1	Subungual exostosis with post-operative recurrence followed by spontaneous
2	regression
3	
4	Yoshiyuki Nakamura, Hiroshi Maruyama, Yasuhiro Fujisawa, Sae Inoue, Naoko
5	Okiyama, Yosuke Ishitsuka, Rei Watanabe, Manabu Fujimoto
6	Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba,
7	Ibaraki, Japan
8	
9	Corresponding author: Yoshiyuki Nakamura, Department of Dermatology, Faculty of
10	Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
11	Phone: +81-29-853-3128; fax: +81-29-853-3217 e-mail: ynakamura-tuk@umin.ac.jp
12	
13	
14	
15	
16	
17	
18	

19 Dear editor,

20	Subungual exostosis (SE) is a relatively uncommon osteocartilagenous tumor
21	of the digital phalanges. Although post-operative recurrence sometimes develops, cases
22	with spontaneous regression have not been reported. We report a case of SE with
23	post-operative recurrence followed by subsequent spontaneous regression.
24	A 9-year-old girl presented with a 6-month history of a growing, painful nodule
25	on the right hallux. Physical examination revealed a 10 mm nodule extending from
26	beneath the nail plate of the hallux (Fig.1a). Radiographs revealed a calcified lesion
27	which was continuous with the distal phalangeal cortex (Fig.1b). SE was suspected and
28	the nodule was resected, including the base at the cortex, until cancellous bone was
29	observed. Intraoperative radiographs confirmed optimal removal of the calcified lesion
30	(Fig. 1c). Histology of the resected tissue revealed a normal trabecular bone and
31	fibrocartilaginous tissue, consistent with SE (Fig. 1d). One month after the surgery, the
32	nodule developed again and grew until 2 months after the initial surgery. Radiographs
33	then demonstrated a calcified lesion at the same location, confirming recurrence of SE
34	(Fig. 1e), and a proposed re-excision was refused by the patient and family. In spite of a
35	lack of surgical intervention, however, the nodule gradually decreased in size and finally
36	disappeared 8 months after the surgery. Radiographs also revealed that most of the

37 calcified lesion had spontaneously regressed (Fig. 1f).

The precise pathogenesis of SE remains unknown, but trauma and hereditary 38abnormalities have been suggested as possible inducing factors for SE. The recurrence 39of SE sometimes happens within a few months after surgery $\frac{1}{2}$. In contrast, there have 40 been no reports of SE with spontaneous regression, although only a few cases of 41 42exostosis with spontaneous regression in other bones (such as the humerus and radius) have been reported^{$\frac{3}{2}$}. Since a fracture of the lesion or adjacent regions may be followed 43by regression of exostosis, previous reports pointed out that bone remodeling induced 44by trauma is one of the possible mechanisms^{$\frac{3}{2}$}. Generally, the bone fracture repair 45process consists of 3 phases: inflammation, renewal, and remodeling⁴. Numerous 46 cytokines and growth factors such as interleukin(IL)-1, IL-6, and transforming growth 4748factor (TGF)- β are produced at the injury site in the inflammation phase, promoting the proliferation and differentiation of mesenchymal stem cells into osteoblasts which form 49callus woven bone in the renewal phase⁴. In the remodeling phase, osteoblasts and 50osteoclasts mediate the replacement of the woven bone with lamellar bone through 51renewing and resorptive actions by diverse factors. IL-1, IL-6 and TGF- β are also 5253involved in the regulation of the remodeling phase through promotion of osteoclast formation^{4, 5}. Therefore, although the exact mechanism remains unclear, we speculate 54

55	that some factors such as IL-1, IL-6 and TGF- β induced by the surgery may promote not
56	only the formation of woven bone in the renewal phase but also the resorption of the
57	bone in the remodeling phase, resulting in post-operative recurrence followed by
58	spontaneous regression of SE in our case. Our case suggests that trauma, including
59	surgeries, may have a dual function for induction and regression of SE.
60	
61	Acknowledgments
62	We thank Dr. Bryan J. Mathis of the University of Tsukuba Medical English
63	Communication Center for English editing of this manuscript.
64	
65	References
66	1. Singh R., Jain M., Goel R., Siwach R., Kalra R. and Kaur K. Subungual
67	exostosis of the great toe: a case report and tumor overview. Foot Ankle Spec 2011; 4:
68	376-378.
69	2. James A. and Henderson S. Multiple recurrences of subungual exostosis in a
70	child: a unique presentation of a Nora's lesion. Foot Ankle Int 2013; 34: 445-447.
71	3. Castriota-Scanderbeg A., Bonetti M. G., Cammisa M. and Dallapiccola B.
72	Spontaneous regression of exostoses: two case reports. Pediatr Radiol 1995; 25:

4

73 544-548.

74	4.	Majidinia M., Sadeghpour A. and Yousefi B. The roles of signaling pathways
75	in bone r	epair and regeneration. J Cell Physiol 2018; 233: 2937-2948.
76	5.	Quinn J. M. and Gillespie M. T. Modulation of osteoclast formation.
77	Biochemical and biophysical research communications 2005; 328: 739-745.	
78		

79

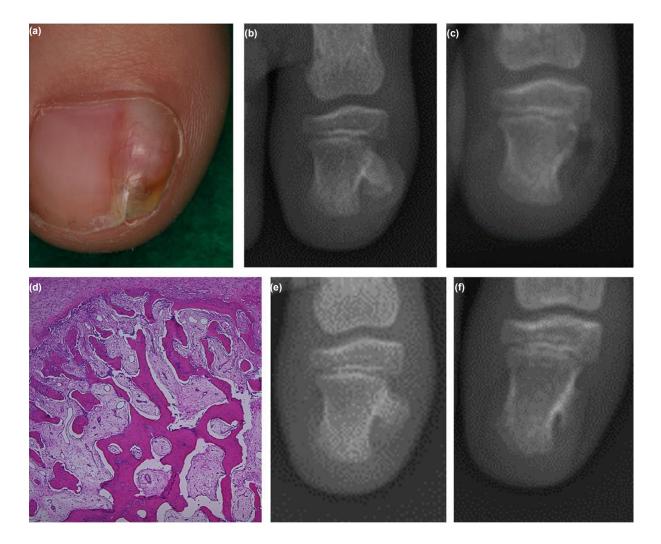


Figure 1. (a) A nodule beneath the nail plate on the right hallux. (b) The nodule showed a calcified lesion continuous with the distal phalangeal cortex. (c) Optimal removal of the lesion was confirmed by intraoperative radiography. (d) The lesion revealed a normal trabecular bone and fibrocartilaginous tissue (hematoxylin–eosin, original magnification 940). (e) A radiograph from 2 months after the surgery. A calcified lesion recurred at the same location. (f) A radiograph from 2 years after the surgery. Most of the recurrent calcified lesion spontaneously regressed.