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DHA  docosahexaenoic acid 

EPA  eicosapentaenoic acid 

SP1  secreted protein 1 

SP2  secreted protein 2 

vWF  von Willebrand factor 

YE  yeast extract 

GTY  glucose, tryptone, yeast extract medium 

M4  glucose, low peptone and yeast extract medium 

SDS-PAGE sodium dodecyl sulfate- polyacrylamide gel electrophoresis 

qPCR  quantitative polymerase chain reaction 

HPLC  high performance liquid chromatography 

MS  mass spectrometry 
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JGI  Joint Genome Institute 
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pNPG  4-nitrophenyl-β-D-glucopyranoside 
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4-MU  4-methylumbeferone 

OD660  optical density measured at 660 nm 

rpm  revolutions per minute 

EF-1α  elongation factor 1 α subunit 

Ubi  ubiquitin 

Neor  neomycin resistance gene 

pUbi-Neor plasmid for neomycin resistance gene under ubiquitin promoter 

pEF-Neor plasmid for neomycin resistance gene under EF-1α promoter 

GY  glucose yeast-extract medium 

PY  peptone yeast extract basal medium 

TAGs  triacylglycerols 
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Abstract  

 Thraustochytrids are osmoheterotrophic protists and are a promising group of 

oleaginous microorganisms due to their production of valuable oils. Squalene, a triterpene 

hydrocarbon known for its antioxidant, antitumorigenic and emollient benefits in medicine 

and cosmetics, is accumulated in some strains of thraustochytrids especially in the genus 

Aurantiochytrium. Thraustochytrids can produce extracellular enzymes such as cellulase, 

lipase and protease, to break down organic substrates for nutrition. To circumvent 

production costs in using growth medium, many studies try to grow thraustochytrids in 

cost-effective substrates such as lignocellulosic wastes.  The objective of this study is to 

cultivate the strain Aurantiochytrium sp. 18W-13a, a DHA and squalene producer, in low-

cost carbon source such as cellulosic waste. To achieve this, firstly, proteomic analysis of 

the secretome was done to identify secreted proteins and their signal peptides. After which, 

application of the signal peptide for targeted secretion of a heterologous cellulase, β-

glucosidase from Aspergillus aculeatus (AaBgl), was done for cellobiose utilization. Two 

secreted proteins, SP1 and SP2, were identified with N-terminal signal peptide sequences. 

SP2 contains the von Willebrand factor (vWF) and PAN/APPLE domains, which are 

known to be involved in cell to cell interaction. The signal peptide sequence of SP2 was 

fused to the coding sequence of AaBgl and introduced into the cells by combined 

electroporation and glass bead treatment. The transformant strain, AaBgl+, exhibited 

increasing growth and β-glucosidase activity with cellobiose as sole carbon source. Native 

PAGE zymogram showed an active β-glucosidase enzyme in the supernatant of the AaBgl+ 

strain. Both wild-type and AaBgl+ strains can produce squalene and the fatty acids DHA 

and DPA. This work is one of the first reports in targeted secretion of a functional enzyme 

in thraustochytrids. Moreover, enhanced expression of cellulases has never been done in 

thraustochytrids. I hope that this study could pave way for establishing lignocellulosic 

biomass-degrading thraustochytrid strains.  

 

Keywords: secretome analysis, targeted secreted expression, alternative carbon source 
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General introduction 

 

Thraustochytrids, osmoheterotrophic protists which are decomposers in the marine 

ecosystem, are emerging as promising sources of valuable lipids such as docosahexaenoic 

acid (DHA) and squalene. To decompose organic macromolecules in their environment, 

they are thought to secrete degradation enzymes. However, at present, the secretome 

analysis of thraustochytrids is still insufficiently studied. Although some strains were 

reported to exhibit cellulase, protease and lipase activity (Kanchana et al. 2011; Nagano et 

al. 2011; Liu et al. 2014), in-depth studies of growth and hydrolytic enzyme activity using 

complex organic substrates are few.  

The thraustochytrid strain Aurantiochytrium sp. 18W-13a is a promising source for 

squalene production, as it can produce up to 20% squalene per dry cell weight under 

optimal conditions. Squalene, a triterpene hydrocarbon, is known as a moisturizing agent 

because of its natural antioxidant properties (Nakazawa et al. 2012a). However, studies 

with this strain mainly rely on commercial glucose and peptones as nutrient sources.  

The aim of my study is to cultivate this strain in cost-effective substrates such as 

cellulosic waste, mostly from lignocellulosic biomass which is the most abundant and 

easily accessible carbon source. However, lignocellulose has a complex and recalcitrant 

matrix that needs pretreatment and enzymatic hydrolysis for degradation (Isikgor and 

Becer 2015). In order to achieve this objective, I divided my research into two parts: 1) 

identification of secreted proteins and their signal peptides in 18W-13a and 2) application 

of the signal peptide in the genetic engineering of the strain, specifically for targeted 

secreted expression of a heterologous hydrolytic enzyme. 

Because secretome analysis is understudied in thraustochytrids, Part I aims to 

identify constitutively expressed secreted proteins in 18W-13a under standard laboratory 
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conditions. By identifying constitutively secreted proteins, I can identify signal peptide 

sequences that can be used to tag heterologous protein genes for secretion. In expression 

systems like yeast, the use of homologous or the host’s own signal peptide sequence fused 

with heterologous proteins can enhance protein production, indicating preference of certain 

signal peptide sequences for different organisms. In my study, 18W-13’s own signal 

peptide is used to ensure secretion of the target protein in this organism.  

Part II of the study is the application of the identified signal peptide sequence and 

its fusion to the coding sequence of the target enzyme, β-glucosidase from Aspergillus 

aculeatus (AaBgl). This enzyme is widely used in engineering yeast strains for 

lignocellulose conversion into ethanol and is highly active in degrading 

cellooligosaccharides such as cellobiose (glucose dimer) (Sakamoto et al. 1985b; 

Kawaguchi et al. 1996; Fujita et al. 2002). Electroporation will be used for the introduction 

of the gene cassette into cells and initial screening of transformants in selective medium 

with G418 neomycin antibiotics will be done. Transformant strains with positive insertions 

of transgenes will be evaluated for their β-glucosidase activity. After which, detailed 

evaluation of the AaBgl-expressing strain will be done by cultivating the strain under 

cellobiose as the sole carbon source.  Native polyacrylamide gel electrophoresis (PAGE) 

zymogram analysis will also be done to check for the presence of a functional enzyme in 

the supernatant of the cultures. Also, biomass and lipid analysis, particularly squalene and 

DHA contents, will be measured in the wild-type and transformant strains.  

Ultimately, the research objective of my study is to generate a transformant that 

could express and secrete AaBgl, under the influence of 18W-13a’s own signal peptide, to 

utilize cellobiose as its carbon source, as the initial enzyme for cellulose degradation.  
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Aurantiochytrium sp. 18W-13a 
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Introduction 

 

A wide range of heterotrophic microorganisms are capable of degrading organic 

matter, contributing a significant role in the recycling of nutrients present in the ecosystem. 

Decomposers are cosmopolitan in the environment and they play an important role in 

biomass-rich regions such as mangrove systems (Thompson et al. 2013). Thraustochytrids 

are osmoheterotrophic protists belonging to the class Labyrinthulomycetes (Raghukumar 

2008). They are usually found in mangrove, marine and estuarine habitats and were 

demonstrated to produce a range of extracellular enzymes which can break down and 

mineralize organic matter in such environments (Liu et al. 2014). The cultures of various 

species exhibit activities of cellulase (Nagano et al. 2011), lipase (Kanchana et al. 2011), 

protease, amylase, and glucosidase (Liu et al. 2014; Taoka et al. 2009). However, cultivation 

of these organisms in media containing high-molecular weight organic substrates as carbon 

sources is still understudied.  

Thraustochytrids are also emerging as a promising group of oleaginous 

microorganisms due to their high production of valuable oils, especially -3 fatty acids 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) (Gupta et al. 2012; 

Raghukumar, 2008). Previous studies reported DHA and palmitic acid as the two major fatty 

acids produced by thraustochytrids (Gupta et al. 2016; Gupta et al. 2015; Gupta et al. 2012; 

Ma et al. 2015). Accumulation of squalene, a hydrocarbon precursor in the sterol synthesis 

pathway, has also been studied in thraustochytrids. Squalene is mostly used as a moisturizing 

agent because of its natural antioxidant properties. It has many pharmaceutical and medical 

applications including tumor suppression, antibacterial and antifungal functions (Nakazawa 

et al. 2012a). Recently, the thraustochytrid strain Aurantiochytrium sp. 18W-13a, was found 

to produce high amounts of squalene. Under optimal conditions of 25 °C, 25-50 % (v/v) 
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seawater and 2-6 % (w/v) glucose, squalene content reaches to about 20% of the dry cell 

weight, which is several hundred-fold higher than those previously reported in literature for 

other thraustochytrids (Kaya et al. 2011; Nakazawa et al. 2012a). Screening of different 

labyrinthulomycetes for squalene production showed that Aurantiochytrium species 

accumulate higher amounts of squalene than other genera (Nakazawa et al. 2014).  

Among different carbon and nitrogen sources, glucose and peptones are the preferred 

nutrient sources of many thraustochytrid species (Raghukumar 2008). To circumvent 

production costs caused by expensive growth medium, many studies attempted to grow 

several species in cheaper organic substrates. The utilization of organic waste as low-cost 

carbon source for the cultivation of Aurantiochytrium sp. 18W-13a with squalene as its final 

product is a very promising combinatorial strategy for waste utilization and lipid production. 

Depending on the chemical composition of the organic waste to be utilized, it is desirable 

that the strain used can break down the organic material for energy and as source material 

for its cellular components. Preliminary culture of Aurantiochytrium sp. 18W-13a in simple 

and complex sugars showed its inability to utilize disaccharides and polysaccharides for its 

growth, which may indicate lack of secreted hydrolytic enzymes for these substrates. Thus, 

this necessitates secretome analysis to identify secreted proteins and possible hydrolytic 

enzymes and provide information about adaptation mechanisms of the organism to its 

environment. Part I of this study aims to identify constitutively expressed secreted proteins 

of Aurantiochytrium sp. 18W-13a under standard laboratory growth conditions.  
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Materials and Methods 

2.1. Strain and culture conditions  

 

 The strain Aurantiochytrium sp. 18W-13a was kindly provided by Prof. M. M. 

Watanabe of the Algal Biomass and Energy System Research and Development Center in 

the University of Tsukuba. In order to identify constitutively expressed secretory proteins 

from the strain in different growth stages and culture conditions, I grew the cells under two 

conditions: 1) GTY medium (2% (w/v) glucose, 1% (w/v) Bacto-tryptone (Becton 

Dickinson, Franklin Lakes, NJ), 0.5% (w/v) Bacto-yeast extract (Becton Dickinson), 50% 

(v/v) artificial seawater Marine Art SF-1 (Osakayakken, Osaka, Japan)) at 20°C and 2) M4 

medium (2% (w/v) glucose, 0.15% (w/v) Bacto-peptone, 0.1% (w/v) Bacto-yeast extract, 

0.025% (w/v) KH2PO4, 50% (v/v) artificial seawater) at 30°C, both with shaking at 100 rpm. 

Extracellular proteins and RNA samples were collected at day 0.5, 1.5 and 3, representing 

lag, exponential and early stationary phases, respectively.  

 

2.2. Extracellular protein collection 

Supernatants of the cultures were collected by repeated centrifugation of 100 mL cell 

cultures at 6000×g, 20 °C for 10 min to remove the cells. The clear supernatant was then 

 concentrated using Amicon Ultra-15 centrifugal filter units (Merck, Germany). Buffer 

exchange using 50 mM sodium phosphate buffer (pH 7.0) was done six times to remove any 

residual salts as possible. After concentration, approximately 250 μL of extracellular protein 

extract was collected and the total protein concentration was measured using Quickstart 

Bradford Protein Assay (Bio-rad, USA) with bovine serum albumin as a standard. 
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2.3. Electrophoresis of the proteins and proteomic analysis 

 

 For sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

analysis, 20 µg of the extracellular proteins were loaded unto 7.5% polyacrylamide precast 

e-PAGEL gel (ATTO, Tokyo, Japan) and was run at 24 mA for 1 h. The gels were stained 

using Coomassie Brilliant Blue (CBB) R-250 for visualization and Oriole™ Fluorescent Gel 

Stain for gel excision (Bio-rad). Initially, proteins fractionated on the SDS-PAGE were 

electrically blotted onto a polyvinylidene difluoride (PVDF) membrane (Immobilon P 0.45 

µm, Merck) and stained with CBB R-250. The prominent proteins bands (molecular mass 

60-70 kDa) were excised and the amino-terminal amino acid sequences were analyzed by 

Edman degradation using ABI Procise 494-HT (Applied Biosystems, Foster City, CA) at the 

Functional Genomics Facility, National Institute for Basic Biology, Aichi, Japan. Another 

method using mass spectrometry was also performed for the other candidate protein bands 

(molecular mass > 100 kDa) as previously described (Yoneda et al. 2016). Gel slices were 

destained and digested using sequence-grade modified trypsin (Promega, Madison, WI). 

After which, acetonitrile: 5% (v/v) formic acid aqueous solution 1:1 (v/v) was used to extract 

peptides from the gel pieces. Digested peptides were separated by HPLC with a capillary 

pump (Agilent 1200, Agilent, Santa Clara, CA) equipped with ZORBAX 300SB-C18 

(0.3mm x 150mm, Agilent) column. Mobile phase A (H2O:acetonitrile 95:5 (v/v) containing 

0.1% formic acid) and mobile phase B (H2O:acetonitrile 1:9 (v/v) containing 0.1% formic 

acid) were used for elution at 5 µLmin-1 under the following gradient: ratio of mobile phase 

B started at 5% and increased to 50% for 60 min, then B ratio elevated rapidly to 95% in 1 

min and was maintained at 95% for 14 min. The eluted peptides were applied to an 

electrospray ionization quadrupole time-of-flight (ESI-Q/TOF) system (Agilent 6520 

Accurate-Mass QTOF LC/MS, Agilent). The MS scan range was set to m/z 105-3,000, and 
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multicharged ions (+2, +3 and >+3) were preferentially subjected to MS/MS analysis. 

Obtained data was exported as Mascot generic files. Peptide sequences were queried into a 

local proteome database using Mascot Server (version 2.2.06, Matrix Science, Boston, MA). 

The identified proteins were considered as complete sequences of the related peptides. Also, 

conserved search domain analysis using NCBI (Marchler-Bauer et al. 2015) and BLASTp 

search analysis (Altschul et al. 2005) using Joint Genome Institute (JGI) Aurantiochytrium 

limacinum ATCC MYA-1381 proteome 

(http://genome.jgi.doe.gov/Aurli1/Aurli1.home.html) (Nordberg et al. 2014) were done for 

the identified proteins. Signal peptide prediction using SignalP 4.1 (Petersen et al. 2011) was 

used to determine the presence of a signal peptide sequence within the protein. 

 

2.4. RNA extraction and qPCR analysis 

 

 Combined TRIzol™ Reagent (Ambion, ThermoScientific, Waltham, MA) and 

RNeasy™ Mini Kit (Qiagen, Hilden, Germany) were used for extraction of RNA samples. 

The cDNA was synthesized using Primescript™ RT Reagent Kit with gDNA Eraser (Perfect 

Real Time) (Takara Bio, Ohtsu, Japan).  GoTaq™ qPCR Master Mix (Promega) was used 

for qPCR analysis of transcripts of the extracellular proteins SP1 and SP2, using specific 

primers sp1for (5’-CTATGACAACCACGCCAAAAAG-3’), sp1rev (5’-

ACACAGAACGCCTGCCAAG-3’), sp2for (5’-CCTTTTCTGGCTACTTGGC-3’), and 

sp2rev (5’-AGGTTGGTGCGTCTTTGC-3’). Piko 96 Real-Time PCR System 

(ThermoScientific) and PikoReal Software 2.2 were used to analyze the relative 

quantification in respect to the reference gene, actin, which was amplified using primers 

actinfor (5-CTCTTCCAGCCGTCCTTCATC-3’) and actinrev (5’- 

GGGCGACCATCTCCTTCTC -3’).  
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Results and Discussion 

Extracellular proteins ranging from 50-250 kDa were observed in both GTY (20˚C) 

and M4 (30˚C) media (Fig. 1). Several proteins are constitutively produced under both 

conditions which may signify essential functions. Firstly, I focused on the prominent protein 

bands with 60-70 kDa apparent molecular masses on the gel present in both conditions 

(marked by a bracket in Fig.1) and attempted to determine the N-terminal amino acid 

sequences using Edman degradation sequencing. Results showed that the 60-70 kDa protein 

bands, which appear as diffused bands with different mobilities, possessed basically identical 

17-amino acid sequence (PEMTSFTAIGNNLAIDA) in their N-terminal regions. However, 

Blastp search against a local protein database constructed from the draft genome sequence 

of 18W-13a (unannotated), NCBI’s non-redundant protein and JGI’s Aurantiochytrium 

limacinum ATCC MYA-1381 databases did not yield any significant hits containing this 

protein sequence in the N-terminal regions of any database proteins.  

Mass spectrometry was then attempted to identify other proteins bands (100-250 

kDa). Obtained data were queried against the local protein database. Mascot search showed 

results for two proteins, designated as SP1 and SP2 (marked with arrows in Fig.1) with IDs 

of the local protein database, LPD8921 and LPD1644, respectively. The apparent masses of 

SP1 and SP2 are 250 kDa and 110 kDa, respectively. These values are relatively close to 

their predicted masses of 251 kDa and 110 kDa which were calculated based on their protein 

sequences (with lengths of 2,353 and 1,020 amino acids for SP1 and SP2, respectively) 

(Table 1). Additionally, SignalP 4.1 analysis showed the presence of N-terminal signal 

peptide tags in these proteins (Fig. 3).  

Since the reference database used was the unannotated local protein database, NCBI 

conserved domain search was done to determine any putative functional domains existing 
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within the protein sequences. Conserved domain search showed results only for SP2 which 

contains domains representing the von Willebrand factor (vWF) type A and PAN/APPLE 

superfamilies (Marchler-Bauer et al. 2015) (Table 1). 

The presence of other paralogous and orthologous proteins was then determined 

through Blastp search of the full-length sequences of SP1 and SP2 against the local database 

and the annotated protein database of A. limacinum ATCC MYA-1381 in JGI (Table 1). For 

SP1, one paralogous (E value=0) protein, designated as LPD8920, from the local protein 

database was found.  Two proteins, with protein IDs of Aurli1.3202 and Aurli1.3204 from 

the A. limacinum ATCC MYA-1381 database, are orthologous (E-value=0) to SP1. 

Aurli1.3202 and Aurli1.3204 are annotated as subtilases in the JGI database but the actual 

portions for their subtilase domains are rather short. Conserved domain search for LPD8920, 

Aurli1.3202 and Aurli1.3204 did not show any known functional domains (data not shown), 

similar to the results obtained with SP1. However, interestingly, Constraint-based Multiple 

Alignment Tool (COBALT) (Papadopoulos and Agarwala 2007) showed conserved regions 

among SP1 and its orthologous and paralogous proteins. Additionally, this conserved motif 

appears tandemly within SP1 and LPD8920 protein sequences from 18W-13a while it only 

exists in a single stretch in Aurli.3202 and Aurli.3204 from A. limacinum (Supplementary 

Fig. 1).  These conserved regions could indicate a common function yet to be known. 

Aurli1.3202 and Aurli1.3204 are shorter in length, 1307 and 1094 amino acids, respectively, 

in comparison to the 2353 and 2314 amino acid lengths of SP1 and LPD8920, respectively. 

Another interesting finding is the loci of the coding regions of these proteins within the 

genomes of their respective organisms. The coding regions for SP1 and its paralogous 

protein, LPD8920, were positioned flanking each other in the same scaffold in the local 

genome database of 18W-13a. Similarly, the coding regions for Aurli1.3202 and 

Aurli1.3204 were also located closely to each other in the genomic database of A. limacinum 
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(JGI). Although functional information about these proteins is lacking, it is interesting to 

note that these proteins exist in both species of Aurantiochytrium and, furthermore, the genes 

for the proteins may be duplicated in both Aurantiochytrium genomes. SP1, LPD8920 and 

Aurli1.3204 have N-terminal signal peptide sequences based on the SignalP 4.1 analyses 

(Supplementary Table 1; Fig. 3). 

Blastp search showed only one paralogous protein to SP2, designated as LPD9373, 

from the local protein database. LPD9373 has 824 amino acids while SP2 has 1020 amino 

acids. Conserved domain search for LPD9373 showed a vWF type A domain within the 

protein, like SP2. SignalP 4.1 analysis also showed the presence of a N-terminal signal 

peptide in LPD9373 (Supplementary Table 1). 

To confirm the expression of SP1 and SP2 at a transcript level, I conducted a 

quantitative reverse transcription-PCR analysis using specific primers targeting sp1 and sp2 

transcripts. Actin gene was used to normalize the expression levels. Results showed 

constitutive expression of sp1 and sp2, especially in GTY medium. In relation to actin’s 

expression value of 1.0, relative expression reaches 8-20% under GTY (Fig. 2). The low 

expression seen under M4 could be attributed to lower culture growth, possibly due to less 

nutrients present, in comparison to GTY. 

In previous reports, some species of Aurantiochytrium can grow in different forms 

of cellulose while others cannot. Taoka et al. (2009) reported protease, lipase, urease, 

phosphatase and α-glucosidase but no amylase, gelatinase, cellulase and chitinase activities 

for A. limacinum ATCC MYA-1381 and Aurantiochytrium sp.  mh0186.  The strain 

Aurantiochytrium sp. KRS101 can grow in carboxymethylcellulose, cellobiose, and pre-

treated empty fruit bunch material with better hydrolytic activities observed for cell-

associated fractions compared to extracellular fractions (Hong et al. 2012). Another strain of 
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A. limacinum isolated from a sediment sample can exhibit degradation activity against 

carboxymethylcellulose  (Liu et al. 2014b). It is possible that extracellular enzyme 

production is strain-specific based on the diverse repertoire of enzymes produced by 

different species and strains. Another possible explanation is that enzyme production is 

induced by its substrate and that different species may prefer different substrates for their 

growth. In the analysis of the extracellular proteins in the study, I could not find any proteins 

related to the degradation enzymes. This further necessitates research about the secreted 

proteins and hydrolytic enzymes that 18W-13a can produce. 

This study aimed to identify secreted proteins from Aurantiochytrium sp. 18W-13a 

under standard laboratory culture medium GTY and M4. These two media are composed of 

glucose, tryptone/peptone and yeast extract with GTY medium containing more of the 

protein sources than M4 medium. The protein banding patterns for both GTY and M4 are 

similar even at different timepoints, indicating that many proteins are always produced under 

the influence of standard nutrients such as glucose, tryptone/peptone and yeast extract. Out 

of several candidate proteins, two proteins, SP1 and SP2, were identified using Mascot 

search against a local protein database (Fig.1; Table 1). SP1 has no known function based 

on the absence of known conserved domains in its sequence. Interestingly, this protein has 

homologous proteins in both 18W-13a and A. limacinum ATCC MYA-1381. A conserved 

region in these proteins was found but its function is yet to be known (Supplementary Fig. 

1). SignalP 4.1 prediction confirms the presence of highly probable signal peptide sequence 

tags in the N-terminal regions of these proteins, which could indicate a role in the secretome 

of Aurantiochytrium species. The orthologous proteins of SP1, Aurli1.3202 and 

Aurli1.3204, contain a short subtilase region. A previous study reported over 200 transcripts 

of peptidases including subtilases in a thraustochytrid parasite infecting hard clams, wherein 

these proteins are suspected to play a role in protein degradation of the host tissue (Rubin et 
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al. 2014). While Aurantiochytrium species are not parasitic, some of its proteins might be 

related to the degradation of extracellular macromolecules.  

SP2 contains von Willebrand factor (vWF) type A and PAN/APPLE-like domains 

(Table 1). The vWF type A domain mediates adhesion via metal ion-dependent adhesion 

sites (MIDAS). Proteins containing this domain have several functions including cell 

adhesion, migration and signal transduction. Most of which are eukaryotic extracellular 

matrix proteins such as integrin, collagen and the vertebrate von Willebrand factor, the 

protein that mediates platelet adhesion to collagen. (Whittaker and Hynes 2002; Marchler-

Bauer et al. 2015). The PAN/APPLE-like domain have functions related to protein-protein 

or protein-carbohydrate interactions (Marchler-Bauer et al. 2015). The previously mentioned 

transcriptome of a thraustochytrid parasite contains genes homologous to ligand-binding 

proteins such as lectins, integrins and thrombospodin-related proteins (Rubin et al. 2014). 

With the heterotrophic nature of thraustochytrids, it is possible that secreted proteins may 

play a role in ligand-binding or protein-binding interactions necessary for cell survival. It is 

also possible that some extracellular proteins are involved in cell to cell interaction as many 

thraustochytrids are capable of secreting extracellular polysaccharides (EPS) or extra 

polysaccharides matrix. This matrix contains sugars, proteins, and lipids and it serves as an 

energy or moisture reserve to ensure cells’ survival under periodic changes in their 

environment (Jain et al. 2005).  

Expression of SP1 and SP2 at the transcript level was quantified to evaluate their 

expression at different stages of growth. Both are constitutively expressed with relatively 

higher values (8-20%) under GTY condition in relation to actin (value=1) (Fig. 2). Because 

of their constitutive expression, these proteins’ signal peptide sequence tags may be used in 

constructing secreted protein recombinant vectors. In yeast, the use of homologous or the 

host’s own signal peptide sequence fused with heterologous proteins can enhance protein 
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production, indicating preference of certain signal peptide sequences for different organisms. 

Despite its direct involvement in protein secretion, the exact mechanism of how the signal 

peptide sequence influences overall expression is yet to be known. Synthetic signal peptide 

sequences were used to study which amino acids are essential for the functionality of the 

signal’s core region. However, exact interactions of signal peptide tags with their receptor 

proteins and how these interactions are regulated still remain unsolved (Clérico et al. 2008; 

Yarimizu et al. 2015). The production of secreted proteins in thraustochytrids has not yet 

been done. Information about the secretome of these species may pave the way into 

establishing recombinant expression of extracellular proteins. 
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Conclusion 

 

In conclusion, two secreted proteins SP1 and SP2, were identified and shown to be 

constitutively expressed under standard culture conditions. Signal peptide sequences of these 

two proteins can be used as candidate tags for constructing recombinant extracellular protein 

expression cassettes.  
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Introduction 

 Lignocellulosic biomass, the most abundant and sustainable source of organic 

carbon, is a promising alternative to petroleum and fossil fuels to produce biofuels and 

biomaterials. Due to its recalcitrant nature, pretreatment methods that depolymerize the 

lignocellulose matrix consisting of cellulose, hemicellulose, and lignin is essential to 

expose the substrates for enzymatic or chemical hydrolysis (Isikgor and Becer 2015).  

Consolidated bioprocessing is a strategy that aims to simultaneously conduct enzyme 

production, enzymatic hydrolysis, and fermentation. This is so far the most promising 

approach in lignocellulosic biomass conversion to bioethanol or butanol by the use of robust 

cellulolytic microorganisms (Salehi Jouzani and Taherzadeh 2015). Most strains for the 

consolidated bioprocessing are either naturally cellulolytic or genetically-engineered to 

produce hydrolytic enzymes, such as Clostridium sp., and genetically engineered cellulase-

producing strains of Saccharomyces cerevisiae (Salehi Jouzani and Taherzadeh 2015; Liu et 

al. 2016).  

As mentioned in Part I, I aimed to cultivate Aurantiochytrium sp. 18W-13a in a 

media containing low-cost carbon sources such as cellulose for biomass and oil production. 

Preliminary culture experiments showed the strain’s inability to degrade certain 

polysaccharides such as carboxymethylcellulose for its growth, necessitating genetic 

improvement of the strain’s capability to degrade complex carbon substrates. As the first 

step in developing a strain capable of degrading cellulose, I attempted to express 

extracellularly a β-glucosidase from Aspergillus aculeatus F-50 (AaBgl), a widely used 

cellulase for cellobiose breakdown into glucose in the consolidated bioprocessing yeast 

strains (Fujita et al. 2002; Liu et al. 2016). To secrete the enzyme, I applied a native 

secretion signal sequence, which I previously identified in a secreted protein (SP2) in 

Aurantiochytrium sp. 18W-13a culture (Juntila et al. 2017). This is the first attempt at 
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developing a thraustochytrid strain with enhanced cellulase expression towards the goal of 

utilizing cellulosic biomass as its carbon source. 
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Materials and Methods 

2.1. Reagents and chemicals 

 

All reagents and chemicals used were either analytical or HPLC grade. Bacto-

peptone, Bacto-yeast extract (YE) and Bacto-agar are purchased from Nippon Becton 

Dickinson (Tokyo, Japan). Marine Art SF-1 (produced by Tomita Pharmaceutical, 

Tokushima, Japan and provided by Osaka Yakken, Osaka, Japan) was used to prepare the 

artificial seawater. Most reagents such as glucose, sodium acetate, trisodium citrate, 

sodium carbonate, citric acid, and G418 sulfate are from Fujifilm Wako Pure Chemicals 

(Osaka, Japan). Substrates cellobiose, 4-nitrophenyl-β-D-glucopyranoside (pNPG) and 4-

methyllumbeferyl-β-D-glucopyranoside (4-MUG) were purchased from Tokyo Chemical 

Industry (Tokyo, Japan).  

 

2.2. Strain and culture conditions 

 

 Cultivation of Aurantiochytrium sp. 18W-13a was done using a basal PY medium 

(0.15% (w/v) peptone, 0.01% (w/v) YE, 50% (v/v) artificial seawater) supplemented with 

either 1% glucose or 1% cellobiose as a carbon source at 30°C with shaking at 100 rpm. To 

measure cell growth, the optical density at 660 nm (OD660) was monitored by a 

spectrophotometer, UV-1700 PharmaSpec (Shimadzu, Kyoto, Japan). 
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2.3 Construction of pEF-Neor-Ubi-AaBgl Expression vector 

 

 Vectors pUbi-Neor and pEF-Neor, which contain the neomycin resistance gene 

cassette with the Thraustochytrium aureum ubiquitin or the EF-1α promoter and terminator 

regions, respectively, were kindly provided by Prof. M. Ito from Kyushu University and 

were constructed as previously reported by Sakaguchi et al., (2012). The coding sequence 

for β-glucosidase from Aspergillus aculeatus (AaBgl) (Genbank Accession no. D64088; 

Kawaguchi et al., 1996) was codon optimized based on codon context usage and GC 

content using the Codon Optimization On-Line (COOL) software (Chin et al. 2014). I used 

calculated values for the codon context usage generated from a local transcriptome 

database of Aurantiochytrium sp. 18W-13a. The original signal peptide of the β-

glucosidase was replaced by a native signal peptide (SP) that I previously studied in a 

constitutively secreted protein SP2 (Juntila et al. 2017) ( Fig. 4). Synthetic DNA plasmid 

with the complete coding sequence was synthesized by Eurofins genomics (Tokyo, Japan). 

This plasmid, pTAC-2-β-glucosidase, was used as a template for PCR (polymerase chain 

reaction) amplification of the SP:AaBgl coding sequence for infusion ligation (In-Fusion 

HD Cloning Kit, TakaraBio, Ohtsu, Japan) with the PCR linearized pUbi-Neor to replace 

the Neor fragment with the AaBgl gene. The resulting plasmid, pUbi-AaBgl, was used as a 

template for amplification of the Ubi-AaBgl expression cassette for infusion cloning to 

SpeI-linearized pEF-Neor to generate the final vector plasmid, pEF-Neor-Ubi-AaBgl, 

which contains the expression cassettes for Neor and AaBgl (Fig. 4). All primers that were 

used for infusion cloning and PCR are listed in Supplementary Table 2.  
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2.4. Transformation of Aurantiochytrium sp. 18W-13a 

 

Transformation was done based on the electroporation protocol described by 

Sakaguchi et al., 2012. Cells were grown in GY medium (0.64% (w/v) glucose, 0.22% 

(w/v) yeast extract, 50% (v/v) artificial seawater) for 2 d and the cells in the exponential 

stage (5 x 107 cells/500 µL) were harvested. Glass beads (250 mg per 500 µL) were added 

to the suspension and gently vortexed for 5 sec. After which, the suspension was spun 

down using a benchtop centrifuge for 15 sec to separate the beads from the cell suspension. 

Then, the suspension was centrifuged to collect the cells. A single wash with sterile 50% 

(v/v) artificial seawater was done to remove medium components. After centrifuging and 

ensuring complete removal of seawater, the cell pellet was resuspended in 80 µL 

OptiMEM Buffer (Thermo Fisher Scientific, Tokyo, Japan) with 1 µg of pEF-Neor-Ubi-

Abgl plasmid DNA linearized with NdeI. Electroporation was performed by GenePulser 

Xcell (Bio-Rad, Hercules, CA) under the following conditions: 2 pulses of 750 V, 25 µF, 

200 Ω, 1 mm cuvette. All steps until electroporation were done in ice. Immediately after 

electroporating cells, 1 mL room-temperature GY medium was added to the cuvette for 

recovery. The cell suspension was transferred into a 1.5 mL microcentrifuge tube and 

incubated overnight at 20°C with shaking at 100 rpm. All cells were then plated on 1.5% 

(w/v) agar-solidified GY medium supplemented with 250 µg/mL G418 sulfate. Possible 

transformants that appeared were streaked again on 1.5% agar-solidified GY medium 

supplemented with 500 µg/mL G418 sulfate to confirm their G418 resistance. Then, these 

transformants were cultured in GY medium, and the cells were collected for extraction of 

the genomic DNA and subsequent PCR of the AaBgl and Neor insertion into the 

chromosomes. The culture supernatants of transformants were screened for β-glucosidase 

(BGL) activity using p-NPG as a substrate. Reactions were carried out at 200 mM p-NPG 
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in sodium acetate buffer pH 5 at 50 °C for 30 min. After which, 100 mM sodium carbonate 

was added before measuring  colorimetrically the absorbance at 410 nm (UV-1700). 

Southern blotting was done to determine the number of transgene insertions. Genomic 

DNA of wild-type and AaBgl+ strains (30 µg each) were digested with HindIII and PstI 

with overnight incubation before electrophoresis separation in 0.8% agarose gel. Gel 

preparation and capillary blot transfer to Hybond N+ nylon membrane (GE Healthcare 

Japan, Tokyo, Japan) were done according to the manufacturer’s instructions. The DNA 

was UV crosslinked into the membrane under the optimal settings. After which, a 600 bp 

DNA fragment corresponding to a part of the coding sequence of AaBgl amplified by PCR 

was prepared as a probe and labeled for hybridization using the Amersham Gene Images 

AlkPhos Direct Labelling and Detection system (GE Healthcare Japan). Hybridization and 

post washes were done according to the kit’s instructions. Amersham CDP-Star Detection 

Reagent (GE Healthcare Japan) was used for chemifluorescence detection and the bands 

were viewed using AE-9300H Ez-Capture MG (ATTO, Tokyo, Japan). Out of several 

transformants, one transformant designated as the AaBgl+ showing the highest activity with 

single copy gene insertion was selected for further experiments (Supplementary Fig. 2).  

 

2.5. ApiZYM extracellular enzyme assay 

 

 Cells of wild-type and AaBgl+ strains were grown overnight in PY medium with 

1% glucose before harvesting for ApiZYM strip enzyme assay (bioMérieux, Marcy 

l'Etoile, France). Cultures were centrifuged at 6,000 x g for 10 min and the cell pellet was 

washed with sterile 50% artificial seawater. Final suspension is at 4.0 x 105 cells per 65 µL 

sterile 50% artificial seawater which was inoculated into the microcupules of the ApiZYM 

strip (Gupta et al. 2016). After incubation at 30°C overnight, one drop of ApiZYM A and 
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B reagents were added into the microcupules and incubated for 15 min. Change and 

intensity of the developed color were checked for semi-quantitative evaluation of enzyme 

activities. Preliminary assays were also done using the same method for representative 

Aurantiochytrium species, Aurantiochytrium sp. 18W-13a, Aurantiochytrium mangrovei 

NYH1 and Aurantiochytrium limacinum SR21, with cells from both exponential and 

stationary stages screened for extracellular enzyme activity (Supplementary Table 3).  

2.6. Growth and p-NPG enzyme assay using cellobiose as a carbon source 

 

From glucose-supplemented PY cultures, the wild-type and AaBgl+ strains were 

precultured with 1% cellobiose PY medium for 2 d before the final cultivation experiment 

in 1% cellobiose PY medium for 5 d. Each subculture was initiated at a starting OD660 of 

0.5. To determine β-glucosidase activity, 2 mL culture supernatants were collected by 

centrifugation of cultures at 6000 x g, 20 °C for 10 min, ensuring complete separation of 

cells. Then, the supernatants were concentrated using Amicon Ultra 4 centrifugal filter 

units (Merck, Darmstadt, Germany). Buffer exchange using 50 mM sodium phosphate pH 

7 was done twice to remove residual salts. Approximately 60 µL of extracellular protein 

extract was collected and the total protein concentration was measured using DC Protein 

Assay (Bio-Rad) and Bio-rad Protein Assay (Bio-Rad) according to manufacturer’s 

instructions with bovine serum albumin as a standard. A total of 10 µg protein extract is 

suspended in 200 mM p-NPG in 50 mM sodium acetate buffer pH 5 for incubation at 

30°C, 10 min for enzymatic assay. Then, 100 mM sodium carbonate is added before 

measuring theabsorbance at 410 nm. Normalized enzyme activity is calculated by µmol p-

nitrophenol (PNP) released per min per µg protein.  
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2.6. Native PAGE zymogram 

For Native PAGE, extracellular protein extracts were analyzed in 10-20% gradient 

polyacrylamide precast e-PAGEL gel (E-T1020L, ATTO), run at constant 110 V at 4 °C 

for 2-3 hours. The gel was then rinsed twice with sterile water and 100 mM sodium citrate 

buffer, pH 5, consecutively. Zymogram method consists of incubating the washed gel with 

5 mM 4-MUG in 100 mM sodium citrate buffer, pH 5 at 50 °C for 30 min before 

observing accumulation of the fluorescent 4-MU under the excitation of UV light. The gel 

is then rinsed with water for 3 times before Coomassie Blue staining (Bio-Rad) for 

visualization of the protein bands. 

2.7 β-glucosidase activity assay of soluble and insoluble cellular extracts and extracellular 

extract from the supernatant 

Cellular extracts were isolated using sonication with the soluble and insoluble 

protein fractions separated by centrifugation. To insure complete removal of cell debris 

that may contribute insoluble proteins, the soluble fraction was filtered using a 0.20 µM 

filter. Extracellular fraction was obtained by ultracentrifugation using Amicon Ultra-4 

centrifugal filter units as previously describe in section 2.6. Total protein concentration 

was measured using DC Protein Assay (Bio-Rad). . A total of 20 µg protein extract is 

suspended in 200 mM p-NPG in 50 mM sodium acetate buffer pH 5 for incubation at 

50°C, 15 min for enzymatic assay. Then, 100 mM sodium carbonate is added before 

measuring the absorbance at 410 nm. Normalized enzyme activity is calculated by µmol p-

nitrophenol (PNP) released per min per µg protein.  
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2.8 Biomass and lipid analysis 

The cells were grown in the standard medium GTY (2% glucose (w/v), 1% 

tryptone (w/v) and 0.5% yeast extract (w/v), 50% artificial seawater (v/v)) for 6 days. The 

AaBgl+ transformant was additionally cultivated in 2% cellobiose instead of glucose and 

the medium buffered with 50 mM MES, with initial pH 5.8, to aid in enzyme activity. The 

cells harvested by centrifugation to remove as much medium as possible before drying 

using a centrifugal vacuum concentrator. Gravimetric measurement of the dry weights was 

done for calculation of the total biomass yield (g L-1) and for lipid extraction. Dried cells 

were suspended in 2:1 chloroform:methanol solution with 1 mg squalane and 1 mg 

tricosanoic acid (C23:0) as the internal standards and incubated overnight. After which, the 

suspension was filtered to remove cell debris and the resulting filtrate was mixed with 

0.9% (w/v) NaCl solution. After agitating the mixture, it was allowed to settle and separate 

into aqueous and organic phases at room temperature. Lower organic phase was transferred 

into two pre-weighed new tubes and vacuum evaporated under 370Pa vacuum. After 

complete evaporation of the solvent, the tubes were weighed again to determine the total 

lipid weight. One tube is used for squalene analysis wherein hexane was added to dissolve 

the lipid. The other tube was used for fatty acid analysis and the lipid was dissolved in 0.1 

M HCl-methanol solution and heated at 100 °C for esterification for 1 h. After which, 

addition of hexane-water was done for phase separation. The upper hexane-extract layer 

was collected, and hexane was evaporated using a centrifugal concentrator. Residual fatty 

acid methyl esters were dissolved in hexane for GC analysis. Both squalene and fatty acid 

methyl esters were analyzed in GC-2014 (Shimadzu, Kyoto, Japan) equipped with a CP-

Sil5 CB column (Agilent Technologies, Santa Clara, CA) at starting column temperature of 

60 °C, then 20 °C/min until 130 °C and a further increase to 270 °C at 4 °C/min.  

 



  

27 

Results and Discussion 

 

3.1. Generation of the β-glucosidase expressing strain, AaBgl+ 

 

Several transformants with positive β-glucosidase activity were isolated after 

combined glass bead treatment and electroporation protocol (Supplementary Fig. 2). Initial 

screening of these transformants with confirmed genomic insertions of the AaBgl transgene 

displayed variable β-glucosidase activity. The transformant with the highest activity and 

single copy insertion was designated as the AaBgl+ transformant and was used for further 

experiments. Transgenes were amplified with the expected bands of 2630 bp and 795 bp 

for AaBgl and Neor, respectively (Fig. 5a, 5b). The AaBgl+ strain can grow with neomycin 

resistance of up to 1 mgmL-1 G418 antibiotic concentration. Very few colonies of the wild-

type strain can grow at 100 µg mL-1 G418 at high cell concentration (Fig. 5d).  

 The apiZYM enzyme kit was previously used to semi-quantitatively evaluate the 

expression of extracellular digestive enzymes in thraustochytrid species. A wide range of 

enzymatic activities were observed including alkaline phosphatase, protein arylamidases, 

lipases, napthol-AS-BI-phosphohydrolase and polysaccharide-degrading enzymes such as 

β-galactosidase and N-acteyl-β-glucosaminidase (Gupta et al. 2016). As for the strain 18W-

13a, it exhibited moderate activities of esterase (C4), lipase (C5), leucine and valine 

arylamidases and high activities of acid phosphatase and napthol-AS-BI-phosphohydrolase, 

relatively similar to other species A. mangrovei NYH1 and A. limacinum SR21. However, 

no prominent carbohydrate-degrading activities were observed (Supplementary Table 3). 

This supports the previous statement that 18W-13a cannot utilize complex carbohydrates as 

their C source under standard laboratory conditions (Juntila et al. 2017). The AaBgl+ strain 
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exhibited strong β-glucosidase activity compared to the wild-type strain, as expected due to 

its constitutive expression under the ubiquitin promoter (Fig. 5c). 

Growth assays of the wild-type and AaBgl+ strains exhibited similar trends under 

the basal medium supplemented with 1% glucose as C source. The introduction of the 

AaBgl transgene has no negative effect on the growth of the transformant (Fig. 5e). The pH 

in the glucose containing media were dropped from 6.8 to around 5.6 in 1 d and then 

remained at around 5.6 during further cultivation up to 4 d (data not shown). This might be 

caused by secretion of organic acid wastes from proliferating cells and is observed when 

cells utilize readily available glucose. Thraustochytrids are reported to tolerate a wide 

range of pH values for their growth (Raghukumar 2008). At pH 5.6, Aurantiochytrium sp. 

18W-13a continues to grow, suggesting its tolerance of this pH level. This pH tolerance is 

beneficial to the aim of degrading cellulose as cellulases are optimal at low pH of 4-5. 

Also, low pH values may hinder the growth of possible contaminants, especially at large-

scale production.  

Several methods such as electroporation, particle bombardment and agrobacterium-

mediated transformation have been applied in thraustochytrids’ transformation, particularly 

for establishing proof-of-concept reporter gene expression (Cheng et al. 2012; Sakaguchi et 

al. 2012; Okino et al. 2018). Despite successful transformation results, the applicability of 

certain methods is highly species-specific and there are cases of reproducibility concerns 

due to minute changes in the protocols (Adachi et al. 2017). Similarly, I also experienced 

such difficulties in using standard electroporation method for the 18W-13a strain. The 

addition of a glass-bead treatment that may partially destroy the cell wall for higher chance 

of DNA uptake, as suggested by Adachi et al., 2017, led to obtain transformants while I did 

not get any transformant for electroporation only. The cell wall of thraustochytrids are non-

cellulosic and are made up of circular scales of sulfated polysaccharides. The composition 
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varies under different stages of growth with the zoospores and vegetative cells lacking the 

sulphated polysaccharides (Fossier Marchan et al. 2017). It is possible that due to 

thraustochytrids having diverse life cycle stages with changing cell forms and possible 

changes in cell wall morphologies, the reproducibility and success of transformation are 

highly variable. As for Aurantiochytrium species, cells are thin-walled and are dispersed as 

single cells. In some cases, an amoeboid stage which is similar to  naked protoplasts is 

observed and these cells may be more susceptible for DNA uptake (Fossier Marchan et al. 

2017). Sulphated polysaccharides can possibly hinder DNA interactions due to their 

negative charge. And the use of glass-bead treatment can disrupt this negatively charged 

matrix, allowing higher chance of DNA uptake. 

 

3.2. Growth of AaBgl+ in cellobiose as a carbon source 

 

As the first step in cellulose degradation, I tested the growth of the AaBgl+ strain 

under 1% cellobiose as a sole carbon source. I used a basal-medium with low 

concentrations of initial peptone and yeast extract to minimize the effect of these 

components to the growth, with complete dependence on the carbon source as the main 

nutrient.  

Cultures previously grown at 1% cellobiose-supplemented basal medium for 2 days 

were sub-cultured into the fresh 1% cellobiose medium. A starting optical density of ~0.3-

0.4 and initial enzyme activity of 0.134 mmol PNP min-1 µg-1 protein are enough for the 

initial growth and effective conversion of cellobiose to glucose, supporting cell growth 

during cultivation (Fig. 6). Despite the suboptimal conditions of 30°C and initial pH of 6.4-
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6.8 for enzyme activity, the AaBgl+ strain continued to grow with more cells expressing 

the enzyme and the lowering of the medium pH to 5.6 supporting enzymatic activity. 

The wild-type strain did not grow and has no BGL activity while the AaBgl+ strain 

showed a significant increase in growth, reaching the early stationary phase at d 4. A 

similar trend was observed for β-glucosidase activity (Fig. 6). This is possibly due to 

oversaturation of the enzyme, as more cellobiose is converted to glucose. Due to the low 

protein nutrient and nitrogen sources, excess unutilized glucose may have accumulated in 

the medium which explains the plateauing of both growth and enzyme activity at the later 

stage of cultivation. These results confirm that the AaBgl+ transformantcan successfully 

express functional β-glucosidases which support its growth in cellobiose. This is the first 

report of a fungal enzyme expression, with targeted secretion, in a thraustochytrid species 

for biotechnological and cultivation purposes. 

 Aspergillus aculeatus F-50 is a highly cellulolytic fungus whose β-glucosidase is 

potently active in degrading cellooligosaccharides ranging from cellobiose to cellohexaose 

and can even degrade insoluble cellooligosaccharides with a degree of polymerization of 

20. Optimal activity is achieved under pH 4.0-4.5 and 50°C (Sakamoto et al. 1985a; 

Kawaguchi et al. 1996). At 30°C, reported relative activity is at 20% of the optimal 

activity. With the high affinity of the enzyme to cellooligosaccharides, the relative activity 

does not decrease so much until pH 6. However, there is a sudden decrease to less than 

20% activity for pH 7 and inactivity above pH 8 (Sakamoto et al. 1985a). Finding the ideal 

microorganism for consolidated bioprocessing, which should be capable of high enzyme 

expression and thermotolerance, has been one of the bottlenecks in lignocellulosic biomass 

conversion. Even in using yeast, most of the systems are still limited to 30°C temperature 

(Fitzpatrick et al. 2014). Despite the sub-optimal temperature conditions used in this study, 

β-glucosidase activity at d 0 was still enough to convert cellobiose to glucose for growth. 
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With glucose metabolism and possible release of organic acid wastes, the pH lowering to 

5.6 further supported β-glucosidase activity which supported latter stages of growth. 

 Native PAGE analysis of the extracellular protein fraction showed more bands in 

the AaBgl+ strain than the wild-type strain. This could be due to expression of constitutive 

extracellular proteins with growth and is not evident in the wild-type cells because of their 

state of growth inhibition. Notably, the differentially expressed band above the 150 kDa 

mark showed positive β-glucosidase activity (Fig. 7). Takada et al. 1998 previously 

reported a gel chromatography purified band of 180 kDa for the AaBgl enzyme expressed 

in S. cerevisiae. However, gel filtration of crude cellulases from A. aculeatus F-50 reported 

the molecular weight of AaBgl as 133 kDa (Sakamoto et al. 1985b). Also, expression in 

Aspergillus niger (Baba et al. 2015) and Trichoderma reesei (Nakazawa et al. 2012b) 

yielded relatively the same mass of 130 kDa. This suggests that the mass of the protein is 

variable depending on the glycosylation mechanism present in the host system. In my case, 

the mass of the active enzyme is possibly higher than 150 kDa, with Aurantiochytrium 

having a possibly closer glycosylation mechanism to yeast.  However, this is only an 

estimate as accurate masses cannot be determined through native PAGE analysis. I also 

analyzed the enzyme activity using different fractions which include cellular fractions of 

soluble and insoluble proteins against the extracellular protein fraction in the supernatant. 

Only the extracellular fraction has distinctively high β-glucosidase activity, which 

indicates that most of the functional enzyme is indeed secreted outside the cell (Fig. 8).  

Targeted secretion of the enzyme was done using a native signal peptide sequence 

tag. No consensus has been found in signal peptides besides similar motifs of N-terminal 

basic residue and hydrophobic cores. Substituting with the host’s own endogenous signal 

peptides for those of foreign proteins resulted in enhanced heterologous expression 

especially in yeast. Some studies use synthetic signal peptide sequences to determine 
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essential amino acids and appropriate lengths for the signal’s core regions. However, how 

the signal sequence affects expression levels still remain unsolved (Yarimizu et al. 2015).  

 Due to their capability of degrading diverse substrates, the growth of 

thraustochytrids in complex organic sources has been studied in some native isolates. 

Cellulase activity against carboxymethylcellulose was previously reported in 

thraustochytrid genera Aplanochytrium, Botryochytrium, Oblongichitrium, 

Parietychytrium, Schizochytrium, Sicyoidochytrium, Thraustochytrium, and Ulkenia, but 

not in Aurantiochytrium (Taoka et al. 2009). Schizochytrium DT3 can grow under hemp 

sugar hydrolysate containing mixed reduced sugars, suggesting that sugar hydrolysate from 

lignocellulosic biomass can be used for this strain (Gupta et al. 2015). Pretreatment of 

lignocellulose for hydrolysis into sugars also produces toxic inhibitors such as weak acids 

and aromatics which necessitates the development of lignocellulosic hydrolysate-tolerant 

microbial strains such as Aurantiochytrium sp. FN21, which was domesticated to grow in 

sugarcane bagasse hydrolysate (Qi et al. 2017). Most reports use hydrolysates which 

already contain easily accessible sugars. Only the strain Aurantiochytrium sp. KRS101 was 

reported to exhibit carboxymethylcellulase and cellobiohydrolase activities in both its cell-

free lysate and supernatant fractions, and can use cellulosic materials such as cellobiose, 

carboxymethylcellulose, and pre-treated palm oil empty fruit brunch (Hong et al. 2012). 

Even with existing native strains that can utilize cellulose, strain improvement through 

genetic engineering for enhanced enzyme production may be necessary to fully degrade 

recalcitrant lignocellulosic substrates and utilize the different sugars produced. For 

example, the commercial strain T18 for DHA production, has the enzymes xylose 

reductase and xylose isomerase for xylose utilization. However, xylose utilization of the 

wild-type strain only occurs with additional glucose. Increasing the copy number of xylose 

isomerase and heterologous xylulose kinase expression increased the xylose usage and 
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reduced the intermediate product, xylitol (Merkx-Jacques et al. 2018). Identification of 

cellulase genes and how to induce them are poorly studied in thraustochytrids. In my case, 

I haven’t found a suitable substrate to induce any cellulase activity in 18W-13a and this is 

the main reason why I tried to overexpress a heterologous cellulase in this strain.  

3.3. Biomass and lipid production of AaBgl+ strain 

 

Aurantiochytrium species can accumulate fatty acids such as palmitic acid, DHA, 

DPA and EPA which are stored in forms of triacylglycerols (TAGs) (Kobayashi et al. 

2011; Ishitsuka et al. 2016). They can also produce high amounts of squalene compared to 

other thraustochytrid species (Nakazawa et al. 2014). I analyzed the biomass and lipid 

yields, lipid content, squalene content and DHA content between the wild-type and 

AaBgl+ strains under glucose and cellobiose as a carbon source (Table 2).  

 Accumulation of squalene has also been observed in thraustochytrids especially in 

certain strains of the genus Aurantiochytrium, which is also assumed to be directly 

correlated to its higher carotenoid production (Nakazawa et al. 2014). As stated in part I, 

the strain Aurantiochytrium sp. 18W-13a was extensively studied due to its high 

production of squalene which can reach 20% dry cell weight under optimal conditions 

(Kaya et al. 2011; Nakazawa et al. 2012a; Ishitsuka et al. 2016). Interestingly, using 

coherent anti-stokes Raman scattering spectroscopy (CARS) imaging to visualize and 

distinguish intracellular lipid forms, there is a clear difference in the detection peaks of 

squalene and TAGs in 18W-13a. This suggests that squalene and TAGs do not co-localize 

despite that both are hydrophobic lipids. In particular, squalene is stored in round pore-like 

vacuole-like organelles, possibly as temporary energy or carbon source (Ishitsuka et al. 

2016). This strain can also produce DHA and DPA (docosapentaenoic acid; C22:5),  at 14-

34% and 7-19% of its triacylglycerol (TAG) content, respectively (Matsuura et al. 2012).  
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Squalene contents findings are lower than previous studies. This is most likely due 

to the suboptimal conditions used. I analyzed the lipids at d6, early stationary phase, to 

give an initial comparison between the wild-type and AaBgl+ strains. It is highly possible 

that squalene accumulation comes later during cultivation and is induced by several factors 

including aeration and available carbon and nitrogen nutrients present in the medium. 

Aside from producing squalene, both strains can produce myristic (C14:0), 

pentadecanoic (C15:0), palmitic (C16:0), heptadecanoic (C17:0), docosapentanoic 

(DPA/C22:5) and DHA (C22:6) fatty acids, in agreement with previous reports (Matsuura 

et al. 2012; Tani et al. 2018). Interestingly, DHA contents are at a slightly higher range 

than squalene contents. Again, both squalene and DHA contents can be improved with 

modifications in growth conditions.   
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Conclusion 

 

 The transformant strain, AaBgl+, was obtained after transformation using a 

combined glass bead treatment and electroporation. As expected, transgenes of the 

selective marker NeoR (neomycin resistance gene) and AaBgl gene were present in the 

transformant, with neomycin resistance of up to 1 mg/mL G418 antibiotic. Only the 

AaBgl+ strain could grow under cellobiose as the C source with increasing growth and 

enzyme activity during cultivation. Native PAGE analysis of the extracellular proteins 

showed the presence of a differentially expressed band slightly above 150 kDa which has 

β-glucosidase activity. With these results, the application of SP2’s signal peptide sequence 

for secretion of AaBgl is successful, in conclusion, to part II. Also, biomass and lipid 

analysis showed relatively same yields. Both the wild-type and AaBgl+ strains can produce 

both squalene and DHA at relatively the same range, which can be further improved based 

on culture conditions. This strain is a promising source of both valuable oils.  
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General Discussion 

 

 A promising characteristic of thraustochytrids is their capability to produce 

extracellular enzymes. It is of great interest to study their mode of nutrition, survival, and 

competition against other microorganisms in the diverse ecosystems. It is possible that 

extracellular enzyme production is strain-specific and may be possibly induced by different 

substrates. This further necessitates research about the secreted proteins and hydrolytic 

enzymes of thraustochytrids. My work with the secreted proteins of 18W-13 showed the 

constitutive expression of several proteins under standard laboratory conditions. Two 

proteins, SP1 and SP2, were further analyzed for their conserved regions and signal peptides. 

Particularly, SP2 contains vWF and PAN/APPLE-like membranes which may be involved 

in cell to cell interaction. With this, I decided to use SP2 signal peptide sequence for the 

targeted expression of the heterologous cellulase, AaBgl, to generate transformants that can 

utilize cellobiose as the first step in cellulosic biomass utilization.  

The enzyme AaBgl, Aspergillus aculeatus β-glucosidase, is widely-used for 

consolidated bioprocessing yeast strains for bioethanol production. Similarly, I aimed to 

generate a consolidate bioprocessing strain of 18W-13a for conversion  of cellulosic waste 

into biomass and valuable oils. 

Thraustochytrids is is a promising expression platform for enzymes and valuable 

proteins. Targeted expression has also been done in Aurantiochytrium limacinum ATCC 

MYA-1381 for EGFP expression in the mitochondria and endoplasmic reticulum using 

organelle-specific targeting and/or retaining signals (Okino et al. 2018). Aside from reporter 

genes used in testing transformation protocols, several studies have been conducted to 

enhance the fatty acid production of Aurantiochytrium species. Suen et al. 2014 reported the 
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expression of Vitreoscila stercoraria hemoglobin (VHb), which can increase dissolved 

oxygen levels intracellularly by effective uptake of oxygen, in Aurantiochytrium sp. MP4 

and SK4 after electroporation transformation. Thraustochytrids are aerobic organisms and 

their growth is greatly affected by dissolved oxygen levels. Both strains show increased 

biomass with VHb with the MP4 strain producing 44% higher total fatty acids and 9-fold 

astaxanthin contents than the wild-type strain. Another study increased the amount of EPA 

production in A. limacinum mh0186 by overexpression of the Thraustochytrium auream ∆5 

desaturase, which could efficiently convert existing or added eicosatetraenoic acid (ETA) to 

EPA (Kobayashi et al. 2011). 

In my work, I was able to a generate a transformant, AaBgl+, that could express and 

secrete AaBgl, under the influence of its own local or endogenous signal peptide. The 

secreted AaBgl enzyme was functionally active and can support the growth of the strain 

under cellobiose as the sole carbon source. This work is one of the first attempts in secreting 

a functional enzyme in thraustochytrids. Moreover, it is the first step towards the aim of 

establishing a cellulose-degrading strain as a potential platform for lignocellulosic biomass 

conversion into valuable products such as squalene and DHA.  
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Tables and Figures 

Table 1. Description of secreted proteins, SP1 and SP2, based on NCBI conserved domain 

search, Blastp and SignalP 4.1 analyses.  

Name 

Length 

(a.a) 

Mass 

(kDa) 

Mascot 

Score 

Seq. 

Coverage 

SignalP 

4.1 

NCBI Conserved Domain Search 

Accession 

no. Name 

SP1 

(LPD8921) 
2353 251.42 546 7% Secreted -- --- 

SP2 

(LPD1644) 

1020  110.17 316 17% Secreted smart00327 

 

 

cl00112 

von 

Willebrand 

factor (vWF) 

type A domain 

(61-166/655-

786) 

PAN/APPLE-

like domain 

(378-426) 

(Continued) 

Name Blastp Analysis 

 Protein ID Score Annotation 

SP1 

(LPD8921) 

Local protein database 

                    LPD8920 

A.limacinum ATCC MYA-1381 (JGI) 

                      Aurli1.3202 

                      Aurli1.3204 

  

7307 

  

8974 

8883 

  

       --- 

  

subtilase 

subtilase 

 SP2 

(LPD1644) 

Local protein database 

                     LPD9373 
A.limacinum ATCC MYA-1381 (JGI) 

                      not detected 

  

776 

        

       --- 
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Figure 1. SDS-PAGE analysis of extracellular proteins expressed under GTY and M4 

culture conditions collected at different time points day 0.5, 1.5 and 3. 
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Figure 2. Relative expression of the sp1 and sp2 genes against the gene for actin 

(value=1.0) under GTY and M4 culture conditions at different time points day 0.5, 1.5 

and 3. Error bars represent standard deviation (n=3). 
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 Figure 3. SignalP 4.1 analysis of the N-terminal sequences (showing first 70 amino 

acids) of SP1 and SP2. C-score is the raw cleavage site score used to distinguish the 

cleavage sites. S-score is the signal peptide score used to distinguish signal peptide regions 

apart from mature protein regions and proteins without signal peptides. Y-score is a 

combined geometric average of the C-score and the slope of the S-score which can predict 

better cleavage site than C-score alone.  
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Figure 4. Vector map of pEF-Neor-Ubi-AaBgl showing distinctive features such as 

promoters (EFαPro and UbiPro), terminators (EFαTerm and UbiTerm) and coding 

sequences for Neor and AaBgl. Under the vector map is the N-terminal sequence of the 

AaBgl coding sequence with designated features for the signal peptide of SP2 and the 

mature peptide of AaBgl.  
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Figure 5. Generation of AaBgl+ transformant with high expression of Neor and AaBgl 

genes. A) Expression vector for neomycin resistance (Neor) and A. aculeatus beta-

glucosidase (AaBgl) genes. Strain 18W-13a’s own signal peptide (SP) was used as a tag for 

extracellular expression of AaBgl. B) PCR detection of transgenes in wild-type and 

AaBgl+ strains. C) ApiZYM enzymatic assay kit showing positive acid phosphatase and 

phosphohydrolase in both strains and high activity of β-glucosidase in AaBgl+ 

transformant. D) G418 sensitivity assay of WT and AaBgl+ strains. E) Growth (OD660) of 

WT and AaBgl+ strains under basal PY medium supplemented with 1% glucose as C 

source.  
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Figure 6. Growth and β-glucosidase (BGL) activity of wild type (●) and AaBgl+ () 

strains in basal PY medium supplemented with 1% cellobiose as C source. Black and 

red colors indicate growth and β-glucosidase activity, respectively.  
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Figure 7. Native PAGE Zymogram of extracellular proteins in the supernatant of 

wild-type and AaBgl+ strains. A differentially expressed band (arrow) found above the 

150 kDa mark shows positive fluorescence of 4-MU (4-methylumbelliferone) as the 

product of β-glucosidase activity.  
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Figure 8. β-glucosidase activities of the cellular extracts of soluble and insoluble proteins 

and the extracellular extract from the supernatant. Enzyme activity is normalized to the 

protein content tested using the p-NPG assay.  
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Table 2. Biomass, lipid and squalene analysis of wild-type and AaBgl+ strains under 

glucose and cellobiose as C sources after 6 days cultivation.  

Strain 

& C source 

Biomass 

yield 

(gL-1) 

Lipid yield 

(gL-1) 

Lipid Content 

(% dw) 

DHA Content 

(%dw) 

Squalene 

Content (% dw) 

Wild-type 

Glucose 

Cellobiose 

 

5.67 ± 0.37 

- 

 

2.15 ± 0.07 

- 

 

38 ± 2.00 

- 

 

0.41 ± 0.03 

- 

 

0.27 ± 0.02 

- 

AaBgl+ 

Glucose 

 

4.28 ± 0.35 

 

1.26 ± 0.21 

 

29.33 ± 2.31 

 

1.32 ± .09 

 

0.60 ± 0.21 

Cellobiose 4.72 ± 0.23 1.28 ± 0.25 27.33 ± 6.43 0.71 ± .07 0.66 ± 0.05 
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Supplementary Material 

Supplementary Figure 1. Alignment of the homologous regions of SP1, LPD8920, 

Aurli1.3204 and Aurli1.3202 using COBALT (graphics produced through CLC Sequence 

Viewer 7.7). Guide numbers for amino acid position are seen on the right side of the 

sequence. Bars show conservation percentage of a certain amino acid at each position.  
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Supplementary Table 1. List of paralogous and orthologous proteins to SP1 and SP2. 

Paralogous Proteins (local protein database) 

Name Amino acid 

length 

NCBI conserved search 

domain 

SignalP 4.1 

LPD8920 2314 - Secreted 

LPD9373 824 vWFA domain (552-760) 

PAN/APPLE domain (216-

291) 

PT repeat (298-320) 

Secreted 

Orthologous Proteins (JGI A. limacinum ATCC MYA-1381) 

Name Amino acid 

length 

Annotation SignalP 4.1 

Aurli1.3202 1307 Subtilase Not secreted 

Aurli1.3204 1094 Subtilase Secreted 
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Supplementary Table 2. List of primers used for infusion and PCR.  

Primer Name Sequence Purpose 

INF_ubi_AABgl_F1 GCAACACTAGCCAACATG

GCCAACATGCCGCGG 

infusion to pUbi-Neor, check 

ABgl insertion to genome 

INF_ubi_AABgl_R1 CATACTACAGATAGCTTA

CTGCACTTTGGGAAGTGC

TGC 

infusion to pUbi-Neor 

check ABgl insertion to 

genome 

ubiProR GTTGGCTAGTGTTGCTTA

GGTCGCT 

linearization of pUbi-Neor for 

infusion 

ubitermF GCTATCTGTAGTATGTGC

TATTCTC 

linearization of pUbi-Neor for 

infusion 

pEFubi1611F2 CCGTCTTTCGACTAGCCTT

ATCGTTTAGGGAAGG 

Infusion of Ubi-Abgl to pEF-

Neo r 

pEFubi1611R2 GCTTGCATGCACTAGGA

ATTGGGCCCGACGTCG 

Infusion of Ubi-Abgl to pEF-

Neo r 

NeoRFor ATGATTGAACAGGACGG

CCTTC 

Check Neor 

 insertion to genome 

NeoRRev TCAAAAGAACTCGTCCA

GGAGG 

Check Neor 

 insertion to genome 
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Supplementary Table 3. Semi-quantitative results for ApiZYM extracellular enzyme 

activity assays for strains Aurantiochytrium sp. 18W-13a (18W-13a), A. mangrovei NYH1 

(NYH1) and A. limacinum SR21 (SR21) at exponential (E) and stationary stages (S). 

Values range from 0 (no activity) to 5 (highest activity).  

 18W-13a NYH1 SR21 

Cultures E S E S E S 

Control 0 0 0 0 0 0 

Alkaline phosphatase 0 0 0 0 0 0 

Esterase (C14) 1 1 1 1 1 1 

Esterase (C8) 1 1 1 1 2 2 

Lipase (C14) 0 0 0 0 1 0 

Leucine arylamidase 1 1 2 1 5 5 

Valine arylamidase 1 1 1 1 2 1 

Cysteine arylamidase 0 0 0 0 1 0 

Trypsin 0 0 0 0 0 0 

α-chymotrypsin 0 0 0 0 0 0 

Acid phosphatase 3 5 5 5 5 5 

Phosphohydrolase 3 4 4 5 5 5 

α-galactosidase 0 0 0 0 0 0 

β-galactosidase 0 0 0 0 0 0 

β-glucuronidase 0 0 0 0 0 0 

α-glucosidase 0 0 0 0 0 0 

β-glucosidase 0 0 1 1 0 0 

β-glucosaminadase 0 0 0 0 0 0 

α-mannosidase 0 0 0 0 0 0 

α-fucosidase 0 0 0 0 0 0 
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Supplementary Figure 2.  A) Screening of BGL activity in the supernatants of 

transformants with AaBgl gene insertions. B) Southern blot hybridization of AaBgl probe 

(600 bp) using 30 µg genomic DNA digested with HindIII and PstI from the WT, J3M and 

J3N strains. J3M, designated as AaBgl+ transformant strain, was selected for its high BGL 

activity and single copy insertion.  
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