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Brain glycogen, localized in astrocytes, produces lactate as an energy source and/or
a signal factor to serve neuronal functions involved in memory formation and exercise
endurance. In rodents, 4 weeks of chronic moderate exercise-enhancing endurance
and cognition increases brain glycogen in the hippocampus and cortex, which is
an adaption of brain metabolism achieved through exercise. Although this brain
adaptation is likely induced due to the accumulation of acute endurance exercise–
induced brain glycogen supercompensation, its molecular mechanisms and biomarkers
are unidentified. Since noradrenaline synthesized from blood-borne tyrosine activates
not only glycogenolysis but also glycogenesis in astrocytes, we hypothesized that blood
tyrosine is a mechanistic-based biomarker of acute exercise–induced brain glycogen
supercompensation. To test this hypothesis, we used a rat model of endurance
exercise, a microwave irradiation for accurate detection of glycogen in the brain
(the cortex, hippocampus, and hypothalamus), and capillary electrophoresis mass
spectrometry–based metabolomics to observe the comprehensive metabolic profile of
the blood. Endurance exercise induced fatigue factors such as a decrease in blood
glucose, an increase in blood lactate, and the depletion of muscle glycogen, but those
parameters recovered to basal levels within 6 h after exercise. Brain glycogen decreased
during endurance exercise and showed supercompensation within 6 h after exercise.
Metabolomics detected 186 metabolites in the plasma, and 110 metabolites changed
significantly during and following exhaustive exercise. Brain glycogen levels correlated
negatively with plasma glycogenic amino acids (serine, proline, threonine, glutamate,
methionine, tyrosine, and tryptophan) (r < −0.9). This is the first study to produce a
broad picture of plasma metabolite changes due to endurance exercise–induced brain
glycogen supercompensation. Our findings suggest that plasma glycogenic amino acids
are sensitive indicators of brain glycogen levels in endurance exercise. In particular,
plasma tyrosine as a precursor of brain noradrenaline might be a valuable mechanistic-
based biomarker to predict brain glycogen dynamics in endurance exercise.
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INTRODUCTION

Brain glycogen localized in astrocytes plays the role of an energy
source and/or signaling factor in maintaining neuronal functions,
such as memory formation and exercise endurance (Suzuki
et al., 2011; Matsui et al., 2017; Magistretti and Allaman, 2018).
Chronic exercise enhances memory functions and endurance
capacity as well as raises the glycogen levels of the cortex
and hippocampus in healthy and type II diabetic rats (Matsui
et al., 2012; Shima et al., 2017). This metabolic adaptation of
the brain, due to chronic exercise, should be induced by the
accumulation of brain glycogen supercompensation after an
acute exercise-induced decrease in brain glycogen (Matsui et al.,
2011, 2012, 2017). Therefore, brain glycogen dynamics during
and following exercise can be a valuable parameter for exercises
as training/conditioning for athletes and/or a therapeutic strategy
for neurodegenerative diseases.

To date, however, the understanding of human brain glycogen
metabolism is still less clear. A previous study using biopsy
samples reported that hippocampal glycogen levels were higher
compared to other brain regions in patients with epilepsy
(Dalsgaard et al., 2007). However, since brain biopsy procedures
carry the risk of parenchymal hemorrhage, it is difficult to use
in healthy or vulnerable people (Beynon et al., 2018). Although
a non-invasive measurement for brain glycogen metabolism
has been developed using in vivo nuclear magnetic resonance
(NMR) in healthy people and type I diabetes patients (Oz et al.,
2009, 2017), human brain glycogen metabolism during exercise
remains unclear because the head movement can cause noise
preventing the accurate measurement of brain glycogen using
in vivo NMR (Oz et al., 2009). To resolve this issue, non-invasive
identification of biomarkers that can predict brain glycogen
dynamics with exercise is desirable.

Interestingly, in astrocytes, noradrenaline synthesized from
blood-borne tyrosine, activates glycogenolysis through cyclic
adenosine monophosphate (cAMP) production in a matter
of minutes (Magistretti et al., 1981), but takes hours to
induce glycogen synthesis and supercompensation through the
expression of protein targeting to glycogen (PTG) (Sorg and
Magistretti, 1992; Allaman et al., 2000; Ruchti et al., 2016).
We have previously reported that acute endurance exercise
decreases brain glycogen levels associated with increased brain
tyrosine and noradrenaline levels (Matsui et al., 2011, 2017).
We thus hypothesized that blood tyrosine is a mechanistic-based
biomarker for the decrease and supercompensation of brain
glycogen with acute endurance exercise.

To test this hypothesis, we employed a rat model of
acute endurance exercise, high-power microwave irradiation for
accurate detection of brain glycogen (10 kW) (Kong et al., 2002;
Matsui et al., 2011), and plasma metabolomics using capillary
electrophoresis-mass spectrometry (CE-MS). Biomarkers for
various disorders, including various types of cancers, have
been identified in previous studies using metabolomics, which
can analyze comprehensive metabolites (Tomita and Kami,
2012). Its utility has been demonstrated by identifying new
biomarkers for prostate cancer (Sreekumar et al., 2009),
Parkinson’s disease (Bogdanov et al., 2008), type 2 diabetes

mellitus (Wang et al., 2005), acute myocardial ischemia (Sabatine
et al., 2005), and non-alcoholic fatty liver disease in humans and
rodents (Soga et al., 2006, 2011).

MATERIALS AND METHODS

Animals
Adult male Wistar rats (250–300 g) (SLC Inc., Shizuoka, Japan),
housed and cared for in an animal facility, were fed a standard
pellet diet (MF, Oriental Yeast Co., Ltd., Tokyo, Japan) and given
water ad libitum. The room temperature was maintained between
22 and 24◦C under a 12 h light–12 h dark cycle (lights on: 0700–
1900). Fifteen rats were habituated to run on a treadmill (SN-460,
Shinano, Tokyo, Japan) for five sessions over 6 days, 30 min/day.
The running speed was gradually increased from 5 to 25 m/min
(see Supplementary Table S1; Matsui et al., 2011, 2012, 2017;
Nishijima et al., 2012).

Surgery
Surgery was performed according to methods described by Soya
et al. (2007). After habituation to treadmill running, the rats
were anesthetized with isoflurane, and a silicone catheter was
inserted into the jugular vein and fixed with a silk thread
(32 mm). The external distal end of the catheter was fixed at
the animal’s nape.

Endurance Exercise
Two days after surgery, rats were fasted for 2 h before exercise
to obtain stable metabolic conditions. They were exercised to
exhaustion on a treadmill at 20 m/min, which is defined as
moderate intensity around the lactate threshold in the rat mode
of exercise (Ohiwa et al., 2006; Soya et al., 2007; Okamoto et al.,
2012; Inoue et al., 2015; Shima et al., 2017). Exhaustion was
considered to be achieved when the rat was no longer able to keep
pace with the treadmill and when the rat laid flat on the treadmill,
and stayed on the grid positioned at the back of the treadmill for a
period of 30 s despite being gently pushed with sticks or breathed
on (Matsui et al., 2011, 2012, 2017).

Sacrifice of Animals and Tissue
Extraction
We collected tissue samples according to a previous study
confirming a decrease and supercompensation of brain glycogen
with exercise (Matsui et al., 2012). At the pre-exercise,
immediately after exercise (post-0 h), and 6 h after exercise (post-
6 h), the rats were anesthetized with isoflurane in a bell jar for less
than 1 min and sacrificed using focused microwave irradiation
(MI) (10 kW, 1.2 s; NJE-2603, New Japan Radio Co., Ltd., Tokyo,
Japan). Previous studies have confirmed that brain glycogen levels
are unchanged by this duration of isoflurane challenge (Kong
et al., 2002; Matsui et al., 2011). After MI, brain tissues (cortex,
hippocampus, and hypothalamus) were collected according to
Hirano et al. (2006). Skeletal muscle (plantaris) and blood were
also collected. All samples were stored at−80◦C until analysis.
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Blood Glucose and Lactate Assays
Blood glucose and lactate levels were measured using an
automated glucose-lactate analyzer (2300 Stat Plus, Yellow
Springs Instruments, United States).

Glycogen Assay
Tissues were homogenized with a bead homogenizer (MS-100R,
TOMY, Tokyo, Japan) in ice-cold 6% perchloric acid (PA)
containing 1 mM EDTA. The glycogen contained in 100 µl
aliquots of homogenate was hydrolyzed to glucose by incubation
for 3 h at 37◦C with 1 ml 0.2 M sodium acetate, 20 µl 1.0 M
KHCO3, and 20 U/ml amyloglucosidase. The addition of 0.5 ml
PA stopped the reaction. After centrifugation (14,000 × g for
10 min at 4◦C), the supernatant was neutralized with a solution
consisting of 3 M KOH, 0.3 M imidazole, and 0.4 M KCl.
The sample was then centrifuged (16,000 × g for 10 min at
4◦C) and the supernatant was assayed for glucose content.
Non-hydrolyzed samples were used to measure endogenous
glucose levels. These samples were homogenized and centrifuged
(14,000 × g for 10 min at 4◦C), and the pH of the supernatants
was adjusted to 6–8 using the KOH solution. The neutralized
samples were then mixed thoroughly, centrifuged (16,000 × g
for 10 min at 4◦C), and assayed for endogenous glucose levels.
The glucose assay was performed in 96-well plates using a
coupled enzyme assay method modified from previous studies
(Matsui et al., 2011, 2012).

Metabolomics by Capillary
Electrophoresis-Time-of-Flight Mass
Spectrometry
Capillary electrophoresis-time-of-flight mass spectrometry was
conducted by Human Metabolome Technologies Co., Ltd.,
(Yamagata, Japan) to determine the metabolomics (Sugiura
et al., 2011). Each frozen sample was homogenized in methanol
(500 mL/100 mg tissue) using a bead homogenizer (Micro Smash
MS-100R; TOMY, Tokyo, Japan), followed by the addition of
an equal volume of chloroform and 0.4 times the volume of
Milli-Q water. After centrifugation (3 cycles at 5,000 × g for
60 s), the aqueous phases were ultrafiltered using an ultrafiltration
tube (Ultrafree-MC, UFC3 LCC; Millipore, United States) and
the filtrates were dried. The dried residues were redissolved
in 50 mL Milli-Q water and were used for CE-MS. CE-MS
experiments were performed using Agilent CE systems equipped
with a time-of-flight mass spectrometer (TOF-MS) and a built-
in diode-array detector (Agilent Technologies, Santa Clara,
United States). Cationic metabolites were analyzed using a
fused-silica capillary (50 mm i.d., 680 cm total length) with
cation buffer solution (Human Metabolome Technologies) as the
electrolyte. The samples were injected at a pressure of 5.0 kPa
for 10 s (approximately 10 nL). The applied voltage was set
at 30 kV. Electrospray ionization mass spectrometry (ESI-MS)
was conducted in the positive ion mode, and the capillary
voltage was set at 4,000 V. The spectrometer was scanned from
m/z 50 to 1,000. Other conditions were the same as in the
cation analysis (Soga and Heiger, 2000). Anionic metabolites
were analyzed using a fused-silica capillary (50 mm i.d., 680 cm

total length), with anion buffer solution (Human Metabolome
Technologies) as the electrolyte. The samples were injected at
a pressure of 5.0 kPa for 25 s (approximately 25 nL). The
applied voltage was set at 30 kV. ESIMS was conducted in the
negative ion mode, and the capillary voltage was set at 3,500 V.
The sample in the spectrometer was scanned from m/z 50 to
1,000. Other conditions were the same as described for the
anion analysis. Metabolites in the samples were identified by
comparing the migration time and m/z ratio with authentic
standards, and differences of 60.5 min and 610 ppm, respectively,
were permitted. The identified metabolites were quantified by
comparing their peak areas with those of authentic standards
using ChemStation software (Agilent Technologies).

The metabolomics data were adopted for principal component
analysis (PCA) and hierarchical cluster analysis (HCA)
using software by Human Metabolome Technologies. Data
were also visualized on a metabolome-wide pathway map
for glycolysis and the TCA cycle supported by VANTED
software (Junker et al., 2006).

Statistical Analysis
Data are expressed as mean ± standard error and were
analyzed using Prism 5 (MDF Co., Ltd., Tokyo, Japan). Group
comparisons were performed using a one-way ANOVA with
Tukey’s post hoc tests. Correlations were calculated using
Pearson’s product-moment correlations. Statistical significance
was assumed at P-values <0.05.

RESULTS

Endurance Exercise Induces Decrease
and Supercompensation in Brain
Glycogen
Rats were exercised on the treadmill until exhaustion (20 m/min,
time to exhaustion: 89.5 ± 5.2 min). Blood lactate was
significantly increased by endurance exercise (P < 0.01) and
recovered to basal levels within 6 h after exercise (Figure 1A).
Blood glucose levels were significantly decreased by endurance
exercise (P < 0.01) and recovered to basal levels within 6 h
after exercise (Figure 1B). Muscle glycogen levels were depleted
by endurance exercise (P < 0.01), and it recovered to basal
levels within 6 h after exercise (Figure 1C). Brain glycogen
levels in the cortex, hippocampus, and hypothalamus were
significantly decreased by endurance exercise (P < 0.01), but were
replenished to higher levels in comparison to the pre-exercise
group (P < 0.05) (Figure 1C).

Plasma Metabolomics in Exercising Rats
Plasma metabolomics measured 186 metabolites and revealed
that 110 metabolites changed significantly with endurance
exercise (Supplementary Table S2). PCA and HCA clearly
indicated the difference in metabolic profiles between pre-
exercise, post-0 h, and post-6 h (Figure 2).

A scatter plot of the fold change of the overlapping metabolites
in each condition was generated (Figure 3). This figure shows
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FIGURE 1 | Endurance exercise induces a decrease and supercompensation
in brain glycogen. (A) Blood lactate levels. (B) Blood glucose levels.
(C) Glycogen levels in the plantaris muscle, cortex, hippocampus, and
hypothalamus. Data are expressed as mean ± standard error (n = 5/group).
∗P < 0.05; ∗∗P < 0.01 vs. pre-exercise group.

that 23 metabolites, including glycogenic amino acids (such
as aspartate, tyrosine, and tryptophan), increased immediately
after exercise (post-0 h) and were decreased 6 h after exercise

(post-6 h). Additionally, a metabolite, acetoacetate, decreased
immediately after exercise (post-0 h) and increased 6 h after
exercise (post-6 h).

Correlation Between Biomarker
Candidates and Brain Glycogen Levels
Correlation analysis between 24 plasma biomarker candidates,
including glycogenic amino acids and acetoacetate, and
brain glycogen levels in the cortex, hippocampus, and the
hypothalamus showed that all candidate metabolites were
significantly correlated (P < 0.05). Furthermore, glycogenic
amino acids (serine, proline, threonine, glutamate, methionine,
tyrosine, and tryptophan) showed stronger correlations
(r <−0.9, P < 0.05) (Figures 4–6).

DISCUSSION

This study tested the hypothesis that blood tyrosine is a
mechanistic-based biomarker that predicts a decrease and
supercompensation of brain glycogen with acute endurance
exercise. We first reproduced a rat model of endurance exercise
to induce a decrease and supercompensation of brain glycogen
(Figure 1). Our metabolomics of plasma samples from rats, that
underwent endurance exercise, showed that plasma glycogenic
amino acids, including tyrosine, were increased during exercise
and were decreased following exercise associated with brain
glycogen dynamics (Figures 2–6). These findings support our
present hypothesis.

We confirmed hypoglycemia, blood lactate elevation, muscle
glycogen depletion, and brain glycogen decrease due to exercise,
in the post-0 h group (Figures 1A–C). These phenomena are
fatig factors that have been reported by previous studies on
prolonged exercise in rodents and humans (Gollnick et al.,
1974; Nybo and Secher, 2004; Matsui et al., 2011, 2012),
indicating the validity of our rat model for acute endurance
exercise. During moderate intensity of endurance exercise,
glycogen levels in type II fibers or the plantaris muscle, which

Pre-exercise Post-0 h Post-6 h

A B

FIGURE 2 | Changes in the plasma metabolic profile with endurance exercise. (A) Principal component analysis (PCA) of metabolomics. (B) Hierarchical cluster
analysis (HCA) of metabolomics. A total of 186 metabolites were measured, revealing that 44 metabolites were changed significantly with endurance exercise. PCA
and HCA clearly indicated the difference of metabolic profiles between pre-exercise, post-0 h, and post-6 h.
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significant correlation (P < 0.05) (Pearson’s product-moment correlations test).

consists of over 90% type II fibers, are depleted, similar to
that observed in the present study, in rats (Armstrong et al.,
1974; Bracken et al., 1988; Matsui et al., 2011, 2012, 2017)
and in humans (Gollnick et al., 1974; Vollestad et al., 1984).
These previous studies indicate the validity of our glycogen

detection. In addition, the decreased brain glycogen due to
endurance exercise recovered to higher levels than the basal line
within 6 h after exercise, which occurred earlier than muscle
glycogen replenishment and supercompensation (Figure 1C),
reproducing the onset of brain glycogen supercompensation
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after endurance exercise found in our previous study
(Matsui et al., 2012).

Plasma metabolomics clearly indicated the difference
in metabolic profiles among pre-exercise, post-0 h, and
post-6 h (Figure 2 and Supplementary Table S2), and
glycogenic amino acids, such as aspartate, alanine, tyrosine,
and tryptophan, increased immediately after exercise (post-
0 h) and decreased 6 h after exercise (post-6 h), which
implies that there is a repulsive interaction between brain
glycogen dynamics and endurance exercise (Figure 3).
Endurance exercise increases blood glycogenic amino acids
levels, such as alanine, tyrosine, and phenylalanine derived
from protein catabolism in active muscles (Ahlborg et al.,
1974), and enhances their splanchnic exchanges to be utilized
as hepatic gluconeogenesis sources (Wahren et al., 1971).

Furthermore, increased blood glycogenic amino acids recover to
basal levels or decrease, compared with pre-exercise levels,
to be metabolized by the rest after endurance exercise
(Borgenvik et al., 2012; de Godoy et al., 2014). Our present
data regarding endurance exercise are supported by these
previous findings.

The negative correlations between plasma glycogenic amino
acids (serine, proline, threonine, glutamate, methionine,
tyrosine, and tryptophan) and brain glycogen levels in the
cortex, hippocampus, and hypothalamus were observed
(r < −0.8, P < 0.05) (Figures 4–6). These results indicate,
for the first time, the possibility that plasma glycogenic
amino acids are biomarkers that predict the decrease
and supercompensation of brain glycogen with acute
endurance exercise.

⬆

⬆ ⬇

⬆

⬆

⬇

⬆

⬆

⬆

⬆

⬆

⬆⬆⬆⬆⬆

⬇

⬇

⬇

⬆

A B

FIGURE 7 | Hypothetical schema for tyrosine as a possible mechanistic-based biomarker predicting brain glycogen dynamics (A) during and (B) following
endurance exercise. In the skeletal muscle, protein catabolism is activated to produce glycogenic amino acids including tyrosine. Tyrosine is released to the blood
stream, and its level is increased. Blood tyrosine is taken up by the brain and is converted into noradrenaline in noradrenergic neurons. Noradrenaline activates cyclic
adenosine monophosphate (cAMP) production via the β2-adrenaline receptor to activate glycogenolysis in a matter of minutes but takes hours to induce
glycogenesis and supercompensation through expression of protein targeting to glycogen (PTG). This late onset of glycogen synthesis likely contributes to
supercompensation following endurance exercise.
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In particular, tyrosine can be a valuable mechanistic-based
biomarker for brain glycogen dynamics with endurance exercise,
a concept which is shown in Figure 7. In active skeletal
muscles during endurance exercise, levels of glycogenic amino
acids are increased through protein catabolism (Ahlborg
et al., 1974). The increases in levels of blood glycogenic
amino acids, including tyrosine, are derived from muscles
(Ahlborg et al., 1974). Increased blood tyrosine, a precursor
of noradrenaline, is taken up by noradrenergic neurons
in the brain (Hufner et al., 2015; Alabsi et al., 2016; Imai
et al., 2017). Noradrenergic neurons release noradrenaline
into the intracellular fluid, and the noradrenaline activates
glycogenolysis through cAMP production mediated by the β2
receptor in the astrocytes (Magistretti et al., 1981; Magistretti,
1988). Actually, endurance exercise decreases glycogen levels
associated with activated noradrenergic turnover in the
cortex (Matsui et al., 2011). Therefore, tyrosine is a possible
biomarker for brain glycogen decrease during endurance
exercise (Figure 7A).

Furthermore, noradrenaline activates not only glycogenolysis
but also glycogenesis and supercompensation through the
expression of PTG, mediated by cAMP in astrocytes (Sorg and
Magistretti, 1992; Allaman et al., 2000; Ruchti et al., 2016).
Following endurance exercise, while glycogen synthesis can
be activated through PTG, glycogenolysis is not active, due
to decreased brain noradrenaline along with blood tyrosine,
and as a result, brain glycogen supercompensation is likely
induced. Serotonin, which is synthesized from tryptophan in
brains, also activates astrocytic glycogenolysis through a Ca2+

influx (Gibbs and Hertz, 2014), but there is no report for PTG
induction. Glutamate activates glucose uptake in astrocytes but
does not play a direct role in glycogen metabolism (Hamai
et al., 1999). Thus, plasma tyrosine, rather than tryptophan
and/or glutamate, is a possible biomarker not only of a
brain glycogen decrease during endurance exercise but also
of brain glycogen supercompensation following endurance
exercise (Figure 7B).

Furthermore, plasma levels of branched chain amino acids
(BCAA) such as leucine, isoleucine, and valine were not
significantly changed by endurance exercise (Supplementary
Table S2). Large-neutral amino acids such as leucine, isoleucine,
valine, phenylalanine, tryptophan, and tyrosine share the same
transporter, L-type amino acid transporter 1 (LAT1), on the
blood-brain barrier (BBB) (Pardridge and Oldendorf, 1977;
Boado et al., 1999). Since BCAA levels were unchanged, the
LAT1 at the BBB would be ready for use by other neutral
amino acids such as tyrosine, which increased in the plasma
during exercise.

The use of an acute endurance exercise model in
rodents produced new evidence on plasma tyrosine as a
mechanistic-based biomarker for brain glycogen dynamics
in endurance exercise. In this study, however, glycogen
levels after post-6 h was not examined. Therefore, although
chronic exercise or brain glycogen loading increases
brain glycogen levels in the cortex, hippocampus, and
the hypothalamus (Matsui et al., 2012; Soya et al., 2018),
it is still unclear whether tyrosine is a useful biomarker

not only for acute endurance exercise but also for chronic
exercise or glycogen loading. Furthermore, here, we tried to
investigate the brain region specificity of biomarker candidates,
but it was not revealed because glycogenic amino acids
correlated strongly with glycogen levels in all brain loci we
detected in the present study (the cortex, hippocampus, and
hypothalamus). These important issues should be addressed in
future research.

In conclusion, our metabolomics of plasma samples
from rats showed quantitative differences in glycogenic
amino acids, during and following endurance exercise. In
particular, plasma tyrosine, a precursor of noradrenaline, is
a possible mechanistic-based biomarker for brain glycogen
dynamics during and following endurance exercise. These
findings support our present hypothesis that blood tyrosine
is a mechanistic-based biomarker that predicts a decrease
and supercompensation of brain glycogen with acute
endurance exercise. Plasma tyrosine may contribute to
the development of a valuable parameter for exercises as a
training/conditioning for athletes and/or therapeutic strategy for
neurodegenerative diseases.
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