
Research on real-time network stacks of commodity

hosted virtual machine environments

March 2019

Oscar Fernando Garcia Alvarado

Research on real-time network stacks of commodity

hosted virtual machine environments

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2019

Oscar Fernando Garcia Alvarado Name

Abstract
It is a common practice to run real-time and time-sensitive applications on commodity
OSs, such as Linux. Commodity OSs cannot provide sufficient real-time capabilities
for some real-time applications. To address this problem, developers and researchers
are developing small extensions or patches to commodity OSs. This thesis achieves
a consistent real-time (RT) response time in commodity virtual machine (VM) envi-
ronments which have have longer and more complex network protocol stacks.

The target hosted virtual machine environment hosts RT and non-RT network
servers in VMs. The research objective of this thesis is to achieve the following goals
at the same time: 1) Achieve short and consistent latency for RT servers. 2) Obtain
high throughput for non-RT servers and avoid low CPU utilization within the bound
of the consistent latency for RT servers.

To achieve these goals, this thesis analyzed the message processing path of RT
and non-RT servers in vanilla Linux and two conventional RT methods. First, the
author has confirmed a priority inversion in the interrupt-first host kernel of vanilla
Linux. The author has fpund two new sources of variances: a priority inversion in
softirq handling and the cache pollution by co-located non-RT servers.

To solve these problems, the author proposes a new approach to an RT network
stack in a Linux KVM-based virtual machine environment. This approach is called the
“socket outsourcing with partitioned RT softirq handling” method or the outsourcing
method for short. The author addresses the priority inversion problem in the host’s
softirq handling by dividing softirq handling into RT and non-RT types. The author
mitigates the cache pollution problem and prevents the priority inversion problem in
a guest’s softirq handling by extending socket outsourcing. Socket outsourcing allows
a guest kernel to delegate high-level network operations to the host kernel. When
a guest process invokes a socket operation, its processing is delegated to the host.
This removes the duplicated message copying in conventional hosted virtualization
and reduces the cache pollution by non-RT servers.

This thesis evaluates the proposed method by comparing to two conventional RT
methods. Compared to the threaded interrupt handling method, the outsourcing
method reduced the standard deviation of the latencies of a simple RT server by
a factor of 6. At the same time, the outsourcing method improved the non-RT
throughput by up to 5.6% with 32% lower CPU utilization. Compared to the exclusive
CPU method, the outsourcing method reduced the standard deviation by a factor of
2 and avoided low utilization of the exclusive RT CPU. Moreover, the outsourcing
method was effective for running two time-sensitive applications: a Voice-over-IP
(VoIP) server and a key-value store server. The outsourcing method was more scalable
in terms of the number of RT VMs. Experimental results showed that a four-CPU
host was able to execute 40 RT VMs using the outsourcing method while maintaining
the throughputs of non-RT servers.

I

Contents

1 Introduction 1

2 Related Work 7

2.1 Adding real-time capabilities to Commodity OSs 7

2.1.1 Early proposals for 4.4 BSD and Solaris 7

2.1.2 Early proposals of adding real-time capabilities to Linux . . . 10

2.1.3 The PREEMPT_RT patch for Linux 14

2.2 RT virtual machines . 14

2.2.1 KVM for NFV . 15

2.2.2 RT-Xen . 15

2.2.3 Linux Jailhouse . 16

2.2.4 Leulo . 17

2.3 Improving network throughput of virtual machines 17

2.3.1 Socket outsourcing . 17

2.3.2 Accelerating host-guest message passing 18

2.4 Resource reservation and service level objectives 19

2.4.1 Exclusive physical resources allocation 19

2.4.2 Heracles . 19

2.4.3 Silo . 20

2.4.4 IRMOS/Real-time SOIs . 21

2.5 Network I/O without interrupt handling 21

2.6 Network I/O using advanced hardware features 23

II

2.6.1 Virtual machine device queues (VMDQs) and Single-root in-

put/output virtualization (SR-IOV) 23

2.6.2 Cache Allocation Technology (CAT) and vCAT 25

2.7 Real-time networks . 25

2.8 Network stacks for high-performance computing 26

3 Analyzing vanilla Linux and two conventional RT methods 28

3.1 Experimental environment . 29

3.2 Vanilla Linux and two conventional RT methods 31

3.3 Latency and throughput in vanilla Linux and the conventional RT

methods . 35

3.4 Measuring latencies of network stack components using Ftrace and

light-weight probes . 38

3.4.1 Processing path analysis with lightweight probes 39

3.4.2 Analyzing the message processing path of the Critical RT server

with lightweight probes . 39

3.4.3 Finding priority inversions at the “host receive” segment in the

threaded interrupt handling method with Ftrace and Kernelshark 43

3.5 Cache pollution by co-located non-RT Servers 45

3.6 Summary of analyzing the network stack of a hosted virtual machine

environment . 47

4 Partitioned RT softirq handling 49

4.1 Interrupt handling in partitioned RT softirq handling 50

4.2 Implementation of partitioned RT softirq handling 52

4.2.1 Modifying the NAPI module 52

4.2.2 Modifying the softirq mechanism 55

5 RT socket outsourcing 57

5.1 Conventional socket outsourcing . 57

5.2 RT socket outsourcing . 60

III

5.3 Implementation details of RT socket outsourcing 63

5.3.1 The guest client module . 63

5.3.2 The Host server module . 65

5.3.3 The extended idle process . 66

6 Experimental evaluation 69

6.1 Experimental setup for running a simple RT server 69

6.2 Experimental results using a simple RT server 72

6.3 Effects of individual techniques . 76

6.4 Processing path analysis with lightweight probes 78

6.5 Cache pollution in the RT methods 82

6.6 Message processing paths of non-RT server 83

6.7 Application benchmarks . 84

6.7.1 A voice-over-IP (VoIP) server. 84

6.7.2 Memcached . 87

6.8 Scalability of RT virtual machines . 89

6.9 Using partitioned RT softirq handling in container-based virtualization 93

6.10 Current restrictions and limitations 94

7 Conclusion 96

Acknowledgments 102

List of publications 103

IV

List of Figures

1-1 Development race of mainline and RT patch. 3

1-2 The target virtual machine environment that executes RT and non-RT

servers together. 4

2-1 Comparing the network subsystems of 4.4 BSD and LRP. 8

2-2 Prioritized interrupt handling in Solaris. 9

2-3 RT-Linux running the Linux kernel as an RT task of an RTOS in RT-

Linux. 10

2-4 The architectures of Xenomai and RTAI. 11

2-5 Network subsystem in TimeSys Linux. 13

2-6 Architecture of Linux Jailhouse. 16

2-7 Comparison of a typical network stack and that of Virtualization Polling

Engine. 22

2-8 Comparison of a typical network stacks and a network stack using SR-

IOV. 24

3-1 Running an RT server and co-located non-RT servers in a target virtual

machine environment. 29

3-2 The components of the network stack in the target environment. . . . 30

3-3 Interrupt handling in vanilla Linux. 32

3-4 Interrupt handling using the threaded interrupt handling method. . . 33

3-5 Interrupt handling using the exclusive CPU method. 35

3-6 Distribution of the Critical RT server’s response times in vanilla Linux

and the two conventional RT methods without Heavy Receivers. . . . 36

V

3-7 Distribution of the Critical RT server’s response times in vanilla Linux

and the two conventional RT methods with Heavy Receivers. 36

3-8 Total throughput of Heavy Receivers. 37

3-9 Achievable CPU utilization. 38

3-10 Division of the message processing path into three segments. 39

3-11 Latencies of three segments of the message processing path without

running Heavy Receivers. 41

3-12 Latencies of three segments of the message processing path with run-

ning Heavy Receivers. 42

3-13 Priority inversion in the softirq handling in the host OS using the

threaded interrupt handling method. 44

3-14 99th percentile latencies of the Critical server in the “guest” segment at

different request’s inter-arrival times. 46

4-1 Interrupt handling using the outsourcing method. 50

4-2 The trace of interrupt handling in in partitioned RT softirq handling. 51

4-3 Adding rt_poll_list to the softnet_data structure. 53

4-4 Adding sysctl parameter net.core.rtnet_prio. 53

4-5 Modifying the function napi_schedule_irqoff(). 54

4-6 Adding a new softirq kind “RT_NET_RX_SOFTIRQ” 55

5-1 Comparison of network paravirtualization in the threaded interrupt

handling method and conventional socket outsourcing. 59

5-2 Comparison between conventional socket outsourcing and RT socket

outsourcing. 61

5-3 Implementation of the recvfrom() system call in a guest. 64

5-4 Implementation of the skhst_recvfrom() function in the host. . . . 66

5-5 Implementation of the notify_guest() function in the host. 67

5-6 The extended idle process . 68

6-1 The experimental environment. 70

VI

6-2 Distribution of the Critical RT server response times without running

Heavy Receivers. 74

6-3 Distribution of the Critical RT server response times with Heavy Re-

ceivers. 75

6-4 Total throughput of Heavy Receivers. 76

6-5 Achievable CPU utilization. 76

6-6 Distribution of the Critical RT server response times with the out-

sourcing method using individual techniques. 77

6-7 Division of the message processing path into three segments. 78

6-8 Latencies in three segments of the processing path of RT messages

without running Heavy Receivers. 80

6-9 Latencies in three segments of the processing path of RT messages with

running Heavy Receivers. 81

6-10 LLC miss ratio of the RT threads. 82

6-11 Message processing path of a non-RT Heavy Receiver. 83

6-12 The results of application benchmark using a VoIP server. 86

6-13 The results of application benchmark using memcached. 88

6-14 Scaling the number of RT virtual machines (Netperf as critical RT

server). 90

6-15 Scaling the number of RT virtual machines (VoIP server as critical RT

server). 91

6-16 Scaling the number of RT virtual machines (Memcached as critical RT

server). 92

6-17 Distribution of the Critical RT server in container-based virtualization. 93

VII

List of Tables

3.1 Statistical values of the Critical RT server response times in vanilla

Linux and the two conventional RT methods without Heavy Receivers

(microseconds). 36

3.2 Statistical values of the Critical RT server response times in vanilla

Linux and the two conventional RT methods with Heavy Receivers

(microseconds). 36

3.3 Summary of the RT methods. 48

6.1 Specifications of the machines and their active cores in the experiments. 71

6.2 Scheduling policy and priority of the threads in the host OS. 72

6.3 Statistical values of the Critical RT server response times without run-

ning Heavy Receivers (microseconds). 74

6.4 Statistical values of the Critical RT server response times with Heavy

Receivers (microseconds). 75

6.5 Statistical values of the Critical RT server with the outsourcing method

using individual techniques. 77

6.6 Statistical values of the Critical RT server response times with running

Heavy Receivers in container-based virtualization (microseconds). . . 93

VIII

Chapter 1

Introduction

Real-time and time-sensitive systems are everywhere from surroundings and offices to

data centers. Simple real-time systems are embedded in home electrical appliances,

such as microwave ovens and kids toys. People enjoy video streaming everyday with

video players in PCs. Embedded systems are becoming complex. Examples of com-

plex embedded systems are automotive navigation systems, medical imaging systems,

and robotic assembly lines in factories. When they are connected to the Internet, they

construct Internet of Things (IoT). Data centers host time-sensitive network servers,

such as voice-over IP (VoIP) servers and web search engines.

Many real-time applications are built on Real-Time Operating Systems (RTOSs).

Representative RTOSs are FreeRTOS [8], ITRON [68], Micrium µC/OS [87], and

VxWorks [93]. Recently, it is a common practice to run real-time and time-sensitive

applications on commodity OSs, such as Linux. Especially complex real-time systems

are often built on commodity OSs because commodity OSs provide rich networking

and graphics APIs.

In this thesis, we define real-time applications that run on commodity OSs as

follows.

• They use the RT extensions, such as POSIX.1b (IEEE 1003.1b-1993) [39]. These

extensions include priority scheduling, real-time signals, semaphores, and mem-

ory locking.

1

• They work well in non-virtualized or native commodity OSs.

Commodity OSs can provide sufficient real-time capabilities for some real-time

applications with fast CPUs. However, commodity OSs cannot provide sufficient

real-time capabilities for some other real-time applications even with fast CPUs. To

address this problem, developers and researchers are developing small extensions or

patches to commodity OSs. Early examples of such patches are Lazy receiver pro-

cessing (LRP) for 4.4 BSD [24], prioritized interrupt handling for Solaris [53], and

RT-Linux [5], Time-Sensitive Linux [34], and Resource kernel [33] for Linux. Cur-

rently, one of the most active patches is PREEMPT_RT patch [84] for Linux.

Commodity OSs continuously evolve and become complex. For example, the size

of the Linux kernel was 8,000,000 in source lines of code (SLOC) in 2008. It is

20,000,000 in 2018. These changes are not only for adding new features but also

for improving performance. For example, in 2013, Linux 3.11 incorporated a polling

mechanism in a new network API called NAPI [25] to the network stack. In 2017,

Linux 4.9 incorporated a TCP algorithm called Bottleneck Bandwidth and Round-trip

propagation time (BBR) [12].

There is an inherent problem in the continuous evolution of commodity OSs. That

is, most of these changes favor throughput over latency and variance of latency . For

example, NAPI improves the throughput by reducing the interrupt overhead and

performs a fair network processing among devices at the cost of high variances [25].

2

Commodity
OS V1

Commodity
OS V2

Commodity
OS V3

RT Patch

Evolution Evolution

RT Commodity
OS V1

RT Patch

RT Commodity
OS V2

RT Patch

RT Commodity
OS V2

Time

Mainline
developers

RT Patch
developers

Figure 1-1: Development race of mainline and RT patch.

Because improving real-time capabilities of a commodity OS often decreases through-

put, it is usually developed by a separated group as a patch. Figure 1-1 shows that

the mainline group of developers releases new versions of the commodity OS for im-

proving throughput. At the same time, the group of RT developers makes an RT

patch for each version. This development race is persistent from earlier systems, such

as LRP, to current systems, such as PREEMPT_RT patch. In this thesis, we choose

a crucial problem from this development race. That is, we achieve a real-time network

stack in virtual machine environments.

Figure 1-2 presents a target hosted virtual machine environment of this thesis.

This environment hosts RT and non-RT network servers in VMs. This type of an

environment is also known as a mixed criticality system [9,11]. RT servers are critical

servers and require short and consistent response times. Consistent response times

mean low variance or jitter of response times [17]. Non-RT servers wish high through-

puts. The CPUs and memory of the host machine are shared by both RT and non-RT

servers. The RT servers use an RT network, whereas the non-RT servers use a non-

RT network. The network interface cards (NICs) connected to these networks are

referred to as an RT NIC and a non-RT NIC, respectively. We assume that the delay

and bandwidth of the RT network are guaranteed by using the methods described

by [15,45,92,96]. The non-RT network is a best-effort network.

When we run RT servers and non-RT servers together in the target environment,

we give higher priorities to the threads of the RT servers. Nonetheless, non-RT servers

can interfere with RT servers and cause variances to the latter’s response times. It is

3

Non-RT server Critical RT
server

NIC RT NIC

CPU CPU

Host

RT GuestNon-RT
 Guest

Non-RT network RT network

Critical RT
server

RT Guest

CPU

Non-RT server

Non-RT
 Guest

Non-RT server

Non-RT
 Guest

Figure 1-2: The target virtual machine environment that executes RT and non-RT
servers together.

not trivial to find the causes of response time problems because the network stack of

the target environment is complex and evolving.

It is known that using the PREEMPT_RT patch is not sufficient for realizing

real-time network stacks in virtual machine environments. However, its reason was

not clear. Most existing systems do not solve this problem but bypass the problem.

They allocate exclusive physical resources to the threads of the RT servers [16,18,91].

However, this sacrifices CPU utilization. Several studies show the low CPU utilization

ranging between 7% and 50% in most data centers [13, 22,55,61].

The research objective of this thesis is to achieve the following goals at the same

time:

• Achieve short and consistent latency for RT servers.

• Obtain high throughput for non-RT servers and avoid low CPU utilization

within the bound of the consistent latency for RT servers.

To achieve these goals, we began with analyzing the message processing path of

RT and non-RT servers in vanilla Linux and two conventional RT methods. As a

hypervisor, we used the KVM hypervisor which is integrated into the Linux kernel.

First, we have confirmed a priority inversion in the interrupt-first host kernel of

vanilla Linux. We found two new sources of variances, a priority inversion in softirq

mechanism and the cache pollution by co-located non-RT servers. Note that in this

4

thesis, we use the term “priority inversion” in a general sense as in [49,53,69,101]. If

a non-RT task with a lower priority delays the execution of an RT task with a high

priority, we call this a priority inversion.

Vanilla Linux has a priority inversion problem in interrupt handling and executes

any interrupt handler first, prior to any high-priority processes including threads of

the RT servers. One conventional RT method for Linux uses the PREEMPT_RT

patch [84], which executes interrupt handlers by threads with their own priorities and

addresses this priority inversion problem. We call this method the threaded interrupt

handling method. Whereas threaded interrupt handling eliminates the first priority

inversion problem, we have found that the second one in softirq handling of the host

kernel remains. The second conventional RT method allocates an exclusive CPU to a

group of host RT threads. We call this method the exclusive CPU method. Although

the exclusive CPU method bypasses the second priority inversion problem, it has two

disadvantages: low utilization of exclusive RT CPUs and low throughput of co-located

non-RT servers. Furthermore, this method has the same cache pollution problem that

the threaded interrupt handling method has.

To solve these problems, we propose a new approach to an RT network stack in

a Linux KVM-based virtual machine environment. We call our approach the “socket

outsourcing with partitioned RT softirq handling” method or the outsourcing method

for short. This is an extension of the threaded interrupt handling method and uses

the PREEMPT_RT patch to address the priority inversion problem in the interrupt-

first host kernel. Next, we address the priority inversion problem in the host’s softirq

handling by dividing softirq handling into RT and non-RT types. Finally, we mitigate

the cache pollution problem and prevent the priority inversion problem in a guest’s

softirq handling by extending socket outsourcing [27]. Socket outsourcing allows a

guest kernel to delegate high-level network operations to the host kernel. When a

guest process invokes a socket operation, its processing is delegated to the host. This

removes the duplicated message copying in conventional hosted virtualization and

reduces the cache pollution by non-RT services. In addition, we remove interrupt

handling from a guest kernel and eliminate the priority inversion problem in softirq

5

handling of the guest kernel.

We evaluate our proposed method by comparing two conventional RT methods.

Compared to the threaded interrupt handling method, the outsourcing method re-

duced the standard deviation of the latencies of a simple RT server by a factor of 6.

At the same time, the outsourcing method improved the non-RT throughput by up

to 5.6% with 32% lower CPU utilization. Compared to the exclusive CPU method,

the outsourcing method reduced the standard deviation by a factor of 2 and avoided

low utilization of the exclusive RT CPU. Moreover, the outsourcing method produced

better results for running two real-time applications: a Voice-over-IP (VoIP) server

and a key-value store server.

The outsourcing method was more scalable in terms of the number of RT VMs.

Our experimental results showed that a four-CPU host was able to execute 40 RT

VMs using the outsourcing method while maintaining the throughputs of non-RT

servers.

6

Chapter 2

Related Work

This chapter provides related work. The following subsections are structured ac-

cording to the areas of interest in this thesis. Section 2.1 discusses adding real-time

capabilities to commodity OSs. Section 2.2 describes related work in RT virtual

machines. Section 2.3 describes previous work in improving network throughput

of virtual machines. Section 2.4 presents techniques for guaranteeing Service Level

Objectives (SLOs) in real-time applications. Section 2.5 discusses network I/O tech-

niques without interrupt handling. Section 2.6 describes hardware-based techniques.

Section 2.7 presents techniques for adding realtimeness in the network level. Finally,

Section 2.8 describes related work in network stacks for High Performance Computing

(HPC) applications.

2.1 Adding real-time capabilities to Commodity OSs

2.1.1 Early proposals for 4.4 BSD and Solaris

The vanilla kernel of 4.4BSD executes network interrupt handlers first, prior to user

processes. Lazy Receiver Processing (LRP) [24] is a network subsystem that schedules

the network processing to improve fairness and solve the problem in interrupt han-

dling. LRP delays the interrupt handling of receiving processes until these receiving

processes are scheduled according to the priority of the processes.

7

IP

TCP

Device queue

IP queue

Sockets

OS

Application
Processes

NIC

Datagram Stream

UDP

(a) 4.4 BSD.

IP

TCP

Sockets

OS

Application
Processes

NIC

Datagram Stream

Per-socket
queues

UDP

(b) LRP.

Figure 2-1: Comparing the network subsystems of 4.4 BSD and LRP.

Figure 2-1 compares the traditional network subsystem in 4.4 BSD and the sub-

system proposed by LRP. In Figure 2-1a, the interrupt handler of traditional network

subsystem of 4.4 BSD puts incoming messages to a single queue, and performs IP and

TCP processing for any processes. In contrast, in Figure 2-1b, the network subsys-

tem of LRP has per-socket queues and the NIC can use any per-socket queues. This

network subsystem processes incoming messages as follows:

1. The NIC demultiplexes incoming messages based on the destination sockets and

puts them into their respective socket queues.

2. When a destination process is scheduled, the kernel performs the IP and TCP

processing for this process.

In LRP, the message processing of a low priority process does not preempt the

execution of high priority processes. In addition, the network processing does not

occur until a user process receives it explicitly through systems calls.

The experiments presented in the LRP paper [24] were performed on a private

Asynchronous Transfer Mode (ATM) network between SPARC stations. In terms of

throughput, the LRP performance was comparable with the unmodified 4.4 BSD. An

experiment presented in the paper measured the latency of a network server when

8

processing

Device
queue

Interrupt

Look-up

Priority1 Priority 4Priority 2

2

VCI QueueID(ptr)

1 3232323

3435345

32323554

Packet
classifier

Enqueue

Packet

threads

(RIO threads)

user threaduser process

1

2

3

NIC

CPU

Figure 2-2: Prioritized interrupt handling in Solaris.

the machine of the network server had a high network load. A client and the server

performed a round trip latency test using short UDP messages at a fixed rate. In LRP

and 4.4 BSD, the measured latency varied with the background traffic rate. However,

in 4.4 BSD the latency increased more. This execution time was approximately 60

𝜇s. In LRP, this execution time was approximately 25 𝜇s.

Paper [53] proposes the Real-time I/O (RIO) subsystem for the Solaris 2.5 kernel.

Similar as LRP, RIO prioritizes interrupt handling of Solaris for consistent latencies of

ATM networks. RIO performs all protocol processings in kernel threads, called RIO

threads. RIO threads are scheduled with real-time priorities. Figure 2-2 describes

the structure of the RIO subsystem. RIO has a packet classifier that takes advantage

of the demultiplexing feature in ATM. The classifier uses the ATM’s Virtual Chan-

nel Identifier (VCI) field in a request message to determine the RIO thread of its

final destination. The RIO threads are co-scheduled with real-time user threads and

process I/O requests.

These proposed systems, LRP and RIO, effectively reduced latency and latency

9

Display

RT Process Linux kernel

Linux process

OS Level

Application Level

Hardware Level

RT FIFO RT-Linux kernel

DiskI/O device

X Window
server

Figure 2-3: RT-Linux running the Linux kernel as an RT task of an RTOS in RT-
Linux.

variance in the network stacks of 4.4 BSD and Solaris 2.5, respectively. However, the

results are affected by the continuous evolution of the underlying OS code. Further-

more, these proposed systems cannot deal with virtual execution environments. In

this thesis, we add real-time capabilities to the network stack of a hosted virtual ma-

chine environment. To achieve this, we eliminate new sources of variance, the priority

inversion in softirq handling of the host kernel and cache pollution.

2.1.2 Early proposals of adding real-time capabilities to Linux

RT-Linux [5] proposes an RT OS underneath Linux. In RT-Linux, the Linux kernel is

a normal task of an RT OS kernel, it runs when there are not runnable RT processes

and it is preempted whenever an RT process becomes runnable.

In RT-Linux, every RT process is separated into two processes as shown in Figure

2-3. The first process has hard RT constraints and is defined in a kernel module

(identified as RT Process in the figure). The second process executes as a Linux

process. The communication between these two processes is done through special

queues called real-time FIFOs. The RT process never blocks when it reads or writes

a real-time FIFO. In the figure, the RT process copies data from the device into the

real-time FIFO. The Linux process reads the data from the other end of the real-time

FIFO and displays and stores the data in a file.

This design was taken because a commodity OS does not provide timing guar-

10

Linux Xenomai

ADEOS

low-level Linux

Hardware

(a) Xenomai.

Linux RTAI

ADEOS

low-level Linux

Hardware

(b) RTAI.

Figure 2-4: The architectures of Xenomai and RTAI.

antees for resuming suspended processes. At that time, this was mostly caused by

non-preemptible portions of the kernel of Linux. If an RT process runs in normal

Linux and reads a device buffer, the RT process may lose the data. This design of

RT-Linux bypasses the Linux kernel and allows high responsiveness without substan-

tial changes to the Linux kernel.

Xenomai [32] and the RealTime Application Interface (RTAI) for Linux [10]

use the Adaptive Domain Environment Operating Systems (ADEOS) microkernel

to schedule real-time processes while the Linux kernel handles the remaining func-

tionalities. Figure 2-4a describes the architecture of Xenomai. In Xenomai, ADEOS

handles hardware interrupts and propagates them in sequence to the Xenomai com-

ponent. Depending on the destination process, the Xenomai component decides to

handle an interrupt or delegate it to the Linux kernel. RTAI uses a different archi-

tecture than Xenomai as shown in Figure 2-4b. RTAI intercepts all the interrupts,

and the ADEOS microkernel propagates those interrupts of non-RT processes to the

Linux kernel. RTAI adopts this approach to avoid the overhead of the ADEOS kernel

in the handling of interrupts to real-time processes.

Paper [6] provides a comparative evaluation between Xenomai and RTAI. In a real-

time network communication experiment, Xenomai and RTAI outperformed Linux in

terms of latency and latency variance. Comparing both approaches, RTAI presented

slightly lower latencies and latency variances.

Paper [34] shows that a commodity OS with real-time capabilities requires 1)

11

fine-grained timers, 2) a preemptible kernel, and 3) RT schedulers. The authors

introduce Time-Sensitive Linux (TSL), a Linux-based kernel that realizes these three

requirements. For achieving fine-grained timers, TSL implements firm timers which

implements one-shot timers and soft timers [4]. Soft-timers check and fire at special

points in the kernel such as systems calls and interrupts. This reduces the number

of one-shot timers reprogramming and the overhead of interrupt handling. To reduce

the number of non-preemptible areas in the kernel, TLS adopts the result of the

Linux preemptible kernel project [64] that allows preemption at anytime the kernel

is not holding a spinlock or running an interrupt handler. Finally, TSL implements

two RT schedulers to support different types of real-time applications. The first one

is a proportion-period CPU scheduler that requires the specification of proportion

and period per task. The second one is a priority CPU scheduler which executes the

runnable process with the highest priority at any given time.

The PREEMPT_RT patch for Linux incorporates some ideas proposed in TSL

Linux. We describe the PREEMPT_RT patch in Section 2.1.3.

Resource kernel [77] separates resource specification from resource management.

The kernel can choose the most appropriate resource management scheme to satisfy

the demands of applications. This paper proposes a resource reservation model for

CPU resources. This model employs a fixed priority scheme where each reservation

defines a period T or a deadline D. T is assigned for the rate-monotonic scheduling

scheme and D is assigned for the deadline-monotonic scheme.

TimeSys Linux [33] extends Resource kernel, and proposes a resource reservation

model for network bandwidth. Figure 2-5 presents the network subsystem of this

approach. First, the paper defines a NetR reserve that allows applications to specify

their network requirements. With a NetR reserve, an RT application can specify

the volume of data, the data reception period and the deadline. Each NetR reserve

posses its own dedicated backlog queue. The network interrupt handler demultiplexes

inbound packets and places them on the respective backlog queues. For other non-RT

applications without a NetRT reserve, the interrupt handler places their packets into

a default backlog queue. Each NetR reserve spawns a new dedicated NetR thread.

12

NIC

RT APP

NetR

Scheduler

Non-RT APP1

NetR threadNetR thread

Interrupt handler

Process
with NetR
reservation

Non-RT APP2

Default
backlog
queue

Figure 2-5: Network subsystem in TimeSys Linux.

This thread processes the backlog queue of the NetR reserve. When an application

defines a NetR reserve, the application may share the CPU reserve with its NetR

thread. A default NetRT thread processes the default backlog queue.

This network subsystem is implemented in TimeSys Linux, a fully preemptive ver-

sion of Linux that provides a portable resource kernel framework. The experimental

results demonstrate the need for control and accounting in the handling of network

interrupts. This study also found that incoming traffic from a port may hinder out-

going traffic to another port. The paper proposes allocating a thread for each port

to take advantage of CPU reserves.

These systems, RT-Linux, Xenomai, RATI, TS Linux, and resource kernel effec-

tively reduced latency and latency variance in the network stacks of Linux. However,

the results are affected by the continuous evolution of the underlying OS code. Fur-

thermore, these proposed systems cannot deal with virtual execution environments. In

this thesis, we add real-time capabilities to the network stack of a Linux KVM-based

virtual machine environment. To achieve this, we eliminate new sources of variance,

the priority inversion in softirq handling of the host kernel and cache pollution.

13

2.1.3 The PREEMPT_RT patch for Linux

The PREEMPT_RT patch [84] is a project that is officially supported by the Linux

Foundation and modifies the Linux kernel to add real-time capabilities. A cause of

latency variance in Linux is priority inversion where a high priority thread must wait

for releasing a resource that is occupied by a lower priority task. The PREEMPT_RT

patch implements threaded interrupt handlers to resolve this issue.

Another cause of latency in Linux is the non-preemptible areas of the kernel.

The PREEMPT_RT patch is a successor of the Linux preemptible kernel project

[64] and replaces the non-preemptible spinlocks by preemptible sleeping spinlocks.

The PREEMPT_RT patch introduces sleeping spinlocks which implement a priority

inheritance protocol [84].

The PREEMPT_RT patch for Linux effectively reduced latency and latency vari-

ance in the network stacks of Linux. This is a current successful project that col-

laborates with the mainline developer group of Linux. However, using this patch is

not sufficient as discussed in Section 1. Many conventional RT systems bypass the

problems in the PREEMPT_RT patch by allocating exclusive CPU resources to a

group of RT threads. This sacrifices CPU utilization.

In this thesis, we have found a priority inversion problem in the PREEMPT_RT

patch. We address the priority inversion problem by dividing softirq handling into RT

and non-RT ones in the host kernel of a virtual machine environment. Furthermore,

we eliminate the priority inversion problem in a guest kernel as well by extending

socket outsourcing.

2.2 RT virtual machines

In data centers, using Virtual Machines (VMs) is a must. Because each service has

a level of criticality, the service can choose an operating system that assures the

execution against a failure (e.g. deadlines misses) [11] by using a virtual machine.

Using virtual machine eases migration of services among the data-center servers for

achieving lower latencies and fault tolerance. In addition, developers and researchers

14

are working on implementing real-time hypervisors.

2.2.1 KVM for NFV

KVM4NFV [43] is a project that modifies the KVM hypervisor to reduce the inter-

rupt latency variance for data plane Virtual Network Functions (VNFs). KVM4NFV

modifies the KVM version of the PREEMPT_RT patch and eliminates spinlocks

in the code paths of virtual interrupt delivery and uses non-threaded interrupts to

reduce the number of context switches [74].

KVM4NFV focuses only on reducing latency variances by using advanced hard-

ware support such as Single-root Input/Output virtualization (SR-IOV). In this the-

sis, we propose a software-based method for consistent latency and compares it with

other software-based methods for the same goal.

2.2.2 RT-Xen

The base scheduler of the Xen hypervisor is called Credit Scheduler [14], which is

highly tuned for achieving fairness among VMs. This scheduler uses 30ms time slices

for CPU allocation and is not suitable for running real-time services.

RT-Xen [94] proposes a VM scheduling framework for real-time services in Xen.

RT-Xen implements global and partitioned schedulers and both schedulers can sup-

port dynamic and static priorities to run VMs. Through experimental evaluation, the

authors show that using a partitioned scheduler in a guest OS and a global sched-

uler in the hypervisor resulted in the best performance when using a periodic server.

The global scheduler running VMs as deferrable servers achieved lower deadline miss

ratios under overload when compared with other scheduling policies.

In this thesis, we use Linux KVM that uses the scheduler of Linux for scheduling

RT and non-RT VMs. Linux has an RT scheduler that realizes POSIX RT extensions

[39] as well as a normal scheduler for fairness, called the Completely Fair Scheduler

(CFS). The RT scheduler of Linux provides better RT capabilities than that of RT-

Xen. Furthermore, in this thesis, we eliminate the priority inversion problems in both

15

Cell i

Bare
metal

Cell 1

Guest Linux

App

CPU 0

Root cell

Linux

Jailhouse hypervisor

CPU 1 CPU 2

App

CPU j

Cell i+1

Legacy
OS

App

CPU j+1

Cell i+2

New
RTOS

App

CPU j+2

Device 0 Device 1 Device k Device k+1 Device k+2

Host

Figure 2-6: Architecture of Linux Jailhouse.

the host kernel and a guest kernel of Linux KVM.

2.2.3 Linux Jailhouse

Jailhouse [88] is a Linux-based partitioning hypervisor which runs bare-bone applica-

tions and provides isolation between them. Since Jailhouse lacks advanced resource

management functionalities, it does not replace modern hypervisors such as Xen or

KVM. Instead, Jailhouse focuses on safe-critical applications, such as Magnetic Res-

onance Imaging (MRI) devices, train controls and some robot factories utilize high-

speed of control systems that must react to events at high rates and require low

latencies. Jailhouse is also useful for HPC applications to minimize the interference

of other processes in a single machine [51].

Figure 2-6 shows the architecture of Jailhouse. Jailhouse implements an abstrac-

tion layer that splits the host into isolated partitions, called cells. Each cell has a

set of resources (CPU, memory regions, and PCI devices) and only one guest OS or

bare-bone application can run in a cell. The functionality of the Jailhouse hypervisor

is limited to maintain the isolation of the cells. The cell with Linux that bootstraps

Jailhouse is called the root cell. The root cell manages the other cells. The configura-

tion of each cell is static and must be defined before it launches. This configuration

defines the hardware that each cell can access.

16

The goal of Jailhouse differs from the goal of this thesis. The goal of Jailhouse

is to achieve only real-time capabilities. On the other hand, our goal is to achieve

consistent latency for RT servers and at the same time high throughput for non-RT

servers within the bound of the consistent latency for RT servers. Jailhouse does not

provide real-time network stacks. In this thesis, we show the implementation of a

real-time network stack relying on a real-time network.

2.2.4 Leulo

Leulo [72] is a hypervisor designed to alleviate the overhead in virtualized real-time

applications that utilize TCP. The TCP processing in a guest is often delayed and this

delay can affect the network performance. For example, delays in handling transmit

window updates from a peer can inhibit the transmission of buffered packets [72].

To address this problem, the TCP processing of a guest below the socket interface is

performed by the Leulo hypervisor.

Leulo implements a kind of socket outsourcing, which will be discussed in Section

2.3. Our proposed method also performs the TCP processing of a guest in the network

stack of the host, which constructs a hypervisor of the guest.

The TCP processing of Leulo has a priority inversion problem. That is, the

hypervisor of Leulo executes TCP processing, prior to any guest OSs. In this thesis,

we run RT and non-RT guests together and we give a higher priority to the TCP

processing of the RT guests and a lower priority to that of the non-RT guests.

2.3 Improving network throughput of virtual ma-

chines

2.3.1 Socket outsourcing

Socket outsourcing [27] and similar techniques [29,57,72,73] offload guests’ high-level

socket operations to the host. These techniques improve throughput by eliminating

17

message copying and by sending TCP acknowledgment packets efficiently. Section

5.2 will describe details of socket outsourcing.

vPRO [29] offloads the VM’s TCP congestion control function to the driver domain

or virtual machine that accesses devices. Moreover, it offloads TCP acknowledgment

functionality to the driver domain to improve the TCP receive performance. Virtsock-

ets [71] is a socket library that uses shared memory among a host and their guests.

The hypervisor copies messages to the guest memory and user applications access

them directly.

These systems mainly improve network throughput in virtual machine environ-

ments. In this thesis, we archive consistent latency of RT servers as well as high

throughput of non-RT servers. We adopt socket outsourcing to improve the through-

put of non-RT servers. Because socket outsourcing eliminates message copying, this

mitigates the cache pollution caused by the non-RT servers and leads to achieving

consistent latency. Furthermore, we eliminate virtual interrupt handling in a guest

kernel by extending conventional socket outsourcing.

2.3.2 Accelerating host-guest message passing

XWAY [50] provides a direct communication path between VMs in the same machine.

The authors identified that the usual Xen I/O architecture has notable overheads in

the inter-domain communications path: 1) TCP/IP processing overheads, 2) page

flipping overhead, and 3) long communication path in the same machine. XWAY

bypasses domains’ TCP/IP stacks by exchanging inter-VM messages via the shared

memory inside the machine. By using the shared memory to exchange messages, the

communication overhead becomes lower because page flipping is not needed.

Similar as XWAY, XenVMC [79] proposes an inter-VM communication path for

the Xen hypervisor. The main difference from XWAY is that XenVMC is implemented

below the socket layer and above the transport layer.

Although these approaches increase the throughput by avoiding message copying

and reducing the number of VM context switches, they do not consider latency and

latency variance. Our proposed method in this thesis adopts a similar technique and

18

reduces latency and latency variance.

2.4 Resource reservation and service level objectives

2.4.1 Exclusive physical resources allocation

A data center reserves resources for RT services to avoid Service Level Objective

(SLO) violations. As a simple resource reservation, a data center often allocate exclu-

sive physical resources for RT services [16,18,91]. This can be achieved, for example,

by allocating the threads involved in the processing of messages destined to the RT

services to dedicated CPUs [16,91] or executing an RTOS co-located to a commodity

OS in a single machine [31,66,95].

With exclusive physical resources allocation, these data centers face the problem

of physical resources under-utilization. Several studies show the low average server

utilization in most data centers ranging between 7% and 50% [13, 22, 55, 61]. Low

utilization not only negatively impacts maintenance and operational costs but also

wastes energy resources. Under-utilized physical resources consume about 70% of

their peak energy power [70].

In this thesis, we propose a method that reduces the latency and latency variance

of RT services without sacrificing CPU utilization. Our proposed method achieves

consistent latency for RT servers and at the same time high throughput for non-RT

servers within the bound of the consistent latency for RT servers. Furthermore, our

method mitigates a cache pollution problem, which is not addressed in those systems

allocating exclusive physical resources.

2.4.2 Heracles

Paper [63] proposes Heracles, a dynamic controller that combines hardware and soft-

ware isolation mechanisms to eliminate Service Level Objective (SLO) violations while

maximizing the throughput of non-RT tasks. Heracles implements a resource control

algorithm to manage the CPU cores, Last Level Cache (LLC), operating frequency of

19

processors and network bandwidth. The authors evaluated Heracles with web search,

key-value store, and real-time text clustering servers as real-time applications which

ran directly in the host OS. They showed experimentally that cache partitioning is

important for consistent latency variances in co-located environments.

Both Heracles and this thesis have a similar common goal. That is, reducing the

latency and latency variance of RT servers and maximizing the throughput of non-RT

servers. While Heracles does not deal with virtual machine environments, this thesis

deals with virtual machine environments. Furthermore, unlike Heracles, we propose

a software-based method to mitigate the cache pollution problem.

2.4.3 Silo

Guaranteed transmission latency over network links is an essential requirement for

keeping SLOs. Paper [45] shows that for predictable latencies, it is necessary guaran-

teed network bandwidths, guaranteed packet delays, and guaranteed burst allowances.

The authors propose Silo, a mechanism that provides guaranteed bandwidth, delay

and burst allowances through a VM placement algorithm, coupled with a fine-grained

packet pacer. Silo allows datacenter operators to control traffic between VMs in terms

of bandwidth, delay, and burst allowance. Silo implements a VM placement algo-

rithm to maximize the number of tenants while meeting network guarantees. Silo

has a packet pacer in the network driver of a hypervisor. The modified driver uses a

technique that couples I/O batching with dummy packets which are dropped by the

first hop switch.

Silo considers the low-level network components, including the physical network

switches and the network interface cards (NICs). Silo guarantees network delay, i.e.

the delay from the source NIC to the destination NIC. However, Silo does not consider

the other network components, including hypervisors and the network stacks of guest

OSs. In this theses, we address delays in the hypervisors and the network stacks of

guest OSs.

20

2.4.4 IRMOS/Real-time SOIs

The project of Interactive Real-time Multimedia Applications on Service Oriented

Infrastructures (IRMOS) [44,54] proposes an approach for providing real-time Quality

of service (QoS) guarantees in Service Oriented Infrastructures (SOIs) at various levels

(application, network, storage, and processing). The proposed approach combines

several techniques to achieve a predictable execution and to provide QoS support,

ranging from the application level to the network resources management level.

While the IRMOS project provides the negotiation and control mechanism for

achieving SLO requirement, it does not discuss the implementation of real-time net-

work stacks. They assume that they can achieve SLO requirements by resource reser-

vation. In this thesis, we show that exclusive allocation of the CPU resource, which

is a very special case of resource reservation, is not sufficient for implementing real-

time network stacks in virtual machine environments. Furthermore, we achieve high

throughput of non-RT services, which is achieved by prioritizing without resource

reservation.

2.5 Network I/O without interrupt handling

Typical network I/O for VMs suffers from performance degradation. This is caused

by many items including context switching among a hypervisor, vCPU threads, I/O

backend threads, host interrupt handlers, and so on.

To address this problem, Virtualization Polling Engine (VPE) [62] takes advantage

of multi-core processors. VPE uses an entire core for polling a NIC and delivering

notifications to VMs through shared memory. Figure 2-7 compares a typical network

stack of a hosted virtual machine to the network stack of VPE. Figure 2-7a shows the

typical network stack of a hosted virtual machine. In this approach, a VM cannot

perform I/O operations to the NIC directly. Instead, each I/O operation requires

the intervention of the host network stack, the VM’s backend driver (vNIC) and the

hypervisor. Figure 2-7b shows the network stack of VPE. The VPE polling thread

runs in a dedicated CPU and is never de-scheduled. The thread continuously polls

21

vCPU

VPE polling
kernel thread

NIC

CPU CPU

Host

Guest

Polling based
NIC driver

vCPU

vNIC

Host

GuestVM
Process 2

Guest

TCP
IP

Bridge
Interrupt

based driver

Interrupt-based
paravirtual driver

(a) A typical network stack.
(b) The network stack of
Virtualization Polling Engine.

CPU CPU

NIC

Virtual
interrupts

Polling-based
paravirtual driver

Poll

Shared
memory

Interrupts

GuestVM
Process 2

TCP
IP

Poll

Figure 2-7: Comparison of a typical network stack and that of Virtualization Polling
Engine.

the NIC for new messages. VPE has some advantages over the typical network stack.

First, the polling thread is never disturbed by the CPU scheduler of the host because

it uses a dedicated core. Next, separating the VM threads from the polling thread

reduces the number of context switches.

Netmap is a framework that enables userspace applications to send and receive

packets by polling mode and eliminates the overheads of interrupt handling in a host

OS and guest OSs. In Netmap, all packets are processed by the Netmap framework

and the application processes running on top of it. Bypassing the network stacks

of OSs offers two main advantages: 1) It eliminates copying messages between the

user and kernel memory because messages are copied once from a NIC to the user

memory via DMA by the NIC. 2) It eliminates the costs of per-packet dynamic

memory allocations in the kernel network stack.

Data Plane Development Kit (DPDK) [59] implements a mechanism similar to

Netmap. DPDK has a set of user-level functionalities such as multi-core scheduling

22

with Non-Uniform Memory Access (NUMA) awareness, and libraries for packet ma-

nipulation across cores [7]. Compared to Netmap, DPDK has a disadvantage. When

a core of DPDK obtains a NIC, the Linux kernel no longer can use the NIC.

These approaches allow user applications to access network devices without the

intervention of the host OS and a guest OS. They avoid message copying by the

host OS and reduce the cache pollution. They also avoid interrupt handling, which

causes priority inversions in the network stacks of the host and a guest OS. However,

they have a significant drawback. That is, user applications must implement their

own network stacks using special APIs. In this theses, we achieve consistent latency

without modifying user applications. While we modify a guest kernel and add kernel

modules to the guest and host kernel, we can run unmodified user applications that

use standard socket APIs.

2.6 Network I/O using advanced hardware features

2.6.1 Virtual machine device queues (VMDQs) and Single-

root input/output virtualization (SR-IOV)

Interrupts to a VM may interfere with the executions of other co-located VMs. The

paper [65] addresses this problem using virtual machine device queues (VMDQs). A

VMDQ enabled NIC classifies the receiving packets using the IP addresses or other

identifiers of VMs [86]. The paravirtualized device drivers in VMs use shared pages

and avoid packet copying between the host and the guests. [20].

Single-root input/output virtualization (SR-IOV) [75] is a specification that allows

a physical NIC device to present itself to the OS as multiple separate devices called

virtual functions (VFs). Each VF has a dedicated queue for receiving and transmitting

packets. Figure 2-8 compares a typical network stack and a network stack using SR-

IOV in hosted virtual machine environments. In Figure 2-8a, packets to processes

in VMs should go through the network stack in the host kernel to reach the guest

kernels. In Figure 2-8b, a NIC with SR-IOV has two VFs for the two VMs. When

23

vCPU vCPU

vNIC vNIC

Guest Guest

NIC

CPU

User
process

User
process

(a) Typical network stack.

vCPU vCPU

TCP

Guest

IP

Guest

NIC

CPU

User
process

User
process

Bridge
Driver

(b) Network stack using SR-IOV.

VF1 VF2

TCP
IP

TCP
IP

TCP
IP

Paravirtual
driver

Paravirtual
driver Driver Driver

Figure 2-8: Comparison of a typical network stacks and a network stack using SR-
IOV.

a packet arrives, the NIC checks the IP address or another identifier of the packet,

places it via DMA to the memory of the guest OS and injects an interrupt to the

guest OS. Using SR-IOV enables bypassing the network stack in the host. Paper [2]

identifies that the network stack using SR-IOV has lower mean latency and latency

variance than a typical network stack.

In this thesis, we propose a software-based method for consistent latency and com-

pares it with other software-based methods for the same goal. While these hardware-

based approaches can achieve consistent latencies, they have a limitation in terms of

scalability. For example, the scalability in SR-IOV devices is limited by the number

of virtual functions. Paper [38] reports that about the half of the bandwidth is uti-

lized when a single VM runs because the CPU core that executes the VM reaches its

maximum utilization. In Chapter 6, through experiments, we show that our proposed

method provides high scalability and CPU utilization.

24

2.6.2 Cache Allocation Technology (CAT) and vCAT

Intel’s Cache Allocation Technology (CAT) is a hardware feature for cache partition-

ing. As discussed in Section 2.4.2, Heracles uses CAT in a non-virtualized execution

environment for reducing SLO violations.

Paper [97] proposes vCAT, a CAT manager to achieve hypervisor and VM-level

cache allocations. In vCAT, each VM has a number of virtual partitions of LLC,

and they are mapped to physical partitions in the hypervisor using a table similar to

a page table. Each VM can allocate its virtual partitions to processes dynamically.

vCAT considers levels of criticality of the VMs to manage cache partitioning. For

example, in real-time VMs, the preemption of physical partitions is disabled.

CAT can avoid cache pollution that is caused by co-located non-RT servers. In this

thesis, we propose a software-based method to mitigate the cache pollution problem.

This method works in the CPUs that do not have such advanced hardware support.

For example, Intel Core i7 processors do not have CAT while Intel Xeon processors

have.

2.7 Real-time networks

Links as a Service (LaaS) [98] is an abstraction for a cloud service that provides

isolation of network links. In this approach, each VM gets an exclusive set of links

and is guaranteed to receive the exact same bandwidth. LaaS implements a scheduler

that uses OpenStack [85] for the placement of VMs and configures a Software-Defined

Networking (SDN) controller to provide packet forwarding without interference.

QJUMP [37] and PriorityMeister [100] use Deterministic Network Calculus (DNC)

[46] to calculate the upper bound of latency and provide bandwidth and latency

guarantees [99]. QJUMP prioritizes packets based on flow classes that are set by a

network administrator. It uses priorities and rate limiting and allows different traffic

classes with different trade-offs between network latency and throughput [45]. A

VM of an RT class receives packets with the highest priority and worst-case latency

guarantee. A VM of a non-RT class can send packets with higher rates, a lower

25

priority and no latency guarantee. PriorityMeister mainly focuses on network latency

and uses DNC to calculate the worst case latency for each VM based on their rate

limits. In contrast to QJUMP, PriorityMeister automatically configures priorities of

VMs.

In the same way as QJUMP, Silo [45] uses DNC and guarantees the worst-case

packet latency under user-specified rate limits [99]. We have described Silo in Section

2.4.3.

These approaches, LaaS, QJUMP, PriorityMeister, and Silo, consider the low-

level network components, including the physical network switches and NICs. They

guarantee network delay, i.e. the delay from the source NIC to the destination NIC.

However, they do not consider the other network components, including hypervi-

sors and the network stacks of guest OSs. In this thesis, we address delays in the

hypervisors and the network stacks of guest OSs over a real-time network. In this

real-time network, we assume that the bandwidth and delay are guaranteed as in

these approaches.

2.8 Network stacks for high-performance computing

McKernel [31] is an OS designed for high-performance computing (HPC). Similar to

RT-Linux, McKernel presents a hybrid design that has a lightweight kernel called

McKernel and the Linux kernel. While McKernel isolates the execution of HPC

applications, the Linux kernel is leveraged to support the full POSIX API.

The authors propose a framework called Interface for Heterogeneous Kernels

(IHK). This framework allows the dynamic partition of systems resources in multi-

cores environments. In addition, the framework provides an inter-kernel communica-

tion layer.

In IHK/McKernel, the OS of HPC applications provides a system call offloading

mechanism to use the functionalities in the Linux kernel. When an HPC application

invokes a system call which is not implemented in the Mckernel, the Mckernel sends a

system call request to the Linux kernel through the inter-kernel communication layer.

26

The request is received by a proxy process running on Linux. The proxy process

invokes the system call and returns the result back to the HPC application. A unified

address space model of IHK/McKernel grants the Linux kernel to access the data and

stack of the HPC application when it invokes an offloaded system call.

Our proposed method also implements an offloading mechanism, called socket-

outsourcing [27]. However, we use it with a different goal, realizing real-time network

stack. By extending socket outsourcing, we eliminate message copying and mitigate

the cache pollution problem caused by the non-RT servers.

27

Chapter 3

Analyzing vanilla Linux and two

conventional RT methods

In Chapter 1, we describe our target hosted virtual machine environment of this

thesis. This environment hosts RT and non-RT network servers in VMs, as shown in

Figure 1-2. Our goal is to achieve short and consistent latency for RT servers and to

obtain high throughput for non-RT servers and avoid low CPU utilization within the

bound of the consistent latency for RT servers. In this chapter, we identify the causes

of latency of RT servers in two conventional RT methods. The first conventional RT

method is the threaded interrupt handling method which uses the PREEMPT_RT

patch to make the kernel more preemptible by translating interrupt handlers into

threads. The second conventional RT method is the the exclusive CPU method which

uses the PREEMPT_RT patch and allocates an exclusive CPU to a group of RT

threads. We also analyze the base implementation of Linux called vanilla Linux.

We analyze the network stack of the target environment through preliminary ex-

periments. We measured the latency of an RT server, CPU usage of the host and

the throughput of non-RT servers. To find the causes of the problem, we must mea-

sure the latencies of individual components of the network stack. However, existing

measurement tools were not sufficient because they have non-negligible probe effects.

Therefore, we have implemented and used our own tool, called lightweight probes.

28

Heavy
Receiver

Heavy
Receiver

Critical RT
server

vCPU vCPU vCPU RT vCPU

NIC RT NIC

CPU CPU

House-
keeping

tasks

Host
RT GuestNon-RT

 Guest
Non-RT
Guest

Non-RT network RT network

vNIC vNIC RT vNIC

Figure 3-1: Running an RT server and co-located non-RT servers in a target virtual
machine environment.

3.1 Experimental environment

In our experiments, we ran two types of servers (Figure 3-1):

• Critical RT server. Receives requests from clients occasionally and sends re-

sponse messages to the clients. It requires short and consistent response times.

• Heavy Receiver. Receives messages persistently from clients at the maximum

speed and stresses the receiver-side of the network stack. However, it does not

send response messages. A Heavy Receiver requires high throughput.

In this figure, we run one of these servers in an individual VM. Each VM has one

or two vCPUs, which are implemented by a host thread called vCPU thread. The VM

of each Heavy Receiver has a single vCPU thread with a normal priority. The VM of

the Critical RT server has two vCPUs, as in [91]. One is a non-RT vCPU thread with

a normal priority and executes system tasks (e.g., housekeeping tasks) in the guest.

The other is an RT vCPU thread with a high RT priority1, and executes the Critical

1The Linux kernel executes the processes with a high RT priority in preference to the processes

with a normal priority. The processes with a normal priority are scheduled by the Completely Fair

Scheduler.

29

vCPU

vNIC

Host OS

HardIRQ Handler

Softirq Handler

NIC

CPU

Bridge device

GuestUser process

Guest OS

HardIRQ Handler

Softirq Handler

 IP

TCP

System call

Virtual IRQ injection
IRQ injection

Figure 3-2: The components of the network stack in the target environment.

RT server in the guest. We assume that a Critical RT server requires a small amount

of the CPU resources and the Heavy Receivers use the rest of the CPU resources.

In Figure 3-1, the host is connected to the following two networks:

• The RT network. The bandwidth and delay and are guaranteed as in [15,45,92,

96]. The network interface card (NIC) to this network is labeled an RT NIC.

• The non-RT network. This is a best-effort network.

In Figure 3-1, each VM has a vNIC thread that executes a backend network driver

of the VM. The host directs messages from the RT network to the Critical RT server

and those from the non-RT network to either of the Heavy Receivers. The vNIC

thread of a Heavy Receiver runs with a normal priority, whereas that of the Critical

RT server runs with a high RT priority.

In all experiments, we used Linux 4.1.10 for the host and guest systems. As a

hypervisor, we used the KVM hypervisor which is integrated into the Linux kernel.

Figure 3-2 shows the components of the network stack in the target environment

from a NIC to a guest user process. It consists of two main parts: the host OS as a

hypervisor and the guest OS. The host OS has the following components: the hard

30

Interrupt Request (IRQ) handler, softirq handler, the bridge device module, vNIC

thread, and vCPU thread. The guest OS has similar components, the hard Interrupt

Request (IRQ) handler and softirq handler. The guest OS also has the IP layer, TCP

layer, and system call layer. It is not trivial to find the causes of the problem in this

complex network stack.

3.2 Vanilla Linux and two conventional RT methods

Figure 3-3 illustrates the interrupt handling of the RT and non-RT NIC in vanilla

Linux. Each NIC has two interrupt handlers: the hard Interrupt Request (IRQ)

handler and the softirq handler. The former executes the essential interrupt tasks

while interrupts from the device are disabled. In contrast, the latter executes the rest

of the interrupt tasks, including heavy TCP and bridge processing, typically after

enabling interrupts. Drivers of high-performance NICs can use the polling mode [58].

The softirq handler of such a driver drains packets from a NIC while interrupts from

the NIC are disabled. After that, the driver enables interrupts and hands control over

to the upper layers.

A device driver can create multiple hard IRQ and softirq handlers for receiving

multiple messages in parallel. For example, the device driver of the Intel X520 NIC

creates multiple hard IRQ and softirq handlers (up to 64) for multiple CPU cores [41].

In Figure 3-3, each device driver in the host OS has two hard IRQ and two softirq

instances for the two physical CPUs. On the other hand, each device driver in a guest

OS is a paravirtual driver and creates a single hard IRQ and a softirq handler.

A NIC injects IRQs into arbitrary CPUs by default. In Figure 3-3, when a CPU

receives an IRQ from a NIC in the host OS, the CPU suspends the current running

process and executes the hard IRQ handler that is bound to the CPU. Each CPU has

its own instance of the softirq mechanism with per-CPU variables, and multiple NIC

drivers share these instances. The CPU receives the IRQ from the NIC and executes

both the hard IRQ and the softirq handler for cache affinity. This is implemented

through the poll_list, which is a per-CPU variable in the softirq mechanism and

31

vCPU vCPU vCPU RT vCPU

vNIC vNIC RT vNIC

NIC RT NIC

CPU CPU

Interrupts

Virtual interrupts

poll_list

RT HardIRQ H.

RT softirq H.

RT HardIRQ H.

RT softirq H.

HardIRQ H.

softirq H.

HardIRQ H.

softirq H.

softirq mechanismsoftirq mechanism

poll_list

Host
RT Guest

poll_list

Non-RT
Guest House-

keeping
tasks

RT Int. H. Thread

HardIRQ H.

softirq H.

Non-RT
Guest

softirq
mechanism

Heavy
Receiver

Heavy
Receiver

Critical RT
server

poll_list

HardIRQ H.

softirq H.

softirq
mechanism

poll_list

HardIRQ H.

softirq H.

softirq
mechanism

poll_list

softirq
mechanism

Module Thread

Figure 3-3: Interrupt handling in vanilla Linux.

contains softirq handlers with interrupt tasks. The hard IRQ handler of a NIC inserts

the RT softirq handler into the poll_list of the current CPU. After completing the

hard IRQ handler, the CPU enters its instance of the softirq mechanism. The CPU

acquires the lock of the instance called softirq_lock, executes each pending softirq

handler in the poll_list, and releases the softirq_lock. In a guest OS of Figure 3-3,

on the other hand, each VM has a single vNIC with a hard IRQ and a softirq handler.

The vNIC of the Critical RT server injects virtual interrupts into the RT vCPU, and

this vCPU executes the hard IRQ and softirq handlers in the RT guest OS.

It is known that this interrupt handling of vanilla Linux has a priority inversion

problem. That is, the kernel of vanilla Linux executes interrupt handlers first, prior to

user processes. In Figure 3-3, for instance, while the host kernel is executing the RT

vCPU thread with a high priority, the kernel can execute the hard IRQ and softirq

handlers of a non-RT NIC. We address this priority inversion problem in this thesis.

This interrupt handling mechanism of vanilla Linux increases the latency variance

32

vCPU vCPU vCPU RT vCPU

vNIC vNIC RT vNIC

NIC RT NIC

CPU CPU

Host
RT GuestNon-RT

Guest House-
keeping

tasks

poll_list

RT HardIRQ H.

RT softirq H.

RT HardIRQ H.

RT softirq H.

HardIRQ H.

softirq H.

HardIRQ H.

softirq H.

softirq mechanism

RT Int. H. Thread

Non-RT
Guest

softirq mechanism

poll_list

RT Int. H. ThreadRT Int. H. ThreadInt. H.ThreadInt. H.Thread

Heavy
Receiver

Heavy
Receiver

Critical RT
server

Module Thread

poll_list

HardIRQ H.

softirq H.

softirq
mechanism

poll_list

HardIRQ H.

softirq H.

softirq
mechanism

poll_list

HardIRQ H.

softirq H.

softirq
mechanism

poll_list

softirq
mechanism

Interrupts

Figure 3-4: Interrupt handling using the threaded interrupt handling method.

of the RT server. On the other hand, this mechanism has an advantage in that it can

yield high CPU utilization and high throughput because all CPUs execute any vCPU

and vNIC threads.

To address the priority inversion problem in vanilla Linux, the first conventional

RT method uses the PREEMPT_RT patch [84]. We call this conventional RT method

the threaded interrupt handling method. Applying the PREEMPT_RT patch trans-

forms the kernel into a more preemptible one because of the following characteristics:

• Interrupt handlers are executed by threads (interrupt handler threads). When

a CPU receives an interrupt, the CPU wakes an interrupt handler thread, which

executes the corresponding hard IRQ and softirq handlers.

• The patch translates spin locks into mutexes that implement a priority inheri-

tance protocol.

Figure 3-4 illustrates interrupt handling in the threaded interrupt handling method.

33

Because this host has two physical CPUs, the driver of each NIC creates two interrupt

handler threads for the two CPUs. Each interrupt handler thread is bound to one

CPU.

This method eliminates the priority inversion problem in vanilla Linux as follows.

Each interrupt handler thread executes the hard IRQ and softirq handlers with its

own priority. In Figure 3-4, for example, the interrupt handler thread of the non-

RT NIC has a normal priority and does not preempt the threads of the RT VM. In

addition, because all CPUs execute any vCPU and vNIC threads as in vanilla Linux,

this method can also produce high CPU utilization and high throughput, as vanilla

Linux does.

While the PREEMPT_RT patch effectively removes the priority inversion in the

interrupt-first host kernel of vanilla Linux, this is not sufficient in many data centers.

As discussed in Chapter 1 and Section 2.4.1, most existing systems do not solve this

problem but bypass the problem. They allocate exclusive physical resources to real-

time virtual machines [16, 18, 78]. We call this conventional RT method Exclusive

CPU method.

Figure 3-5 illustrates interrupt handling in the exclusive CPU method. In this

method, we use Linux with the PREEMPT_RT patch and allocate an exclusive CPU

(labeled as RT CPU) to a group of threads that executes the tasks of the Critical RT

server. The driver of the RT NIC has a single interrupt thread, hard IRQ handler,

and softirq handler. The RT NIC injects interrupts only to the RT CPU. The RT

CPU executes this interrupt thread, the RT vNIC thread, and the RT vCPU in the

host.

On the other hand, the driver of the non-RT NIC has its own set of a single

interrupt thread, hard IRQ handler, and softirq handler. These are shared by the

VMs of the two Heavy Receivers. The non-RT NIC injects interrupts only to the

non-RT CPU. This means that interrupt handling of the non-RT NIC driver never

disturbs that of the RT NIC driver.

Although the exclusive CPU method can achieve a consistently low latency, it has

a drawback. Because RT CPUs do not help in the execution of non-RT threads, this

34

vCPU vCPU vCPU RT vCPU

vNIC vNIC RT vNIC

Module Thread

Host

HardIRQ H.

softirq H.

softirq mechanism

poll_list

Int. H. Thread

RT HardIRQ H.

RT softirq H.

softirq mechanism

poll_list

RT Int. H. Thread

RT NIC

RT CPU

NIC

CPU

RT GuestNon-RT
Guest House-

keeping
tasks

RT Int. H. Thread

Non-RT
Guest

Heavy
Receiver

Heavy
Receiver

Critical RT
server

poll_list

HardIRQ H.

softirq H.

softirq
mechanism

poll_list

HardIRQ H.

softirq H.

softirq
mechanism

poll_list

HardIRQ H.

softirq H.

softirq
mechanism

poll_list

softirq
mechanism

Figure 3-5: Interrupt handling using the exclusive CPU method.

method yields lower CPU utilization.

3.3 Latency and throughput in vanilla Linux and the

conventional RT methods

Through a series of experiments, we measured the latency of a Critical RT server and

throughput of non-RT servers using vanilla Linux and two conventional RT methods.

We describe the details of these experiments in Section 6.1. We activated two CPU

cores and used a single RT NIC and two non-RT NICs.

Figure 3-6 and Figure 3-7 show the response times of the Critical RT server co-

located without and with two heavy Receiver servers. Table 3.1 and Table 3.2 sum-

marize the statistical values (the mean, 99th percentile, and standard deviation (SD)).

As shown in Figure 3-6 and Table 3.1, without Heavy Receivers, latency and

35

k150

30

60

90

120

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

0

150

30

60

90

120

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

03010 20 3010 20
Elapsed time (seconds)Elapsed time (seconds)

(a) Vanilla Linux. (b) Threaded interrupt handling.

150

30

60

90

120

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

0 3010 20

(c) Exclusive CPU.

Elapsed time (seconds)

Figure 3-6: Distribution of the Critical RT server’s response times in vanilla Linux
and the two conventional RT methods without Heavy Receivers.

k150

30

60

90

120

La
te

n
cy

(m
ic

ro
se

co
n
d
s)

180

210

0

150

30

60

90

120

La
te

n
cy

(m
ic

ro
se

co
n
d
s)

180

210

03010 20 3010 20
Elapsed time (seconds)Elapsed time (seconds)

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k
k

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

kk

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kkk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k
k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k
kk

k

k

k

k

k

k

k

k

kkk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kkk

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k
k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

kkk

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

kk
k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kkk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k
kk
k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k
k

k

k

k

k

k

k
kk

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k
k

k
k

k

k

k
k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

kk

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kkk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k
k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k
kk
k

k

k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k
k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

kk
k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

kk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk

k

k
k

k

k

k

k

kk

k

k

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

kk

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

kk

k

k

k

k

k

k

k

k
k

k

k

k

k
kk

k

k

k

kk

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

kk

k

k

k

k
k

k

k

k

k
k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k
k

k
k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k
k

k

k

k

kk

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kkkk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kkk

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

kk

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k
kk

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

kkk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

kk

k
k
k

k
k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k
k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

(a) Vanilla Linux. (b) Threaded interrupt handling.

150

30

60

90

120

La
te

n
cy

(m
ic

ro
se

co
n
d
s)

0 3010 20

(c) Exclusive CPU.

Elapsed time (seconds)

Figure 3-7: Distribution of the Critical RT server’s response times in vanilla Linux
and the two conventional RT methods with Heavy Receivers.

Table 3.1: Statistical values of the Critical RT server response times in vanilla Linux
and the two conventional RT methods without Heavy Receivers (microseconds).

99th

percentile

Standard

deviationMethod Mean

(non-RT) Vanilla Linux 27.3 34.2 1.5

Threaded interrupt handling 30.7 38.1 1.5

Exclusive CPU 37.4 46.1 2.3

Table 3.2: Statistical values of the Critical RT server response times in vanilla Linux
and the two conventional RT methods with Heavy Receivers (microseconds).

99th

percentile

Standard

deviationMethod Mean

(non-RT) Vanilla Linux 92.5 225.0 29.2

Threaded interrupt handling 100.8 202.9 29.0

Exclusive CPU 70.5 96.0 11.8

36

0

5

10

15

20

To
ta

lt
hr

ou
gh

pu
t (

G
bi

t/s
)

Vanilla
Linux

Threaded
interrupt
handling

Exclusive
CPU

Figure 3-8: Total throughput of Heavy Receivers.

latency variances of the Critical RT server were low in vanilla Linux and two conven-

tional RT methods. As shown in Figure 3.1 and Table 3.2, with two Heavy Receivers,

latency and latency variances became larger due to the Heavy Receivers. Among

these methods, the exclusive CPU method produced the best latency and latency

variance.

At the same time, we measured the total throughput of the Heavy Receivers and

the CPU utilization of the VM host. The total throughputs of the Heavy Receivers

were shown in Figure 3-8. They were 18.8 Gbps in vanilla Linux, 17.8 Gbps in the

threaded interrupt handling method, and 10.4 Gbps in the exclusive CPU method.

While the exclusive CPU method produced better latency and latency variance, its

throughput was low.

Figure 3-9 shows the CPU utilization of the VM host. As in this figure, vanilla

Linux had spare CPU resources for running all the servers (the single Critical RT

server and the two Heavy Receivers). The threaded interrupt handling method re-

quired more CPU resources than vanilla Linux owing to the overhead of thread context

switching. This used the CPU resources more and the throughput was lower than

that in vanilla Linux. In Figure 3-9, because only one CPU executed the Heavy Re-

ceivers threads and the network stack of the non-RT NICs, the CPU utilization was

low (50.8%). This low CPU utilization produced the lowest total throughput.

37

Figure 3-9: Achievable CPU utilization.

3.4 Measuring latencies of network stack components

using Ftrace and light-weight probes

In Section 3.3, we have shown that the conventional RT methods had problems. The

threaded interrupt handling method had large latency and latency variance. The

exclusive CPU method had low latency and latency variance but it sacrificed CPU

utilization. However, we did not know the causes of the problem in the threaded

interrupt handling method. In this subsection, we analyze the network stack of the

target environment in detail and identify the components of the network stack that

have large latency and latency variance. Especially, we look into the processing path

of messages from the RT NIC to the Critical RT server.

We followed a similar strategy proposed by [34,56] which find the sources of latency

variance by dividing a message processing path into smaller segments. We measure

latencies of segments using our own tool, called lightweight probes, when existing

tools did not work well.

38

IRQ VMentry VMexit

Host receive Guest Host send

Transmit to
NIC

Figure 3-10: Division of the message processing path into three segments.

3.4.1 Processing path analysis with lightweight probes

Before we implemented our own measurement tool, we tried existing tools, such as

Ftrace [82] and SystemTap [26]. However, they sometimes did not work well because

they have large probe effects. For example, if we enabled Ftrace and activated four

trace points, this slowed down the latency around 1.5 𝜇s. This was relatively large in

comparison with the latencies of the network stack components.

We have implemented lightweight probes for measuring latencies of components in

the target hosted VM environment. Every lightweight probe is identified by a unique

number. When a lightweight probe is executed, the probe takes a timestamp from

the CPU instruction “read time-stamp counter (rdtsc)” and places the timestamp and

its identification number into a buffer in the kernel memory. When the experiment

finishes, the buffer is dumped into a file.

We measured the probe effect of lightweight probes using a hardware monitor.

The probe effect was less than 0.5 𝜇s when using four lightweight probes. Lightweight

probes are activated on programmed conditions. For instance, we can get timestamps

only when incoming network packets go to an RT server.

3.4.2 Analyzing the message processing path of the Critical

RT server with lightweight probes

We divided the message processing path of the critical RT server into the following

segments (Figure 3-10):

• Host receive: Host execution from the receipt of an IRQ to the start of the

guest OS execution (VM entry). This segment includes the network stack pro-

39

cessing and the execution of the network device backend thread (vNIC thread).

• Guest: Guest execution from the VM entry to a VM exit when sending a

message.

• Host send: Host execution from the VM exit to a message transmission to a

NIC.

We inserted a lightweight probe at the beginning of each segment and at the end

of the message transmission. Next, we repeated the experiments in Section 3.3.

40

Host receive Host sendGuest

302418126
Elapsed time (Seconds)

0

10

20

30

40

50

60

70

80

90

100

La
te

n
cy

(m
ic

ro
se

co
n
d

s)

302418126
Elapsed time (Seconds)

(b
) T

h
re

a
d
e
d
 in

te
rru

p
t

h
a
n
d
lin

g
.

302418126
Elapsed time (Seconds)

(c) E
xclu

siv
e
 C

P
U

. 302418126
Elapsed time (Seconds)

0

10

20

30

40

50

60

La
te

n
cy

(m
ic

ro
se

co
n
d

s)

302418126
Elapsed time (Seconds)

302418126

Elapsed time (Seconds)

0

10

20

30

40

50

60

70

80

90

100

La
te

n
cy

(m
ic

ro
se

co
n
d

s)

302418126
Elapsed time (Seconds)

(a
) V

a
n
illa

 Lin
u
x
.

302418126
Elapsed time (Seconds)

302418126
Elapsed time (Seconds)

Figure 3-11: Latencies of three segments of the message processing path without
running Heavy Receivers.

41

Figure 3-12: Latencies of three segments of the message processing path with running
Heavy Receivers.

42

Figure 3-11 shows the latencies of the segments without running Heavy Receivers.

Without running Heavy Receivers, vanilla Linux, the threaded interrupt handling

method, and exclusive CPU method had low latencies.

Figure 3-12 shows the latencies of the segments with running Heavy Receivers.

Figure 3-12a shows the results using vanilla Linux. By comparing Figure 3-12c, we

identified that most of the latency variances were located in the “host receive” segment

and the “guest” segment. The results of the threaded interrupt handling method in

Figure 3-12b were similar to those of vanilla Linux in Figure 3-12a in this experiment.

Large latency variances in the “host receive” segment were not present when using

the exclusive CPU method. In this method, the driver of the non-RT NIC has its own

set of a single interrupt thread, hard IRQ handler, and softirq handler. These are

shared by the VMs of the two Heavy Receivers. The non-RT NIC injects interrupts

only to the non-RT CPU. This means that interrupt handling of the non-RT NIC

driver never disturbs the RT threads of the RT interrupt handler, the RT backend

driver, and the RT vCPU.

3.4.3 Finding priority inversions at the “host receive” segment

in the threaded interrupt handling method with Ftrace

and Kernelshark

We suspected a priority inversion in the “host receive” segment of the threaded inter-

rupt handling method. To identify the culprit functions, we started measuring the

execution time of the functions invoked through the segment. We used the Ftrace

tool first. As described in Section 3.4.1, Ftrace was not adequate for taking precise

measurements. However, with this tool, we identified some functions with high and

long tail latencies. For example, we identified that the net_rx_action() function

was a culprit function. This function is used by the softirq mechanism to process the

inbound network traffic. The net_rx_action() function executes softirq handlers in

the poll_list in a round robin fashion. Next, in the net_rx_action() function, we

found that the softirq mechanism executes the RT and non-RT softirq handlers in

43

IRQ from IRQ from

RT softirq handlernon-RT softirq handler

RT vNIC
thread

RT interrupt
handler thread

Time

RT NICnon-RT NIC

non-RT hard IRQ handler RT hard IRQ handler

Non-RT interrupt
handler thread

Figure 3-13: Priority inversion in the softirq handling in the host OS using the
threaded interrupt handling method.

a fair manner. Next, we inserted the watching points of Ftrace to IRQ and softirq

handlers. We used an Ftrace GUI called Kernelshark [83] to visualize the activities.

Figure 3-13 shows a trace of interrupt handling using the threaded interrupt han-

dling method. In this figure, while the CPU was executing a user process, a non-RT

NIC injected an IRQ to the CPU. Then, the CPU woke the interrupt handler thread

of the non-RT NIC driver, and this thread executed the non-RT hard IRQ handler

because this thread had a higher priority than the user process. The interrupt han-

dler thread of the non-RT driver placed the non-RT softirq handler into the CPU’s

poll_list.

Next, the interrupt handler thread of the non-RT driver entered the softirq mech-

anism of the CPU. The thread of the non-RT driver acquired the softirq_lock of the

CPU and executed the non-RT softirq handler.

In Figure 3-13, while the CPU was executing the non-RT softirq handler, an RT

NIC injected an IRQ to the CPU. The CPU preempted the interrupt handler of the

non-RT driver and woke the interrupt handler thread of the RT NIC driver. Because

the interrupt handler thread of the RT NIC driver had a higher priority than that of

the non-RT driver, the CPU executed the former thread. This thread executed the

RT hard IRQ handler, which inserted the RT softirq handler into the poll_list of the

CPU.

44

Next, the interrupt handler thread of the RT NIC driver entered the softirq mech-

anism of the CPU. This thread attempted to acquire the softirq_lock. However, it

was already locked by the non-RT interrupt handler thread. Therefore, the CPU sus-

pended the interrupt handler thread of the RT NIC driver and executed the interrupt

handler thread of the non-RT NIC driver. This thread then executed the non-RT

softirq handler. At this time, this thread executed the non-RT softirq handler with a

high priority based on the priority inheritance protocol. The interrupt handler thread

of the RT NIC driver with a higher priority had to wait until the non-RT thread with

a lower priority finished. This indicates that there was a priority inversion.

Next, in Figure 3-13, the non-RT softirq handler exceeded the execution quota

limit in the number of iterations. Therefore, the interrupt handler thread of the non-

RT driver placed the non-RT softirq handler at the end of the poll_list, released the

softirq_lock, and went to sleep. Because the softirq_lock was released, the interrupt

handler thread of the RT NIC driver became executable and the CPU executed it.

The RT NIC driver thread acquired the softirq_lock and executed the RT softirq

handler. This handler processed network messages from the RT NIC, placed them

in a queue, and then woke the RT vNIC thread. Next, the RT interrupt handler

thread obtained the non-RT softirq handler from the poll_list and executed it with

high priority. This means that there was a virtual priority inversion because the RT

vNIC thread had to wait. Finally, the interrupt handler thread finished the non-RT

softirq handler, released the softirq_lock, and yielded the CPU to the vNIC thread.

3.5 Cache pollution by co-located non-RT Servers

Through the experiments in Section 3.4, we have not found the causes of the large

latency and latency variance in the “guest” segment. We also found that the exclusive

CPU method also has this problem. Next, we study cache pollution by co-located

non-RT servers.

When we run RT servers and non-RT servers together in a virtual machine envi-

ronment, as shown in Figure 3-1, we can control the allocation of CPU (cores) using

45

Threaded
interrupt
handling

Exclusive
CPU

Vanilla Linux

2 4 10

Inter-arrival time (milliseconds)

0

30

60

90

150

120

6 8

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Figure 3-14: 99th percentile latencies of the Critical server in the “guest” segment at
different request’s inter-arrival times.

priorities of threads and CPU isolation. On the other hand, it is not trivial to con-

trol the Last Level Cache (LLC) without recent advanced hardware support, such

as Intel’s Cache Allocation Technology (CAT) [40] and ARM’s Cache Lockdown [3].

For example, Intel Core i7 does not have such capability. In such an environment,

co-located non-RT servers pollute the LLC and interfere with RT servers. In Figure

3-4, for example, the Heavy Receivers are receiving a large number of messages per-

sistently from clients. This can pollute the LLC, which can cause latency variance in

the Critical RT server.

In this section, we show this cache pollution with an experiment. In this ex-

periment, we ran a single Critical RT server and two Heavy Receivers using vanilla

Linux and two RT methods as in Section 3.3. We measured the latency in the “guest”

segment with inter-arrival times of requests to the Critical RT server.

Figure 3-14 shows the 99th percentile latencies of the Critical RT server. In Figure

3-14, the x-axis is the inter-arrival time and the y-axis is the latency. As the inter-

46

arrival time increased, more contents of the Critical RT server were evicted from the

cache and the latency became longer. In this experiment, the latency when using

the exclusive CPU method had a lower impact than that with the threaded interrupt

handling method because this method had a lower throughput. However, the Heavy

Receivers interfered with the execution of the Critical RT server because the CPU

dedicated to the RT threads shared the LLC with the CPU that executed the other

non-RT threads.

In Section 5, we propose a software-based method for mitigating this LLC pollu-

tion problem. This method works in commodity hosted VM environments without

requiring such advanced hardware support.

3.6 Summary of analyzing the network stack of a

hosted virtual machine environment

This chapter analyzed the network stack of a hosted virtual machine environment

through experiments. In these experiments, we ran a Critical RT server and two

Heavy receivers in vanilla Linux and two conventional RT methods, the threaded

interrupt handling method and the exclusive CPU method. Section 3.1 describes

the experimental environment. Section 3.2 describes the interrupt handling in vanilla

Linux and two conventional RT methods. Section 3.3 shows the latency of the Critical

RT server and the throughput of two Heavy receivers in vanilla Linux and the two

conventional RT methods.

Table 3.3 summarizes features of vanilla Linux and these two RT methods. As

shown in Section 3.3, the total throughput of the Heavy Receivers was high in vanilla

Linux. However, vanilla Linux did not protect the Critical RT server from the Heavy

Receivers and had high latency variances. The threaded interrupt handling method

also had high latency variance of the Critical RT server. The exclusive CPU method

had the lowest latency variances. The total throughput of the Heavy Receivers in the

threaded interrupt handling method was high as in vanilla Linux. In the exclusive

47

Table 3.3: Summary of the RT methods.

CPU util.

Method Latency and total RT problems and solutions

variance throughput

Priority in interrupt Softirq Cache

Vanilla Linux Large High Priority inversion Priority inversion Cache pollution

Threaded interrupt Large High RT Prempt patch Priority inversion Cache pollution

handling

Exclusive Small Low RT Prempt patch Dedicating Cache pollution

CPU processors

CPU method, because RT CPUs did not help to run the Heavy Receivers, this method

yielded low CPU utilization and low total throughput of the Heavy Receivers.

In Section 3.4, we divided the message processing path of the Critical RT server

into segments and used our own tool, lightweight probes and existing tools Ftrace and

KernelShark to measure the latency in the segments. We identified a new priority

inversion problem in the softirq handling of the threaded interrupt handling method.

The exclusive CPU method bypasses this priority inversion problem by dedicating a

CPU to the RT network stack processing and the execution of the RT vCPU.

Finally, Section 3.5 shows that all the methods have the cache pollution problem

by the co-located Heavy Receivers.

In this thesis, we do not bypass the priority inversion problem in softirq but solve

the problem. Furthermore, we mitigate the cache pollution problem.

48

Chapter 4

Partitioned RT softirq handling

In Chapter 3, we have described two conventional RT methods, namely, the threaded

interrupt handling method and the exclusive CPU method. In this chapter, we

describe our proposed method, the “socket outsourcing with RT softirq handling”

method or the outsourcing method for short. As shown in this long name, our pro-

posed method consists of two techniques.

• RT socket outsourcing.

• Partitioned RT softirq handling.

In this chapter, we describe the latter technique. In the next chapter, we will describe

the former technique.

Figure 4-1 shows the interrupt handling of the outsourcing method. Similar to the

threaded interrupt handling method in Figure 3-4, this method avoids the priority

inversion problem in the interrupt-first host kernel described in Section 3.2 by using

the PREEMPT_RT patch and assigning high priorities to RT threads. Second, this

method avoids the priority inversion problem in the host’s softirq handling by dividing

softirq handling into RT and non-RT types. We will describe this in Section 4.1. In

Figure 4-1, these guest kernels have neither the TCP/IP stack nor interrupt handlers.

We will describe this in Chapter 5.

49

Module Thread

vCPU vCPU vCPU RT vCPU

NIC RT NIC

CPU CPU

Host
RT GuestNon-RT

Guest House-
keeping

tasks

(Non-RT) poll_list

RT HardIRQ H.

RT softirq H.

RT HardIRQ H.

RT softirq H.

HardIRQ H.

softirq H.

HardIRQ H.

softirq H.

softirq mechanism

Non-RT
Guest

softirq mechanism

RT Int. H. ThreadRT Int. H. ThreadInt. H.ThreadInt. H. Thread

(Non-RT) poll_list

rt_poll_listrt_poll_list

Heavy
Receiver

Heavy
Receiver

Critical RT
server

Interrupts

Figure 4-1: Interrupt handling using the outsourcing method.

4.1 Interrupt handling in partitioned RT softirq han-

dling

The outsourcing method divides the poll_list of the softirq mechanism into the fol-

lowing two types (Figure 4-1).

• (non-RT) poll_list: The poll_list for non-RT softirq handlers.

• rt_poll_list: The poll_list for RT softirq handlers.

Similarly, we divide the softirq_lock into two locks: (non-RT) softirq_lock and

rt_softirq_lock.

Figure 4-2 shows a KernelShark trace of interrupt handling using the outsourcing

method. As in Figure 3-13 in Section 3.4.3, this CPU received two IRQs. The first

was from the non-RT NIC and the second was from the RT NIC.

50

RT vCPU

RT IRQ thread

RT-vCPU
thread

IRQ from
non-RT NIC

IRQ from
RT NIC

Time

RT softirq handlernon-RT softirq handler

non-RT hard IRQ handler RT hard IRQ handler

RT interrupt
handler thread

Non-RT interrupt
handler thread

Figure 4-2: The trace of interrupt handling in in partitioned RT softirq handling.

In this figure, the CPU performed the same processing as in the threaded interrupt

handling method until the IRQ from the RT NIC arrived. First, the CPU woke the

interrupt handler thread of the non-RT NIC driver, and this thread executed the non-

RT hard IRQ handler. The interrupt handler thread of the non-RT driver inserted the

non-RT softirq handler into the CPU’s non-RT poll_list. Next, the interrupt handler

thread of the non-RT driver entered the softirq mechanism of the CPU. The thread

of the non-RT driver acquired the non-RT softirq_lock of the CPU and executed the

non-RT softirq handler.

In Figure 4-2, while the CPU was executing the non-RT softirq handler, an RT

NIC injected an IRQ into the CPU. The CPU preempted the interrupt handler of the

non-RT driver and woke the interrupt handler thread of the RT NIC driver. Because

the interrupt handler thread of the RT NIC driver had a higher priority than that of

the non-RT driver, the CPU executed the former thread. This thread executed the

RT hard IRQ handler, which inserted the RT softirq handler into the rt_poll_list

instead of the non-RT poll_list.

Next, the interrupt handler thread of the RT NIC driver entered the softirq mech-

anism of the CPU. Unlike in Figure 3-13, this thread acquired the rt_softirq_lock

instead of the softirq_lock and executed the RT softirq handler. In contrast to

the threaded interrupt handling method in Figure 3-13, this thread executed the

RT softirq handler but did not execute the non-RT softirq handler because the

51

rt_poll_list only contained the RT softirq handler. This handler processed network

messages from the RT NIC, placed them in a queue, and then woke the RT vCPU

thread. Finally, the interrupt handler thread finished the softirq handler, released the

rt_softirq_lock, and the CPU became available to the RT vCPU thread. In contrast

to Figure 3-13, Figure 4-2 indicates no priority inversion in the softirq handling.

4.2 Implementation of partitioned RT softirq han-

dling

In this section, we explain the implementation of partitioned RT softirq handling.

Linux kernel provides an API of the network subsystem to developers of network

device drivers. This API is called the NAPI, which sands for new (network) API [58].

As described in Section 3.2, Linux implements the split interrupt handling model to

handle interrupts. Each device driver has two interrupt handlers: the hard Interrupt

Request (IRQ) handler and the softirq handler. Softirq handlers are called from the

softirq mechanism.

The technique of partitioned RT softirq handling consists of the following two

parts:

• Modifying the NAPI module.

• Modifying the softirq mechanism.

These modifications required changing 150 lines of code but did not require chang-

ing existing device drivers. These modifications are also independent of the virtual

machine monitor, Linux KVM. They can also reduce the latency of RT servers in

non-virtualized environments and container-based virtual environments.

4.2.1 Modifying the NAPI module

First, we have added the rt_poll_list to the NAPI module. The NAPI module

has the data structure softnet_data, as shown in Figure 4-3. We have added the

52

 struct softnet_data {

 struct sk_buff_head process_queue;
 struct list_head poll_list;
 struct list_head rt_poll_list;

 /* stats */
 unsigned int processed;
 unsigned int time_squeeze;

 unsigned int cpu_collision;
 unsigned int received_rps;
 ...
 unsigned int dropped;
 struct sk_buff_head input_pkt_queue;
 struct napi_struct backlog;
 struct sk_buff_head tofree_queue;

 };

Figure 4-3: Adding rt_poll_list to the softnet_data structure.

 static struct ctl_table net_core_table [] = {

 {
 .procname = "rtnet_prio",
 .data = &sysctl_rtnet_prio ,
 .maxlen = sizeof(int),
 .mode = 0644,
 .proc_handler = proc_dointvec_minmax
 },

 ...
 }

Figure 4-4: Adding sysctl parameter net.core.rtnet_prio.

rt_poll_list to the softnet_data (Line 5 of Figure 4-3) as similar to the poll_list

(Line 4 of Figure 4-3). Both the poll_list and the rt_poll_list are lists of softirq

handlers. The structure list_head implements a generic list in the Linux kernel.

Next, we have added the sysctl parameter net.core.rtnet_prio for choosing ei-

ther the rt_poll_list or the non-RT poll_list. For example, if a system administrator

sets the parameter with the command sysctl-wnet.core.rtnet_prio=47, interrupt

handler threads with a priority higher or equal to 47 use the rt_poll_list.

Figure 4-4 shows the implementation of the sysctl parameter net.core.rtnet_

prio. We have added the Lines 4 to 10 to the structure ctl_tablenet_core_table,

which represents the sysctl parameter under net.core. The function proc_dointvec_

minmax() at Line 9 stores the sysctl parameter net.core.rtnet_prio to the global

variable sysctl_rtnet_prio at Line 6.

53

 void napi_schedule_irqoff(struct napi_struct *n)
 {
 unsigned long flags;

 local_irq_save(flags);
 if(task_prio(current) >= sysctl_rtnet_prio)
 ____napi_rt_schedule(this_cpu_ptr (& softnet_data), n);
 else
 ____napi_schedule(this_cpu_ptr (& softnet_data), n);

 local_irq_restore(flags);
 preempt_check_resched_rt ();
 }
 EXPORT_SYMBOL(napi_schedule_irqoff);

 static inline void ____napi_rt_schedule(struct softnet_data *sd,
 struct napi_struct *napi)
 {
 list_add_tail (&napi ->poll_list , &sd->rt_poll_list);
 __raise_rt_softirq_irqoff(RT_NET_RX_SOFTIRQ);
 }

Figure 4-5: Modifying the function napi_schedule_irqoff().

The NAPI module exposes a number of functions. Finally, we have modified the

function napi_schedule_irqoff() of these NAPI functions. This function is called

from the hard IRQ handler of a NIC driver. This function takes the parameter n,

which points to the softirq handler of the NIC driver.

In Figure 4-5, the function napi_schedule_irqoff() checks the priority of the

current thread, which is an IRQ handler thread. If the priority is equal to or greater

than the value of sysctl_rtnet_prio, the function calls ____napi_rt_schedule().

The function ____napi_rt_schedule() puts the softirq handler n to the rt_poll_list,

as shown in Line 15 of Figure 4-5. Next, function ____napi_rt_schedule() raises a

new softirq, called RT_NET_RX_SOFTIRQ. We will describe this in Section 4.2.2. If the

priority is less than the value of sysctl_rtnet_prio, the function napi_schedule_

irqoff() calls ____napi_schedule(). The function ____napi_schedule() puts the

softirq handler n to the non-RT poll_list.

Because we did not change the interface of napi_schedule_irqoff(), we can

reuse the existing device drivers of NICs without any changes. For example, we did

not change any code of the device driver of the Intel X520 NIC, which is used in all

the experiments in Chapter 3 and Chapter 6.

54

 enum
 {
 HI_SOFTIRQ =0,
 TIMER_SOFTIRQ ,
 NET_TX_SOFTIRQ ,
 RT_NET_RX_SOFTIRQ ,
 NET_RX_SOFTIRQ ,
 BLOCK_SOFTIRQ ,
 IRQ_POLL_SOFTIRQ ,

 TASKLET_SOFTIRQ ,
 SCHED_SOFTIRQ ,
 HRTIMER_SOFTIRQ ,
 RCU_SOFTIRQ ,

 NR_SOFTIRQS
 };

Figure 4-6: Adding a new softirq kind “RT_NET_RX_SOFTIRQ”

4.2.2 Modifying the softirq mechanism

The softirq mechanism of Linux mimics a hardware interrupt controller and calls the

softirq handlers of device drivers. Vanilla Linux has 11 types of softirqs, including

NET_TX_SOFTIRQ for sending network messages and NET_RX_SOFTIRQ for receiving

network messages. A hard IRQ handler sets a bit of a bitmap in the per-CPU variables

of the CPU that receives the IRQ. For example, the hard IRQ handler of a block device

driver sets the bit of BLOCK_SOFTIRQ. The softirq mechanism checks the bitmap

after all hard IRQ handlers finish. If a bit is set, the softirq mechanism calls the

corresponding softirq manager. For example, the softirq mechanism calls the function

net_rx_action() for the bit of NET_RX_SOFTIRQ. At this time, the softirq mechanism

acquires the softirq_lock for NET_RX_SOFTIRQ in the per-CPU variables. The function

net_rx_action() processes the poll_list of the structure softnet_data in the per-

CPU variables. This poll_list includes softirq handlers of network devices that have

pending incoming messages.

We have added a new softirq type, RT_NET_RX_SOFTIRQ, at Line 6 of Figure 4-6.

The bit of RT_NET_RX_SOFTIRQ is set by the function ____napi_rt_schedule() as

described in Section 4.2.1. We have also added the rt_softirq_lock for RT_NET_RX_

SOFTIRQ as similar to the (non-RT) softirq_lock for non-RT NET_RX_SOFTIRQ.

Next, we have copied the net_rx_action() and made the new function rt_net_

55

rx_action(). This function processes the rt_poll_list of the structure softnet_data

in the per-CPU variables.

56

Chapter 5

RT socket outsourcing

In this thesis, we describe our proposed method, the “socket outsourcing with parti-

tioned RT softirq handling” method or the outsourcing method for short. As shown

in this long name, our proposed method consists of two techniques.

• RT socket outsourcing.

• Partitioned RT softirq handling.

We have described the latter method in Chapter 4. In this chapter, we describe the

former technique. This technique mitigates the cache pollution problem described in

Section 3.5 and avoids the priority inversion problem in a guest’s softirq handling by

extending conventional socket outsourcing [27].

The following subsections are structured as follows. Section 5.1 describes the

conventional socket outsourcing. Section 5.2 describes our proposed technique, RT

socket outsourcing. Finally, Section 5.3 shows the implementation details of RT socket

outsourcing in Linux KVM.

5.1 Conventional socket outsourcing

To overcome the cache pollution problem and the priority inversion problem in a

guest, we extend socket outsourcing [27]. Socket outsourcing is a technique used

to realize fast networking, similar to paravirtualization. However, it differs in that

57

socket outsourcing delegates high-level operations from a guest kernel to the host

kernel while paravirtualization performs driver-level operations. The implementation

of socket outsourcing uses Virtual Machine Remote Procedure Call (VMRPC) [27] as

a communication mechanism between a guest kernel and the host kernel in a hosted

VM environment. In VMRPC, a client in a guest kernel sends request messages to a

server in the host kernel, and the server in the host kernel sends back the response

messages to the client in the guest kernel. These request and response messages of

VMRPC are transferred using the shared memory between a guest and the host.

Similar to the execution of system calls and regular Remote Procedure Calls

(RPCs) in distributed systems, VMRPC blocks clients. This means that a straight-

forward invocation stops the entire guest process of a client until the server of the

host sends back a response message. To address this problem, conventional socket

outsourcing makes use of virtual interrupts. For example, when a client in a guest

performs a VMRPC to the procedure recvfrom() in the host server, the procedure

should not block. Even though there is no message, this procedure returns imme-

diately. The guest client puts the current process into sleep mode and changes the

context to another process. When a message arrives at the host, the host’s server

sends a virtual interrupt into the guest. The interrupt handler of the guest wakes the

receiving process and the process calls the procedure recvfrom() in the host again.

The procedure recvfrom() returns the received message to the guest client.

The current production RT methods, i.e., the threaded interrupt handling method

and the exclusive CPU method, perform message copying two times. One occurs from

the host kernel to a guest kernel, and the other occurs from the guest kernel to a guest

user process. In contrast, socket outsourcing requires message copying only once, from

the host kernel to a guest user process. When a guest process invokes receive and

send procedures (e.g. recvfrom() and sendto()), the host translates the address of

the buffer in the guest user process to that in the host kernel. The host performs

these socket procedures in the same way as for regular user processes.

58

vCPU vCPU vCPU RT vCPU

NIC RT NIC

CPU CPU

Host
RT Guest

poll_list

Non-RT
Guest House-

keeping
tasks

poll_list

RT HardIRQ H.

RT softirq H.

RT HardIRQ H.

RT softirq H.

HardIRQ H.

softirq H.

HardIRQ H.

softirq H.

softirq mechanism

RT Int. H. Thread

HardIRQ H.

softirq H.

Non-RT
Guest

HardIRQ H.

softirq H.

RT HardIRQ H.

RT softirq H.

softirq m.
poll_list
softirq m.

poll_list
softirq m.

poll_list
softirq m.

softirq mechanism

poll_list

RT Int. H. ThreadRT Int. H. ThreadInt. H.ThreadInt. H.Thread

Heavy
Receiver

Heavy
Receiver

Critical RT
server

vNIC

DMA

vNIC

DMA

RT vNIC1

2

1
1

2
2

1 Copy from the host kernel to the guest kernel.

2 Copy from the guest kernel to the guest user process.

(a) Threaded interrupt handling method.

vCPU vCPU vCPU RT vCPU

NIC RT NIC

CPU CPU

Host
RT GuestNon-RT

Guest House-
keeping

tasks

(Non-RT) poll_list

RT HardIRQ H.

RT softirq H.

RT HardIRQ H.

RT softirq H.

HardIRQ H.

softirq H.

HardIRQ H.

softirq H.

softirq mechanism

Non-RT
Guest

softirq mechanism

RT Int. H. ThreadRT Int. H. ThreadInt. H.ThreadInt. H. Thread

(Non-RT) poll_list

rt_poll_listrt_poll_list

Heavy
Receiver

Heavy
Receiver

Critical RT
server

DMA

1 1

DMA

1

1 Copy from the host kernel to the guest kernel.

(b) Conventional socket outsourcing.

Figure 5-1: Comparison of network paravirtualization in the threaded interrupt han-
dling method and conventional socket outsourcing.

59

Figure 5-1 compares the threaded interrupt handling method and socket outsourc-

ing. In Figure 5-1a, message copying is done twice. One occurs from the host kernel

to a guest kernel, and the other occurs from the guest kernel to a guest user process.

When a message arrives to a guest, the vNIC thread copies the message from the host

kernel to the guest kernel memory. Next, the network stack of the guest copies the

message from the guest kernel to the socket’s buffer of the process. This duplicated

copying pollutes the LLC, which causes latency variance in the Critical RT server.

The exclusive CPU method has the same problem.

In socket outsourcing, message copying solely occurs from the host kernel to a

guest user process. In Figure 5-1b, the guest user processes issue receiving socket-

level system calls (such as read(), recv() and recvfrom()), and the guest kernels

delegate their processing to the host. When a message arrives to the host, the network

stack of the host receives the message from a NIC and passes it to the guest process

directly.

5.2 RT socket outsourcing

Conventional socket outsourcing can face the priority inversion problem in the softirq

mechanism as described in Section 3.2 because it makes use of virtual interrupts

as described in Section 5.1. We solve this problem by removing interrupt handling

from a guest OS for receiving RT messages. We call this new mechanism RT socket

outsourcing.

We implement RT socket outsourcing by extending the idle process of a guest

OS. In Linux, the idle process is a special kernel thread, and the scheduler executes

the idle process when there is no runnable process in the ready queue. The idle

process usually executes the halt instruction, and this stops the physical CPU if this

is executed in the host. The CPU will resume when the CPU receives an interrupt.

In RT socket outsourcing, the idle process in the guest OS also executes the halt

instruction and this places the vCPU thread into sleep mode in the host.

When the host receives a new message, the host vCPU thread wakes up. This

60

vCPU

Host

Non-RT Guest

User
process

Interrupt
handler Idle process

Host server
module

NIC

CPU

IP

TCP

Int. H. Thread

Virtual interrupt

Wake up
Guest server

module

(a) Conventional socket outsourcing.

Host

Non-RT Guest

User
process

Event queue

Extended
Idle process

Wake up Guest server
module

vCPU

Host server
module

NIC

CPU

IP

TCP

Int. H. Thread

Socket states

(b) RT socket outsourcing.

Figure 5-2: Comparison between conventional socket outsourcing and RT socket out-
sourcing.

vCPU thread enters the virtual machine and executes the next instruction of the halt

instruction in the idle process. The extended idle process in RT socket outsourcing

reads an event queue and the states of the sockets in the shared memory. Next,

the extended idle process makes the receiving process runnable and returns to the

scheduler. The scheduler finds the receiving process immediately without interrupt

handling and executes the process.

Figure 5-2 compares conventional socket outsourcing to RT socket outsourcing. In

this figure, both the user processes are waiting for a message and they issue a receive

system call. The kernel thread of each user process executes its guest client module

of VMRPC, and performs a VMRPC to the host server module. Each host server

module returns nothing soon because the host kernel has no message. Each vCPU

thread is sleeping.

In conventional socket outsourcing in Figure 5-2a, when a message arrives, the

host server module of VMRPC notices about it and injects a virtual interrupt to the

61

guest kernel. The interrupt handler in the guest kernel processes wakes up the kernel

thread of the guest user process. The kernel thread of the user process executes the

guest client module of VMRPC, and performs a VMRPC to the host server module.

The host server module copies the message to the guest user process because the host

kernel has the message. Finally, the host server module returns the result to the guest

client module.

In RT socket outsourcing in Figure 5-2b, when a message arrives, the host server

module of VMRPC notices about it and puts an event to the event queue in the

guest kernel and changes the state of the receiving socket. Next, the host server

module wakes up the vCPU thread. The vCPU threads enters the virtual machine

and executes the extended idle process. The extended idle process wakes up the kernel

thread of the user process without interrupt handling. The following process is the

same as that in the conventional socket outsourcing.

This mechanism has an advantage in that the receiving process does not disturb a

running RT server. In other words, the guest kernel handles messages for an RT server

in a first-in-first-out (FIFO) manner. When the RT server is processing a previous

request message and a new message arrives, the guest kernel does not handle the

new message immediately. The guest kernel handles it when the RT server completes

processing the previous message and issues a system call to receive a new message or

if the guest kernel becomes idle.

We have decided to modify the idle process because of the following reasons. The

idle process is a safe point that watches not only the events for sockets but also

the regular interrupts. We did not have to modify the existing interrupt handling

process on a guest OS. For example, a guest OS can handle timer interrupts and

inter-processor interrupts in the idle process. We will compare, the latency of this

RT socket outsourcing with that of conventional interrupt-based socket outsourcing

in Section 6.3.

62

5.3 Implementation details of RT socket outsourcing

We implemented RT socket outsourcing mainly as loadable kernel modules. The

kernel module for a guest overrides the functions of the socket layer. Overridden

functions send requests to the server in the host using VMRPCs. The kernel module

for the host is the server that handles any requests from the guest. We also extended

the idle process in the guest. This idle process calls a function that examines the

event queue and the states of the sockets in the shared memory.

5.3.1 The guest client module

We load a module to a guest kernel. This module acts as a client of VMRPC. This

module modifies the system call table and overrides the functions of sockets. In this

section, we describe the implementation of the guest client module using the function

of the system call recvfrom() as an example.

Figure 5-3 shows the function p_recvfrom(), which implements the system call

recvfrom(). This function takes the following arguments.

• sockfd: Specifies the socket file descriptor.

• buf: Points to the buffer where the message should be stored.

• len: Specifies the length in bytes of the buffer.

• flags: Specifies the type of message reception.

• src_addr: A null pointer, or points to a sockaddr structure in which the address

of a sender is stored.

• addrlen: Specifies the length of the sockaddr structure.

This function returns the length of the received message in bytes. If no messages

are available, this functions returns zero. If an error occurs, this function returns a

minus value of an error code according to the Linux system call convention.

63

 asmlinkage long p_recvfrom(int sockfd , void *buf , size_t len , int flags ,
 struct sockaddr *src_addr , int *addrlen)
 {
 struct socket *sock;
 struct sock *sk;
 int err=0;
 int hfd;
 unsigned int res;
 int fput_needed;

 int mask;


 sock = sockfd_lookup_light(sockfd , &err , &fput_needed);
 if (!sock)
 return err;

 sk = sock ->sk;
 lock_sock(sk);
 hfd = sk ->sockfd;

 b_loop: // waiting for socket events

 mask = p_poll_sock_(sk);
 if(mask == POLLERR)
 goto addrrunlock;

 if(!(mask & (POLLIN | POLLPRI)))
 {
 long timeo = sock_rcvtimeo(sk , flags & O_NONBLOCK);
 err = _wait_for_mask(sk, timeo , POLLIN | POLLPRI);

 if (err)
 goto addrrunlock;

 goto b_loop;
 }

 res = sguest_recvfrom(hfd , buf , len , flags , src_addr , addrlen);

 err=res;

 addrrunlock:

 fput_light(sock ->file , fput_needed);
 release_sock(sk);
 return err;
 }

Figure 5-3: Implementation of the recvfrom() system call in a guest.

First, this function translates the file descriptor sockfd in the guest into the pointer

to struct socket with sockfd_lookup_light(). Next, this function obtains sk, the

pointer to another structure struct sock. Next, this function checks if the message is

available with the function p_poll_sock_(), which accesses the socket states in the

shared memory between the host and the guest. If there is no message, the function

calls the function _wait_for_mask() and makes the current thread of the user process

64

sleep mode in the guest. If there is a message, the function performs a VMRPC with

the function sguest_recvfrom() to the host server module. The arguments of this

VMRPC are the same as the function p_recvfrom() except for the file descriptor

hfd. The file descriptor hfd is a file descriptor in the host kernel. The function

p_recvfrom() returns the same value as the VMRPC.

5.3.2 The Host server module

We load a module to a host kernel. This module acts as a server of VMRPC. In this

section, we describe the implementation of the host server module using the function

of the system call recvfrom() as an example.

Figure 5-4 shows the function skhst_recvfrom(), which implements the server

procedure of the client p_recvfrom() in Section 5.3.1. First, this function obtains the

arguments from p_recvfrom() with the function vmrpc_copy_from_guest(). The

arguments are the same arguments as those of the guest client p_recvfrom() except

for the file descriptor. The file descriptor is a file descriptor in the host kernel. The

pointers (buf, addrlen and src_addr) are also in the guest logical address.

Next, this function translates the pointers buf, addrlen, src_addr in the guest

logical address into those in the host logical addresses. The function calls the function

sys_recvfrom(), which implements the system call recvfrom() in the host kernel.

Next, this function updates socket states in the shared memory with the function

update_mask(). The function returns the same value as sys_recvfrom() to the guest

client module.

Figure 5-5 shows the main code of the function notify_guest(). This function

takes the pointer to a struct sock as an argument. This function is called when the

host network stack notices the change of the status of the given socket. For example,

when a new message arrives to a socket which has no message before, this function

is called.

First, the function obtains the identifiers of the vCPU (vcpu_id and vcpu). Next,

the function copies the status of the socket in the mask variable. Next, the function

calls _create_event() which updates the status of the socket in the memory of the

65

 static int skhst_recvfrom(void *rpcdata ,gva_t arg_gp ,size_t bytes)
 {

 struct {int sockfd; gva_t buf; int len; int flags;
 gva_t src_addr; gva_t addrlen ;} data;


 void * buff;
 rpck_data *kdata;

 kdata = rpcdata;
 struct sockaddr *src_addr;
 int *addrlen;
 unsigned int size;


 if(bytes != sizeof(data))
 {
 return -EFAULT;
 }
 if(vmrpck_copy_from_guest(rpcdata ,&data ,arg_gp ,bytes)) return -EFAULT;

 if(!data.buf)
 return -EINVAL;

 buff =(void*) skhst_get_hva(rpcdata ,(gva_t)data.buf);

 if(data.src_addr)
 {
 src_addr = (struct sockaddr *) skhst_get_hva(rpcdata ,
 (gva_t)data.src_addr);
 addrlen = (int *) skhst_get_hva(rpcdata ,(gva_t)data.addrlen);
 }


 size = sys_recvfrom(data.sockfd , buff , data.len ,data.flags , src_addr ,
 addrlen);
 update_mask(data.sockfd , 0);

 return size;
 }

Figure 5-4: Implementation of the skhst_recvfrom() function in the host.

vCPU and puts an event to the event queue of the memory of the vCPU if the status

of the socket has changed. Finally, the function wakes up the vCPU thread with

swait_wake_interruptible().

5.3.3 The extended idle process

The idle process of Linux is a per-CPU process that runs whenever there is no other

runnable process on that CPU. The idle process performs some sanity checks and

executes the halt instruction. In a physical processor, the halt instruction halts a

66


 static struct pid __rcu * notify_guest(struct sock *sk)
 {
 struct socket *sock;
 int mask;
 int vcpu_id;
 struct kvm_vcpu *vcpu;

 mask = -1;


 vcpu_id = _get_vcpu_id(sk);
 vcpu = _get_vcpu_by_id(sk , vcpu_id);

 if(!vcpu)
 return NULL;

 sock = sk ->sk_socket;
 mask = sock ->ops ->poll(sock ->file ,sock ,NULL);

 _create_event(mask , sk);

 /*wake up the vcpu thread */
 if(swaitqueue_active (&vcpu ->wq))
 {
 swait_wake_interruptible (&vcpu ->wq);
 }

 if(vcpu)
 return vcpu ->pid;
 }

Figure 5-5: Implementation of the notify_guest() function in the host.

CPU core until an external interrupt is triggered. In a vCPU, the halt instruction

causes the hypervisor to take control of the vCPU thread [42]. The vCPU thread

sleeps in the host kernel until an external event is triggered.

We made minimal changes to the idle process of Linux. Figure 5-6 shows the

function simple_cpu_idle(), which is the main loop of the idle process of Linux. At

Line 22 of Figure 5-6, the idle process calls the function cpuidle_idle_call() which

executes the halt instruction. We inserted calling vmrpc_pending_notifications() at

Line 5 of Figure 5-6. This function vmrpc_pending_notifications() checks the event

queue and wakes up user processes, as described in Section 5.2, and returns a false

when the queue has some event(s). We did not change the other lines.

67

 void simple_cpu_idle(void)
 {

 while (! need_resched () &&
 vmrpc_pending_notifications ()) {

 check_pgt_cache ();
 rmb ();


 local_irq_disable ();
 arch_cpu_idle_enter ();


 if (cpu_idle_force_poll || tick_check_broadcast_expired ())
 {
 cpu_idle_poll ();
 arch_cpu_idle_exit ();
 }

 else
 {
 cpuidle_idle_call ();
 arch_cpu_idle_exit ();
 }

 }
 }

Figure 5-6: The extended idle process

68

Chapter 6

Experimental evaluation

In Chapter 4 and Chapter 5, we have described our proposed method, the outsourcing

method. In this Chapter, we evaluate the outsourcing method by comparing it with

the two conventional RT methods. First, we repeated the experiments in Chapter 3

using a simple RT server to show that the outsourcing method was able to reduce the

latency and latency variances by eliminating the causes of the problems discussed in

the same chapter. In these experiments, we measured the total latency of the Critical

RT server, and latencies of the components in the message processing of the Critical

RT server. Next, we evaluate the outsourcing method using application benchmarks.

We ran a Voice-over-IP (VoIP) server and a key-value store server as an RT server.

Next, we evaluate scalability of the outsourcing method in the number of RT VMs.

Finally, we discuss the current limitations of the outsourcing method.

6.1 Experimental setup for running a simple RT server

We have performed experiments using a simple RT server in the experimental envi-

ronment shown in Figure 6-1. First, we ran netperf [47] as the Critical RT server.

We have slightly modified the client of netperf, which sent requests at random inter-

arrival times ranging from 1 to 10 ms using UDP. We used iperf [89] in server mode as

a Heavy Receiver. A Heavy Sender was the client of iperf and it transmitted messages

persistently using TCP at the maximum speed.

69

NIC NIC RT NIC

CPU CPU

Heavy
Sender (client)

Critical RT
Client

Packet
Monitor

vCPU vCPU vCPU RT vCPU

House-
keeping

tasks

Host
RT GuestNon-RT

 Guest
Non-RT

 Guest

Heavy
Receiver

Heavy
Receiver

Critical RT
server

Heavy
Sender (client)

Non-RT network RT networkNon-RT network

Remote
machines

Figure 6-1: The experimental environment.

We emphasize that varying inter-arrival times caused a similar impact to the LLC

as varying the load of non-RT Heavy Receivers. If the heavy sender sends messages

at a fixed rate, its impact to the LLC is unchanged. Such a fixed impact can lead

to steady results. We should avoid this (by using random intervals) because we

measure the latency variance using these RT methods. We could vary the load of

non-RT Heavy Receivers by changing the client of iperf. However, this was not easy.

Therefore, we decided to mimic varying the non-RT workload throughput by varying

inter-arrival times of the RT client, which was easy to do. When a client of the Critical

RT server sent request messages at a shorter inter-arrival time, the LLC retained more

contents of the Critical RT server. This means that the load of the non-RT Heavy

Receiver was lower. When the client sent messages at a longer inter-arrival time, the

LLC retained fewer contents of the Critical RT server. This means that the load of

the non-RT Heavy Receiver was higher.

As shown in Figure 6-1, the host of the VMs was connected with three networks.

One was an RT network and the other two were non-RT networks. All the networks

consisted of 10GBASE-LR Ethernets over optical fibers. We used Intel X520 Ethernet

converged network adapters as the NICs [41]. We connected the VM host to two

70

Table 6.1: Specifications of the machines and their active cores in the experiments.

Machine CPU / Cache (MB) Active

cores

OS

VM host Intel Core i7-6700K / 8 2 Linux 4.1

Critical RT client Intel Core i7-6700K / 8 4 Linux 4.1

Heavy Sender (client) 1 Intel Core i7-3820 / 10 4 Linux 4.1

Heavy Sender (client) 2 Intel Core i7-3820 / 10 4 Linux 4.1

Packet monitor Intel Core i7-3820 / 10 4 Linux 3.16

non-RT network links to use up the CPU resources of the host. We performed a

preparatory experiment and found that using a single link was not sufficient to use

up the CPU resources because the bottleneck was the network link. The maximum

transfer unit (MTU) of these networks was set to the default value, 1500 bytes.

We measured the latency, e.g., the response times of the Critical RT server at the

RT network, with the hardware monitor, Endace DAG 10X2-S card [28]. We chose to

use the hardware monitor because it had no probe effect. The RT network in Figure

6-1 consisted of two optical links. Each link had an optical splitter that divides signals

into two destinations. One destination was a network peer and the other destination

was the hardware monitor. The hardware monitor took both the request and the

response packets, timestamped them at a resolution of 4 ns, and saved them into a

file. Note that the obtained results included delays in the NIC of the server, but did

not include any delays on the client side.

In the experiments, we used the physical machine in Table 6.1. The CPUs were

Intel Core i7. We activated two of four cores of the VM host to measure response

times for a single RT server. In the exclusive CPU method, we allocated a CPU as

the non-RT CPU and another CPU as the RT CPU. This RT CPU ran a group of RT

threads as discussed in Section 3.2. In other methods including vanilla Linux, both

CPUs ran any threads. We activated all the cores of the other machines. We also

performed experiments using the threaded interrupt handling method and executing

the Critical RT server and Heavy Receivers directly in the host. We call this execution

environment a non-virtualized environment environment. The OSs running on the

physical machine were Linux 4.1 except for the packet monitor. The machine for the

packet monitor ran on Linux 3.16. The version of all guest OSs was Linux 4.1.

71

Table 6.2: Scheduling policy and priority of the threads in the host OS.

Threads Scheduling policy and priority

RT interrupt handler thread FIFO(50)

RT vNIC thread FIFO(48)

RT vCPU thread FIFO(47)

Non-RT interrupt handler threads Normal

Non-RT vNIC threads Normal

Non-RT vCPU thread Normal

To eliminate fluctuations in the hardware, we turned off the following hard-

ware features: Hyper-Threading, TurboBoost, and C-States1. Further, we used the

CONFIG_NO_HZ_FULL option in both the host and the guest kernel of the Critical RT

server. This reduced the number of clock ticks in the physical CPU and vCPU.

In these experiments, we set high priorities to the RT threads and normal priorities

to non-RT threads. Table 6.2 presents the scheduling policies and priorities of these

threads. The threads with the FIFO scheduling policy have higher priorities than

threads with the normal scheduling policy. Within the FIFO scheduling policy, a

larger priority value indicates a higher priority. As described in Section 4.2.1, we

set sysctl -w net.core.rtnet_prio=47 and made the RT IRQ handler use the

rt_poll_list.

6.2 Experimental results using a simple RT server

We ran the simple RT server as in Section 6.1 for 30 s using the following methods:

• Non-virtualized environment (the host).

• (non-RT) Vanilla Linux.

• The threaded interrupt handling method.

• The exclusive CPU method.

• The outsourcing method.
1C-states are CPU modes for saving power. C-state transitions degrade the performance of

RT servers. We turned off C-states in the BIOS and in the Linux kernel using the parameters

intel_idle.max_cstate=0 and idle=poll.

72

Figure 6-2 presents the experimental results of the Critical RT server without

running the Heavy receivers. Table 6.3 summarize the statistical values (the mean,

99th percentile, and standard deviation (SD)). The experimental results were obtained

with the hardware monitor as described in Section 6.1. In all the methods, the

response times of the Critical RT server had low latency variance. In the outsourcing

method, the mean was lower than those in vanilla Linux and the conventional RT

methods because the message processing path is shorter.

Figure 6-3 and Table 6.4 present the experimental results of the Critical RT server

with running two Heavy Receivers. At the same time, we measured the total through-

puts of the Heavy Receivers and the CPU utilization of the VM host. These results

are shown in Figure 6-4 and Figure 6-5, respectively.

The outsourcing method produced the lowest latency and latency variance among

three RT methods, as shown in Figure 6-3. As shown in Table 6.4, the mean, 99th

percentile, and standard deviation were less than half of the exclusive CPU method.

Furthermore, the outsourcing method produced the same high throughput of 18.8

Gbps and slightly higher CPU utilization by 5.8% compared to the non-virtualized

environment. Compared to vanilla Linux, the outsourcing method produced the same

high throughput of 18.8 Gbps.

In summary, compared to the threaded interrupt handling method, the outsourc-

ing method reduced the standard deviation of the latencies of a simple RT server by

a factor of 6 with 5.6% higher throughput and 32% lower CPU utilization. Compared

to the exclusive CPU method, the outsourcing method had a lower standard devia-

tion and a higher total throughput (by a factor of 2), and avoided low utilization of

the RT CPU.

73

k150

30

60

90

120

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

0 3010 20
Elapsed time (seconds)

(a) Non virtualized.

k150

30

60

90

120

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

0 3010 20
Elapsed time (seconds)

(b) Vanilla Linux.

150

30

60

90

120

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

0 3010 20
Elapsed time (seconds)

(c) Threaded interrupt handling.

150

30

60

90

120

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

0 3010 20
Elapsed time (seconds)

(d) Exclusive CPU.

150

30

60

90

120
La

te
n
cy

 (
m

ic
ro

se
co

n
d
s)

0 3010 20
Elapsed time (seconds)

(e) Outsourcing.

Figure 6-2: Distribution of the Critical RT server response times without running
Heavy Receivers.

Table 6.3: Statistical values of the Critical RT server response times without running
Heavy Receivers (microseconds).

99th

percentile

Standard

deviationMethod Mean

Non virtualized 12.3 13.4 0.5

(non-RT) Vanilla Linux 27.3 34.2 1.5

Threaded interrupt handling 30.7 38.1 1.5

Exclusive CPU 37.4 46.1 2.3

Outsourcing 21.2 25.0 1.5

74

Elapsed time (seconds)
3010 20

La
te

n
cy

(m
ic

ro
se

co
n
d
s)

150

30

60

90

120

0

●
●●●

●

●●●
●●●

●●

●●

●

●

●●●●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●●
●●
●

●

●
●

●

●

●

●

●

●
●●●
●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●
●

●

●●●●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●●●●●●
●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●

●●
●

●

●

●
●

●

●●●●●●

●

●
●

●

●

●

●
●

●
●●

●●

●

●●

●●●
●
●
●●●

●
●

●●

●

●

●

●
●

●

●●●●●

●

●

●●●●●●
●●●

●

●
●●

●

●

●

●

●

●

●●
●●
●●
●

●

●●●

●

●

●

●●●

●

●

●
●

●

●

●

●●●●

●

●

●

●●

●
●

●●●●
●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●●
●

●

●
●●
●

●

●

●

●

●●

●

●●

●

●
●●
●●●

●

●
●●●

●
●

●
●

●

●

●●
●●

●

●
●
●
●
●
●●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●●●

●●

●

●

●
●

●

●●●
●
●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●
●

●
●

●●●

●

●●●●

●

●●●●

●

●●●
●

●

●
●

●

●●●

●

●

●

●

●●●●

●

●
●

●

●

●
●●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●

●●
●
●●

●

●
●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●●
●
●●●
●●

●

●
●
●
●

●

●
●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●●●
●
●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●●

●●
●
●
●●●●
●

●

●●

●●

●

●●

●

●
●●●●●
●
●●●●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●●●●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●●●

●

●
●●
●

●

●●

●

●
●●●

●●

●

●

●

●

●

●●
●
●
●●●

●
●●

●●

●

●●●●
●

●

●●●●
●

●

●

●
●

●

●
●
●

●

●

●

●
●●

●

●●●●

●

●
●

●●●

●

●
●

●

●●
●

●

●●●

●

●

●

●●

●

●

●
●
●●

●

●●

●

●●●
●●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●●●
●

●

●●

●

●●

●

●

●

●

●●●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●●●

●

●

●

●

●

●
●●

●

●●

●
●●

●

●

●

●●

●

●
●

●

●

●●●

●
●

●●

●

●

●●

●

●●●
●●●●●●
●

●

●●●●●

●

●●

●●

●

●

●
●

●

●

●

●●
●

●

●●

●
●

●

●●●●
●●●

●
●

●
●

●

●●
●

●

●
●●

●

●

●●●
●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●●●●●

●
●

●

●

●

●●●

●

●

●●

●
●●●

●
●
●●
●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●
●

●

●

●

●

●
●
●●●
●
●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●
●●
●

●

●●●

●

●

●●

●●●
●
●●

●

●●

●
●

●

●●

●

●●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●●
●
●●
●
●
●

●

●
●●
●
●

●

●

●●●●

●

●

●
●
●●●●●
●●
●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●●

●
●
●●
●

●

●

●
●
●

●

●

●●●●

●

●●

●

●

●●

●

●
●

●●

●

●

●

●
●●
●●
●●

●

●

●●●●
●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●●

●

●

●

●●
●
●
●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●●●●
●●●●●●
●
●●●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●●●●●
●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●
●
●
●
●

●

●

●

●●

●
●

●
●●
●

●

●

●
●

●

●●

●

●

●●●

●

●
●●●●●
●●
●
●●
●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●
●●

●

●

●

●
●

●

●●
●●●●

●

●

●●

●

●

●

●●●●●
●
●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●●
●

●

●
●
●●

●
●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●

●
●●●

●

●●●
●
●

●

●

●

●

●

●

●●

●

●●●

●

●●●
●
●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●●●

●

●

●

●●●●●

●

●●
●
●
●
●
●●
●●
●●

●

●

●

●
●

●
●●

●

●

●

●●●●●

●

●

●●
●
●

●

●

●
●

●●

●

●

●

●

●●
●●

●

●●●●●

●

●●●
●●●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●●●

●

●●

●

●●●

●

●

●

●

●●●
●
●

●

●

●
●●●●●

●
●

●●
●

●

●●●●●●●
●

●

●●●
●

●

●●●●
●

●

●

●

●
●●

●

●

●

●●●
●●
●

●

●
●●●
●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●●●
●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●

●

●●●●●
●●●●

●

●

●

●

●

●●●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●
●
●●●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●
●
●●

●

●

●
●

●

●●
●●●●

●

●

●

●●●
●●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●●
●●

●

●●

●

●●●●

●

●

●

●

●

●

●●
●●●●

●

●●

●

●
●

●

●

●●●●●●●
●
●

●
●

●●
●●

●

●

●

●

●
●

●●

●

●●●●●

●

●

●

●●
●●

●●

●●●●
●

●

●●

●●

●●
●

●

●●

●●

●

●

●
●●●●

●

●●●●

●

●

●

●
●

●

●
●●●●

●

●

●
●●

●

●●●●

●

●

●●●●
●●

●

●

●

●●
●
●

●

●

●

●●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●●

●

●●●●●
●●
●●

●
●

●

●

●●

●

●
●●●

●

●

●

●
●
●●

●

●

●
●

●●●●
●

●

●

●

●

●●
●

●
●●

●
●
●

●

●

●
●
●●●●

●

●

●●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●
●
●

●

●

●●

●●

●
●

●

●●
●
●

●

●
●●
●
●
●

●

●

●

●●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●●●●●
●●

●

●●●●

●

●

●
●
●

●
●

●
●●●●
●

●

●
●

●

●●●
●●●●●

●●

●
●

●
●●

●

●●
●

●

●

●●●
●
●●●●●●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●●
●●●●●

●

●
●
●●
●●●●●

●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●●
●●●

●

●

●

●●●
●
●●●

●

●●●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●●●
●
●

●

●

●

●●
●
●●

●

●

●●●●●
●
●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●
●
●

●

●
●●

●

●

●

●

●
●●
●
●
●
●●●●

●

●●●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●
●
●

●

●

●●●●
●●●

●

●

●

●●
●

●

●

●
●●●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●●
●
●●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●
●

●
●

●●

●

●
●●●●

●

●●

●
●●

●●

●

●

●
●●
●

●

●

●
●
●
●
●
●●●●

●

●

●
●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●
●●
●
●

●

●●
●

●

●●

●

●
●●
●

●

●
●
●

●

●●

●

●●

●

●

●
●
●●
●●
●

●

●
●

●

●
●
●

●

●

●●

●

●●

●
●

●●

●●

●

●●
●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●●●●
●●

●

●●

●

●

●

●
●●●

●

●●

●
●

●

●●

●

●

●

●●
●

●

●

●

●
●
●
●●
●●

●

●

●

●

●

●●●●

●

●
●

●●

●

●●

●

●

●●●
●●●

●

●●●●●
●●●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●●●●●

●

●
●●●

●

●
●●●●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●●
●●●●

●

●

●

●

●

●

●

●●
●

●

●
●●●●
●
●
●
●●●●

●

●

●

●●

●

●
●●

●

●●

●

●●●
●
●●

●

●●●●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●●
●

●●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●●
●

●

●
●
●

●

●●

●

●

●

●●●
●●

●

●

●

●
●

●

●
●●

●

●

●●●●●

●

●

●

●

●●●

●

●

●
●

●

●
●●●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●
●

●
●
●
●

●

●

●

●
●
●

●
●

●

●

●

●

●●
●
●●●
●●
●

●

●

●

●●

●

●

●
●

●

●●●
●

●
●●

●●●

●

●

●

●●●

●●
●

●

●
●
●●●●●

●

●
●
●
●●
●
●●
●
●●
●

●

●

●

●
●
●
●
●

●●

●

●

●
●

●

●●
●

●

●

●●

●●●●●●

●

●
●
●●●●●

●

●

●●
●

●

●

●

●●

●

●
●
●●
●●●●

●

●
●
●●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●
●

●
●●
●

●

●
●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●
●
●●●●

●

●

●

●

●
●
●●●
●●●
●

●
●

●

●

●

●

●
●

●●●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●●●

●

●●●

●

●●

●

●

●
●

●●

●

●

●

●

●
●●●

●

●●
●

●

●

●●●●

●●

●

●

●

●●●
●
●

●

●
●
●

●

●●●
●●
●

●

●

●●
●

●

●●

●●

●

●

●
●

●

●
●●

●

●

●

●●●●

●

●

●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●●

●

●
●●

●●

●
●

●

●●

●

●
●
●

●
●●

●

●●●
●●
●

●●●

●

●●
●
●●●

●

●

●

●
●

●
●

●
●●

●●

●●

●

●●●
●
●●

●

●●●●

●

●●●

●
●

●●

●

●

●

●●●●

●●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●●

●

●
●●●●

●

●
●●●●

●

●

●

●●●

●

●●●●

●

●
●●●

●

●

●

●●

●

●
●●●●●●

●

●●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●
●
●
●●
●
●

●

●●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●●●●●

●

●●●

●

●
●

●

●●

●

●

●

●
●

●

●●
●

●
●
●●
●●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●●●●
●

●

●●

●

●

●

●●●

●

●●

●
●

●●●●
●
●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●●●●
●●

●

●

●●
●

●

●

●

●●

●

●●

●

●
●●

●

●
●●
●
●

●

●

●

●●●●
●
●●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●●
●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●●●
●●●●
●

●

●

●

●

●

●

●
●
●●
●●

●

●●

●

●●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●●
●●●

●●

●●

●

●●
●●●
●
●
●

●

●
●●●

●

●●

●

●●

●

●●
●

●

●

●●
●

●

●●
●●
●

●

●

●

●

●
●
●●

●

●●
●
●●

●

●

●
●

●

●

●
●

●

●

●●●

●

●

●

●●●●●
●
●●

●

●●●
●

●
●
●

●●
●

●

●●
●
●

●

●

●●

●●
●

●

●●●

●

●●
●●●

●

●
●●

●

●●●●

●

●

●
●●●

●

●

●

●
●●
●
●

●
●

●

●

●

●

●●
●
●
●
●●●
●

●

●

●●●●

●●

●●●●
●

●

●●
●●
●

●

●

●

●

●●●

●

●

●

●
●
●
●●●●
●●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●●●

●

●

●

●●
●

●

●

●

●
●
●●

●

●
●
●

●

●●●

●

●

●

●●

●

●

●●

●

●

●
●
●
●

●

●
●
●
●
●

●

●

●●

●

●●

●●
●

●

●●●●
●●●●●●

●●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●●●
●●

●

●
●●●

●

●
●
●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●
●

●

●
●●●●

●

●
●

●

●
●
●●●●
●
●●

●

●●●●●

●

●●●●

●

●

●●
●●
●
●●

●

●
●●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●●

●

●
●●●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●●●
●●●

●

●●

●

●●●
●●

●

●

●●●●●
●

●

●●●
●●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●●
●●

●

●

●
●
●●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●
●
●●●

●

●

●

●

●

●●

●

●
●●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●●●
●

●

●●●
●

●

●●

●

●

●

●●●

●

●

●

●

●●
●

●

●●

●
●●●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●
●

●

●

●

●●●
●

●●

●

●●

●

●

●

●

●

●●
●

●

●
●
●●

●

●

●

●

●

●
●

●

●●●●●

●

●●

●

●●

●

●●
●●
●
●
●

●

●●●●

●

●

●●●

●
●

●●

●

●
●●

●
●

●

●●●

●

●

●●
●●●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●●

●

●●●

●

●
●

●

●●●●
●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●●

●●●
●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●●

●●

●●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●●
●
●●●
●

●

●

●

●

●

●●

●
●

●
●●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●

●

●

●●
●●
●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●●●●

●
●●

●

●

●●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●●

●

●

●●●●
●●
●

●

●
●●

●

●●●●●

●

●

●
●

●
●
●●

●

●

●

●

●
●
●●

●
●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●●

●

●●●●●●●

●

●

●

●●●●
●
●●●

●
●

●

●●●●

●

●
●
●

●●

●

(a) Non virtualized.

k

3010 20
Elapsed time (seconds)

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k
k

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

kk

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kkk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k
kk

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kkk

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

kk
k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kkk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
kk
k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k
k

k
k

k

k

k
k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

kk

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k
k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k
kk

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

150

30

60

90

120

La
te

n
cy

(m
ic

ro
se

co
n
d
s)

180

210

0

(b) Vanilla Linux.

150

30

60

90

120

La
te

n
cy

(m
ic

ro
se

co
n
d
s)

180

210

0 3010 20
Elapsed time (seconds)

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k
k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

kk
k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

kk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k
k

k

k

k

k

kk

k

k

k

kk

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

kk

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

kk

k

k

k

k
k

k

k

k

k
k

k
k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k
k

k

k
k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k
k

k

k

k

kk

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k
kkk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
kkk

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

kk

k

k

k

k

k

kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
kk

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k
kk

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

kk

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

kk

k
k

k

k
k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k
k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

kk

k

k

k

kk

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k
k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

kk

k

k

k

k

k

kk

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

(c) Threaded interrupt handling.

150

30

60

90

120

La
te

n
cy

(m
ic

ro
se

co
n
d
s)

0 3010 20
Elapsed time (seconds)

(d) Exclusive CPU.

150

30

60

90

120
La

te
n
cy

(m
ic

ro
se

co
n
d
s)

0 3010 20
Elapsed time (seconds)

(e) Outsourcing.

Figure 6-3: Distribution of the Critical RT server response times with Heavy Re-
ceivers.

Table 6.4: Statistical values of the Critical RT server response times with Heavy
Receivers (microseconds).

99th

percentile

Standard

deviationMethod Mean

Non virtualized 20.5 39.7 6.7

(non-RT) Vanilla Linux 92.5 225.0 29.2

Threaded interrupt handling 100.8 202.9 29.0

Exclusive CPU 70.5 96.0 11.8

Outsourcing 32.9 46.8 4.3

75

0

5

10

15

20

To
ta

lt
hr

ou
gh

pu
t (

G
bi

t/s
)

Vanilla
Linux

Threaded
interrupt
handling

Exclusive
CPU OutsourcingNon virtualized

Figure 6-4: Total throughput of Heavy Receivers.

0

25

50

75

100

C
P

U
 u

til
iz

at
io

n
(%

)

CPU 0 CPU 1

Vanilla
Linux

Threaded
interrupt
handling

Exclusive
CPU OutsourcingNon virtualized

Figure 6-5: Achievable CPU utilization.

6.3 Effects of individual techniques

The outsourcing method comprises two techniques: partitioned RT softirq handling

(Chapter 4) and RT socket outsourcing (Chapter 5). We performed the same exper-

iments as in Section 6.1 by enabling one of two techniques at a time. Figure 6-6a

shows the result using both techniques, and Figures 6-6b and 6-6c show the results

using one of the two techniques without the other. Table 6.5 summarize the statistical

values (the mean, 99 th percentile, and standard deviation (SD)). When we enabled

76

150

0

30

60

90

120

Elapsed time (seconds)
3010 20La

te
n
cy

(m
ic

ro
se

co
n

d
s)150

0

30

60

90

120

Elapsed time (seconds)
3010 20

(a) RT socket outsourcing
(enabling two techniques and
using the extended idle process).

La
te

n
cy

(m
ic

ro
se

co
n

d
s)

(b) Only using partitioned
150

0

30

60

90

120

Elapsed time (seconds)
3010 20

(c) Only using RT socket outsourcing.

La
te

n
cy

(m
ic

ro
se

co
n

d
s) 150

0

30

60

90

120

Elapsed time (seconds)
3010 20

(d) Using virtual interrupts.

La
te

n
cy

(m
ic

ro
se

co
n

d
s)

RT softirq handling.

Figure 6-6: Distribution of the Critical RT server response times with the outsourcing
method using individual techniques.

Table 6.5: Statistical values of the Critical RT server with the outsourcing method
using individual techniques.

99th

percentile

Standard

deviationMethod Mean

RT socket outsourcing

(enabling two techniques and

using the extended idle

process)

32.9 46.8 4.3

Only using partitioned RT

softirq handling.

83.3 155.2 19.3

Only using RT socket

outsourcing

34.8 60.7 7.4

Using virtual interrupts 64.1 79.1 9.0

only one of the two techniques, we obtained larger variances of the response times

than those obtained using both techniques.

In Section 5.2, we described the extended idle process to eliminate virtual inter-

rupt handling from a guest OS. We compared these two mechanisms using the same

77

IRQ VMentry VMexit

Host receive Guest Host send

Transmit to
NIC

Figure 6-7: Division of the message processing path into three segments.

experiments as in Section 6.1. Figure 6-6a and Figure 6-6d show the results. Using

the extended idle process (Figure 6-6a) showed better real-time characteristics than

using virtual interrupts (Figure 6-6d). Compared to using virtual interrupts, the

extended idle process reduced the standard deviation by a factor of 2 µs (Table 6.5).

6.4 Processing path analysis with lightweight probes

We analyzed the processing path of request messages from the RT NIC to the Critical

RT server and their corresponding response messages from the Critical RT server to

the RT NIC in detail using lightweight probes. We divided the processing path into

the following segments (Figure 6-7) for virtualized environments, in the same way as

in Section 3.4.2:

• Host receive: Host execution from the receipt of an IRQ to the start of the

guest OS execution (VM entry). This segment includes the network stack pro-

cessing and the execution of the network device backend thread (vNIC thread).

• Guest: Guest execution from the VM entry to a VM exit when sending a

message.

• Host send: Host execution from the VM exit to a message transmission to a

NIC.

While the non virtualized environment does not have the idea of the host and the

guest, we divided the processing path into the following segments for comparison.

• Host receive: Kernel execution from the receipt of an IRQ to the start of the

user process execution.

78

• Guest: User process execution to the invocation of the sendto() system call.

• Host send: Kernel execution from the invocation of the sendto() system call

to a message transmission to a NIC.

We inserted a lightweight probe at the beginning of each segment and at the end

of the message transmission. Next, we repeated the experiments in Section 6.1.

Figure 6-8 presents the experimental results in an environment without running

the Heavy Receivers. The figure shows low latency variance in all the methods when

there are no co-located non-RT servers.

Figure 6-9 presents the results of these experiments where the critical RT server

was co-located with two Heavy Receivers. Figure 6-9a shows that the non virtualized

environment had high latency variances in the “host receive” segment. By comparing

three columns of Figure 6-9, we identified that most of the latency variances were

located in the “host receive” segment and the “guest” segment. We found the two

priority inversion problems in the “host receive” segment in the threaded interrupt

handling method, as described in Section 3.4. These priority inversion problems were

not present when using the exclusive CPU method, and when using the outsourcing

method, as described in Chapter 4.

The threaded interrupt handling method and the exclusive CPU method had

higher latency variances in the “guest” segment than the outsourcing method. This is

because the execution of the non-RT Heavy Receivers polluted the LLC and removed

the contents of the Critical RT servers.

79

Host receive Host sendGuest

302418126
Elapsed time (Seconds)

0

10

20

30

40

50

60

70

80

90

100

La
te

n
cy

(m
ic

ro
se

co
n
d

s)

302418126
Elapsed time (Seconds)

(c) T
h
re

a
d

e
d

 in
te

rru
p

t
h
a
n
d

lin
g

.
302418126

Elapsed time (Seconds)

(d
) E

xclu
siv

e
 C

P
U

. 302418126
Elapsed time (Seconds)

0

10

20

30

40

50

60

La
te

n
cy

(m
ic

ro
se

co
n
d

s)

302418126
Elapsed time (Seconds)

302418126

Elapsed time (Seconds)

0

10

20

30

40

50

60

70

80

90

100

La
te

n
cy

(m
ic

ro
se

co
n
d

s)

302418126
Elapsed time (Seconds)

(b
) V

a
n
illa

 Lin
u
x
.

302418126
Elapsed time (Seconds)

302418126
Elapsed time (Seconds)

0

10

20

30

40

50

60

La
te

n
cy

(m
ic

ro
se

co
n
d

s)

302418126
Elapsed time (Seconds)

302418126
Elapsed time (Seconds)

302418126
Elapsed time (Seconds)

(e
) O

u
tso

u
rcin

g
.

0

10

20

30

40

50

60

La
te

n
cy

(m
ic

ro
se

co
n
d

s)

302418126
Elapsed time (Seconds)

302418126
Elapsed time (Seconds)

302418126
Elapsed time (Seconds)

(a
) N

o
n
 v

irtu
a
lize

d
.

Figure 6-8: Latencies in three segments of the processing path of RT messages without
running Heavy Receivers.

80

Figure 6-9: Latencies in three segments of the processing path of RT messages with
running Heavy Receivers.

81

0

5

10

15

20

25

LL
C

 m
is

s
ra

tio
 (

%
)

Vanilla
Linux

Threaded
interrupt
handling

Exclusive
CPU OutsourcingNon virtualized

Figure 6-10: LLC miss ratio of the RT threads.

6.5 Cache pollution in the RT methods

Using the same experiments as in Section 6.1, we analyzed the impact on the LLC.

We obtained the numbers of cache references and misses using the perf command of

Linux [60]. This command uses the hardware performance counters of cache references

and cache misses. We calculated the cache miss ratio by dividing the number of cache

misses by the number of references.

Figure 6-10 presents the results of these experiments. The cache pollution when

using the outsourcing method was the lowest among vanilla Linux and the two conven-

tional RT methods because message processing had a smaller memory footprint. The

outsourcing method and non-virtualized environment had similar cache miss ratios

because the number of message copying of the Heavy Receivers were same. The cache

pollution problem existed in the exclusive CPU method, as the Heavy Receivers also

interfered with the execution of the Critical RT server because the RT CPU shared

the LLC with the non-RT CPU. Note that compared to vanilla and the conventional

RT methods, the outsourcing method had an LLC miss ratio close to that in the

non-virtualized environment.

82

0 10 20 30 40 50 60

vNIC

Softirq (host)

Hard IRQ (host)

Softirq (guest)

Hard IRQ (guest)

Socket procesing

User process

Time (microseconds)
Message copy

0 10 20 30 40 50 60
Time (microseconds)

Socket processing
(host)

Softirq (host)

Hard IRQ (host)

User process

Idle process

Socket procesing

Message copy

(a) Threaded interrupt handling.

(b) Outsourcing.

Figure 6-11: Message processing path of a non-RT Heavy Receiver.

6.6 Message processing paths of non-RT server

The outsourcing method shortens the message processing path of co-located non-RT

servers and reduces cache pollution by the non-RT servers. In this section, we analyze

the message processing paths of a Heavy Receiver and confirm the reduction of cache

pollution by using the same experiments as in Section 6.1.

Figure 6-11 compares the message processing paths using the threaded interrupt

handling method and the outsourcing method. We obtained execution times by using

the lightweight probes, as indicated in Section 6.4. In Figure 6-11, “User process”

83

and “Socket processing” mean the execution of the Heavy Receiver and system call

layer in a kernel. Figure 6-11b has two “Socket processing” executions. The upper

one is the execution in the guest kernel and the lower one is that of the host kernel.

In Figure 6-11, message copying is marked with diagonal lines.

Figure 6-11a illustrates the message processing path using the threaded interrupt

handling method. In this method, message copying was performed two times, i.e.,

once between the host kernel and a guest kernel in the vNIC thread, and another

from the guest kernel to the guest user process in the guest OS. By contrast, Figure

6-11b illustrates the message processing path using the outsourcing method. In this

method, message copying was performed once, from the host kernel to the guest user

process.

6.7 Application benchmarks

In previous sections, we ran netperf as a Critical RT server and analyzed the funda-

mental features of RT methods. In this section, we ran two time-sensitive applications

as a Critical RT server and compared these RT methods. The experimental environ-

ment and configurations were the same as those in Section 6.1.

6.7.1 A voice-over-IP (VoIP) server.

We ran a VoIP server as a Critical RT server and measured the forward delays of

the VoIP server. The VoIP server was Kamailio [48], which exchanges messages

based on the Session Initiation Protocol (SIP) [81]. We ran two SIPp [30] instances

as communication peers of the Kamailio server in a remote machine. One instance

acted as a user agent client (UAC) and the other acted as a user agent server (UAS).

The VoIP server relayed messages between the UAC and the UAS.

Using the hardware monitor (Endace DAG 10X2-S card), we obtained the forward

delays between the message that the VoIP server received and the message that

the VoIP server sent during SIP calls. A single SIP call required forwarding of the

following six messages by the VoIP server.

84

1. An INVITE message from the UAC to UAS. (At this time, the server also sent

a TRYING message to the UAC.)

2. A RINGING message from the UAS to the UAC.

3. An OK message from the UAS to the UAC.

4. An ACK message from the UAC to the UAS.

5. A BYE message from the UAC to the UAS.

6. An OK message from the UAS to the UAC.

Similar to using the modified netperf client in Section 6.1, we used a modified SIPp

program. The modified SIPp program initiated SIP calls at random rates ranging

from 17 to 167 calls per second. This means that the server forwarded 100 to 1000

messages per second. The total incoming and outgoing throughput of SIP were 2.4

Mbps. We ran the same Heavy Receivers employed in the previous experiments.

Figure 6-12 shows the experimental results. Figure 6-12a illustrates the percentiles

(50th, 99th, and 99.9th) of the forward delays. At the same time, we measured the

total throughputs of the Heavy Receivers and the CPU utilization of the VM host.

These results are shown in Figure 6-12b and Figure 6-12c, respectively.

Figure 6-12a shows that the outsourcing method had the lowest tail latencies

among the RT methods and comparable results with the non-virtualized environment.

In the 99th percentiles results, for instance, the outsourcing method had 63% lower

latency than the threaded interrupt handling method and 27% lower latency than the

exclusive CPU method.

In terms of the total throughputs of the Heavy Receivers and the CPU utilization,

the outsourcing method had 13% higher throughput and 15% lower CPU utilization

compared to the threaded interrupt handling method. Compared to the exclusive

CPU method, the outsourcing method had a higher total throughput by a factor of

2.

85

50th 99th 99.9th
0

50

100

150

200

250

300

350

400

450

500

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

Exclusive
CPU

OutsourcingVanilla Linux
Threaded
interrupt
handling

Non
virtualized

(a) Latency of the Critical RT server.

0

5

10

15

20

To
ta
lt
hr
ou
gh
pu
t(
G
bi
t/s
)

Vanilla
Linux

Threaded
interrupt
handling

Exclusive
CPU OutsourcingNative

(b) Total throughput of Heavy Receivers.

0

25

50

75

100

C
P

U
 u

til
iz

at
io

n
(%

)

CPU 0 CPU 1

Threaded
interrupt
handling

Vanilla
Linux

Exclusive
CPU OutsourcingNon virtualized

(c) Achievable CPU utilization.

Figure 6-12: The results of application benchmark using a VoIP server.

86

6.7.2 Memcached

We ran Memcached [21] as a Critical RT server. Memcached is a distributed key-

value store that is widely used for caching. The benchmark program was memaslap [1],

which was executed in a remote machine.

Similar to using the modified netperf client in Section 6.1, we modified memaslap.

The modified memaslap sent requests at random intervals ranging from 100 to 1000

requests per second. The size of a key was 64 bytes, and the size of the request

value was 1024 bytes. Memaslap sent GET/SET requests at a ratio of 9:1. The

total incoming and outgoing throughput of Memcached were 364 Kbps and 1.8 Mbps,

respectively. We measured the response times of the GET requests using the hardware

monitor (Endace DAG 10X2-S card). We ran the same Heavy Receivers employed in

the previous experiments.

Figure 6-13 presents the experimental results. Figure 6-13a illustrates the per-

centiles (50th, 99th, and 99.9th) of the response times. At the same time, we measured

the total throughputs of the Heavy Receivers and the CPU utilization of the VM

host. These results are shown in Figure 6-13b and Figure 6-13c, respectively.

The outsourcing method produced the best results among the RT methods and

comparable results with the non-virtualized environment. In Figure 6-13a, the out-

sourcing method had 74%, 67% and 46% lower latency than vanilla Linux, the

threaded interrupt handling method and the exclusive CPU method, respectively.

As presented in Figure 6-13b, the outsourcing method achieved the same high

throughput of 18.8 Gbps as the non virtualized environment and Vanilla Linux. Com-

pared to the threaded interrupt handling method, the outsourcing method had 13%

higher throughput and 26% lower CPU utilization. Compared to the exclusive CPU

method, the outsourcing method had a higher total throughput by a factor of 2.

87

50th 99th 99.9th
0

50

100

150

200

250

300

350

400

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Exclusive
CPU

OutsourcingVanilla Linux
Threaded
interrupt
handling

Non
virtualized

(a) Latency of the Critical RT server.

0

5

10

15

20

To
ta

lt
hr

ou
gh

pu
t (

G
bi

t/s
)

Vanilla
Linux

Threaded
interrupt
handling

Exclusive
CPU OutsourcingNon virtualized

(b) Total throughput of Heavy Receivers.

0

25

50

75

100

C
P

U
 u

til
iz

at
io

n
(%

)

CPU 0 CPU 1

Vanilla
Linux

Threaded
interrupt
handling

Exclusive
CPU OutsourcingNon virtualized

(c) Achievable CPU utilization.

Figure 6-13: The results of application benchmark using memcached.

88

6.8 Scalability of RT virtual machines

In Sections 6.2 to 6.7, we fixed the number of RT VMs to one and we compared the

latencies and the latency variances of the RT methods. In this section, we increase

the number of RT VMs and evaluate the scalability of these methods.

In this section, we performed experiments using the same configuration as in the

previous sections except that we set the number of active CPU cores to four. We

ran a Heavy Receiver in a single non-RT VM, and we ran two non-RT VMs as in the

previous sections. We ran a Critical RT server in a single RT VM and increased the

number of RT VMs up to 100 for the threaded interrupt handling method and the

outsourcing method, as well as the non virtualized environment and vanilla Linux.

We increased the number of RT VMs up to three for the exclusive CPU method.

For the exclusive CPU method, we assigned one CPU as a non-RT CPU and the

remaining CPUs as RT CPUs. We set high priorities to the RT threads and normal

priorities to non-RT threads, as listed in Table 6.2. We ran the same number of

clients in a remote machine as in the VMs. We measured the response times of the

Critical RT servers using the hardware monitor (Endace DAG 10X2-S card). We ran

a netperf, VoIP, or memcached server as a Critical RT server in an RT VM. We ran

an iperf server as a Heavy Receiver in an non-RT VM. For comparisons, we also run

these servers in a non virtualized environment, that is, the host OS.

Figure 6-14 shows the experimental results using a netperf server as a Critical

RT server. In these figures, the x-axis represents the number of RT VMs. Figure 6-

14a shows the 99th percentiles of the Critical RT response times, Figure 6-14b shows

the total throughput of the non-RT Heavy Receivers, and Figure 6-14c shows the

achievable CPU utilization.

As shown in Figure 6-14a, the non virtualized environment scaled well and the

exclusive CPU method did not scale. Both the threaded interrupt handling method

and the outsourcing method scaled up to 100 VMs. The outsourcing method produced

much smaller latency variances of the Critical RT servers (around two times of the non

virtualized environment) than the threaded interrupt handling method (and vanilla

89

●●

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

%
C

P
U

u
ti

liz
a
ti

o
n

Number of RT virtual machines

(c) Achievable CPU utilization.

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

●
●

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
Number of RT virtual machines

La
te

n
cy

(m
ic

ro
se

co
n

d
s)

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

(a) 99th percentile latency of Critical RT servers.

●●

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80

T
h
ro

u
g

h
p

u
t

(G
b

p
s)

100
Number of RT virtual machines

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

(b) Total throughput of Heavy Receivers.

Figure 6-14: Scaling the number of RT virtual machines (Netperf as critical RT
server).

Linux). As shown in Figures 6-14b and 6-14c, the outsourcing method achieved higher

throughputs of the Heavy Receivers and lower CPU utilization than the threaded

interrupt handling method. Furthermore, the outsourcing method maintained the

total throughput of the Heavy Receivers up to 40 VMs, as shown in Figure 6-14b.

We also performed similar experiments using a VoIP server and memcached server

as a Critical RT server. The experimental results are presented in Figure 6-16 and

Figure 6-15, respectively. In Figure 6-15a, the outsourcing method scaled well up

to the 60 RT VMs. When the number of the RT VMs was 60 VMs, the threaded

90

Number of RT virtual machines

●

●

0

2500

5000

7500

10000

0 20 40 60 80 100

L
a

te
n

cy
(m

ic
ro

s
e

co
n

d
s
)

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

(a) 99th percentile latency of Critical RT servers.

%
C

P
U

u
ti

liz
a
ti

o
n

Number of RT virtual machines

●
●

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

(c) Achievable CPU utilization.

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

●●

0

2

4

6

8

10

12

14

16

18

20

T
h
ro

u
g
h
p

u
t

(G
b

p
s)

0 20 40 60 80 100
Number of RT virtual machines

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

(b) Total throughput of Heavy Receivers.

Figure 6-15: Scaling the number of RT virtual machines (VoIP server as critical RT
server).

interrupt handling method and the outsourcing method had a CPU utilization of

95% and 94% respectively. At this number of VMs, the 99th percentile latency of

the Critical RT server in the outsourcing method was 111.2 µs. This same latency

in the threaded interrupt handling method exceeded 3.5 ms. Since the outsourcing

method has a lower memory footprint compared to the conventional RT methods,

the throughput of the Heavy Receivers decreased more slowly when increasing the

number of RT VMs. When the number of RT VMs was 60, the throughput of the

Heavy Receivers in the outsourcing method was 4.6 Gbps, while that in the threaded

91

Number of RT virtual machines

●●

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

(G
b
p

s)

(b) Total throughput of Heavy Receivers.

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

Number of RT virtual machines

●●

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

%
C

P
U

u
ti
liz

a
ti
o
n

(c) Achievable CPU utilization.

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

Number of RT virtual machines

●●0

1000

2000

3000

4000
L
a
te

n
cy

(m
ic

ro
se

c
o
n
d
s
)

0 20 40 60 80 100

Outsourcing

Threaded
interrupt
handling

Exclusive
CPU

●

Non
virtualized

Vanilla

(a) 99th percentile latency of Critical RT servers.

Figure 6-16: Scaling the number of RT virtual machines (Memcached as critical RT
server).

interrupt handling method was less than 1 Gbps. When the number of RT VMs was

greater than 60, the required CPU resources by the Critical RT servers exceeded the

available CPU resources and the latency increased rapidly.

Figure 6-16 shows the experimental results using a memcached server as a Critical

RT server. This is similar to Figure 6-15 using a VoIP server as a Critical RT server.

Compared to the VoIP server, the memchached server had a lower throughput and

lower CPU utilization than the VoIP server, as described in Section 6.7. In terms of

99th percentile latency of the Critical RT server, the outsourcing method scaled up

92

Elapsed time (seconds)

(a) PREEMPT_RT patch only.
Elapsed time (seconds)

(b) PREEMPT_RT patch and parti-
tioned RT softirq handling.

Figure 6-17: Distribution of the Critical RT server in container-based virtualization.

Table 6.6: Statistical values of the Critical RT server response times with running
Heavy Receivers in container-based virtualization (microseconds).

99th

percentile

Standard

deviationMethod Mean

PREEMPT_RT patch only 26.9 48.8 8.6

PREEMPT_RT patch and

partitioned RT softirq handling

17.8 24.6 1.9

to 100 RT VMs. At the same time, the CPU utilization was around 80% and the

throughput of the Heavy Receivers was 9 Gbps.

6.9 Using partitioned RT softirq handling in container-

based virtualization

The outsourcing method comprises two techniques: partitioned RT softirq handling

(Section 4.1) and RT socket outsourcing (Section 5.2). We can use the former tech-

nique in container-based virtualization because an individual container shares the net-

work stack of the host OS. In this subsection, we evaluate this technique in container-

based virtualization.

To evaluate the partitioned RT softirq handling technique in container-based vir-

tualization, we repeated the experiment in Section 6.1 and execute the Critical RT

server and the Heavy Receivers in a Docker container [23]. As similar to the threaded

93

interrupt handling method, we use the PREEMPT_RT patch for Linux in the host

OS.

Figure 6-17 and Table 6.6 present the experimental results. Figure 6-17a shows the

distribution of the latency of the Critical RT server using only the PREEMPT_RT

patch. Figure 6-17b shows that using the partitioned RT softirq handling technique

along with the PREEMPT_RT patch. As shown in these figures and Table 6.6,

the partitioned RT softirq handling technique effusively reduced latency and latency

variances. Using only the PREEMPT_RT patch, 99th percentile latency was 48.8

µs and the standard deviation was 8.9 µs. By enabling the partitioned RT softirq

handling technique, 99th percentile latency was reduced to 24.6 µs and the standard

deviation was reduced to 3.9 µs.

6.10 Current restrictions and limitations

The outsourcing method requires changing the kernel code of the host and guests.

This poses some limitations. Partitioned RT softirq handling is dependent on the

current implementation of Linux networks stacks. We should send this patch to the

developer group of the PREEMPT_RT patch. To use the outsourcing method in a

new guest OS, we have to change the system call layers and the idle process. Previous

work shows that this changing does not require a large effort. For example, socket

outsourcing was also implemented in NetBSD and Windows guests [27,52].

The outsourcing method comprises two techniques: partitioned RT softirq han-

dling (Section 4.1) and RT socket outsourcing (Section 5.2). RT socket outsourcing

method is not needed in container-based virtualization because processes in contain-

ers utilize the host OS’s network stack. In Section 6.9, we have confirmed that par-

titioned RT softirq handling reduces the latency variance in container-based virtual

environments.

In terms of VM management, it is not trivial to migrate VMs that use the out-

sourcing method because we need to obtain the states in the host kernel. We can

obtain the states in the host kernel and implement VM migration using the Check-

94

point/Restore In Userspace (CRIU) tool [19].

95

Chapter 7

Conclusion

In this thesis, we described real-time network stacks of commodity hosted virtual

machine environments.

Chapter 1 described the background, and problem, and objectives of this research.

Real-time (RT) and time-sensitive systems are becoming pervasive. Data centers, for

example, host time-sensitive network servers, such as voice-over IP (VoIP) servers and

web search engines. Recently, it is a common practice to run real-time applications on

commodity OSs, such as Linux. Especially complex real-time systems are often built

on commodity OSs because commodity OSs provide rich networking and graphics

APIs. In this thesis, we define real-time applications as the applications that work

well in non-virtualized or native commodity OSs.

Commodity OSs cannot provide sufficient real-time capabilities for some real-time

applications. To address this problem and realize low consistent latencies, developers

and researchers are developing extensions or patches to commodity OSs.

Commodity OSs continuously evolve and become complex and this causes an

inherent problem. That is, most of these changes favor high throughput over low

latency and small variance of latency. Because improving real-time capabilities of

a commodity OS often decreases throughput, it is usually developed by a separated

group as a patch. Every time the mainline group of developers releases a new version

of the commodity OS for improving throughput, the group of RT developers makes an

RT patch for the new version. This development race is persistent. In this thesis, we

96

chose a crucial problem from this development race. That is, we achieve a real-time

network stack in commodity virtual machine environments.

When data centers host RT servers, they often host non-RT servers in shared

hardware platforms using virtual machines. Such data centers give higher priorities

to the RT servers. Nonetheless, non-RT servers can interfere with RT servers and

cause variances of response times of the RT servers. It is not trivial to find the causes

of these problems because the network stack of the target environment is complex and

evolving. Most existing systems do not solve this problem but bypass the problem.

Data centers often allocate exclusive physical resources to RT servers with sacrificing

CPU utilization.

The research objective of this thesis is to achieve the following goals at the same

time:

• Achieve short and consistent latency for RT servers.

• Obtain high throughput for non-RT servers and avoid low CPU utilization

within the bound of the consistent latency for RT servers.

To accomplish this objective, we propose a new approach to an RT network stack

in a Linux KVM-based virtual machine environment. We call our approach the “socket

outsourcing with partitioned RT softirq handling” method or the outsourcing method

for short.

Chapter 2 described related work. Early systems, such as Lazy receiver processing

(LRP) in 4.4 BSD [24], and prioritized interrupt handling in Solaris [53] add real-

time capabilities to these commodity OSs. RTLinux [5], Time-Sensitive Linux [34],

Resource Kernel [33], and Xenomai [32] add real-time capabilities to the Linux kernel.

While these systems effectively reduced latency variance, the persistent evolution of

the base operating system code introduces new sources of variance. In this thesis,

we have tackled new sources of variance. While RT-Xen [94] improves real-time

capability of Xen by replacing the scheduler, its absolute real-time performance is

poor. Although techniques in [67, 76] increase the throughput by avoiding message

copying, they do not consider latency and latency variance.

97

Socket-outsourcing and similar techniques in [27, 29] offload guests’ high-level

socket operations to the host. These techniques improve throughput by eliminat-

ing message copying and by sending TCP acknowledgment packets efficiently. In this

thesis, we adopt socket outsourcing to eliminate message copying and mitigate the

cache pollution problem. Some techniques such as Polling threads [62], Netmap [80]

and DPDK [59], enable user space applications to send and receive packets by polling

mode and eliminate overheads of interrupt handling in operating systems. To use

these techniques, network applications using the socket API should be modified. In

this thesis, we run unmodified network applications and achieve consistent latency.

Finally, techniques such as [35,36,90] use advanced hardware facilities to improve I/O

performance in VM environments. For example, paper [2] uses Single-root input/out-

put virtualization (SR-IOV) [75] and reduces the latency and latency variance. This

thesis proposes a software-based method for consistent latency.

In Chapter 3, we illustrated the causes of latency variances in vanilla Linux and two

conventional RT methods: the threaded interrupt handling method and the exclusive

CPU method. We used a typical virtual machine environment that hosted two types of

servers: the Critical RT server which is an RT server and receives requests from clients

occasionally and sends response messages to the clients, and the Heavy Receiver which

is a non-RT server and receives messages persistently from clients at the maximum

speed and stresses the receiver-side of the network stack. We measured the latency,

that is, the response times of the Critical RT server, with a hardware monitor (an

Endace DAG 10X2-S card [35]). The exclusive CPU method had the lowest latency

variance compared with vanilla Linux and the threaded interrupt handling method.

However, the exclusive CPU method has a drawback. Because the CPU dedicated to

the Critical RT server did not help to execute non-RT Heavy receivers, this method

yielded less throughput of the Heavy receiver and less achievable CPU utilization.

We divided the message processing path of the Critical RT server into segments

and inserted our own lightweight probes. We identified that most of the latency

variances were located in the “host receive” segment and the “guest” segment. We

confirmed a priority inversion in the interrupt-first host kernel of vanilla Linux. We

98

have found another new priority inversion in the softirq mechanism of the threaded

interrupt handling method. The latency variances in the “guest” segment were caused

by the LLC pollution by the non-RT Heavy Receivers. Not only the threaded interrupt

handling method but also the exclusive CPU method have this problem.

In Chapter 4, we described one of two techniques of our proposed method. We

call this technique partitioned RT softirq handling. Similar to the threaded interrupt

handling method, this technique avoids the priority inversion problem in the interrupt-

first host kernel by using the PREEMPT_RT patch and assigning high priorities to

RT threads. Second, this technique avoids the priority inversion problem in the host’s

softirq handling by dividing softirq handling into RT and non-RT types. We divided

the poll_list of the softirq mechanism into two types: the (non-RT) poll_list for

non-RT softirq handlers, and rt_poll list for RT softirq handlers. Similarly, we divide

the softirq lock into two locks: (non-RT) softirq_lock and rt_softirq_lock. In this

technique, non-RT softirq handlers run with the same priority of the non-RT interrupt

handlers threads and can be preempted by the RT softirq handlers and RT threads.

Chapter 5 described the other technique of our proposed method. We call this

technique RT socket outsourcing. We extended conventional socket outsourcing to

overcome the cache pollution problem. Socket outsourcing allows a guest kernel to

delegate high-level network operations to the host kernel. When a guest process

invokes a socket operation, its processing is delegated to the host. In socket outsourc-

ing, the incoming network messages going to a guest process are handled by the host

network stack. While message copying is performed two times in conventional RT

methods, in socket outsourcing, message copying is performed once. This omission

of copying makes the footprint smaller and reduces the cache pollution by non-RT

servers. This lowers latency variance of RT servers.

Conventional socket outsourcing can face the priority inversion problem in the

softirq mechanism in a guest because it makes use of virtual interrupts. We solved this

problem by removing interrupt handling from a guest OS for receiving RT messages

in RT socket outsourcing. We implement this by extending the idle process of Linux.

This idle process in the guest OS executes a halt instruction and this places the

99

vCPU thread into sleep mode in the host. When the host receives a new message, the

hypervisor does not inject a virtual interrupt but instead, it resumes the VM. The

modified idle process on the guest OS checks the event queue and the states of the

sockets in the shared memory. When the modified idle process notices the arrivals

of new messages, it wakes up the receiving processes and goes back to the scheduler.

The scheduler executes these processes immediately without interrupt handling.

In Chapter 6, we evaluated the outsourcing method by comparing it with the two

conventional RT methods. We performed experiments using a simple RT server in the

experimental environment. Compared to the threaded interrupt handling method, the

proposed method reduced the standard deviation of the latencies of a simple RT server

by a factor of 6, and achieved 5.6% higher throughput and 32% lower CPU utilization.

Compared to the exclusive CPU method, the proposed method reduced the standard

deviation by a factor of 2 and prevented underutilization of the exclusive CPU. Next,

We ran a VoIP server as a Critical RT server and measured the forward delays of

the VoIP server. The outsourcing method had the lowest tail latencies among the

RT methods. In the 99th percentiles results, the outsourcing method had 63% lower

latency than the threaded interrupt handling method and 27% lower latency than

the exclusive CPU method. We performed another application experiment using

Memcached as a Critical RT server. We obtained similar results to that of VoIP.

Finally, we increased the number of RT VMs and evaluated the scalability of these

methods. We ran a Critical RT server in a single RT VM and increased the number of

RT VMs up to 100. The proposed method was more scalable in terms of the number

of RT VMs than the conventional RT methods.

In conclusion, it is challenging to achieve a consistent real-time latency in com-

modity virtual machine environments because they have longer and more complex

network protocol stacks. This thesis analyzed such network stacks, found the causes

of the problems, and proposed a method that achieved consistent latency in a Linux

KVM-based hosted environment. First, this method solved the priority inversion

problem in the interrupt-first host kernel of vanilla Linux using the PREEMPT_RT

patch. Second, this method solved another priority inversion problem in the softirq

100

mechanism of Linux by explicitly separating the RT softirq handling from the non-

RT softirq handling. Finally, this method mitigated the cache pollution problem by

co-located non-RT servers and avoided the second priority inversion in a guest OS by

socket outsourcing.

While the RT socket outsourcing can mitigate cache pollution, advanced hardware

support can also solve this problem. In the future, we would like to use advanced

hardware support, such as Intel’s Cache Allocation Technology (CAT) [40] to further

avoid the cache pollution problem.

Commodity OSs are evolving and becoming complex. We do not see the end

of the development races between improving throughput and achieving consistent

latency. Until the end of the development races, it is important for real-time patch

developers to find the causes of latency variances. While Linux has many performance

measurement tools, they are usually not sufficient for real-time patch developers.

They often have non-negligible probe effects and produce too many event logs. In

this research, we have inserted our own lightweight probes to a small number of

prospective points by hand. We had to repeat experiments as changing probe points.

In the future, we should find a systematic method to develop real-time patches with

better tools.

101

Acknowledgments

The ideas in this thesis, its character and its form have been heavily influenced by the

help and support of several individuals. First, I am grateful for the patience and for

the guidance received from my advisor, Professor Yasushi Shinjo and from Professor

Calton Pu. It was a very enriching experience to work with them.

I would like to thank my committee members, Professor Koichi Wada, Professor

Kazuhiko Kato, Professor Akihisa Ohya, Professor Shuichi Oikawa, and Professor

Yoshihiro Oyama. Their comments and suggestions contributed to improve this work.

I also would like to thank developers and researchers that devote their lives to the

progress of real-time systems.

During my Ph.D. process, I was supported by the Monbukagakusho Scholarship

and by the Monbukagakusho Honors Scholarship, provided by the Ministry of Edu-

cation, Culture, Sports, Science, and Technology of Japan.

Lastly, I would like to express my gratitude to my family and friends, who sup-

ported me from miles away.

102

List of publications

Publications

• O. Garcia, Y. Shinjo, and C. Pu, “Implementation and comparative evaluation
of an outsourcing approach to real-time network services in commodity hosted
environments”, in SCF International Conference on Cloud Computing (CLOUD
2018), pages 189-205, 2018.

• O. Garcia, Y. Shinjo, and C. Pu, “Achieving consistent real-time latency at scale
in a commodity virtual machine environment through socket outsourcing-based
network stacks”, IEEE Access, Vol. 6, pages 69961-69977, 2018.

Other publications

• Chung-Fan Yang, Oscar Garcia and Yasushi Shinjo, “Achieving consistent real-
time latency in a collocated commodity virtual machine environment by LLC
partitioning”, Workshop on Efficient Real-time Data Network (ERDN), 6 pages,
2018.

103

Bibliography

[1] B. Aker. “Libmemcached-Memaslap”. [Online]. Available: http://
libmemcached.org/libMemcached.html, Accessed on: Jun. 3, 2018.

[2] J. Anderson, H. Hu, U. Agarwal, C. Lowery, H. Li, and A. Apon. “Performance
considerations of network functions virtualization using containers”. In IEEE
Computing, Networking and Communications (ICNC), 2016 International Con-
ference on, pages 1–7, 2016.

[3] ARM Limited. “ARM 9 Technical Reference Manual - Cache lockdown”.
[Online]. Available: http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0201d/I33878.html, Accessed on: Aug. 21, 2018.

[4] M. Aron and P. Druschel. “Soft timers: efficient microsecond software timer
support for network processing”. ACM Transactions on Computer Systems
(TOCS), 18(3):197–228, 2000.

[5] M. Barabanov and V. Yodaiken. “Introducing real-time Linux”. Linux journal,
34:9, 1997. [Online]. Available: https://www.linuxjournal.com/article/232,
Accessed on: Jan 3, 2019.

[6] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C. Talier-
cio. “Performance comparison of VxWorks, Linux, RTAI, and Xenomai in a hard
real-time application”. IEEE Transactions on Nuclear Science, 55(1):435–439,
2008.

[7] T. Barbette, C. Soldani, and L. Mathy. “Fast userspace packet processing”. In
Proceedings of the ACM/IEEE Symposium on architectures for networking and
communications systems (ANCS), pages 5–16, 2015.

[8] R. Barry. “FreeRTOS reference manual: API functions and configuration op-
tions”, 2009. [Online]. Available: https://www.freertos.org/Documentation/
FreeRTOS_Reference_Manual_V9.0.0.pdf, Accessed on: Dec. 10, 2018.

[9] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela, S. Van
Der Ster, and L. Stougie. “Preemptive uniprocessor scheduling of mixed-
criticality sporadic task systems”. Journal of the ACM (JACM), 62(2):14, 2015.

104

[10] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza, and S. Papachar-
alambous. Rtai: Real-time application interface. Linux Journal, 29(10), 2000.
[Online]. Available: https://www.linuxjournal.com/article/3838, Accessed
on: Jan. 3, 2019.

[11] A. Burns and R. Davis. “Mixed criticality systems: A review”. Tech. Rep,
Department of Computer Science, University of York, pages 1–69, 2013.

[12] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. “BBR:
Congestion-based congestion control”. ACM Queue, 14(5):50, 2016.

[13] Y. Cheng, Z. Chai, and A. Anwar. “Characterizing co-located datacenter work-
loads: An Alibaba case study”. arXiv, 2018.

[14] L. Cherkasova, D. Gupta, and A. Vahdat. “Comparison of the three CPU
schedulers in Xen”. SIGMETRICS Performance Evaluation Review, 35(2):42–
51, 2007.

[15] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. “HUG: multi-resource fair-
ness for correlated and elastic demands”. In Proceedings of the 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), pages
407–424, 2016.

[16] M. Christofferson. “4 ways to improve performance in embedded Linux systems”.
In Korea Linux Forum, 2013.

[17] D. Comer. “Computer networks and internets”, Pearson, 2015.

[18] A. Crespo, I. Ripoll, and M. Masmano. “Partitioned embedded architecture
based on hypervisor: The xtratum approach”. In IEEE European Dependable
Computing Conference (EDCC), pages 67–72, 2010.

[19] CRIU project. “Checkpoint/Restore In Userspace (CRIU)”, 2018. [Online].
Available: https://www.criu.org/Main_Page, Accessed on: Oct. 18, 2018.

[20] N. L. da Fonseca and R. Boutaba. “Cloud services, networking, and manage-
ment”, 2015.

[21] Danga Interactive. “Memcached - A distributed memory object caching system”,
2015. [Online]. Available: https://memcached.org/, Accessed on: Jun. 3, 2018.

[22] C. Delimitrou and C. Kozyrakis. “Quasar: Resource-efficient and QoS-aware
cluster management”. ACM SIGPLAN Notices, 49(4):127–144, 2014.

[23] Docker Inc. “Docker: Enterprise container platform”. [Online]. Available:
https://www.docker.com/,Accessedon:Dec.17,2018.

105

[24] P. Druschel and G. Banga. “Lazy Receiver Processing (LRP): A network sub-
system architecture for server systems”. In Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementation, pages 261–275,
1996.

[25] E. Dumazet. “Busy polling: past, present, future”. In The Technical Conference
on Linux Networking, pages 1–4, 2017.

[26] F. C. Eigler. “Problem solving with SystemTap”. In Proceedings of the Ottawa
Linux Symposium, pages 261–268, 2006.

[27] H. Eiraku, Y. Shinjo, C. Pu, Y. Koh, and K. Kato. “Fast networking with
socket-outsourcing in hosted virtual machine environments”. In Proceedings of
the ACM Symposium on Applied Computing (SAC), pages 310–317, 2009.

[28] Endace Technology Limited. Endace DAG10X2-S datasheet, 2016. [On-
line]. Available: https://www.endace.com/dag-10x2-s-datasheet.pdf, Ac-
cessed on: Jun. 3, 2018.

[29] S. Gamage, R. R. Kompella, D. Xu, and A. Kangarlou. “Protocol responsibility
offloading to improve TCP throughput in virtualized environments”. ACM
Transactions on Computer Systems (TOCS), 31(3):1–34, 2013.

[30] R. Gayraud and O. Jacques. “SIPp benchmark tool”, 2014. [Online]. Available:
http://sipp.sourceforge.net/, Accessed on: Jun. 3, 2018.

[31] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and Y. Ishikawa.
“On the scalability, performance isolation and device driver transparency of the
IHK/McKernel hybrid lightweight kernel”. In Proceedings of the IEEE Interna-
tional Parallel and Distributed Processing Symposium, pages 1041–1050, 2016.

[32] P. Gerum. “Xenomai - Implementing a RTOS emulation framework
on GNU/Linux”, 2004. [Online]. Available: http://www.xenomai.org/
documentation/xenomai-2.5/pdf/xenomai.pdf, Accessed on: Jun. 5, 2018.

[33] S. Ghosh and R. R. Rajkumar. “Resource management of the OS network
subsystem”. In Proceedings of the 5th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2002), pages 271–
279, 2002.

[34] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. “Supporting time-
sensitive applications on a commodity OS”. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and implementation, pages 165–180,
2002.

[35] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schuster, and
D. Tsafrir. “ELI: Bare-metal performance for I/O virtualization”. In Proceed-
ings of the 17th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 411–422, 2012.

106

[36] A. Gordon, N. Har’El, A. Landau, M. Ben-Yehuda, and A. Traeger. “Towards
exitless and efficient paravirtual I/O”. In Proceedings of the 5th ACM Annual
International Systems and Storage Conference (SYSTOR), pages 1–6, 2012.

[37] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand,
and J. Crowcroft. “Queues don’t matter when you can jump them!”. In Pro-
ceedings of 12th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 1–14, 2015.

[38] Z. Huang, R. Ma, J. Li, Z. Chang, and H. Guan. “Adaptive and scalable
optimizations for high performance SR-IOV”. In IEEE International Conference
on Cluster Computing (CLUSTER), pages 459–467, 2012.

[39] IEEE. “IEEE standard for information technology- portable operating sys-
tem interface (POSIX)- Part 1: system application program interface (API)-
Amendment J: Advanced real-time extensions [C Language]”. IEEE Std 1003.1j-
2000, 2000.

[40] Intel Corporation. “Introduction to Cache Allocation Tech-
nology in the Intel Xeon Processor E5 v4 Family”. [On-
line]. Available: https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology, Accessed on: Jul.
26, 2018.

[41] Intel Corporation. “Intel Ethernet Converged Network Adapter X520
Product Brief”, 2012. [Online]. Available: https://www.intel.com/
content/www/us/en/ethernet-products/converged-network-adapters/
ethernet-x520-server-adapters-brief.html, Accessed on: Jul. 23, 2018.

[42] Intel Corporation. “Intel 64 and IA-32 architectures software developer’s man-
ual”. Volume 3A: System Programming Guide, Part 1, 1:468, 2016.

[43] Intel Corporation and Linux Foundation. “KVM Enhancements for OPNFV”.
[Online]. Available on: http://events17.linuxfoundation.org/sites/
events/files/slides/KVM_Enhancements_final%2B.pdf, Accessed on: Sep.
20, 2018.

[44] “Interactive Realtime Multimedia Applications on Service Oriented Infrastruc-
tures (IRMOS)”. The IRMOS Solution, 2011. [Online]. Available: https:
//irmosproject.seagate.com/Default.html, Accessed on: Oct 27, 2017.

[45] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. “Silo: predictable message
latency in the Cloud”. In ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15), pages 435–448, 2015.

[46] Y. Jiang and Y. Liu. “Stochastic network calculus”, 2008.

[47] R. Jones. “Netperf”, 1996. [Online]. Available: https://
hewlettpackard.github.io/netperf/, Accessed on: Jun. 3, 2018.

107

[48] “Kamailio SIP Server Project”. Kamailio SIP server. [Online]. Available: url-
https://www.kamailio.org/w/, Accessed on: 3 Jun, 2018.

[49] S. J. Kang, J. H. Park, and S. H. Park. “ROOM-BRIDGE: Vertically config-
urable network architecture and real-time middleware for interoperability be-
tween ubiquitous consumer devices in the home”. In IFIP/ACM International
Conference on Distributed Systems Platforms and Open Distributed Processing,
pages 232–251, 2001.

[50] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim. “Inter-domain socket
communications supporting high performance and full binary compatibility on
Xen”. In Proceedings of the 4th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE), pages 11–20, 2008.

[51] J. Kiszka. “Hard Partitioning for Linux: The Jailhouse Hypervisor”, Au-
gust 2015. [Online]. Available: https://events.static.linuxfound.org/
sites/events/files/slides/LinuxConNA-2015-Jailhouse_0.pdf, Accessed
on: Dec. 10, 2018.

[52] Y. Koh, C. Pu, Y. Shinjo, H. Eiraku, G. Saito, and D. Nobori. “Improving
virtualized windows network performance by delegating network processing”. In
Proceedings of the 8th IEEE International Symposium on Network Computing
and Applications, pages 203–210, 2009.

[53] F. Kuhns, D. C. Schmidt, and D. L. Levine. “The design and performance of a
real-time I/O subsystem”. In Proceedings of the 5th IEEE Real-Time Technology
and Applications Symposium, pages 154–163, 1999.

[54] D. Kyriazis, A. Menychtas, G. Kousiouris, M. Boniface, T. Cucinotta,
K. Oberle, T. Voith, E. Oliveros, and S. Berger. “A real-time service oriented
infrastructure”. GSTF Journal on Computing (JoC), 1(2):196–204, 2018.

[55] Y. C. Lee and A. Y. Zomaya. “Energy efficient utilization of resources in cloud
computing systems”. The Journal of Supercomputing, 60(2):268–280, 2012.

[56] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble. “Tales of the tail: Hardware,
OS, and application-level sources of tail latency”. In Proceedings of the ACM
Symposium on Cloud Computing, pages 1–14, 2014.

[57] Z. Lin, Qian and Qi, J. Wu, Y. Dong, and H. Guan. “Optimizing virtual ma-
chines using hybrid virtualization”. Elsevier Journal of Systems and Software,
85(11):2593–2603, 2012.

[58] Linux foundation. “NAPI”. [Online]. Available: https://
wiki.linuxfoundation.org/networking/napi, Accessed on: Jul. 23, 2018.

[59] Linux foundation. “DPDK - Vhost Library”, 2018. [Online]. Available: https:
//doc.dpdk.org/guides/prog_guide/vhost_lib.html, Accessed on: Jan. 3,
2019.

108

[60] Linux foundation. “Perf: Linux profiling with performance counters”, 2018. [On-
line]. Available: https://perf.wiki.kernel.org/index.php/Main_Page, Ac-
cessed on: Jun. 10, 2018.

[61] H. Liu. “A measurement study of server utilization in public clouds”. In IEEE
Ninth International Conference on Dependable, Autonomic and Secure Com-
puting, pages 435–442, 2011.

[62] J. Liu and B. Abali. “Virtualization polling engine (VPE): Using dedicated
CPU cores to accelerate I/O virtualization”. In The 23rd ACM International
Conference on Supercomputing, pages 225–234, 2009.

[63] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis. “Improv-
ing resource efficiency at scale with Heracles”. ACM Transactions on Computer
Systems (TOCS), 34:6:1–6:33, 2016.

[64] R. Love. “The Linux kernel preemption project”, 2000.

[65] Y. Luo. “Network I/O virtualization for cloud computing”. IT professional,
12(5):36–41, 2010.

[66] Mentor, a Siemens business. “Nucleus AMP”. [Online]. Available: https:
//www.mentor.com/embedded-software/nucleus/amp, Accessed on: Dec 13,
2018.

[67] H. R. Mohebbi, O. Kashefi, and M. Sharifi. “Zivm: A zero-copy inter-VM
communication mechanism for cloud computing”. Computer and Information
Science, 4(6):18–27, 2011.

[68] H. Monden. “Introduction to ITRON the industry-oriented operating system”.
IEEE Micro, 7(2):45–52, 1987.

[69] T. Nakajima, T. Kitayama, H. Arakawa, and H. Tokuda. “Integrated manage-
ment of priority inversion in real-time mach”. In Proceedings of the Real-Time
Systems Symposium, pages 120–130, 1993.

[70] E. Naone. “technology overview conjuring clouds”. 112:54–56, 07 2009.

[71] F. Ning, C. Weng, and Y. Luo. “Virtualization I/O optimization based on
shared memory”. In IEEE International Conference on Big Data, pages 70–77,
2013.

[72] A. Nordal, Å. Kvalnes, and D. Johansen. “Paravirtualizing TCP”. In Proceed-
ings of the 6th ACM International Workshop on Virtualization Technologies in
Distributed Computing Date (VTDC), pages 3–10, 2012.

[73] A. Ø. Nordal, Å. Kvalnes, R. Pettersen, and D. Johansen. “Streaming as a
hypervisor service”. In Proceedings of the 7th ACM International Workshop on
Virtualization Technologies in Distributed Computing (VTDC), pages 33–40,
2013.

109

[74] Open platform for NFV. “Opnfv-kvmfornfv Documentation”. [Online].
Available: https://media.readthedocs.org/pdf/opnfv-kvmfornfv/latest/
opnfv-kvmfornfv.pdf, Accessed on: Dic. 12, 2018.

[75] Peripheral component interconnect special interest group (PCI-SIG). “SR-
IOV: Single-root input/output virtualization specifications”. [Online]. Available:
https://pcisig.com/specifications/iov/.

[76] C. Pinto, B. Reynal, N. Nikolaev, and D. Raho. “A zero-copy shared memory
framework for host-guest data sharing in KVM”. In IEEE Scalable Computing
and Communications (ScalCom), pages 603–610, 2016.

[77] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. “Resource kernels: A
resource-centric approach to real-time and multimedia systems”. In Multime-
dia Computing and Networking 1998, pages 150–165. International Society for
Optics and Photonics, 1997.

[78] Red Hat Inc. “Enterprise Linux for Real Time”. [Online]. Available:
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_
Linux_for_Real_Time/7/html/Installation_Guide, Accessed on: Jun. 5,
2018.

[79] Y. Ren, L. Liu, X. Liu, J. Kong, H. Dai, Q. Wu, and Y. Li. “A fast and
transparent communication protocol for co-resident virtual machines”. In 8th
IEEE International Conference on Collaborative Computing: Networking, Ap-
plications and Worksharing (CollaborateCom), pages 70–79, 2012.

[80] L. Rizzo. “Netmap: A novel framework for fast packet I/O”. In Proceedings of
the USENIX Conference on Annual Technical Conference, pages 101–112, 2012.

[81] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. “SIP: Session Initiation Protocol”.
RFC 3261, 2002. [Online]. Available: https://tools.ietf.org/html/rfc3261.

[82] S. Rostedt. “Ftrace - Function Tracer”. [Online]. Available: https://
www.kernel.org/doc/Documentation/trace/ftrace.txt, Accessed on: Sep.
25, 2018.

[83] S. Rostedt. “KernelShark - A front end reader of trace-cmd”. [Online]. Available:
http://rostedt.homelinux.com/kernelshark/, Accessed on: Jun. 10, 2018.

[84] S. Rostedt and D. V. Hart. “Internals of the RT Patch”. In Proceedings of the
Linux symposium, pages 161–172, 2007.

[85] O. Sefraoui, M. Aissaoui, and M. Eleuldj. “OpenStack: toward an open-source
solution for cloud computing”. International Journal of Computer Applications,
55(3):38–42, 2012.

110

[86] R. Shea and J. Liu. “Network interface virtualization: challenges and solutions”.
IEEE Network, 26(5), 2012.

[87] Silicon Labs. “Micrium µC/OS”, 2017. [Online]. Available: https://
www.micrium.com/, Accessed on: Jan. 4, 2019.

[88] V. Sinitsyn. “Understanding the Jailhouse hypervisor, part 1”, 2014. [Online].
Available: https://lwn.net/Articles/578295/, Accessed on: Oct. 1, 2018.

[89] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. “Iperf: The
TCP/UDP bandwidth measurement tool”, 2005. [Online]. Available: http:
//iperf.sourceforge.net, Accessed on: Jun. 3, 2018.

[90] C.-C. Tu, M. Ferdman, C. Lee, and T. Chiueh. “A comprehensive implemen-
tation and evaluation of direct interrupt delivery”. In Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments (VEE), pages 1–15, 2015.

[91] R. van Riel. “Real-time KVM from the ground up”. In KVM Forum, 2016.
[Online]. Available: https://wiki.linuxfoundation.org/_media/realtime/
events/rt-summit2016/kvm_rik-van-riel.pdf, Accessed on: Jan. 3, 2019.

[92] C. Werner, C. Buschmann, T. Jäcker, and S. Fischer. “Bandwidth and latency
considerations for efficient SOAP messaging”. International Journal of Web
Services Research, 3(1):49–67, 2006.

[93] Wind River Systems, Inc. “VxWorks”, 2019. [Online]. Available: https://
www.windriver.com/products/vxworks/, Accessed on: Jan. 4, 2019.

[94] S. Xi, M. Xu, C. Lu, L. T. Phan, C. Gill, O. Sokolsky, and I. Lee. “Real-
time multi-core virtual machine scheduling in Xen”. In IEEE International
Conference on Embedded Software (EMSOFT), pages 1–10, 2014.

[95] Xilinx Inc. “Open Asymmetric Multi Processing (OpenAMP)”. [Online]. Avail-
able: https://github.com/OpenAMP/open-amp, Accessed on: Dec 13, 2018.

[96] P. Xiong, H. Hacigumus, and J. F. Naughton. “A software-defined network-
ing based approach for performance management of analytical queries on dis-
tributed data stores”. In ACM International Conference on Management of
Data (SIGMOD), pages 955–966, 2014.

[97] M. Xu, L. Thi, X. Phan, H.-Y. Choi, and I. Lee. “vCAT: Dynamic cache
management using CAT virtualization”. In Proceedings of the IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 211–222,
2017.

[98] E. Zahavi, A. Shpiner, O. Rottenstreich, A. Kolodny, and I. Keslassy. “Links as a
Service (LaaS): Guaranteed tenant isolation in the shared cloud”. In Proceedings
of the ACM Symposium on Architectures for Networking and Communications
Systems, pages 87–98, 2016.

111

[99] T. Zhu, D. S. Berger, and M. Harchol-Balter. “SNC-Meister: Admitting more
tenants with tail latency SLOs”. In Proceedings of the 7th ACM Symposium on
Cloud Computing, pages 374–387, 2016.

[100] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger.
“Prioritymeister: Tail latency QoS for shared networked storage”. In Proceedings
of the ACM Symposium on Cloud Computing, pages 1–14, 2014.

[101] K. M. Zuberi and K. G. Shin. “Design and implementation of efficient mes-
sage scheduling for controller area network”. IEEE transactions on computers,
49(2):182–188, 2000.

112

