
A Study on Rank-aware Query Processing for
Multidimensional Data

March 2019

DONG YUYANG

A Study on Rank-aware Query Processing for
Multidimensional Data

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2019

DONG YUYANG

Acknowledgments

Firstly, I would like to express my sincerest gratitude to my supervisor, Professor Hiroyuki Kitagawa,
who has supported me throughout my thesis with his patience, motivation, enthusiasm, and immense
knowledge. I would also like owe my deepest gratitude to my co-supervisor, Lecturer Hanxiong Chen,
for making this research possible. His excellent guidance, caring, patience provide me an excellent
environment for doing research.

Besides my supervisors, I would like to thank all teachers and students in DSE Lab and KDE
Lab. Not only for their insightful comments and encouragement on my research, but also the helping
in my ordinary life of study in Japan.

I would like to thank the following committee members of this doctoral dissertation: Professor
Hiroyuki Kitagawa, Professor Toshiyuki Amagasa, Professor Kazuo Misue, Professor Tetsuji Satoh,
Professor Mikio Yamamoto, and Lecturer Hanxiong Chen, for their insightful comments and encour-
agement. Their questions and comments greatly encouraged me to widen my research from various
perspectives, and most importantly improve the quality of this dissertation

I would like to thank the Chronology of the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) and Japan Student Services Organization (JASSO) for the scholarship support.

Finally, I would like to thank my parents for their unconditional support. I would also like to
thank my dear wife, Li Xiang. She is a Ph.D. student of linguistics. She is my primary motivation
that finishing my Ph.D. degree.

iii

Abstract

Recently, information and communication technologies such as the 5G network are developing at
high speed. Due to the increasing popularity of Internet of Things, SNS service and other web
services, we witness exponential growth in the amounts of data on the web, and the growth will be
more explosive in the future.

Query processing is considered to be one of the fundamental and indispensable processes in
retrieving target data from such a big data source. In query processing, ranking is an important
technique which shows the relative significance of candidate results. Rank-aware query processing
evaluates source data with some similarity measure and produces ranking lists. It can be applied in
many fields such as data mining, information retrieval, pattern recognition, and machine learning.

We study the rank-aware query processing on multidimensional data in two type of data: static
marketing data and dynamic spatial keyword data. Three different query problems: (a) Aggregate
Reverse Rank Query; (b) Weighted Aggregate Reverse Rank Query and (c) Continuous Search on Dy-
namic Spatial Keyword Objects, are formulated and efficient query processing methods are proposed
in this dissertation.

For the static marketing data, we propose (a) Aggregate Reverse Rank Query that returns k
users who favor the given set of products more than other users. Three different aggregate rank
functions (SUM, MIN, MAX) are defined to target potential users in three normal views. To solve
Aggregate Reverse Rank Query efficiently, we devise a novel bound-and-filter framework to deal
with low-dimensional data. We also propose a grid index method for high-dimensional data. To
generalize Aggregate Reverse Rank Query, we define (b) Weighted Aggregate Reverse Rank Query,
which extends Aggregate Reverse Rank Query by adding weights for different inputted query prod-
ucts. With the help of weights, Weighted Aggregate Reverse Rank Query can handle any situations
of users having different preferences to the inputted query products. We adapts the bound-and-filter
solution to the Weighted Aggregate Reverse Rank Query. We also study a bounding approach to
optimize the filtering space in the bound-and-filter framework.

For dynamic spatial keyword data we propose a problem named (c) Continuous Search on Dy-
namic Spatial Keyword Objects. We design a novel grid-based index to manage both dynamic objects
and static queries. We also propose a novel strategy that refills one candidate object rather than

iv

reevaluating the entire top-k list. To take advantage of the cells in the grid-based index, we design a
buffer named PCL (partial cell list). PCL balances the trade-off between search process and buffer
maintenance to optimize efficiency.

For the above three query problems, we conduct sufficient experiments on both real-world data
and synthetic data to test the performance compared to the baseline methods and the state-of-the-art
methods. We also give theoretical analysis to confirm the superiorities of our proposed methods.

v

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Background . 1
1.2 Motivations and contirbutions . 2

1.2.1 Aggregate Reverse Rank Query . 3
1.2.2 Weighted Aggregate Reverse Rank Query . 3
1.2.3 Continuous Search on Dynamic Spatial Keyword Objects 4

1.3 Organization . 4

2 Preliminaries 5
2.1 Data models . 5

2.1.1 Multidimensional data . 5
2.1.2 User product model . 5
2.1.3 Spatial keyword model . 6

2.2 Similarities . 7
2.2.1 Euclidean distance . 7
2.2.2 Cosine similarity . 7
2.2.3 Jaccard similarity . 7
2.2.4 Dot product (inner product, weighted sum function) 7
2.2.5 Combined similarity . 8

2.3 Type of queries . 8
2.3.1 Ranking query . 8
2.3.2 Reverse ranking query . 8

2.4 Data indexing . 9
2.4.1 Spatial indices . 9
2.4.2 Textual indices . 11

vi

2.4.3 Hybrid indices . 12

3 Related Works 14
3.1 Rank-aware query processing on static data . 14

3.1.1 Ranking queries . 14
3.1.2 Reverse ranking queries . 16

3.2 Rank-aware query processing on dynamic data . 17
3.2.1 Ranking queries . 17
3.2.2 Reverse ranking queries . 18

4 Aggregate Reverse Rank Queries 19
4.1 Introduction . 20

4.1.1 Motivation . 20
4.1.2 Definitions . 22

4.2 Solution for low-dimensional data: Bound-and-filter framework 24
4.2.1 Bound phase: Bound queries . 24
4.2.2 Filter phase: Prune P data . 31
4.2.3 Filter phase: Prune W data . 34

4.3 Solution for high-dimensional data: Grid-index Method 40
4.3.1 Curse of the dimensionality . 40
4.3.2 Grid-index Method . 41
4.3.3 Theoretical analysis . 46

4.4 Experiments . 53
4.4.1 Data, algorithms and setting . 53
4.4.2 Experimental results . 54

4.5 Summary . 60

5 Weighted Aggregate Reverse Rank Queries 61
5.1 Introduction . 62

5.1.1 Motivation . 62
5.1.2 Challenges and contributions . 64
5.1.3 Definitions . 65

5.2 Solutions . 66
5.2.1 Straightforward Filtering Method (SFM) . 66
5.2.2 Extended Filtering Method (EFM) . 67
5.2.3 Optimal Bounding Method (OBM) . 70

5.3 Experiments . 74
5.3.1 Data sets and Metrics . 74

vii

5.3.2 Experimental Results . 75
5.3.3 Effectiveness . 80

5.4 Summary . 81

6 Continuous Spatial Keyword Search 83
6.1 Introduction . 84

6.1.1 Motivation . 84
6.1.2 Challenges and contributions . 85
6.1.3 Definitions . 87

6.2 Proposed system . 89
6.2.1 System overview . 89
6.2.2 Data structure: Grid-based index . 90
6.2.3 Affected queries finder . 92
6.2.4 Top-k refiller . 94

6.3 Discussion . 99
6.3.1 Theoretical analysis . 99
6.3.2 Batch process . 102

6.4 Experiments . 103
6.4.1 Setting . 103
6.4.2 Experimental Results . 104

6.5 Summary . 109

7 Conclusion and Future works 110
7.1 Conclusions . 110

7.1.1 Aggregate reverse rank query . 110
7.1.2 Weighted aggregate reverse rank query . 111
7.1.3 Continuous search on dynamic spatial keyword objects 111

7.2 Future works . 111
7.2.1 Query improvement with aggregate reverse rank queries 111
7.2.2 Continuous spatial keyword search on road network 112
7.2.3 Optimal trajectory planning for multiple spatial keyword top-k queries 112

Bibliography 113

List of Publications 123

viii

List of Tables

3.1 Related works and the position of the works in this dissertation. 14

4.1 Symbols and Notation . 23
4.2 Time cost for reading data and processing reverse rank queries with 6-dimensional data. 40
4.3 Observation of accessed MBRs of R-tree in query. 100K points indexed in R-tree,

each MBR has 100 entries. 47
4.4 Filtering performance of Grid-index with different distributions. |P | = 100K, |W | =

100K, d = 6, n = 32 . 53

5.1 Symbols and Notation . 65
5.2 The complexities of the methods. 74

6.1 Symbols and Natation . 88
6.2 Summary of the operations for PCL maintenance. 101
6.3 Datasets statistics . 103

ix

List of Figures

1.1 Rank-aware query processing. 2

2.1 An example of user product model. 6
2.2 An example of spatial keyword model. 6
2.3 An example of spatial indices with points in 2-dimensional data space. 10
2.4 An example of inverted file and bitmap. 11
2.5 IR-tree: a hybrid structure of R-tree and inverted file. 13

4.1 Example of reverse rank query and aggregate reverse rank query. 21
4.2 Geometric view of rank in 2-dimensional data, ARank(w,Q) = 3 + 2 + 5 = 10,

ARankM (w,Q) = 5, ARankm(w,Q) = 2. 24
4.3 A 2-dimensional example of search space (gray) and filtering space (blue) with basic

MBR(Q) bounding. 25
4.4 A 2-dimensional example. w

(1)
t = w5, w(2)

t = w1, and Qu = {q1, q3}, Ql = {q2},
Q.low =MBR(Ql).low = q2, Q.up =MBR(Qu).up 27

4.5 Search space of P . 28
4.6 The score ranges against the whole Q, Q1 and Q2 . 28
4.7 Two ways to reduce Q. 30
4.8 Query points in convex hull vertices and corner MBRs. Necessary queries for MAX

function: {q2, q4}, for MIN function: {q5, q6}. 31
4.9 The sub-spaces of BelowQ, InQ, and AboveQ based on Q.low and Q.up with a single

wi in the 2-dimensional space of dataset P . 32
4.10 The sub-spaces of BelowQ, InQ, and AboveQ based on Q.low and Q.up with an MBR

ew in the 2-dimensional space of dataset P . 34
4.11 The difference of score bounds created by MBR and real score bounds. 37
4.12 Images of 2-dimensional (left) and 3-dimensional (rigth) cone+ tree, respectively. . . 38
4.13 Equally dividing value range into 4 partitions, allocating real values into approximate

intervals and getting the approximate vector p(a) and w(a). 41
4.14 4× 4 Grids for points and weighting vectors, mapping p(a) and w(a) onto Grids. . . . 42

x

4.15 6-bit string for compressing the p to p(a). 44
4.16 Two kinds of Filtering areas (gray) of R-tree. 47
4.17 Grid-index scores distribution in dimension d = 4, partitions n = 4, |P | = 100K, |W |

= 100K. 50
4.18 (a): The normal distribution of point scores N(µ′, σ′) and the largest probability

interval (gray). (b): Φ(·) of the SND showing 1−
∫ α
−α · = 2Φ(α). 51

4.19 Comparison results of varying d on UN data with ARR query (SUM function), |P | =
|W | = 100K, all with |Q| = 5, k = 10. 56

4.20 Comparison results of varying d on UN data with ARR query (MAX function), |P |
= |W | = 100K, all with |Q| = 5, k = 10. 56

4.21 Comparison results of varying d on UN data with ARR query (MIN function), |P | =
|W | = 100K, all with |Q| = 5, k = 10. 56

4.22 Comparison results of varying d on CL data with ARR query (SUM function), |P | =
|W | = 100K, all with |Q| = 5, k = 10. 57

4.23 Comparison results of varying d on AC data with ARR query (SUM function), |P | =
|W | = 100K, all with |Q| = 5, k = 10. 57

4.24 Comparison results of varying |Q| on UN data with ARR query (SUM function), |P |
= |W | = 100K, all with d = 3, k = 10. 57

4.25 Comparison results of varying k on CL data with ARR query (SUM function), |P | =
|W | = 100K, all with |Q| = 5, d = 3. 58

4.26 Scalability on varying |P | and |W |, P: UN data, W: UN data, all with k = 10, |Q| = 5,
d = 3. 58

4.27 Comparison results of varying k on AMAZON data with ARR query (SUM function),
W : UN data, |W | = 100K, all with |Q| = 5. 58

4.28 Comparison results of varying |Q| on NBA data with ARR query (SUM, MAX, MIN
functions), W : UN data, |W | = 100K, all with k = 10. 59

4.29 Comparison results of high dimensional UN data with ARR query (SUM function),
|P | = |W | = 100K, all with |Q| = 5, k = 10. 59

5.1 WARR query results for a bundle of p1 and p2 with different weights. 63
5.2 Geometric view of the rank of q and a tree-based methodology 66
5.3 The half-spaces of H(w

(i)
t , q

(i)
l), i = 1, 2, ..., d. The intersection point is the optimal

lower bound of Q for an arbitrary w ∈W . 71
5.4 Bound-and-filter in OBM. (a) Finding the optimal bounds Qlowopt and Qupopt. (b) Com-

paring the filtering space of the previous Q.up(Q.low) and optimal bounds. 73
5.5 Comparison results of varying d (2-5) on UN data P , W :UN, |P | = 20K, |W | = 200K,

all with |Q| = 5, k = 10. 75

xi

5.6 Comparison results of varying d (2-5) on AC data P , W : UN, |P | = 20K, |W | =
200K, all with |Q| = 5, k = 10. 76

5.7 Comparison results of varying d (2-5) on CL data P and W , |P | = 20K, |W | = 200K,
all with |Q| = 5, k = 10. 76

5.8 Comparison results of varying k (10-50) on NBA data, |P | = 20960, |W |: UN, |W | =
100K, all with |Q| = 5, d = 5. 76

5.9 Comparison results of varying k (10-50) on AMAZON data, |P | = 208,321, |W | =
1,689,188, all with |Q| = 5, d = 2. 77

5.10 Comparison results of varying k (10-50) on UN data P and W , |P | = 20K, |W | =
200K, all with |Q| = 5, d = 3. 77

5.11 Comparison results of varying |Q| (5-15) on UN data P and W , |P | = 20K, |W | =
200K, all with k = 10, d = 3. 77

5.12 Scalability of varying P (100K-1M) on UN data P and W , |P | =100K, all with k =
10, d = 3, |Q| = 5. 78

5.13 Scalability of varying W (100K-1M) on UN data P and W , |W | = 100K, all with k
= 10, d = 3, |Q| = 5. 78

5.14 Comparison results of different distribution on Q, |P | = 20K, |W | = 200K, all with
k = 10, d = 3. |Q| = 5 . 78

5.15 Precision of ARR and WARR on AMAZON data. 81

6.1 E-coupon recommendation system. 85
6.2 Priorities of cells with spatial-only similarity. 87
6.3 The system and flow of the process: Grid-based index (Section 6.2.2); Affected queries

finder (Algorithm 11); Top-k refiller (Algorithms 12 and 15) and PCL buffer (Section
6.2.4). 90

6.4 Grid-based index, inner structure of a cell, and tables 91
6.5 Examples of CL (Section 6.2.4) and PCL (Section 6.2.4) buffers. 96
6.6 Four cases of a dynamic object and a query. 97
6.7 Area of each case. 102
6.8 TWITTER data. 105
6.9 Overall processing. 105
6.10 Affected queries finder module. 106
6.11 Top-k refiller module. 106
6.12 Varying k. 107
6.13 Varying number of keywords in queries. 107
6.14 Varying number of objects. 108
6.15 Varying number of queries. 108
6.16 TWITTER data. 109

xii

Chapter 1

Introduction

In this chapter, we first provide background on rank-aware query processing with multidimensional
data. We then move on to describe the motivations and contributions of this dissertation. Finally,
we outline the organization of this dissertation.

1.1 Background
We live in the era of big data, and we can all easily see how big data processing techniques are
changing our daily lives. Recently, information and communication technologies such as the 5G
network are developing at high speed. Due to the increasing popularity of Internet of Things, SNS
service and other web services, we witness exponential growth in the amounts of data on the web,
and the growth will be more explosive in the future. For example, there were over 2.27 billion
monthly active users on Facebook in 2017, creating 2.5 trillion posts 1; Amazon had over 300 million
users and had made over 178 billion sales in 2017 2.

Making use of this big data evolves our daily lives. Now we can access limitless information
anytime and everywhere via the internet from the source of big data. We can type our question on
Google and get answers from the big data source in less than 1 second. Web services can also take
advantage of the big data to enrich their business. According to people’s preferences and behaviors
on the web, web services can also quickly recommend related products, videos, restaurants, friends,
and so on. All these convenient things are due to the development of rank-aware query processing
technologies.

Rank-aware query processing (e.g., [45, 46, 48]) is considered to be one of the fundamental and
indispensable processes in retrieving target data from such a big data source. It can be applied in
many fields such as data mining, information retrieval, pattern recognition, and machine learning. In

1https://www.wordstream.com/blog/ws/2017/11/07/facebook-statistics
2https://expandedramblings.com/index.php/amazon-statistics/

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Rank-aware query processing.

rank-aware query processing, the real-world information always modeled as multidimensional data
to react to the variety of attributes. For example, a product is represented as multidimensional data
with its price, rating, size and so on; a tweet post is represented as multidimensional data with its
context, date, geo-tag and so on.

Figure 1.1 shows the concept of rank-aware query processing. A client issues a rank-aware query
by giving query data which describes what kind of data is needs. Then, it is required to compute
similarities among source data (or we usually say objects) and the query data (Different similarity
measure is introduced in Section 2.2). Finally, the ranking lists of candidate results are produced
based on similarities and are returned to the client. It is worthy to note that ranking is an important
technique which shows the relative significance of the candidate results. Therefore, we can easily
select the candidate data with the priority of a ranking list. Usually, an integer value k is specified
as the size of the result, in other words, the number of data to retrieve. For example, a k Nearest
Neighbor query (e.g., [76]) is a basic rank-aware query processing problem that retrieves k closest
data objects to the specific query data.

1.2 Motivations and contirbutions
Depending on the type of objects, the research of rank-aware query processing can divide into two
parts: retrieving static data and retrieving dynamic data. In this dissertation, we track the challenges
on both static data and dynamic data with three rank-aware query processing problems.

For static data, we focus on studying rank-aware query processing on marketing data. The
marketing data always modeled as a static dataset since the attributes of products cannot be easily
changed. We study the Aggregate Reverse Rank Query and Weighted Aggregate Reverse Rank Query
on processing static marketing data. Regarding dynamic data, we focus on studying rank-aware
query processing on GIS data. The moving objects in GIS data always update their attributes (i.e.,
location) in real-time. We study the Continuous search on Dynamic Spatial Keyword Objects on

CHAPTER 1. INTRODUCTION 3

processing dynamic GIS data.

1.2.1 Aggregate Reverse Rank Query

For marketing data, many research papers [25,47,68,82,85,86,106] formalized a user product model
(details in Section 2.1) to represent the products and users’ preferences in marketing. Finding
products based on a user is a basic application of the search engine or recommendation system. This
is a user-view problem that was formalized and named as top-k preference query [9, 25, 43, 47, 82].
In contrast to the above top-k preference query, many applications such as marketing analysis or
advertisement systems require a problem that sits at the manufacturer-view level, for example,
targeting users for a newly released product. [68, 85, 86, 106] studied this problem and named it
reverse ranking query.

However, in the manufacturer-view, besides targeting users for a single product, there is also
a huge demand for targeting users for a set of products. Product bundling (or package selling) is
an important marketing strategy that bundles multiple products and selling them together. For
example, the cable television industry often bundles various channels into a single tier to expand
the channel market.

Unfortunately, the existing research only focuses on targeting users for a single product and
their approaches cannot be used for product bundling cases. For this reason, we propose a problem
named aggregate reverse rank query which finds users for product bundling in Chapter 4. Three
different aggregate rank functions (SUM, MIN, MAX) are defined to target potential users. To
solve aggregate reverse rank query efficiently, we devise a novel bound-and-filter framework to with
low-dimensional data. We also propose a grid index method for high-dimensional data. In the
bound-and-filter framework, queries are bounded to calculate an approximate aggregate rank value
efficiently, then we use tree-based structure to filter data in processing. With high-dimensional data,
we propose a grid index method which uses pre-calculated score bounds to reduce multiplications in
the simple scan.

1.2.2 Weighted Aggregate Reverse Rank Query

Aggregate Reverse Rank query is an essential tool for finding potential customers for a given product
bundle. However, it has a limitation that it can only deal with a part of scenario in which ranks are
evaluated in the SUM, MIN and MAX aggregate functions. Therefore, it is more accurate to add
weights for different products in the bundle and evaluate them with a weighted function.

To generalize the query problem of the aggregate reverse rank query, we define a weighted
aggregate rank query that extends the previous aggregate rank query by adding weights to different
inputted query points. With the help of weights, weighted aggregate reverse rank query can handle
situations where users have different preferences to the inputted query products.

CHAPTER 1. INTRODUCTION 4

We develop three solutions called SFM, EFM and OBM. SFM is a straightforward method that
uses a spatial R-tree. EFM adapts the bound-and-filter framework to the additional weights. We
also study the filtering space in the bound-and-filter framework and propose an optimal bounding
approach that is proven to find the tightest bound of Q. The OBM is a solution based on this
optimal bound.

1.2.3 Continuous Search on Dynamic Spatial Keyword Objects

For GIS data, a spatial keyword model (details in Section 2.1) is formalized for the data that has
both location attribute and textual attribute such as geo-tag tweets. Many research on continuous
spatial keyword queries [13, 14, 17, 53, 57, 60, 90, 91] has been studied for continuous searching users
for a business.

Although different types of monitor systems have been studied, they only consider the cases of a
user with a dynamic location attribute and a static keyword attribute. However, it is more realistic to
set a dynamic spatial keyword data like a person changes the content on his/her cellphone (keyword
attribute) while moving around (location attribute). It is also a huge demand for monitoring systems
to response to the dynamic interested keywords from users.

Based on this, we define a novel query process problem, which continuously searches for the
top-k dynamic spatial keyword objects in Chapter 6. We also propose a solution system for efficient
processing the problem of dynamic spatial keyword search. In this system, to overcome the challenge
of indexing, we design a novel grid-based index to manage both dynamic objects and static queries.
The grid-based index can support rapid and economical updates of dynamic objects. In addition,
queries are indexed with a sophisticated strategy of influential circles. Queries affected by a dynamic
object can be quickly identified. For the second challenge of the top-k reevaluation, we propose a
novel strategy that refills one candidate object rather than reevaluating the entire top-k list. To
take advantage of the cells in the grid-based index, we design a buffer named PCL (partial cell list).
PCL balances the trade-off between search process and buffer maintenance to optimize efficiency.

1.3 Organization
The rest of this dissertation is organized as follows. Chapter 2 outlines the basic concepts and
definitions of rank-aware query processing on multidimensional data, as well as data modeling and
data indexing. Chapter 3 describes the related works and highlights the position of the works in this
dissertation. Chapter 4 introduces the proposed aggregate reverse rank query and efficient solutions
on both low dimensional data and high dimensional data. Chapter 5 proposes a weighted aggregate
reverse rank query and offers solutions. Chapter 6 proposes a continuous spatial keyword search
on dynamic objects, as well as an efficient solution system. Chapter 7 gives a summary for this
dissertation and remarks the future works.

Chapter 2

Preliminaries

In this chapter, we first introduce a formal definition of multidimensional data, and two data models
studied in this dissertation. Then, we introduce different similarity functions, as well as the dif-
ferent types of query processing. We also introduce some popular indexing structures used in this
dissertation.

2.1 Data models

2.1.1 Multidimensional data

In general, any data (real-world information) with multiple numerical attributes can be described
as a multidimensional vector that can be viewed as a point or object in a multidimensional space.
In this dissertation, we assume that a d-dimensional data p is composed of d nonnegative numer-
ical attributes, i.e., p = (p[1], p[2], p[3], ..., p[d]). Here, d is an integer value that represents the
dimensionality. p[i] refers to the attribute value of p in the ith dimension, where i ∈ {1, 2, 3, ..., d}.

2.1.2 User product model

Many research papers [9,25,43,47,68,82,85,86,106] formalized the user product model to represent
the products and users’ preferences in marketing. In addition to E-commerce, the concept of the user
product model can also be applied to a wide range of applications such as dating and job-hunting
services.

There are two types of data sets P and W in the user product model. P represents a set of
products, and W represents a set of users. Both P and W are in a d-dimensional space. Each
product in the product dataset p ∈ P is a d-dimensional vector that contains d nonnegative values.
p is represented as: p = (p[1], p[2], ... , p[d]) where p[i] is the attribute value of p in the ith
dimension. The preference w ∈W is also a d-dimensional weighting vector, and w[i] is a nonnegative

5

CHAPTER 2. PRELIMINARIES 6

Figure 2.1: An example of user product model.

weight that evaluates the ith attribute of products, where
∑d
i=1 w[i] = 1. Many research papers

carry out a weighted sum function to calculate the score of a product p to a preference w by
f(w, p) =

∑d
i=1 w[i] · p[i]. Figure 2.2 shows an example of the user product model.

2.1.3 Spatial keyword model

The spatial keyword model is formalized for the data that has both geo-tag and textual contents.
GPS devices (e.g. smartphone) generate huge spatial keyword data such as geo-tag tweets, blogs,
and reviews. This kind of data is named as spatial keyword data. Many location-based services
require querying the spatial keyword data.

Let O be a set of spatial keyword objects (users) and Q be a set of business or POIs (query
points). Each spatial keyword object o ∈ O is defined as O = (o.ρ, o.ψ, o.t). o.ρ is the location of
a user with a 2-d coordinates (x, y) in geography space. o.ψ is a set of keywords and o.t represents
a timestamp. Similarly, each query point q ∈ Q is defined as a q = (q.ρ, q.ψ, q.η). where q.ρ is the
location, q.ψ is a set of keywords, and q.η is the query condition.

Figure 2.2: An example of spatial keyword model.

CHAPTER 2. PRELIMINARIES 7

2.2 Similarities
A rank-aware query processing requires to calculate the similarity between query data and data
source. Assume that there are two multidimensional data represented as vectors p = (p[1], p[2], p[3], ..., p[d])

and q = (q[1], q[2], q[3], ..., q[d]), we introduce how to calculate the similarity between them with dif-
ferent similarity measures.

2.2.1 Euclidean distance

Euclidean distance (or Euclidean metric) is the straight-line distance between two points. In Eu-
clidean d-space (d is the dimensionality), the distance from p to q, denoted as dist(p, q) is:

dist(p, q) =

√√√√ d∑
i=1

(q[i]− p[i])2 (2.1)

For the similarity view, we need to convert the distance to 1 − dist(p, q) to accord with the
intuition of similarity that the larger value means more similar.

2.2.2 Cosine similarity

The cosine similarity between two vectors (or two documents) is a measure calculating the cosine of
the angle between them. The vectors usually represent the word count (tf-idf) of each document.
In a d-dimensional vector space, the cosine similarity between p and q, denoted as cos(p, q) is:

cos(p, q) =
p · q
||p||||q||

=

∑d
i=1 p[i]q[i]√∑d

i=1 p[i]
2

√∑d
i=1 q[i]

2

(2.2)

2.2.3 Jaccard similarity

Jaccard similarity is a term coined by Paul Jaccard, measures similarities between two sets. It is
defined as the size of the intersection divided by the size of the union of two sets. For two sets P
and Q, the Jaccard similarity jac(P,Q) is:

jac(P,Q) =
|P ∩Q|
|P ∪Q|

=
|P ∩Q|

|P |+ |Q| − |P ∩Q|
(2.3)

2.2.4 Dot product (inner product, weighted sum function)

For two vectors p and q, the dot product is equal to the length of the projection from one to the
other. A simple weighted function is equal to the dot product (inner product) of two vectors, where
one of the vectors is the data we want to evaluate, and the other is the weights.

CHAPTER 2. PRELIMINARIES 8

f(p, q) = p · q =
d∑
i=1

p[i]q[i] (2.4)

2.2.5 Combined similarity

In some cases, it may require to combine two different similarities. For the query processing in
the spatial keyword model, we need to retrieve the similar data on spatial similarity and keyword
similarity. Many research [14, 90, 95] propose a weighted sum function SimST (.) to combine these
two different similarity with a smoothing parameter α:

SimST (p, q) = α · SimS(p, q) + (1− α) · SimT (p, q) (2.5)

SimS(.) denotes the spatial similarity and SimT (.) represents keyword similarity. Depends on
the problem settings and applications, we use different similarities to combine.

2.3 Type of queries
We classify the query types as ranking query and reverse ranking query.

2.3.1 Ranking query

The type of ranking query is a kind of query processing that retrieves objects with respect to the
similarity. Specifically, inputting a query point and getting a list of objects ranked by the similarities
between query point and each object. For example, kNN query [19,42,76] is a ranking query which
inputs a single query point and finds the k nearest objects ranking by distance. In the same way,
the top-k queries with different similarity functions [9, 25, 43, 47, 82] also belong to ranking query.
Some variants require to input multiple query points then find objects with an aggregate similarity,
such as aggregate nearest neighbor query [71], group nearest neighbor query [70] and group nearest
group query [27]. They are also ranking query since they also rank objects with a kind of similarity.
To answer a ranking query, we only need to execute a one-time kNN like processing. Therefore,
o(N) is the worst computational complexity for solving a ranking query where N is the cardinality
of objects.

2.3.2 Reverse ranking query

The type of reverse ranking query is a reverse version of the ranking query that retrieves objects
with respect to their ranking query results. Specifically, inputting a query point and getting a list
of objects, each of the object contains the inputted query point in their ranking query results. For
example, reverse kNN query [11,78,80,81,99,100] is a kind of reverse ranking query which retrieves

CHAPTER 2. PRELIMINARIES 9

the objects for a query point, and the objects treat this query point as their kNN result. Some reverse
ranking queries focus on ranking value instead of similarity value, they find objects and rank them
with respect to the ranking relationship between query point and objects. For example, the reverse
k-rank query [106] returns a list of k objects, where each object in this list ranks the inputted query
point higher than the objects which are not in this list, and the list is ranked by the ranking value
between query point and objects. To answer a reverse ranking query, we need to execute multiple
times of kNN like processing. Therefore, o(N2) is the worst computational complexity for solving a
ranking query since we need to execute a ranking query for every object, and N is the cardinality
of objects.

2.4 Data indexing
In this section, we introduce some index structures for multidimensional data. We first introduce
several spatial indices which manage multidimensional data with their spatial attributes. We also
introduce the textual indices and hybrid indices for the application of a spatial data binding with a
non-spatial attribute (e.g. a set of keywords).

2.4.1 Spatial indices

To manage the multidimensional data, we always use the spatial indices which can group similar
data with the feature of spatial distance. Here we introduce several spatial indices which are used
in this dissertation or other related works.

R-tree. R-tree [41] was proposed by Antonin Guttman in 1984 and has found significant use in
both theoretical and applied contexts. R-tree is a balanced search tree, it groups nearby objects and
represents them with their minimum bounding rectangle (MBR). Specifically, each internal node in
R-tree represents a group of objects with an MBR, and its children are smaller MBRs representing
the subsets of these objects. The data of the objects are indexed in the leaf node on the lowest
level of R-tree. Figure 2.3a shows an example of the R-tree structure in a 2d space. Besides the
conventional R-tree, many variants were also proposed such as R*-tree [2] and R+-tree [77] with
different strategies on avoiding overlapping nodes.

Quad-tree. A Quad-tree [38] is a 2-dimensional space partition structure in which each internal
node has exactly four children. Unlike the R-tree, Quad-tree is a non-balanced tree structure and
data can be indexed at any level. Normally, the nodes of Quad-tree do not change when Inserting or
deleting an object, unless deciding to delete a whole node or split it with four children nodes. There-
fore, comparing to the data-partition indices (e.g. r-tree) which may incur an expensive structure
updating when updating objects, Quad-tree is insensitive to the dynamic objects so it is a proper
way to manage them. Figure 2.3b shows an example of a Quad-tree structure in a 2d space.

CHAPTER 2. PRELIMINARIES 10

(a) R-tree structure.

(b) Quadtree structure.

(c) Ball-tree structure.

(d) Grid structure.

Figure 2.3: An example of spatial indices with points in 2-dimensional data space.

CHAPTER 2. PRELIMINARIES 11

Figure 2.4: An example of inverted file and bitmap.

Ball-tree. A Ball-tree [69] is a binary tree in which every node is a d-dimensional hypersphere
(or ball) containing a subset of the objects from a higher level. When splitting a ball, each object is
associated with a closer ball. Figure 2.3c shows an example of a ball-tree structure in a 2d space.

Grid. A Grid is a simple structure that divides a space into equal size cells. Objects are
indexed into a covered cell. Because grid structure contains equal width cells with only one level,
the complexity of insert and deletes data is o(1). Moreover, a grid structure has a fixed size (i.e.,
the number of cells in a grid) after the construction, so there is no structure update. Therefore,
grid structure is fit for the applications of indexing dynamic objects (moving objects). On the other
hand, since we can not change the number of cells in a grid, we need to define the size carefully with
a theoretical underpinning. Figure 2.3d shows an example of a grid structure in a 2d space.

Other indices. There are many other spatial indices. k-d tree [5] is a binary tree in which
every leaf node is a k-dimensional point. Every non-leaf node can be thought of as implicitly
generating a splitting hyperplane that divides the space into two part. X-tree [6] investigated and
demonstrated the deficiencies of R-tree and R*-tree when dealing with high-dimensional data. As an
improvement, a superior index structure named X-tree was proposed. X-tree uses a split algorithm
to minimize overlap and utilizes the concept of super-nodes. M-tree [22] is similar a to the R-tree. It
is constructed using a metric and relies on the triangle inequality for efficient range and rank-aware
queries. Space-filling curves are studied to reduce the dimensionality of the space and manage data
with a sequence, the most representative curves are Hilbert curve [7] and Z-order curve [64].

2.4.2 Textual indices

When indexing objects with respect to their non-spatial attributes (mainly keyword attributes), we
usually take advantage of following structures to manage objects. Figure 2.4 shows the example of

CHAPTER 2. PRELIMINARIES 12

textual indices.
Inverted File. For a specific keyword, an inverted list is a sequence of objects which contain

this keyword. As the example shown in Figure 2.4, the inverted list of the keyword “fish” contains
o1 and o3. An inverted file is a set containing all inverted lists for a set of keywords. The purpose
of an inverted file is to allow fast keyword matching search.

Bitmap. Like the example in Figure 2.4, a bitmap is a table that collects the presence and
absence of each keyword for all objects. For some application, an inverted bitmap is also used.

2.4.3 Hybrid indices

For the spatial keyword model we mentioned before, it is inefficient if we search one attribute first
then (search) the other. In other words, it is inappropriate to use two independent spatial index and
textual index. Many research propose hybrid indices that combined a spatial index and a textual
index for quick searching.

We introduce a representative IR-tree to give an image of hybrid spatial keyword index. The
IR-tree [24,93] links each node of the R-tree with a pointer to an inverted file that describes keyword
information of the objects’ current node. Figure 2.5 shows an example of IR-tree. Note that the
inverted file also contains the frequency of the keywords, which is widely used in the frequency-aware
applications. When traversing an IR-tree, we can check the spatial attribute and keyword attribute
simultaneously for the objects indexed in a node.

Similar to the IR-tree structure, there are many others hybrid indices that tightly combined
a spatial part and a keyword part. The IR2-tree [37] integrates a bitmap into each R-tree node.
[14,90] proposed structures that combine each Quad-tree node with an inverted file. [16] combines an
inverted file with a Hilbert curve. [21] optimizes the structure of the Hilbert curve with an inverted
file. The SFC-QUAD index [98] intergrades inverted file with Z-curve. [50] uses an inverted file to
manage sequences of cells from a grid structure, it can handle spatial attribute and keyword attribute
simultaneously.

CHAPTER 2. PRELIMINARIES 13

Figure 2.5: IR-tree: a hybrid structure of R-tree and inverted file.

Chapter 3

Related Works

In this chapter, we survey the related works on rank-aware query processing on multidimensional
data. We divide the related works with two groups: static data and dynamic data. In each group,
we partition related works with ranking queries and reverse ranking queries. Table 3.1 is an overview
that compares the works in this dissertation to the existing works with different taxonomies.

Type of Data Type of Queries
Ranking Query Reverse Ranking Query

Static Data Preference top-k [9, 25,43,47,82] Reverse kNN [51,56,99]
kNN [19,42,76] Reverse top-k [85–87]

Group kNN [27,70,71] Reverse k-rank [68,106]
Top-k spatial keyword [8, 15,23,58] Aggregate reverse. Chpt.4

Weighted aggregate. Chpt.5
Dynamic Data Continuous kNN [66,67,97,105] Reverse NN for moving objects [4]

Moving Top-k spatial keyword [40,94,95] Monitor reverse top-k [104]
Publish/Subscribe [14,17,57,90] Moving reverse top-k [88]

Dynamic spatial keyword. Chpt.6

Table 3.1: Related works and the position of the works in this dissertation.

3.1 Rank-aware query processing on static data

3.1.1 Ranking queries

kNN queries

Given a query point q and a point dataset P , kNN query returns k nearest points to q from the
dataset P . kNN query is a fundamental problem in many fields such as database management
system, data mining and information retrieval. Many research were studied to solve kNN query

14

CHAPTER 3. RELATED WORKS 15

efficiently, one popular solution is the R-tree based processing [19, 42, 76]. R-tree [41] is a spatial
index which groups close points in space with the minimum bounding rectangle (MBR), and manages
MBRs with a tree structure. Nick et al. [76] first proposed an R-tree based method for processing the
(k)NN query with geographic information systems (GISs). Hjaltason et al. [42] proposed a best-first
method with R-tree to solve (k)NN query.

Group kNN queries

As real-life applications are not satisfied with only evaluating the relationship between single points
like conventional kNN query. Various kinds of variants of group version NN query have been studied.
The difference point is to input a group of query points (or multiple query points) instead of a single
point in classic kNN query. Tao et al. developed aggregate nearest neighbor query (ANN) [70,71] to
retrieve points with the smallest aggregate distance to multiple query points in metric space. ANN
inputs a group of query points Q and aims to find a nearest single point which has the smallest
aggregate distance to Q. Yiu et al. [103] process ANN query in road networks with the graph
structures. Deng et al. [27] proposed a group nearest group query (GNG), which is a spatial query
returning a group of points. Choi et al. [20] indicated that the conventional kNN query may not
give the best answer especially when the resulting set of k neighbors need to be clustered. They
proposed a group version of kNN query named Nearest Neighborhood Query (NNH), it can return a
nearest cluster for a given query point q.

Top-k preference queries

Top-k query (ranking query) has been studied extensively for decades and there are plenty of variants
of top-k queries. Many works, such as [9, 25, 43, 47, 82], concern preference top-k queries with a
linear combination similarity function. Many applications are designed for returning a limited set of
ranked products on individual user preferences, the most basic of which is the top-k query. Here, we
summarize some important work in ranking queries. Chang et al. proposed the Onion technique to
pre-process and index data points in layers with convex hulls [9] for linear optimization queries; the
onion-based index can help to filter data and compute efficiently. A tree-based index approach, which
processes the top-k queries with a branch-and-bound methodology, has been studied in [79]. Fagin’s
algorithm [35] and the threshold algorithm (TA) [36] were proposed to compute top-k queries over
multiple sources, where each source has only a subset of attributes. Other variants of the threshold-
based algorithms for top-k queries were investigated in [1, 10, 61]. Ihab F. Ilyas et al. [47] gave
an important study that describes and classifies top-k query processing techniques in relational
databases. Mouratidis et al. [65] gave a summary of the geometric approaches for (reverse) top-k
queries.

CHAPTER 3. RELATED WORKS 16

Top-k spatial keyword queries

Research on searching geo-textual objects with query locations and keywords are widely studied.
Various works have retrieved spatial keyword objects through different types of queries such as
boolean matching [24] or a combined score function evaluation [75]. The survey paper [15] and
tutorials [23,58] give sufficient summaries of different problem settings and techniques in the spatial
keyword search.

Other spatial keyword queries

There are also many other types of spatial keyword queries for different applications. Cao et al. [8]
propose the spatial group keyword queries that find a group of objects cover all keywords and has
a close aggregate distance. Lu et al. [56] propose the reverse spatial and textual k nearest neighbor
query which retrieves the objects that have the query object as one of their k most similar objects
with regards to both spatial and keyword similarities. Li et al. [52] propose the direction-aware
spatial keyword query. Given a spatial point, a set of keywords and a direction vector. Direction-
aware spatial keyword query finds k closed objects in the query direction and contains all keywords.

3.1.2 Reverse ranking queries

Reverse kNN query

Given a query point q and a point dataset P , reverse kNN query retrieves the points from P that
treat q as the kNN. Korn et al. [51] proposed the reverse nearest neighbor (RNN) query. For reverse
k-nearest neighbor (RKNN) queries, Yang et al. [99] carried out an in-depth investigation that
analyzed and compared notable algorithms in [11, 78, 80, 81, 100]. Besides nearest neighbor, Yao et
al. [101] proposed the reverse furthest neighbor (RFN) queries to find points in which the query
point is deemed to be the furthest neighbor. Wang et al. [89] extended the RFN to RkFN queries
for an arbitrary value of k and proposed an efficient filter in the search space. Reverse skyline query
returns a user based on the dominance of competitors’ products [26,54]. The preference of a user is
described as an ideal product point in this query. However, preferences are represented as weighting
vectors in reverse rank query.

Reverse top-k queries

In marketing analysis, such as identifying competing products or targeting potential customers,
many variants of rank-aware queries have been widely researched [28–33, 85–87, 106]. The converse
of rank queries, called reverse rank queries, have been studied extensively. Reverse rank queries
evaluate the rank of a query product based on user preferences and retrieve the top-k users. One
of these, reverse top-k query, has been proposed in order to find users who treat a query product
as their top-k product [85, 86]. For an efficient reverse top-k process, Vlachou et al. [87] proposed

CHAPTER 3. RELATED WORKS 17

a branch-and-bound algorithm using a tree-based method with boundary-based registration. [18]
proposed an efficient method to answer two dimensional reverse top-k queries. Gao et al. [39, 55]
explore the why-not and why questions on reverse top-k queries, owing to its importance in multi-
criteria decision making. Xiao et al. [96] models probabilistic reverse top-k queries over uncertain
data in both monochromatic and bichromatic cases.

Reverse k-rank queries

Zhang et al. indicated that reverse top-k query in [85, 86] always returns an empty set for less-
popular products. To ensure 100% coverage for any given query product, [106] proposed the reverse
k-rank query, to find the top-k user preferences with the highest rank for a given object among all
users. Mouratidis et al. [68] proposed maximum rank query, which can be seen as a monochromatic
version of reverse k-rank query. Qian et al. [73] applied reverse k-rank query to large graphs.

3.2 Rank-aware query processing on dynamic data

3.2.1 Ranking queries

Continuous kNN queries

Our work is related to the problem of continuously searching for the spatial k nearest neighbor
(kNN) queries over moving objects. This kind of research [66, 67, 97, 105] aims to keep the kNN
moving objects to a fixed location (query point). Mouratidis et al. [66] proposed a grid index and
the concept of the influence region which enlighten us to design a grid-based index for both dynamic
spatial keyword objects and queries. However, the above solutions do not consider the keyword
similarity so these techniques cannot be extended to our research.

Continuous top-k preference queries

Regard to the continuous top-k preference query on stream data, Das et al. [25] proposed a problem of
supporting independent top-k queries over streams. Yu et al. [104] studied the problem of processing
a large scale of continuous top-k queries, which maintains different ranking lists of multi-attribute
objects for different preference queries. Hou U et al. [83] studied the problem of monitoring the
document stream and continuously reports to each user the top-k documents that are most relevant
to her keywords.

Moving top-k spatial keyword queries

An example of a “static objects, moving query” is keeping top-k gas-stations for a driving car.
Literally, in this continuous query, the query is moving but the objects are unaltered. Wu et al.

CHAPTER 3. RELATED WORKS 18

first proposed a continuously moving top-k spatial keyword (MkSK) query [94, 95] using a filtering
technique of safe-region on multiplicatively weighted Voronoi cells. Huang et al. [44] pointed out that
the ranking function in [95] is ad-hoc. Hence, they studied MkSK queries with a general weighted
sum ranking function and proposed a hyperbola-based safe-region to filter objects. In the above
research, the spatial similarity is evaluated using the Euclidean distance. On the other hand, Zheng
et al. [107] studied a continuous boolean top-k spatial keyword query over a road network with the
techniques of the graph. Guo et al. [40] studied a continuous top-k spatial keyword query with a
combined ranking function.

Top-k Spatial-keyword Publish/Subscribe

Another type of research of continuous search on spatial keyword objects is the Publish/Subscribe
system. Users register their interests as continuous queries into the Publish/Subscribe system,
then new streaming objects are delivered to relevant users. Similar to a snapshot spatial keyword
search, the research topic is also separated by the matching function. Boolean matching is studied in
[13,53,91], while the combined value between spatial similarity and keyword relevance are considered
in [14, 90]. R. Mahmood et al. [59] proposed a frequency-aware structure to index spatial keyword
objects. Besides processing continuous search spatial keyword objects in a single machine, many
works focus on solving the problem in a parallel and distribute way. R. Mahmood et al. [57, 60]
proposed a system named TORNADO based on the Apache Storm platform 1. Chen et al. [17]
proposed a distributed processing system which has a good load balancing among processing workers.

3.2.2 Reverse ranking queries

For reverse ranking queries on dynamic data, Benetis et al. [3, 4] frist proposed a reverse nearest
neighbor queries for moving objects. Vlachou et al. [88] proposed efficient algorithms for processing
distance-based reverse top-k queries over mobile devices. Yu. et al. [104] studied on the problem
of processing a large number of continuous preference top-k queries. A dynamic index is proposed
to support the reverse top-k query with a scalable solution for processing many continuous top-k
queries.

1http://storm.apache.org/

Chapter 4

Aggregate Reverse Rank Queries

Finding top-rank products based on a given user’s preference is a user-view rank model that helps
users to find their desired products. Recently, another query processing problem named reverse
rank query has attracted significant research interest. The reverse rank query is a manufacturer-
view model and can find users based on a given product. It can help to target potential users or
find the placement for a specific product in marketing analysis.

Unfortunately, previous reverse rank queries only consider one product, and they cannot identify
the users for product bundling, which is known as a common sales strategy. To address the limitation,
we propose a new query named aggregate reverse rank query to find matching users for a set of
products. Three different aggregate rank functions (SUM, MIN, MAX) are proposed to evaluate a
given product bundling in a variety of ways and target different users. To resolve these queries more
efficiently, we propose a novel and sophisticated bound-and-filter framework. In the bound phase,
two points are found to bound the query set for excluding candidates outside the bounds. In the
filter phase, two tree-based methods are implemented with the bounds. For the situation of high-
dimensional data, we propose a grid index method which uses pre-calculated score bounds to reduce
multiplications in the simple scan. The theoretical analysis and experimental results demonstrate
the efficacy of the proposed methods.

19

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 20

4.1 Introduction
Suppose that there are two types of datasets: user dataset and product dataset. The top-k query and
reverse k-rank query are two different kinds of view-models. The top-k query is a user view-model
that helps users by obtaining the best k products matching a user’s preference. On the other hand,
the reverse k-rank query [106] supports manufacturers by discovering potential users by retrieving
the most appropriate user preferences. Therefore, it is a manufacturer view-model, and can be used
as a tool for analysis and estimating product marketing.

Example 1. Figure 4.1 shows an example of a reverse 1-rank query. Five different books (p1–p5)
are scored on the attributes “price” and “rating”. The preferences of three users (Tom, Jerry and
Spike), consist of the weights for all attributes of the book. The score of a book w.r.t to a user is
found by the inner product value of the book attribute and user preference vectors (Figure 4.1b). The
results of the reverse 1-rank query are given in the last cells of Figure 4.1b 1. For example, Jerry
believes that p2 is the best book, while Tom and Spike think that it is the second-best. Jerry is more
likely to buy p2 than Tom and Spike are, based on this ranking; hence, the reverse 1-rank query
returns Jerry as a result.

4.1.1 Motivation

Besides the case of the single-product selling in Figure 4.1, manufacturers also use “product bundling”
2 for many marketing purposes. Product bundling offers several products for sale as one combined
product. It is a common feature in many imperfectly competitive product markets. For example,
Microsoft Co., Ltd. includes a word processor, spreadsheet, presentation program, and other useful
software into a single Office Suite. The cable television industry often bundles various channels into
a single tier to expand the channel market. Manufacturers of video games are also willing to group a
popular game with other games of the same theme in the hope of obtaining more benefits by selling
them together.

Because product bundling is a common business approach, helping manufacturers target users
for their bundled products becomes an important issue. Unfortunately, the previous work on reverse
k-rank query and other kinds of reverse rank queries [85,86] were all designed for just one product.
To address this limitation, we propose a new query definition named aggregate reverse rank query
(ARR query) that finds k users with the smallest aggregate rank values.

Example 2. Figure 4.1c shows an example of an ARR query with the SUM function. In this case,
two books (p1 and p2) are bundled as a set for sale. ARR query evaluates aggregate rank (ARank)
with the sum of each book, so the bundle’s rank is 3 + 2 = 5 based on Tom’s preference. This ARR

1Without loss of generality, we assume that minimum values are preferable in this research.
2https://en.wikipedia.org/wiki/Product_bundling

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 21

(a) User preferences and books.

(b) Rank, score and reverse 1-rank result for each book.

(c) Aggregate rank and aggregate reverse 1-rank result for each bundled books.

Figure 4.1: Example of reverse rank query and aggregate reverse rank query.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 22

query returns Tom as its result (k = 1) because Tom would rank a bundle of p1 and p2 higher than
others would.

Contribution. This chapter makes the following contributions:

• To the best of our knowledge, we are the first to address the “one product” limitation of the
reverse rank query. We propose a new ARR query that returns k user preferences that best
match a set of products.

• We propose a bound-and-filter framework for low-dimensional data. In the bounding phase, we
preprocess preferences to determine possible upper and lower bounds. We also reduce query
points with MAX/MIN aggregate function. In the filtering phase, we prune data with R-tree
and Cone+ tree.

• We propose a grid-index method for high-dimensional data. Grid-index method uses pre-
calculated score bounds to reduce multiplications in the simple scan, it outperforms tree-based
algorithms with the high-dimensional data. We also carry out a theoretical analysis to figure
out an appropriate value of the grid size.

• Along with the theoretical analysis, we also perform experiments on both real and synthetic
data. The experimental results validate the efficiency of the proposed methods.

4.1.2 Definitions

Preliminary definitions

The assumption of the product data, preference data, and the score function are the same as in the
related research [85,87,106]. Let there be a set of products P and a set of preferences W . P and W
are in a d-dimensional Euclidean space. Each product in the product dataset p ∈ P is a d-dimensional
vector that contains d nonnegative values. p is represented as a point p = (p[1], p[2], ... , p[d]) where
p[i] is the attribute value of p in the ith dimension. The preference w ∈ W is also a d-dimensional
weighting vector, and w[i] is a nonnegative weight that evaluates the ith attribute of products, where∑d
i=1 w[i] = 1. The score of a product p based on a preference w is defined as the inner product of

p and w expressed by f(w, p) =
∑d
i=1 w[i] · p[i]. Given q as the query product, which is in the same

space of P , but not necessarily an element of P , the reverse k-rank query [106] is defined as follows:

Definition 1. (rank(w, q)). Given a point set P , weighting vector w, and query q, the rank of q by w
is rank(w, q) = |A|, where A ⊆ P and ∀p ∈ A, f(w, p) < f(w, q)∧∀p ∈ (P −A), f(w, p) ≥ f(w, q).

Definition 2. (reverse k-rank query). Given a point set P , weighting vector set W , positive integer k,
and query q, the reverse k-rank query returns S, S ⊆W , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W −S),
rank(wi, q) ≤ rank(wj , q) holds.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 23

Symbols Description
P set of products.
W set of preferences.
Q Query products.
d Data dimensionality.
f(w, p) The score of p based on w with inner product.
p[i] Value of a product p in the ith dimension.
MBR Minimum bounding rectangle.
MBR(A).up (MBR(A).low) left low point (right up point) of the MBR for a point set A.
ep (ew) An MBR in Rtree of data set P (W).
Q.up, Q.low Bounding points of Q.
Grid Grid-index
p(a) Approximate index vector of a point p
P (A) Approximate index vectors set ∀p ∈ P
n Number of partitions in grid-index
L[f(w, p)], U [f(w.p)] Lower (Upper) bound of score of p on w

Table 4.1: Symbols and Notation

Aggregate Reverse Rank Query

As the above statement indicates, it is desirable for sellers to find potential users of their product
bundles by using the reverse rank technique. Such queries can be dealt by extending the reverse
rank query for more than one query point. We propose the aggregate reverse rank query, which is
formally defined as follows.

Definition 3. (aggregate reverse rank query, ARR). Given a point set P , weighting vector set W ,
positive integer k, and a set of query points Q, the ARR query returns the set S, S ⊆ W , |S| = k,
such that ∀wi ∈ S,∀wj ∈ (W − S), ARank(wi, Q) ≤ ARank(wj , Q) holds. If multiple w’s have an
equal ARank(.) value around boundary (k-th rank) of S, S contains a part of them randomly for the
result.

Aggregate rank function, denoted as ARank(w,Q), is the function used to evaluate the ranking
of the query product set Q, which is the bundled product for which we want to find the target users.

• SUM : ARank(w,Q) =
∑
q∈Q

rank(w, q)

• MAX : ARankM (w,Q) = Max
q∈Q

(rank(w, q))

• MIN : ARankm(w,Q) = Min
q∈Q

(rank(w, q)) (4.1)

Then, the above three evaluating functions correspond to the following requests:

• SUM: Find users who more strongly believe than other users that this product set is better.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 24

Figure 4.2: Geometric view of rank in 2-dimensional data, ARank(w,Q) = 3 + 2 + 5 = 10,
ARankM (w,Q) = 5, ARankm(w,Q) = 2.

• MAX/MIN: Find users who more strongly believe than other users that the worst/best
product in this set is better.

Example 3. Figure 4.2 shows the geometric image of rank in a 2-dimensional data space of P . One
product data p ∈ P is represented as a point and a user preference w is represented as a vector. The
score of inner product f(w, p) is equal to the distance from o to the projection of p on w. The line
that crosses the point p and is perpendicular to w is a borderline of the score f(w, p). Obviously,
the rank of q on w is the number of points under this borderline. For example, p2 and p3 are
under the perpendicular line passing through q2; hence, f(w, p2) < f(w, q2) and f(w, p3) < f(w, q2).
By Definition 2, rank(w, q2) = 2. For the aggregate rank of Q = {q1, q2, q3}: ARank(w,Q) =

rank(w, q1) + rank(w, q2) + rank(w, q3) = 3 + 2 + 5 = 10; ARankM (w,Q) = rank(w, q3) = 5;
ARankm(w,Q) = rank(w, q2) = 2.

4.2 Solution for low-dimensional data: Bound-and-filter frame-
work

4.2.1 Bound phase: Bound queries

The naive solution to the ARR query is to sum up the ranks for q ∈ Q one by one against each
w ∈ W and p ∈ P . This is inefficient, especially when Q is large. In this section, we introduce the
bounding phase of our bound-and-filter framework, in which a sophisticated method determines two

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 25

Figure 4.3: A 2-dimensional example of search space (gray) and filtering space (blue) with basic
MBR(Q) bounding.

points Q.up and Q.low that bound Q. Our proposal is to bound the query point set Q with respect
to W to avoid checking each q ∈ Q.

An intuitive method for bounding Q is to bound with the left-low corner and right-up corner
points of Q’s minimum bounding rectangle (MBR), denoted as MBR(Q).low and MBR(Q).up.
In the general case, MBR(Q).low is dominated by any q ∈ Q in all d dimensions, because the
attribute values of MBR(Q).low is always smaller than or equal to that of q. Moreover, all values
are nonnegative so that the score function f(w, q) is monotonically increasing; thus, it is obvious
that for an arbitrary w, the score of MBR(Q).low is smaller than or equal to that of q ∈ Q:

f(w,MBR(Q).low) ≤ f(w, q), where q ∈ Q,w ∈W. (4.2)

On the other hand, MBR(Q).up is the upper bound of Q in a similar way.

Example 4. Figure 4.3 shows the search space and filter space of data P with MBR(Q). For
computing the ARank(Q,u), the “search space” is the space in which we need to compute the scores
of the inside data. “Filter space” means that we do not need to compute the data inside and just
need to filter them since they have a clear relationship with Q. The search space is the middle part
between the two perpendicular lines w.r.t MBR(Q).low and MBR(Q).up. Apparently, a tighter
bound (higher MBR(Q).low and/or lower MBR(Q).up) can make this middle space smaller and
filter more data in processing.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 26

Tighter bounding strategy

Motivated by the above observation, we propose a tighter bounding strategy. To bound Q for
an arbitrary w ∈ W , we first find out the top-weighting vector in each dimension, denoted as
w

(i)
t , i = 1, 2, 3, .., d. w(i)

t is the closest vector (the smallest angle) to the orthonormal basis vector of
the ith dimension, as defined in the following.

Definition 4. (top-weighting vector) Given a set of weighting vectors W , let ei be the orthonormal
basis vector for dimension i such that ei[i] = 1 and ei[j] = 0, i ̸= j and let cos(a, b) = a · b/(|a||b|)
be the cosine similarity between vectors a and b. The top-weighting vector for dimension i is defined
by w(i)

t where w(i)
t ∈W and ∀w ∈W, cos(w(i)

t , ei) ≥ cos(w, ei).

A subset of W , denoted by Wt = {w(i)
t }d1, is the set of top-weighting vectors for all dimensions.

Because Wt contains the border of the weighting vector in all dimensions, we can use it to find the
upper bound and lower bound points set of Q.

Definition 5. (upper and lower bound query sets Qu and Ql). Let Q be a set of d-dimensional
queries.

Qu = {qi|qi ∈ Q ∧ ∀qj ∈ Q, ∃w(i)
t ∈Wt, f(w

(i)
t , qi) ≥ f(w(i)

t , qj)} and
Ql = {qi|qi ∈ Q ∧ ∀qj ∈ Q, ∃w(i)

t ∈Wt, f(w
(i)
t , qi) ≤ f(w(i)

t , qj)}.

By definition, for each w(i)
t , we can find a qi ∈ Qu (Ql) such that qi’s score with respect to w(i)

t

is the largest (smallest) among Q. Different w(i)
t may apply to the same qi. Generally, it is easy to

find the MBR of a point set Qu, and its upper-right and lower-left corners are the two bounding
points required.

Q.up =MBR(Qu).up (4.3)

Q.low =MBR(Ql).low (4.4)

Example 5. Figure 4.4 shows the example of Q.low and Q.up where Q = {q1, q2, q3}. w
(1)
t = w5

and w
(2)
t = w1 are the top-weighting vectors in dimensions 1 and 2, respectively. Each w

(i)
t is also

a normal vector of the hyperplanes H(w
(i)
t). For Q.up, in 2-dimensional space, the hyperplanes

H(w
(1)
t) are the dashed lines l1, which are perpendicular to w(1)

t . By sweeping l1 parallelly from far
infinity toward the original point (0, 0), q1 is the first point that is touched. Hence, q1’s score with
respect to w is equal to maxq∈Qf(w(1)

t , q), and q1 is included in Qu. In the same manner, l2 touches
q3 first; hence, q3 ∈ Qu. Q.up = MBR(Qu).up upper-bounds the scores for Qu. Similarly, sweeping
the perpendicular dashed lines l3 and l4 from (0, 0) toward infinity, both touch q2; hence Ql = {q2}
and Q.low = q2. We show here that Q.up and Q.low bound the query set Q for ARR query.

Theorem 1. (Correctness of Q.up and Q.low) Given a set of d-dimensional query points Q, a set

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 27

Figure 4.4: A 2-dimensional example. w
(1)
t = w5, w(2)

t = w1, and Qu = {q1, q3}, Ql = {q2},
Q.low =MBR(Ql).low = q2, Q.up =MBR(Qu).up

of weighting vectors W , and the bounds of Q: Q.up and Q.low. For each w ∈ W and each q ∈ Q,
f(w,Q.low) ≤ f(w, q) ≤ f(w,Q.up) always holds.

Proof. By contradiction. For Q.up, assume that ∃q ∈ Q, q /∈ Qu holds so that f(w, q) ≥ f(w,Q.up).
Therefore, ∃q[i] > Q.up[i], i ∈ [1, d]; therefore, there must exist a w(j)

t ∈Wt, j ∈ [1, d], where Wt is a
set of top-weighting vectors that makes f(w(j)

t , q) the maximum value, and q should be in Qu. This
leads to the contradiction (The geometric view is that there exists a hyperplane H(w

(j)
t) that first

touches q rather than others.). A similar contradiction occurs with Q.low.

We can use the rank of Q.low to infer the bounds of the aggregate rank of Q for the three
aggregate rank functions SUM, MIN, and MAX in Equation (4.1).

Corollary 1. (Aggregate rank bounds of Q for w, SUM): Given a set of query points Q and a
weighting vector w, the lower bound of ARank(w,Q) is |Q| × rank(w,Q.low), and the upper bound
of ARank(w,Q) is |Q| × rank(w,Q.up).

Proof. ∀qi ∈ Q, ∀w ∈W , it holds that f(w, qi) ≥ f(w,Q.low); hence, rank(w, qi) ≥ rank(w, Q.low).
By definition, ARank(w, Q) =

∑
rank(w, qi) ≥ |Q|×rank(w, Q.low); hence, |Q|×rank(w, Q.low)

is the lower bound of ARank(w, Q). Similarly, |Q| × rank(w, Q.up) is the upper bound.

Corollary 2. (Aggregate rank bounds of Q for w, MAX/MIN): Given a set of query points Q and
a weighting vector w, the lower bound of ARankM(m)(w,Q) is rank(w,Q.low), and the upper bound
of ARankM(m)(w,Q) is rank(w,Q.up).

We only prove the MIN function case since the MAX function case is similar.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 28

Figure 4.5: Search space of P .

Figure 4.6: The score ranges against the whole Q, Q1 and Q2

Proof. ∀qi ∈ Q, ∀w ∈ W , it holds that Min(f(w, qi)) ≥ f(w,Q.low); hence, Min(rank(w, qi)) ≥
rank(w,Q.low). By Equation 4.1, ARankm(w,Q) = Min(rank(w, qi)) ≥ rank(w,Q.low). Simi-
larly, rank(w,Q.up) is the upper bound of ARankm(w,Q).

Bound queries with clusters

Recall that Q is the query set of bundled products offered by a manufacturer. In practice, the
attribute values of the products in Q are not very close as they may not be in the same category.
For example, in a product bundling of smartphones and earphones, each price may be quite different.
Similarly, book shops always bundle attractive books with some unpopular books, which makes the
values of the rating among these books dispersive. The search space is shown in Figure 4.5, where
the search area is the area sandwiched between the two dashed lines. In the worst case, when Q is
distributed as wide as the whole space, then the efficiency will degrade to a brute-force search.

Regarding the situation where Q distributes widely, we can divide Q into clusters instead of
treating all q ∈ Q as a whole. We can then estimate the ARank by counting the rank against each

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 29

cluster. Figure 4.6 shows the difference of the filtering (gray) area between the whole Q and its
clusters Q1 and Q2. There are 4 bounding score a, b, c, d, and let ã denote the number of points
whose score less than a. We know that ã · |Q| estimates the lower bound of the aggregate rank.
Applying this result to the clusters, the lower bound (LB) becomes:

LB = ã · |Q1|+ c̃ · |Q2| = ã · |Q|+ (c̃− ã) · |Q2| > ã · |Q| (4.5)

Obviously, the bound becomes tighter if we estimate the rank separately against clustered Q then
sum them up.

Regarding to the clustering method, we simply utilize x-means [72], which is a variation of the
well-known k-means, as the clustering method. The reasons we choose x-means are: 1) it is not a
wise idea to take times to analyze Q and choose among clustering algorithms, so the simple x-means
meets this need. 2) since Q is unpredictable and without background knowledge, no other clustering
algorithms performance generally better, and 3) x-means can divide Q properly without inputting
any parameter (e.g., the number of clusters). Nevertheless, it is still an important future work to
find a specific strategy for clustering Q.

X-means is a heuristic clustering method, which determines the number of clusters by repeatedly
attempting a 2-means subdivision and keeping the best result divisions. The Bayesian Information
Criterion (BIC)3 is used to make the subdivision decision and the lowest BIC is preferred. In
conclusion, the procedure of clustering Q with x-means is: (a) Divide Q into 2 clusters. (b) For each
cluster, divide it into 2 sub-clusters. (c) if BIC decreases then repeat (b).

Reducing queries for MAX/MIN function

The MAX and MIN functions in ARR query enable to analyze the potential users who are interested
only in the worst or best product in a product bundle. Different from the SUM function that requires
summing up the ranks for all q ∈ Q, it is sufficient to only check the necessary q’s instead of the
whole Q. This means that we can make the proposed bound-and-filter framework more efficient. In
this section, we introduce a method of reducing Q for the MAX and MIN functions.

It is natural to believe that such necessary query points are those located in the up-right and
low-left parts of Q for MAX and MIN functions, respectively. Defined in the following, the left
corner MBR and the right corner MBR try to remove unnecessary query points of Q.

Definition 6. (Left-corners and right-corners, CM). Let Q be a point set. The left-corners of Q
is a subset of Q and is denoted as CM(Q).l. CM(Q).l contains the points in the MBR formed by
{h(i)}di=1, where h(i) ∈ Q satisfies: (1) h(i)[i] = MBR(Q).low[i], and (2) h(i) is the nearest point
to MBR(Q).low among all points p satisfying h(i)[i] = MBR(Q).low[i]. The right-corners of Q,
denoted as CM(Q).r is defined in a similar manner.

3https://en.wikipedia.org/wiki/Bayesian_information_criterion

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 30

(a) Corner MBRs. (b) Convex Hull.

Figure 4.7: Two ways to reduce Q.

Example 6. Figure 4.7a gives an example of left-corners and right-corners in 2-dimensional data.
There are q1 to q7 in a query points set Q. q4 is the nearest point to MBR(Q).low and is on the left
vertical edge of MBR(Q). On the down horizontal edge, q2 is the nearest point to MBR(Q).low.
Therefore, CM(Q).l = {q1, q2, q3, q4} is formed by {q2, q4}. In the same way, CM(Q).r = {q5, q6}
is formed by {q5, q6}.

Obviously, the points in CM(Q).l have smaller values in all dimensions than the other points of
Q. Therefore, given an arbitrary w:

Min
q∈Q

rank(w, q) = Min
q∈CM(Q).l

rank(w, q). (4.6)

In other words, the q ∈ Q that minimizes rank(w, q) is always found from CM(Q).l. Similarly, the
q ∈ Q that maximizes rank(w, q) is always found from CM(Q).r.

Lemma 3. (Reduce Q to CM(Q)): Given a set of query points Q, ARankm(w,Q) = ARankm(w,CM(Q).l)

and ARankM (w,Q) = ARankM (w,CM(Q).l).

Another way to reduce Q for MAX and MIN functions is to build the convex hull of Q. The
convex hull is the smallest convex set that contains all q ∈ Q, and we denote the vertices set of the
convex hull of Q by CH(Q).

Example 7. Figure 4.7b shows the convex hull of the given Q in the same example, where CH(Q) =

{q2, q4, q5, q6, q7}. Viewing a point as a vector, when q ∈ Q are projected to an arbitrary vector w,
both the shortest and the longest length of projection are from CH(Q), because the vertices of the
convex hull are the boundary points. Recall that the inner product f(w, q) is equal to the length of
q’s projection on w, and CH(Q) contains such q’s that minimize and maximize rank(w, q).

Lemma 4. (Reduce Q to CH(Q)): Given a set of query points Q, ARankm(w,Q) = ARankm(w,CH(Q))

and ARankM (w,Q) = ARankM (w,CH(Q)).

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 31

Figure 4.8: Query points in convex hull vertices and corner MBRs. Necessary queries for MAX
function: {q2, q4}, for MIN function: {q5, q6}.

Taking the advantages of both CM(Q) and CH(Q), we can only check the query points at their
intersection. Lemma 3 and Lemma 4 help to conclude the following Theorem.

Theorem 2. (Correctness of query reducing) Given a set of query points Q, let Qm = CM(Q).l ∩ CH(Q)

and QM = CM(Q).r ∩ CH(Q). Then ARankm(w,Q) = ARankm(w,Qm) and ARankM (w,Q) =

ARankM (w,QM).

Algorithm 1 Reduce Q
Input: Q
Output: reduced set QR

1: CH(Q)⇐ ConvexHull(Q).getV ertex()
2: if MIN function then
3: CM(Q)⇐ get CM(Q).l
4: if MAX function then
5: CM(Q)⇐ get CM(Q).r
6: QR ⇐ CM ∩ CH(Q)
7: return QR

The above theorem guarantees that for MAX/MIN ARR queries, we only need to process the
reduced QM/Qm instead of the original Q. Figure 4.8 shows an example of reducing Q. CH(Q) =

{q2, q4, q5, q6, q7}, CM(Q).l = {q1, q2, q3, q4} and CM(Q).r = {q5, q6}. By Theorem 2, the reduced
query set for the MAX function is QM = CH(Q) ∩ CM.l = {q2, q4}, and the reduced query set for
the MIN function is Qm = CH(Q) ∩ CM.r = {q5, q6}.

4.2.2 Filter phase: Prune P data

Instead of comparing the product data p ∈ P one by one with the query bounds, we use the index
to compare similar data simultaneously, thus making the process efficient. The idea is to index
the dataset P in an R-tree to group similar points, and compares the bounds of MBRs (the R-tree
entries, also denoted by e) with Q.up and Q.low to reduce computing costs.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 32

Figure 4.9: The sub-spaces of BelowQ, InQ, and AboveQ based on Q.low and Q.up with a single wi
in the 2-dimensional space of dataset P .

Example 8. First, we introduce how to filters P with Q.low and Q.up. Figure 4.9 shows the
geometric view for an example of 2-dimensional data. The two dashed lines across the bounds Q.low
and Q.up respectively, and are perpendicular to the weighting vector wi, and form the boundary
values of the score. The space is partitioned into three parts, which are marked as BelowQ, InQ,
and AboveQ in Figure 4.9. For example, e2 is in BelowQ and e5 is in AboveQ. MBRs in BelowQ

or AboveQ can be filtered by checking the upper and lower boundaries; otherwise, it needs further
refinement.

Formally, the pruning rules are as follows. Notice that the filtering methodology of partitioned
spaces can also apply to the multiple dimensional spaces.

• Rule 1.(MBR e in BelowQ) If f(w, e.up) < f(w,Q.low), then count the number of points in
e because ∀p ∈ e,∀q ∈ Q, f(w, q) > f(w, p) holds.

• Rule 2.(MBR e in AboveQ) If f(w, e.low) > f(w,Q.up), then discard e because ∀p ∈ e,∀q ∈ Q,
f(w, q) < f(w, p) holds.

• Rule 3.(MBR e overlaps InQ) If f(w, e.low) > f(w,Q.low) and f(w, e.up) < f(w,Q.up), then
add e to the candidate list for further examination.

ARank-P algorithm

Given P , w, Q, Q.up, Q.low, and a positive integer minRank, the ARank-P algorithm checks
whether the aggregate rank of Q is smaller than the given minRank. It also returns the value of

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 33

Algorithm 2 ARank-P
Input: P,w,Q,minRank,Q.up,Q.low
Output: return rnk when w should be included

return −1 when w should be discarded
1: rnk ⇐ 0, Cand⇐ ∅
2: Initialize heapP as an empty queue structure.
3: heapP.enqueue(RtreeP.Root())
4: while heapP.isNotEmpty() do
5: ep ⇐ heapP.dequeue()
6: for each child ei ∈ ep do
7: if f(w, ei.low) < f(w,Q.up) then
8: if ei in BelowQ then
9: rnk ⇐ rnk + Counting(ei, Q) //Rule 1

10: if rnk ≥ minRank then
11: return -1
12: else if ei in InQ then
13: Cand⇐ Cand ∪ ei //Rule 3
14: else
15: if ei is a data point then
16: Cand⇐ Cand ∪ ei
17: else
18: heapP.enqueue(ei)
19: Refine Cand by processing the MBRs and points in Cand with each q ∈ Q.
20: if rnk ≤ minRank then
21: return rnk
22: else
23: return -1

the aggregate rank when ARank(w,Q) < minRank. Algorithm 2 shows that the ARank-P function
uses the R-tree to prune similar points in a node of the R-tree. In this algorithm, the counter rnk is
used to count the aggregate rank of Q (Line 1). Then, the algorithm recursively checks the MBRs
in the R-tree of P from the root (Line 2). If ei is contained in BelowQ,

the counter rnk is increased by the return value from the counting function in Equation 4.7,
which is based on Corollary 1 and Corollary 2.

Counting(e,Q) =

e.size× |Q|, SUM

e.size, MAX or MIN
(4.7)

When rnk becomes larger than minRank, the algorithm returns -1 to terminate (Lines 9–10).
If ei overlaps the space of InQ, then it is added into the candidate set Cand for refinement, and
either it is an internal node (Lines 11–12) or data point (Lines 14–15). Otherwise, ei is added to
the queue (Line 17). After the traversal of RtreeP, refinement is performed where the Cand set is
compared with each q ∈ Q and rnk is updated (Line 18). Note that Cand contains both the MBR

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 34

Figure 4.10: The sub-spaces of BelowQ, InQ, and AboveQ based on Q.low and Q.up with an MBR
ew in the 2-dimensional space of dataset P .

and data point p in InQ. The refinement also considers the upper and lower bounds of the MBR
to filter each q. As the results, rnk is returned as the aggregate rank if rnk < minRank, or -1 is
returned that indicates that the current w is not a result.

4.2.3 Filter phase: Prune W data

Prune W data with the R-tree

Similar to pruning P data with the R-tree, We also index the W set in an R-tree so that removing
redundant computing by grouping similar w. The R-trees for P and W are denoted as RtreeP and
RtreeW , respectively.

Example 9. Figure 4.10 shows the three parts of BelowQ, InQ, and AboveQ, which are separated
by the bounds of the MBR ew in RtreeW and Q.up (Q.low). Based on the MBR features in RtreeP

and RtreeW , we can obtain the score bounds of a single data point on the MBR ew of RtreeW .

Lemma 5. (Score bound of p): Given an MBR with the weighting vector ew in RtreeW and p ∈ P ,
the score f(w, p) is lower-bounded by f(ew.low, p) and upper-bounded by f(ew.up, p).

Proof. For w ∈ ew, ∀i, w[i] ≥ ew.low[i] holds, hence
∑d
i=1 ew.low[i] · p[i] ≤

∑d
i=1 w[i] · p[i], that is

f(w, p) ≥ f(ew.low, p). Similarly, f(w, p) ≤ f(ew.up, p).

The score bounds of the MBR ep of RtreeP based on ew of RtreeW can also be inferred from
the following lemma.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 35

Algorithm 3 ARank-WP
Input: P, ew, Q,minRank,Q.up,Q.low
Output: return rnk when all w ∈ ew should be included

return −1 when all w ∈ ew should be discarded
return −1 when it is uncertain

1: rnk ⇐ 0, Cand⇐ ∅
2: Initialize heapP as an empty queue structure.
3: heapP.enqueue(RtreeP.root())
4: while heapP.isNotEmpty() do
5: ep ⇐ heapP.dequeue()
6: for each child ei ∈ ep do
7: if f(ew.low, ei.low) < f(ew.up,Q.up) then
8: if ei in BelowQ then
9: rnk ⇐ rnk + Counting(ei, Q)

10: if rnk ≥ minRank then
11: return -1
12: else if ei in InQ then
13: Cand⇐ Cand ∪ ei
14: else
15: if ei is a data point then
16: Cand⇐ Cand ∪ ei
17: else
18: heapP.enqueue(ei)
19: Refine Cand and process the MBRs and points in Cand with each q.
20: if rnk ≤ minRank then
21: return 1
22: else
23: return 0

Lemma 6. (Score bound of MBR): Given the MBR ew of RtreeW and the MBR ep of RtreeP , the
score of every p ∈ ep is lower-bounded by f(ew.low, ep.low) and upper-bounded by f(ew.up, ep.up).

Proof. For p ∈ ep, ∀i, ep.low[i] ≤ p[i] holds based on the proof in Lemma 2; hence,
∑d
i=1 ew.low[i] ·

ep.low[i] ≤
∑d
i=1 ew[i].low · p[i] ≤

∑d
i=1 w[i] · p[i]. Hence, f(w, p) ≥ f(ew.low, ep.low). Similarly,

f(w, p) ≤ f(ew.up, ep.up) holds.

By the above Lemmas, we can construct the bounds of the aggregate rank for Q on MBR ew.
Corollary 1 and Corollary 2 lead to the following conclusion almost straightly.

Theorem 3. (Aggregate rank bounds of Q for ew): Given the set of query points Q and the MBR
of the weighting vector ew. For the SUM function, the lower bound of rank for every w ∈ ew is
|Q| × rank(ew.low,Q.low), and the upper bound of ARank(w,Q) is |Q| × rank(ew.up,Q.up). For
the MAX/MIN function, the lower bound of rank for every w ∈ ew is rank(ew.low,Q.low), and the
upper bound is rank(ew.up,Q.up).

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 36

Algorithm 4 Double-tree method (DTM)
Input: P,W,Q,Q.up,Q.low
Output: result set heap

1: initialize heap with the first k weighting vectors and the aggregate ranks of Q
2: minRank ⇐ heap’s last rank.
3: heapW.enqueue(RtreeW.root())
4: while heapW.isNotEmpty() do
5: ew ⇐ heapW.dequeue()
6: if ew is a single weighting vector then
7: call the function ARank-P and update minRank.
8: else
9: flag ⇐ ARank-WP(P, ew, Q,minRank,Q.up,Q.low)

10: if flag = 0 then
11: heapW.enqueue(all children ∈ ew)
12: else
13: if flag = 1 then
14: for each w ∈ ew do
15: call the function ARank-P and update minRank.
16: return heap

The ARank-P algorithm computes the rank of Q with respect to a single w. Instead, ARank-WP
in the algorithm checks a node of the R-tree that contains multiple similar w’s. Algorithm 3 helps
check these w ∈ ew with Q and minRank. The algorithm returns 1 if all w ∈ ew make the Q rank
in minRank and returns -1 if none of w ∈ ew makes the Q rank better than minRank. Otherwise,
the algorithm returns 0, indicating that ew cannot be filtered and its children entries need to be
checked.

DTM indexes both P and W in two R-trees. Hence, it enables the pruning of both the weighting
vectors and points. Algorithm 4 shows the detail of DTM. DTM checks the nodes in RtreeW , and
calls Algorithm 3 to check the aggregate rank of Q on a node ew (Line 9). If flag (the returned
value from ARank-WP) is 0, all children MBRs are added to heapW for further check (Lines 10–11).
If flag is 1, this means that every w in ew makes Q rank better than minRank. Thus, Algorithm 2
computes the rank of each w in ew and heap, which keeps the best k answers so far, and minRank
are updated (Lines 14–15). When the leaf node of a single w is being checked, Algorithm 2 is called
(Lines 6–7). When the algorithm terminates, heap is returned as the result of the aggregate reverse
rank query.

Prune W data with the Cone+ tree

Figure 4.11 shows a 2-dimensional example for the over-enlarged bound by R-tree index. The points
w1 ∼ w4 are located on a line L (plane in high dimensional space) where

∑d
i=1 w[i] = 1. We can see

that R-tree groups data into their MBR and the right-up and left-low points are used to estimate the
upper and lower score bounds, respectively. However, the diagonal crossing MBR.up and MBR.low

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 37

Figure 4.11: The difference of score bounds created by MBR and real score bounds.

always makes the largest angle with L; thus, for an arbitrary point p, the right-up and left-low points
of MBR always enlarge (i.e., loosen) the bound of the score unnecessarily. In conclusion, it is not
an appropriate way since the bounding points in spatial MBR will over-enlarge the bound from the
actual inner product value.

Inspired by above, we aim at bounding W with a tighter way, which is preferable to group w′s

with their directions. Therefore, we propose a cone+ tree index to pre-index the user data W . The
cone+ tree is a variant of the cone-tree method [74] and, like the latter, it groups data by cosine
similarity; in addition, cone+ tree stores the boundary points of each node and uses them to calculate
the precise score bounds in processing.

Cone tree [74] is a binary construction tree. Every node in the tree is indexed with a center
and encloses all points, which are close to this center up to cosine similarity. The node splits into
two, left and right, child nodes if it has more points than a set threshold value Mn. The tree is
built hierarchically by splitting itself until the points are fewer than Mn. In [74], a cone tree was
proposed, where the score bounds were based on a cone used to search for the maximum inner
product value under the assumption that the length (i.e., norm) of a query is irrelevant to the
maximum inner product result. In other words, it is enough to consider only the directions in the
cone. Unfortunately, since our problem is different, this assumption on the cone tree and the ways
maximum bounding was achieved in [74] does not hold in ARR queries.

From Figure 4.11, we can know that the actual bounds of the set of w’s are always found from
the boundary points. We put forward the following Lemma 7.

Lemma 7. Given a set of preference B and a product p, the boundary points of B is B.boundar.
The preference w ∈ B which makes the maximum (minimum) score of f(w, p) must be contained in

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 38

Figure 4.12: Images of 2-dimensional (left) and 3-dimensional (rigth) cone+ tree, respectively.

B.boundar.

Proof. By contradiction. Assume that ∃wa ∈ B and wa /∈ B.boundar, where ∀wb ∈ B f(wa, p) ≥
f(wb, p). Since the inner product is a monotone function and all values are positive, so ∃wa[i] >
wb[i], i ∈ [1, d] and wa should be a boundary point in B.boundar. This leads to the contradiction.

In the geometric view, the inner product f(w, p) is the length of the projection of w onto p.
Therefore, both the shortest and the longest projection of a set of w’s come from the boundary
points of the set.

We took advantage of Lemma 7 and proposed a cone+ tree which keeps the boundary points
for each node. Therefore the precise score bounds can be computed directly. Figure 4.12 shows
the example of cone+ tree. Algorithm 5 and 6 show the construction of cone+ tree. The indexed
boundary points are the points containing the maximum value on a single dimension (Algorithm 6,
Line 2).

Algorithm 5 Cone+TreeSplit(Data)
Input: points set, Data
Output: two centering points of children, a, b ;

1: Select a random point x ∈ Data.
2: a⇐ arg max

x′∈Data
cosineSim(x, x′)

3: b⇐ arg max
x′∈Data

cosineSim(a, x′)

4: return {a,b}

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 39

Algorithm 6 BuildCone+Tree(Data)
Input: points set, Data
Output: cone+ tree, tree ;

1: tree.data⇐ Data

2: tree.boundary ⇐ {w ∈ Data : arg max
i∈[0,d)

w[i]}

3: if |Data| ≤Mn then
4: return tree

5: else
6: {a, b} ⇐ Cone+TreeSplit(Data)

7: left⇐ {p ∈ Data : cosineSim(p, a) > cosineSim(p, b)}
8: tree.leftChild⇐ BuildCone+Tree(left)

9: tree.rightChild⇐ BuildCone+Tree(Data− left)
10: return tree

When processing ARR with cone+ tree and R-tree in the filtering phase, we can compute the
bounds between a cone+ and an MBR by the following Theorem.

Theorem 1. (The bounds with cone+ and MBR): Given a set of w’s in a cone+ node cw, a set of
points in an MBR ep. ∀w ∈ cw, ∀p ∈ ep, f(w, p) is upper bounded by Maxwb∈cw.boundar{f(wb, ep.up)}.
Similarly, it is lower bounded by Minwb∈cw.boundar{f(wb, ep.low)}.

For a query set Q and an MBR ep of points, the relationship between them on a w’s cone+ can
be inferred from the following.

Below Q :

Maxwb∈cw.boundar{f(wb, ep.up)} <

Minwb∈cw.boundar{f(wb, Q.low)}

Above Q :

Minwb∈cw.boundar{f(wb, ep.low)} >

Maxwb∈cw.boundar{f(wb, Q.up)}

Unknow : otherwise

(4.8)

We can apply the above cone+ tree bounds easily to Algorithm 3 by using above Equation (4.8)
to define the filter space in Lines 7 and 12.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 40

hhhhhhhhhhhhhhhElapsed time(ms)
Data size 1K 10K 100K

Reading data 5 26 146
Processing ARR 240 9311 624318
−Pairwise computations 103 5321 352511

Table 4.2: Time cost for reading data and processing reverse rank queries with 6-dimensional data.

4.3 Solution for high-dimensional data: Grid-index Method

4.3.1 Curse of the dimensionality

By now, we proposed tree-based methods for ARR query. However, as pointed out by [6, 12, 92],
these tree-based methods suffer from similar problems: When processing high-dimensional data sets,
the performance declines to even worse than that of linear scan.

For real-world applications, there also has a requirement to process ARR for high dimensional
data. Both the product’s attributes and user’s preferences are likely to be high-dimensional. For
example, cell phones consumers care about many features, such as price, processor, storage, size,
battery life, camera, etc. Therefore, processing ARR with a high-dimensional data set is a significant
problem, and due to the so-called “curse of dimensionality”, simple scan offers a better performance
than tree structure to solve it.

Despite its performances advantages on high-dimensional queries, there are challenges in process-
ing ARR with the simple scan. ARR are more complicated queries than simple similarity searches
such as the top-k query or the nearest neighbor search, and the time complexity of a naive simple
scan method is O(|P | × |W |). ARR require that every combination between P and W is checked
before obtaining an answer. And this incurs a large number of pairwise computations. A comparison
of 10K cell phones and 10K user preferences would necessitate 10K × 10K = 100M computations.
As a result, the enormous computational requirements cause the CPU cost to outweigh the I/O cost,
which is the opposite of what happen in normal situations. We hold a preliminary experiment to
confirm this by measuring the elapsed time for reading different sizes of data, for processing ARR
queries and for the pairwise computations in the inner product. Table 4.2 shows that the time
taken to read different sizes of data file is almost negligible in the ARR processing. Rather, the
major cost of processing ARR is the pairwise computations. We also found that the proportion of
pairwise computations in processing ARR grew from about 50% in 6-dimensional data to 90% in
100-dimensional data. In conclusion, in contrast to the usual strategy of saving I/O cost in other
simple similarity searches, saving CPU computations is the key to process high-dimensional ARR
efficiently.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 41

Figure 4.13: Equally dividing value range into 4 partitions, allocating real values into approximate
intervals and getting the approximate vector p(a) and w(a).

4.3.2 Grid-index Method

For the above reasons, we develop an optimized version of the simple scan, called the Grid-index
method (GIM) which reduces the amount of multiplication of inner product in the processing. First,
We pre-compute some approximate multiplication values and store them into a 2d array named
Grid-index. Then we pre-process the data P and W and create the approximate vectors P (A) and
W (A) which indicate the index. In GIM algorithm, we first scan the approximate vectors P (A) and
W (A), then use them with the Grid-index to assemble upper and lower bounds, which help to filter
most data without multiplications. After the filtering, we only need to refine few remaining data.
In the worst case, it costs the I/O time for reading the P (A) and W (A), which is much less than
original data and insignificant as concluded above.

According the above statement, it stands to reason that using a simple scan with high-dimensional
data is the most efficient approach. However, in this method, the multiplications of inner products
take most of the processing time. We were inspired to study a method that could enhance the
efficiency of the simple scan by avoiding multiplications for the inner product. In this section, we
introduce the concept of Grid-index, which stores pre-calculated approximate multiplication values.
The approximate values can form upper and lower bounds of a score and can be used in a filtering
step for the simple scan approach.

Approximate Values in Grid-index

Concept of Grids. To confirm that the resultant score of the weighted sum function (inner product)
is fair, all values in p must be in the same range, so must all values in w. We use this feature to
allocate values into value ranges. As Figure 4.13 shows, in this example we partition the value range
into 4 equal intervals. For the given p = (0.62, 0.15, 0.73), the first attribute p[1] = 0.62 falls into
the third partition [0.5, 0.75]. The second, p[2] = 0.15, falls into the first partition [0, 0.25]. We will
store the partition numbers as an approximate vector, denoted as p(a) and w(a), so p(a) = (2, 0, 2)

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 42

Figure 4.14: 4× 4 Grids for points and weighting vectors, mapping p(a) and w(a) onto Grids.

and w(a) = (0, 2, 1).
Since the inner product is the sum of pairwise multiplications of p[i] and w[i], we combine the

ranges of p and w to form the grids. Figure 4.14 illustrates the 4 × 4 grids in this example. We can
map an arbitrary pair of (p[i], w[i]) onto a certain grid, and different (p[i], w[i]) pairs may share the
same grid location. The purpose of mapping the pairs onto the grid is to use the grids’ corners to
estimate the score of p[i] · w[i]. By taking advantage of values having the same range, these grids
can be re-used for mapping all pairs (p[i], w[i]), i = {1, 2, 3, ..., d}, p ∈ P and w ∈W .

Construction of Grid-index. Assume that we divide the value range of p and w into n = 2b

partitions, and the position information of all elements in a vector are represented by a (n+1)-
element vector αp for points and αw for weights. In the example of Figure 4.13, αp = αw =

(0, 0.25, 0.5, 0.75, 1). The Grid-index, denoted as Grid, is a 2-dimensional array and saves all multi-
plication results of all combinations between αp and αw:

Grid[i][j] = αp[i] · αw[j], i, j ∈ [0, n] (4.9)

Score Bounds and Precedence. According to the above Grid partition, we pre-store all
approximate vectors for P and W , denoted as P (A) and W (A). The approximate vector p(a) for
a given p is calculated by p(a)[i] = ⌊p[i] · n/r⌋, where r is the range of p[i]’s attribute value.
w(a) is calculated from w in the same way. Clearly, for a pair (p[i], w[i]) in the ith dimension,
Grid[p(a)[i]][w(a)[i]] is the lower bound and Grid[p(a)[i] + 1][w(a)[i] + 1] is the upper bound. In
the example, p[1] = 0.62, w[1] = 0.12 and p(a)[1] = 2, w(a)[1] = 0. Based on Equation (4.9),
Grid[2][0] = 0.5× 0, Grid[2 + 1][0 + 1] = 0.75× 0.25, meaning 0.5× 0 ≤ p[1] · w[1] ≤ 0.75× 0.25.

For the inner product f(w, p) =
∑d
i=1 p[i] · w[i], based on properties of the inner product and

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 43

features of the Grid-index, we know that:

L[f(w, p)] ≤ f(w, p) ≤ U [f(w, p)] (4.10)

where L[f(w, p)] and U [f(w, p)], denoting the lower bound and the upper bound of f(w, p), are given
by

L[f(w, p)] =

d∑
i=1

Grid[p(a)[i]][w(a)[i]] (4.11)

U [f(w, p)] =

d∑
i=1

Grid[p(a)[i] + 1][w(a)[i] + 1] (4.12)

The relationship between p and q can be classified into three cases with the help of L[f(w, p)]
and U [f(w, p)]:

• Case 1 (p ≺w q): If U [f(w, p)] < f(w, q), p precedes q, p has a higher rank than q with w.

• Case 2 (q ≺w p): If L[f(w, p)] > f(w, q), q precedes p, p does not affect the rank of q with w.

• Case 3 (p ≍ q): Otherwise, p and q are incomparable, i.e., L[f(w, p)] ≤ f(w, q) ≤ U [f(w, p)].
The Grid-index cannot define whether p or q ranks higher with w.

Filtering Strategy. We scan the approximate vectors first, then use the Grid-index to obtain
L[f(w, p)] and U [f(w, p)], and filter points that satisfy either Case 1 or Case 2 above. After scanning,
if necessary, we carry out a refining phase, and compute the real score for all points in Case 3. Notice
that throughout this process, we only calculated the sum and retrieved L[f(w, p)] and U [f(w, p)] of
Equations (4.11) and (4.12). If a point p is in Case 1 or Case 2, we do not need to compute the real
score f(w, p), thus saving computational costs with multiplications to find the inner product.

Compress the Approximate Vectors

Storing all approximate vectors incurs extra storage costs for data sets P and W . To compress
this storage, each approximate vector can be presented by a bit-string describing the interval which
its elements fall. Figure 4.15 shows an example where the approximate vector p(a) is saved as a
6-bit string (100010), because 2 bits are needed to define 4 partitions for each of the 3 dimensions.
Generally, if we divide the value range into 2b partitions, then a (b × d)-bit string is needed to
store an approximate vector. According to the analysis in Section 4.3.3, b = 6 is enough for a good
filtering performance. Usually, the original data is a 64-bit float value, so the storage overhead by
the compressed 6-bit data is less than 1/10 of the original data 4. This kind of bit-string compressing
technique is also used in [92].

4When n = 2b, then the storage cost for the approximate vectors are |P (A)| = b
64

|P | and |W (A)| = b
64

|W |, if P
and W ’s attributes are float values.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 44

Figure 4.15: 6-bit string for compressing the p to p(a).

It may be argued that it would be the most efficient to store all the scores of each p and w

directly. In reality, storing that amount of data is impossible due to the immense cost. For example,
assume that there are 10K products and 10K weight vectors. For Grid-index, 20K tuples are needed
to store the approximate vectors, but it would take 10K×10K = 100M tuples to store all the scores.
The storage overhead for storing all scores is thousands of times of the approximate vectors in the
proposed Grid-index method.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 45

Algorithm 7 GIM
Input: PA,WA, P,W,Q, k

Output:
1: buffer ← ∅
2: kthRank ←∞
3: for each wa ∈WA do
4: Candidate ← ∅
5: Counter ← Domin.size
6: Compute each f(w, q) of q ∈ Q and store in Qscores
7: Sort Qscores in descending
8: for each pa ∈ (PA / Domin) do
9: for i to |Q| do

10: if U [f(w, p)] ≤ Qscores[i] then
11: Counter ← Counter + |Q| - i
12: if counter == kthRank then
13: break to check next wa
14: if L[f(w, p)] ≤ Qscores[i] ≤ U [f(w, p)] then
15: Candidate← Candidate ∪ {p}
16: if p dominates Q then
17: Domin ← Domin ∪ {p}
18: Refine Candidate and update Counter.
19: if Counter ≥ kthRank then
20: continue to next wa
21: else
22: buffer.insert(w,Counter)
23: kthRank ← the kth rank in buffer.
24: return buffer

Grid-index Aggregate Reverse Rank Algorithm (GIM)

Algorithm 7 describes the proposed method GIM. It is a double looping framework that scans each
pa ∈ PA for each wa ∈ WA, and look up the Grid-index to avoiding computing. For each wa, we
use a Counter to record the aggregate rank ARank(w,Q) (Line 4). In the inner loop(Line 8-17),
the Counter will be update when the f(w, q) is greater than a current point p. We carry out an
optimization that calculates and sorts each q’s score in advance (Line 6-7). We use Grid-index to
obtain the U [f(w, p)], if U [f(w, p)] is smaller than a q’s score, the Counter will increase by the
remained number of q and we don’t need to compare more (Line 10-11). If the rank relationship can
not decide by the upper and lower from Grid-index, we add these kind of p into Candidate (Line

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 46

14-15), and we will refine the Candidate after scanning all pa if it is necessary (Line 18). Another
optimization is that “global dominating point”, a p is a global dominating point if all p[i] ≤ q[i]

where i = 1, 2, ..., d, and we keep them into a set Domin (Line 16-17). We will skip checking the
global dominating points (Line 8) instead of initializing Counter by the size of Domin (Line 5). A
k-element buffer is used to keep the top-k w’s and their aggregate ranks for Q as the result of ARR
query (Line 1, 22). The algorithm will break and start to check the next wa when the Counter
reaches kthRank, which is initialize as ∞ (Line 2) and update by the rank value of the last element
in buffer (Line 23).

4.3.3 Theoretical analysis

In this section, we first analyze the weakness of tree-based algorithms. We then build a cost model
for Grid-index that finds the ideal number of grids (n × n), guaranteeing that specified filtering
performance.

The Difficulty of Space-division in High Dimensional Data

We first observe the influence of the number of divisions through a space-division index. According
to [106], MPA uses a d-dimensional histogram to group all weighting vectors W into buckets. Each
dimension is partitioned into c equal-width intervals, in total, there are cd buckets. As [106] suggests,
c = 5, If |W | = 100K with the 3-dimensional data, W is grouped in 53 = 125 buckets. However, if
d = 10, then there are 510 ≈ 9 million buckets. It is not logical to filter only 100K weight vectors by
testing the upper and lower bounds of such a huge number of buckets. In this case, scanning one by
one would be more efficient.

Analysis of R-tree Filtering Performance

We test some range queries (within 1% area of the data space) over different d with an R-tree and
observe the MBRs. Table 4.3 shows the average value of accessed MBRs’ attributes. Not surprisingly,
when d > 6, all (100%) of MBRs overlap in the query range, which means that all entries will be
accessed during processing. It is a shortcoming of tree-based algorithms that the MBRs will always
overlap with each other when the data is high-dimensional.

Besides the shortcoming from the tree-based index itself, we also found that the filterable space
with tree-based methodology reduces as the dimensionality increases. This conclusion is supported
by the following estimation.

Consider a tree-based algorithm that constructs an R-tree for the products P and assume that
Rp is a MBR of this R-tree. In query processing, for each group of w’s (denoted as Wgroup), points
within Rp are checked. The upper and lower bounds of f(Wgroup, Rp) are determined by the borders
of Wgroup and Rp. The gray area is the safely filtered space. The shape of the gray area can be a

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 47

Dimensionality 3 6 9 12 15 18 21 24
#MBR 1501 1480 1470 1470 1439 1479 1458 1456
diagonal length 4057.7 11744.3 19559.1 23807.9 31010.9 33717.1 36979.2 40515
Shape∗ 24.9 13.8 8.9 6.4 4.8 4.6 4.7 4.4
Overlaps in Query(1%) 30% 99.8% 100% 100% 100% 100% 100% 100%
Volume 2.89× e9 1.39× e21 3.65× e33 1.72× e45 1.08× e58 5.31× e69 2.16× e81 2.28× e93

∗ Shape is the ratio of the longest edge against the shortest one of an MBR.

Table 4.3: Observation of accessed MBRs of R-tree in query. 100K points indexed in R-tree, each
MBR has 100 entries.

(a) Trapezoidal prism (b) Tetrahedron

Figure 4.16: Two kinds of Filtering areas (gray) of R-tree.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 48

hyper-prism, a hyper-tetra or a combination of the two. It means that in some of the dimensions
(denoted as g) the area will be a triangle, while a trapezoid in others. Assume that the two kinds
of shapes are separated clearly; then the proportion of filtered values can be obtained by measuring
the volume:

V ol = V olTetraX · V olPrismX + V olTetraY · V olPrismY (4.13)

To give an analytical result, we assume that Rp is in the centroid, so the two filtering areas are
equal (V olTetraX = V olTetraY). Then the volume becomes

V ol = 2 · V olTetra · V olPrism (4.14)

Firstly, the volume of hyper-tetra is: 5

V olTetra =
1

g!
(

g∏
i=1

xi) =
1

g!
(1− γ)g (4.15)

then, the volume of the hyper-prism (the area in Figure 4.16 (a)) is:

Si =
1

2
(xi + x′i) ·H ≤ (

1− γ
2

) ≤ 1

2
(4.16)

where H = 1 is the length of the side. Imagine a 3 dimensional trapezoidal prism in the figure,
the volume is:

V olPrism3d =
1

3
(S1 + S2 +

√
S1S2) ·H ≤

1

2
(4.17)

This result holds for higher dimensional trapezoidal prisms. Consequently, the maximum volume
gives the filtered area.

V olmax = 2 · 1
g!
(1− γ)g · 1

2
=

1

g!
(1− γ)g (4.18)

It is reasonable to assume that in half of the dimensions the filtered area is hyper-tetra in shape.
We will consider a dataset of d = 10, g = 5, according to Equation (4.18), R-tree based methods
can only filter at most 1

5! =0.8% of the data space.
This clearly shows that the space filtered by tree-structures becomes very small when encoun-

tering high-dimensional data. For all points in the space which can not be filtered, each w[i] · p[i]
must be calculated and compared with that of the query point.

5Recall that the area of a right triangle is s = x1x2
2

, and a tetrahedron has volume v = x3s
3

= x1x2x3
3·2 . if for (d-1)

dim, the volume is Vd−1 ∼ cxd−1 then Vd =
∫
Vd−1dx ∼ cxd

d
.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 49

The Performance Model of Grid-index

To build a model of our Grid-index, we make the following assumption about the d-dimensional
point data set: Values in all dimensions are independent of each other, and the sub-score in each
dimension (w[i] ·p[i]) follows a uniform distribution. Both value ranges of P and W are divided into
n partitions for the Grid-index.

Let the probability of a score S falling into a certain interval (a, b) be Prob(a < S < b), where
(a, b) is created by Grid-index. Data points with scores outside of (a, b) can be filtered. We denote
the filtering performance F by:

F (a, b) = 1− Prob(a < S < b). (4.19)

For example, if the probability of a point falling in an interval is 5%, then we say that the filter
performance is 95%.

Obviously, F (a, b) from Grid-index depends on the density of the grids (n×n). More partitions
n lead to smaller Prob(a < S < b) and better filtering performance. However, larger n requires
more memory, so it is important to find a suitable n that balances these factors. For this purpose,
we first establish specific score properties and then define the relationship between F and n.

For the case of one dimension, dividing the range into equally n2 partitions, the probability of a
point p’s score falling into a certain interval is obviously:

Prob(
k

n2
< w · p < k + 1

n2
) =

1

n2
, k = 1, 2, ..., n2. (4.20)

Now, we want to estimate the probability of p’s score (
∑d
i=1 w[i]·p[i]) falling in a score range obtained

by Grid-index. For the discrete d dimension case:

Prob(

d∑
i=1

(w[i] · p[i]) = s) (4.21)

This probability can be found by the so called ”Dice Problems”: Rolling d n2-sided dice and find
the probability of obtaining s score. In this problem, a n2-sided die corresponds to the score range
of a single dimension which is equally partitioned in n2 parts by Grid-index. The number of dice
corresponds to the number of dimensions d, and the scores by rolling d dice becomes the point’s
score.

The number of ways obtaining score s is the coefficient of xs in:

t(x) = (x1 + x2 + ...+ xn
2

)d (4.22)

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 50

Figure 4.17: Grid-index scores distribution in dimension d = 4, partitions n = 4, |P | = 100K, |W |
= 100K.

By [84], the probability of obtaining s score on d n-sided dice is

Prob(s, d, n) =
1

n2d

⌊(s−d)/n2⌋∑
k=0

(−1)k
(
d

k

)(
s− n2k − 1

d− 1

)
(4.23)

The filtering performance of Grid-index can be presented by 1 − Prob(s, d, n). However, it is
difficult to analyse the relationship between n and the filtering performance by Equation (4.23).
On the other hand, we found that the distribution of scores approaches a normal distribution, even
in low dimensional cases, such as 4. Figure 4.17 shows the observation of distribution of scores
computed by Grid-index with n = 4 partitions, and the dimension d = 4. This encourages us to
approximate the feature by normal distribution.

For a point p, p[i] · w[i] obeys a uniform distribution with range [0, r), average value µ and
standard deviation σ, where

µ =
1

2
r σ =

1

2
√
3
r (4.24)

The average score value of a point p is

p · w =
1

d

d∑
i=1

(p[i] · w[i]) (4.25)

By the central limit theorem, we have the following approximation when d is sufficiently large.

Lemma 1. (Score Distribution). The following random variable

Z =

√
d

σ
(p · w − µ) (4.26)

follows the standard normal distribution (SND). In other words, Z ∼ N(0, 1), where µ and σ are
as in Equation (4.24).

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 51

(a) (b)

Figure 4.18: (a): The normal distribution of point scores N(µ′, σ′) and the largest probability
interval (gray). (b): Φ(·) of the SND showing 1−

∫ α
−α · = 2Φ(α).

Note that d · p · w is the score of point p. Representing it by a random variable S, S follows a
normal distribution with mean µ′ = µd and standard deviation σ′ = σ

√
d. By Equation (4.24),

µ′ =
1

2
rd σ′ =

√
d

2
√
3
r (4.27)

From Lemma 1 and (4.19), we may now estimate the filtering performance.

Lemma 2. (Filtering performance). The filtering performance of Grid-index, F , is given by

F (x, x+∆) = 1− Prob(x < S < x+∆)

= 1−
∫ x+∆

x

f(x)dx
(4.28)

where
f(x) =

1

σ′
√
2π
exp(− (x− µ′)2

2σ′2) (4.29)

is the probability density function of N(µ′, σ′).

It is difficult to calculate the integral, but by rewriting Z in Lemma 1, The above equation can
be:

Z =
d · p · w − µd

σ
√
d

=
S − µ′

σ′ (4.30)

we can map S to Z ∼ N(0, 1) and need only to look up the SND table.
We are now ready to estimate the filtering performance of the Grid-index methodology. Recall

that the score of a point is the sum of d addends. The score’s range in each dimension is [0, r),
and it is equally divided into n2 partitions. Thus, the value range computed by Grid-index of a

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 52

d-dimensional points corresponds to range ∆:

∆ =
r

n2
d (4.31)

Our purpose is to find the number of partitions n which guarantees a certain filtering performance
F in Lemma 2. To do this, it is sufficient to show the worst case. By Lemma 2, scores that fall
within the interval illustrated by the gray part in Figure 4.18(a) which is located on either side of
µ, have the largest probability and thus gives the worst F . Concentrating on this worst interval
[µ′ − ∆

2 , µ
′ + ∆

2], by Equation (4.30) and Equation (4.27), we find that S∆ = µ′ ± ∆
2 corresponds to

Z∆ =
S∆ − µ′

σ′ =
µ′ ± ∆

2 − µ
′

σ′ = ±
√
3d

n2
(4.32)

From Lemma 1, Z ∼ N(0, 1), the filtering performance in the worst case can be given by

F (x, x+∆) > Fworst(x, x+∆) = 1−
∫ µ′+∆

2

µ′−∆
2

f(x)dx = 2Φ(

√
3d

n2
) (4.33)

where Φ(·) is the area.
The above discussion leads to the following result.

Theorem 1. Given ϵ < 1, the filtering performance of n partitions is guaranteed to be above 1- ϵ
in Grid-index such that

n >

√
2
√
3d

δ
(4.34)

where δ is determined by looking up the SND table at (1− ϵ)/2, that is,

Φ(
δ

2
) =

1− ϵ
2

(4.35)

Proof. By Equation (4.34), δ2 >
√
3d
n2 . Since Φ is a monotonically decreasing function (Figure 4.18),

Φ(
√
3d
n2) > Φ(δ2). Combining Equation (4.33) and Lemma 2, we have F > 2Φ(δ2) = 1− ϵ

Example. To ensure that Grid-index filters out over 99% data, we set ϵ = 1% ((1−ϵ)2 = 0.495),
thus the filtering performance is guaranteed to be better than Fworst(δ) = 99%. Looking up this
value in the SND table, we have Φ(0.0125) = 0.495, hence, δ = 0.025. By Theorem 1, the sufficient
number of partitions n is calculated by

√
3d

n2
< δ = 0.0125 −→ n >

√
2
√
3d

δ
=

√
80
√
3d (4.36)

If d = 20 then n = 32 satisfies Equation (4.36) hence a 32 × 32 Grid-index is enough for filtering

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 53

HHHHHW
P Uniform Normal Exponential

Uniform 99.3% 98.3% 99.0%
Normal 98.8% 96.5% 98.7%

Exponential 99.2% 97.5% 98.9%

Table 4.4: Filtering performance of Grid-index with different distributions. |P | = 100K, |W | =
100K, d = 6, n = 32

.

over 99% data. The necessary memory is less than 8 K (32× 32× 8) Bytes.
Theorem 1 is still true when w[i] · p[i] follows other distributions. The only difference is that a

new µi and σi√
d
would have to be estimated, which would lead to a different partition n. We observed

the filtering performance on some typical distributions, including the normal distribution (σ = 10%)
and exponential distribution (λ = 2). The filtering power of the Grid-index is shown in Table 4.4.
Different σ between these distributions lead to slight differences in filtering power. But the filtering
power is always efficient.

4.4 Experiments
In this section, we report the experimental results of aggregate reverse rank queries. We present
the experimental evaluation of the proposed algorithms which were implemented in C++, and the
experiments were run on a Mac with 2.6 GHz Intel Core i7 and 16 GB RAM. We report the above
measurements with the average values over 100 times.

4.4.1 Data, algorithms and setting

Both synthetic and real data were employed for the dataset P and W .
Synthetic data. The synthetic datasets were uniform (UN), clustered (CL), and anti-correlated

(AC) with an attribute value range of [0, 1). We used the same method as in related work [85,
87, 106] to generate synthetic datasets: UN: All attribute values are generated independently and
following a uniform distribution; CL: The cluster centroids are selected randomly and follow a
uniform distribution. Then, each attribute is generated with the normal distribution; AC: Select
a plane perpendicular to the diagonal of the data space. Then each attribute is generated in this
plane and follows a uniform distribution.

Real data. We also have two real data sets: NBA6 and AMAZON 7. NBA data set contains
20,960 tuples of players in the NBA from 1949 to 2009. We extracted 5-tuples to evaluate a player
with his points, rebounds, assists, blocks, and steals from this NBA statistics. The NBA data is

6NBA: http://www.databasebasketball.com.
7AMAZON: http://jmcauley.ucsd.edu/data/amazon/.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 54

treated as P , and we generate user data W with UN. AMAZON is the metadata of products and
reviews from the famous AMAZON.com. This metadata has 208,321 user reviews to the products
in the category of Movies and TV, in which product bundling often occurs. Each user and product
had at least five reviews. For each product in the metadata, we extracted the value on ”Price” and
”salesRank” as a 2-dimensional vector to represented the data p ∈ P . For a w ∈ W , we computed
the average value on ”Price” and ”salesRank” of the products which the user bought. We generated
Q by using clustered data

Algorithms. We present the experimental evaluation of following methods:
• NAIVE. The brute force method.
• DTM. The basic method of bound-and-filter framework. Both P and W are indexed in R-tree.
• CHDTM. DTM method with reducing query strategy for MAX and MIN functions.
• CPM. Both P and W are indexed in R-tree. Q is divided into clusters.
• C+TM. P is indexed in R-tree and W is indexed in Cone+ tree.
• CC+M. P is indexed in R-tree and W is indexed in Cone+ tree. Q is divided into clusters
• GIM. Grid-index method. Using approximate values in grid-index to skip computations while
linear scanning P and W .

4.4.2 Experimental results

UN data on vary dimensionality d. Figure 4.19 shows the experimental results for the synthetic
datasets UN with varying dimensions d (2-5), where the ARank function is SUM. Both datasets
P and W contained 100K tuples. Q had five query points, and the target is to find the five best
preferences (k = 5) for this Q. According to the CPU cost comparison results shown in Figure 4.19a,
DTM is at least ten times faster than the NAIVE method since it avoids checking each p and w,
and the performance is also stable for various dimensional cases. Comparing to the DTM which is
the basic bound-and-filter method, CPM and C+TM boost the performance at least 1.2 times, and
the combined method CC+M takes advantages of them and be the best. Figure 4.19b and Figure
4.19c show that CC+M had less I/O cost and less pairwise computations than other bound-and-filter
methods.

Reducing queries on MAX and MIN aggregate functions. The comparison results with
regard to the MAX and MIN functions are shown in Figure 4.20 and Figure 4.21. CHDTM opti-
mizes DTM by reducing unnecessary q ∈ Q on the MAX/MIN function. The experimental results
also confirm that CHDTM was better than DTM in terms of CPU cost, I/O cost, and pairwise
computations on UN data. Of course, the reducing strategy is a pre-processing technique, so it can
also applied in other bound-and-filter methods.

CL and AC on vary dimensionality d. We also test other synthetic data CL and AC and
the comparison results of ARR query with the SUM function are shown in Figure 4.22 and Figure
4.23. Regarding to the low dimensional data, CC+M has better performance than other algorithms

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 55

on both CL data and AC data for low dimensional data. Tree-based methods (DTM, CPM, C+TM,
CC+M) require less querying time for CL data than other data distributions, the reason is that
it is easier to index clustered data with the R-tree than other distributions. This also makes the
combined CC+M have less I/O cost and pairwise computations.

UN data on varying |Q|. For the varying |Q| in Figure 4.24, because the number of products
in a product bundle is not large, we test the Q from 5 to 25. The CPU time of branch-and-
bound methods (DTM, CPM, C+TM, CC+M) has only a slight increase because they bounded Q
in advance. However, the efficiency of the Naive and GIM decreased with increasing |Q| since it had
to calculate every q ∈ Q for assembling the ARank(.) value.

CL data on varying k. From the results provided in Figure 4.25, we can see that all algorithms
are insensitive to k. This is because of the following two reasons: (a) k is far smaller than the
cardinality of W and P . (b) In our proposed bound-and-filter framework, a k-element buffer in
ascending order is kept to store the top-k w′s and their ranking while processing, and the comparing
only happens with the last element (minRank) rather than all k candidates in the buffer.

Scalability Figure 4.26 shows the scalable property for varying |P | and |W |. We show the
results of |P | = |W | = 100K, 500K, 1M. The CPU cost of CC+M increases slightly with increasing
|P | and |W | because the majority of pairwise computations were filtered by the strategy of the
bound-and-filter.

Amazon data on vary k. Figure 4.27 shows the results with the AMAZON data set on
varying k, it is a good demonstration that our proposals have outstanding performance in marketing
applications. As we expected, CC+M is the fastest method since AMAZON is a low dimensional
data set.

NBA data on vary q. Using the NBA dataset, the ARR query can answer such practical
questions as ”who likes a team more than others?” We selected five, ten, and fifteen players from
the same team as Q and then generated the dataset W as various user preferences. The three
ARank functions represent different ways of thinking: To find the people who care about all players
of an NBA team (SUM) or are just concerned about the most favorite/unlike player in a team
(MAX/MIN). Figure 4.28 shows the results of NBA data. As expected, CC+M found the answer
the fastest since NBA is a low dimensional data set. The reducing query strategy also works with
CHCC+M method on NBA data.

High dimensional data. Figure 4.29 shows the comparison results on the high-dimensional
data (6 - 20). Although the CC+M is still the best one of the bound-and-filter methods, its per-
formance decreases with the increasing dimensionality. As we said before, this results in a limita-
tion of the proposed method using an R-tree (or any other spatial indexes) suffers from a problem
named “Curse of Dimensionality”, and subsequently leads to low performance when processing high-
dimensional data sets. According to the result, we can see that GIM method becomes faster than
CC+M method (and other bound-and-filter methods) after eight six dimensions.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 56

 1

 10

 100

 1000

2 3 4 5

C
P

U
 ti

m
e(

s)

d

NAIVE
DTM
CPM

C+TM
CC+M

(a) CPU cost.

 1

 10

 100

 1000

2 3 4 5

I/O
s

d

NAIVE
DTM
CPM

C+TM
CC+M

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

2 3 4 5

C
om

pu
ta

tio
ns

 (
e+

06
)

d

NAIVE
DTM
CPM

C+TM
CC+M

(c) Pairwise computations.

Figure 4.19: Comparison results of varying d on UN data with ARR query (SUM function), |P | =
|W | = 100K, all with |Q| = 5, k = 10.

 1

 10

 100

 1000

2 3 4 5

C
P

U
 ti

m
e(

s)

d

NAIVE
DTM

CHDTM

(a) CPU cost.

 1

 10

 100

 1000

2 3 4 5

I/O
s

d

NAIVE
DTM

CHDTM

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

2 3 4 5

C
om

pu
ta

tio
ns

 (
e+

06
)

d

NAIVE
DTM

CHDTM

(c) Pairwise computations.

Figure 4.20: Comparison results of varying d on UN data with ARR query (MAX function), |P | =
|W | = 100K, all with |Q| = 5, k = 10.

 1

 10

 100

 1000

2 3 4 5

C
P

U
 ti

m
e(

s)

d

NAIVE
DTM

CHDTM

(a) CPU cost.

 1

 10

 100

 1000

2 3 4 5

I/O
s

d

NAIVE
DTM

CHDTM

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

2 3 4 5

C
om

pu
ta

tio
ns

 (
e+

06
)

d

NAIVE
DTM

CHDTM

(c) Pairwise computations.

Figure 4.21: Comparison results of varying d on UN data with ARR query (MIN function), |P | =
|W | = 100K, all with |Q| = 5, k = 10.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 57

 1

 10

 100

 1000

2 3 4 5

C
P

U
 ti

m
e(

s)

d

NAIVE
DTM
CPM

C+TM
CC+M

(a) CPU cost.

 1

 10

 100

 1000

2 3 4 5

I/O
s

d

NAIVE
DTM
CPM

C+TM
CC+M

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

2 3 4 5

C
om

pu
ta

tio
ns

 (
e+

06
)

d

NAIVE
DTM
CPM

C+TM
CC+M

(c) Pairwise computations.

Figure 4.22: Comparison results of varying d on CL data with ARR query (SUM function), |P | =
|W | = 100K, all with |Q| = 5, k = 10.

 1

 10

 100

 1000

2 3 4 5

C
P

U
 ti

m
e(

s)

d

NAIVE
DTM
CPM

C+TM
CC+M

(a) CPU cost.

 1

 10

 100

 1000

2 3 4 5

I/O
s

d

NAIVE
DTM
CPM

C+TM
CC+M

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

2 3 4 5

C
om

pu
ta

tio
ns

 (
e+

06
)

d

NAIVE
DTM
CPM

C+TM
CC+M

(c) Pairwise computations.

Figure 4.23: Comparison results of varying d on AC data with ARR query (SUM function), |P | =
|W | = 100K, all with |Q| = 5, k = 10.

 1

 10

 100

 1000

5 10 15 20 25

C
P

U
 ti

m
e(

s)

|Q|

NAIVE
DTM
CPM

C+TM
CC+M

(a) CPU cost.

 1

 10

 100

 1000

5 10 15 20 25

I/O
s

|Q|

NAIVE
DTM
CPM

C+TM
CC+M

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

5 10 15 20 25

C
om

pu
ta

tio
ns

 (
e+

06
)

|Q|

NAIVE
DTM
CPM

C+TM
CC+M

(c) Pairwise computations.

Figure 4.24: Comparison results of varying |Q| on UN data with ARR query (SUM function), |P |
= |W | = 100K, all with d = 3, k = 10.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 58

 1

 10

 100

 1000

10 20 30 40 50

C
P

U
 ti

m
e(

s)

k

NAIVE
DTM
CPM

C+TM
CC+M

(a) CPU cost.

 1

 10

 100

 1000

10 20 30 40 50

I/O
s

k

NAIVE
DTM
CPM

C+TM
CC+M

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

10 20 30 40 50

C
om

pu
ta

tio
ns

 (
e+

06
)

k

NAIVE
DTM
CPM

C+TM
CC+M

(c) Pairwise computations.

Figure 4.25: Comparison results of varying k on CL data with ARR query (SUM function), |P | =
|W | = 100K, all with |Q| = 5, d = 3.

 1

 10

 100

 1000

 10000

 100000

100K 500K 1M

C
P

U
 ti

m
e(

s)

|P| and |W|

NAIVE
DTM
CPM

C+TM
CC+M

(a) CPU cost.

 1

 10

 100

 1000

 10000

100K 500K 1M

I/O
s

|P| and |W|

NAIVE
DTM
CPM

C+TM
CC+M

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

100K 500K 1M

C
om

pu
ta

tio
ns

 (
e+

06
)

|P| and |W|

NAIVE
DTM
CPM

C+TM
CC+M

(c) Pairwise computations.

Figure 4.26: Scalability on varying |P | and |W |, P: UN data, W: UN data, all with k = 10, |Q| = 5,
d = 3.

 1

 10

 100

 1000

10 20 30 40 50

C
P

U
 ti

m
e(

s)

k

NAIVE
DTM
CPM

C+TM
CC+M

(a) CPU cost.

 1

 10

 100

 1000

10 20 30 40 50

I/O
s

k

NAIVE
DTM
CPM

C+TM
CC+M

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

10 20 30 40 50

C
om

pu
ta

tio
ns

 (
e+

06
)

k

NAIVE
DTM
CPM

C+TM
CC+M

(c) Pairwise computations.

Figure 4.27: Comparison results of varying k on AMAZON data with ARR query (SUM function),
W : UN data, |W | = 100K, all with |Q| = 5.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 59

 1

 10

 100

 1000

5 10 15

C
P

U
 ti

m
e(

s)

|Q|

NAIVE
CC+M

GIM

(a) CPU cost (SUM).

 1

 10

 100

 1000

5 10 15

C
P

U
 ti

m
e(

s)

|Q|

NAIVE
CC+M

CHCC+M
GIM

(b) CPU cost (MAX).

 1

 10

 100

 1000

5 10 15

C
P

U
 ti

m
e(

s)

|Q|

NAIVE
CC+M

CHCC+M
GIM

(c) CPU cost (MIN)

Figure 4.28: Comparison results of varying |Q| on NBA data with ARR query (SUM, MAX, MIN
functions), W : UN data, |W | = 100K, all with k = 10.

 1

 10

 100

 1000

5 10 15 20

C
P

U
 ti

m
e(

s)

d

NAIVE
CC+M

GIM

(a) CPU cost.

 1

 10

 100

 1000

5 10 15 20

I/O
s

d

NAIVE
CC+M

GIM

(b) I/O cost.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

5 10 15 20

C
om

pu
ta

tio
ns

 (
e+

06
)

d

NAIVE
CC+M

GIM

(c) Pairwise computations.

Figure 4.29: Comparison results of high dimensional UN data with ARR query (SUM function), |P |
= |W | = 100K, all with |Q| = 5, k = 10.

CHAPTER 4. AGGREGATE REVERSE RANK QUERIES 60

4.5 Summary
Reverse rank queries have become important tools in marketing analysis. However, related research
on reverse rank queries has focused on only single product, which cannot deal with the common
sale strategy, product bundling. We proposed the aggregate reverse rank query (ARR) to address
the situation of product bundling where multiple query products exist. Three different aggregate
rank functions (SUM, MIN, MAX) were defined to target potential users in three normal views. To
solve ARR efficiently, we devise a novel bound-and-filter framework to with low-dimensional data.
In bound-and-filter framework, queries are bounded to calculate an approximate aggregate rank
value efficiently, then tree-based structures are used to filter data in processing. For the situation of
high-dimensional data, we proposed a grid index method which uses pre-calculated score bounds to
reduce multiplications in the simple scan. We compared the methods through experiments on both
synthetic data and real data.

Chapter 5

Weighted Aggregate Reverse Rank
Queries

In marketing, helping manufacturers to find the matching preferences of potential customers for
their products is an essential work especially in e-commerce analyzing with big data. The aggregate
reverse rank query has been proposed to return top-k customers who have more potential to buy a
given product bundling than other customers, where the potential is evaluated by the aggregate rank
which defined as the sum of each product’s rank. This query correctly reflects the request only when
the customers consider the products in the product bundling equally. Unfortunately, rather than
thinking products equally, in most cases, people buy a product bundling because they appreciate
a special part of the bundling. Manufacturers, such as video games companies and cable television
industries, are also willing to bundle some attractive products with less popular products for the
purpose of maximum benefits or inventory liquidation.

Inspired by the necessity of general aggregate reverse rank query for unequal thinking, we propose
a weighted aggregate reverse rank query which treats the elements in product bundling with different
weights to target customers from all aspects of thought. To solve this query efficiently, we first try
a straightforward extension. Then we re-build the bound-and-filter framework for the weighted
aggregate reverse rank query. We prove theoretically that the new approach finds the optimal
bounds, and develop the highly efficient algorithm based on these bounds. The theoretical analysis
and experimental results demonstrated the efficacy of the proposed methods.

61

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 62

5.1 Introduction
Top-k query is a user-view model that can help customers find their favorite products and is widely
used in many practical applications [9, 43, 47]. For two different datasets, user preferences and
products, this model retrieves the top-k products matching a given user preference. Conversely,
manufacturers must also target potential customers for their products. Reverse k-rank query (RkR)
[106], a manufacturer-view query model, solves this problem by returning the top-k user preferences
for a given product. Another manufacturer-view query in Chapter 4, aggregate reverse rank query
(ARR) addressed a limitation of RkR query, allowing it to retrieve user preferences for a set of
products and help manufacturers with product bundling.

5.1.1 Motivation

ARR query is an essential tool for finding potential customers for a given product bundle. However,
the aggregate rank function (ARank), which be used to evaluate the bundled products, is a simple
sum operation (ARank(w,Q) =

∑
rank(w, q), q ∈ Q). Although there also has MAX and MIN

function that evaluating the maximum (minimum) ranking product in a product bundle, it is not
enough to cover all situations of real-life. Therefore, it is a limitation of ARR query because these
functions are only a part of scenario in which ranks are evaluated in real-world applications; neither
customers nor manufacturers consider every product in the bundle to be equal in most situations.
Many customers buy a product bundle because they want some subset of the products, and they may
not care much about the others. Sellers also make use of this point, bundling unpopular products
with attractive ones to maximize profits or liquidate inventories. For example, Xiaomi 1, a famous
cell phone company in China, always bundles a newly released cell phone with some accessories
(mobile battery, cell phones case, earphone, etc.); customers have to accept this product bundle if
they want to obtain the new phone upon its release. Therefore, it is more accurate to add weights
for different products in the bundle in the market analysis of interested consumers. In addition to
e-commerce, user-product-based ARR queries can also be applied to other fields. ARR can used on
NBA player statistics to analyze preferences for a given NBA team (of several players). In business
investment, startup teams (of several members) would like to know which angel investor is most
willing to invest in them. In these cases, adding weights to different roles on an NBA or startup
team is also reasonable.

The model is closer to reality if weights are assigned for the ARR query. Inspired by this, we
generalize the ARR query and then propose a new query problem called weighted aggregate reverse
rank query (WARR). WARR query uses weights to handle the rank value of each product so that it
can find customers using their different perspectives on products in the bundle. In this extension,
the summing ARank function in the ARR query becomes a specific situation in which the weights

1http://www.mi.com/

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 63

Figure 5.1: WARR query results for a bundle of p1 and p2 with different weights.

are equal to each other (αi = 1
|α| , i = 1, 2, ..., |α|). More specifically, the weights αi ∈ α where∑|α|

i=1 αi = 1 correspond to the query products, note that this weighted preference is different from
the user preference w on attributes. e.g.: α1 is the weighted value for q1 in Q. These weights can
adjust the rank of query products with a weighted ARank function (WARank): WARank(w,Q, α) =∑
αi× rank(w, qi), qi ∈ Q,αi ∈ α. Sellers and data analysts from the manufacturer can use WARR

query to analyze various marketing positions by testing product bundles with different weights.
Based on the example of ARR query in Figure 4.1, Figure 5.1 shows a WARR query example

for {p1, p2} with two different weights: {0.5, 0.5} and {0.2, 0.8}. As Figure 5.1(d) shows, Tom’s
weighted rank of {p1, p2} is 3× 0.5 + 2× 0.5 = 2.5 when α = {0.5, 0.5} and 3× 0.2 + 2× 0.8 = 2.2

when α = {0.2, 0.8}. As with the ARR query, Tom is also the result when the weights are equal.
However, for weights {0.2, 0.8}, we want to find customers who consider p2 to be the main reason
to buy this bundle. In this case, Jerry’s weighted aggregate rank value is 5 × 0.2 + 1 × 0.8 = 1.8,
which is the best rank among the three people; hence, WARR query returns Jerry as its result. In
this query process, WARR helps manufacturers target Jerry, who treats p2 as a main priority.

As a generalized version, WARR follows the previous work of ARR, which was a manufacturer-
view query processing. Therefore, the weights for the query products in WARR query is assigned
by the manufacturers. If we allow customers to set weights on the products, for each customer, we
need to know her preferences for such a huge number of products and maintain them. Moreover,
when a manufacturer releases a new product, it means a new vector be added to P in our model.
However, it also means to add |W | vectors to update the preference to all customers for allowing
them to assign weights to products. In our model, it makes sense that let manufacturers assign
weights to their products then issue a WARR query on these products. Specifically, to analysis
the target customers with the variety considering on bundled products, a manufacturer can adjust
different weights and issue different WARR queries, then WARR retrieves the target users under
these weighted preferences.

Let us continue to use the example of Figure 4.1 in Chapter 4. As shown in Figure 5.1, assuming
that the seller of the bookshop wants to use the book p2 as the main product for sale, so she sets
the weight as (0.2, 0.8) corresponding to {p1, p2}. Then WARR can help to return Jerry as the best
target since his weighted aggregate rank is the best.

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 64

5.1.2 Challenges and contributions

Challenges. There are two challenges in efficient processing a WARR query.
The first challenge is to solve WARR queries with the bound-and-filter framework. WARR query

is a complicate processing, it requires to evaluate the rank of each query products with respect to all
users and returns the top-k users. The basic Naive algorithm for WARR leads a huge computation
with a complexity of O(|P | · |W | · |Q|). The key point is to reduce the pairwise computation between
P and W . The most relevance work is the ARR query, which offers the solutions that bound query
products Q with two dummy points and utilizes the spatial index R-tree to filter data with the
divide and conquer methodology. We formalize the techniques as the “bound-and-filter” framework,
it is an efficient strategy that reduces the computational complexity to O(log|P | · log|W |). WARR is
a generation of the previous work ARR and has much more complicated processing. As the example
in Figure 5.1 demonstrates, the value of the ranking changes with differing weights. Therefore, the
previous techniques which was designed only for the products that are equal, cannot handle the
weighted ranking relationship hence cannot be extended to solve WARR query effectively.

To this, we design sophisticate bounding methods and filtering strategies for the weighted rank-
ing, and propose a solution EFM that based on the bound-and-filter framework (Section 5.2.2).
Specifically, for the bounding phase, we propose weighted aggregate rank bounds to bound Q safely.
We propose a novel early stopping strategy which takes into consideration the weights, and helps
more efficient filtering.

The second challenge is the optimization of the bounding phase in the bound-and-filter frame-
work. The bound of the queries Q is the core of the efficient processing, since it determines the
amount of the filtering data for both P and W in the filtering phase hence significantly affects the
performance.

To this, we proposed an optimal bounding method OBM (Section 5.2.3) which finds the optimal
bounds for an arbitrary Q then filter more data than EFM. We proved the optimal bounding with
the theory of linear programming. It is important to note that the proposed optimal bounds are
effective also in previous ARR query but it helps to enhance the performance remarkable in WARR.

Contributions. This chapter makes the following contributions:

• We define a new query, called weighted aggregate rank query (WARR), that extends the
previous aggregate rank query by adding weights for different products in a bundle. With a
variety of weights, WARR can analyze and target different types of potential customers for a
given product bundle.

• We develop three solutions to process WARR queries, as existing approaches cannot be directly
applied, called SFM, EFM and OBM. SFM is a straightforward method that uses a spatial
R-tree. EFM adapts the bound-and-filter framework to the additional weights in the WARR
query. We study this filtering space in the bound-and-filter framework and propose an optimal

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 65

Symbols Description
P set of products.
W set of preferences.
Q Query products.
α Weights for Q.
d Data dimensionality.
f(w, p) The score of p based on w with inner product.
p[i] Value of a product p in the ith dimension.
H(w, q) The (d-1) dimensional hyper-plane perpendicular to w and cross q.
MBR Minimum bounding rectangle.
ep (ew) An MBR in Rtree of data set P (W).
L[MBR], U [MBR] The lower-left and upper-right corners in an MBR.
Ql (Qu) The set of q(i)l (q(i)u) in all d dimensions.
Q.low, Q.up Bounding of Q in Chapter 4.
Qlowopt , Q

up
opt The Optimal bounding of Q.

Table 5.1: Symbols and Notation

bounding approach that is proven to find the tightest bound of Q. The OBM is based on this
optimal bound in bound-and-filter framework. This optimal bounding strategy can also adjust
into the previous ARR query.

• We conduct a thorough experimental evaluation of real-world and synthetic datasets to evaluate
the efficacy of the proposed algorithms.

5.1.3 Definitions

As previously mentioned, it is necessary to evaluate each query product with different weights. Here,
we define the function of weighted aggregate rank (WARank), then propose a new query to extend
the previous ARR query with the WARank function, namely a weighted aggregate reverse rank
query.

Definition 1. (WARank(w,Q, α)). Given a dataset P , preference data w, query set Q, and weights
α, where ∀αi > 0 and

∑|α|
i=1 αi = 1, the WARank of Q based on w is WARank(w,Q, α) =

∑
αi ×

rank(w, qi), qi ∈ Q,αi ∈ α.

Definition 2. (weighted aggregate reverse rank query, WARR). Given datasets P and W , positive
integer k, and query product set Q, the WARR query returns set S, S ⊆ W , |S| = k, such that
∀wi ∈ S,∀wj ∈ (W − S), WARank(wi, Q, α) ≤ WARank(wj , Q, α) holds.

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 66

Figure 5.2: Geometric view of the rank of q and a tree-based methodology

5.2 Solutions

5.2.1 Straightforward Filtering Method (SFM)

The naive WARR query processing algorithm calculates WARank(w,Q,α) for each preference w ∈W
by comparing all scores of f(w, p), p ∈ P with all scores of f(w, q), q ∈ Q. Hence, the naive algorithm
is a triple-nested loop with complexity O(|W |·|P |·|Q|). To overcome this inefficiency, we first explain
a straightforward filtering method (SFM) that filters dataset P .

The geometric view of a 2-dimensional example that ranks a single q based on preference vector
w (rank(w, q)) is shown in Figure 5.2. There is a (d−1) dimensional hyperplane denoted by H(w, q),
which is a line in the 2-dimensional example of Figure 5.2, that crosses q and perpendicular to w.
The rank(w, q) is equal to the number of pi enclosed in the half-space (the gray area) defined by the
hyperplane H(w, q). Many previous works [85,86,106] have used a tree-base methodology to find the
number of points in half-space efficiently; in particular, R-trees are used to index and filter dataset
P . An R-tree can group nearby points with a minimum bounding rectangle (MBR) to filter data at
the lower-left and upper-right borders. For example, the upper-right border of MBR e2 is in the half-
space. Therefore, all points contained by e2 should be counted for the rank of q. On the contrary,
p1 and p4 should be discarded, since the lower-left border of MBR e5 is not in the half-space. The
MBRs are checked recursively while traversing the R-tree. We propose a straightforward method,
called SFM, based on this technique. As Algorithm 8 shows, SFM uses the tree-base method on P
to process WARR straightforwardly.

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 67

Algorithm 8 Straightforward filtering method (SFM)
1: Let T denote an array to record the WARank with each w.
2: for each wi ∈W do
3: for each qj ∈ Q do
4: Tree-based filtering and get rank(wi, qj)
5: T [wi]← T [wi] + αj · rank(wi, qj)
6: return top-k elements in T .

5.2.2 Extended Filtering Method (EFM)

The SFM solution sums the ranks for q ∈ Q individually against each w ∈ W , which is inefficient,
especially when the cardinality of W and Q are large. For ARR query, we proposed an efficient
bound-and-filter framework to bound Q to avoid checking every q, then filter W and P by imple-
menting a tree-based method with Q’s bounds. Unfortunately, this technique cannot handle WARR
queries. Inspired by this point, we extend and adapt the bound-and-filter framework for the weights
of ranks in WARR query.

Re-building the Bound-and-filter Framework in WARR query.

The intrinsic reason why the bound-and-filter framework cannot solve WARR queries is that the
filtering phase uses the rank of Q.low (Q.up) to indicate the lower (upper) bound of ARank(w,Q).
In particular:

rank(L[ew], Q.low) · |Q| ≤ ARank(w,Q) ≤ rank(U [ew], Q.up) · |Q|. (5.1)

If the lower bound of ew is still greater than the kth smallest w’s ARank that have been checked,
no w ∈ ew is in the top-k w’s and ew should be discarded.

Obviously, this does not work for WARR rank query, which has a series of weights for Q. In
order to bound the WARank(w,Q, α) for an arbitrary α, we multiply the left side of inequality
(5.1) by the minimum value in α, denoted as αmin, and multiply the right side by the maximum
value, αmax. This adaptation bounds the weighted aggregate rank as inequality (5.2) based on the
following lemma:

αmin · rank(L[ew], Q.low) · |Q| ≤WARank(w,Q) ≤ αmax · rank(U [ew], Q.up) · |Q|. (5.2)

Lemma 1. (Weighted aggregate rank bounds of Q for ew): Given a set of query points Q, an MBR
of w’s, and a set of weights α for Q, the lower bound of WARank(w,Q, α) is |Q|·rank(L[ew], Q.low)·
αmin and the upper bound of WARank(w,Q, α) is |Q| · rank(U [ew], Q.up) · αmax, where αmin and
αmax are the minimum and maximum values in α.

Proof. ∀qi ∈ Q, ∀wi ∈ ew, it holds that f(wi, qi) ≥ f(L[ew], Q.low); hence, rank(w, qi) ≥ rank(L[ew], Q.low).

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 68

Algorithm 9 Extended Filtering Method (EFM)
1: Initialize buffer to store the first k w’s and the WARank(w,Q, α).
2: Lrank ⇐ 0
3: minRank ⇐ the last rank in buffer.
4: Bounding phase: get Q.low and Q.up
5: heapw.enqueue(R-treew.root)
6: while heapw is not empty do
7: ew ⇐ heapw.dequeue
8: Cand⇐ ∅
9: heapp.enqueue(R-treep.root)

10: while heapp is not empty do
11: ep ⇐ heapp.dequeue
12: if ep is located below the lower hyperplane then
13: // Lemma 1.
14: Lrank ⇐ Lrank + ep.size · |Q| · αmin
15: if Lrank ≥ minRank then
16: Continue
17: if ep in sandwiched space then
18: Cand⇐ Cand ∪ ep
19: if ep covers the upper or lower hyperplane then
20: heapp.enqueue(ep.children)
21: if Lrank ≤ minRank then
22: // Corollary 3.
23: Compute further bounds and update Lrank and Cand.
24: if Lrank ≤ minRank then
25: if ew is a single w then
26: // Lemma 2.
27: Compute exact weighted rank WARank.
28: if WARank ≤ minRank then
29: Update buffer and minRank.
30: else
31: heapw.enqueue(ew.children)
32: return buffer

By definition, because αmin is the minimum value in α, WARank(w,Q, α) =
∑
rank(w, qi) · αi ≥

|Q| · rank(L[ew], Q.low) · αmin. Similarly, |Q| · rank(U [ew], Q.up) · αmax is the upper bound of
WARank(w,Q, α).

Early Stopping Strategy

To further enhance the performance, we propose a novel early stopping strategy that reduces the
computations while processing WARR queries.

If the lower bound of rank given by (5.2) cannot filter the ew directly, it is necessary to check
the weighted rank for all w ∈ ew and q ∈ Q. To reduce computations, we can reuse the value of

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 69

rank(w,Q.low), which has been calculated in Lemma 1, to figure out the exact value of weighted
rank. The correctness of the re-using is introduced and proved in the following lemma:

Lemma 2. (Correctness of computed weighted aggregate rank with Q.low): Given a set of query
points Q, Q.low, w, and a set of weights α, the weighted aggregate rank of Q in w is equal to
rank(w,Q.low) · |Q|+

∑
(rank(w, qi)− rank(w,Q.low)) · αi

Proof. rank(w,Q.low)·|Q|+
∑

(rank(w, qi)−rank(w,Q.low))·αi = rank(w,Q.low)·|Q|+
∑
rank(w, qi)·

αi − rank(w,Q.low)) · |Q| ·
∑
αi. Because

∑
αi = 1, the result is

∑
rank(w, qi) · αi, which is the

WARank(w,Q, α).

Before the final computation in Lemma 2, we can first check Q with L[ew] and U [ew] to determine
further bounds before getting through all w ∈ ew. While processing, if the current rank becomes
greater than the threshold minRank, we can early stop this process to avoid further checking. The
details is given in Corollary 3:

corollary 3. Based on Lemmas 1 and 2, it can be inferred that: |Q| · rank(L[ew], Q.low) · αmin ≤
rank(w,Q.low)·|Q|+

∑
(rank(L[ew], qi)−rank(L[ew], Q.low))·αi ≤ rank(w,Q.low)·|Q|+

∑
(rank(w, qi)−

rank(w,Q.low)) · αi. The further upper bound is calculated in a similar manner.

Finally, Corollary 3 and Lemma 2 form an early stopping strategy that can terminate the al-
gorithm and avoid unnecessary computation when checking the weighted rank for all w ∈ ew and
q ∈ Q.

EFM Algorithm

We proposed the EFM algorithm based on Lemma 1, Lemma 2 and Corollary 3. Algorithm 10
shows the details of EFM. A k-element buffer keeps the top-k w’s and is initialized to store the first
k w’s ∈ W and their weighted aggregate ranks (Line 1). Lrank is the counter that records the
lower bound rank. minRank is the threshold value. First, in the bounding phase, we determine
the bounds Q.low and Q.up of Q (Line 4). Then, heapw and heapp help to traverse the R-treep
and R-treew. For each ew obtained from heapw (Line 6), we traverse R-treep (Line 10-20). If an
ep located below the lower hyperplane H(L[ew], Q.low), we count the number of p ∈ ep and update
Lrank using Lemma 1 (Line 12-14). We stop and check the next ep ∈ heapp when Lrank becomes
greater than minRank (Line 15-16). If ep is in the sandwiched space, it will be added into Cand for
future processing (Line 17-18). If ep covers the upper or lower hyperplane, its children are added
into heapp (Line 19-20). After processing all MBRs ∈ heapp, if Lrank is less than minRank, we
first check all q ∈ Q based on Corollary 3 (Line 21-23). When Lrank is still smaller than minRank,
if ew is a single w, we compute the exact WARank based on Lemma 2 and decide whether to update
buffer and minRank (Line 24-29). Otherwise, we add the children of ew into heapw for the next
regression (Line 30-31). Finally, the algorithm returns buffer, which is the result of the WARR
query.

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 70

5.2.3 Optimal Bounding Method (OBM)

The key point of efficiency in the bound-and-filter framework is the bounding phase, because the
tightness of the bounds of Q determines the effectiveness of filtering both P and W . The score of
the bounds f(ew,Q.up) and f(ew,Q.low) determine the amount of data in P that can be filtered.
Moreover, as mentioned in Section 5.2.2, the higher the lower hyperplane H(ew,Q.low) is located,
the higher the value of the lower rank bound will be, and the more data from W will be filtered. If
Q could be bounded more tightly, ew2 might be filtered directly, without further computation. In
conclusion, tightening the bounds of Q is significant to the performance.

In this section, we propose the optimal bounds of Q. We utilize the theory of linear programming
to prove the optimization. We propose an optimal bounding method (OBM) for WARR query based
on these optimal bounds.

The Optimal Bounds for Q.

An arbitrary preference wa ∈W can be represented by the linear combination of w(i)
t with coefficient

γi as follows:

wa =

d∑
i=1

γiw
(i)
t , where γi ≥ 0 and

d∑
i=1

γi = 1 (5.3)

where
∑d
i=1 γi = 1 is guaranteed by

∑d
i=1 wa[i] = 1, as shown below.

1 =

d∑
j=1

wa[j] =

d∑
j=1

d∑
i=1

γiw
(i)
t [j] (5.4)

=

d∑
i=1

γi

d∑
j=1

w
(i)
t [j]

=

d∑
i=1

γi × 1

Before formally stating and proving the d-dimensional case, we explain the lower bound optimum
with 2-dimensional data. (The process for the upper bound can be illustrated in exactly the same
way.) In Figure 5.3, there are top preferences Wt = {w(1)

t , w
(2)
t } of all dimensions, and two cor-

responding perpendicular lines (hyperplanes) of minimum values for f(w(i)
t , q

(i)
l), i = 1, 2, ..., d are

determined.
The construction of the hyperplanes indicates that p has a lower score than q(i)l on w(i)

t when p
is located in the half-space below H(w

(i)
t , q

(i)
l). In Figure 5.3 where p is located in the overlap area

(dark gray) of the two half-spaces, p · wit ≤ q
(i)
l · w

(i)
t for i = 1, 2, ..., d. According to the Equation

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 71

Figure 5.3: The half-spaces of H(w
(i)
t , q

(i)
l), i = 1, 2, ..., d. The intersection point is the optimal lower

bound of Q for an arbitrary w ∈W .

(5.3), the score of p based on an arbitrary wa, f(wa, p) = p · wa, can be presented as follows:

p · wa = p · (γ1w(1)
t + (1− γ1)w(2)

t) ≤ γ1q(1)l · w
(1)
t + (1− γ1)q(2)l · w

(2)
t (5.5)

Let the intersection point of H(w
(i)
t , q

(i)
l) be q̂. q̂ locates on both H(w

(i)
t , q

(i)
l), for i = 1, 2, ..., d,

meaning that q̂ · w
(1)
t = q

(1)
l · w

(1)
t (a)

q̂ · w(2)
t = q

(2)
l · w

(2)
t (b)

Replacing the r.h.s of Equation (5.5) with the l.h.s of γ1 × (a) + (1− γ1)× (b) gives

p · wa ≤ γ1q̂ · w(1)
t + (1− γ1)q̂ · w(2)

t = q̂ · wa (5.6)

By the theory of linear programming, it is easy to know that p · w takes the maximum value at q̂.
In other words, the score of point q̂ is optimal.

Based on this discussion, we can lay out the formal conclusion that shows that the optimal
bounds of Q are the intersection points. 2

Theorem 1. (The optimal bounds of Q): Given Qu and Ql from Q and Wt from W , let Qlowopt be
the intersection point(s) of all hyperplanes {H(w

(i)
t , q

(i)
l)|i = 1, 2, ...,d}, and Qupopt be the intersection

point(s) of all hyperplanes
{H(w

(i)
t , q

(i)
u)|i = 1, 2, ...,d}, respectively. Then, Qlowopt and Qupopt are the optimal lower and upper

bounds of Q, respectively.
2If there is more than one point in the solution, any one of them can be the bound since they all have the same

score.

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 72

Proof of the Optimal Bounds (Theorem 1).

As in the discussion for the 2-dimensional case, we only give the proof for the lower bound Qlowopt ,
since Q.up can be proved in the same way.

Proof. (Qlowopt of Theorem 1):
Assume that the point q̂ can bound Q with an arbitrary wa ∈ W . Because the larger value

of f(wa, q̂) filters more data, we want to find the q̂ that maximizes wa · q̂. The problem can be
converted to a linear programming problem with the standard form as follows:

Maximize: q̂ · wa

Subject to: q̂ · w(i)
t ≤ f(w

(i)
t , q

(i)
l)

q̂[i] ≥ 0, i = 1, 2, ..., d

By the theory of linear programming, the optimal lower bound is the intersection point(s) of all
hyperplanes {H(w

(i)
t , q

(i)
l)|i = 1, 2, ...,d}. Generalizing the Equations (a) and (b) to d-dimensional

case, the intersection point(s) q̂ found by solving the following simultaneous equations (5.7), is the
optimum solution of the above problem and hence the lower bound. In other words, like Equation
(5.6), the score of a p under all the hyperplanes based on an arbitrary wa satisfies p · wa ≤ q̂ · wa.

A · q̂ = c (5.7)

where

A =

w

(1)
t [1] · · · w

(1)
t [d]

...
w

(d)
t [1] · · · w

(d)
t [d]

 and c =

f(w

(1)
t , q1l)
...

f(w
(d)
t , qdl)

 (5.8)

OBM Algorithm

Since computing Qlowopt and Qupopt is equivalent to solving the linear equations of Equation (5.8) and
finding q̂, Gaussian elimination 3 is an easy and low-cost method for doing so. The total complexity
of Gaussian elimination is approximate to O(d3), where d is the dimensionality of the data and
indicates the number of linear equations. Therefore, the complexity of the bounding phase in OBM
is O(d · |Q|+ d3). Notice that the complexity of finding Q.up and Q.low is O(d · |Q|) and the cube
of dimensionality is still a very small value. The cost of bounding Q is negligible to the whole
bound-and-filter algorithm, since both |Q| and d are far smaller than the cardinality of W and P .

3https://en.wikipedia.org/wiki/Gaussian_elimination

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 73

(a) The bounding phase. (b) The filtering phase (gray area).

Figure 5.4: Bound-and-filter in OBM. (a) Finding the optimal boundsQlowopt andQ
up
opt. (b) Comparing

the filtering space of the previous Q.up(Q.low) and optimal bounds.

We take advantage of this optimal bound and propose the OBM method (Optimal Bound
Method). The bounding phase of OBM is described in Algorithm 10. The filtering phase of OBM is
to replace the Q.low and Q.up in EFM with the best bounds Qlowopt and Qupopt. Furthermore, Lemmas
1 and 2 and Corolllary 3 also hold to the optimal bounds. Figure 5.4 shows the optimal bounds and
filtering space of OBM. In Figure 5.4a, it is obvious that Qlowopt and Qupopt bound Q more tightly than
the previous Q.low and Q.up. Figure 5.4b also shows that more data from P can be filtered than in
EFM.

Algorithm 10 Optimal Bounding
1: Wt has been found offline
2: Al and Au are matrixes for storing hyperplane equations.
3: for each w(i)

t ∈Wt do
4: qil ← argmax(f(w

(i)
t , q)), q ∈ Q

5: Ql ← Ql ∪ {qil}
6: Al ← Al ∪ {w(i)

t ∪ {f(w
(i)
t , qil)}}

7: qiu ← argmin(f(w
(i)
t , q)), q ∈ Q

8: Qu ← Qu ∪ {qiu}
9: Au ← Au ∪ {w(i)

t ∪ {f(w
(i)
t , qiu)}}

10: Qlowopt ← GuassianElimination(Al)
11: Qupopt ← GuassianElimination(Au)

12: return { Qlowopt , Qupopt}

Table 5.2 summarizes the space and time complexities for NAIVE and the proposed SFM, EFM
and OBM. NAIVE has the highest time complexity O(|P | · |W |) but no needs extra index storage.
SFM uses R-tree to index P so it costs O(|W | · log |P |). EFM and OBM are based on a bound-and-
filter framework with two R-trees and have the complexities of O(log |W | · log |P |). The difference

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 74

Table 5.2: The complexities of the methods.

Algorithm Index CPU cost I/O cost
NAIVE None O(|P | · |W | · |Q|) |P |+ |W |
SFM RtreeP O(|W | · log |P |) log |P |+ |W |
EFM RtreeP, RtreeW O(log |W | · log |P |) log |W |+ log |P |
OBM RtreeP, RtreeW O(log |W | · log |P |) log |W |+ log |P |

is that the optimal bounding strategy makes OBM better than EFM.

5.3 Experiments
In this section, we present an extensive experimental evaluation of the NAIVE and proposed SFM,
EFM, and OBM algorithms for WARR query. All algorithms were implemented in C++ and the
experiments were run on a Mac with a 2.6 GHz Intel Core i7 CPU, 16 GB RAM, and 256G flash
storage.

5.3.1 Data sets and Metrics

Product dataset P : We used both synthetic and real-world data for P :

• Synthetic datasets: The synthetic datasets are uniform (UN), clustered (CL), and anti-correlated
(AC). The attribute value range of each dimension is [0,1). For the UN dataset, all attribute
values are generated independently and following a uniform distribution. The AC dataset is
generated by selecting a plane perpendicular to the diagonal of the data space using a normal
distribution; we generate attributes value in this plane and follow a uniform distribution. For
the CL dataset, first, the cluster centroids are selected randomly and follow a uniform distri-
bution. Then, each attribute is generated with the normal distribution. We use the centroid
values as the mean and 0.1 as variance. All of the above distributions were used in related
work of other reverse rank queries [85,86,106].

• Real-world datasets: We also use two real data sets, NBA4 and Amazon.5 The NBA dataset
contains 20,960 tuples of box scores of basketball players in NBA seasons from 1949 to 2009.
We extracted 5-tuples to evaluate a player using points, rebounds, assists, blocks and steals
statistics. The NBA dataset was also used in ARR query. Another real-world dataset is the
metadata of products from Amazon.com, a well-known online retailer. This metadata contains
1,689,188 user reviews on 208,321 tuples of products in the categories of Movies and TV, in
which product bundling is common. Each user provides at least five reviews, and each product
is reviewed by at least five users. All the values were normalized based on the definition. We

4NBA: http://www.databasebasketball.com.
5Amazon: http://jmcauley.ucsd.edu/data/amazon/.

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 75

 0

 100

 200

 300

 400

 500

 600

2 3 4 5

C
P

U
 ti

m
e(

s)

d (2-5)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

2 3 4 5

I/O
s

d (2-5)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

2 3 4 5

C
om

pu
ta

tio
ns

d (2-5)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.5: Comparison results of varying d (2-5) on UN data P , W :UN, |P | = 20K, |W | = 200K,
all with |Q| = 5, k = 10.

extracted price and sales rank from the metadata as 2-dimensional vectors that represent a
product. The Amazon data are also used in other research, such as [62,63].

User preference dataset W : For dataset W , we also have the synthetic datasets, UN and CL,
which were generated in the same manner as the P datasets. For the real data of Amazon, for a
specific user w ∈ W , we computed the average value on “Price” and “salesRank” of the products
which the user bought, then assemble these values as a 2-dimensional vector that represents this
user’s preference.

Query products Q: For the query products Q, we have two strategies to generate the queries.
The first is to select a clustered subset from the product data P . In particular, we select a product
in dataset P randomly, then find its m nearest neighbor in P , where m is the pre-defined cardinality
of Q. We use this strategy as the default Q since it is a common situation that the products are
always similar in a product bundling in the real-life applications (i.e., bundled books, clothes and
games). On the other hand, we also test the performance on the Q which randomly selected from
P simply (uniform), this test is for the situation that products in a bundle are not in a cluster (i.e.,
a mobile phone has a different price compared to its charging cable and case).

Weights α: The weights α corresponding to Q are generated randomly.
Efficiency metrics: We use three metrics to observe the efficiency of all algorithms. a) The

query execution time (CPU time) required by each algorithm; b) the I/O cost. I/O is estimated
by checking accessed nodes in R-treep and R-treew. We also observe c) the number of pairwise
computations between P and W , which is a statistic that clearly shows the performance of each
algorithm. We present average values over 1000 queries in all cases.

5.3.2 Experimental Results

Synthetic data: Figure 5.5 presents the comparative performance of all algorithms on UN data of
both P and W for varying dimensionality d. The cardinality of |P |=20K, |W |=200K, k=10, and
|Q| = 5. According to the execution time results shown in Figure 5.5a, our three proposed methods

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 76

 0

 100

 200

 300

 400

 500

 600

2 3 4 5

C
P

U
 ti

m
e(

s)

d (2-5)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

2 3 4 5

I/O
s

d (2-5)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

2 3 4 5

C
om

pu
ta

tio
ns

d (2-5)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.6: Comparison results of varying d (2-5) on AC data P , W : UN, |P | = 20K, |W | = 200K,
all with |Q| = 5, k = 10.

 0

 100

 200

 300

 400

 500

 600

2 3 4 5

C
P

U
 ti

m
e(

s)

d (2-5)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

2 3 4 5

I/O
s

d (2-5)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

2 3 4 5

C
om

pu
ta

tio
ns

d (2-5)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.7: Comparison results of varying d (2-5) on CL data P and W , |P | = 20K, |W | = 200K,
all with |Q| = 5, k = 10.

 20

 40

 60

 80

 100

 120

10 20 30 40 50

C
P

U
 ti

m
e(

s)

k (10-50)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

10 20 30 40 50

I/O
s

k (10-50)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

10 20 30 40 50

C
om

pu
ta

tio
ns

k (10-50)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.8: Comparison results of varying k (10-50) on NBA data, |P | = 20960, |W |: UN, |W | =
100K, all with |Q| = 5, d = 5.

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 77

 0

 200

 400

 600

 800

 1000

 1200

10 20 30 40 50

C
P

U
 ti

m
e(

s)

k (10-50)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

10 20 30 40 50

I/O
s

k (10-50)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

10 20 30 40 50

C
om

pu
ta

tio
ns

k (10-50)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.9: Comparison results of varying k (10-50) on AMAZON data, |P | = 208,321, |W | =
1,689,188, all with |Q| = 5, d = 2.

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50

C
P

U
 ti

m
e(

s)

k (10-50)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

10 20 30 40 50

I/O
s

k (10-50)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

10 20 30 40 50

C
om

pu
ta

tio
ns

k (10-50)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.10: Comparison results of varying k (10-50) on UN data P andW , |P | = 20K, |W | = 200K,
all with |Q| = 5, d = 3.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

5 10 15

C
P

U
 ti

m
e(

s)

|Q| (5-15)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

5 10 15

I/O
s

|Q| (5-15)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

5 10 15

C
om

pu
ta

tio
ns

|Q| (5-15)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.11: Comparison results of varying |Q| (5-15) on UN data P and W , |P | = 20K, |W | =
200K, all with k = 10, d = 3.

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 78

 10

 100

 1000

 10000

100K 500K 1M

C
P

U
 ti

m
e(

s)

|P| (100K-1M)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

 1x109

100K 500K 1M

I/O
s

|P| (100K-1M)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

100K 500K 1M

C
om

pu
ta

tio
ns

|P| (100K-1M)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.12: Scalability of varying P (100K-1M) on UN data P and W , |P | =100K, all with k = 10,
d = 3, |Q| = 5.

 10

 100

 1000

 10000

100K 500K 1M

C
P

U
 ti

m
e(

s)

|W| (100K-1M)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

 1x109

100K 500K 1M

I/O
s

|W| (100K-1M)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

100K 500K 1M

C
om

pu
ta

tio
ns

|W| (100K-1M)

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.13: Scalability of varying W (100K-1M) on UN data P and W , |W | = 100K, all with k =
10, d = 3, |Q| = 5.

 0

 100

 200

 300

 400

 500

 600

clustered uniform

C
P

U
 ti

m
e(

s)

Q distribution

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x106

 1x107

 1x108

 1x109

clustered uniform

I/O
s

Q distribution

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x106

 1x107

 1x108

 1x109

clustered uniform

C
om

pu
ta

tio
ns

Q distribution

SFM
EFM
OBM

(c) Pairwise computations.

Figure 5.14: Comparison results of different distribution on Q, |P | = 20K, |W | = 200K, all with k
= 10, d = 3. |Q| = 5

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 79

are significantly faster than the NAIVE algorithm. The EFM and OBM methods, which use the
bound-and-filter framework with two R-tree, are superior to SFM because they avoid checking each
w ∈W . OBM is the most efficient, 2–3 times faster than EFM with the help of its optimal bounding
strategy. We also found that the performance of SFM, EFM and OBM decrease as dimensionality
increases; in higher dimensional space, query Q intersects more MBRs of the R-tree and the tree-
based algorithms traverse deeper layers of the tree-structure for filtering data. Figure 5.5b shows the
I/O cost of the proposed algorithms. EFM and OBM are better than SFM, since they only access
a part of W with the R-treew while SFM needs to check every w. OBM has a lower I/O cost than
EFM due to the optimal bounds on Q in OBM, which allows it to filter more data than EFM does,
as was proved in Theorem 1. The observation of pairwise computations is shown in Figure 5.5c,
which is an insight view of all algorithms. OBM makes the fewest pairwise computations because
it can filter the most data among all the algorithms; this also proves that OBM requires the least
computation time when processing queries.

The comparison results of AC and CL data in the same setting as the UN experiment are shown
in Figures 5.6 and 5.7, respectively. Similarly to the results of the UN data, OBM is the most
efficient method; not only is it the fastest algorithm, but it also has the lowest I/O cost and number
of pairwise computations. We found that the performance of EFM and OBM on CL data are better
than on UN data, since the bound-and-filter framework can filter more MBRs in R-treep and R-treew
when P and W are clustered.

Real-world NBA data . Figure 5.8 shows the CPU time and I/O cost for all algorithms on
NBA data, with varying k. Clearly, OBM is more efficient than others and has lower I/O cost and
fewer pairwise computations. The NBA data were also used in ARR query to answer the question:
“Who loves a given basketball team more than other people do?”. Every player on a basketball team
has his responsibility; e.g., the Center and Power Forward defend and take rebounds, while the Point
Guard and Score Guard need to pass and score. In addition to verifying WARR query’s efficiency,
we also tested its practical applicability. We set a query team that was good at defense, with (a)
equal weights (ARR query) and (b) large weights on the Center and Power Forward (WARR query).
The results from the WARR query all have greater preferences for the rebound and block attributes;
this means that WARR query returns a correct set of people, those who prefer defensive teams. For
the above observation, we conclude that WARR is more reasonable than the ARR query.

Real-world Amazon data. The Amazon dataset contains e-commerce data. Comparison
results of CPU time, I/O cost and pairwise computing times are shown in Figure 5.9 with varying k
on UN data from W . We randomly selected five movies or TV programs from the Amazon data as
a product bundle query set. OBM maintains its efficiency in execution time and I/O cost, as can be
seen in Figures 5.9a and 5.9b. This is a very strong result that demonstrates the efficiency of OBM
in practical marketing applications.

Effect of varying k. Performance results when varying k on 3-dimensional UN data with

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 80

|Q| = 5, |P |=20K, |W |=200K, are shown in Figure 6.12. All algorithms are insensitive to k. First, k
is far smaller than |W | and |P |. Second, k is the number of results of w for WARR query, so the value
of k does not affect performance very much for any algorithms, even though the NAIVE and SFM
algorithms check all w ∈ W . EFM and OBM keep a k-element ascending buffer while processing,
so they are only concerned with the last element with minRank rather than all k candidates in the
buffer.

Effect on varying |Q|. For the varying |Q| in Figure 5.11, because the number of products in
a product bundle is not generally large, we test |Q| from 5 to 15. EFM and OBM are insensitive to
|Q| based on these results because they bound Q in advance. However, the efficiency of the NAIVE
and SFM algorithms decrease as |Q| increases, as they check every q.

Scalability with varying |P |. Figure 5.12 shows the performance of all algorithms when
increasing the cardinality of dataset P . We show the results of |P | = 100K, 500K, 1M , with |W | =
100K. The scalability of all algorithms are with respect to |P |, and OBM maintains the advantage
over other algorithms. Because SFM, EFM, and OBM all use R-trees to index P , the execution time
and data accessed grow faster than linearly with P . This is clearly shown in Figures 5.12a, 5.12b
and 5.12c.

Scalability with varying |W |. We also test the scalability of all algorithms for varying |W |.
We show the results of CPU time and I/O cost with the setting of |W | = 100K, 500K, 1M , with
|P | = 100K, d = 3, |Q| = 5, and k = 5. These results differ with those of varying |P | in Figure 5.13;
in this case only EFM and OBM maintain their growth with increasing |W |. OBM is still the most
efficient algorithm. Figure 5.13c gives the insight view of processing with the number of pairwise
computations.

Effect on the distribution of Q. Figure 5.14 shows the comparison results on clustered Q

and uniform Q. We can see that the performances in NAIVE and SFM are not changed with the
clustered Q since they process queries in Q independently. On the other hand, the clustered Q has
a better performance in the bound-and-filter based methods EFM and OBM. This is because the
uniform Q may select a large distribution of products, then loose the bound of Q and compute more
data than a tighter bound in a cluster.

5.3.3 Effectiveness

We test the effectiveness of WARR with AMAZON metadata and reviews data in Section 5.3.1, in
comparison with previous ARR. The details are as follows:

• Product (P): Price, sales rank and rating are three attributes of a product. Price and sales
rank are from the metadata which is also used in our experiments of performance comparison.
The rating of a specific product is computed as the average value of the reviews on this product.

• User preference (W): The user preference is also a three-dimensional vector which has values

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 81

 0

 5

 10

 15

 20

 25

10 20 30 40 50
P

re
ci

si
on

 (
%

)

k

ARR
WARR-alpha-1
WARR-alpha-2

Figure 5.15: Precision of ARR and WARR on AMAZON data.

on (price, sales rank, rating), corresponding to the attributes of a product. For a user, the
value of price and sales rank are computed as the average value of the products she has bought,
and the value of the rating is the average value of her reviews.

• Query bundled products (Q): We first select a product p from P randomly, then find the
“bought together” product of the selected p, and use these two products as a product bundle.

We issued two types of queries of WARR and ARR with 100 randomly selected Q, and recorded
50 results for each Q (i.e., k = 10 ∼ 50). The precision is defined as the proportion of the users who
have bought all products of Q. We set α0 = (0.5, 0.5) as the ARR query which treats everything
equally. On the other hand, we set α1 = (0.75, 0.25) and α2 = (0.25, 0.75) which means that either
would be the appreciative one. Figure 5.15 reports the precision of ARR and WARR with α1 and
α2. According to these results, WARR’s precision is better than ARR in all situations. Of course,
the precision depends on α. Nevertheless, people always evaluate products unequally when they
consider buying a bundled products, and WARR enables it to adjust the weights reflexing such
request.

5.4 Summary
In this chapter, we proposed a general, weighted aggregate reverse rank (WARR) query. To WARR,
aggregate reverse rank (ARR) query is only a simple, special case in which all query points are
treated with equal importance. WARR query can be critical in various applications, such as finding
potential customers and analyzing marketing via different views for a set of products. We proposed
three solutions for solving WARR query efficiently. SFM is a straightforward way to use tree-based
methods for reducing the computation of product data. The extended filtering method (EFM) adapts
the previous bound-and-filter framework and is made able to solve WARR queries by filtering the
pairwise computation from both product and preferences data. To optimize the bound, we designed

CHAPTER 5. WEIGHTED AGGREGATE REVERSE RANK QUERIES 82

a new bounding strategy, then developed and implemented an optimal bounding method (OBM).
We theoretically proved the optimum of the bounds in OBM and compared the performance of the
above three methods with both synthetic and real data. The results show that OBM is the most
efficient of these algorithms.

On the other hand, WARR is a general version of ARR query. In this Chapter, we adjust
the bound-and-filter framework to solve WARR efficiently. As we mentioned in Section 5.1.2, the
proposed methods of ARR query cannot be used for WARR directly since the effect of weights. In
the future, we plan to study on adjusting the solutions with Grid-index and Cone+ tree structures
in Chapter 4 to WARR query.

Chapter 6

Continuous Spatial Keyword
Search

As the popularity of SNS and GPS-equipped mobile devices increases, a large number of web users
frequently change their location (spatial attribute) and interested keywords (keyword attribute) in
real-time. An example of such would be when a user watches the news, videos and blogs while
moving. Many location-based web applications can benefit from continuously searching for these
dynamic spatial keyword objects. For example, a real-time coupon delivery system can search for
potential customers by matching their locations and interested keywords. Then it sends coupons to
attract these potential customers.

In this chapter, we define a novel query problem to continuously search for dynamic spatial
keyword objects. To the best of our knowledge, this is the first work to consider dynamic spatial
keyword objects. We employ a novel grid-based index to manage both queries and dynamic spatial
keyword objects. With the proposed index, we devise a group-pruning technique to efficiently find
the queries affected by the dynamic objects. Moreover, to quickly update the searching results for
affected queries, we develop a buffer named partial cell list to reduce the computation cost in the
top-k reevaluation. Theoretical analysis and experiments confirm the superiorities of our proposed
techniques.

83

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 84

6.1 Introduction
Nowadays, people are more likely to access the web from mobile devices such as a smartphone
or a tablet than a desktop or a laptop computer. Smartphones and other mobile devices enable
to receive information anywhere and enrich people’s lives. People are used to watching the news,
short video clips (e.g. Youtube, TikTok), posting on SNS (e.g. Twitter, Weibo) with smartphones
while moving outside. The prevalence of GPS-equipped mobile devices generates massive volumes
of dynamic spatial keyword data which is constantly updated on the web. In the real world, a
spatial keyword object contains dynamic data of spatial and keyword attributes. For example, a
person changes the content on his/her cellphone (keyword attribute) while moving around (spatial
attribute). Many applications can benefit from the continuous searching of dynamic spatial keyword
data. For instance, with the location-awareness recommendation system, a sports apparel shop can
discover potential customers by continuously searching for nearby people who are watching sports
related news and videos, or posting sports related topics on SNS. This research aims to define a
novel searching problem that continuously searches for top-k dynamic spatial keyword objects.

6.1.1 Motivation

Although different types of continuous spatial keyword queries have been studied, the existing re-
search considers only static objects. In other words, there is no research on dynamic spatial keyword
problem, which is more realistic in the real world applications. Since an update of a dynamic object
can be considered as a deletion of the previous status and an insertion of a new status, the key point
is to consider the effect of deleting the previous status. After deleting a top-k member, we would
refill the top-k list. Researchers have investigated streaming Publish/Subscribe systems, such as
CIQ [14] and SKYPE [90]. It is noteworthy to mention that these studies differ from the problem
in our research because they only consider the incremental static objects (i.e., the appended objects
will not change their attributes.). For example, when searching for tweets, both CIQ and SKYPE
search the top-k tweets dynamically in the sense that newly posted tweets are considered, however
the tweet itself does not change. Unlike them, we search top-k users while the users are updated with
their recent tweets, as well as their locations. Although an update operation can be implemented as
a combination of a deletion operation and an insertion operation, existing research cannot process
an unpredictable update of an object, which is a random insertion/deletion pair. Neither CIQ nor
SKYPE support the above update operation because CIQ is an append-only system without dele-
tions, and as a sliding window system, in SKYPE, insertions and deletions must be orderly w.r.t.
the sequence of streaming data.

This gap in the existing research motivated us to study the realistic problem of continuous search
on dynamic spatial keyword objects.

Figure 6.1 shows a scenario that explains how our research works with the application of the

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 85

Figure 6.1: E-coupon recommendation system.

E-coupon recommendation system. Assume that a Hip-Hop cloth store, a Sushi restaurant and an
Audi car dealer are registered on our system. Our system continuously searches the top-1 people
for these three shops and sends out coupons. At a certain time t0, Bob is watching a hip-hop music
video on his cellphone and becomes the top-1 result of the Hip-hop store. Amy searches “Audi car”
with her phone, and Jack is watching a news about “Audi car”. Our system adds Amy to the top-1
for the Audi dealer since she is closer than Jack. Nobody is watching content about “Sushi”, so
the top-1 for the Sushi restaurant is empty. At t1, Bob has changed his location and has started to
watch an eating show about Sushi. Then the keyword attribute of Bob changes to “Sushi, Hip-Hop”
1. Our system still keeps Bob as the top-1 of the Hip-Hop shop since there are no other better
options, and adds Bob to the top-1 list of the Sushi restaurant. Amy has left away from the Audi
dealer and has searched “Steak near me” on her cellphone. Our system recognizes Amy’s change
and has reevaluated the top-1 for Audi dealer, finding that Jack who has stayed and still watching
the news about the ”Audi car” becomes the top-1.

6.1.2 Challenges and contributions

Challenges. There are two challenges in our research.
1. Indexing objects and queries. The first challenge is to design efficient indexing structures

1We suppose that the keyword attribute remains some keywords of the previous status.

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 86

to manage the big data of dynamic objects and queries. The most relevant works of index streaming
spatial keyword objects are the Publish/Subscribe systems CIQ [14] and SKYPE [90] we mentioned
before. First, we discuss the object index. CIQ and SKYPE used an IR-tree structure [24] to index
the objects since they do not update the objects in the index. The IR-tree (Inverted File R-tree) has a
similar structure to the R-tree, and each node links an inverted file to index the keyword information.
Therefore, IR-tree suffers from the well-known limitation [49] of the R-tree where structure updates
have an expensive cost. We cannot use the existing spatial keyword indexing technique for dynamic
objects. Secondly, when a new status of a dynamic object is received, we need to find the affected
queries promptly. Both CIQ and SKYPE use a quad-tree structure to index queries. CIQ sets a
decay function according to the similarity score, so all queries must be indexed into every leaf-node.
This feature loosens the spatial pruning and leads to an extremely high memory cost. SKYPE sets
a non-decaying similarity function so that a single query is indexed into one leaf-node. However, it
still requires overhead computing to target affected queries by traversing the tree. Consequently, it
is a challenge to index queries and to retrieve them efficiently.

2. Top-k reevaluation. Another critical challenge is the top-k reevaluation, which occurs after
a dynamic object is removed from the top-k list. It is time-consuming if the top-k is naively reevalu-
ated from scratch. It is also infeasible to buffer all objects with their scores for each individual query
to avoid the top-k reevaluation. The maintenance cost is extremely high for the dynamic objects,
and the tremendous cardinality of the queries incurs expensive memory consumption. Therefore,
related techniques have been proposed to balance the trade-off between the number of reevaluations
and the buffer size. Yi et al. [102] introduced a kmax buffer, which maintains top-k′ results, and
k′ is a value between k and kmax. However, the kmax solution just transforms the top-k mainte-
nance to top-kmax maintenance. The problem on how to reduce the number of evaluations remains
unsolved. Later, Wang et al. [90] studied the top-k maintenance with spatial keyword objects and
developed a cost-based k-skyband buffer with a proper threshold θ via theoretical analysis of the
cost-model. Unfortunately, the above k-skyband framework is proposed for the streaming process
with a sliding window. Specifically, the k-skyband buffer is constructed and maintained with the
order of the incoming objects sequence, which is inapplicable to a scenario that searches for dynamic
objects because the dynamic objects always change randomly and unpredictably. Hence, the design
of an appropriate buffer with theoretical support to efficiently process the top-k reevaluation remains
a serious challenge.

Many research on moving objects [66,67,97,105] utilize a grid index to manage moving objects.
Because they only consider the dynamics of spatial attribute (i.e., moving), they can take advantage
of the priority features among cells and search the candidate objects efficiently. In Figure 6.2, to
find the nearest object ((k + 1)-th object) beyond the top-k, we can find the red cells first. Then
if there exist at least one object that is not in the top-k, we just only check the blue cells and the
green cells can be safely skipped. However, these priority constraints cannot work with the spatial

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 87

Figure 6.2: Priorities of cells with spatial-only similarity.

keyword similarity of our research. For example, there may exist an object in the green cells but it
may have a higher relevance of keyword similarity, which makes it better than any objects in the
red and blue cells. In conclusion, the technique of moving object cannot be used with the dynamic
spatial keyword object.

Contributions. We define a new query process, which continuously searches the top-k dynamic
spatial keyword objects. To overcome the first challenge of indexing, we design a novel grid-based
index to manage both dynamic objects and static queries. The grid-based index can support rapid
and economical updates of dynamic objects. In addition, queries are indexed with a sophisticated
strategy of influential circles. Queries affected by a dynamic object can be quickly identified. For
the second challenge of the top-k reevaluation, we propose a novel strategy that refills one candidate
object rather than reevaluating the entire top-k list. To take advantage of the cells in the grid-based
index, we design a buffer named PCL (partial cell list). PCL balances the trade-off between the
search process and buffer maintenance to optimize efficiency. Our principal contributions:

• We formalize the continuous search problem on dynamic spatial keyword objects.

• We design a grid-based index to manage both objects and queries. We propose sophisticated
strategies on affected queries finding and top-k refilling. We propose a buffer named PCL to
refill top-k. PCL has a theoretical basis to maximize the efficiency. We also extend proposed
solution to a batch process.

6.1.3 Definitions

In this section, we formally define the dynamic spatial keyword object, the spatial keyword query, the
score function between them, and the problem of a continuous search on them. Table 6.1 summarizes
the notations frequently used in this chapter.

Definition 1. (Dynamic Spatial Keyword Object, o). A dynamic spatial keyword object o

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 88

Symbols Description
o,O object, objects set
q,Q query, query set
top-k(q) k objects with the largest scores with q

kScore(q) smallest score in the top-k(q)
o, o′ previous status and current status of a dynamic object
grid grid-based index
c a cell in the grid-based index.
n, n2 partition number in a grid, cells number in a grid
o.cell cell in a grid where object o is located
OutQ q’s which contain o in their top-k
InQ q’s satisfying SimST (o′, q) > kScore(q)

maxscore(c, q) maximum score of cell c and q

minscore(c, q) minimum score of cell c and q

CL sorted cell list
PCL partial sorted cell list

Table 6.1: Symbols and Natation

is defined as o = (o.ρ, o.ψ, t), where o.ρ is the location attribute with coordinates, o.ψ is a set of
keywords, and t is the timestamp. Both o.ρ and o.ψ change over time. o.ρ is updated with the
up-to-date location. o.ψ keeps the keywords of the up-to-date m status of object o, where m is a
user-determined window size.

Since o.ψ represents the interested keywords of object o, it is accord with the real application
where we set o.ψ as a window which keeps some previous keywords.

Definition 2. (Spatial Keyword Query, q). Spatial keyword query q also has a location attribute
and a keywords set of q.ρ and q.ψ, In addition, q.k is the number of results (the k in top-k). q.α is
an user-defined smoothing parameter for spatial keyword similarities. The attributes of a query are
static.

We abbreviate dynamic spatial keyword object as object and spatial keyword query as query. Note
that both location attribute and keyword attributes of an object are changing over time. Updating
the conditions of a query is equivalent to deleting a previous query and adding a new one, so the
queries are defined as static but we support incremental (decremental) queries in our problem. To
evaluate the relevance of an object o to a query q, we define a score function as follows:

Definition 3. (Spatial Keyword Similarity, SimST). Given object o and query q, the spatial

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 89

keyword similarity between them is defined as:

SimST (o, q) = q.α · SimS(o.ρ, q.ρ) + (1− q.α) · SimT (o.ψ, q.ψ) (6.1)

SimST is a combined value of spatial similarity SimS and keyword similarity SimT . Firstly, the
SimS is calculated by the normalized Euclidean similarity. Note that the maxDist in the equation
is the maximum distance in the data space.

SimS(o.ρ, q.ρ) = 1− Euclidean(o.ρ, q.ρ)

maxDist
(6.2)

Secondly, SimT is computed by the inner product between the tf-idf weights of q.ψ and o.ψ.

SimT (o.ψ, q.ψ) =
∑

w∈o.ψ∩q.ψ

wt(o.w) · wt(q.w) (6.3)

where wt(w) denotes the tf-idf weights vector of keyword w, and the weights of objects and queries
are normalized to the unit length. The similarity functions are also used in the related work [90].
To ensure that both spatial and keywords are relevant, we require that every object in the top-k of
a query must contain at least one common keyword with this query. Finally, we define the problem
of the continuous search with above objects and queries.

Definition 4. Given an object set O and a query set Q, for each query q ∈ Q the continuous search
is to keep the current top-k objects o’s (o′s ∈ O) ranked by the descending order of SimST (o, q). 2

6.2 Proposed system

6.2.1 System overview

Figure 6.3 is a overview of how the proposed system solves the continuously search on dynamic
objects. We assume that at the initial state, there already exists some objects and queries, as well
as the top-k results. The new coming status of dynamic objects are handled sequentially while
processing. When receiving a new status of an object, the grid-based index is updated first. Then
the affected queries finder is executed to find queries affected by this object. Then, the top-k lists
of these queries are updated. If a dynamic object causes the result to become short of k-elements,
then the top-k refiller is triggered to refill the top-k list by checking it against a result buffer of
candidates. Since data can be easily inserted and removed from the grid-based index, our system
also supports incremental (decremental) objects and queries.

2When the similarities between two objects are equal, we assume that either of two objects can be correct for the
result.

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 90

Figure 6.3: The system and flow of the process: Grid-based index (Section 6.2.2); Affected queries
finder (Algorithm 11); Top-k refiller (Algorithms 12 and 15) and PCL buffer (Section 6.2.4).

6.2.2 Data structure: Grid-based index

To manage dynamic data, the index should respond quickly and have a low updating cost. Similar
to the existing research [66, 67, 97, 105], we use a regular grid-based index to maintain both objects
and queries (but they are not in a same indexing rule) because the data in the grid can be accessed
and updated directly (o(1) complexity). Unlike some complicated indices (R-tree, IR-tree, etc.) that
require extra and expensive costs to maintain the structure, the grid-based index is better suited for
frequently updated applications.

Assume that there is a two-dimensional spatial space, the lengths of the x-axis (longitude) and
y-axis (altitude) are both fixed and denoted by maxDist. The grid equally divides the x-axis and
y-axis into n partitions and contains n2 cells. We use ci,j to denote the cell in ith partition on the
x-ais and the jth partition on the y-ais. Therefore, given an object o, if its spatial coordinate o.ρ[0]
is in the range [i · maxDistn , (i+1) · maxDistn] and o.ρ[1] is in the range [j · maxDistn , (j+1) · maxDistn],
object o is located in cell ci,j .

Objects are indexed in the grid w.r.t their covering cells. On the other hand, to find the affected
queries efficiently for the new status of an object, the queries are indexed into the grid according
to their “influential circles”. We use q.ρ (the location attribute) as the center point and create an

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 91

Figure 6.4: Grid-based index, inner structure of a cell, and tables

influential circle with a radius r calculated by:

r =
1− kScore(q)

q.α
·maxDist (6.4)

where maxDist is the maximum distance in the space and kScore(q) is the smallest score in the
top-k list of q. If an object is located outside of this influential circle, it will not be an element in
the top-k of q. We indexed q into the cells that overlap q’s influential circle. Figure 6.4 shows an
example where the circle of q1 overlaps with c1, c2, c3, and c4. Hence, q1 is indexed into these four
cells.

A cell can bound the range of the spatial attribute for the objects. For the keyword attribute,
maximum weights (maxwts) and minimum weights (minwts) of the objects are also indexed. The
maxwts (minwts) can bound keyword similarities between a query and a cell; the details are in
Section 6.2.3 and Section 6.2.4.

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 92

Example 1. In Figure 6.4, cell c1 contains objects o1 and o2. According to the information of o1 and
o2 in the Object table, c1.maxwts = {0.2, 0.4, 0.1} and c1.minwts = {0.2, 0.3, 0.1}, corresponding to
the keywords w1, w2 and w3.

In summary, a grid cell contains four kinds of information: objects, maxwts, minwts and affected
queries. Note that the objects are indexed into a sequential list, but the affected queries are indexed
into a sophisticated group-based structure. This arrangement supports efficient group-pruning tech-
nique used in our Affected Queries Finder module. The information and useful statistics of objects
and queries are stored in two different tables, we only index the object id and query id into the
grid-based index. Since our system is an in-memory system, all other information can be retrieved
from the tables via the random access.

6.2.3 Affected queries finder

In this section, we introduce the Affected Queries Finder (AQF) module. When the system receives
a new status of a dynamic object, AQF helps to find the affected queries, i.e., the queries whose
top-k needs to updated. We use o and o′ to represent the previous status and the current status,
respectively. Updating from o to o′ affects two kinds of queries: OutQ and InQ. OutQ is a set
of queries corresponding to the previous o, each query in OutQ contains o in its top-k. (i.e., the
dynamic o′ may reduce OutQ’s top-k lists to less than k objects). On the other hand, when object o
changes to o’, InQ collects queries corresponding to the current o′ and SimST (o′, q) becomes larger
than their kScore. (i.e., the moving o→ o′ makes InQ’s top-k lists updated with o′).

InQ = {q |q ∈ Q ∧ SimST (o′, q) > kScore(q)} (6.5)

Usually, OutQ is initialized when the system starts, and is updated in the object table when a
process for a dynamic object is completed. Therefore, we can retrieve OutQ easily by looking up the
object table, and the problem of identifying affected queries becomes how to efficiently find InQ. In
the rest of this section, we introduce the techniques of finding InQ.

Influential circle pruning. If dynamic objects are locate much too far from a query q, then q
can be safely pruned. This is the reason that we index a query into the overlapping cells w.r.t its
influential circle, and only the indexed queries in the cell o′.cell need to be considered.

Group query pruning. To avoid comparing the indexed queries with o′ one by one, for each
cell, we divide the indexed queries into several groups. Then a threshold for each group is generated
to prune multiple queries simultaneously.

Single threshold. Assuming that an object moves to a cell (denote as o′.cell), then for an arbi-
trary query q, the upper bound of the spatial similarity to q (SimSUB(o′.cell, q)) can be estimated

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 93

based on Equation (6.2):

SimSUB(o′.cell, q) = 1− minD(o′.cell, q.ρ)

maxDist
(6.6)

where minD(o′.cell, q) is the minimum Euclidean distance between q and o′.cell (e.g. in Figure 6.4,
minD(o3.cell, q5) = 0.32. Note that if q is covered by o′.cell then minD(o′.cell, q) = 0). We can
infer a keyword similarity threshold Tθ(o′.cell, q) with SimSUB(o′.cell, q) and Equation (6.1),

Tθ(o
′.cell, q) =

kScore(q)

1− q.α
− q.α

1− q.α
· SimSUB(o′.cell, q) (6.7)

Therefore, for the current status o′, a query can be pruned by comparing the keyword similarity to
the threshold instead of calculating the whole spatial keyword score.

Group threshold. According to Equation (6.7), the calculation of a threshold for a single query
can be divided into two parts: kScore(q)

1−q.α and q.α
1−q.α · SimSUB(o′.cell, q). For simplicity, we denote

kScore(q)
1−q.α as K̃ and q.α

1−q.α · SimSUB(o′.cell, q) as D̃ respectively. Then the lower bound is derived
as the group threshold as:

Tθ(o
′.cell, g) =Minq∈g{K̃} −Maxq∈g{D̃} (6.8)

D̃-based partition. To generate a tighter group threshold, we should group queries with similar
Tθ(o

′.cell, q). The value of D̃ is irrelevant for the spatial attributes of objects. Moreover, D̃ is a
static value because queries will not change their location and α, but K̃ will change as the top-k
list is updated. By intuition, we group the indexed queries in a cell by their D̃ value, such that
the queries inside a group have similar D̃’s. We employ a quantile-based method to partition the
domain of D̃ to ensure the tight grouping. Figure 6.4 also gives the image of a query group in a cell.

Maximum keyword similarity. On the other hand, the maximum keyword similarity between
o′ and g, which is denoted as maxT (g, o′), can be estimated as:

maxT (g, o′) = SimT (g.maxwts, o′.ψ) (6.9)

In Equation (6.9) g.maxwts denotes the maximum weights of all keywords contained by the queries
in g. (The similar mechanism exists for maxwts of all objects in a cell.) As shown in Figure 6.4,
the information of maxwts is kept for each query group in our index.

Finally, we can use Theorem 1 to prune a group of queries safely. Algorithm 11 concludes
our processing of AQF. In Algorithm 11, we first check the incoming o′ to prune query groups
simultaneously using Theorem 1 (Line 4). Then we check the queries one by one if they can not
pass the group pruning (Lines 4-7). The complexity of condition checking is O(1), since we can
precompute the values of K̃ and D̃.

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 94

Algorithm 11 AQF (Affected Queries Finder)
Input: o′

1: Check object table with o′ and get OutQ.
2: InQ= ∅
3: for each group g ∈ G of o′.cell do
4: if maxT (g, o′) ≤ g.Tθ then
5: for each query q ∈ g do
6: if SimST (o′, q) > kScore(q) then
7: InQ= InQ∪{q}
8: return OutQ, InQ

Theorem 1. For a group of queries g, and a dynamic object o′, all queries in g will not be present
in InQ of object o′ if maxT (g, o′) < Tθ(o

′.cell, g).

6.2.4 Top-k refiller

When a dynamic object o changes to o′, after obtaining the affected queries, i.e., OutQ and InQ,
from the Affected Queries Finder, the following step is to update their top-k lists. Updating the
top-k’s for queries of InQ is a low-cost since only the top-k list is considered with the o′. In other
words, we just need to insert o′ into the previous top-k. However, for the queries of OutQ, o′ may
get out of the top-k list. In this case, we must reevaluate the top-k result from all objects. It is
natural that the cardinality of the objects is always much larger than k. Consequently, compared to
the process of InQ, the main task is to reevaluate the OutQ’s top-k lists efficiently.

In this subsection, we first describe a straightforward solution (GCL) that maintains a sorted
cell list (CL) to retrieve the latest top-k result efficiently. We also propose a novel solution (GPCL)
with a partial cell list (PCL). Different from CL, GPCL can avoid the redundant maintenance and
computations by maintaining only a few cells and refilling the candidate objects to the previous
top-k list.

GCL method with the sorted cell list

The related research such as kmax [102] and SKYPE [90] focus on maintaining the candidate objects
in a result buffer to support the top-k reevaluation. However, keeping objects in the buffer is ineffi-
cient in our problem because the objects are dynamic, that incurring frequent and expensive buffer
maintenance. To address this limitation, we propose a sorted cell list (CL) buffer that maintains all
cells of our grid-based index w.r.t a similarity priority. Comparing to maintain objects, to maintain
cells have advantages that: (a) the number of cells is much smaller than the number of objects; (b)
cells have fixed spatial similarity bounds and infrequent changing keyword similarity bounds (only
changed when an object affects the maxwts or minwts of a specific cell).

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 95

Algorithm 12 GCL
Input: o, o′, OutQ, InQ

1: Update q.CL w.r.t o.cell, o′.cell
2: for each q ∈ {InQ} do
3: top-k(q).insert(o′)
4: for each q ∈ {OutQ− InQ} do
5: top-k(q) = Branch-and-bound searching with q.CL

We use q.CL to denote the sorted cell list w.r.t the query q. Figure 6.5 gives an example of CL. All
cells in the grid-based index are sorted by their maxscore and stored in CL, where maxscore(c, q)
is the upper value of the spatial keyword similarity between any object in cell c and a query q:

maxscore(c, q) = q.α · SimSUB(c, q.ρ) + (1− q.α) · SimT (c.maxwts, q.ψ) (6.10)

The maxscore(c, q) is the upper bound, because SimSUB(c, q.ρ) dominates the spatial similarity
and SimT (c.maxwts, q.ψ) dominates the inner product value of the keyword similarity.

Our idea is that we can employ an efficient branch-and-bound method to find the top-k objects
from the cells in CL. Since CL can be implemented as a binary-tree-like structure 3. Algorithm
12 shows the top-k reevaluation method with CL (GCL). In Algorithm 12, CL should be updated
w.r.t the cells covering the dynamic object (Line 1) before updating the top-k lists according to InQ
(Lines 2-3) and OutQ (Lines 4-5).

GPCL method with the partial sorted cell list

Including the above GCL method, previous works always focus on the top-k reevaluations [66, 90].
However, these techniques contain redundant computations because they ignore the existing order
and recreate a new top-k list again and again. Actually, when an object changs, only one ranking
position changes, and the relative order of the other objects remains. For example, suppose that
there are five objects, if the 3rd becomes the 5th, then the ranking relationship of the current 1st,
2nd, 3rd, and 4th objects do not change. Therefore, if an object changes out of the top-k, the correct
top-k list can be obtained by only refilling the candidate (k + 1)-th object. Another limitation of
GCL is that CL must maintain itself every time even though an object does not affect any queries.

Motivated by the above limitations, we propose a partial sorted cell list (PCL), which is a subset
of CL. PCL always keeps the candidate (k + 1)-th object to refill the top-k list. We use both
maxscore in Equation (6.10) and minscore to index the cells in PCL. The minscore(c, q) denotes
the minimum spatial keyword score between any objects in cell c and a query q. minscore is formed

3Our implementation uses std::map in C++, it is a red-black tree structure.

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 96

Figure 6.5: Examples of CL (Section 6.2.4) and PCL (Section 6.2.4) buffers.

with the minimum spatial similarity (SimSLB) and the minimum keyword similarity (SimTLB).

minscore(c, q) = α · SimSLB(c, q.ρ) + (1− α) · SimTLB(c.minwts, q.ρ) (6.11)

SimSLB is calculated similarly to Equation (6.6), where maxD(.) represents the maximum Eu-
clidean distance.

SimSLB(c, q) = 1− maxD(c, q.ρ)

MaxDist
(6.12)

and SimTLB is:

SimTLB(c.minwts, q.ρ) =MINw∈q.ψ∩c.minwtswt(q.w) · wt(c.w) (6.13)

Partial sorted cell list (PCL)

Definition 5. (Partial Cell List, PCL). Given a query q and a grid-based index. For each cell
c ∈ q.PCL, it holds that c contains at least one object, and minscore(c, q) < q.PCL.up and
maxscore(c, q) > q.PCL.low. While processing, q.PCL.up can be updated as the up-to-date
kScore(q), q.PCL.low is initialized as the value of maxMinS and will not change until q.PCL
is recreated, where maxMinS = MAX{minscore(cj , q)}, cj ∈ grid.cells and maxscore(cj , q)

< kScore(q).

Theorem 1. After initialization, q.PCL contains the (k+1)-th object w.r.t q.

Proof. By contradiction. Assume that the (k+1)-th object ok+1 is not in the cells of PCL, we

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 97

Figure 6.6: Four cases of a dynamic object and a query.

can know that SimST (ok+1, q) < q.PCL.low. According to the features of PCL, at least one
object oi whose score is greater than q.PCL.low must exist. Therefore SimST (oi, q) > q.PCL.low

> SimST (ok+1, q), and oi should be the (k+1)-th object, leading to the contradiction.

Example 2. Figure 6.5 gives an illustration of CL and PCL buffers. In this Figure, the horizontal
axis shows the score distribution of all cells (c1, c2, ..., cn) w.r.t a specific q. A segment represents
the score range of a cell. The left side is the maxscore while the right side is the minscore. CL is a
cell list sorted by maxscore. Therefore. the order of q.CL in this example is: {c5, c2, c1, c6, ..., cn}.
For PCL, q.PCL.up is initialized by the current kScore(q). On the right side of kScore(q), cell c1
has the maximum minscore. Thus, q.PCL.low will be initialized as minscore(c1, q). Then q.PCL

contains the {c2, c1, c6} overlapping the range (q.PCL.up, q.PCL.low).

For each query, the corresponding PCL is initialized based on Definition 5. When a top-k list
needs to be reevaluated, the candidate object can be searched from PCL and refilled to this top-k
list. The top-k reevaluation is much more efficient than using the CL because the only top-1 search
is conducted from fewer cells. To guarantee that all PCLs always contain the candidate object w.r.t
the corresponding queries, we propose a sophisticated strategy to maintain PCL.

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 98

PCL Maintenance

We divide the situations between a dynamic object and a query into the following four cases. Figure
6.6 shows images and summarizes the four cases: L2L (large to large), S2L (small to large), L2S
(large to small) and S2S (small to small). Because a dynamic object may affect the cells in PCL,
we should maintain PCL carefully to ensure it always contains the (k+1)-th object to refill. We
propose a sophisticated maintenance process. Table 6.2 summarizes the operations of these cases.

L2L and S2L. The cases of L2L and S2L are discussed together since they have a common PCL
maintenance. In the cases of L2L, both o and o′ are in the top-k. Thus, the order of the objects
outside top-k is not changed, and the (k+1)-th object remains in PCL. Therefore, PCL still contains
the candidate object. We just check the changing cells o.cell and o′.cell with PCL. Algorithm 13
describes the procedure of check. In Algorithm 13, each input cell, according to their new maxscore

and minscore, will be deleted (Lines 2-3) and re-inserted (Lines 4-5) into PCL. For the case of S2L,
o′ is added into top-k from the outside. The previous kth object (denoted as ok) will become the
(k + 1) one, so we should add the ok.cell into PCL to ensure the candidate object. Since o.cell and
o′.cell also require a check, we need check {o.cell, o′.cell, ok.cell}. In conclusion, we employ a check
operation to maintain PCL in the cases of L2L and S2L.

Lemma 1. Given a dynamic object and a query. If they are in the cases L2L and S2L, we need to
maintain PCL with the operation of check.

L2S. In the situation of L2S, we must search the top-1 candidate object ocand from PCL. Then
the scores SimST (o′, q) with SimST (ocand, q) are compared to determine whether to refill ocand
or not. Then, we should trim the PCL with a new score range (kScore(q)′, q.PCL.low) where
kScore(q)′ denotes the updated k-th score. Algorithm 14 gives the details of the operation trim,
which filters the cells that are not within the input score range (Lines 2-4). Sometimes PCL may
become empty (no object) after trim. Then, PCL must be recreated.

Lemma 2. Given a dynamic object and a query of case L2S, we need to maintain PCL with the
operations of check and trim. Also, if PCL has empty candidates after trimming in case L2S, PCL
must be recreated.

S2S. S2S is divided into two sub-cases: S2S.a and S2S.b. In S2S.a, both o and o′ are on the
outside of q.PCL.low, so PCL does not need to be maintained. In S2S.b, we need to check o.cell
and o′.cell with PCL. Similar to L2S, we will recreate PCL if it becomes empty.

Lemma 3. Given a dynamic object and a query, if they are in case S2S.a, PCL does not need to
be maintained. On the other hand in S2S.b, PCL must be maintained with the check operation. If
PCL has no candidates, PCL must be recreated.

Algorithm 15 gives the proposed GPCL method. It maintains the top-k and PCL buffer for the
4 cases illustrated in Figure 6.6. In L2L and S2L (Lines 1-8), the top-k lists are only updated with

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 99

Algorithm 13 q.PCL.check
Input: Cells

1: for each cell c ∈ Cells do
2: if c ∈ PCL then
3: delete c from q.PCL
4: if (maxscore(c, q) > q.PCL.low) and (minscore(c, q) < kScore(q)) then
5: q.PCL.insert(c)

Algorithm 14 q.PCL.trim

Input: kScore(q), q.PCL.Low
1: PCLnew = ∅
2: for each c ∈ q.PCL do
3: if (maxscore(c, q) > q.PCL.low) and (minscore(c, q) < kScore(q)) then
4: PCLnew.insert(c)
5: q.PCL = PCLnew

the upcoming o′ (Lines 3, 7). PCL will be checked with Algorithm 13 (Lines 4,8) based on Lemma
1. In L2S (Lines 9-20), a candidate object will be searched and re-fill to top-k (Lines 11-15). PCL
will be trimmed with Algorithm 14 (Line 17) based on Lemma 2. In S2S (Lines 21-27), PCL will be
checked based on Lemma 3. Note that when PCL becomes empty, it will be re-created (Lines 19,
27).

6.3 Discussion

6.3.1 Theoretical analysis

Compared to CL, PCL is advantageous with regards to a (k+1)-th maintenance. On the other hand,
if PCL is empty, it must be recreated from all cells, which is an expensive operation (O(n2logn2)).
Therefore, there is a trade-off between the number of cells and recreation. Fewer cells in PCL realize
an efficient search and maintenance, but lead to a higher probability that an expensive recreation
will be triggered. Obviously, the number of cells in PCL depends on the number of cells n2 in
the grid. We conduct a theoretical analysis to build a cost model that balances this trade-off by
estimating the best value of n2. The total expecting cost is the sum of the expected costs of each
operation.

E[total] = E[check] + E[trim] + E[search] + E[recreate] (6.14)

The expected cost of an operation can be calculated by multiplying the probability to the number
of the similarity computation. According to Table 6.2, the expected costs of all operations can be
calculated by the equations below. Here, P (X) means the probability that event X happens, PCLc

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 100

Algorithm 15 GPCL
Input: o, o′, OutQ, InQ

1: // L2L
2: for each q ∈ OutQ ∩ InQ do
3: Update top-k(q) with o′.
4: q.PCL.check({o.cell ∪ o′.cell})
5: // S2L
6: for each q ∈ InQ−OutQ do
7: Update top-k(q) with o′.
8: q.PCL.check({o.cell ∪ o′.cell ∪ k.cell})
9: // L2S

10: for each q ∈ OutQ− InQ do
11: ocand = Retrieve Top-1 from q.PCL
12: if SimST (o′, q) > SimST (ocand, q) then
13: Update top-k(q) with o′.
14: else
15: Update top-k(q) with ocand.
16: q.PCL.check({o.cell ∪ o′.cell})
17: q.PCL.trim(kScore(q)′, q.PCL.low)
18: if q.PCL is empty then
19: q.PCL.recreate
20: // S2S
21: for each qi ∈ Q−OutQ ∪ InQ do
22: if SimST (o, q) < q.PCL.low and SimST (o′, q) < q.PCL.low then
23: continue
24: else
25: q.PCL.check({o.cell ∪ o′.cell})
26: if q.PCL is empty then
27: q.PCL.recreate

represents the cells number in PCL, and PCLo represents the object’s number in PCL.

E[check] = (1− P (S2S.a)) · log(PCLc) (6.15)

E[trim] = P (L2S) · PCLc (6.16)

E[search] = P (L2S) · log(PCLo) (6.17)

E[recreate] = P (PCL.empty) · n2 · logn2 (6.18)

To estimate E[total], we need to find the probabilities of P (S2S.a), P (L2S) and P (PCL.empty).
We implement a theoretical analysis based on the following assumption. The queries and objects
follow a uniform distribution in [0,1) space. With n2 cells, the length of a cell is l = 1

n , and the
average number of objects in a cell is |O|

n2 , where |O| is the size of the object set. For an object, we
assume that a spatial (maximum) step in space is δs. To evaluate the similarities on spatial and

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 101

Operation on PCL
Case Search Check Trim Re-create
L2L - ✓ - -
S2L - ✓ - -
L2S ✓ ✓ ✓ ✓(if empty)
S2S.a - - - -
S2S.b - ✓ - ✓(if empty)

Table 6.2: Summary of the operations for PCL maintenance.

keywords, we convert the value on one to the other. δt is calculated by computing the change on the
keyword similarity and converting it to space. We use wq and wo to represent the average number
of keywords in an object and a query, respectively. The change in the keyword similarity is:

SimT (o′.ψ, q.ψ)− SimT (o.ψ, q.ψ) =
∑

w∈o.ψ∩q.ψ

wt(q.w) · (wt(o′.w)− wt(o.w)) ≈ 1

w2
q · w2

o

(6.19)

By recalling that the distance in [0,1) space ranges is from 0 to
√
2, while the similarity on the

keywords is the cosine value, we can convert the change of keyword similarity to that on the space
by multiplying the ratio between the two ranges as

δt =

√
2

w2
q · w2

o

. (6.20)

Then we estimate the probabilities. Recall that L2S is the case where an object belongs to top-k
and changes out of top-k. As shown in Figure 6.7a, P (L2S) can be estimated as the ratio of the
areas, which is expressed as:

P (L2S) =
Sδ1

Sk + Sδ1
· Sk = πrk

2 − πr4k
(rk + δs + δt)2

(6.21)

Since we assume that all points follow a uniform distribution, the ratio of the area between the
top-k circle and the whole space represents the ratio of the object’s numbers. Hence, the radius rk
in Equation (6.21) can be calculated as:

πrk
2

1
=

k

|O|
=⇒ rk =

√
k

π|O|
(6.22)

According to Figure 6.7b, P(S2S.a) is computed based on the areas in a similar way.

P (S2S.a) = Sout
2 = (1− π(rk + l)2)2 (6.23)

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 102

(a) L2S. (b) S2S.a. (c) Out of a cell.

Figure 6.7: Area of each case.

The number of cells in PCL, PCLc, is estimated by the number of cells that overlap the circle of
q.PCL.low. As shown in Figure 6.7b, the number of overlapped cells is approximately the value
of the perimeter divided by the side length of a cell (l). That is, PCLc = 2π(rk+l)

l . Then we can
calculate the objects number PCLo = PCLc · |O|

n2 . Because PCL has PCLo objects, the probability
that PCL only has one object can be simply approximated as 1

PCLo
. When PCL contains only one

object, PCL may become empty when this object moves out of its cell. Note that moving out of a
cell depends only on δs. Figure 6.7c shows the areas of this situation. In conclusion, P (PCL.empty)
is calculated as:

P (PCL.empty) =
1

PCLo
· Sδ2
Sδ2 + Sc

=
1

PCLo
· 4lδs + πδ2s
4lδs + πδ2S + l2

(6.24)

Eventually, with the parameters |O|, k, δs, wq and wo, the only variable in Equation (6.14) is
n. We used the gradient descent to figure out the n by computing the extreme value to minimize
E[total].

6.3.2 Batch process

If an application requires a massive number of object to be updated frequently, it may become
inefficient to process the new status of the objects one by one. In such cases, batch processing is a
good choice to combine the reduplicative updating top-k list with common queries. Our methods
can be extended to support a batch process easily. Suppose that we received a batch of objects and
aim to carry out a batch process. In affected queries finder module, we retrieve InQ and OutQ for
a specific object when processed singly. To identify InQ and OutQ to build a batch of objects, we
need to count the number of times of a query belongs to InQ and OutQ in this batch. If the times
of a query belongs to InQ is larger or equal to the times that of OutQ, then we mark this query as

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 103

Datasets YELP TWITTER SYN
Data size 1.1M 4.2M 12M
Default # of selected objects 220K 500K 1M
Default # of selected queries 156K 250K 1M
of keywords 819K 3.5M 819K
of average keywords 5.9 4.5 3

Table 6.3: Datasets statistics

a InQ query. Otherwise, it should be a OutQ query. In Top-k refiller module, we need to initialize
PCL to maintain k-candidate objects so that we can utilize a top-k search on the PCL buffer. The
PCL buffer can be maintained with a set of cells in which a batch of objects arrive in (depart from).
The operations and methodologies for PCL maintenance in Section 6.2.4 also support a batch of
cells directly.

On the other hand, aiming at a real-time processing problem, we need to consider the response
time. It is well-known that large size of batch would result in a faster average processing time, it is
unrealistic to let the client wait too long when filling up the batch. Therefore, a balance needs to
be made in practice by considering several items such as computing resource, update rate, and the
user requirement. Intuitively, bn ∼ f(br, bp), where bn, br, and bp are batch size, the user-defined
response time and processing time, respectively. And, f maps br, bp to tune the best batch size in
practice. As an example, adding br to Fig. 16.b we can figure out the appropriate bn for different
processing time.

6.4 Experiments
All algorithms were implemented in C++. All indices, buffers, and algorithms were run on in-
memory of a Mac with a 2.2GHz Intel Core i7 CPU and 32GB memory.

6.4.1 Setting

Dataset. We used two real datasets and one synthetic dataset. Table 6.3 shows the statistics of
the datasets.
YELP is an open source dataset provided by YELP.com4. It contains 1.1M of reviews on 156K
businesses by 220K users. We set the businesses with their locations and descriptions as queries. For
the keyword attributes of queries, we randomly selected 1 to 5 keywords from the description. We
set the first review of each user as the initial states of an object. Since the reviews did not contain
users’ locations, we intuitively set the initial location of the objects as the business location in the
review. For the future status of the dynamic objects, we set a simple random walk that randomly

4https://www.yelp.com/dataset

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 104

±0.05 to the previous coordinates. Then we used the contents of other reviews from the same user
as the changes in the keyword attribute.
TWITTER is the dataset with 4.2M geo-tag tweets from the United States5. In TWITTER, there
are 1.2M unique users each of which has at least three geo-tag tweets. First, we selected 100K to
500K random users and used their first tweets as the queries in the experiment. For each query, we
set the spatial attribute as their geo-tag. Then select 1 to 5 words from the tweets as the keyword
attributes. On the other hand, we randomly selected 200K to 1M from the remaining unique users
and initialized the objects with their first geo-tag tweets. The rest of the tweets from selected users
were treated as the continuous states of moving objects.
SYN is a synthetic data containing 12M spatial keyword tuples. we used the data of moving points6

for spatial attributes, which were generated by the BerlinMOD benchmark [34]. For the keyword
attributes, we randomly selected 1 to 5 keywords from the TWITTER dataset and assigned them
to each point. Objects and queries were selected from the SYN tuples.

Algorithms. For the affected queries finder module, we compared the following methods:
• IGPT. The group pruning techniques in [90].
• AQF. The proposed method with a influence circle and a group pruning technique.
For the top-k refiller module, we compared:
• kmax. The method with kmax buffer in [102]. For the size of the buffer, we tuned the value of
kmax from k to 5k. The experimental results lead us to set 3k as the default value of kmax. The
tuning result is similar to related work [90].
• GCL. The proposed method with CL (Algorithm 12).
• GPCL. The proposed method with PCL (Algorithm 15).

We randomly selected over 10,000 status of dynamic objects and reported the average processing
time and memory usage among different methods. The default result size k was 100 and the param-
eter α was a random value in (0,1). The default grid size is calculated by Equation (6.14), e.g., the
grid size for the TWITTER data with k = 100 is 162. The default window size m for the keywords
of an object (o.ψ) was 1.

6.4.2 Experimental Results

Effect on varying n. In Figure 6.8a, we varied n2 to observe the processing performance for testing
our cost model in Section 6.3.1. The optimal theoretical results of n by minimizing Equation (6.14)
is 15.44. According to experimental results, the best value is 20, while the results of 16-18 are close
to the optimal value. We conclude that our cost model estimates the n well and helps to optimize
the performance.

Effect on varying m. In Figure 6.8b, each object keeps five recent status of keywords. A
5https://datorium.gesis.org/xmlui/handle/10.7802/1166
6http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 105

 50

 100

 150

 200

10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e(

m
s)

Partition number (n)

AQF-GPCL

(a) Varying n.

 20

 40

1 2 3 4 5

C
P

U
 ti

m
e(

m
s)

Keyword window size (m)

AQF-GPCL

(b) Varying m.

Figure 6.8: TWITTER data.

 50

 100

 150

 200

YELP TWITTER SYN

C
P

U
 ti

m
e(

m
s)

Datasets

CIQ-kmax
IGPT-kmax

AQF-GCL
AQF-GPCL

(a) Average processing time.

 1000

 2000

 3000

 4000

YELP TWITTER SYN

M
em

or
y

us
ag

e(
M

B
)

Datasets

CIQ-kmax
IGPT-kmax

AQF-GCL
AQF-GPCL

(b) Memory usage.

Figure 6.9: Overall processing.

Larger m leads a slighter change on the keyword attribute and a better performance on processing.
Compared to the situation of keyword changes discretely (m = 1), we have less processing time
when keywords attribute changes consecutively (i.e., to keep the previous keywords). The reason is
that our PCL has a higher probability to offer the candidate results and avoid recreating.

Overall processing. Figure 6.9 shows the comparison results for the overall processing with the
default size of objects and queries shown in Table 6.3. Specifically, we compared the two proposed
methods, AQF-GCL and AQF-GPCL to two related works. Note that AQF-GCL means that we
imported the AQF algorithm as the affected queries finder module, and utilize the GCL algorithm
as the top-k refiller module. For the related works IGPT and CIQ, we adjusted their techniques
with the kmax method so that they could deal with our problem of dynamic objects. Both of our
proposed methods, AQF-GCL and AQF-GPCL, have better performances than the others w.r.t the
processing time and memory cost.

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 106

 20

 40

 60

 80

 100

YELP TWITTER SYN

C
P

U
 ti

m
e(

m
s)

Datasets

CIQ
IGPT
AQF

(a) Average processing time.

 500

 1000

 1500

 2000

 2500

YELP TWITTER SYN

M
em

or
y

us
ag

e(
M

B
)

Datasets

CIQ
IGPT
AQF

(b) Memory usage.

Figure 6.10: Affected queries finder module.

 20

 40

 60

 80

 100

YELP TWIITER SYN

C
P

U
 ti

m
e(

m
s)

Datasets

kmax
GCL
GPL

(a) Average processing time.

 500

 1000

 1500

YELP TWITTER SYN

M
em

or
y

us
ag

e(
M

B
)

Datasets

kmax
GCL
GPL

(b) Memory usage.

Figure 6.11: Top-k refiller module.

Affected queries finder. Figure 6.10 shows the comparison results of finding affected queries.
Our method AQF is at least 1.5 times faster than the other methods. The reason is because IGPT
and CIQ required overhead costs on the traversal of the quad-tree index from the root node. In
contrast, our grid-based index can index only a few candidate queries and retrieve them directly
(o(1) complexity). Moreover, the group pruning technique in AQF also boosts the performance by
filtering unnecessary queries. The memory usage of our grid-index for queries is the smallest one
(Figure 6.10b). We only index each query once, while IGPT indexes queries several times with
keywords in the inverted files. CIQ indexes queries in multiple nodes of quad-tree.

Top-k refiller. To test our top-k refiller, we compare the proposed GCL and GPCL methods
with the kmax method. The results include two parts: the processing time of the top-k reevaluation
and the maintenance time. According to Figure 6.11, our proposed methods are at least twice as fast
as the kmax. The GPCL method is better than GCL since it uses the candidate refilling strategy

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 107

 50

 100

 150

 200

50 100 150 200

C
P

U
 ti

m
e(

m
s)

Varying k

AQF-GCL-yelp
AQF-GCL-twitter
AQF-GPCL-yelp
AQF-GPCL-twitter
IGPT-kmax-yelp
IGPT-kmax-twitter

(a) Average processing time.

 1000

 2000

 3000

 4000

50 100 150 200

M
em

or
y

us
ag

e(
M

B
)

Varying k

AQF-GCL-yelp
AQF-GCL-twitter
AQF-GPCL-yelp
AQF-GPCL-twitter
IGPT-kmax-yelp
IGPT-kmax-twitter

(b) Memory usage.

Figure 6.12: Varying k.

 50

 100

 150

 200

1 2 3 4 5

C
P

U
 ti

m
e(

m
s)

Varying number of keywords in queries

AQF-GCL-yelp
AQF-GCL-twitter
AQF-GPCL-yelp
AQF-GPCL-twitter
IGPT-kmax-yelp
IGPT-kmax-twitter

(a) Average processing time.

 1000

 2000

 3000

 4000

1 2 3 4 5

M
em

or
y

us
ag

e(
M

B
)

Varying number of keywords in queries

AQF-GCL-yelp
AQF-GCL-twitter
AQF-GPCL-yelp
AQF-GPCL-twitter
IGPT-kmax-yelp
IGPT-kmax-twitter

(b) Memory usage.

Figure 6.13: Varying number of keywords in queries.

rather than reevaluating the whole top-k. PCL also balances the trade-off as it only maintains a few
cells. Therefore, GPCL has the least memory usage.

Effect on varying k. According to the Figure 6.12a, Only AQF-GPCL is not influenced by
k since the mechanism of GPCL refills the candidate (k+1)-th object rather than reevaluating the
whole top-k. From the memory usage of indices in Figure 6.12b, a large k leads to a bigger index
for kmax-based methods. However, our proposed methods are unaffected by k since we index the
identity of the cells. As we introduced previously, PCL can be seen as a small subset of CL. Hence,
AQF-GPCL has a smaller memory cost than AQF-GCL.

Effect on the number of query keywords. Figure 6.13 shows the processing performance
among different methods with a varying number of keywords in queries. Our methods are better
than the other methods in all situations for a given number of keywords. The processing time of
our proposed methods is close to other methods as the number of keywords increases because many

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 108

 50

 100

 150

 200

200K 400K 600K 800K 1M

C
P

U
 ti

m
e(

m
s)

Number of objects

CIQ-kmax
IGPT-kmax
AQF-GCL
AQF-GPCL

(a) TWITTER data.

 50

 100

 150

 200

1M 2M 3M 4M 5M

C
P

U
 ti

m
e(

m
s)

Number of objects

CIQ-kmax
IGPT-kmax
AQF-GCL
AQF-GPCL

(b) SYN data.

Figure 6.14: Varying number of objects.

 0

 150

 300

 450

100K 200K 300K 400K 500K

C
P

U
 ti

m
e(

m
s)

Number of queries

CIQ-kmax
IGPT-kmax
AQF-GCL
AQF-GPCL

(a) TWITTER data.

 0

 150

 300

 450

 600

1M 2M 3M 4M 5M

C
P

U
 ti

m
e(

m
s)

Number of queries

CIQ-kmax
IGPT-kmax
AQF-GCL
AQF-GPCL

(b) SYN data.

Figure 6.15: Varying number of queries.

keywords will loosen the bound of spatial keyword similarity of a cell in Equations (6.10) and (6.11).
Figure 6.13b shows the memory usage of varying number of keywords in queries. Our methods
keep their superiority and AQF-GPCL costs the least memory among all indices (buffers). The
inverted-file leads IGPT-based and CIQ-based methods cost more space to index data with more
keywords.

Effect on number of objects and queries. Figure 6.14 shows the effects of varying the
cardinality of objects with TWITTER data and SYN data. Since all algorithms keep objects with
spatial indexes and implement a buffer to maintain the candidate objects, they are not affected too
much by the large size of the objects. However, as the Figure 6.15 shows, a large size of queries
affects the efficacy of all algorithms because more queries are affected by a dynamic object, which
subsequently triggers more processes to update the results.

Effect on varying α. Figure 6.16a shows the results of varying α. All algorithms have better

CHAPTER 6. CONTINUOUS SPATIAL KEYWORD SEARCH 109

 50

 100

 150

 200

0.2 0.4 0.6 0.8

C
P

U
 ti

m
e(

m
s)

Smoothing parameter alpha

CIQ-kmax
IGPT-kmax
AQF-GCL
AQF-GPCL

(a) Varying α.

 20

 40

 60

1 10 100 1000

C
P

U
 ti

m
e(

m
s)

Batch size

AQF-GPCL-batch

(b) Average processing time.

Figure 6.16: TWITTER data.

performance in larger α since the pruning power is mainly on the spatial attribute.
Batch process. Figure 6.16b shows the average processing time of the batch process with

different batch sizes on TWITTER data. Note that batch size 1 is the case of the previous singular
process of proposed AQF-GPCL. We set that a new status of an object arrives every 10ms (100
geo-tagged tweets/s [14]). The reported results also contain the waiting time that objects arrive in.
Obviously, the batch process can enhance the throughput. As discussed in Section 6.3.2, we can
tune a batch size with this result. e.g.: we input the 500ms as the user maximum tolerate time br,
and we can get bn = 10 is a proper balanced value for batch size.

6.5 Summary
In this chapter, we investigated a novel problem that searches dynamic spatial keyword objects
continuously and propose a solution system. We employed a grid-based index to handle both dynamic
objects and queries. To efficiently detect the affected queries by an object efficiently, we proposed a
group pruning strategy in our affected queries finder module. To maintain the top-k results with a
quick-response and low-cost, we proposed a sophisticated buffer called the partial cell list (PCL) to
efficiently refill the top-k results in our top-k refiller module. We also extended the proposed methods
to treat the batch process. The experiments confirmed that our proposal has a good performance
compared with the baselines and related works.

As for future work, we plan to research deeply of the batch process on our problem. We also
plan to propose a distributed process based solution.

Chapter 7

Conclusion and Future works

In this chapter, we conclude the main contributions of this dissertation and point out some directions
of the future works.

7.1 Conclusions
In this dissertation, we studied the rank-aware query processing on multidimensional data in two
data models: the user product model and spatial keyword model. Three different query problems:
(a) Aggregate Reverse Rank Query; (b) Weighted Aggregate Reverse Rank Query and (c) Continuous
Search on Dynamic Spatial Keyword Objects, are proposed in this dissertation.

7.1.1 Aggregate reverse rank query

Reverse rank queries have become important tools in marketing analysis. However, related research
on reverse rank queries has focused on only a single product, which cannot deal with the common
sale strategy, product bundling.

In Chapter 4, we proposed the aggregate reverse rank query (ARR) to address the situation
of product bundling where multiple query products exist. Three different aggregate rank func-
tions (SUM, MIN, MAX) were defined to target potential users in three normal views. To solve
ARR efficiently, we devise a novel bound-and-filter framework to with low-dimensional data. In
bound-and-filter framework, queries are bounded to calculate an approximate aggregate rank value
efficiently, then tree-based structures are used to filter data in processing. For the situation of
high-dimensional data, we proposed a grid index method which uses pre-calculated score bounds to
reduce multiplications in the simple scan. We compared the methods through experiments on both
synthetic data and real data.

110

CHAPTER 7. CONCLUSION AND FUTURE WORKS 111

7.1.2 Weighted aggregate reverse rank query

In most cases, people buy a product bundling because they appreciate a special part of the bundling.
Inspired by the necessity of general aggregate reverse rank query for unequal thinking, in Chapter
5, we proposed a general, weighted aggregate reverse rank (WARR) query. To WARR, aggregate
reverse rank (ARR) query is only a simple, special case in which all query points are treated with
equal importance. WARR query can be critical in various applications, such as finding potential
customers and analyzing marketing via different views for a set of products.

We proposed three solutions for solving WARR query efficiently. SFM is a straightforward way to
use tree-based methods for reducing the computation of product data. The extended filtering method
(EFM) adapts the previous bound-and-filter framework and is made able to solve WARR queries by
filtering the pairwise computation from both product and preferences data. To optimize the bound,
we designed a new bounding strategy, then developed and implemented an optimal bounding method
(OBM). We theoretically proved the optimum of the bounds in OBM and compared the performance
of the above three methods with both synthetic and real data. The results show that OBM is the
most efficient of these algorithms.

7.1.3 Continuous search on dynamic spatial keyword objects

For the spatial keyword data, in Chapter 6, we investigated a novel problem that searches dynamic
spatial keyword objects continuously and propose a solution system. We employed a grid-based
index to handle both dynamic objects and queries. To efficiently detect the affected queries by an
object efficiently, we proposed a group pruning strategy in our affected queries finder module. To
maintain the top-k results with a quick-response and low-cost, we proposed a sophisticated buffer
called the partial cell list (PCL) to efficiently refill the top-k results in our top-k refiller module. We
also extended the proposed methods to treat the batch process. The experiments confirmed that
our proposal has a good performance compared with the baselines and related works.

7.2 Future works
We have three future works regarding our works of the aggregate reverse rank query and the con-
tinuous spatial keyword search, respectively.

7.2.1 Query improvement with aggregate reverse rank queries

Our works about aggregate reverse rank query can evaluate inputted query points and find the
objects with the highest ranking values. In the user product model, the aggregate reverse rank
query can help manufacturers to assemble a best package that let users rank them as a higher
aggregate rank. It can also apply to the application of team evaluation. For example, regarding idol

CHAPTER 7. CONCLUSION AND FUTURE WORKS 112

group selection, aggregate reverse rank queries can help to build a popular team by adjusting the
members to reach a higher aggregate rank from audience.

The problem is formalized as: Given a set of objects, a candidate set, a set of queries and a
restriction, we adjust the candidate set based on the restriction, and make a higher aggregate rank
to the queries.

7.2.2 Continuous spatial keyword search on road network

The road network system is consist of the graph structure, the vertices in the graph represent a
place and the edges represent roads between two place. Therefore, the data of road network can
be formalized as spatial keyword model. Adding a description (textual contents, or keywords) to a
vertex is very common so that associating nearby business like hotel or restaurant to this place.

We plan to propose a continuous dynamic spatial keyword search on the road network. The
places (vertices) are set as the monitoring spots, and to monitor moving cars with specific keywords
for nearby business. Different from the work in Chapter 6 which calculate spatial similarity with
the Euclidean distance, we should use graph-based distance in the road network. Moreover, we also
plan to design an indexing structure considering the direction of the graph, which can help to solve
the monitor processing efficiently.

7.2.3 Optimal trajectory planning for multiple spatial keyword top-k queries

People always want to save more money by getting more coupons. As the above statement, it is
common to formalize the business on (or nearby) the road network with the spatial keyword model.
A node of the road network can represent a continuous spatial keyword query that searches the
nearby users. We plan to propose a spatial keyword query which retrieves an optimal trajectory on
the road network, and this trajectory can help a user to hit the maximum number of spatial keyword
queries.

The problem is formalized as: Given a spatial keyword moving object, a set of spatial keyword
queries with the graph structure, a starting place which is a node of the graph, we retrieve an optimal
trajectory for this object and let it hits maximum numbers of spatial keyword queries.

Bibliography

[1] Akbarinia, R., Pacitti, E., and Valduriez, P. Best position algorithms for top-k queries.
In Proceedings of the 33rd International Conference on Very Large Data Bases, University of
Vienna, Austria, September 23-27, 2007 (2007), pp. 495–506.

[2] Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B. The r*-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, Atlantic City, NJ, May 23-25, 1990. (1990),
pp. 322–331.

[3] Benetis, R., Jensen, C. S., Karciauskas, G., and Saltenis, S. Nearest neighbor and
reverse nearest neighbor queries for moving objects. In International Database Engineering
& Applications Symposium, IDEAS’02, July 17-19, 2002, Edmonton, Canada, Proceedings
(2002), pp. 44–53.

[4] Benetis, R., Jensen, C. S., Karciauskas, G., and Saltenis, S. Nearest and reverse
nearest neighbor queries for moving objects. VLDB J. 15, 3 (2006), 229–249.

[5] Bentley, J. L. Multidimensional binary search trees used for associative searching. Commun.
ACM 18, 9 (1975), 509–517.

[6] Berchtold, S., Keim, D. A., and Kriegel, H. The x-tree : An index structure for high-
dimensional data. In VLDB’96, Proceedings of 22th International Conference on Very Large
Data Bases, September 3-6, 1996, Mumbai (Bombay), India (1996), pp. 28–39.

[7] Butz, A. R. Convergence with hilbert’s space filling curve. J. Comput. Syst. Sci. 3, 2 (1969),
128–146.

[8] Cao, X., Cong, G., Jensen, C. S., and Ooi, B. C. Collective spatial keyword querying. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011 (2011), pp. 373–384.

113

BIBLIOGRAPHY 114

[9] Chang, Y.-C., Bergman, L. D., Castelli, V., Li, C.-S., Lo, M.-L., and Smith, J. R.
The onion technique: Indexing for linear optimization queries. In SIGMOD Conference (2000),
pp. 391–402.

[10] Chaudhuri, S., and Gravano, L. Evaluating top-k selection queries. In VLDB’99, Pro-
ceedings of 25th International Conference on Very Large Data Bases, September 7-10, 1999,
Edinburgh, Scotland, UK (1999), pp. 397–410.

[11] Cheema, M. A., Lin, X., Zhang, W., and Zhang, Y. Influence zone: Efficiently processing
reverse k nearest neighbors queries. In Proceedings of the 27th, ICDE 2011 (2011), pp. 577–588.

[12] Chen, H., Liu, J., Furuse, K., Yu, J. X., and Ohbo, N. Indexing expensive functions
for efficient multi-dimensional similarity search. Knowl. Inf. Syst. 27, 2 (2011), 165–192.

[13] Chen, L., Cong, G., and Cao, X. An efficient query indexing mechanism for filtering geo-
textual data. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013 (2013), pp. 749–760.

[14] Chen, L., Cong, G., Cao, X., and Tan, K. Temporal spatial-keyword top-k pub-
lish/subscribe. In 31st IEEE International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, April 13-17, 2015 (2015), pp. 255–266.

[15] Chen, L., Cong, G., Jensen, C. S., and Wu, D. Spatial keyword query processing: An
experimental evaluation. PVLDB 6, 3 (2013), 217–228.

[16] Chen, Y., Suel, T., and Markowetz, A. Efficient query processing in geographic web
search engines. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Chicago, Illinois, USA, June 27-29, 2006 (2006), pp. 277–288.

[17] Chen, Z., Cong, G., Zhang, Z., Fu, T. Z. J., and Chen, L. Distributed publish/subscribe
query processing on the spatio-textual data stream. In 33rd IEEE International Conference on
Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017 (2017), pp. 1095–1106.

[18] Chester, S., Thomo, A., Venkatesh, S., and Whitesides, S. Indexing reverse top-k
queries in two dimensions. In Database Systems for Advanced Applications, 18th International
Conference, DASFAA 2013, Wuhan, China, April 22-25, 2013. Proceedings, Part I (2013),
pp. 201–208.

[19] Cheung, K. L., and Fu, A. W. Enhanced nearest neighbour search on the r-tree. SIGMOD
Record 27, 3 (1998), 16–21.

[20] Choi, D.-W., and Chung, C.-W. Nearest neighborhood search in spatial databases. In Data
Engineering (ICDE), 2015 IEEE 31st International Conference on (2015), IEEE, pp. 699–710.

BIBLIOGRAPHY 115

[21] Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., and Suel, T. Text vs.
space: efficient geo-search query processing. In Proceedings of the 20th ACM Conference on
Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October
24-28, 2011 (2011), pp. 423–432.

[22] Ciaccia, P., Patella, M., and Zezula, P. M-tree: An efficient access method for similarity
search in metric spaces. In VLDB’97, Proceedings of 23rd International Conference on Very
Large Data Bases, August 25-29, 1997, Athens, Greece (1997), pp. 426–435.

[23] Cong, G., and Jensen, C. S. Querying geo-textual data: Spatial keyword queries and be-
yond. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016 (2016), pp. 2207–2212.

[24] Cong, G., Jensen, C. S., and Wu, D. Efficient retrieval of the top-k most relevant spatial
web objects. PVLDB 2, 1 (2009), 337–348.

[25] Das, G., Gunopulos, D., Koudas, N., and Sarkas, N. Ad-hoc top-k query answering for
data streams. In Proceedings of the 33rd International Conference on Very Large Data Bases,
University of Vienna, Austria, September 23-27, 2007 (2007), pp. 183–194.

[26] Dellis, E., and Seeger, B. Efficient computation of reverse skyline queries. In Proceedings
of the 33rd International Conference on VLDB (2007), pp. 291–302.

[27] Deng, K., Sadiq, S. W., Zhou, X., Xu, H., Fung, G. P. C., and Lu, Y. On group
nearest group query processing. IEEE Trans. Knowl. Data Eng. 24, 2 (2012), 295–308.

[28] Dong, Y., Chen, H., Furuse, K., and Kitagawa, H. Aggregate reverse rank queries.
In Database and Expert Systems Applications - 27th International Conference, DEXA 2016,
Porto, Portugal, September 5-8, 2016, Proceedings, Part II (2016), pp. 87–101.

[29] Dong, Y., Chen, H., Furuse, K., and Kitagawa, H. Efficient processing of aggregate
reverse rank queries. In Database and Expert Systems Applications - 28th International Confer-
ence, DEXA 2017, Lyon, France, August 28-31, 2017, Proceedings, Part I (2017), pp. 159–166.

[30] Dong, Y., Chen, H., Furuse, K., and Kitagawa, H. Bound-and-filter framework for
aggregate reverse rank queries. T. Large-Scale Data- and Knowledge-Centered Systems 38
(2018), 1–26.

[31] Dong, Y., Chen, H., Furuse, K., and Kitagawa, H. Efficient methods for aggregate
reverse rank queries. IEICE Transactions 101-D, 4 (2018), 1012–1020.

[32] Dong, Y., Chen, H., Yu, J. X., Furuse, K., and Kitagawa, H. Grid-index algorithm
for reverse rank queries. In Proceedings of the 20th International Conference on Extending
Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017. (2017), pp. 306–317.

BIBLIOGRAPHY 116

[33] Dong, Y., Chen, H., Yu, J. X., Furuse, K., and Kitagawa, H. Weighted aggregate
reverse rank queries. ACM Trans. Spatial Algorithms and Systems 4, 2 (2018), 5:1–5:23.

[34] Düntgen, C., Behr, T., and Güting, R. H. Berlinmod: a benchmark for moving object
databases. VLDB J. 18, 6 (2009), 1335–1368.

[35] Fagin, R. Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58, 1
(1999), 83–99.

[36] Fagin, R., Lotem, A., and Naor, M. Optimal aggregation algorithms for middleware. J.
Comput. Syst. Sci. 66, 4 (2003), 614–656.

[37] Felipe, I. D., Hristidis, V., and Rishe, N. Keyword search on spatial databases. In
Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, April
7-12, 2008, Cancún, Mexico (2008), pp. 656–665.

[38] Finkel, R. A., and Bentley, J. L. Quad trees: A data structure for retrieval on composite
keys. Acta Inf. 4 (1974), 1–9.

[39] Gao, Y., Liu, Q., Chen, G., Zheng, B., and Zhou, L. Answering why-not questions on
reverse top-k queries. PVLDB 8, 7 (2015), 738–749.

[40] Guo, L., Shao, J., Aung, H. H., and Tan, K. Efficient continuous top-k spatial keyword
queries on road networks. GeoInformatica 19, 1 (2015), 29–60.

[41] Guttman, A. R-trees: A dynamic index structure for spatial searching. In SIGMOD’84,
Proceedings of Annual Meeting, Boston, Massachusetts, USA, June 18-21, 1984 (1984), pp. 47–
57.

[42] Hjaltason, G. R., and Samet, H. Distance browsing in spatial databases. ACM Trans.
Database Syst. 24, 2 (1999), 265–318.

[43] Hristidis, V., Koudas, N., and Papakonstantinou, Y. PREFER: A system for the effi-
cient execution of multi-parametric ranked queries. In Proceedings of the 2001 ACM SIGMOD
(2001), pp. 259–270.

[44] Huang, W., Li, G., Tan, K., and Feng, J. Efficient safe-region construction for moving
top-k spatial keyword queries. In 21st ACM International Conference on Information and
Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012 (2012),
pp. 932–941.

[45] Ilyas, I. F., and Aref, W. G. Rank-aware query processing and optimization. In Proceedings
of the 21st International Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo,
Japan (2005), p. 1144.

BIBLIOGRAPHY 117

[46] Ilyas, I. F., Aref, W. G., Elmagarmid, A. K., Elmongui, H. G., Shah, R., and
Vitter, J. S. Adaptive rank-aware query optimization in relational databases. ACM Trans.
Database Syst. 31, 4 (2006), 1257–1304.

[47] Ilyas, I. F., Beskales, G., and Soliman, M. A. A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv. 40, 4 (2008).

[48] Ilyas, I. F., Shah, R., Aref, W. G., Vitter, J. S., and Elmagarmid, A. K. Rank-
aware query optimization. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004 (2004), pp. 203–214.

[49] Kanth, K. V. R., Ravada, S., and Abugov, D. Quadtree and r-tree indexes in oracle
spatial: a comparison using GIS data. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data , Madison, Wisconsin, June 3-6, 2002 (2002), pp. 546–
557.

[50] Khodaei, A., Shahabi, C., and Li, C. Hybrid indexing and seamless ranking of spatial and
textual features of web documents. In Database and Expert Systems Applications, 21st Inter-
national Conference, DEXA 2010, Bilbao, Spain, August 30 - September 3, 2010, Proceedings,
Part I (2010), pp. 450–466.

[51] Korn, F., and Muthukrishnan, S. Influence sets based on reverse nearest neighbor queries.
In Proceedings of the 2000 ACM SIGMOD (2000), pp. 201–212.

[52] Li, G., Feng, J., and Xu, J. DESKS: direction-aware spatial keyword search. In IEEE
28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012 (2012), pp. 474–485.

[53] Li, G., Wang, Y., Wang, T., and Feng, J. Location-aware publish/subscribe. In The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013 (2013), pp. 802–810.

[54] Lian, X., and Chen, L. Monochromatic and bichromatic reverse skyline search over uncer-
tain databases. In Proceedings of the ACM SIGMOD (2008), pp. 213–226.

[55] Liu, Q., Gao, Y., Chen, G., Zheng, B., and Zhou, L. Answering why-not and why
questions on reverse top-k queries. VLDB J. 25, 6 (2016), 867–892.

[56] Lu, J., Lu, Y., and Cong, G. Reverse spatial and textual k nearest neighbor search. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011 (2011), pp. 349–360.

BIBLIOGRAPHY 118

[57] Mahmood, A. R., Aly, A. M., Qadah, T., Rezig, E. K., Daghistani, A., Madkour,
A., Abdelhamid, A. S., Hassan, M. S., Aref, W. G., and Basalamah, S. M. Tornado:
A distributed spatio-textual stream processing system. PVLDB 8, 12 (2015), 2020–2023.

[58] Mahmood, A. R., and Aref, W. G. Query processing techniques for big spatial-keyword
data. In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017 (2017), pp. 1777–1782.

[59] Mahmood, A. R., Aref, W. G., and Aly, A. M. FAST: frequency-aware spatio-textual
indexing for in-memory continuous filter query processing. CoRR abs/1709.02529 (2017).

[60] Mahmood, A. R., Daghistani, A., Aly, A. M., Tang, M., Basalamah, S. M., Prab-
hakar, S., and Aref, W. G. Adaptive processing of spatial-keyword data over a distributed
streaming cluster. In Proceedings of the 26th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL 2018, Seattle, WA, USA,
November 06-09, 2018 (2018), pp. 219–228.

[61] Marian, A., Bruno, N., and Gravano, L. Evaluating top-k queries over web-accessible
databases. ACM Trans. Database Syst. 29, 2 (2004), 319–362.

[62] McAuley, J. J., Pandey, R., and Leskovec, J. Inferring networks of substitutable and
complementary products. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015
(2015), pp. 785–794.

[63] McAuley, J. J., Targett, C., Shi, Q., and van den Hengel, A. Image-based recom-
mendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Santiago, Chile, August
9-13, 2015 (2015), pp. 43–52.

[64] Morton, G. M. A computer oriented geodetic data base and a new technique in file sequenc-
ing.

[65] Mouratidis, K. Geometric approaches for top-k queries. PVLDB 10, 12 (2017), 1985–1987.

[66] Mouratidis, K., Bakiras, S., and Papadias, D. Continuous monitoring of top-k queries
over sliding windows. In Proceedings of the ACM SIGMOD International Conference on
Management of Data ,Chicago, Illinois, USA, June 27-29, 2006 (2006), pp. 635–646.

[67] Mouratidis, K., Hadjieleftheriou, M., and Papadias, D. Conceptual partitioning:
An efficient method for continuous nearest neighbor monitoring. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Baltimore, Maryland, USA, June
14-16, 2005 (2005), pp. 634–645.

BIBLIOGRAPHY 119

[68] Mouratidis, K., Zhang, J., and Pang, H. Maximum rank query. PVLDB 8, 12 (2015),
1554–1565.

[69] Omohundro, S. M. Five balltree construction algorithms. International Computer Science
Institute Berkeley, 1989.

[70] Papadias, D., Shen, Q., Tao, Y., and Mouratidis, K. Group nearest neighbor queries.
In Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, 30
March - 2 April 2004, Boston, MA, USA (2004), pp. 301–312.

[71] Papadias, D., Tao, Y., Mouratidis, K., and Hui, C. K. Aggregate nearest neighbor
queries in spatial databases. ACM Trans. Database Syst. 30, 2 (2005), 529–576.

[72] Pelleg, D., and Moore, A. W. X-means: Extending k-means with efficient estimation
of the number of clusters. In Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July 2,
2000 (2000), pp. 727–734.

[73] Qian, Y., Li, H., Mamoulis, N., Liu, Y., and Cheung, D. W. Reverse k-ranks queries
on large graphs. In Proceedings of the 20th International Conference on Extending Database
Technology, EDBT 2017, Venice, Italy, March 21-24, 2017. (2017), pp. 37–48.

[74] Ram, P., and Gray, A. G. Maximum inner-product search using cone trees. In The 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’12, Beijing, China, August 12-16, 2012 (2012), pp. 931–939.

[75] Rocha-Junior, J. B., Gkorgkas, O., Jonassen, S., and Nørvåg, K. Efficient processing
of top-k spatial keyword queries. In Advances in Spatial and Temporal Databases - 12th Inter-
national Symposium, SSTD 2011, Minneapolis, MN, USA, August 24-26, 2011, Proceedings
(2011), pp. 205–222.

[76] Roussopoulos, N., Kelley, S., and Vincent, F. Nearest neighbor queries. In Proceedings
of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose,
California, USA, May 22-25, 1995. (1995), pp. 71–79.

[77] Sellis, T. K., Roussopoulos, N., and Faloutsos, C. The r+-tree: A dynamic index
for multi-dimensional objects. In VLDB’87, Proceedings of 13th International Conference on
Very Large Data Bases, September 1-4, 1987, Brighton, England (1987), pp. 507–518.

[78] Stanoi, I., Agrawal, D., and El Abbadi, A. Reverse nearest neighbor queries for dynamic
databases. In ACM SIGMOD Workshop (2000), pp. 44–53.

[79] Tao, Y., Hristidis, V., Papadias, D., and Papakonstantinou, Y. Branch-and-bound
processing of ranked queries. Inf. Syst. 32, 3 (2007), 424–445.

BIBLIOGRAPHY 120

[80] Tao, Y., Papadias, D., and Lian, X. Reverse knn search in arbitrary dimensionality. In
Proceedings of the 13th International Conference on VLDB (2004), pp. 744–755.

[81] Tao, Y., Papadias, D., Lian, X., and Xiao, X. Multidimensional reverse k NN search.
VLDB J. 16, 3 (2007), 293–316.

[82] Tsaparas, P., Palpanas, T., Kotidis, Y., Koudas, N., and Srivastava, D. Ranked
join indices. In Proceedings of the 19th International Conference on Data Engineering, March
5-8, 2003, Bangalore, India (2003), pp. 277–288.

[83] U, L. H., Zhang, J., Mouratidis, K., and Li, Y. Continuous top-k monitoring on
document streams. IEEE Trans. Knowl. Data Eng. 29, 5 (2017), 991–1003.

[84] Uspensky, J. V. Introduction to Mathematical Probability. New York: McGraw-Hill, 1937.

[85] Vlachou, A., Doulkeridis, C., Kotidis, Y., and Nørvåg, K. Reverse top-k queries.
In Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March
1-6, 2010, Long Beach, California, USA (2010), pp. 365–376.

[86] Vlachou, A., Doulkeridis, C., and Yannis Kotidis, e. Monochromatic and bichromatic
reverse top-k queries. pp. 1215–1229.

[87] Vlachou, A., Doulkeridis, C., and Yannis Kotidis, e. Branch-and-bound algorithm
for reverse top-k queries. In SIGMOD Conference (2013), pp. 481–492.

[88] Vlachou, A., and .el, C. D. Monitoring reverse top-k queries over mobile devices. In
MobiDE (2011), pp. 17–24.

[89] Wang, S., Cheema, M. A., Lin, X., Zhang, Y., and Liu, D. Efficiently computing
reverse k furthest neighbors. In 32nd IEEE International Conference on Data Engineering,
ICDE 2016, Helsinki, Finland, May 16-20, 2016 (2016), pp. 1110–1121.

[90] Wang, X., Zhang, Y., Zhang, W., Lin, X., and Huang, Z. SKYPE: top-k spatial-
keyword publish/subscribe over sliding window. PVLDB 9, 7 (2016), 588–599.

[91] Wang, X., Zhang, Y., Zhang, W., Lin, X., and Wang, W. Ap-tree: efficiently support
location-aware publish/subscribe. VLDB J. 24, 6 (2015), 823–848.

[92] Weber, R., Schek, H., and Blott, S. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, August 24-27, 1998, New York City, New
York, USA (1998), pp. 194–205.

[93] Wu, D., Cong, G., and Jensen, C. S. A framework for efficient spatial web object retrieval.
VLDB J. 21, 6 (2012), 797–822.

BIBLIOGRAPHY 121

[94] Wu, D., Yiu, M. L., and Jensen, C. S. Moving spatial keyword queries: Formulation,
methods, and analysis. ACM Trans. Database Syst. 38, 1 (2013), 7:1–7:47.

[95] Wu, D., Yiu, M. L., Jensen, C. S., and Cong, G. Efficient continuously moving top-k
spatial keyword query processing. In Proceedings of the 27th International Conference on Data
Engineering, ICDE, 2011, April 11-16, 2011, Hannover, Germany (2011), pp. 541–552.

[96] Xiao, G., Li, K., Zhou, X., and Li, K. Efficient monochromatic and bichromatic proba-
bilistic reverse top-k query processing for uncertain big data. J. Comput. Syst. Sci. 89 (2017),
92–113.

[97] Xiong, X., Mokbel, M. F., and Aref, W. G. SEA-CNN: scalable processing of con-
tinuous k-nearest neighbor queries in spatio-temporal databases. In Proceedings of the 21st
International Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan
(2005), pp. 643–654.

[98] Yan, H., Ding, S., and Suel, T. Inverted index compression and query processing with
optimized document ordering. In Proceedings of the 18th International Conference on World
Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009 (2009), pp. 401–410.

[99] Yang, S., Cheema, M. A., Lin, X., and Wang, W. Reverse k nearest neighbors query
processing: Experiments and analysis. PVLDB 8, 5 (2015), 605–616.

[100] Yang, S., Cheema, M. A., Lin, X., and Zhang, Y. SLICE: reviving regions-based
pruning for reverse k nearest neighbors queries. In IEEE 30th International Conference on
Data Engineering, ICDE (2014), pp. 760–771.

[101] Yao, B., Li, F., and Kumar, P. Reverse furthest neighbors in spatial databases. In
Proceedings of the 25th ICDE (2009), pp. 664–675.

[102] Yi, K., Yu, H., Yang, J., Xia, G., and Chen, Y. Efficient maintenance of materialized
top-k views. In Proceedings of the 19th International Conference on Data Engineering, ICDE,
March 5-8, 2003, Bangalore, India (2003), pp. 189–200.

[103] Yiu, M. L., Mamoulis, N., and Papadias, D. Aggregate nearest neighbor queries in road
networks. IEEE Trans. Knowl. Data Eng. 17, 6 (2005), 820–833.

[104] Yu, A., Agarwal, P. K., and Yang, J. Processing a large number of continuous preference
top-k queries. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012 (2012), pp. 397–408.

[105] Yu, X., Pu, K. Q., and Koudas, N. Monitoring k-nearest neighbor queries over moving
objects. In Proceedings of the 21st International Conference on Data Engineering, ICDE 2005,
5-8 April 2005, Tokyo, Japan (2005), pp. 631–642.

BIBLIOGRAPHY 122

[106] Zhang, Z., Jin, C., and Kang, Q. Reverse k-ranks query. PVLDB 7, 10 (2014), 785–796.

[107] Zheng, B., Zheng, K., Xiao, X., Su, H., Yin, H., Zhou, X., and Li, G. Keyword-aware
continuous knn query on road networks. In 32nd IEEE International Conference on Data
Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016 (2016), pp. 871–882.

List of Publications

Refereed journal papers
• Yuyang Dong, Hanxiong Chen, Kazutaka Furuse, Hiroyuki Kitagawa.

“Efficient Methods for Aggregate Reverse Rank Queries”
IEICE TRANSACTIONS on Information and Systems. Volume E101-D No.4, pp. 1012-1020.
2018.

• Yuyang Dong, Hanxiong Chen, Jeffery Xu Yu, Kazutaka Furuse, Hiroyuki Kitagawa.
“Weighted Aggregate Reverse Rank Queries”
ACM Transactions on Spatial Algorithms and Systems (TSAS). Volume 4 Issue 2 Article 5.
2018.

• Yuyang Dong, Hanxiong Chen, Kazutaka Furuse, Hiroyuki Kitagawa.
“Bound-and-filter Framework for Aggregate Reverse Rank Queries”
Transactions on Large-Scale Data and Knowledge-Centered Systems (TLDKS). XXXVIII Spe-
cial Issue on Database and Expert Systems Applications, pp. 1-26, 2018

Refereed international conference papers
• Yuyang Dong, Hanxiong Chen, Kazutaka Furuse, Hiroyuki Kitagawa.

“Aggregate Reverse Rank Queries”
Proc.27th International Conference on Database and Expert Systems Applications (DEXA
2016). pp.87-101, Porto, Portugal, September 5-8, 2016. (Best Paper Award).

• Yuyang Dong, Hanxiong Chen, Jeffery Xu Yu, Kazutaka Furuse, Hiroyuki Kitagawa.
“Grid-Index algorithm for reverse rank queries”
Proc. 20th International Conference on Extending Database Technology (EDBT 2017). pp
306-317,Venice, Italy, March 21-24, 2017.

123

BIBLIOGRAPHY 124

• Yuyang Dong, Hanxiong Chen, Kazutaka Furuse, Hiroyuki Kitagawa.
“Efficient Processing of Aggregate Reverse Rank Queries”
Proc.28th International Conference on Database and Expert Systems Applications (DEXA
2017). pp.159-166, Lyon, France, August 28-31, 2017.

• Yuyang Dong, Hanxiong Chen, Hiroyuki Kitagawa.
“Continuous Search on Dynamic Spatial Keyword Objects”
Proc. 35th IEEE International Conference on Data Engineering (ICDE 2019). pp., Macau
SAR, China, April 8-12, 2019. (to appear)

Non-refereed domestic conference Papers
• Yuyang Dong, Hanxiong Chen, Kazutaka Furuse, Hiroyuki Kitagawa.

“A Branch-and-Bound Method for Group Reverse Queries,” in The 8th Forum on Data Engi-
neering and Information Management (DEIM 2016), D7-1, Fukuoka - Japan, Feb 29 - March
2, 2016.

• Yuyang Dong, Song Wang, Hanxiong Chen, Kazutaka Furuse, Hiroyuki Kitagawa.
“A High-dimensional Solution for Aggregate Reverse Rank Query” in The 9th Forum on Data
Engineering and Information Management (DEIM 2017), G1-1, Takayama - Japan, March
6-8, 2017.

