1	South-coast cyclone in Japan during El Niño-caused warm winters
2	
3	Hiroaki Ueda ^{1,*} , Yuusuke Amagai ¹ and Masamitsu Hayasaki ²
4	
5	¹ University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
6	² National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
7	
8	Submitted to Asia-Pacific Journal of Atmospheric Sciences
9	September 20, 2016
10	Revised December 22, 2016
11	
12	*Dr. Hiroaki UEDA
13	Faculty of Life and Environmental Sciences
14	University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
15	Phone:+81 (29) 853-4756; Fax: +81(29) 853-6879
16	E-mail: ueda.hiroaki.gm@u.tsukuba.ac.jp
17	

18 Abstract:

19 La Niña conditions during boreal winter sometimes brings excessive snowfall in Japan, 20especially on the East Sea/Sea of Japan coastal and mountain areas through intensified 21northwesterly cold winds caused by La-Niña related atmospheric teleconnection. 22Meanwhile, snowfall events also increase in the Pacific coast area of Japan during the 23El Niño state due to extratropical cyclones passing along the south coast of Japan 24(hereafter referred to as South-coast cyclone). In the present study, we investigated 25year-to-year snowfall/rainfall variations based on meteorological station data and 26cyclone tracks identified by using the Japanese 55-year Reanalysis. The result clearly 27indicates increase of the South-coast cyclone during El Niño-developing winters, which 28is consistent with excessive snowfall in the northern part of the Pacific coast. Strong 29subtropical jet hampers cyclogenesis due to less vertical interaction through the trapping 30 of upper-level eddies. During El Niño-developing winters, the subtropical jet is 31weakened over East Asia, indicating dynamic linkage to increased cyclone frequency. 32In addition to this, both the deepening of the upper-tropospheric trough over East Asia 33 and anomalous low-tropospheric northwest anticyclones extending from the Philippines

34	toward Japan are also consistent with the enhancement of cyclogenesis over the East
35	China Sea as well as warm winter in Japan.
36	
37	
38	Key words: South-coast cyclone, excessive snowfall, ENSO, teleconnection
39	

1. Introduction

41	Japan is known as one of the southern limits of heavy snowfall in the world.
42	Climatologically, snowfall along the East Sea/Sea of Japan, including the
43	mountainous regions, is closely associated with the East Asian winter monsoon
44	(EAWM), which originates from the Siberian high and converges into the Aleutian
45	low (Matsumoto, 1992). The relatively drier and colder air mass becomes more
46	unstable stratification through the absorption of a large amount of moisture
47	evaporated from the East Sea/Sea of Japan (Manabe, 1957), which brings heavy
48	snowfall over the backbone range of the Japanese Islands. Therefore, variations of
49	snowfall associated with cyclone activities are of great scientific and social
50	importance, attracting much attention in view of the cold air outbreaks related to the
51	EAWM toward the subtropics as well as the tropics (e.g., Chang et al., 1980; Zhang
52	et al., 1997; Gong et al. 2014).
53	The modulation of the EAWM depends upon several factors. Among these, the
54	Arctic Oscillation (AO) is a major candidate. Wang et al. (2010) showed that the
55	Northern mode of EAWM has close relationship with AO, particularly after 1970s

56	(Yun et al. 2014). Whilst several studies have shown that the AO and the main body
57	of EAWM are almost independent of each other (Wu and Wang, 2002; Kawamura
58	and Ogasawara, 2007; Nan and Zhao, 2012), requiring alternative physical
59	processes. Recently, Ueda et al. (2015) revealed that anomalous convection in the
60	tropical western Pacific during La Niña events (a cold episode of El Niño) can
61	explain the enhancement of a northwesterly wind embedded in the EAWM together
62	with intensified low pressure over and around Japan through an atmospheric
63	teleconnection of tropical origin. The reverse is almost true in the case of El Niño,
64	which favors less snowfall on the East Sea/Sea of Japan coast.
64 65	which favors less snowfall on the East Sea/Sea of Japan coast. In contrast to the East Sea/Sea of Japan coast, the Pacific coast is characterized by
65	In contrast to the East Sea/Sea of Japan coast, the Pacific coast is characterized by
65 66	In contrast to the East Sea/Sea of Japan coast, the Pacific coast is characterized by fine weather through the mountain-caused Föhn phenomenon. Meanwhile,
65 66 67	In contrast to the East Sea/Sea of Japan coast, the Pacific coast is characterized by fine weather through the mountain-caused Föhn phenomenon. Meanwhile, South-coast cyclone originating from the East China Sea, which travel eastward
65 66 67 68	In contrast to the East Sea/Sea of Japan coast, the Pacific coast is characterized by fine weather through the mountain-caused Föhn phenomenon. Meanwhile, South-coast cyclone originating from the East China Sea, which travel eastward over the Kuroshio region along the south coast of Japan, occasionally bring wet

 $\mathbf{5}$

72	obstructing traffic and damaging agriculture. It has been widely known that the
73	winter air temperature in Japan becomes relatively warmer during warm El Niño
74	episodes, which are characterized by weakened EAWMs (e.g., Wang et al., 2000).
75	The anomalous climate state around Japan is consistent with a reduction of the
76	east-west pressure gradient around Japan. Consequently, anomalous low-pressure
77	field emerges over the Northwest Pacific to the south of Japan, which may give rise
78	to generation of the South-coast cyclone through northward advection of warm and
79	moist air. It has been revealed that the Pacific storm track during the El Niño shifts
80	equatorward in response to the changed in the subtropical jet relevant to modulation
81	of the Hadley circulation (e.g., Trenberth and Hurrell, 1997; Straus and Shukla,
82	1997). These changes cause downward development of storm track and resultant
83	enhancement of cyclogenesis (Chang et al, 2002). Numerous studies have greatly
84	advanced our knowledge of the influence of ENSO or AO on EAWM (e.g., Wang et
85	al. 2010, Yun et al. 2014) including precipitation change (Ropelewski and Halpert,
86	1987). The other teleconnection pattern such as North Atlantic Oscillation (Ueno,
87	1992) or Eurasian pattern (Tachibana et al., 2007) also affects the South-coast

88	cyclone. Yamazaki et al (2015) revealed the influence of atmospheric blocking over
89	the northwestern Pacific on heavy snowfall events in Japan through intrusion of cold
90	air mass from the polar region and resultant changes in cyclogenesis. Observed
91	changes in the cyclones especially obtained from cyclone-tracking method (see
92	methods), however, cannot establish statistical and physical explanation between the
93	South-coast cyclone and amount of rainfall/snowfall in Japan. Therefore, the aim of
94	the present study is to identify cyclone activities, especially focusing on the
95	South-coast cyclone along the south coast of Japan from the perspective of ENSO
96	fluctuations.
97	
98	2. Data and Methods
99	Procedures for identifying and tracking cyclones were based on Serreze et al.
100	(1993) and have been used in some previous studies (Hayasaki and Kawamura,
101	2012; Hayasaki et al., 2013). As noted in these studies, the cyclone-tracking
102	algorithm is good enough to detect individual cyclones and to trace their paths with
103	the exception of small-scale cyclones (e.g., secondary cyclones along a front,

104	thermal lows in land areas). Because the details of cyclone tracking procedures have
105	been mentioned in previous studies, we overview them only briefly. Sea level
106	pressure data on linear lat-lon grids were converted into the Equal-Area Scalable
107	Earth (EASE) grid, which has 145x145 grids with a 125-km interval at the North
108	Pole (Fig. 1). The cyclone center was identified by the SLP minimum, which is
109	smaller than or equal to 0.5 hPa in the surrounding grids. Cyclone centers identified
110	in successive time steps were connected if the cyclone center candidate was located
111	within four grids of the target centers in the previous time step. Long-term SLP data
112	taken every six hours was obtained from the Japanese 55-year Reanalysis (JRA-55)
113	from 1958–2016 (Kobayashi et al., 2015).
114	Now, we focus on the South-coast cyclone along the south coast of Japan. It is
115	well known that the South-coast cyclone typically originates in the East China Sea
116	and move eastward-northeastward along the Kuroshio (cf., Nakamura et al., 2012).
117	The cyclone tracks were selected by the geographical paths of identified cyclones
118	that travel in the southern part of the Japanese Islands (the surrounding area in Fig.

119	1). We also used the daily rainfall and snowfall in Japan (149 stations) provided by
120	the Japan Meteorological Agency for the period between 1961 and 2016.
121	
122	
123	3. South-coast cyclone and the ENSO
124	a. Observed rainfall/snowfall anomalies
125	The year-to-year variation of the multivariate ENSO index (MEI) based on six
126	observed variables over the tropical Pacific (Wolter and Timlin, 2011) is shown in
127	Fig. 2. The positive (negative) values indicate the El Niño (La Niña) state. During
128	the last 56 years (1961–2016), we choose the top 10 El Niño (open circles) and La
129	Niña (open triangle) events. Based on these criteria, we examined the composite
130	differences in the cyclone track frequencies between El Niño and La Niña conditions.
131	Climatologically, South-coat cyclone is generated in the East China Sea and moves
132	northeastward along the Kuroshio, having its peak to the south of Kanto-plain
133	including Tokyo. During El Niño years (Fig. 3b), cyclone track frequencies are
134	relatively large over the Pacific, especially off of Japan's south coast as compared

135	with those in La Niña years (Fig. 3c). The salient anomalies are recognizable in the
136	composite differences between El Niño and La Niña (Fig. 3d). The same analysis
137	was applied for rainfall (Fig. 4a) and snowfall (Fig. 4b). A distinct contrast can be
138	seen between the Pacific coastal area and the East Sea/Sea of Japan coast with the
139	exception of Hokkaido (Japan's northern big island). Rainfall anomalies are positive
140	along the Pacific coast, while they are negative along the East Sea/Sea of Japan
141	coast; this is consistent with the cyclone track frequencies. Rainfall and snowfall
142	anomalies in Tokyo during El Niño show a 30% increase relative to La Niña (Table
143	1). A significance test for employing Student's statistics confirmed that those
144	increasing and decreasing tendencies in regional rainfall and snowfall are significant
145	at the 5% level. A slight month-to-month difference is recognizable in winter, while
146	the DJF-mean better characterizes the relationship between cyclone track frequencies
147	and rainfall/ snowfall variations throughout the winter season. This is due to the
148	prolonged anomalous anticyclone over the tropical Northwest Pacific caused by the
149	mature stage of El Niño together with Kelvin-wave divergence anchored with
150	delayed basin-wide warming of Indian Ocean in the El Niño winter (Xie et al., 2016).

151	Taking a closer look at the regional differences in snowfall anomalies, one may
152	notice that the values are relatively small in the southern part of Japan facing the
153	Pacific Ocean. This can be attributed to the relatively warmer air temperatures as
154	compared with those in the northern part of Japan. In other words, distinct snowfall
155	anomalies are recognizable in the area north of Tokyo, including the northeastern
156	provinces, called the Kanto area.
157	
158	b. Physical background for the modulation of cyclone track frequencies
159	The present study concerns how cyclone track frequencies are modulated in
160	relation to the ENSO condition. Figure 5 shows the composite anomalies of the
161	circulation fields of the major (top 10) El Niño minus La Niña events. In the upper
162	troposphere (Fig. 5a), twin anomalous anticyclones are recognizable over the
163	tropical eastern Pacific, striding across the equator, accompanied by warmer air
164	temperatures. This is a typical atmospheric Rossby response caused by the enhanced
165	convection relevant to the underlying warm SST anomalies (Matsuno, 1966; Gill,
166	1980). As for East Asia, the mid-latitude trough embedded in the westerly jet

167	intrudes the subtropics to the southwest of Japan, which is consistent with the
168	increased track frequencies in Fig. 3d. Another noticeable feature in Fig. 5a is the
169	presence of zonally elongated cold temperature anomalies over East Asia along a
170	latitudinal band of 30°-45°N, which corresponds with the upper-level trough
171	centered around 120°–140°E.
172	In the lower-troposphere (Fig. 5b), the anomalous Pacific anticyclone dominates to
173	the east of Philippines, stretching in the northeast direction toward the southeast of
174	Japan. The northeasterly wind anomalies emerging to the southwest of Japan
175	indicate the weakening of the East Asian winter monsoon. Positive temperature
176	anomalies extending from the South China Sea to Japan in Fig. 5b are consistent
177	with the attenuated EAWM. As shown in Fig. 6a and Table 1, northeastward
178	transport of moisture toward Japan during the El Niño shows significant increase
179	along the western periphery of anomalous anticyclone dominating over the
180	Northwest Pacific (see Fig, 5b). These features are consistent with increase of the
181	South-coat cyclone (see Fig. 3d) and resultant warm advection extending to the
182	Northwest Pacific around the dateline (Fig. 6b). Wang et al. (2000) have proposed

183	that lower-tropospheric northwest Pacific anticyclones tend to persist during El
184	Niño years due to underlying cold SST anomalies through local air-sea interaction.
185	In addition to this, basin-wide warming in the Indian Ocean after the peak phase of
186	El Niño also contributes to maintaining the northwest Pacific anticyclone by means
187	of the propagation of tropospheric Kelvin waves (Xie et al., 2016). Thus, warm
188	winters in Japan and enhanced cyclones to the south of Japan can be dynamically
189	interpreted by ENSO-caused anomalous global circulation.

c. The subtropical jet and storm track

192	Previous subsections have focused on the influence of tropical-origin
193	teleconnections on cyclone activities to the south of Japan (30°-35°N).
194	Climatologically, strong westerlies, which are called the subtropical jet (hereafter
195	abbreviated as STJ), dominate in that region (Fig. 7). Baroclinic eddies are
196	generated in the vertically sheared STJ, which is also an important factor for the
197	modulation of storm tracks, including the South-coast cyclone, to the south of Japan.
198	It has been revealed dynamically that cyclones rapidly develop through eddy

199	coupling between the upper troposphere and the lower troposphere (Takayabu,
200	1991). Climatologically, Nakamura and Sampe (2002) found that the strong STJ
201	weakens eddy amplification through the trapping of upper-level eddies. This
202	relationship is manifested as "midwinter suppression" (Nakamura, 1992). It is
203	conceivable that the reverse could be applicable to the attenuated STJ condition.
204	Figure 7 shows the composite anomalies of the zonal wind (shading) between major
205	El Niño and La Niña events. If we pay attention to the core region of the STJ around
206	30°–35°N (see also Table 1), corresponding to the cyclone south of Japan, we notice
207	the weakened STJ (blue shading) in the upper troposphere. This is consistent with
208	the cold anomalies seen in Fig. 5a, due to less zonal warm advection in the STJ.
209	Furthermore, it could also be responsible for the increase in cyclones to the south of
210	Japan by means of intensified vertical eddy coupling. In addition to the eddy-mean
211	flow interaction, Lee et al. (2011) revealed that increase in moisture in upstream
212	region of storm tracks has also crucial role in the enhancing of storm track activities.
213	As was shown in Table1, the additional moisture into the storm track regions during
214	the El Niño is consistent with increase of the South-coast cyclone.

4. Discussion and Remarks

217	We examined long-term (1961-2016) rainfall/snowfall variations in view of
218	ENSO-caused circulation changes and the resultant cyclogenesis along the Pacific
219	coast of Japan. During El Niño years, the northwest Pacific anticyclone develops in
220	the lower troposphere to the east of the Philippines, which manifests as a warm
221	winter caused by the weakened EAWM. In contrast, an upper-tropospheric trough is
222	generated over the continental area of East China through the East China Sea, which
223	could facilitate enhanced cyclogenesis and more rainfall/snowfall ensuing along the
224	Pacific coast (Table 1). These results are consistent with excessive snowfall along
225	the East Sea/Sea of Japan coast, including the backbone mountain regions in Japan,
226	associated with intensified EAWM during La Niña years (Ueda et al., 2015). Thus,
227	the contrast in the amounts of snowfall of El Niño and La Niña as well as the
228	opposite relationship between the East Sea/Sea of Japan coast and the Pacific coast
229	could be explained by the intensity of the EAWM and the South-coast cyclone.

230	Regarding snow accumulation events in Tokyo, Tachibana et al. (2007) revealed a
231	crucial role of the Eurasian pattern, which is the response to low-pressure anomalies
232	dominant over the entire region of Japan, including East China. Their obtained
233	cyclonic anomaly was located slightly to the north (~40°N) of the present study
234	(~30°N). Because their study starts from the year-to-year snow accumulation in
235	Tokyo, it is conceivable that their result includes the anomalous cyclonic circulation
236	over and around Japan that emerges in both El Niño and La Niña. In addition to this,
237	we should mention the behavior of the subtropical jet (STJ; 30°~35°N). Nakamura
238	and Sampe (2002) showed that a stronger STJ hampers the development of cyclones
239	by trapping upper-level eddies. In fact, the composite anomalies of zonal winds
240	during El Niño (Fig. 7) show a weaker STJ, which is consistent with the increase in
241	cyclones to the south of Japan. Developing a predictive understanding of regional
242	snowfall/rainfall variations is fundamentally important missions, which is expected
243	to connect the global climate research community and meso-scale researchers. From
244	this perspective combination of meso-scale model and global circulation model,

which resolves synoptic disturbances, could lead to improve the seasonal forecast skill.

247The ENSO has decadal variability such as the Pacific inter-decadal oscillation 248(PDO; Mantua et al. 1997). In the present study we examined the differences in 249cyclone track between the positive and negative phase of PDO, while we do not 250obtain the significant relationship (not shown). As for the long-term change, the total number of extratropical cyclone is projected to decrease in a warmed climate due to 251252reduction of baroclinicity near the surface (Mizuta et al., 2011). Whilst the most 253climate models show El Niño-like warming pattern (e.g., Endo et al. 2012), which 254potentially affects the number of South-coast cyclone. Further study is needed to clarify the influence of global warming on cyclogenesis and its passage from 255256rainfall/snowfall variation perspective.

257

258

259 Acknowledgements

260	The authors are grateful for the editors and anonymous reviewers giving us the
261	opportunity to submit this manuscript. This work was supported by the Environment
262	Research and Technology Development Fund (A-1201) of the Ministry of the
263	Environment, Japan, and by the Program for Risk Information on Climate Change
264	(SOUSEI program) from the Ministry of Education, Culture, Sports, Science and
265	Technology (MEXT) of Japan.
266	

268 **References**

- 269 Chang, C.-P., and K. M. W. Lau, 1980: Northeasterly cold surges and near-equatorial
- disturbances over the Winter MONEX area during December 1974. Part II:
- 271 Planetary-scale aspects. *Mon. Wea. Rev.*, **108**, 298–312.
- 272 Chang, E. K. M., S. Lee and K. L. Swanson, 2002: Storm track dynamics, J. Climate,
- **15**, 2163-2183.
- Endo, H., A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and
 uncertainties in Asian precipitation simulated by multi-physics and multi-sea
 surface temperature ensemble experiments with high-resolution Meteorological
 Research Institute atmospheric general circulation models (MRI-AGCMs). *J. Geophys. Res.*, 117, D16118.
- Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. *Quart. J.*
- 280 *Roy. Meteor. Soc.*, **106**, 447-462.

281	Gong, H., L. Wang, W. Chen, R. Wu, K. Wei, and X. Cui, 2014: The climatology and
282	interannual variability of the East Asian winter monsoon in CMIP5 models, J.
283	<i>Climate</i> , 27 , 1659–1678, doi:10.1175/JCLI-D-13-00039.1.
284	Hayasaki, M., and R. Kawamura, 2012: Cyclone activities in heavy rainfall episodes in
285	Japan during spring season. SOLA, 8, 45–48, DOI: 10.2151/sola.2012-012.
286	Hayasaki, M., R. Kawamura, M. Mori, and M. Watanabe, 2013: Response of
287	extratropical cyclone activity to the Kuroshio meander in northern winter.
288	Geophys. Res. Lett., 40, DOI: 10.1002/grl.50546.
289	Kawamura, R., and T. Ogasawara, 2007: Characteristics of large-scale atmospheric
290	circulations associated with the heavy winter snowfall of 2005/06. J. Jpn. Soc.
291	Snow Ice (Seppyo), 69, 21–29 (in Japanese with English abstract).
292	Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H.
293	Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The
294	JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor.
295	<i>Soc. Japan</i> , 93 , 5–48.

296	Lee, SS. et al., 2011: A comparison of climatological subseasonal variations in the
297	wintertime storm track activity between the North Pacific and Atlantic: local
298	energetics and moisture effect. Clim Dyn., 37, 2455-2469.
299	Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc.
300	<i>Japan</i> , 44 , 25-43.
301	Manabe, S., 1957: On the Modification of Air-mass over the Japan Sea when the
302	Outburst of Cold Air Predominates. J. Meteor. Soc. Japan, 35, 311–326.
303	Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific
304	interdecadal climate oscillation with impacts on salmon production, Bull. Amer.
305	Meteor. Soc., 78, 1069–1079, doi:10.1175/1520-0477(1997)078.
306	Matsumoto, J., 1992: The seasonal changes in Asian and Australian monsoon regions. J.
307	<i>Meteor. Soc. Japan</i> , 70 , 257–273.
308	Mizuta, R., M. Matsueda, H. Endo, and S. Yukimoto, 2011: Future change in
309	extratropical cyclones associated with change in the upper troposphere. J. Climate,
310	24 , 6456-6470.

311 Nakamura, H., 1992: Midwinter suppression of baloclinic wave activity in the Pacific. J.

- 312 *Atmos. Sci.*, **49**, 1629–1642.
- 313 Nakamura, H., and T. Sampe, 2002: Trapping of synoptic-scale disturbances into the
- North-Pacific subtropical jet core in midwinter. *Geophys. Res. Lett.*, 29, DOI:
 10.1029/2002GL015535.
- 316 Nakamura, H., A. Nishina, and S. Minobe, 2012: Response of storm tracks to bimodal
- 317 Kuroshio path states south of Japan. J. Climate, **25**, 7772–7779.
- 318 Nan, S., and P. Zhao, 2012: Snowfall over central-eastern China and Asian atmospheric
- 319 cold source in January. Int. J. Climatology, **32**, 888–899.
- 320 Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation
- 321 patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115,
- 322 1606–1626.
- 323 Serreze, M. C., J. E. Box, R. G. Barry, and J. E. Walsh, 1993: Characteristics of Arctic
- 324 synoptic activity, 1952-1989. *Meteorol. Atmos. Phys.*, **51**, 147–164.

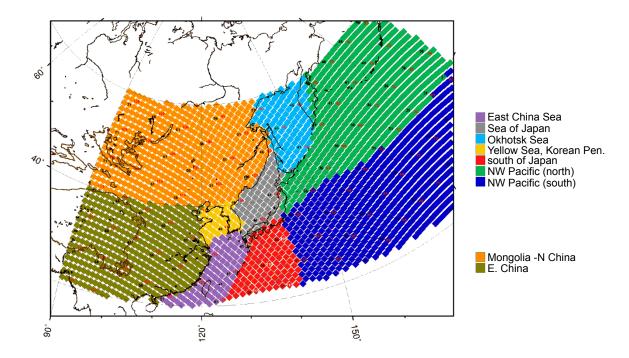
325	Straus, D. M. and J. Shukla 1997, Variations of midlatitude transient dynamics
326	associated with ENSO, J. Atmos. Sci., 54, 777-790.
327	Tachibana, Y., T. Nakamura, and N. Tazou, 2007: Interannual variation in
328	snow-accumulation events in Tokyo and its relationship to the Eurasian pattern.
329	SOLA, 3, 129–132, DOI:10.2151/sola.2007-033.
330	Takayabu, I., 1991: "Coupling Development": An efficient mechanism for the
331	development of extratropical cyclones. J. Meteor. Soc. Japan, 69, 609-628.
332	Trenberth, K. E. and W. Hurrell, 1994: Decadal atmosphere-ocean variations in the
333	Pacific. Clim. Dyn., 9, 303-319.
334	Ueda, H., A. Kibe, M. Saitoh, and T. Inoue, 2015: Snowfall variations in Japan and its
335	linkage with tropical forcing. Int. J. Climatol., 35, 991-998.
336	Ueno, K., 1993: Inter-annual variability of surface cyclone tracks, atmospheric
337	circulation patterns, and precipitation patterns, in winter. J. Meteor. Soc. Japan,
338	71 , 655-671.

339	Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO
340	affect East Asian climate? J. Climate, 13, 1517–1536.
341	Wang, B. et al., 2010: Another look at interannual-to-interdecadal variations of the East
342	Asian winter monsoon: the Northern and Southern temperature modes. J. Climate,
343	23 , 1495-1512.
344	Wolter, K. and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871
345	as diagnosed in an extended multivariate ENSO index (MEI.ext), Int. J. Climatol.,
346	31 , 1074-1087, DOI: 10.1002/joc.2336.
347	Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian High, the East Asian
348	winter monsoon. Geophys. Res. Lett., 29, 1897, DOI: 10.1029/2002GL015373.
349	Xie, SP., Y. Kosaka, Y. Du, K HU, J. S. Chowdary, and G. Huang, 2016:
350	Indo-Western Pacific Ocean capacitor and coherent climate anomalies in
351	post-ENSO summer: A Review. Adv. Atmos. Sci, 33, 411-432.

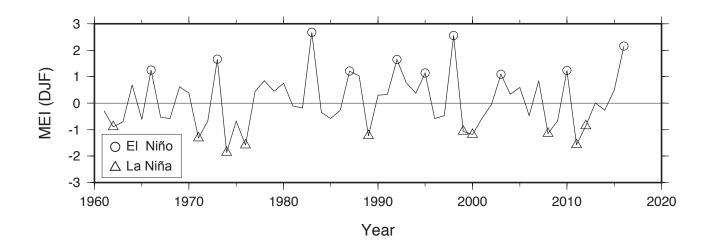
352	Yamazaki, A., M. Honda and A. Kuwano-Yoshida, 2015: Heavy snowfall in Kanto and
353	on the Pacific Ocean side of northern Japan associated with western Pacific
354	blocking. SOLA, 11, 59-64.
355	Yun, KS. et al., 2014: Interdecadal changes in the Asian winter monsoon variability
356	and its relationship with ENSO and AO. Asia-Pacific J. Atmos. Sci., 50, 531-540.
357	Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interdecadal variation
358	of the East Asian winter monsoon: results from the 1979-95 NCEP/NCAR
359	Reanalysis, Mon. Wea. Rev., 125, 2605–2619.

1 • 1

360


362 Tables

363	Table 1. DJF composited anomalies between the top 10 El Niño minus La Niña events.
364	Bold indicates a confidence level > 95%. Rainfall and snowfall anomalies were
365	provided by the Tokyo Meteorological Observatory. Horizontal advection $(v'T')$ at
366	850 hPa and vertically (1000-1hPa) integrated moisture flux is the area average
367	over 25°-35°N and 120°-140°E. The STJ is a zonal wind component at 200 hPa
368	averaged over 30°–35°N and 120°–140°E.
369	
370	Figures
371	Fig. 1. Division of an area of cyclone tracks. Red (south of Japan) demarcates the
372	subject area in the present study for examining the relationship between
373	rainfall/snowfall variations in the Pacific coast of Japan and cyclone tracks along

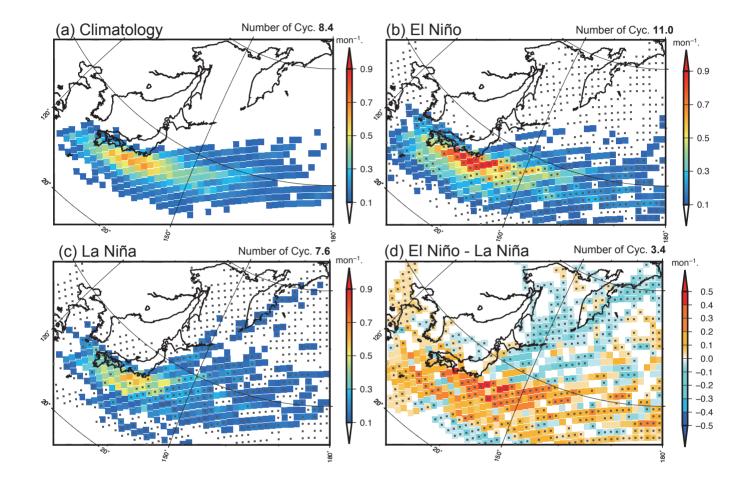
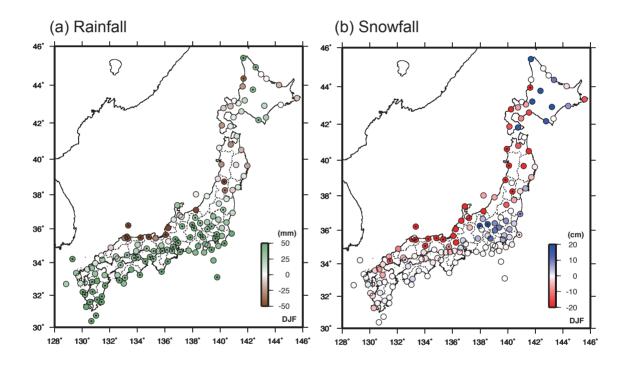
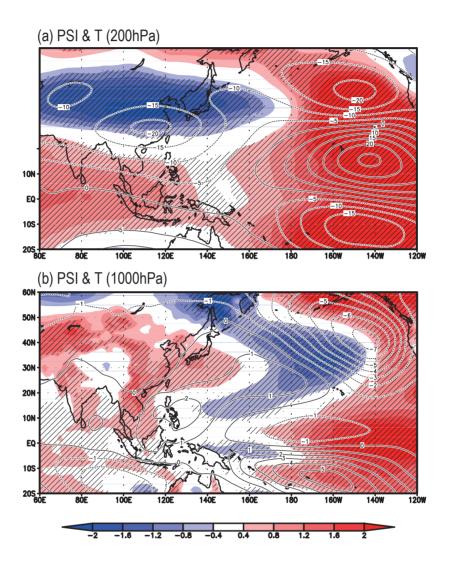

the south coast of Japan.

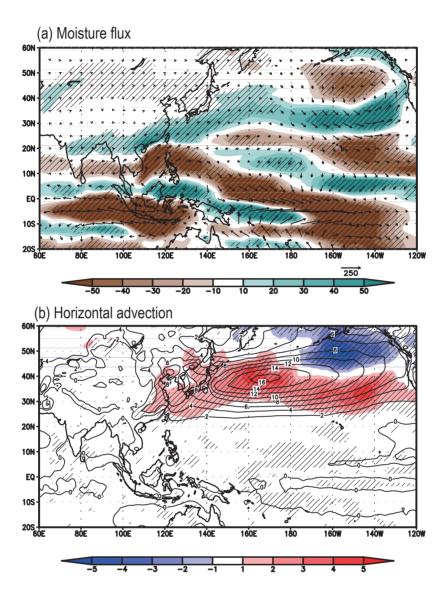
376	Fig. 2. Time series of the interannual variation of the multivariate ENSO index (MEI)
377	between 1961 and 2016. Open circles and triangles show the top 10 El Niño and La
378	Niña events, respectively.
379	
380	Fig. 3. DJF cyclone track frequencies (count month ⁻¹). (a) Climatological mean (1981–
381	2010). (b) and (c) are composite anomalies of major El Niño events and La Niña
382	events, respectively. (d) The difference between major El Niño minus La Niña
383	events. Grids with a confidence level of $> 95\%$ are denoted by dot. The total
384	number of South-coast cyclone between December and February is denoted in the
385	upper-right.
386	
387	Fig. 4. Composited anomalies between the major El Niño and La Niña for total amounts
388	of (a) rainfall and (b) snowfall in boreal winter. The values are three-month
389	integration of daily-based data. Stations with a confidence level of $> 95\%$ are
390	denoted by dot.
391	

392	Fig. 5. Same as Fig. 4 but for stream function (contours: positive indicates anti-cyclone
393	in the Northern Hemisphere) and temperature (shading); (a) 200 hPa, (b) 1000 hPa.
394	Areas with a confidence level of $> 95\%$ are denoted by oblique line.
395	
396	Fig. 6. Same as Fig. 4 but for (a) vertically integrated moisture flux $(q'u', q'v')$ in the
397	lower troposphere (1000-1hPa) and (b) horizontal heat advection ($v'T'$) at 850 hPa.
398	Areas with a confidence level of $> 95\%$ are denoted by oblique line.
399	
400	Fig. 7. Latitude-height section of the zonal mean u-wind (m s ^{-1}) across Japan, showing
401	the STJ. Shading denotes composited anomalies between the major El Niño and La
402	Niña. Contours indicate the climatology. Areas with a confidence level of $> 95\%$
403	are denoted by oblique line.
404	

Fig. 1. Division of an area of cyclone tracks. Red (south of Japan) demarcates the subject area in the present study for examining the relationship between rainfall/snowfall variations in the Pacific coast of Japan and cyclone tracks along the south coast of Japan.

Fig. 2. Time series of the interannual variation of the multivariate ENSO index (MEI) between 1961 and 2016. Open circles and triangles show the top 10 El Niño and La Niña events, respectively.


Fig. 3. DJF cyclone track frequencies (count month-1). (a) Climatological mean (1981–2010). (b) and (c) are composite anomalies of major El Niño events and La Niña events, respectively. (d) The difference between major El Niño minus La Niña events. Grids with a confidence level of > 95% are denoted by dot. The total number of South-coast cyclone between December and February is denoted in the upper-right.

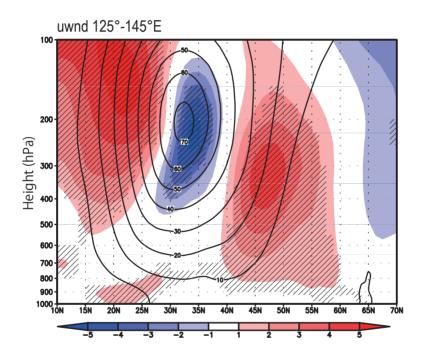

Fig. 4. Composited anomalies between the major El Niño and La Niña for total amounts of (a) rainfall and (b) snowfall in boreal winter. The values are three-month integration of daily-based data. Stations with a confidence level of > 95% are denoted by dot.

Fig. 5. Same as Fig. 4 but for stream function (contours: positive indicates anti-cyclone in the Northern Hemisphere) and temperature (shading); (a) 200 hPa, (b) 1000 hPa. Areas with a confidence level of > 95% are denoted by oblique line.

Fig. 6. Same as Fig. 4 but for (a) vertically integrated moisture flux (q'u', q'v') in the lower troposphere (1000-1hPa) and (b) horizontal heat advection (v'T') at 850 hPa. Areas with a confidence level of > 95% are denoted by oblique line.

Fig. 7. Latitude-height section of the zonal mean u-wind (m s-1) across Japan ($125^{\circ}-145^{\circ}E$), showing the STJ. Shading denotes composited anomalies between the major El Niño and La Niña. Contours indicate the climatology. Areas with a confidence level of > 95% are denoted by oblique line.

Table 1. DJF composited anomalies between the top 10 El Niñominus La Niña events. Bold indicates a confidence level >95%. Rainfall and snowfall anomalies were provided by theTokyo Meteorological Observatory. Horizontal advection(v'T') at 850 hPa and vertically (1000-1hPa) integratedmoisture flux is the area average over 25° - 35° N and 120° -140°E. The STJ is a zonal wind component at 200 hPaaveraged over 30° - 35° N and 120° -

	El Niña	La Niña	Difference
Pacific coast cyclones	11.0	7.6	3.4
rainfall (mm)	198.7	151.8	46.9
snowfall (cm)	8.2	4.4	3.8
moisture flux (kgms- ¹)	159.1	140.7	18.4
v'T' (850hPa)	6.2	5.2	1.0
STJ (m s ⁻¹)	67.8	70.3	-2.5