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高校生の就学意思とドロップアウトリスク要因に関する研究：

米国のパネルデータを用いた生存分析の応用

渡邊 聡

本研究の目的は，無作為に抽出されたアメリカの高校生のパネルデータに

生存分析 (SurvivalAnalysis) とよばれる統計手法を応用し，高校生のドロ

ップアウト・リスクの要因とそのタイミングを明らかにすることである。計

測された累積ハザードから，アメリカの高校生のドロップアウト・リスクは

毎年6月に最も高くるなることが分かる。またベースライン・ハザード関数

がワイブル (Weibull)分布に従うと仮定し， Cox比例ハザードモデルを推定

した場合， ドロップアウト・リスクには正の期間依存 (positiveduration 

dependence)が存在する。アメリカにおける高校生のドロップアウト・リス

クは，居住地域の失業率に対して負の相関を示し，高校卒業後に予測できる

賃金や世帯所得に対しては正の相関を示している。しかし，これらのリスク

要因がドロップアウトに与える影響は，最終学年に進級する時期から大きく

減少しはじめる。

I. Introduction 

Econometric analysis of duration data has been extensively studied by researchers 

in recent decades (Heckman and Singer 1984a, 1984b; Lancaster 1979). Han and Hausman 

(1990) and Sueyoshi (1992) studied the competing risks models of duration data. Simple 
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tests based on a score statistic for unobserved heterogeneity are discussed in Kiefer 

(1984) and Lancaster (1985a) when the heterogeneity is in the multiplicative form in the 

exponential and Weibull models, respectively. Other specification diagnostics are 

provided by Chesher (1984) and Kiefer (1985). Heckman and Singer (1984a), Lancaster 

and Nickell (1980) and Waldman (1985) discuss computational schemes with duration 

data in the presence of unobserved heterogeneity. The most applications are found in the 

studies of unemployment spells, particularly with respect to the impact of unemployment 

insurance, and the process of job search (Burdett et al. 1985; Lancaster 1985b; Lynch 

1985, 1992; Meyer 1990; Moffitt 1985; Naredranathan and Nickell 1985). Others include 

Kennan (1985) who studied the duration of contract strikes in U.S. manufacturing, Dolton 

and Klaauw (1996) on salaries of U.K. teachers and their retention, and Kiefer. (1985) on 

the role of education in labor turnover. A similar study on education and job turnover 

was done by Light and Omori (1996) using a competing risks model. Light (1996) also 

studies a hazard model of the decision to reenroll in school after leaving school for the 

first time. 

This article uses the survival analysis approach with duration data on complete and 

incomplete enrollment lengths for U.S. high school students. It is important to correctly 

understand the factors that influence enrollment decisions by high school students and 

when and where during the process these factors affect their schooling failure because 

individuals without a high school diploma are and continue to be the most vulnerable in 

terms of economic success and nearly all aspects of labor activities once they leave 

school. (ll Not only do fewer years of formal educational training affect their life-time 

earnings, but also they influence workers'post-school labor activities followed by fewer 

opportunities to reinvest in further education and job-related training (Lynch 1992; 

Mincer 1988, 1993). Economic disadvantages experienced by these workers have cyclical 

and intergenerational impacts on their descendants by reducing their children's 

educational opportunities due to financial constraints and little exposure to academic 

environments (see, for example, Becker 1991). Though the proportion of U.S. adults with 

a high school diploma monotonically increased during the last century with slower 

increments in the 1990s as the proportion reached high figures, there still existed 12 

percent of adults 25-29 years of age in 2000 who never completed high school education 
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(U.S. Department of Education 2002). 

This study attempts to shed some light on the analysis of complete and incomplete 

duration data of high school enrollment lengths within the framework of a survival 

analysis approach. No prior studies exist that empirically analyze the conditional 

probabilities over time of high school dropout incidence in the hazard model framework, 

nor do we fully understand the relationship between students'background characteristics 

and the duration until enrollment failure. Although researchers have long studied the 

issues of schooling decisions made by young individuals (for example, Edwards 1975), 

dynamic models of educational attainment have rarely been considered四Mostprevious 

studies concentrated on the examination of a single educational transition relying heavily 

on the limited discrete choice models, i.e., the logit or probit models, using various cross-

sectional data or data set up accordingly. The duration data analysis allows for modeling 

time until failure by using the conditional probabilities of dropping out of school over 

time, given students remain enrolled up to a certain point in time. Censored observations 

and time dependent covariates are also handled with relative ease in this approach. This 

paper takes advantage of these analytical merits and examines the enrollment decision 

made by high school students in a more dynamic framework. It places a particular 

emphasis on the duration dependency of enrollment failure by high school students; that 

is, on examining whether the dropout risk for U.S. high school students increases or 

decreases as time elapses. It is recognized that the decision to remain enrolled in school 

goes hand-in-hand with the decision to work. The decision in turn is not independent of 

local labor demand from potential employers or the necessity to work due to financial 

difficulties faced by a student's family, as well as economic outcomes expected upon 

completing high school education. Therefore, a particular emphasis is also placed on 

estimating the impact of economic factors such as local labor demand, short-term credit 

constraints students and their family face, and economic incentives for students to 

complete high school, on the conditional probabilities of leaving high school without 

fulfilling the graduation requirements. 

In analyzing the duration data on high school enrollment, it is an important step to 

carefully choose the correct duration distribution as a misspecified parametric model 

yields biased estimates of covariates and thus incorrect inferences on the effects of these 
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factors.'However, this often is not a simple task as the shape of the hazard function or 

duration distribution may not explicitly be suggested by sound economic theory. We 

discuss this issue in Section III, which immediately follows the next section on the 

descriptions of the dataset used in this study. 

II. DATA 

The data used in this study is the 1979 cohort of National Longitudinal Survey of 

Youth (NLSY). <3> A subsample of the respondents who are in the 9th grade in 1979 is 

followed for the next three years until May of 1982 in which most respondents are 

expected to graduate from the high school in which they have been enrolled. Since NLSY 

is on-going panel data which contain rich information on the originally sampled 12,686 

young individuals, it is possible to obtain the highest grade attained by these individuals 

beyond high school. However, for the purpose of the current study the duration data is 

trimmed or "censored" at 44 months, which represents May 1982. As all the students in 

the subsample enter the 9th grade in September 1978, most of them are assumed to 

complete their high school education sometime in the spring of 1982. About 40 percent of 

the incomplete cases or 278 individuals continued their education beyond 44 months. 

These individuals, however, are not necessarily enrolled in college or other forms of 

higher educational institutions, and 7 percent were still enrolled in high school after 44 

months to complete their graduation requirements. This paper avoids the analysis on the 

lengths of continuous enrollment beyond high school as the transition from high school 

to college is not a simple extension of transiting from the 11th grade to the 12th (or 

equivalently from the 23rd month to the 24th), and the decision to enter college is 

influenced by factors that normally do not concern us when we simply consider continuous 

enrollment in secondary school. Moreover, the separation decision from college is likely 

affected by factors that are uncommon with those affecting the decision at a high school 

level, due to differences in the pattern of enrollment and influential environments, e.g., 

enrolled full-time or part-time, with work or without, and whether or not living away 

from home, etc. Therefore, rather than conducting the analysis with the data on the 

enrollment lengths at mixed levels, this paper focuses on the duration of high school 

enrollment up to 44 months for which the environments surrounding students are 
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considered to be more or less homogeneous. Moreover, our model is not that of schooling-

transition, and we do not examine in this study the model of students'transiting from one 

grade to the next. Instead we attempt to cast some light on the econometric analysis of 

high school enrollment duration, regardless of grade repetition or transiting status, and 

identify some of the associated influential background characteristics. 

The summary statistics of the variables used in the analysis are reported in Table 1 

for 1,336 high school students who were in the 9th grade in 1979. Approximately one half 

(52 percent) of the sample consists of male students and 34 percent nonwhite. Students' 

average age increases linearly from 14.7 years in 1979 to 17.7 in 1982. Average~FQT 

score is 33 and the score is missing for 1 percent of the sample. Average highest grade 

completed by fathers (11.1 years) is slightly higher than that of mother's (10.9 years) with 

missing values for 15 percent and 7 percent of students, respectively. In 1979, 64 percent 

Table 1 Descriptive statistics 

1979 1980 1981 1982 
Variable Mean {S.D.} Mean{S.D.} Mean {S.D.} Mean {S.D.} 

1 ifMale 0.52 (0.50) 
1 ifNonwhite 0.34 (0.47) 
Age a, b 14.69 (0.72) 15.65 (0.71) 16.64 (0.70) 17.65 (0.71) 
AFQTb 32.90 (25.68) 
1 if AFQT missing 0.01 (0.10) 
Father's highest grade b 11.09 (3.69) 

1 if father's grade miss-inb g 0.15 (0.36) 
Mother's highest grade 10.87 (2.93) 
1 if mother's grade missing 0.07 (0.25) 
Type of curriculum: 
1 if vocational• 0.08 (0.27) 0.10 (0.30) 0.12 (0.32) 0.12 (0.32) 
1 if commercial• 0.01 (0.11) 0.02 (0.13) 0.02 (0.14) 0.02 (0.12) 
1 if college preparatory• 0.23 (0.42) 0.28 (0.45) 0.27 (0.44) 0.29 (0.45) 
1 if general program• 0.64 (0.48) 0.58 (0.49) 0.50 (0.50) 0.43 (0.50) 
1 if curriculum unknown• 0.05 (0.21) 0.02 (0.15) 0.10 (0.29) 0.15 (0.36) 

Un噌em,,.pタlo,,.ynmne, na t rate(%): 
1 if< 6.0% 0.51 (0.50) 0.32 (0.47) 0.21 (0.41) 0.07 (0.25) 
1 if 6.0-8.9% a 0.39 (0.49) 0.51 (0.50) 0.45 (0.50) 0.31 (0.46) 
1 if9.0-ll.9%• 0.05 (0.23) 0.11 (0.31) 0.24 (0.43) 0.38 (0.49) 
1 if 12.0-14.9% a 0.02 (0.16) 0.05 (0.23) 0.06 (0.24) 0 12 (0.32) 
1 if2'. 15.0% a 0.00 (0.00) 0.00 (0.00) 0.03 (0.16) 0.12 (0.32) 
1 if type unknown• 0.01 (0.12) 0.00 (0.06) 0.00 (0.07) 0.01 (0.10) 
Net total family income•·b 15,881 (12,142) 18,539 (13,574) 19,935 (14,622) 21,989 (16,521) 
1 iffamil~m. come m1ssmg a, b 0.18 {0.38) 0.19 (0.39) 0.23 (0.42) 0.26 (0.44) 

Sam£le size 1,336 1,336 1,336 1,336 

• Denotes covariates that vary across one-year intervals; but are assumed constant within intervals. All other covariates 
are constant within and across intervals. 

b D enotes contmuous covariates, which enter hazards as deviations from sample mean. 
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of the high school students are enrolled in a general academic curriculum, followed by 23 

percent in a college preparatory program and with only 8 percent and 1 percent enrolled 

in vocational and commercial curriculums, respectively. These proportions shifted 

somewhat from a general program towards other curriculum types during the following 

years. As the surveyed intervals fall in the recessionary period in the early 1980s, the 

unemployment rates for the labor market of students'local residence rose from 1979 to 

1982. Finally, the average net total income for students'family increased from 15,881 

dollars in 1979 to 21,989 doHars in 1982. 

Of 1,336 high school students with the characteristics described in Table 1, we have 

348 completed or unsuccessfully ended enrollment lengths. Among the 280 students for 

whom the reasons why they left school are available, approximately 10 percent reported 

that they are getting married or became pregnant (Table 2). About 19 percent reported 

they stopped going to school simply because they did not like it. Twelve percent had 

home responsibilities or financial difficulties, or chose to work with no detailed 

explanations. Fourteen percent of students quit high school due to poor grades or 

because they were e~pelled or suspended from school. A similar proportion (14 percent) 

chose to drop out as they received a GED, and 8 percent did not return to high school 

after they moved away from school. Finally, 23 percent reported other reasons with no 

further explanations. 

Using the sample of these 1,336 high school students who were in the 9th grade in 

1979, various specifications of the relative risk model described in Section IV are estimated 

Table 2 Reasons respondents left high school 

Getting married/pregnancy 
Did not like school 
Home responsibilities/financial 
difficulties/chose to work 
Poor grades/expelled or suspended 
Received a GED 
Moved away from school 
Other 
Sam,£1 e with reasons available 

Percent (Number of cases) 
10.4 (29) 

18.9 (53) 

11.8 (33) 

14.3 (40) 

13.9 (39) 

7.8 (22) 

22.9 (64) 

100.0 (280) 

Note: The reasons are unavailable or unreported for 68 students. 
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to examine high school students'dropout behavior with particular interest in the duration 

dependency and the effects of demographic and family characteristics on the failure risk. 

Included variables in the model are the dummies for male and nonwhite. A continuous 

variable for student age is also included. Although the sample consists of mostly 

homogeneous students in terms of their age, the variable in the model is not time-

homogeneous. Young individuals often learn gradually through experiences inside and 

outside school the outcomes of dropping out and the importance of staying in school. 

This aging effect on the hazards may be captured by this covariate. In addition, all the 

continuous variables in the model are entered as deviations from sample mean so that入

has an interpretation as the hazard for the mean individual in the sample. 

Since the standardized test scores are not available in NLSY, a continuous but time 

constant variable for Armed Forces Qualification Test (AFQT) score is used as a proxy 

for individual ability. However, the score is not available for 1 percent of high school 

students in the sample. For these students, AFQT score is set to zero and the dummy for 

"AFQT missing = 1" is included. The predicted effect of students'ability on the school 

exit rate is indeterminate as the cost of being in school in terms of lost wages may be 

higher for those with high abilities which are likely correlated with a better distribution 

of wage offers. Students with higher abilities at the same time have lower cost in terms of 

effort levels they have to put in, and individuals with higher innate capacity are likely to 

succeed in school with less effort. The effect of students'ability on the hazard may be 

uncovered by this covariate. Parents are considered to offer significant support and 

encouragement for their child's school performance and play critical role models. The 

highest grade completed by both parents is included to control for the parental influences 

students may receive though adolescence. For students who did not provide this 

information, the highest grade completed is set to equal zero and the dummy variables 

are included for the missing cases. Students'conditional probability of leaving school is 

also assumed to depend on the skills they acquire in school. In order to capture the 

varying effects of curriculum type on finding jobs, the dummy variables are entered for 

vocational, commercial, college preparatory, with the general program as the omitted 

group. The dummy is also included for students whose curriculum type is unavailable. 

This study places a particular emphasis on the impacts of three economic factors to 
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which high school students are considered to be receptive; (1) local labor demand in the 

market of student's residence, (2) financial resources available to students and students' 

family, and (3) economic incentive of completing high school. In order to capture the 

separate effects of labor demand, the ordinal dummies for unemployment rates (lower 

than 6.0 percent; 6.0-8.9 percent; 9.0-11.9 percent; 12.0-14.9 percent) are included with 

"higher than 15.0 percent" as the omitted category. The short-term credit constraints 

faced by students and their family are controlled by a continuous variable for the net 

total family income. The net total family income measures the total income in the 

individual's household from such sources as labor earnings (net of the respondent's), 

gifts, alimony, unemployment insurance, and public assistance programs. Financial 

difficulties proxied by this variable may be expected to have a negative impact on the 

enrollment lengths of students. Finally, the effect of students'incentive for completing 

high school is measured by the wage differentials under two alternative regimes, 

predicted at the time immediately following the potential duration of maximum enrollment 

lengths (44 months). The potential wage gains expected if one completes high school is 

considered to affect students'enrollment behavior on an assumption that high school 

students are myopic in the sense that they do not take into account the discounted 

lifetime earnings but only consider the immediate return to their high school education. 

Thus, the wage rates are computed for each student if he completes a full length of 

potential enrollment (ln w') and if he quits school before the 44th month and start working 

(ln w), both estimated at an arbitrary time t shortly following 44 months. As a practical 

matter of computation, the wages under the two alternatives are predicted with the 

parameter estimates from two separate log-wage regressions using the subsamples of 

individuals who completed the full length and reported wages in 1982 and those who quit 

school and reported wages in the same year. <4l The predicted wage gap (lnぶ—lnw)is then 

included in the hazard model as deviation from its mean. 

Finally, it should be noted that the time varying covariates used in the analysis are 

collected on a yearly basis in NLSY and thus assumed constant for each year but vary 

across one-year intervals. That is, time dependent variables such as students'age, 

curriculum type they are enrolled, unemployment rate for the labor market in the current 

residence and the net total family income vary only across one-year intervals but remain 
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constant within each year. Therefore, the month-specific risks such as "summer effect" 

may not be fully controlled unless the failure events are strongly associated with 

characteristics that remain constant throughout that year. 

Ill. DURATION OF HIGH SCHOOL ENROLLMENT AND DROPOUT RISKS 

One natural question that may arise among several on the issues of high school 

enrollment is whether the risk of unsuccessful leave without completing the academic 

requirements is duration dependent. In other words, does the risk of high school dropout 

increase or decrease with time? If we assume that everyone "tries out" first and discovers 

the chance of academic success as more scholastic information becomes available through 

their school life, we may expect increasing probabilities of dropout risks as time elapses, 

in which case we would expect positive duration dependence. If students find out as they 

near the graduation date that their chance of receiving a diploma may be slim, then the 

discouraged students might even quit school right before that date. Then, we would 

observe that the probabilities of leaving school clutter prior to graduation. Alternatively, 

under an assumption that less able students (e.g., students with lower standardized test 

scores) tend to give up and quit school at an early stage of their high school career, then 

these students are more prone to leave school sooner than the others, in which case we 

would expect negative duration dependence as the students who remain in school longer 

have lower hazards than those who leave early. There also may be the case that the 

exogenous shocks such as financial difficulties due to parent's being seriously ill or 

becoming unemployed may arrive at a constant rate for each student in the fixed time 

intervals, leading us to believe that everyone faces the constant risk of failure throughout 

their entire school career. Or do they? 

Before we move on to the models and data issues in detail, it is worthwhile to discuss 

the empirically estimated hazard function, integrated hazard and the Kaplan-Meier 

survivor. The hazard function or the conditional probability of a failure at time t 

入(t)=lim
P(f$;T<t+h I T~t) 

h→ o h 

is expressed as 

入(t)=f(t)I S(t) 
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where t represents time, and the survivor S(t)= 1-F(t) is defined as the function of the 

probability distribution of duration 

F(t)=Pr(T<t) 

which specifies the probability that the random variable Tis less than~ome actual value 

t. The corresponding density function is then f(t)=dF(t)ldt. Thus, 入(t)is roughly the rate 

at which spells will be completed at duration t, given that they last until t. The integrated 

hazard is defined 

I 

J¥(t)=J入(u)du

゜
with the relation to the survivor function 

S(t)=exp[-A(t)]. 

The empirical Kaplan-Meier survivor is expressed as a function of the hazards 

A j A 

S(t)= Il(l―Ai) 
i=l 

where A(t;)=h;ln;; h; is the number of completed spells and n; the number of risk set. 

Table 3 shows the completed lengths of enrollment in months for 348 high school 

students who were in the 9th grade in 1979, with 988 lengths censored at 44 months. 

Additional information is also reported in the table on the risk set (n,-), the number of 

failure events (h;), hazards and integrated hazards estimated based on the Kaplan-Meier 

survivor. (5) 

The hazard function is plotted in Figure 1. Although we do not observe a 

discernable trend, we recognize more noticeable spikes in the mid-to late periods, most 

notably at 33 months followed by a sharp drop. The hazards then rise again at 37 and 41 

months. The exponential distribution is appropriate in estimating a parametric model of 

duration data if the hazard is constant over time, while the Weibull may be a sensible 

assumption if the duration distribution reveals monotonic time dependency. However, the 
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Table 3 Empirical estimates of the Kaplan-Meier survivor, hazard, and integrated hazard 

on high school enrollment data 

Ordered Duration in Number of Integrated K-M 

duration months Risk set failures Hazard hazard Survivor 

1 3 1,336 1 .0008 .0010 .999 

2 4 1,335 3 .0023 .0030 .997 

3 5 1,332 1 .0008 .0040 .996 

4 6 1,331 1 .0008 .0040 .996 

5 7 1,330 6 .0045 .0090 .991 

6 8 1,324 ， .0068 .0161 .984 

7 ， 1,315 15 .0114 .0274 .973 

8 10 1,300 1 .0008 .0284 .972 ， 11 1,299 4 .0031 .0315 .969 

10 12 1,295 6 .0046 .0356 .965 

11 13 1,289 10 .0078 .0440 .957 

12 14 1,279 4 .0031 .0471 .954 

13 15 1,275 7 .0055 .0524 .949 

14 16 1,268 8 .0063 .0587 .943 

15 17 1,260 15 .0119 .0704 .932 
16 18 1,245 7 .0056 .0758 .927 

17 19 1,238 14 .0113 .0877 .916 

18 20 1,224 10 .0082 .0954 .909 
19 21 1,214 11 .0091 .1054 .900 
20 22 1,203 1 .0008 .1054 .900 
21 23 1,202 5 .0042 .1098 .896 
22 24 1,197 ， .0075 .1177 .889 

23 25 1,188 12 .0101 .1278 .880 
24 26 1,176 14 .0119 .1393 .870 
25 27 1,162 10 .0086 .1485 .862 

26 28 1,152 14 .0122 .1602 .852 
27 29 1,138 10 .0088 .1696 .844 

28 30 1,128 13 .0115 .1803 .835 
29 31 1,115 11 .0099 .1912 .826 
30 32 1,104 16 .0145 .2058 .814 
31 33 1,088 28 .0257 .2319 .793 
32 35 1,060 7 .0066 .2383 .788 
33 36 1,053 7 .0067 .2446 .783 
34 37 1,046 12 .0115 .2562 .774 
35 38 1,034 ， .0087 .2653 .767 
36 39 1,025 2 .0020 .2666 .766 
37 40 1,023 8 .0078 .2744 .760 
38 41 1,015 14 .0138 .2890 .749 
39 42 1,001 11 .0110 .2998 .741 
40 43 990 2 .0020 .3011 .740 

Note: 988 observations are censored at enrollment length of 44 months. 
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shape of the hazard in Figure 1 is not strictly monotonic, and it is not quite obvious from 

the figure whether the hazard is increasing or decreasing as time passes. 

As a supplement to the graphical exploration of Figure 1, Figure 2 illustrates the 
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integrated hazards empirically estimated based on the Kaplan-Meier survivor or product 

limit estimator as reported in Table 3. The integrated hazards reveal slight convexity, 

and the plot of the fitted estimates on months underscores the nonlinearly increasing 

trend of the curve(6>. Noting that the constant hazard produces a straight line of the 

integrated hazards; for which the exponential distribution may be used for the baseline 

hazard in the Cox regression model, the figure suggests that the exponential assumption 

may not be an adequate one. In light of the graphical exploration of Figurer 2, the 

Weibull baseline hazard which allows for a more flexible model with a scale parameter 

seems a sensible candidate in estimating the Cox regression model of high school dropout. 

In viewing Figure 1, we also consider a case with a nonmonotonic hazard distribution, 

which may be represented by the log-logistic distribution with parameters y>O and a>O 

with the hazard入(t)=yata-lJ(l+t万y).In the log-logistic model with a>O, the hazard first 

increases with duration, then decreases, and when O<a:::;1 the hazard function decreases 

with duration. 

Figure 2 also shows a few plateaus in the integrated hazards deviating from the 

fitted trend curve at around the 9th, 21st, and 33rd months counting from September of 

1978, followed almost cyclically by an immediate drop in the hazards at 10, 22 and 35 

months as observed in Figure 1. As these months represent June of 1979, 1980 and 1981 

respectively, these figures suggest that high school students face a higher risk of leaving 

school especially during summer and fail to return for the new school year. The 

integrated hazards then seem to subside in the very last periods before the prospective 

graduation date, though the hazard function in Figure 1 still reveals two noticeable 

spikes at months 37 and 41. 

Although our preliminary analysis is graphical and informal, the empirical estimates 

of the hazard function and the associated integrated hazards certainly provide us with 

sensible insights in choosing an appropriate hazard distribution. The graphical analysis 

is particularly useful in the absence of strong support of economic theory about the shapes 

of the hazard function, an issue which most applied studies have been subject to in the 

econometric analysis of duration data. <7> 
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IV. RELATIVE RISK MODEL WITH WEIBULL BASELINE HAZARD 

One reasonably expects that the characteristics causing a lower hazard will be more 

concentrated among the individuals in the population who are still remaining after 

individuals with a higher hazard have left. For example, students with longer enrollment 

lengths may disproportionately be found among children of affluent families with highly 

educated parents, who are unlikely to suffer from financial constraints, etc. Intuitively, 

more mobility prone students are the first to leave the population leaving the less prone 

students behind, thus leading us to conclude with the misapprehension of stronger 

negative duration dependence than actually exists. <s) This sorting effect may mask a 

much larger increase in the true hazards of the average population. These problems, 

however, are solved by using the relative risk model which controls for the effects of 

regressors in a similar manner as the ordinary regression models. 

In view of our graphical exploration using Figure 2 which reveals convexity with 

possibly increasing hazards, we estimate the relative risk model with the Weibull baseline 

hazard 

入(t)=ata-iexp {X(t){J} 

where a estimates a parameter which would be greater than unity if the hazard is 

increasing as time elapses (positive duration dependent), less than unity if decreasing 

(negative duration dependent), and unity for the constant hazard which reduces to the 

exponential model. <9> X(t) is a vector of observed covariates, and (3 is a corresponding 

vector of parameters to be estimated. It is noted that X(t) includes both time dependent 

and independent regressors. The importance of time dependent covariates and censored 

observations makes a duration data analysis especially useful as it is difficult to estimate 

a time-varying hazards model with explanatory variables that are fixed constant over time. 

The relative risk model with a specific distributional assumption on the baseline 

hazard, however, is estimated at the expense of possible misspecification. It is well 

understood (Heckman and Singer 1984a; Kiefer 1988; Lancaster, 1985) that parametrically 

misspecified hazard model is inconsistently estimated with respect to the effects of 

regressors. Therefore, the estimates of the partial likelihood approach suggested by Cox 

(1972, 1975) are also obtained in comparison with the estimation results from the Weibull 

-30-



model. With Cox's approach where t and x are factored out into separate but multiplicative 

terms in the form入(t,x,a,(3)=入。(t,a)伶(x,(3),the partial likelihood function is expressed 

II入((,Xj,(3)= II伶(xj,(3)
;Li入(f;,X;,{3) i凶(x;,{3)
1=1 i=j 

for allj 

where入0(t,a)is the baseline hazard and伶(x,{3)=exp{X(t)/3} in our model. In words, the 

likelihood is formed as the product of the individual contributions to the partial 

likelihood, and the log-likelihood function is defined 

L([J)= t {lnf(x,,/3)-In[ t似，/3)]}
Thus, the estimation of the (3 parameters requires no a priori distributional assumptions 

on the shape of the baseline hazard入0.The intercept term, however, is not estimated in 

the partial likelihood approach as it is absorbed into入0.Although the coefficients of the 

regressors are consistently estimated, the disadvantage of the partial likelihood 

estimation is that it makes no suggestions on duration dependency of failure risk and the 

baseline hazards need to be estimated indirectly using the consistent estimates of (3 (Cox 

and Oakes 1985) or directly for each discrete interval by more generalized maximum 

likelihood estimation. 00> 

V. DISCUSSION 

The results from parametric estimation with the Weibull baseline hazard are reported 

in Table 4 for various specifications. The first specification is estimated with characteristic 

variables of students'individual and demographic background only. The result indicates 

that the risk of dropping out of high school is significantly greater for male students than 

females. This may be due to the higher opportunity cost of staying in school for male 

students because their potential market wages are higher compared to those of their 

female counterparts. It is somewhat striking that nonwhite students face a lower hazard 

relative to white students. Again, the reason may be that the potential wages for white 

students are higher than those for nonwhite students. Students'age also negatively 

influences the probability of their unsuccessful leave from school, which implies that the 
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Table 4 Parametric estimates of the relative risk model for high school dropouts with the weibull baseline hazard 

Variable 
Specification 1 Specification 2 Specification 3 Specification 4 Specification 5 

(standard error)• (standard error)• (standard error)• (standard error)• (standard error)• 

Constant -12.386 (0.148) *** -12.561 (0.152) *** -13.664 (0.366) *** -13.897 (0.367) *** -13.949 (0.365) *** 

Male 0.306 (0.112) *** 0.300 (0.112) *** 0.337 (0.112) *** 0.359 (0.112) *** 0.014 (0.136) 

Nonwhite -0.206 (0.125) * -0.250 (0.127) ** -0.226 (0.125) * -0.273 (0.127) ** -0.153 (0.129) 
Age b,c -1.716 (0.071) *** -1.676 (0.070) *** -1.546 (0.071) *** -1.484 (0.072) *** -1.440 (0.072) *** 

AFQTscore c -0.028 (0.004) *** -0.026 (0.004) *** -0.026 (0.004) *** -0.024 (0.004) *** -0.026 (0.004) *** 

1 if AFQT score missing 0 0.421 (0.404) 0.411 (0.404) 0.438 (0.406) 0.395 (0.406) 0.791 (0.413) * 

Father's highest grade completed 0 -0.025 (0.021) -0.007 (0.021) -0.031 (0.020) -0.008 (0.021) -0.037 (0.021) * 

1 if father's grade missing c 0.139 (0.141) 0.011 (0.145) 0.103 (0.139) -0.048 (0.144) -0.360 (0.160) ** 

Mother's highest grade completed c -0.059 (0.023) *** -0.062 (0.022) *** -0.069 (0.022) *** -0.070 (0.022) *** -0.083 (0.022) *** 

1 if mother's grade missing c 0.104 (0.201) 0.130 (0.201) 0.123 (0.200) 0.167 (0.200) 0.428 (0.210) ** 

Type of curriculum: 
Vocational b -0.245 (0.178) -0.255 (0.179) -0.273 (0.179) -0.291 (0. I 80) -0.109 (0.182) 

Commercial b 0.484 (0.289) * 0.359 (0.292) 0.375 (0.289) 0.199 (0.293) 0.294 (0.295) 
I 

CGoellneergal e pp-rroeb pgraram atob ry b 
-0.629 (0.192) *** -0.604 (0.192) *** -0.748 (0.194) *** -0.736 (0.194) *** -0.740 (0.194) *** 

給
Unknown 1.105 (0.236) *** 1.097 (0.237) *** 0.864 (0.237) *** 0.852 (0.238) *** 0.827 (0.238) *** 

Unくem6.p0l%oymb ent rate: 
1.702 (0.365) *** 1.787 (0.366) *** 1.967 (0.370) *** 

6.0-8.9% b 1.407 (0.352) *** 1.386 (0.352) *** 1.479 (0.354) *** 

9.0-11.9% b 0.586 (0.363) 0.527 (0.363) 0.568 (0.363) 

12.0-14.9% b 0.595 (0.404) 0.606 (0.405) 0.532 (0.405) 
~15.Qo/o b 
1 if unemployment rate m1ssmg b 2.556 (1.063) ** 2.179 (I 066) ** 2.136 (1.069) ** 
Family income/1,000 b,c -0.026 (0.006) *** -0.029 (0.006) *** -0.029 (0.006) *** 

1 if family mcome m1ssmg b 0.118 (0.145) 0.078 (0.133) 0.084 (0.145) 

Predicted wage differential c -2.427 (0.535) *** 

Alpha 2.817 (1.047) *** 2.853 (1.046) *** 2.898 (1.046) *** 2.955 (1.046) *** 2.992 (1.046) *** 

Lo~likelihood -1,599.5 -1,588.8 -1,566.3 -1,552.5 -1,541.1 

Sam12Ie size 1,336 l,336 1,336 1,336 1,336 

• Asymptotic normal standard errors 
b Denotes covariates that vary across one-year intervals, but are assumed constant within intervals. All other covariates are constant within and across intervals. 

c Denotes continuous covariates, which enter hazards as deviations from sample me. 

* Significant at .10 level;** significant at .05 level;*** significant at .01 level. 



failure risk decreases as students get older. This may be because young individuals 

gradually learn the importance of high school education as they acquire more experience 

through activities inside and outside school. The failure risk also decreases with students' 

ability measured by AFQT scores, suggesting that students with higher ability are likely 

to remain in school longer. The result therefore indicates that the effect of lower per-unit 

effort cost may never be dominated by the effect of higher opportunity cost of staying in 

school, i.e., in terms of lost wages, for high ability students. Although father's highest 

grade completed may not have a significant impact on his child's enrollment lengths, the 

mother's educational experiences appear to strongly influence the child's enrollment 

duration in high school. 

The type of skills students acquire in school may also affect the probabilities of their 

quitting as the students with skills directly connected to the workplace may be eager to 

join the labor force or may be able to find jobs with ease with stronger demand from their 

potential employers. The estimate from the first specification somewhat supports this 

view. Although a vocational curriculum has a negative but insignificant effect on the 

ai ure ns , students m a commercial program may face a higher probability of dropping f・1 . k 

out compared with those in a general program. Students in a college preparatory 

curriculum, in contrast, have significantly lower probabilities of leaving their school. 

However, the lower risk for students in a college preparatory program may be due to 

their high motives or attitudes towards schooling rather than the contents of their 

academic curriculum which may not be directly connected to the workplace. The alpha 

parameter is estimated with a significant and positive effect, which indicates that the 

probabilities of students'dropping out of high school increases as time elapses even after 

controlling for their family and demographic characteristics. 

The second specification in Table 4 is estimated with the same set of covariates as 

the first specification along with the net total income a student's family earned in the past 

calendar year. Under an assumption that a student of a family with lower household 

income faces a stronger need to become financially independent or to support his family, 

the risk of unsuccessful leave may be inversely related with the family income. The result 

in the second column supports this view. The coefficient estimates on students' 

demographic characteristics and duration dependency are very similar with those from 
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the first specification, and the effect of net total family income is significantly negatively 

influencing the probabilities of students'dropping out. 

Specification 3 is estimated with the same group of demographic variables in the 

first specification, along with dummy variables for unemployment rates for the labor 

market of students'residence. The effect of the local unemployment rate is estimated as a 

proxy for the labor demand in the local labor market. The result shown in the third 

specification indicates that students residing in areas with lower unemployment rates 

face a significantly higher dropout risk, implying that the enrollment duration may be 

countercyclical. However, the local economic condition is considered to impose a critical 

influence not only on labor demand for high school students but also for the income of 

their parents. For example, students and families living in a sluggish local economy may 

face a higher unemployment rate as well as lower average income. As we see in 

Specifications 2 and 3, the former captures a counter effect of the latter on students' 

dropout risk. In order to separate these effects of labor demand for high school students 

and the family's short-term credit constraints, the fourth specification is now estimated 

with both the dummy variables for local unemployment rates and the net total family 

income. The resulting estimates are again very similar with those obtained above. The 

probability of dropout risk is positively correlated with local economic conditions, and 

students of affluent families face significantly lower risk of leaving school without 

receiving a diploma. 

Finally, the last specification is estimated with the wage differentials predicted under 

two alternative regimes; wages if students complete a potential full length of high school 

enrollment (44 months) and if they drop out and start working at some time prior to the 

potential maximum length. The estimate of the coefficient indicates that the wage 

differentials predicted immediately following the 44th month has a significantly negative 

impact on the risk of enrollment failure. In other words, students with a larger potential 

return to high school education face a lower risk of dropping out. The most affected 

variables in the coefficient estimates by the inclusion of the predicted wage differentials 

are the dummy variables for male and nonwhite students. Note in the previous 

specifications 1-4 that white male students have a significantly higher dropout risk. 

Inclusion of the potential wage gap, however, absorbs the significance of these individual 
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characteristics. The result implies that the dropout risk is greater for white male students 

because their potential wage gains from completing the full length of high school enrollment 

are so discouragingly small that extended length of enrollment is not justified for these 

myopic students. Equivalently, the result suggests that the potential wage gains are 

higher for nonwhite female students relative to their white male counterparts, at least at 

the time of job entry immediately following 44 months. 

The expected length of completed enrollment for the Weibull model is estimated by<11l 

E(TJ =] (1-F(t))dt= r (いJex+叫 (1) 

Using eq. (1) and our estimates of (3 in Specification 5 of Table 4, a "typical" student is 

expected to remain enrolled beyond 44 months (about 61 months).<12i A one month 

increase in student's age is expected to increase the expected length of enrollment by 

about 4 percent or 2.5 months. An increase in the AFQT score by 10 percentile is 

associated with a 9 percent or 5.5 month increase in students'enrollment length. An 

additional year of education by parents also has a positive impact on their child'~ 

enrollment by about 1.0 and 3.0 percent, respectively, for father and mother. Students in a 

college preparatory program have a longer expected length of enrollment than those in a 

general curriculum by 28 percent or 17 months. Moving from an area with 6.0-8.9 

percent of unemployment rates to the area of the lowest unemployment (less than 6.0 

percent) decreases the expected length of enrollment by 15 percent or by 9 months, 

suggesting that the duration of high school enrollment is strongly countercyclical. An 

unexpected increase in the net total family income by 10,000 dollars increases the 

enrollment length by 10 percent or 6 months. Finally, a one-tenth increase in the potential 

log-wage gap increases the expected length of enrollment by about 8 percent or 5 months. 

All these results are in agreement with our intuitions and economic reasoning. 

However, these results should be accepted with skepticism of potential biases as incorrect 

assumptions on the baseline hazard and a misspecified functional form of the model lead 

to inconsistent estimates of the parameters of explanatory variables. If a Weibull model is 

misspecified as exponential, for example, the coefficients are likely to be underestimated 

when the scale parameter a is greater than unity. When a is less than unity, the coefficients 
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Table 5 Expected duration of high school enrollment 

Student's background characteristics 

Typical 

Non-typical: 

Age+ 1 month 

AFQT score, 10.0 percentile higher than average 

Father's highest grade+ 1 year 

Mother'highest grade+ 1 year 

Enroll in college preparatory curriculum 

Unemployment rate < 6.0% 

Net total family income, $10,000 higher than average 

Predicted log-wage gap, 0.1 higher than average 

Expected length of 

enrollment in months 

60.5 

63.0 

66.0 

61.2 

62.2 

77.4 

51.4 

66.6 

65.6 

Note: The typical student is a white male enrolled in a general curriculum, residing in an area 
with 6.0-8.9% unemployment rates with age, AFQT score, both parents'highest grade, net total 
family income, and predicted wage gap all equal to the sample mean which is zero as all the 
continuous variables are included as deviations from sample mean. 

are likely to be overestimated. <13l Even if the model is correctly specified with respect to the 

functional form or the correct distributional assumption on the baseline hazard, neglected 

heterogeneity may lead to biased estimates of duration dependency and regressors, and 

thus incorrect inferences on the effects of these parameters. Therefore, we now consider 

estimating the relative risk model incorporating these issues of misspecification and 

unobserved heterogeneity. 

VI. ISSUES OF MISSPECIFICATION AND NEGLECTED HETEROGENEITY 

As we have already discussed, the relative risk or Cox regression model with a 

specific distributional assumption is estimated at the expense of possible biases due to 

misspecification. The nonparametric result from the partial likelihood approach is 

presented in Column 1 of Table 6 along with the estimates obtained based on the Weibull 

baseline hazard (Column 2). The reported coefficients of the partial likelihood estimates 

are very similar with those of the Weibull model, which suggests that the Weibull 

assumption is not seriously biasing the estimated effects of the explanatory variables. In 

comparison with these results, the coefficient estimates of the exponential model are also 
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Table 6 Parametric and nonparametric estimates of the relative risk model of high school dropout 

Variable 
(I) Partial likelihood estimates (2) Weibull model (3) Exponential model (4) Log-logistic model 
(standard error)• (standard error)• (standard error)• (standard error)• 

Constant -13.949 (0.367) *** -6.310 (0.346) *** -17.031 (0.405) *** 

Male 0.019 (0.136) 0.014 (0.136) -0.035 (0.133) 0.010 (0.179) 
Nonwhite -0.166 (0.129) -0.153 (0.129) -0.123 (0.126) -0.189 (0.172) 
Age b, C -1.481 (0.080) *** -1.440 (0.072) *** -0.857 (0.062) *** -1.855 (0.095) *** 
AFQTscore c -0.026 (0.004) *** -0.026 (0.004) *** -0.022 (0.004) *** -0.037 (0.005) *** 
1 if AFQT score missing 0.722 (0.415) * 0.791 (0.413) * 0.525 (0.407) 0.768 (0.597) 
Father's highest grade completed c -0.036 (0.021) * -0.037 (0.021) * -0.032 (0.021) -0.057 (0.029) ** 
1 if father's grade missing -0.328 (0.160) ** -0.360 (0.160) ** -0.265 (0.158) * -0.402 (0.223) * 
Mother's highest grade completed c -0.078 (0.022) *** -0.083 (0.022) *** -0.063 (0.022) *** -0.104 (0.031) *** 

I if mother's grade missing 0.410 (0.210) * 0.428 (0.210) ** 0.283 (0.21 I) 0.311 (0.286) 

Type of curriculum: 
Vocational b -0.121 (0.182) -0.109 (0.182) -0.169 (0.180) -0.234 (0.242) 
Commercial b 0.275 (0.295) 0.294 (0.295) 0.290 (0.291) 0.091 (0.421) 

I CGoenlleerage l p-p-rroeb pgraram atob ず
-0.734 (0.240) *** -0.740 (0.194) *** -0.699 (0.190) *** -0.906 (0.232) *** 

芍
Unknown 0.730 (0.240) *** 0.827 (0.238) *** 0.410 (0.234) * 0.926 (0.352) *** 

Unくem6.p0l%oymb ent rate: 
1.960 (0.365) *** 1.967 (0.370) *** 1.549 (0.363) *** 2.465 (0.422) *** 

6.0-8.9% b 1.463 (0.349) *** 1.479 (0.354) *** 1.320 (0.348) *** 1.864 (0.394) *** 
9.0-11.9% b 0.564 (0.362) 0.568 (0.363) 0.533 (0.362) 0.599 (0.405) 
12.0-14.9% b 0.497 (0.405) 0.532 (0.405) 0.569 (0.403) 0.574 (0.466) 
2: 15.0% b 
1 if unemployment rate m1ssmg b 2.191 (1.065) ** 2.136 (1.069) ** 1.840 (1.064) * 3.043 (1.449) ** 
Family income/1,000 b,c -0.029 (0.006) *** -0.029 (0.006) *** -0.019 (0.006) *** -0.037 (0.007) *** 
1 if family income missmg b 0.092 (0.145) 0.084 (0.145) 0.084 (0.145) 0.076 (0.191) 

Predicted wage differential -2.368 (0.530) *** -2.427 (0.535) *** -1.783 (0.507) *** -3.322 (0.708) *** 

Alpha 2.992 (1.046) Fixed at 1.00 3.788 (1.046) 

Log likelihood -1,541.1 -1,734.2 -1,545.6 

Sam2le size 1,336 1,336 1,336 1,336 

• Asymptotic normal standard errors. 
b Denotes covariates that vary across one-year intervals, but are assumed constant within intervals. All other covariates are constant within and across intervals. 
c Denotes continuous covariates, which enter hazards as deviations from sample means. 
* Significant at .10 level;** significant at .05 level;*** significant at 01 level 



presented in Column 3. As we expected, the exponential model generally produces 

underestimated results when the Weibull is the correct distribution of the baseline 

hazard. Although the model is better fit than the exponential, the log-logistic model in 

Column 4, in contrast, overestimated the effects of covariates, especially for significant 

estimates. These results underscore the importance of fitting the parametric model with 

the correct baseline hazard distribution. Overall, the Weibull distribution seems a more 

adequate assumption for the current sample than the exponential or the log-logistic in 

specifying the hazard model. 

It is a statistical fact that neglected unobservables bias estimated hazards towards 

negative duration dependence (Heckman and Singer 1984). Not only does the neglected 

heterogeneity impose an incorrect inference on the duration dependency, but also it leads 

to an incorrect conclusion of the inferences on the effects of covariates. 04> In order to take 

into account the impact of the unobserved heterogeneity, we follow Lancaster and Nickell 

(1980) and assume multiplicative heterogeneity 

y=vexp(Xjり）

where v is assumed Gamma distributed with mean 1 (by normalization) and variance尻

Then, our survivor function becomes 

l-F(t;a,(3)=[1 +a2かexp(X(3)]

with the density 

ー (J-2 

f(t;a,(1)=[1 +叶exp(Xjl)]―(1-Z-lata-lexp(Xjl)

Substituting (2) and (3) into the likelihood function 

”ぷ
L(t;a,(1)= ITJ(t;a,(1) [1-F(t;a, 闇）］

1-a, 

i=l 

we obtain the log-likelihood 

log L(t;a, り）=t州(-炉ーl)log[1 +叶exp(X(3)]+ loga+(a-l)logt+ X(3} 
k2 

+4i(l咄）｛（—が）log[l +叶exp(_x;り）］｝．
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The log-likelihood function (4) is then maximized with respect to the parameters a, (3 

andが.The resulting maximum likelihood estimate ofがwasextremely small and 

approaching zero. The other parameter estimates did not alter significantly nor did the 

value of the log-likelihood. There seems, therefore, to be little evidence of neglected 

heterogeneity left in the model with this sample, and we may conclude that the unobserved 

heterogeneity is not seriously biasing our parameter estimates of a and (3, and all the 

results in Tables 4 and 5 with the Weibull baseline hazard remain valid. 

Finally, given consistently estimated (3, a sensible nonparametric estimate of the 

baseline hazard入0(t)is obtained as suggested by Cox and Oakes (1985) 

訊）＝
d(t) 

I::=)伶(x譲）
(5) 

where d(t) is the number of spells ended at duration ti and equals 1 in the absence of 

ties. The denominator of (5) is evaluated at the estimated values of (3. The baseline 

hazards obtained at the average values of covariates are plotted in Figure 3, along with 

nonparametrically obtained hazards (copied from Figure 1). It is found in the figure that 

most spikes in the early and mid-intervals are trimmed an-d the :fluctuations previously 

0.030 

0.025 

0.020 

5

0

 

1

1

 

0

0

 

0

0

 

P
為
Z
B
H

0.005 

0.000 

ーー・・・・・ Hazardfunction based on 

Kaplan-Meier estimates 

-<>--Cox's baseline hazard 
estimated with average 
covariates 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 36 38 40 42 

Duration in months 

Figure 3 A comparison of emprically estimated baseline hazards and Cox baseline hazards 

with average covariates 
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observed have significantly been absorbed by the effects of the regressors entered into 

the relative risk model. In contrast, the regressors do not seem to have enough control on 

the shape of the hazards in the later months of high school enrollment duration. Figure 3 

shows that the family and demographic characteristics significantly influence the 

enrollment behavior of children in the early periods in high school but these characteristics 

tend to lose their influences as students enter the senior year. 

Cameron and Heckman (1998) examine the empirical regularity that the effects of 

family background and resources on the probability of transiting from one grade to the 

next diminish at higher levels of education. They show that the pattern of declining logit 

coefficients for higher grade transitions is critically dependent on choices of functional 

forms for the distribution of unobservables. Determining whether our result with respect 

to the diminishing effects of family and demographic characteristics is subject to the 

implication of their results requires further study. Provided that the effect of neglected 

heterogeneity left in the model is negligible and the lower hazard students remaining in 

the data are homogeneous, the rising dropout risks emerging after the sophomore year is 

considered to be caused by shocks that are associated with month-specific factors and 

unobserved characteristics that typical high school students may equally experience by 

reaching that stage of adolescence. Although the sources of these shocks are yet to be 

identified, it clearly indicates that the later periods in high school is a critical stage for 

average high school students who are contemplating whether to complete the designated 

full lengths of enrollment. 

VII. CONCLUDING REMARKS 

In this study, duration data on high school enrollment is graphically explored to 

identify time dependency of dropout probabilities. In light of the graphical exploration of 

the data, the relative risk model is estimated with the Weibull baseline hazard in comparison 

with alternative distributions. The resulting estimates indicate significant effects of the 

family and demographic characteristics of high school students with strong positive 

duration dependence. In order to take into consideration the issue of parametrically 

misspecified hazard function, the estimates are then compared with the results from the 

Cox's partial likelihood estimation. The comparison of the results from the Weibull and 
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partial likelihood models is found to be very similar with respect to the effects of covariates, 

suggesting that the Weibull distribution is a reasonable assumption for the sample. 

When the parametric model is estimated with the exponential baseline hazard, the 

coefficients of the regressors are generally underestimated if the alpha parameter is 

greater than unity or the hazard is increasing. The coefficients of the log-logistic model, 

in contrast, are generally overestimated, especially for the significant estimates. 

The maximum likelihood estimation of the Weibull model with the gamma distributed 

heterogeneity produces a similar result as the heterogeneity uncorrected estimation, with 

a trivial effect of neglected heterogeneity. Thus, we conclude that the obtained results 

with the Weibull assumption remain valid. Some of the important results show that 

students'ability using AFQT as a proxy variable is inversely related with their dropout 

risk. Parents'highest grade, particularly of mothers, also negatively influences the 

probabilities of their child's enrollment failure. Moreover, the probability of students' 

dropping out of high school is inversely related with the net total family income. When 

the labor demand for students is measured by the unemployment rates in the local labor 

market of their residence, the enrollment duration is found to be significantly countercyclical. 

Finally, white male students face a higher dropout risk than their nonwhite female 

counterparts because the potential wage gains from completing the full length of 

enrollment duration (44 months) are smaller for the former students. 

The effects of the family and demographic characteristics on the enrollment decision 

of high school students diminish as students enter the junior year. In other words, the 

risk is not as well controlled in the later half periods of high school as in the earlier with 

the same family and background characteristics. In particular, some of the highest risks 

experienced in the senior year remain uncontrolled. However, identifying the source of the 

shocks causing these higher risks in the later months requires further study. 
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Notes 

(1) This assumption by no means is intended to preclude the possibility that young individuals do 

not reenroll once they leave school for the first time. For example, in the analysis which used 

NLSY data, Light (1996) shows that one third of young individuals who first leave school 

between 1978 and 1990 are found to return to school before 1991. 

(2) Exceptions are Cameron and Heckman (1998, 2000) and preceding studies cited in theirs. Cameron 

and Heckman discuss a dynamic process of educational attainment for different American male 

cohorts (1998) and racial and ethnic cohorts (2000). They examine students'transiting from one 

grade to the next taking the effects of a dynamic selection bias into consideration. This paper, 

in contrast, is not intended to lay its basis on the grade-transition model but instead to cast light 

on the analysis of enrollment lengths regardless of grade repetition or transition status. 

(3) The NLSY, sponsored by the Bureau of Labor Statistics of the US. Department of Labor, is a 

nationally representative sample of 12,686 young men and women who were 14—22 years old 

when they were first surveyed in 1979. These individuals were interviewed annually through 

1994 and are currently being interviewed on a biennial basis. For more details on the sampling 

process, refer to NLS Handbook 1998, available from the Center for Human Resource Research 

at The Ohio State University. 

(4) Detailed estimation results from the log-wage regressions with separate subsamples may be 

obtained from the author upon request. 

(5) In Table 3, the integrated hazard is estimated as minus the logarithm of the Kaplan-Meier 
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estimator. This is equivalent to estimating萬）=I加 whenthe hazards are small. 
i:,j 

(6) A nonlinear regression of A(t)=yt", which is exactly the formula of the integrated hazards of the 

Weibull model, is estimated as 

A=0.0007t16149 炉=0.990
(0.00007) (0.0287) 

where A and t are the integrated hazards and duration in months respectively, and the numbers 

in parentheses are standard errors. 

(7) Heckman and Singer (1984a) exceptionally demonstrate three examples of duration models 

constructed from economic choice theories. 

(8) This implies that neglected heterogeneity potentially causes serious effects on the inferences 

about duration dependence, regressors or both (Lancaster, 1985; Kiefer, 1988). 

(9) The corresponding distribution, survivor, density, and integrated hazard functions of the Weibull 

model are defined as F(t)=l-exp(-yt"), S(t)=exp(-yt"), /(t)=yat"-1exp(-yt"), and il(t)=yt", 

respectively, while those of the exponential model are F(t)=l-exp(-yt), S(t)=exp(-yt),f(t)=yexp 

(-yt) and il(t)=yt, with入(t)=y.Thus, it is easily seen that the exponential model is a special 

case of the Weibull when a=l. 

(10) See for example Meyer (1990) in which he nonparametrically estimates the baseline hazards for 

each discrete interval. 

(11) It is easily seen in eq. (1) that the expected duration equals the inverse of exp(X/3) when the model 

is specified with exponentially distributed hazard or a=l. 

(12) The "typical" student refers to a white male individual enrolled in a general curriculum and 

residing in an area with 6.0-8.9% unemployment rates with age, AFQT score, both parents' 

highest grade completed, net total family income, and predicted wage gap all estimated at the 

sample mean. Since all the continuous variables are included as deviations from sample means, 

the typical student's expected length is estimated at age, AFQT score, parents'highest grades, 

family income and wage gap all equal zero. 

(13) See Kiefer (1988) for his regression interpretation of the hazard model, in which he provides a 

hint about the biases to be expected in the absence of censoring when a Weibull model is 

misspecified as exponential. 

(14) In a hazard model with no time-varying regressors, no censoring and a Weibull baseline hazard, 

Lancaster (1985) derives the asymptotic bias from omission of heterogeneity. He finds that the 

parameter a and all the coefficients (3 are biased towards zero. However, elasticities with respect 

to the expected value of the log of duration are always correctly estimated even when the true 

model is a Weibull mixture. 
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