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Abstract
This study uses a numerical model to examine how a convex 

feature and a gap feature in a mountain range affect the leeward 
wind field. In the “convexity case”, the mountain ridge has a con
vex feature (viewed from above). In the “gap case”, the mountain 
ridge has a gap. The results show that both cases have local winds 
at the surface exceeding 8 m s−1, and both have similar spatial 
flowpatterns. However, the momentum budgets at the strong
wind regions differ between the cases. In the convexity case, the 
downdrafts are important in the momentum balance, whereas in 
the gap case, both the downdrafts and the pressuregradient force 
are important. Thus, although their spatial patterns of surface wind 
are similar to each other, their mechanisms for producing a strong 
local wind differ.

Sensitivity experiments of Frm show that strongwind appears 
in both the convexity and gap cases when Frm is between 0.42 and 
1.04. In contrast, when Frm is 0.21, strong winds only appear in 
the gap case because the flow can go around the gap. When Frm 
exceeds 1.25, strong surface winds appear in the entire leeward 
plain.

(Citation: Nishi, A., and H. Kusaka, 2019: Comparison of 
spatial pattern and mechanism between convexity and gap winds. 
SOLA, 15, 12−16, doi:10.2151/sola.2019003.)

1. Introduction

Mountain ridges are often associated with local strong winds. 
When air flows over a ridge, the leeside slope may have a strong 
wind called a “downslope windstorm” (e.g., Long 1952; Lilly 
and Zipser 1972; Peltier and Clark 1979; Clark and Peltier 1984; 
Smith 1985; Saito and Ikawa 1991; Saito 1993; Lin and Wang 
1996; Gohm et al. 2008; Elvidge and Renfrew 2016; Miltenberger 
et al. 2016). A gap in a mountain range can also produce a strong 
wind called a “gap wind” (e.g., Scorer 1952; Arakawa 1969; 
Lackmann and Overland 1989; Zängl. 2003; Gaberšek and Durran 
2004; Mayr et al 2004; Sasaki et al. 2010; Mass et al. 2014). 

The similarity and difference between the downslope wind
storm and gap winds showed in many studies from the flow pattern  
and momentum balance. Arakawa (1969) showed the similarity 
of downslope windstorms and gap winds using the shallow water 
theory. When subcritical flows in the windward region change into 
critical flows at the mountain top (or the narrowest point of the 
gap), strong supercritical flows appear in the lee of mountain (or 
the gap exit).

According to numerical simulations of stratified atmosphere 
and momentum budget analysis by Gaberšek and Durran (2004), 
gap winds have similar feature to the flows over the mountain 
range when mountain Froude number (Frm = U/NMh , U, N, and 
Mh are windspeed, BrantVaisala frequency, and the ridge height, 
respectively) exceeds about 1.0. When the Frm ≈ 1.0, the flows 
are like downslope windstorms (the mountainwave regime). 
When the Frm >> 1.0, the flows are like potentialflows (the linear 
regime).

A convex feature in a mountain range (e.g., Fig. 1a) may 
also produce a local strong wind in the mountains’ leeward plain. 

For example, the terrain of the northwestern Kanto region has a 
convex part (see Supplement 1). In this region, one of the con
vexity winds, the “Karakkaze”, blows. The “Tokachikaze” in the 
Tokachi plain also has the same feature. Nishi and Kusaka (2019) 
found that a convex feature in a mountain range allows the down
slope windstorms to more easily reach the leeward plain of the 
mountains. Hereafter, we call the strong wind at the leeward plain 
of the convex feature a “convexity wind”. Spatial winddistribution  
of convexity winds which is fanshapes is very similar to that 
of gap wind. However, details of the similarities and differences 
between the convexity and gap winds are still poorly understood. 

The similarities and differences between the downslope 
windstorms and gap winds by the previous studies have provided 
important information to understand the mechanisms of the strong 
winds in the lee of mountain range (e. g. Arakawa 1969; Gaberšek  
and Durran 2004). Hence, further understanding of the mecha
nisms can be expected by comparing the convexity and gap winds. 
Thus, we revealed the similarities and differences between the 
convexity and gap winds in terms of flow patterns, momentum 
balances, and the impact of Frm using numerical simulations.

2. Setup of numerical simulations

We use here the advanced research version of the weather re
search and forecasting (WRF) model (Skamarock et al. 2008). The 
simulation domain consists of 210 (X) × 190 (Y) grid points with 
a horizontal grid spacing of 3.0km. The height of the domain 
top is 20km, covered vertically by 50 sigma levels. To prevent 
gravitywave reflections, we use open boundary conditions for the 
lateral boundary conditions. Following Klemp and Lilly (1987), 
we also use an absorber layer near the domain top. The model 
configurations are summarized in Table 1.

As initial conditions, we use an idealized vertical atmosphere 
profile that is set to all grid points based on observations during a 
Karakkaze wind (Table 1). The environmental winds are westerly 
winds of 10 m s−1, independent of height. The lapse rate of po
tential temperature is 4.0 × 10−3 K m−1 and the sealevel potential 
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Fig. 1. Topography for the numerical simulations. (a) Mountain ridge 
with convex feature from Eq. (S1) (see Supplement 2). The crosshatched 
area is the “semibasin”. The lines A1 and A2 indicate the location for 
crosssection for Figs. 2d, 2e, and 2f, respectively. (b) Mountain ridge 
with a gap from Eq. (S3) (see Supplement 2). Shading gives the terrain 
height, with the scale at right. Lines B1 and B2 indicate the location of the 
crosssections for Figs. 3d, 3e, and 3f. Red lines mark areas used as the 
control volume for the momentumbudget analysis.
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slope of the straight ridge section (e.g. crosssection A2 in Fig. 
1a). In this crosssection, updrafts and ascent of isentropic lines 
appear over the slope of the mountain range (Fig. 2f). In addition, 
strong flowconvergence region appears at the mountain slope 
(x = about 360km in Figs. 2b and 2c). Strong winds only appear 
at the windward of the convergence region and surface windspeed 
is small at the lee of the flowconvergence. These features corre
spond to the those of the hydraulic jump.

These results in the convexity case suggest that the flowcon
vergence (divergence) and downdrafts are important factors in the 
strong winds of the convexity winds.

b. Gap case
In the gap case, the strongwind region appears and extends 

from the inside of the gap to leeward of the gap (i.e., from about 
x = 320 km in Fig. 3a), a similar region as the convexity case. 
Also, similar to the convexity case, the flowdivergence region 
appears at the exit of the gap from the lee of the gap. However, 
the gap winds are stronger than the convexity winds. Addition
ally, the strongest winds appear more upwind than those in the 
convexity case (x = 320km). At the 1.0km m and 2.0km, strong 

temperature is 280 K. The ridge height is 2.0km. These condi
tions give a mountain Froude number Frm of 0.42. The numerical 
integration is run for 24 hours. 

To simplify the treatment, we neglect the Coriolis force. 
Furthermore, we consider only dry, dynamical processes, and thus 
we neglect the surface sensibleheat and latentheat fluxes. For the 
same reason, we do not use the shortwave, the longwave, and the 
cloud microphysics schemes.

To examine the difference between the convexity and gap 
winds, we use two ridge patterns in our experiments. Both exper
iments have a ridge height H of 2.0km and a ridge width Lw of 
180km. One is a mountain range with a convex part (Fig. 1a). 
The amplitude Ab and the wavelength (exitwidth) Lb of the con
vexity are set to 60km. Hereafter, the experiment with this terrain 
is called the convexity case. The plain area surrounded by slopes 
on three sides (hatched area in Fig. 1a) is called the “semibasin”. 
This semibasin corresponds to that in the Kanto plain including 
the Maebashi (see Fig. S1). The leeward plain of the straight 
section of mountain corresponds to the leeward plain of Nikko 
mountain range (e.g. Utsunomiya in Fig. S1).

Another is a mountain range with a gap (Fig. 1b). Now, we 
want to compare the structure and mechanism of convexity and 
gap winds under the same exitwidth of convexity and gap. There
fore, the wavelength for sideslope of the gap (GL) and the width 
of the bottom of the gap (GW) are set to 30km, thus the total width 
of the gap (GL + Gw) is 60km. Hereafter, the experiment with this 
terrain is called the gap case. The two terrains are summarized in 
the Supplement 2. 

3. Results and discussion

3.1 Flow patterns
a. Convexity case

In the convexity case, the wind at t = 24 hours exceeds 8 m s−1 
at the semibasin and the leeward plain of the semibasin, starting 
near x = 320km, and extending leeward about 100km (Fig. 
2a). At the same time, the strongest winds and strongest surface 
divergence occurs at the leeward plain of the semibasin near x = 
400km. In contrast, at the 1.0km and 2.0km height, air flow into 
semibasin resulting strongconvergence region exists at the slope 
of semibasin (Figs. 2b and 2c). These results suggest that the 
flow converges around 1.0−2.0 km height and descends along the 
slope of the semibasin, consequently, the flow diverges near the 
surface. 

Indeed, in the x–z crosssection along centerline A1 (Fig. 1a), 
the area with windspeed exceeding 20 m s−1 bends down from a 
4.0km elevation to the ground surface at the leeward slope. This 
region has only downdrafts and isentropic lines that descend (Figs. 
2d and 2e). In addition, the 284 K isentropic line descends from 
1.25 to 0.25km elevation at the leeward plain of the semibasin 
near x = 400km in Fig. 2b. In this region, strong downdrafts 
exceeding 0.5 m s−1 can be seen in the area from heights of 0.5− 
1.0 km. The horizontal position of the downdrafts corresponds to 
the region of strong divergence at 10 m (Fig. 2). These results sug
gest that hydraulic jumps do not exist at the slopes of semibasin.

On the other hand, a hydraulic jump exists at the leeward 

Table 1. Physical parameterization schemes, parameters, and initial condi
tions used in the simulations.

Planetary boundary layer
Mellor–Yamada–Nakanishi–Niino scheme 
(Mellor and Yamada 1982; 
Nakanishi and Niino 2009)

Roughness length 0.01 m
Initial windspeed 10 m s−1

Initial surface potential 
temperature 280 K

Initial vertical gradient of 
potential temperature 4.0 × 10−3 K m−1

Fig. 2. Results for convexity case at t = 24 hours. (a) Horizontal wind at 
10 m. The main gray area is the region with a terrain height above 10 m. 
Vector color indicates windspeed (scale at right). Lee of the convex fea
ture, the grey patches indicate regions of divergence exceeding 0.2 s−1, the 
black showing convergence exceeding 0.2 s−1. (b) Same as (a), except for 
values at 1.0km. (c) Same as (a), except for values at 2.0km. (d) Wind
speeds, potential temperatures, and downdrafts of the crosssection A1 of 
Fig. 1a. Color shows windspeed (scale at right) and contours are potential 
temperature. Downdrafts in the dotted region exceed 0.1 m s−1 and in the 
crosshatched region exceed 0.5 s−1. The light shaded area is within the 
ridge. The dashed line marks the profile of the main ridgeline. (e) Wind 
vectors composed of u and w of the crosssection A1 of Fig. 1a. Vector 
colors show the windspeed. (f) Same as (d), except for the crosssection 
A2 of Fig. 1a.
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flowconvergence does not appear at the entrance of gap unlike 
the convexity winds (Figs. 3b and 3c), nevertheless, the strong
wind region extends to leeward of a gap like the convexity winds. 
These results suggest that convergence in the entrance of the gap 
is not important in the formation of gap winds, unlike the convex
ity winds. 

Along the gap’s centerline B1 (Fig. 1b), the region with U ex
ceeding 25 m s−1 extends leeward from the gap (near x = 295km)  
below 4.0km height (Figs. 3d and 3e). In addition, the isentropic 
lines along the crosssection descend gently. At the same time, 
weak downdrafts of less than 0.25 m s−1 appear inside of the gap 
(Fig. 3d). 

At the leeward slope of the straight ridge section (e.g. cross 
section B2 in Fig. 1b), surface windspeed is small at the leeward 
plain resulting a hydraulic jump appears, as same as the convexity 
case (Figs. 3b, 3c, and 3f).

This flow pattern in the gap case is consistent with that of “the 
mountain wave regime”, described in Gaberšek and Durran (2004). 
In that study, the mountainwave regime appears when Frm ~ 0.67. 
In this regime, a high acceleration of the gap wind occurs within 
the exit region.

These results in the gap case suggest that the flowconver
gence and downdrafts are not so important in the strong winds of 
the gap winds, unlike the convexity winds. Therefore, there are 
other important factors of the mechanism of gap winds.

3.2 Momentum budgets
The previous section shows that both cases have similar 

spatial surface flowpatterns. However, there are some differences 

of threedimensional structure between both cases. To clarify the 
cause of these differences, we analyze the momentum budget 
for the xcomponent of momentum in both cases. The analyses 
are done in the control volumes shown in Fig. 1. These control 
volumes are oriented along the centerline of the valley and in the 
strongwind regions of both cases. Each volume has dimensions 
90km (X) × 30km (Y) × 1.0km (Z). 

Integrating the xmomentum equation over a control volume, 
we have 
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Here, V is the control volume, ¶ ρu/¶t is a transient term, 
-¶ ρuu/¶x, -¶ ρuv/¶y and -¶ ρuw/¶z divergence terms of grid
scale momentum fluxes in the x, y, and z directions, and -¶p/¶x 
is a pressuregradient term. Others are a sum of other terms that 
roughly equals the sum of divergence terms of subgridscale mo
mentum fluxes. We call this term the “diffusion term”. Hereafter, 
“momentum fluxes” means the gridscale momentum fluxes. 

For the analyses, we integrated each term over each control 
volume and calculated averages of these integrated values over the 
analysis period. The analysis period started after the simulations 
ran for 21 hours and finished after 24 hours.

Figure 4 shows the values for all terms of the momentum 
budget analysis, normalized by the largest term. For all listed 
terms, a positive value indicates that the momentum has increased 
in the control volume. In both the convexity and gap cases, the 
transient term Du nearly equals 0 in the control volume, indicat
ing that the xcomponent of the momentum balance has reached a 
steady state.

In the convexity case, the gridscale momentum divergence 
and convergence terms are dominant while the contribution of 
the pressuregradient and diffusion terms are less than 20% of Z 
direction convergence:

divergence terms (Y)  convergence terms (Z). (2)

Hence, the flow which descends the slope of the semibasin 
and diverges near the ground at the semibasin can be confirmed 
also by the result of momentum budget analysis. Here, note that 
the contribution of the pressure gradient is small. This result 
suggests that the local pressure gradient in the semibasin is not 
important in the formation of the convexity wind but the synoptic 
scale pressure gradient is important to maintain the general winds.

In the gap case, the momentum balance is as follows: 

Fig. 3. Results for the gap case. (a) Same as in Fig. 2a. (b) Same as in Fig. 
2b. (c) Same as in Fig. 2c. (d) Same as in Fig. 2d, except for the cross 
section B1 of Fig. 1b. (e) Same as in Fig. 2e, except for the crosssection 
B1 of Fig. 1b. (f) Same as in Fig. 2f, except for the crosssection B2 of 
Fig. 1b.

Fig. 4. Momentumbalance terms for the convexity (red) and gap (black) 
cases, normalized to their largest term. Values are for the xcomponent 
of momentum and averaged over the control volume (Fig. 1) for three 
hours. The terms are Du = transient, advX = xdirection momentumflux 
convergence, advY = ydirection momentumflux convergence, advZ = 
zdirection momentumflux convergence, pgf = pressure gradient, and diff 
= diffusion term. 
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divergence terms (X) + divergence terms (Y) + diffusion term
   convergence terms (Z) + pressuregradient terms. (3)

These momentumbalance terms in the gap case are consis
tent with those of “the mountain wave regime” as described in 
Gaberšek and Durran (2004). 

As same as the convexity case, the flowdescent and flow 
divergence are important in the formation of gap winds. More
over, the pressuregradient term is more dominant than that in 
the convexity case. These results suggest that the local pressure 
gradient in the gap is important in the formation of the gap winds, 
unlike the convexity case. 

3.3 impact of the mountain Froude number on the convexity and 
gap cases

When the mountain Froude number (Frm) changes, the flow 
pattern of the downslope windstorms and gap winds also change 
(e.g. Lin and Wang 1996; Gaberšek and Durran 2004). Now, 
we confirm that the difference in the impact of Frm between the 
convexity and gap winds by examining the results of sixteen 
experiments with various Frm values (Table 2). 

When Frm is between 0.42 and 1.04, the convexity and gap 
winds appear. The reasons are the same as the experiments de
scribed in the previous sections (Frm = 0.42).

When Frm is 0.21, strong surface winds do not blow at the 
leeward plain in the convexity case because hydraulic jumps 
appear above the entire leeward slope. In contrast, in the gap case, 
strong surface winds blow at the leeward plain of the gap section. 
It is because that the air in the upwind region can go around the 
mountain range and flows through the gap section.

When Frm exceeds 1.25, a strong surface winds appear in the 
entire leeward plain because the hydraulic jump does not appear 
above the entire leeward slope. In other words, the effects of the 
convexity and gap cannot be seen.

These results suggest that both convexity and gap make hy
draulic jumps hard to appear, compared with the leeward slope of 
the straight ridge section. However, the cause is different between 
each other. The cause in the convexity case is that the convexity 
tends to produce the downdraft and surface divergence at the lee 
of the mountain. In contrast, the cause in the gap case is that the 
local Frm in the gap is very large and potentialflows appear in the 
gap.

4. Conclusions

In the present study, we numerically simulated the flow 
patterns around two idealized features in a mountain range. One 
feature was a convex feature, the other a gap. We then examined 
how these features affected the local winds in the leeward plain. 
Our main results are the following. 
• Under the typical value of mountain Froude number of the 

winter season in Japan (Frm = 0.42), both cases produced strong 

local winds at the leeward plain of the mountain range. How
ever, for the convexity case, the strongest wind occurred in the 
leeward plain area, whereas the gap case had its strongest wind 
in the gap.

• The convexity case had strong downdrafts over the strongwind 
region, whereas the gap case had weak downdrafts over the 
strongwind region.

• The momentum budgets in the strongwind region differed 
between the two cases, indicating different driving mechanisms 
for the strong wind. In the convexity case, the downdrafts 
maintained the strongwind region at the leeward plain of the 
semibasin. But for the gap case, both the pressuregradient 
force and the downdrafts in the gap maintained the strongwind 
region.

• Sensitivity experiments of Frm showed that the convexity and 
gap winds appear when Frm is between 0.42 and 1.04. In con
trast, when Frm is 0.21, the gap winds appear because the flow 
can go around the gap, but the convexity winds do not appear. 
When Frm exceeds 1.25, strong surface winds appear in the 
entire leeward plain. 

• These result suggested that both convexity and gap have an 
effect that hydraulic jumps hard to appear over the mountain 
slope, compared with the leeward slope of the straight ridge 
section. However, the cause is different between each other. In 
the convexity case, the cause is that the downdraft and surface 
flowdivergence tend to appear at the lee of the semibasin. In 
the gap case, the cause is that local Frm in the gap is very large 
and potentialflows appear in the gap.

• Thus, although their spatial patterns of surface wind are similar 
to each other, their mechanisms for producing a strong local 
wind differ. The convexity winds may be important in the 
formation of some local winds when a semibasin, instead of a 
gap, exists at the windward of the strongwind region even if 
local winds is categorized as a gap wind. 
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Supplement

Supplement 1 shows the example of terrain with convex fea
tures (Fig. S1).

Supplement 2 shows the detail settings of terrain.

Table 2. Impact of the Frm in the convexity and gap cases. l indicates scorer parameter (N/U, where N and U are 
BrantVaisala frequency and windspeed, respectively). The circles (crosses) indicate that windspeed exceeds (does not 
exceed) 8 m s−1 at the leeward plain in each crosssection.

Frm l [s−1]

Strong wind (windspeed > 8 m s−1)

Convexity case Gap case

Crosssection A1 Crosssection A2 Crosssection B1 Crosssection B2

0.21
0.42
0.63
0.83
1.04
1.25
1.48
1.67

2.4 × 10−3

1.2 × 10−3

8.0 × 10−4

6.0 × 10−4

4.8 × 10−4

4.0 × 10−4

3.3 × 10−4

3.0 × 10−4

× (absence)
○
○
○
○
○
○
○

×
×
×
×
×
○
○
○

○ (presence)
○
○
○
○
○
○
○

×
×
×
×
×
○
○
○
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