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Chapter 1

Introduction

Schema Extraction from Graph Data A schema of a database system provides a
structural blueprint of how the database is organized, and plays an important role in man-
aging the database system. Indeed, a schema of a database system is commonly used for
optimizing queries, ensuring integrity constraints, helping users to write correct queries,
and so on. Meanwhile, in recent years, graph data has been widely used and various kinds
of new graph data is actively being created. In contrast to other databases such as rela-
tional databases and XML, most of graphs do not have their own schemas. Therefore, in
many cases we cannot make use of schema in order to manage graphs effectively. Here, if
we can extract a schema from a graph efficiently, we can take advantage of the extracted
schema for query optimization [1], structure browsing, query formulation [3], and so on.
For example, consider a regular path query ¢, and let ¢’ be the query obtained by con-
structing the product automaton of ¢ and an extracted schema. Then ¢’ can be executed
more efficiently than g. Therefore, in this thesis we propose an algorithm for extracting a
schema from a graph.

To extract an appropriate schema from a graph G, we have to choose, for each node
v in G, an appropriate class that v should belong to. The utility function, used in the
schema extraction method proposed by Wang et al. [13], is a major function to select
such classes. However, the utility function requires a large amount of computation cost as
the number of unique edge labels in a graph becomes larger. This means that the utility
function is hard to be applied to many of real-world graphs, since real-world graphs tends
to have a large number of unique edge labels. Therefore, we propose an algorithm that
uses a new utility function that can be computed more efficiently. The function is “looser”
but adequate in the sense that the function less depends on the number of unique edge
labels but still output appropriate values so that appropriate schemas are extracted.

External Memory Algorithm Meanwhile, most of schema extraction algorithms pro-
posed so far are in-memory algorithms. In other words, such algorithms assume that the
entire graph fits in main memory. However, the size of recent graph data is rapidly grow-
ing, and thus a number of graphs currently available are too large to fit in main memory.
In order to handle such large graphs, our algorithm is designed as an external memory al-
gorithm. In order to deal with large graphs 1/O efficiently, our algorithm takes a two-step
approach: class extraction and edge extraction. In the class extraction step, the algorithm
reads a graph sequentially and extracts classes with maintaining minimum information to
extract classes in main memory, and outputs a class file consisting of the classes of all the
nodes. In the edge extraction step, first the algorithm output an edge file consisting of
edges between “nodes and classes”. Then the algorithm extracts edges between classes by
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4 CHAPTER 1. INTRODUCTION

reading the class file and the intermediate edge file sequentially.

The point of our approach is that due to the two-step approach each file is read
sequentially in most cases and very few random accesses are required for schema extraction,
which makes our algorithm I/O efficient. Another major point of our algorithm is that
our algorithm handles input and intermediate files by only sequential reads and external
sorting, and no other special method for accessing files is required. This enables our
algorithm to be implemented much easier than usual external memory algorithms, since
we can use a number of high-level scripting languages (Python, Ruby, etc.) to implement
our algorithm as well as “lower-level” languages such as C and C++ that are popular for
implementing external memory algorithms.

Parallelization of Class Extraction Algorithm Our schema extraction algorithm
greedily chooses the class for each node sequentially in the class extraction by using the
utility function, which requires the most amount of computation cost in the algorithm.
Therefore, in order to reduce the calculation time we also design the class extraction
algorithm as a parallel processing algorithm. It means that we sequentially read k£ nodes
and choose the class of each node by calculating the utility function executed in parallel
processes. The parallelized class extraction algorithm chooses classes in a similar way to
the single processing (non-parallel) algorithm and handles a input file by only sequential
read.

Evaluation Experiment We conducted some experiments on our schema extraction
algorithm by using RDF benchmark and DBPedia graphs. The results suggest that our
algorithm can extract schemas from these graphs more efficiently and appropriately than
the previous utility function, and that parallelization of the class extraction makes the
execution time faster for DBPedia.

Related Work A number of schema extraction algorithms for graphs have been pro-
posed. DataGuide [3] extracts a schema by grouping nodes reachable from the root via the
same label path into the same class. ApproximateDataguite [4] is the approximate version
of DataGuide. Nestorov et al. proposes an algorithm for extracting a set of classes by using
a clustering approximation method [9]. Wang et al. proposes an algorithm that extracts
a schema by an incremental clustering method [13]. These algorithms are in-memory
algorithms and cannot handle large graphs that do not fit in main memory. Navlakha
et al. proposes a graph summarization algorithm [8]. This is an in-memory algorithm
designed for unlabeled undirected graphs, while our algorithm is designed for labeled di-
rected graphs. Luo et al. proposes an external memory algorithm for k-bisimulation [7].
However, the notion of k-bisimulation is too strong to extract classes from usual graphs,
since under the condition of k-bisimulation, any two nodes in the same class must have
same label paths whose length is k. On the other hand, our algorithm assumes a weaker
condition under which nodes having a “similar” set of edges are grouped into the same
class.

Schema extraction algorithms have also been proposed for XML documents as well
as graphs. The algorithm in [11] extracts a relational schema from given DTDs. The
XTRACT system [2] extracts a DTD as a schema from given XML documents. XStruct [5]
is a schema extraction system for large XML documents. These algorithms are designed
for trees and cannot handle general graph structure.

Several external memory algorithms have been proposed in database research field,
e.g., graph triangulation [6], strongly connected components [14], graph reachability [15],



and regular path query [12]. To the best of our knowledge, however, no external memory
algorithm for schema extraction has been proposed so far.

Thesis Organization The rest of this thesis is organized as follows. Chapter 2 gives
preliminary definitions. Chapter 3 proposes an external memory algorithm for extract-
ing a schema from a graph. Chapter 4 presents some experimental results. Chapter 5
summarizes this thesis.



Chapter 2

Preliminaries

In this chapter, we define graph and related notions.

2.1 Labeled Directed Graph

Let L be a set of labels. A labeled directed graph (graph for short) is denoted G = (V, E),
where V' is a set of nodes and E C V x L x V is a set of labeled directed edges (edges
for short). Let e € E be an edge labeled by | € L from a node v € V to a node u € V.
Then e is denoted (v,l,u), v is called source, u is called target of e, and we say that v
has the edge e. The set of outgoing edge labels of v, namely the set of labels which v has,
is denoted L(v).

Example 1. Figure 2.1 represents a fragment of books information and is denoted G =
(V,E), where

V = {authorl, bookl, book2, “Personl”, “Book 17, “Book 27, “1”, “27},
E = {(authorl, name, “Person 1”),
(authorl, is-author-of, book1),
(authorl, is-author-of, book2),
(bookl, author, authorl),
(book2, author, authorl),
(bookl, title, “Book 17),
(book2, title, “Book 27),
(bookl, number, “17),
(book2, number, “27”)},
L = {name, author, is-author-of, title, number},
L(authorl) = {name, is-author-of},
L(bookl) = {author, title, number},
L(book2) = {author, title, number}.
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number

Figure 2.1: Example of a graph

is-author-of

name
@ number

Figure 2.2: Example of a schema

2.2 Schema of Graph

A schema is a summarization of a graph and it is also represented as a graph. A node in
a schema is called a class. Any node in a graph is mapped to a class in a schema. We
assume that every text node belongs to a single class LEAF. For a node v in a (instance)
graph, by class(v) we mean the class that v belongs to. A schema is denoted S = (C, Ej),
where C is a set of classes and E is a set of edges between classes.

Figure 2.2 shows an example of a schema extracted from the graph of Figure 2.1, where

bookl and book2 belong to class2, authorl belongs to classl, and the other nodes belong
to LEAF. The schema is shown in Example 2.

Example 2. Consider the graph schema S in Figure 2.2. Then S is defined as a pair
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source label target
authorl name “Personl”
authorl is-author-of bookl
authorl is-author-of book2
book1 author authorl
book?2 author authorl
bookl title “Bookl”
book2 title “Book2”
bookl number “17
book2 number “27

Figure 2.3: A graph file of the graph in Figure 2.1

(C, Ey), where

C = {classl, class2, LEAF},

Es = {(classl, is-author-of, class2),
(class2, author, classl),
(classl, name, LEAF),
(class2, title, LEAF),
(class2, number, LEAF)},

class(authorl) = classl
class(bookl) = class(book2) = class2
L = {name, author, is-author-of, title, number}
L(classl) = {is-author-of, name}
L(class2) = {author, title, number}

2.3 Graph and Schema Files

In this thesis, we assume that a graph is stored in a graph file like N-Triples format, which
is a container for Resource Description Framework (RDF) data. Each line of a graph file
corresponds to an edge, namely, a line consists of (source, label,target). Figure 2.3 shows
a graph file that stores the graph of Fig. 2.1.

We assume that a schema is composed of two files denoted schema_ classes and
schema_edges. The former stores pairs of a node and its class, namely a line consists of
(node, class). Note that we do not store leaf nodes and their class LEAF in this file since
they are not needed for schema extraction. The latter stores edges between classes, in
which each line consists of (source class, label, target class) . Figure 2.4 shows an example
of the two files representing the schema of Fig. 2.2.
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node class
authorl classl
book1 clags?2
book?2 class2

(a) schema_classes

source target
class label class
classl  is-author-of class2
classl name LEAF
class2  author classl
class2  title LEAF
class2  number LEAF

(b) schema_edges

Figure 2.4: Example of schema files




Chapter 3

The Algorithm

Our schema extraction algorithm is designed as an external memory algorithm. To achieve
this, our algorithm consists of two steps: class extraction and edge extraction. The class
extraction is to create new classes and to assign each node to a class, and the edge extrac-
tion is to create edges between classes. In this chapter, we first define our utility function
used in the class extraction, then we describe the schema extraction algorithm.

3.1 Utility Function

Wang et al. proposes an algorithm that extracts a graph schema by grouping nodes having
a similar set of edge labels into the same class using the utility function [13]. However,
the utility function requires a large amount of calculation cost for graphs containing a
large number of unique edge labels. To cope with the problem, we define a new utility
function, called light utility function, so that we can extract schemas from such graphs
more efficiently.

Let v be a node, ¢ be a class, and C' be a set of classes. In this thesis, we ignore
incoming edges of v to make our algorithm simple and to reduce calculation cost. The set
of edge labels of v is denoted L(v). By L(c) we mean the set of edge labels of ¢, that is,

L(c) = U L(v).

vee

Let |c| be the number of nodes in ¢ and nodes(c, ) be the set of nodes in ¢ having an edge
labeled by I. By nodes(C, 1) we mean the set of nodes in C' having an edge labeled by [,
that is,
nodes(C,1) = U nodes(c, ).
ceC
Then the light utility function (utility function, for short), denoted U(C, v, ¢;), is defined as
the product of the Dice coefficient and the mean of the ratio of |nodes(c,1)| to |[nodes(C,1)|,
that is,

1 Z |nodes(c;, 1)

U(C,v, i) = Dieel L) L™ [T 2 [nodes(, )]
) )

leL(v
where « is a parameter to control which of Dice and the latter ratio is emphasized when
extracting classes. U becomes higher if nodes having similar edge labels are grouped into
the same class. By this definition we intend to balance how labels of a node v are similar
with labels of a class ¢; and how much labels of ¢; occupy the entire schema. We need to
extract classes so that the classes bring a high value of the utility function.

10
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Figure 3.1: Outline of our schema extraction algorithm

3.2 Overview

In-memory schema extraction algorithms assume that the entire graph is stored in main
memory. However, since recent large graphs are too large to fit in main memory, we need
another approach to handling such large graphs.

In order to deal with such large graphs, we take the following approach. First, our
algorithm sequentially reads a graph, extracts classes with maintaining minimum infor-
mation to extract classes in main memory, and outputs a class file consisting of the classes
of all the nodes. Next our algorithm creates an edge file having information required for
extracting edges between classes. Note that since the information for edge extraction must
include the all edges, the files cannot be fit in main memory. Then the algorithm extracts
edges by reading these files sequentially.

Our algorithm consists of preprocessing, class extraction, and edge extraction. Given
a graph file like Fig. 2.3, our algorithm extracts a schema of the graph. An outline of our
algorithm is as follows (see Fig. 3.1).

Input: graph file. As shown in Figure 2.3, each line of the file represents an edge, namely,
a line consists of the source, the label, and the target of an edge. In the following,
we call the input graph file file 1.

Output: schema_classes and schema_edges.

1. Preprocessing
(a) Sort file 1 externally. Let file 1" be the resulting file (see Figure 3.2).
2. Class Extraction

(a) Read file 1' sequentially and extract the class of each node based on the utility
function.

(b) Each time the class of a node is extracted, output the node and the class to
schema__classes.

3. Edge Extraction
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source label target
authorl is-author-of bookl
authorl is-author-of book2
authorl name “Personl”
book1 author authorl
book1l number “1”
bookl title “Bookl”
book2 author authorl
book2 number “27
book2 title “Book2”

Figure 3.2: file 1’

(a) Read file 1" and schema_classes concurrently and sequentially, and output the
outgoing edges of nodes (source nodes are replaced by their classes) to another
file tmp_filel.

(b) Sort tmp_filel externally. Let tmp_filel' be the resulting file. Each line of the
file consists of edges between classes and nodes.

(c) Read schema_classes and tmp_filel’ concurrently and sequentially, and replace
the target node of each edge in tmp_filel’ with its class. This results in edges
between classes, which are written into schema_edges.

In the following, we give the details of our class extraction and edge extraction algo-
rithms.

3.3 Class Extraction

Let us present the outline of our class extraction algorithm. As shown below, our algorithm
greedily chooses, for each node v € V, the class that v belongs to. Actually, the algorithm is
designed as an external memory algorithm using parallel processing (details are explained
later).

Input: a graph G = (V, E)
Output: a set C' of classes

1. C« 0.

2. for each node v € V do

(a) for each class ¢; € C' do
i. Calculate U(C,v,¢;).

(b) Let ¢, be the new class such that ¢, has the same set of outgoing edges as v
(edges having the same label are merged into one).

(c) Calculate U(C,v,cy).
(d) Let class(v) be the class such that the value of U is the highest among C'U{c¢, }.
(e) C <+ CuU{class(v)}.

3. return C.
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Algorithm 1 Class Extraction Algorithm (non-parallel version)

Input: file 1’
Output: schema_classes
1. C + @
2: while file 1" does not reach EOF do
3 L(v) < the set of outgoing edge labels of v obtained by reading file 1'.
4 class(v) <= CLASSDETERMINATION(C, v, L(v)).
5: Add a pair (v, class(v)) to schema_classes.
6 C + CU{cdass(v)}.
7

end while

We now present the details of our class extraction algorithm. This algorithm is designed
as (1) an external memory algorithm to handle large graphs that cannot fit in main
memory, and (2) a parallel processing algorithm to reduce the calculation time of utility
function. In the class extraction, calculating utility function requires a large amount of
computation cost. Therefore we design the class extraction as a parallel process algorithm.
We first show a single process algorithm and next show a parallel process algorithm. Both
algorithms are also designed as an external memory algorithm. (Note that incoming edges
are ignored.)

Data Maintained in Main Memory Values |nodes(c,l)| for each class ¢ € C and
|nodes(C, )| are kept in main memory to calculate utility function until the classes of all
nodes are extracted. That is, we store the number of nodes having an edge labeled by [
(1) in L(c) for each class ¢ € C, (2) and in C. On the other hand, for a node v, v’s name
and v’s edge labels L(v) is kept in main memory until the algorithm outputs the class of v
to schema_classes. When the class extraction of v is completed, v and L(v) are discarded.

Preprocessing The input graph file called file 1 is a list of edges (Figure 2.3). Each line
represents an edge, namely, a line consists of the source, the label, and the target of an
edge. We sort file 1 and let file 1" be the resulting file (Figure 3.2). Since file 1’ is sorted,
edges having the same source appear consecutively in file 1. Therefore, we can obtain the
outgoing edges of each node by one sequential read only.

Class Extraction Algorithm (non-parallel version) Algorithm 1 shows the proce-
dure of the single process (non-parallel) class extraction. An input file, file 1" is a sorted
file obtained in the preprocessing. Let v be the node that is currently read. By reading
file 1" sequentially, we obtain the edges v has and extract the class of v based on the utility
function. This process is repeated until file 1’ reaches the end of file.

Specifically, Algorithm 1 works as follows. We read file 1' sequentially and obtain L(v)
that is the set of edge labels of v. Note that the edges having the same label are merged into
one. CLASSDETERMINATION shown in Algorithm 2 is called each time L(v) is obtained in
line 4, and it extracts the class of v as follows. We calculate the following utility function
and choose the class for which the maximum value is obtained. In particular, if C' = 0,
then the first calculation in lines 2 to 4 is skipped.

e The utility function assuming that v belongs to ¢ € C, for each class ¢ extracted so
far.
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Algorithm 2 Class Determination

1: procedure CLASSDETERMINATION(C, v, L(v))

2: for each class ¢; € C' do

3: Calculate U(C, v, ¢;).

4 end for

5 Let ¢, be the new class having the same set of outgoing edges as v (edges having

the same label are merged into one).
6: Calculate U(C, v, ¢y).
7: Let class(v) be the class such that the value of U is the highest among C' U {¢, }.
8: return class(v).
9: end procedure

e The utility function assuming that v belongs to a new class ¢, having the same edges
as v.

Each time class(v) is extracted, we output a pair (v, class(v)) to schema_classes in line 5.
Finally, we update C, |nodes(c,)| and |nodes(C,1)| in main memory assuming that the
node v belongs to class(v) in line 6. Repeating this process until the input file reaches
EOF, we obtain the classes of all nodes.

Class Extraction Algorithm (parallelized version) We parallelize the class extrac-
tion algorithm in order to reduce calculation time of the utility function that requires the
most amount of computation cost in the class extraction.

Algorithm 3 shows the procedure of the parallelized class extraction. We parallelize
the process of calculating the utility function. Like the non-parallel algorithm, an input
file, file 1', is a sorted file obtained in the preprocessing. By reading file 1' sequentially,
we read k nodes, obtain the edges of them. Then we extract classes of k£ nodes based
on the utility function in k parallel processes. After the parallel processes, some nodes
are assigned to existing classes ¢ € C, and the other nodes assigned to the new class c,.
While we confirm that nodes assigned to existing classes belong to the classes, we must
determine whether some of nodes assigned to the new class ¢, should be merged into or
remain. We call this recalculation process conflict resolution. By doing that, we finally
obtain the classes of k nodes completely. This process is repeated until file 1’ reaches the
end of file.

Specifically, Algorithm 3 works as follows. We read file 1’ sequentially and read k
nodes, where k is set to the parallel number. Typically, k is set to the number of cores of a
CPU. Let v1 ... v be the k distinct nodes occurring just after the node currently read. We
obtain L(v;) for every 1 < i < k, which is the set of edge labels of v; in lines 5 to 8 (Note
that the edges having the same label are merged into one). Running the codes in lines
in 10 to 13 in k parallel processes, we call CLASSDETERMINATION shown in Algorithm 2
to extract the class of v; based on the utility function. Note that C' is not updated during
the parallel block. We only refer to C' in order to calculate the utility function assuming
that nodes belong to each class. When the parallel block is completed, we have a set R of
results whose element is a pair (v;, class(v;)). A set of nodes belonging to ¢, is denoted
Vone- If [Vone|l > 1, then a conflict occurs and CONFLICTRESOLUTION (Algorithm 4) is
called. If not, the results in R are confirmed and skip the conflict resolution in lines 15
to 19.

Let us explain the procedure of CONFLICTRESOLUTION. We select the class of each
node belonging to existing classes and store them in R’ in line 3. (C, [nodes(c,1)| for each
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Algorithm 3 Class Extraction Algorithm (parallelized version)

Input: file 1’
Output: schema_classes
1: C+ 0.
2: k is set to the parallel number.
3: while file 1" does not reach EOF do
4: V%mp «— 0.

5: Repeat k times

6: L(v;) + the set of outgoing edge labels of v; obtained by reading file 1'.
7 me — me U {Uz}

8: End Repeat

9: R <+ 0.

10: Parallel for each v; € Vi

11: class(v;) < CLASSDETERMINATION(C, v, L(v;)).

12: R < RU{(v;,class(v;))}.

13: End Parallel
14: Vone = {v | (v, class(v)) € R such that class(v) = ¢, }.

15: if |Vone| > 1 then > conflict occurs
16: CONFLICTRESOLUTION(C, R, Vipmp, Vone)-

17: else

18: C < CU{dass(v1),...,class(vg)}.

19: end if

20: For each node v; € Vi, add a pair (v, class(v;)) to schema_classes.

21: end while

¢ € C, and |nodes(C,1)| are updated by these results in line 7.) The first node whose class
is ¢, is selected in line 4 and add it to R’ in line 5. Then in lines 6 to 7 we update C, Ci,p,
|nodes(c,1)] for each ¢ € C and each ¢ € Cly,p, and |nodes(C,1)| in main memory assuming
that the node v selected in line 4 belongs to class(v). For each node v € V., namely each
node in V4, assigned to ¢, except the first node, we recalculate the utility function. We
call CLASSDETERMINATION2 (Algorithm 5) instead of CLASSDETERMINATION so that the
existing classes are computed to Cy,;, only. CLASSDETERMINATION2 extracts the class of
v € Vone as follows. We calculate the following utility function and choose the class for
which the maximum value is obtained.

e The utility function assuming that v belongs to ¢ € Cypy, for each class ¢ extracted
so far in a conflict resolution.

e The utility function assuming that v belongs to a new class ¢, having the same edges
as v.

Note that we recalculate ¢, to obtain the utility value from the latest schema because the
schema is updated and the resulting utility value may be different. Now the class extraction
of v is completed. Each time the class is selected, we update C, Cypp, [n0des(c, )| for each
¢ € C and each ¢ € Cyyp, and |nodes(C,1)| in main memory assuming that the node v
belongs to class(v) in lines 10 to 12. Extracting the class of every node in V. completely,
we return R’ and back to Algorithm 3.

Finally, we output k pairs (v1, class(v1)), - . ., (vg, class(vg)) to schema_classes in line 20.
Repeating this process until the input file reaches EOF, we obtain the classes of all nodes.
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Algorithm 4 Conflict Resolution

1: procedure CONFLICTRESOLUTION(C, R, Vimp, Vone)

2 Ctmp 0.

3 R' = {(v,class(v)) € R| v & Vope}- > conflict resolution result
4: Remove the first node of V,,.. Let v be the first node.

5: R+ R'U{(v,class(v))}.

6 Cimp < Cymp U {class(v)}.

7 C + CU{class(v)|(v,class(v)) € R'}.

8 for each v € V,,,,. do

9 class(v) <= CLASSDETERMINATION2(C, Cmp, v, L(v)).

10: R + R'U{(v,class(v))}.
11: Cimp < Cymp U {class(v)}.
12: C + CU{class(v)}.

13: end for

14: return R’

15: end procedure

Algorithm 5 Class Determination in Conflict Resolution

1: procedure CLASSDETERMINATION2(C, C’ v, L(v))

2: for each class ¢; € C' do

3: Calculate U(C, v, ¢;).

4 end for

5 Let ¢, be the new class having the same set of outgoing edges as v (edges having

the same label are merged into one).
6: Calculate U(C, v, ¢y).
7: Let class(v) be the class such that the value of U is the highest among C’ U {c,}.
8: return class(v).
9: end procedure

3.4 Edge Extraction

In this edge extraction step, we replace nodes in the input graph file by their extracted
classes. To do that sequentially, first we use the sorted input graph file and schema_classes,
and create an intermediate file, in which source nodes are replaced by their classes (Phase
1). Then by using the intermediate file and schema_classes, we replace target nodes by
their classes (Phase 2).

Edge Extraction Phase 1 This phase replaces the source node of each edge by the
class of the source node. Algorithm 6 shows the procedure of the edge extraction phase 1.
As shown in Figure 3.2, file 1' is a sequence of triples (source, label, target), and the edge
extraction phase 1 is done by replacing source of each triple by class(source). Since file 1’
is sorted, the edges having the same source appear consecutively in file 1', which enables
source nodes to be replaced consecutively. Let v be the source node of the “current” edge
read from file 1', and suppose that class(v) is obtained from schema_classes. Then we can
replace the source of every edge whose source is v by class(v), which can be done by a
sequential read from file 1'.

Specifically, we read a line (vg, class(vs)) from schema_classes and read a line (v, [, u)
from file 1', where v is the source node, [ is the label, and wu is the target node in line 3.
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target label source target label source
bookl is-author-of classl “leaf” name classl
book2 is-author-of classl “leaf” number class2
“leaf” name classl “leaf” number class2
authorl author class?2 “leat” title class?2
“leaf” number class2 “leaf” title class2
“leaf” title class?2 authorl author class2
authorl author class2 authorl author class2
“leaf” number class2 book1 is-author-of classl
“leaf” title class2 book2 is-author-of classl
(a) tmp_file 1 (b) tmp_file 1'

Figure 3.3: Intermediate files created in edge extraction

Algorithm 6 Edge Extraction Phase 1

Input: file 1" and schema_classes

Output: tmp_filel > sources are replaced by their class
1: Read a line from schema_classes. Let v be the node and class(vs) be the class of the
line.

2: while file 1" does not reach EOF do
3: Read a line from file 1'. Let v,l, u be the source, the label, and the target of the
line, respectively.

4: if v = v, then

5: Add a triple (u,l,class(vs)) to tmp_filel (u is replaced by “leaf” if the target
u is a leaf node).

6: else

7: Read schema__classes sequentially and find a line (vs, class(vs)) such that v, = v.

8: Add a triple (u,l, class(vs)) to tmp_filel (u is replaced by “leaf” if the target

u is a leaf node).
9: end if
10: end while

If the class of v is already known, then v is replaced by the class in lines 5. Otherwise, by
reading schema_ classes sequentially, we obtain the class of v and replace v of each edge
in file 1' by the class in line 7. This results in edges between classes and nodes (if the
target node u is a leaf, we use “leaf” instead of u since the content is not needed in the
next phase). Then we swap the source and the target of the edge, and output the edge to
tmp_file 1. Note that we output the triple (target node, label, source class) in this order
because in the next phase we sort tmp_file 1 by target nodes and replace target nodes by
their classes. Repeating this until file 1' reaches EOF, we obtain the edges between classes
and nodes as shown in Figure 3.3a.

Edge Extraction Phase 2 This phase replaces the target node of each edge obtained
in Phase 1 by the class of the target node. Algorithm 7 shows the procedure of the
edge extraction phase 2. We assume that every text leaf node belongs to a particular
class called LEAF and that every non-text leaf node belongs to another particular class
called LEAF?2. Actually, this phase is done in a similar way to the phase 1. As shown in
Figure 3.3a, tmp_file 1 is a sequence of triples (target, label, class), and the edge extraction
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Algorithm 7 Edge Extraction Phase 2

Input: tmp_file 1, schema_classes
Output: schema_edges
1: Sort tmp_file 1. Let tmp_file 1" be the resulting file.
2: Read a line from schema_classes. Let vy be the node and class(vy) be the class of the
line.
3: Read a line from tmp_file 1'. Let u,l, ¢s be the target, the label, and the source of the
line, respectively.
4: while tmp_file 1’ does not reach EOF do

5: if u = “leat” then > u is a text leaf node

6: Add a triple (cs,l, LEAF) to schema_edges.

7 Read a line from tmp_file 1'. Let u, [, cs be the target, the label, and the source
of the line, respectively.

: else if u < v; then > u is a non-text leaf node

9: Add a triple (cs,l, LEAF2) to schema_edges.

10: Read a line from tmp_file 1'. Let u, [, cs be the target, the label, and the source
of the line, respectively.

11: else if u > v; then

12: Read a line from schema_classes. Let v; be the node and class(v;) be the class
of the line.

13: else if u = v; then

14: Add a triple (cs, 1, class(vy)) to schema_edges.

15: Read a line from tmp_file 1'. Let u, [, cs be the target, the label, and the source

of the line, respectively.
16: end if
17: end while

is done by replacing target of each triple by class(target). To do this, the algorithm first
sorts tmp_file 1 and obtain tmp_file 1" as the result, as shown in Figure 3.3b in line 1. Since
tmp_file 1" is sorted, the edges having the same target appear consecutively in tmp_file
1', which enables target nodes to be replaced consecutively. Let v be the target node
of the “current” edge read from tmp_file 1', and suppose that the class(v) is obtained
from schema_classes. Then we can replace the target of every edge whose target is v by
class(v), which can be done by a sequential read from tmp_file 1'.

Specifically, we read a line (u,l,cs) from tmp_file 1', where u is the target node, [ is
the label, and ¢, is the source class in line 3. If the class of u is already known, then w is
replaced by the class in lines 5 to 10. Otherwise, by reading schema_ classes sequentially,
we obtain the class of u and replace u of each edge in tmp_file 1' by the class in lines 11
to 14. Repeating this until tmp_file 1" reaches EOF, we obtain the edges between classes.

3.5 I/0 Cost

We consider the I/O cost of our algorithm. Let G = (V| E) be a graph, |V| be the number
of nodes and |E| be the number of edges. We assume that data is transferred between
external memory and main memory in blocks of size B. O(sort(|E|)) represents the 1/O
complexity of external merge sort. The I/O cost of each step is as follows.

1. Preprocessing

Sorting file 1 externally: O(sort(|E|))
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2. Class Extraction

(a) Reading file 1': O(|E|/B)
(b) Writing pairs of a node and its class to schema_classes: O(|V|/B)

3. Edge Extraction Phase 1

(a) Reading file 1': O(|E|/B)
(b) Reading schema_classes: O(|V|/B)
(c) Writing outgoing edges to tmp_file 1: O(|E|/B)

4. Edge Extraction Phase 2

(a) Sorting tmp_file 1 externally: O(sort(|E]))
(b) Reading tmp_file 1': O(|E|/B)

(c¢) Reading schema_classes: O(|V'|/B)

(d) Writing edges to schema_edges: O(|E|/B)

Thus, the I/O cost of our algorithm is as follows.

0 (‘? T sort(|E])) = © (’g' +sort(|E))

The external R-way merge sort algorithm is an efficient algorithm for sorting large
files externally, and we have a number of implementations of the algorithm, e.g., UNIX
sort. Therefore, the above estimation suggests that our algorithm extracts a schema from
a large graph efficiently, if only such commands are available.

3.6 Example of Our Algorithm

Let us show an example of our algorithm of parallel implementation. Let file 1 be the file
in Figure 2.3, which is obtained from the graph in Figure 2.1. Texts enclosed in double
quotes are treated as leafs.

First, in the preprocessing of the class extraction, we sort file 1 and obtain file 1’ in
Figure 3.2. Next, Algorithm 3 performs the class extraction step as follows. We set k = 2
for this simple example. We then read file 1' sequentially and obtain a set L(v;) that
stores all edges of v; = authorl in lines 5 to 8. Since k = 2, we read the next node
v = bookl and obtain L(vg) that is a set of all labels of edges of bookl. Then we have
Vimp = {authorl,book1}.

The parallel block in lines 10 to 13 is executed as follows. (1) Since |C| = 0, authorl
belongs to a new class cguthor1 = classl through Algorithm 2. (2) Similarly, since |C| =0,
bookl belongs to a new class cpor1 = classl. The two parallel processes finishing, we have
R = {(authorl, cyuthor1 = classl), (bookl, cpoor1 = classl)}. Note that couthor1 and cpook1
are different; however the class number of both being 1, they are numerically identical.
That is, a conflict occurs. Let V,,. be a set of nodes in V},,, whose class are the new class
¢y and we have V,,. = {authorl,bookl} in line 14.

Since |Vone| = 2 > 1, we go to CONFLICTRESOLUTION shown in Algorithm 4 as fol-
lows. Since we have not updated the schema, |C'| = 0. Since there is no node belonging
to existing classes, R’ = () in line 3. We remove the first element of V,,. and let it
be v = authorl in line 4. Since authorl is the first element of V,,., it is confirmed
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that class(authorl) = cguthor1 = classl in line 5. Then updating the schema in lines 6
to 7, we have Cppp = C = {authorl} and R’ = {(authorl, cauihor1)}. The question
is whether bookl should be assigned to cqythort O Cpook1. Through CLASSDETERMINA-
TION2(C, Cymp, v, L(v)) shown in Algorithm 5, we calculate following utility function and
choose the class for which the maximum value is obtained. (1) bookl belongs to cauthort,
(2) bookl belongs to ¢poor1. Finally we determined that class(bookl) = cpoor1 = class2.
The conflict resolution finished, we return to Algorithm 3. We output the two pair (au-
thorl, classl) and (bookl, class2) to schema_classes in line 20. We continue in a similar
manner by the end of file 1" and we obtain schema_classes in Figure 2.4a.

Algorithm 6 performs the edge extraction phase 1. We read a line from file 1" and obtain
a triple (authorl, is-author-of, book1l). By reading schema_classes, classl is identified as
the class of authorl. We replace the source of the triple with classl, swap the source
and the target, and add a triple (bookl, is-author-of, classl) to tmp_file 1 in line 5. We
continue in a similar manner (and replace the target with “leaf” if the target is a leaf) by
the end of file 1" and we obtain tmp_file 1 in Figure 3.3a.

Algorithm 7 performs the edge extraction phase 2 as follows. We sort tmp_file 1 and
obtain tmp_file 1" in Figure 3.3b as the result in line 1. We read a line from tmp_file 1’
and obtain the triple (“leaf”, name, classl). Since the target is a text leaf, add a triple
(classl, name, LEAF) to schema_edges in lines 5 to 6. We next read a line from tmp_file
1" in line 7 and add a triple (class2, number, LEAF) to schema_edges in line 6 similarly.
The next three lines of tmp_file 1" are treated similarly. For the 6th line of tmp_file 1°,
we obtain (authorl, author, class2). By reading schema_classes, class2 is identified as the
class of authorl in line 13. Thus, we add a triple (class2, author, classl) to schema_edges
in line 14. We continue similarly by the end of tmp_file 1" and we obtain schema_edges
as shown in Fig. 2.4b.



Chapter 4

Evaluation Experiment

In this chapter, we present experimental results on our algorithm. The algorithm was
implemented in Ruby 2.4.2. The parallelized class extraction was implemented by Ruby
Gem parallel (version 1.12.0)%. All the evaluation experiments were executed on a machine
with Intel Xeon E5-2623 v3 3.0GHz CPU, 16GB RAM, 2TB SATA HDD, and Linux
CentOS 7 64bit. We used UNIX sort command in order to sort files externally in the
preprocessing and the edge extraction, and we limited the maximum memory usage of the
sort command to 1GB by using option “-S”.
In our experiments, we use the following two datasets.

SP?Bench SP2Bench [10] (SP2B, for short) is a benchmark tool and generates RDF (N-
Triples) files based on DBLP, a computer science bibliography. We generate four graphs
of different sizes in Table 4.1. In the following, by V*, we mean the non-leaf nodes in a
set V of nodes. Thus classes of nodes in V* are extracted.

Figure 4.1 shows an overview of an SP2B graph. The total number of unique RDF
types is 12. Nodes whose RDF type is “Article” are the largest number of nodes. Note
that we regard every edge label rdf: i as the same regardless of the value of i, since the
number 7 is not important.

The reason why we use this tool is that (1) it has its explicit schema and thus we can
compare the schema and the schema extracted by our algorithm and (2) the tool generates
graphs of various sizes, which is useful to investigating the performance of our algorithm.

DBPedia DBPedia project extracts structured data from Wikipedia. Among the real-
world graphs, it is one of the datasets with the largest number of unique edge labels.
We downloaded three benchmark dataset graphs 2 and created another graph with |E| =
50,000, which is the first 50,000 lines of the smallest graph of the three. Thus we use the

"https://github.com/grosser /parallel
Zhttp://benchmark.dbpedia.org/

Table 4.1: Graphs generated by SP?Bench

|E| [V*| |L| size (GB)

100,073 19,369 24 0.01
1,000,009 187,066 24 0.10
10,000,457 1,730,250 26 1.04
100,000,380 17,823,525 26 10.35
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Incollection

isbn ~> type edge () :RDF type node

O : Other node

name title

Figure 4.1: Overview of an SP2B graph

Table 4.2: Graphs from DBPedia

| V7] IL| size (GB)

50,000 1,077 2,772 0.01
15,373,833 313,036 14,130 2.72
76,868,920 1,177,165 22,147 12.80
153,737,783 1,457,083 23,343 25.11

four RDF (N-Triples) graphs in Table 4.2. The total number of unique RDF types in the
graph with |F| = 15,373,833 is 54,736.

In the following, first we give the evaluation of the class extraction since this is the
most complex and time-consuming process. Then, we give the evaluation of the prepro-
cessing and the edge extraction. To evaluate the class extraction quality, we introduce two
scores Scorel and Score2, based on RDF types assigned to each node. SP2B is an RDF
benchmark tool and each non-leaf node in graphs generated by SP2B has one RDF type.
On the other hand, each non-leaf node in DBPedia has one or more RDF types. In the
following definition, two particular classes LEAF and LEAF2, which leaf nodes belong to,
are omitted.

Scorel becomes larger as extracted classes contain smaller numbers of different types.
By types(v) we mean the set of types assigned to v. The set of nodes having type ¢ in
class ¢ is denoted nodes(t, c). Then Scorel is defined as follows.

1 1 Z |nodes(t, class(v))]

Scorel =
V¥ &7 [types(v)] |class(v)|

tetypes(v)

Score2 becomes larger as a type is distributed to smaller numbers of different classes.
Let total(t) be the total number of nodes having type ¢, and let maz(t) = max.nodes(t, c).
Then Score2 is the mean of ratio of the two, that is,

1
Score2 = — E
T

mazx(t)
i total(t)

Thus, the more nodes having type t are grouped into the same class, the higher Score2 is.

Firstly, we give the evaluation of the parallelization of the class extraction. We mea-
sured the execution time and the memory usage of the class extraction algorithm (non-
parallel version and the parallelized version), and calculated the class extraction scores.
In this experiment, we set the parameter o to 1 in light utility function and the parallel
number k to 4.
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Table 4.3: Execution time of the class extraction (non-parallel and parallelized versions)
for SP2B graphs

SP2B 2]

parallel number | 1,000,009 10,000,457 100,000,380
1 (non-parallel) 6.70 64.23 651.07
4 (parallelized) 209.31 1,669.85 19,886.80

Table 4.4: Execution time of the class extraction (non-parallel and parallelized versions)
for DBPedia graphs

DBPedia |E|

parallel number | 15,373,833 76,868,920 153,737,783
1 (non-parallel) | 11,242.80 110,555.53  150,143.69
4 (parallelized) 4,803.85  42,071.79 58,026.58

Tables 4.3 and 4.4 show the results. Each row whose parallel number is 1 represents a
result by the non-parallel class extraction algorithm. Each execution time is in seconds.
Table 4.3 shows the execution time of the class extraction (non-parallel and parallelized
versions) for SP2B graphs of different sizes. This result can be described as follows. In
SP2B, (1) the execution time is almost linear to the number of edges |E|. The execution
time is also almost linear to the number of non-leaf nodes |V*| since |V*| is proportional
to |E| in SP2B. (2) The parallelization makes the execution time significantly slow. Since
the number of classes extracted for SP2B is significantly smaller than DBPedia (details
are presented below) and the cost of calculating the light utility function for each node
is considerably small, the overhead of parallelization is relatively large. Therefore, the
execution time of the parallelized version increased due to the parallelization cost.

Table 4.4 shows the execution time of the class extraction (non-parallel and parallelized
versions) for DBPedia graphs of different sizes. This result can be described as follows.
(1) The execution time of DBPedia is much longer than that of SP2B since |L]| is relatively
large in DBPedia and thus the number of extracted classes |C| greatly increases. (2) At
first, the growth rate of execution time of DBPedia rapidly grows compared to that of
|[V*|. As the size of graph grows, the growth rate of execution time is getting closer to
that of |[V*|. (1) and (2) suggest that |L| and |V*| mostly affect the execution time of our
algorithm. (3) The parallelized version is more than two times faster than the non-parallel
version in DBPedia. Since the calculation cost of the utility function is considerably large,
the parallelization is effective to make the execution time shortened.

Tables 4.5 and 4.6 show |C| and the scores for the non-parallel version and the paral-
lelized version with k£ = 4. Both of versions were executed with a = 1. This result shows
that parallelization does not affect |C| and the scores, thus we have almost no difference
in the class extraction quality.

Table 4.5: Class extraction scores for the parallelized and non-parallel version (o = 1) for
the SP2B graph with |E| = 10, 000, 457

parallel number | |[C| Score 1 Score 2 Mean
1 (non-parallel) | 3 72.53  100.00 86.26
4 (parallelized) | 3 72.53  100.00 86.26
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Table 4.6: Class extraction scores for the parallelized and non-parallel version (o = 1) for
the DBPedia graph with |E| = 15,373,833

parallel number | |C| Score 1l Score2 Mean
1 (non-parallel) | 1,327  70.06 76.97  73.51
4 (parallelized) | 1,309  70.60 76.42  73.51

Table 4.7: Memory usage of the class extraction algorithm

Dataset non-parallel parallelized
SP2B (|E| = 100,000, 380) 11.1 MB 7.5 MB
DBPedia (|E| = 153,737,783) 116.6MB 89.6 MB

We also measured the memory usage of the class extraction algorithm. Table 4.7
shows the result. For the SP2B graph with |E| = 100, 000, 380, maximum memory usage
of the parallelized version is about 7.5MB. On the other hand, that of the non-parallel
version is 11.1MB. We also measured the memory usage for the DBPedia graph with
|E| = 153,737, 783. Maximum memory usage of the parallelized version is about 89.6MB.
On the other hand, that of the non-parallel version is about 116.6MB. These results show
that the parallelized version was about 10-20 percent less memory usage than non-parallel
version. Thus, our class extraction algorithm is completed with sufficiently small memory
usage to the input graph file.

Secondly, we give the evaluation of effectiveness of our light utility function. We
compare our light utility function and the original utility function. We also examined how
parameter « in our light utility function affects the class extraction scores. Let us make a
comparison of the following three cases.

e Extracting classes with the original utility function [13]
e Extracting classes with our light utility function with oo =1
e Extracting classes with our light utility function with o = 10

We ignore incoming edge labels in all the cases. In this experiment, we use parallel number
k = 1. Tables 4.8, 4.9, and 4.10 show the results. Table 4.8 shows the class extraction
scores and the number of classes |C| for the SP2B graph with |E| = 10,000,457. The
result shows that both of utility functions achieve high scores. The reason why such high
scores are obtained is that the graphs were generated the benchmark tool so |L| is small
and nodes having the same RDF type have a similar set of labels.

Table 4.9 shows the class extraction scores and the number of classes |C| for the
DBPedia graph with |E| = 50,000. The maximum mean of score 70.58 is obtained at
« = 1, which is higher than the value 62.38 obtained by the original.

Table 4.10 shows the class extraction scores and the number of classes |C| for the
DBPedia graph with |E| = 15,373,833. We could not extract schemas from DBPedia

Table 4.8: Class extraction scores for the SP2B graph with |E| = 10,000, 457

utility function |C| Score 1 Score 2 Mean
Light(a = 1) 3 72.53 100.00  86.26

Light(a =10) 22 99.45 88.83 94.14
Original 6 97.02 95.32  96.17
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Table 4.9: Class extraction scores for DBPedia graph with |E| = 50,000

utility function |C|] Score 1 Score 2 Mean
Light(a=1) 179  67.30 73.87  70.58

Light(a = 10) 687 89.74  27.77  58.76
Original 81 43.07 81.69  62.38

Table 4.10: Class extraction scores for DBPedia graph with |E| = 15,373,833

utility function  |C]  Score 1 Score 2 Mean

Light(a =1) 1,327 70.06 76.97  73.51

Light(aw = 10) 48,631  85.12 3.77 44.44
Original - - - -

graph with |E| = 15,373,833 with the original utility function within reasonable time
(24h) because the computation cost of the function is too high.

Overall, the above results suggest that the parameter « introduced in our light utility
function works effectively for extracting classes from graphs having fewer unique edge la-
bels such as SP2B. As shown in the tables, our light utility function can extract appropriate
schemas efficiently.

Finally, we give the evaluation of the preprocessing and the edge extraction. In this
experiment, we used the input files of the edge extraction algorithm obtained by the class
extraction algorithm with the parallel number & = 1 for SP2B and k£ = 4 for DBPedia.
We measured the execution time of the preprocessing and the edge extraction. Tables 4.11
and 4.12 show the details of the execution time. Figures 4.2 and 4.3 plot the execution
time of each step. This result means that the execution time of the preprocessing and the
edge extraction algorithm are almost linear to |E|.

We also measured the memory usage of each step. We observed that each edge ex-
traction step except sorting was executed under 10MB memory usage. External sorting in
the preprocessing and the edge extraction step is the most memory consuming step, and
its maximum memory usage is about 1.1GB since we limit the maximum memory usage
of the sort command to 1GB. Thus, the memory usage of the schema extraction mostly
depends on external sorting.

Table 4.11: Execution time of the preprocessing and the edge extraction (SP2B)

SP2B Edge Extraction (s)
|E| Preprocessing (s) | Phase 1 Phase 2 (sort) Phase2 (except sort)
100,073 1.55 0.34 0.14 0.34
1,000,009 8.85 2.80 0.52 2.14
10,000,457 84.16 25.17 10.67 21.13
100,000,380 856.52 280.25 83.34 213.92
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Table 4.12: Execution time of the preprocessing and the edge extraction (DBPedia)
DBPedia Edge Extraction (s)
|E| Preprocessing (s) | Phase 1 Phase 2 (sort) Phase2 (except sort)
15,373,833 168.66 46.92 22.07 35.36
76,868,920 1,273.80  224.57 171.12 176.57
153,737,783 2,914.30  434.41 418.64 406.48
1,000.00 B Preprocessing (s)
B Phase 1
B Phase 2 (sort)
750.00 B Phase? (except sort)
¢
E
= 50000
:
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Figure 4.2: Execution time of the preprocessing and the edge extraction (SP2B)
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Figure 4.3: Execution time of the preprocessing and the edge extraction (DBPedia)



Chapter 5

Conclusion

In this thesis, we proposed an external memory algorithm for extracting a schema from a
graph. Our algorithm is designed so that each file is read sequentially in most cases and
very few random accesses are required for schema extraction. Our algorithm consists of
the following two steps. (1) The class extraction is to create new classes and to assign
each node to a class. (2) The edge extraction is to create edges between classes. The
class extraction is also designed as a parallel processing algorithm using our new utility
function.

We made some evaluation experiments on our schema extraction algorithm by using
SP?Bench, an RDF benchmark tool, and DBPedia graphs. The results suggest that our
algorithm can extract schemas from these graphs more efficiently and appropriately than
the previous utility function, that the parallelization of the class extraction makes the
execution time more than two times faster for DBPedia, and that the memory usage of
the schema extraction mostly depends on external sorting.

As a future work, we would like to modify the definition of the light utility function
in this thesis so that the class extraction scores become higher and the execution time is
further shortened. We also need to examine the extracted classes in more detail.
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