel out of HSV color space contains main properties of the type of color. 

It is defined technically as the qualitative aspect presented by visual color. Because 

the influence of uneven staining is restrained in H channel, H axis and R axis are 

employed to extract the nucleus region. The pixels which have obviously higher 

value both in R axis and H axis are accounted into nucleus region.  

 

(1) Scaling 

To prepare the nucleus region emphasized image, all pixels in the original image 

are calculated as the formula: 

 

g(x) = {
𝑓𝐻(x)+𝑘 × 𝑓𝑅(x), (𝑓𝐻(x)+𝑘 × 𝑓𝑅(x) < 255)

255, (𝑓𝐻(x)+𝑘 × 𝑓𝑅(x) ≥ 255)
           (2) 

 

where g(x) is the nucleus region emphasized image. Where 𝑓𝐻(x) and 𝑓𝑅(x) 

represents H channel and R channel of the original image 𝑓(x) correspondingly. 

Parameter 𝑘 is determined from preliminary experiments. 

 

2) Local Otsu Binarization 

Otsu's method [65] is an adaptive threshold determining method by finding the 

minimal intra-class variance. Otsu’s method is widely used in automatic image 

binarization in computer vision and image processing. 
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When using Otsu's method usually it is necessary to search for the threshold that 

minimizes the intra-class variance, which means the maximum variance between 

classes. Otsu's method operates directly on the gray level histogram P (i): 
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Finally, the individual class variances are: 
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Next, traverse the calculation and pick the value 𝑡 that minimizes )(2 tw . 

Because the pathological image employed is large and staining is not even from 

part to part. It is not reasonable to binarize an image with the threshold calculated 

form the original Otsu’s method in wide range. Thus, the proposed local Otsu 

binarization method to adapt the uneven staining of pathological image and this 

binarization method is free from image size. In the local Otsu binarization method, 

local uneven staining or artifact could be weakened without affecting other area. 

In the proposed local Otsu binarization, the threshold of a pathological image λ 

was calculated using Otsu’s method. Then segment the image into several small 

parts and compute threshold of each part 𝜆𝑖. If the ratio of size of background area 
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is less than 50%, this part is binarized by threshold 𝜆𝑖, else binarized by threshold λ.  

After implementing the above scaling and local Otsu’s method, binarized images 

consist of only nucleus can be generated. 

(3) Segmentation of Background  

The background regions of pathological image with high luminance level are 

expressed well in G channel out of RGB color space. The pixels with larger G value 

than the threshold which is determined by Otsu’s method will be considered as 

background region. In background segmentation, because red blood cells neither 

belong to nuclear nor cytoplasm area, they are counted as the background. 

Therefore, red blood cells are segmented taken advantage in R channel in RGB 

color space according to the fact that red blood cells have a strong red component. 

In this way, binarized image includes background and others is generated. 

 

(4) Image Integration 

Two binary images are generated by adapting the above mentioned 

segmentations, (1) nucleus, (2) background and other areas. The region neither 

belongs to background area nor belongs to nucleus area is finally categorized as 

cytoplasm. After image integration, nucleus, background and cytoplasm areas are 

concluded in one image and possess three levels in order. 

 

6.2.3 CILAC (Color Index Local Auto-Correlation) 

CILAC was developed on the basis of Higher Local Auto-Correlation (HLAC), 

which has been demonstrated as a capable image descriptor and has been adopted 

in many image classification applications such as object counting [66], gesture 

recognition [67] ,video surveillance [68] and medical image classification [69, 70, 

71]. HLAC is denoted as following. 

 

XN = ∑ I(r)I(r + a1)r ⋯ I(r + aN)    (10) 

 

where I is the objective image, r is the view position, and 𝐚 𝐢 (𝑖 = 1, 2, … , N ) is 

the displacement vector around r, which indicates pixels to be calculated. Taking 

consideration of the balance of performance and computing cost, the proposed 

method adopts N ∈  {0, 1, 2}. HLAC features with different orders form a 

complete feature vector. Intuitively, HLAC feature are expressed by mask patterns  
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Figure 6.2.3 Gray-scale HLAC mask patterns. 

 

 

Figure 6.2.4 CILAC mask patterns. 

 

as shown in Figure 6.2.3. Specifically, 0-order HLAC is used to evaluate the 

intensity of the reference pixel, while 1-order and 2-order HLAC is used to calculate 

auto-correlations between the reference pixel and surrounding correlative pixels, 

which indicate the edge and curvature, respectively. These morphological elements 

are deemed to be competent to cover the measurement requirement of cell-wise 

characteristics. 

Taking the place of calculation of grayscale local-correlation, CILAC focuses 

on the specificity of co-occurrence neighboring pixels within the image. CILAC 

consists of a set of local patterns which are able to calculate both the local auto-

correlations of different color levels and their statistical distribution. CILAC in 

order N (N = 0, 1, 2) is defined as below:  
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𝑆0(𝑖) =  ∑ 𝑓𝑖

𝑟

(𝑟) 

                        (11) 

𝑆1(𝑖, 𝑗, 𝑎) =  ∑ 𝑓𝑖

𝑟

(𝑟)𝑓𝑗(𝑟 + 𝑎) 

           (12) 

𝑆1(𝑖, 𝑗, 𝑘, 𝑎, 𝑏) =  ∑ 𝑓𝑖𝑟 (𝑟)𝑓𝑗(𝑟 + 𝑎)𝑓𝑘(𝑟 + 𝑏)              (13) 

 

Similar to HLAC, as 𝑆𝑁 denotes N-order correlation. 𝑓 = { 𝑒1, 𝑒2, 𝑒3 … , 𝑒𝐷} is 

a D-dimensional vector standing for D color indexes of an color-indexed image. 𝑟 

indicates the reference (central) pixel. a, b are different displacements of the 

surrounding inspected pixels, respectively. 𝑓𝑖,𝑓𝑗and 𝑓𝑘denote the pixels taken into 

account corresponding to all displacements. In this paper, D is set to 3 according to 

three color indexes of the 3-level image. In that case, the 0th order CILAC (N = 0) 

draw out different color indexes themselves, and the 1st and 2nd order CILAC (N 

= 1 and N = 2) represent the local co-occurrences of different color indexes. 

Pathological components including nuclei, cytoplasm and background are expected 

synthetically vectorized by the CILAC patterns (Figure 6.2.4).  

   

6.2.4 Dimensionality Reduction and Unsupervised Clustering 

After CILAC feature extracted from 3-level pathology images. Principal 

component analysis (PCA, [72]) is also employed to reduce the dimensionality of 

feature vector space. Next, unsupervised K-means clustering [73] is used to separate 

images into several clusters within the feature vector space. Practically, in order to 

obtain clusters with large distance as possible, this paper sets the number of cluster 

k=3, and select the farthest two clusters in line with the visualized status within the 

coordinate space of finite principal components. Finally, the most distant two 

clusters are selected and assigned with +1 and -1. Pass through the above series of 

operations, the two clusters are available to be automatically generated and 

employed as “medium-level” training data for the 1st step fine-tuning.  
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6.3 Experiments and Discussion 

(1) Experimental Procedures 

In order to evaluate the effectiveness of our proposed stepwise knowledge 

transfer scheme using e automatically produced low-cost “medium-level” datasets 

based on CILAC, same as in Chapter 5, this dissertation makes use of three types  

 

Table 6.3.1 Datasets used in experiments (cell-wise). 

Data Type Category Training Validation Test 

Medium-level 

Data 

Cluster 1 5,016 558 - 

Cluster 2 3,949 439 - 

High-level 

(Well-annotated) 

Data 

Benign 5,400  1,620  2,700  

Malignant 5,400 1,620 2,700 

 

of well-known deep neural networks, VGG-16, AlexNet and GoogLeNet 

(InceptionV3). With each of the deep neural networks, two separate procedures are 

conducted. (1) adopting fine-tuning only once with high-level well-annotated 

pathology images directly upon the model which has been pre-trained by low-level 

large-scale datasets (ImageNet). (2) adopting the 1st fine-tuning and 2nd fine-

tuning in sequence with the “medium-level” data and high-level well-annotated 

pathology image data, respectively. Competitions are carried out between the two 

procedures based on the three deep neural networks stated above. 

 

(2) Datasets 

Same as Chapter 5, there are also three types of data utilized for the initialization 

(pre-training) of deep neural networks, the 1st stage knowledge transfer and the 2nd 

stage knowledge transfer, respectively. While ImageNet is still used as “low-level” 

data, well-annotated datasets including 5,400 benign and 5,400 malignant patches 

are used as “high-level” data, the composition of which is exactly the same as in 

the previous chapter. Meanwhile, as shown in 6.3.1, the validation dataset including 

1,620 benign and 1,620 malignant patches and the test dataset of 2,700 benign and 

2,700 malignant patches are employed again, without any overlap. As to the full- 
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Figure 6.3.1 Example of automatically generated “Medium-level” data. 

 

automated cell-wise “medium-level” data, by adopting unsupervised clustering 

upon more than 10,000 patches (256×256), it has been successful to obtain cluster 

1 including 5,574 patches and 4,388 patches belong to cluster 2. Examples are 

depicted in Figure 6.3.1. Obviously, two clusters with different cell morphology 

were generated. Patches in cluster 1 seem to have larger but small nuclei, while 

patches in cluster 2 are small and dense. In the 1st-stage knowledge transfer, 90% 

of patches in each cluster are used for training, remaining 10% are used for 

validation. Validation data are completely separated from training data so that well-

generalized model can be selected accordingly. All of these patches are cut off from 

whole pathology images without augmentation. It is noteworthy that there is no 

overlap between the “medium-level” datasets and the “high-level” datasets, and 

meanwhile no overlap among the training, validation and test datasets. 

 

(3) Experimental Results 

Results are presented and discussed among the rival performances of the regular 

one-stage knowledge transfer and the proposed stepwise knowledge transfer 

scheme. To be impersonal, this part also employs AUC, ACC, Precision and Recall 

as the evaluation criteria.  

As denoted in Table 6.3.2, notably, in all of the couples of competitive schemes, 

our proposed two-step fine-tuning using “medium-level” dataset has yield 

reasonable improvement. Specifically, AUC value is raised by 0.021, 0.056 and 

0.058, when CNN architectures VGG-16, AlexNet and Inception V3 are adopted 

respectively. Meanwhile, if we focus on ACC values, the fact is distinct that the 

greatest improvement happens when the proposed scheme using Inception V3 is 

adopted. The accuracy has remarkably increased from 0.779 to 0.865. Besides,  
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Table 6.3.2 Performances of the proposed two-stage knowledge transfer using 

cell-wise “medium-level” data. 

 

 

Figure 6.3.2 Performances of the proposed two-stage knowledge transfer using 

cell-wise “medium-level” data by ROC. 

 

precision and recall, which are commonly used for medical image classification, 

are presenting similar trend to AUC and ACC. As more intuitively illustrated in 

Figure 6.3.2, three CNN architectures have produced three separate ROC Figures. 

The red curve denotes the two-stage knowledge transfer scheme using 

automatically generated “medium-level” dataset, while the green curve denotes the 

conventional one-stage knowledge transfer scheme. It is clear at a glance, in each 

figure, our proposed scheme possesses overwhelming area all along both the false 

positive rate axis and true positive rate axis. These results have illustrated that our 

proposed scheme is capable and rarely dependent on the deep neural network’s 

architecture and the amount of well-annotated data. Accordingly, it is well-founded 

that the proposed stepwise knowledge transfer scheme using cell-wise “medium-

level” data automatically produced based on Color-Index Local Auto-Correlation 

(CILAC) has successfully boosted the performance of the pre-trained neural 

networks for gastric pathology image classification in various situations.  
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6.4 Summary 

In this chapter, aiming to maximize the classification capacity of deep neural 

networks and alleviate the lack of annotated pathology data, a stepwise knowledge 

transfer scheme using based on automatic measurement with human understanding 

is developed. By extracting pathology-correlative information from unannotated 

pathology images with handcrafted feature CILAC, and making use of these 

materials as “medium-level” data to intermediately perform knowledge transfer to 

deep neural networks, it managed to make the deep neutral networks acquire 

pathological knowledge following the way of human perception. By this means, the 

initial task and the final target task are expected to be bridged in a reasonable way. 

Meanwhile, compared to tissue-wise “medium-level” data, when there is a serious 

shortage of manpower, it is possible to generate cell-wise “medium-level” data for 

knowledge transfer at almost zero cost. In the experiments, the proposed scheme 

exerted adequate efficacy for boosting the classification performance and revealed 

high applicability for different CNN architectures.   
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Chapter 7 
 

 

Stepwise Transfer of Multiple Domain 

Knowledge 

 

 

7.1 Concept and Formation  

In Chapter 5 and 6, the feasibility of transfer of pathological knowledge based on 

both direct human observation and automatic measurement with human 

understanding has been validated. These trials are all conform to the proposed 

conception that before make deep neural networks adaptive to benign/malignant 

classification task, it should understand the difference of general visual 

characteristics and fundamental pathology knowledges within the relational 

domains in line with usual perception manner and learning progress. After 

separately evaluating the two types of relational-domain knowledge, tissue-wise 

knowledge and cell-wise knowledge, this chapter will further discuss about the 

possibility of simultaneously using the two different knowledge to transfer in one 

scheme. Figure 7.1.1 shows the specific implementation procedures. Obviously, the 

steps of the relational domain are increased, which is equivalent to the further 
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Figure 7.1.1 Procedures of Transfer of Multiple Domain Knowledge. 

 

subdivision of the conversion process from the ground domain to the target domain. 

By increasing the level of relevance to the target domain, the specialization of deep 

neural networks is expected to be further strengthened. Additionally, for an existing 

question, that is the relationship between the amount of involved relational-domain 

data and the performance of the target domain, this part will also give the answer. 

Furthermore, there is another the assumption that whether the source of 

knowledge to be transferred can be expanded. As shown in Figure 7.1.1, based on 

the competitive scheme already discussed, this paper will also introduce different 

kinds of pathological images in order to make a more comprehensive judgment on 

the scope of application and operability of the proposed knowledge transfer scheme 

for pathology image classification. 

 

7.2 Stepwise Transfer of Multiple Domain Knowledge 

This section will debate about the feasibility of transfer of multiple domain 

knowledge. Based on the flow shown in the lower part of Figure 7.1.1, the relational 

domain will be divided into two parts filled in order with the tissue-wise knowledge 

and cell-wise knowledge proposed in the previous chapters. Here, for the 

convenience of operation, the datasets used in Chapters 5 and 6 are directly 

employed again as shown in Table 7.2.1.The first part of relational domain, tissue-

wise data, include three types, background, epithelium, and stroma, each with 

15,000 training patches, while the second part of relational domain, cell-wise data, 

include two clusters, with 5,016 training patches and 3,949 training patches 

separately. As to the deep neural network, for an intuitive comparison this time only 

VGG-16 is adopted.  
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Table 7.2.1 Datasets used in experiments (multiple domain). 

 

 

Figure 7.2.1 Results of transfer of multiple domain knowledge. 

 

  Results are depicted in Figure 7.2.1. Red curve, indicating the result of transfer 

of multiple domain knowledge, presents the topmost AUC value 0.970. It has 

substantially exceeded the results of the reference schemes using tissue-wise data 

and cell-wise data. This result provides evidence that the use of stepwise transfer of 

multiple domain knowledge is able to acquire more adaptability to improve the 

accuracy of the task in target domain, by introducing different levels of relational-

domain knowledge.  

  However, one big concern comes out. In the experiments above, the data used in 

Chapter 5 and Chapter 6 were fully employed. Compared to the verification 

experiments for the two separate schemes, the amount of data introduced into the 

entire process of stepwise transfer has been accordingly increased. This makes it 

easy to suspect that the performance gains obtained in the above experiments were 

due to an increase in the amount of data rather than the use of stepwise transfer of 

multiple domain knowledge. Therefore, it is necessary to discuss about the factors 

of change. Here, an additional set of experiments are presented to address this  
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Table 7.2.2 Performances of schemes using datasets with fixed number of images. 

Category Tissue-wise Cell-wise Tissue-wise + Cell-wise 

Number of images 8,000 8,000 4,000 + 4,000 

AUC 0.961 0.965 0.969 

 

answer. This time, the total amount of data introduced into the relational domain 

will be fixed, as shown in Table 7.2.2. In the first group, the tissue-wise data 

contains 4000 epithelium images and 4000 stroma images. In the second group, 

cell-wise data contains 8000 images covering two clusters. In the third group, 4000 

tissue-wise images and 4000 cell-wise data images are employed respectively. In 

this way, since the total number of images in the three sets is consistent, the 

difference in performance caused by the difference in the amount of information 

will be largely suppressed.  

  From the results of this comparative experiment, it is easy to conclude that 

making use of two different data still brings a slight performance improvement 

when the amount of data introduced into the relational-domain is consistent. This 

also laterally provides a guarantee for the validity of the verification given in the 

previous experiments. 

 

7.3 Extension of Relational Domain Knowledge 

In order to further increase available intermediate data, this part will devise a 

knowledge transfer based on extension of relational-domain data, not limited to the 

same field as the target. Specifically, in all the descriptions so far, all images are 

collected from gastric pathology examination. This means that except for the 

initialization of the deep neural networks is implemented using ImageNet data, 

knowledge transfer corresponding to all the other domains is limited to the scope 

of the gastric pathology image. In the previous section it has been discussed about 

the proposed scheme of stepwise transfer of domain knowledge and its possible 

extensions in terms of process and form. However, if faced with more complicated 

actual situations, such as the imbalance of the amount of pathological image data 

in different parts (for example, the number of pathological images collected from 

certain organ is small, while the others are large), then only in the flow and form of 

the scheme, then the benefits of just extending the process and form of the scheme 

are greatly limited. In view of this situation, the following part proposes a scheme  
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Figure 7.3.1 Different kinds of pathology images. 

 

Table 7.3.1 Datasets including gastric pathology images and lymph pathology 

images within relational domain. 

 

 

for performing knowledge transfer using different kinds of pathological images. 

  In the next experiment, cell-wise data generated using part of the open data of 

Camelyon 16 Challenge, in with a total of 400 breast cancer lymph node metastasis 

whole-slide images are contained. Obviously in Figure 7.3.1, although lymph 

pathology image and gastric pathology image both belong to pathology images, the 

presence or absence of glands, the distribution of cells and staining conditions are 

markedly different. The stepwise transfer of domain knowledge in this experiment 

will follow the pattern of the multiple domain proposed in the previous section. 

After initializing the deep neural network with ImageNet, the knowledge transfer 

within the relational-domain is first performed using tissue-wise data. After that, 

the knowledge transfer using cell-wise data will be divided into two cases. In the 

first case, fine-tuning is performed using only the gastric pathology image in the 

manner of 7.2. In the second case, the lymph pathology image was added to the 

gastric pathology image, and the pathological images of two different organs are  
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Figure 7.3.2 Performance of stepwise knowledge transfer scheme using pathology 

images of different organs. 

 

combined into one dataset to fine-tuning the deep neural network. To compare the 

performance of recognition accuracy in the final task in both cases will help us to 

see if it is a feasible way to introduce pathology images of different organs into the 

proposed stepwise knowledge transfer scheme at the same time. According to 

performance of ROC, the red curve indicating the trial of extension of relational 

domain knowledge using both gastric and lymph images has achieved larger AUC 

than that using gastric images only. 

Based on the above experimental results, it has been confirmed that the 

performance improvement are further achieved by stepwise knowledge transfer 

based on the extension of the relational-domain knowledge, when deep neural 

network managed to acquire more information contributing to the target domain. 

Therefore, when carrying out knowledge transfer based on extension of related 

domains, I believe that it is possible to make full use of data in common knowledge 

not only in the same organ but also in others. 

  Nevertheless, since the impact due to the increase in the amount of data must also 

be taken into account, in the way of 7.2, a set of additional experiments within 

which the numbers of data in the same level are fixed, will be implemented as a 

reference. This time, the data used for knowledge transfer will still be set to the 

order of ground-domain data (ImageNet), tissue-wise data, cell-wise data, target-

domain data. Merely, in the cell-wise part, the first case will only use 4,000 gastric 

pathology images. Correspondingly, the second case would use a collection 

containing 2,000 gastric pathology images and 2,000 lymph pathology images. 

Thus, the total number of pathology images used in both cases is exactly the same.  
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Table 7.3.2 Performances of schemes using datasets with fixed number of images. 

Category Gastric cell-wise Gastric + lymph cell-wise 

Number of images 4,000 2,000 + 2,000 

AUC 0.969 0.973 

 

It can be seen from the results that the image obtained by using two different 

organs at the same time has a slightly higher final recognition performance than 

simply using the same image while keeping the total number of images unchanged. 

This result verifies the effectiveness of the previously mentioned experiments used 

to verify extended relational-domain knowledge, and on the other hand reflects the 

different types of pathological images sometimes in dealing with the classification 

of a pathological image. Instead, it will bring more helpful information. It is difficult 

for us to specifically examine which information has been introduced, and 

ultimately affect the target-domain recognition results. However, it is certain that 

some morphological features in different kinds of pathological images are common, 

and can help the specialized improvement of the deep learning network without any 

difference in a specific training environment. 

 

7.4 Summary 

In this chapter, my research further explored the extensibility that can be used for 

the proposed stepwise knowledge transfer scheme. The first exploration is about 

the form of transfer scheme. Under the framework of using the proposed knowledge 

transfer scheme including ground domain, relational domain, target domain. The 

artificially generated tissue-wise data based on direct observation and cell-wise data 

based on automatic measurement with human understanding are introduced into the 

knowledge transfer process in order. As the result, it is demonstrated superior to the 

simple scheme employing only one type of the knowledge. This exploration also 

confirms the hypothesis of "train deep neural networks in a human-understood 

manner and strengthening its adaptability for benign/malignant classification". The 

second exploration is about the types of pathology image used. In this part, cell-

wise data is extended from the gastric pathology image to other kinds of images. In 

the experiment, lymph pathology images obtained from open data of Camelyon 16 

Challenge are used. According to the experimental results, the use of cell-wise data 

mixed into the lymph pathology image also brings a small increase in the final 
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recognition performance. This result also provides suggestions for some special 

practical cases, such as when facing the imbalance of the amount of pathological 

image data in different organs. Actually, due to the disparity in the incidence of 

cancer in different parts, this problem may also be more important in the actual 

clinical diagnosis. Meanwhile, although this paper has discussed knowledge 

transfer scheme with up to three steps because of the experimental condition, the 

applicability of knowledge transfer with more steps may also be worthy of further 

discussion.  
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Chapter 8 
 

 

Conclusions 
 

 

This dissertation has presented the studies on stepwise transfer of domain 

knowledge for computer-aided diagnosis in pathology using deep neural networks. 

In order to alleviate the significant problem of insufficient well-annotated 

pathological image data when use deep learning based approaches to classify cancer 

images and normal images, the proposed scheme is developed based on transfer 

learning, which makes use of a pre-trained model for the task of another relational 

domain. On the premise of confirmation that knowledge gained from the ground 

domain is conductive to the performance improvement for pathology image 

classification, another issue has been realized that the knowledge transfer crossing 

domains with insufficient correlation probably lack of efficacy. Aiming to solve this 

issue, the proposed scheme put forward a stepwise processing flow including an 

intermediate domain which is related to but differing from the target-domain, 

thereby to bridge the knowledge domains far apart. In this way, deep neural 

networks are supposed to be evolved to a state more adaptable for the target task 

and finally able to achieve more competitive recognition accuracy of 
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benign/malignant classification, even though in the case of the limited amount of 

the well-annotated pathological image data for training.  

  To realize the proposed stepwise scheme, two types of knowledge to be 

transferred have been presented and involved in the form of “medium-level” data. 

One type can be generated directly based on human observation, while another type 

is generated based on automatic measurement with human understanding. 

Specifically, the knowledge generated based on human observation is inspired by 

the distinct appearance among natural morphological status of pathology images. 

In this research, gastric pathology images are divided into three regions, 

background, stroma and epithelium, through simple annotation operations by non-

professional manpower with only pathologist’s initial direction. The datasets are 

then utilized to establish the relational-domain tasks and realize the implementation 

of knowledge transfer. Comparative experiments have been performed among 

different deep neural networks and well-annotated pathology images of two sizes, 

it is noticeably found that the proposed two-stage knowledge transfer scheme is 

effective to contribute to boosting the classification accuracy in line with results in 

various situations. 

Another type of knowledge to be transferred is generated based on automatic 

measurement with human understanding. By extracting pathology-correlative 

information from unannotated pathology images with handcrafted feature CILAC, 

and it was successful to use the feature vector space to separate images into several 

clusters, and employ these clusters as “medium-level” data to intermediately 

perform knowledge transfer to deep neural networks. Compared to tissue-wise 

“medium-level” data, when there is a serious shortage of manpower, it is possible 

to generate cell-wise “medium-level” data for knowledge transfer at almost zero 

cost. In the experiments, the stepwise scheme exerted adequate efficacy and 

applicability to various deep neural network models. 

  Furthermore, this research explored the extensibility that can be used for the 

proposed stepwise knowledge transfer scheme. The first exploration, which is 

related to the form of transfer scheme, introduced both tissue-wise data based on 

direct observation and cell-wise data based on automatic measurement with human 

understanding into the knowledge transfer process in order. As the result, the 

sequential knowledge transfer has brought further enhancement. In the second 

exploration, cell-wise data was extended from the gastric pathology image to other 

kinds of images. When lymph pathology images are concluded within the cell-wise 
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data together with gastric pathology image, performance of target task has shown 

slightly incensement. This result is considered meaningful to suggest for solutions 

of special practical cases when imbalance of the amount of pathological image data 

in different organs is faced.  

  Also, as this research has not reached, it is considered that detailed evaluation of 

the following elements is necessary when examining practical application based on 

the proposed scheme. (1) Relationship of the feature distribution and data amount 

between related domain and target domain. (2) Relationship between each layer of 

deep neural network and knowledge transferred (3) Optimization of hyper-

parameters. In particular, I think that there are many parts that human have not 

figured out yet about the evidences that can show the relevance between the weights 

of each layer of the deep neural network and the acquired knowledge, hence, if there 

is found a method that can accurately measure changes around that, it is believed 

that the most advisable information can also be quantified and obtained. 

  In addition, with regard to the scope of application of the proposed scheme, all 

discussions in this research were conducted around pathology image recognition. 

Analogous to pathology images, other methods use deep learning in medical image 

recognition may also encounter problems such as insufficient data and data 

imbalance. In a similar situation, the stepwise knowledge transfer scheme proposed 

in this paper may be deemed as a clue to solve the problem. For example, when a 

mammography image classification is coped with a deep learning based method, 

the images having similar property such as general chest radiographic images may 

be introduced as useful knowledge to improve the adaptability of the deep learning 

models. 
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