
1954
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.7 JULY 2018

LETTER

Classifying MathML Expressions by Multilayer Perceptron∗

Yuma NAGAO†a), Nonmember and Nobutaka SUZUKI††, Member

SUMMARY MathML is a standard markup language for describing
math expressions. MathML consists of two sets of elements: Presentation
Markup and Content Markup. The former is widely used to display math
expressions in Web pages, while the latter is more suited to the calculation
of math expressions. In this letter, we focus on the former and consider
classifying Presentation MathML expressions. Identifying the classes of
given Presentation MathML expressions is helpful for several applications,
e.g., Presentation to Content MathML conversion, text-to-speech, and so
on. We propose a method for classifying Presentation MathML expres-
sions by using multilayer perceptron. Experimental results show that our
method classifies MathML expressions with high accuracy.
key words: MathML, classification, multilayer perceptron

1. Introduction

MathML is a standard markup language for describing math
expressions. MathML consists of two set of elements: Pre-
sentation Markup and Content Markup. The former de-
scribes layout structures of math expressions, and is widely
used to display math expressions in Web pages. On the
other hand, the latter describes semantic meanings of math
expressions, and is suited to automatic calculation of math
expressions.

In this letter, we focus on the former and consider
classifying Presentation MathML expressions, i.e., given a
Presentation MathML expression e, identify the class (e.g.,
hypergeometric function, bessel-type function, etc.) that e
should belong to. If we can identify the class of a given Pre-
sentation MathML expression automatically, it is helpful for
several applications, e.g., Presentation to Content MathML
conversion, text-to-speech, and so on. This is because there
are a number of multi-meaning symbols and expressions in
mathematics, and the class of a MathML expression can be
a clue to resolve such an ambiguity. For example, consider
the following two expressions.

Cn =
1

n + 1

(
2n
n

)
C(x) =

∫ x

0
cos(t2) dt

The left is Catalan number and the right is Fresnel integrals,

Manuscript received September 26, 2017.
Manuscript revised March 1, 2018.
Manuscript publicized April 4, 2018.
†The author is with Graduate School of Library, Information

and Media Studies, University of Tsukuba, Tsukuba-shi, 305–8550
Japan.
††The author is with Faculty of Library, Information and Media

Science, University of Tsukuba, Tsukuba-shi, 305–8550 Japan.
∗This paper is based on [1].

a) E-mail: ynagao@klis.tsukuba.ac.jp
DOI: 10.1587/transinf.2017EDL8211

and both expressions contains the same symbol “C”. The
symbol is expressed by <mi>C</mi> element in Presenta-
tion MathML for both “C” symbols. On the other hand, in
Content MathML, <ci>Catalan</ci> element is used for
“C” of the left expression while <ci>Fresnel</ci> ele-
ment is used for “C” of the right expression. The wolfram
function site [7] classifies the left expression in “Catalan”
class and the right expression in “Fresnel integrals” class.
Thus, the classes can be helpful to determine which element
should be used for “C”.

Our method classifies MathML expressions by using
multilayer perceptron, which is a basic model of deep learn-
ing. The difficulty in taking such an approach is that
MathML expression is tree structured data while multilayer
perceptron requires “flat” vectors as input, and it is not clear
how to convert MathML expressions into vectors suitable
for classification by multilayer perceptron. To address this,
our method converts a Presentation MathML expression into
a vector which is based on binary branch vector [2] and
our dimensionality reduction method. Experimental results
show that our method classifies MathML expressions with
high accuracy.

Related Work

Kim et al. [3] propose a classification method for Presen-
tation MathML expressions. They extract features from
MathML expressions and classify them by using support
vector machine (SVM). They use labels of nodes and con-
tiguous sequence of leaf nodes as a feature, in which parent-
child relationships between elements are not considered.
Moreover, SVM requires proper features which must be ex-
tracted according to characteristics of data manually. On the
other hand, multilayer perceptron (and other deep learning
models) does not require such manual feature extractions.

Besides MathML classification, several studies on se-
mantic extraction from math expressions [4]–[6] have been
made. [4] extracts semantic meanings of math identifiers
from math expressions and texts surrounding the expres-
sions. [5] proposes a method for specifying meanings of
math identifiers. The method uses classes of math expres-
sions as features. On the other hand, we estimate the classes
of math expressions without using texts surrounding the ex-
pressions. [6] proposes a method for classifying math docu-
ments.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

LETTER
1955

2. Proposed Method

Our method classifies Presentation MathML expressions by
the following steps.

1. Convert Presentation MathML expressions into binary
trees.

2. Generate binary branch vectors from the binary trees
obtained in step 1.

3. Reduce the size of the binary branch vectors obtained
in step 2.

4. Train multilayer perceptron by using the vectors ob-
tained in step 3, and classify MathML expressions by
using the multilayer perceptron.

In the following, we give the details of the above steps.

Step 1: Binarization of MathML Expression

MathML expressions are represented as unranked ordered
trees. We convert them into full binary trees.

An unranked ordered tree is denoted T = (N, E,
Root(T)), where N is the set of nodes, E is the set of edges,
and Root(T) is the root node of T . By (u, v) ∈ E we mean
an edge from parent node u to child node v.

A full binary tree (binary tree, for short) is an ordered
tree such that every node has either zero or two child nodes.
By B(T), we mean the binary tree of an unranked ordered
tree T . Here, B(T) is obtained from T by the well-known
binarization method for unranked ordered tree, as follows.

1. Initially, B(T) consists of the same set of nodes as T
and no edges.

2. For each node u in T , do the following.

a. Let v1, v2, . . . , vn be the child nodes of u. Add an
edge (vi−1, vi) to B(T) for every 2 ≤ i ≤ n.

b. Add an edge (u, v1) to B(T).

3. Insert empty nodes ε so that every internal node in B(T)
has exactly two child nodes.

For example, B(T1) and B(T2) in Fig. 1 (center) are the bi-
nary trees of T1 and T2 in Fig. 1 (left), respectively.

Fig. 1 Tree binarization and dimensionality reduction.

Steps 2: Vectorization of Binary Tree by Binary Branch
Vector

In this step, we vectorize binary trees as binary branch vec-
tors [2].

A binary branch is a one level subtree of a binary tree.
A binary branch is denoted (u, ul, ur), where u is the root of
the binary branch, ul is the left child of u, and ur is the right
child of u. For example, B(T1) in Fig. 1 (center) consists
of five binary branches (math, mn, ε), (mn, 2, mi), (2, ε,
ε), (mi, x, ε), and (x, ε, ε). Let S be a set of binary trees
and T ∈ S . Then the binary branch vector of T , denoted
BRV(T), is defined as BRV(T) = (b1, b2, . . . , b|Γ|), where Γ
is an ordered set of binary branches in S , |Γ| is the size of Γ,
and bi is the number of occurrences of the ith binary branch
in B(T).

For example, consider binary trees B(T1) and B(T2)
in Fig. 1 (center). The binary branch vectors of B(T1) and
B(T2) are shown in Fig. 2 (left). In the figure, the two
columns of the array represent binary branch vectors of
B(T1) and B(T2), respectively, i.e., BRT (B(T1)) = (1, 1, 0, 1,
0, 1, 0, 1, 0) and BRT (B(T2)) = (1, 0, 1, 0, 1, 0, 1, 0, 1). Each
cell in the array represents the number of occurrences of a
binary branch. For example, binary branch (mn, 2, mi) oc-
curs once in B(T1) but zero times in B(T2).

Fig. 2 Dimensionality reduction of binary branch vectors.

1956
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.7 JULY 2018

Step 3: Dimensionality Reduction of Binary Branch Vector

Each element of a binary branch vector is the number of oc-
currences of a binary branch in a given set S of binary trees.
Therefore, as S becomes larger, the size of Γ increases ac-
cordingly. Actually, the size of Γ tends to become consid-
erably large since MathML expressions have substructures
which are similar but have different numeric values. How-
ever, in most cases, classes of MathML expressions can be
captured by their structural features (tree structures and el-
ement names) rather than numerical values. Thus, by drop-
ping such numerical values we can effectively reduce the
size of binary branch vectors.

In our method, we reduce the sizes of binary branch
vectors by erasing the text of mn elements. In Presentation
MathML, mn elements represent numeric numbers. We give
an example of dimensionality reduction. Consider the bi-
nary trees B(T1) and B(T2) in Fig. 1 (center). We replace the
texts of mn elements (2 and 5) with ε. As the result, binary
branches (mn, 2, mi) and (mn, 5, mi) are converted into the
same binary branch (mn, ε, mi) and two binary branches (2,
ε, ε) and (5, ε, ε) are dropped (Fig. 1 (right)). Figure 2 shows
an example of binary branch vectors before and after this di-
mensionality reduction. As shown in the figure, the size of
binary branch vector is reduced from 9 to 6.

Steps 4: Classification of MathML Expressions by Multi-
layer Perceptron

Our method classifies vectors obtained in step 3 by a multi-
layer perceptron.

A multilayer perceptron is composed of an input layer,
any number of hidden layers and an output layer. Our model
consists of an input layer, two hidden layers, and an output
layer. The number of units in the input layer is same as the
size of vectors of a given dataset, obtained in step 3. Each
hidden layer has 512 units and activated by ReLU. The out-
put layer has the same number of units as MathML classes
of a given dataset and activate by softmax. We use Adam as
the optimizer to minimize cross entropy error.

3. Experiments

In this section, we present our experimental results.

3.1 Dataset

In our experiments, we used two datasets: the Wolfram
Function Site and MREC.

The Wolfram Function Site:

We collected HTML files exhaustively and extracted Pre-
sentation MathML expressions from the wolfram function
site [7]. We obtained 307,676 expressions and 14 classes.
We used 70% of them for training data and used 30% for
test data.

MREC (Mathematical REtrieval Collection):

MREC [8] is a dataset of scientific papers in arxiv.org trans-
lated to XML. The math expressions in the papers are writ-
ten in Presentation MathML.

MREC contains too short expressions (e.g., “x”, “Δ”)
for which classification is meaningless. Therefore, we re-
moved such MathML expressions. Specifically, we removed
MathML expressions that have no mi elements or less than
two elements except math and mrow elements from the
dataset. Note that math is the root element of a MathML
expression and that mrow elements affect neither the display
nor the meaning of any MathML expression.

The MREC dataset has originally 34 classes, and we
chose classes containing enough number of expressions.
Specifically, we chose 20 classes having more than 100,000
expressions. The hierarchy of the 20 classes is shown in
Fig. 3 (the two slanted classes Mathematics and Physics are
“empty” classes having no their own documents). As shown
in the figure, the hierarchy consists of three tiers: “top-
class”, “sub-class”, and “sub-sub-class”. Since some classes
are very similar to or overlapping each other, we merged
such classes and obtain the 12 classes. Specifically, we
merged classes by the following criteria.

• Sub-sub classes and their parent are merged ((2) and
(9)).
• Classes having the same field name with supplemental

words are merged ((7) and (10))

We extracted 100,000 MathML expressions from each
of the 12 classes, which constitutes the final dataset. We
used 70% of them for training data and used 30% for test
data.

Fig. 3 Class hierarchy of 20 MREC classes.

LETTER
1957

3.2 Experimental Results

We compared our method, our method without dimensional-
ity reduction, and the SVM-based method proposed by Kim
et al. [3]. They define five features: labels of nodes (Tag),
texts of mo elements which represent operators (Operator),
texts of mi elements which represent identifiers (Identifier),
bigram of plain text in expressions (String Bigram), and bi-
gram of identifier and operator (I&O). To classify Presen-
tation MathML expressions, they compared several com-
binations of the features as the inputs of SVM with liner
kernel. In their experimental results, the combination of
Tag, Operator, String Bigram, and I&O shows the highest
accuracy. However, the expressions in our datasets con-
tain few plain texts that can be used as the String Bigram
feature. Therefore, we use Tag, Operator, Identifier, and
I&O, which marked the second highest accuracy in their
experiment. We adjusted penalty parameter C of SVM
(C = 2−10, 2−9, . . . , 210) since the value of C is not given in
their paper. Besides the SVM-based method, we also tested
our method without the dimensionality reduction.

Tables 1 and 2 show the results. Table 1 shows the
accuracies of the three methods for the wolfram function site
dataset. The accuracy of the SVM-based method is the value
for C = 28, which brings the highest accuracy among the
values of C. The result shows that any of methods achieve
high accuracy. Further, our method slightly outperforms the
SVM-based method. The possible reason why such high
accuracies are obtained is that the dataset is highly “clean”,
that is, it has well-formed structures (e.g., order of variables,
operators, etc.) and unified notations of identifiers.

Table 2 shows the accuracies of the three methods for
the MREC dataset. The accuracy of the SVM-based method
is the value for C = 20, which brings the highest accuracy
among the values of C. For this dataset, our method clearly
outperforms the SVM-based method. On the other hand,
any of the accuracies are lower than those of the wolfram
function site. This is because the expressions of the MREC
dataset are much less “clean” than these of the wolfram
function site dataset. For example, in the MREC dataset, the
notation of identifiers are not unified, because the expres-
sions are written by various authors. The result means that

Table 1 Accuracy for the wolfram function site dataset.

Method Accuracy

Our method 99.35
Our method (without dimensionality reduction) 99.24
SVM (C = 28) 99.03

Table 2 Accuracy for the MREC dataset.

Method Accuracy

Our method 83.54
Our method (without dimensionality reduction) 33.75
SVM (C = 20) 28.16

our method is much robust and effective to less “clean” ex-
pressions than the SVM-based method. Another interesting
result for this dataset is that the accuracy of our method sig-
nificantly drops without dimensionality reduction. A pos-
sible reason for this is that binary branches with numerical
values act as “noises” that prevent our model from classify-
ing math expressions correctly. Detailed reason is still under
investigation and left as a future work.

Finally, let us present the sizes of input vectors. For the
wolfram function site dataset, the size of binary branch vec-
tor is reduced from 558,777 to 2,184 by the dimensionality
reduction method. For the MREC dataset, the size of binary
branch vector is reduced from 72,019 to 39,833.

Consequently, the combination of multilayer percep-
tron and dimensionality reduced input vectors can be helpful
to improve the accuracy of classification of MathML expres-
sions.

4. Conclusion

In this letter, we proposed a method for classifying Presen-
tation MathML expressions based on multilayer perceptron.
Experimental results showed that our method can classify
MathML expressions with higher accuracy than the SVM-
based method.

As a future work, we would like to investigate the effec-
tiveness of our dimensionality reduction method, in terms
of accuracy of classification. Furthermore, we need to con-
sider comparing our model with other complex models (e.g.,
Tree-LSTM [9]). We also have to tune hyperparameters
(number of units and layers, etc.) of our model, since it is
not clear whether the hyperparameters used in our experi-
ment are optimum or not.

References

[1] Y. Nagao and N. Suzuki, “Classification of MathML expressions us-
ing multilayer perceptron,” Proc. 2017 ACM Symposium on Docu-
ment Engineering, DocEng ’17, pp.133–136, 2017.

[2] R. Yang, P. Kalnis, and A.K.H. Tung, “Similarity evaluation on
tree-structured data,” Proc. 2005 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’05, pp.754–765, 2005.

[3] S. Kim, S. Yang, and Y. Ko, “Classifying mathematical expressions
written in MathML,” IEICE Trans. Inf. & Syst., vol.E95-D, no.10,
pp.2560–2563, Oct. 2012.

[4] M. Schubotz, A. Grigorev, M. Leich, H.S. Cohl, N. Meuschke, B.
Gipp, A.S. Youssef, and V. Markl, “Semantification of identifiers in
mathematics for better math information retrieval,” Proc. 39th Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’16, pp.135–144, 2016.

[5] M.-Q. Nghiem, G.Y. Kristianto, and A. Aizawa, “Using MathML par-
allel markup corpora for semantic enrichment of mathematical expres-
sions,” IEICE Trans. Inf. & Syst., vol.E96-D, no.8, pp.1707–1715,
Aug. 2013.

[6] T.T. Nguyen, K. Chang, and S.C. Hui, “Adaptive two-view online
learning for math topic classification,” Proc. 2012 European Confer-
ence on Machine Learning and Knowledge Discovery in Databases,
ECML PKDD ’12, Lecture Notes in Computer Science, vol.7523,
pp.794–809, Springer, Berlin, Heidelberg, 2012.

[7] Wolfram Research, “The Wolfram Function Site,”
http://functions.wolfram.com/

http://dx.doi.org/10.1145/3103010.3121026
http://dx.doi.org/10.1145/1066157.1066243
http://dx.doi.org/10.1587/transinf.e95.d.2560
http://dx.doi.org/10.1145/2911451.2911503
http://dx.doi.org/10.1587/transinf.e96.d.1707
http://dx.doi.org/10.1007/978-3-642-33460-3_56

1958
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.7 JULY 2018

[8] M. Lı́ška, P. Sojka, M. Růžička, and P. Mravec, “Web interface and
collection for mathematical retrieval: Webmias and mrec,” Towards a
Digital Mathematics Library, ed. P. Sojka and T. Bouche, Bertinoro,
Italy, pp.77–84, July 2011.

[9] K.S. Tai, R. Socher, and C.D. Manning, “Improved semantic repre-
sentations from tree-structured long short-term memory networks,”
CoRR, vol.abs/1503.00075, 2015.

http://dx.doi.org/10.3115/v1/p15-1150

